2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor = is_full_physname_constructor
295 || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 /* Initialize the cplus_specific structure. 'cplus_specific' should
344 only be allocated for use with cplus symbols. */
345
346 static void
347 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
348 struct objfile *objfile)
349 {
350 /* A language_specific structure should not have been previously
351 initialized. */
352 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
353 gdb_assert (objfile != NULL);
354
355 gsymbol->language_specific.cplus_specific =
356 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
357 }
358
359 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
360 correctly allocated. For C++ symbols a cplus_specific struct is
361 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
362 OBJFILE can be NULL. */
363 void
364 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
365 char *name,
366 struct objfile *objfile)
367 {
368 if (gsymbol->language == language_cplus)
369 {
370 if (gsymbol->language_specific.cplus_specific == NULL)
371 symbol_init_cplus_specific (gsymbol, objfile);
372
373 gsymbol->language_specific.cplus_specific->demangled_name = name;
374 }
375 else
376 gsymbol->language_specific.mangled_lang.demangled_name = name;
377 }
378
379 /* Return the demangled name of GSYMBOL. */
380 char *
381 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
382 {
383 if (gsymbol->language == language_cplus)
384 {
385 if (gsymbol->language_specific.cplus_specific != NULL)
386 return gsymbol->language_specific.cplus_specific->demangled_name;
387 else
388 return NULL;
389 }
390 else
391 return gsymbol->language_specific.mangled_lang.demangled_name;
392 }
393
394 \f
395 /* Initialize the language dependent portion of a symbol
396 depending upon the language for the symbol. */
397 void
398 symbol_set_language (struct general_symbol_info *gsymbol,
399 enum language language)
400 {
401 gsymbol->language = language;
402 if (gsymbol->language == language_d
403 || gsymbol->language == language_java
404 || gsymbol->language == language_objc
405 || gsymbol->language == language_fortran)
406 {
407 symbol_set_demangled_name (gsymbol, NULL, NULL);
408 }
409 else if (gsymbol->language == language_cplus)
410 gsymbol->language_specific.cplus_specific = NULL;
411 else
412 {
413 memset (&gsymbol->language_specific, 0,
414 sizeof (gsymbol->language_specific));
415 }
416 }
417
418 /* Functions to initialize a symbol's mangled name. */
419
420 /* Objects of this type are stored in the demangled name hash table. */
421 struct demangled_name_entry
422 {
423 char *mangled;
424 char demangled[1];
425 };
426
427 /* Hash function for the demangled name hash. */
428 static hashval_t
429 hash_demangled_name_entry (const void *data)
430 {
431 const struct demangled_name_entry *e = data;
432
433 return htab_hash_string (e->mangled);
434 }
435
436 /* Equality function for the demangled name hash. */
437 static int
438 eq_demangled_name_entry (const void *a, const void *b)
439 {
440 const struct demangled_name_entry *da = a;
441 const struct demangled_name_entry *db = b;
442
443 return strcmp (da->mangled, db->mangled) == 0;
444 }
445
446 /* Create the hash table used for demangled names. Each hash entry is
447 a pair of strings; one for the mangled name and one for the demangled
448 name. The entry is hashed via just the mangled name. */
449
450 static void
451 create_demangled_names_hash (struct objfile *objfile)
452 {
453 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
454 The hash table code will round this up to the next prime number.
455 Choosing a much larger table size wastes memory, and saves only about
456 1% in symbol reading. */
457
458 objfile->demangled_names_hash = htab_create_alloc
459 (256, hash_demangled_name_entry, eq_demangled_name_entry,
460 NULL, xcalloc, xfree);
461 }
462
463 /* Try to determine the demangled name for a symbol, based on the
464 language of that symbol. If the language is set to language_auto,
465 it will attempt to find any demangling algorithm that works and
466 then set the language appropriately. The returned name is allocated
467 by the demangler and should be xfree'd. */
468
469 static char *
470 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
471 const char *mangled)
472 {
473 char *demangled = NULL;
474
475 if (gsymbol->language == language_unknown)
476 gsymbol->language = language_auto;
477
478 if (gsymbol->language == language_objc
479 || gsymbol->language == language_auto)
480 {
481 demangled =
482 objc_demangle (mangled, 0);
483 if (demangled != NULL)
484 {
485 gsymbol->language = language_objc;
486 return demangled;
487 }
488 }
489 if (gsymbol->language == language_cplus
490 || gsymbol->language == language_auto)
491 {
492 demangled =
493 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
494 if (demangled != NULL)
495 {
496 gsymbol->language = language_cplus;
497 return demangled;
498 }
499 }
500 if (gsymbol->language == language_java)
501 {
502 demangled =
503 cplus_demangle (mangled,
504 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
505 if (demangled != NULL)
506 {
507 gsymbol->language = language_java;
508 return demangled;
509 }
510 }
511 if (gsymbol->language == language_d
512 || gsymbol->language == language_auto)
513 {
514 demangled = d_demangle(mangled, 0);
515 if (demangled != NULL)
516 {
517 gsymbol->language = language_d;
518 return demangled;
519 }
520 }
521 /* We could support `gsymbol->language == language_fortran' here to provide
522 module namespaces also for inferiors with only minimal symbol table (ELF
523 symbols). Just the mangling standard is not standardized across compilers
524 and there is no DW_AT_producer available for inferiors with only the ELF
525 symbols to check the mangling kind. */
526 return NULL;
527 }
528
529 /* Set both the mangled and demangled (if any) names for GSYMBOL based
530 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
531 objfile's obstack; but if COPY_NAME is 0 and if NAME is
532 NUL-terminated, then this function assumes that NAME is already
533 correctly saved (either permanently or with a lifetime tied to the
534 objfile), and it will not be copied.
535
536 The hash table corresponding to OBJFILE is used, and the memory
537 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
538 so the pointer can be discarded after calling this function. */
539
540 /* We have to be careful when dealing with Java names: when we run
541 into a Java minimal symbol, we don't know it's a Java symbol, so it
542 gets demangled as a C++ name. This is unfortunate, but there's not
543 much we can do about it: but when demangling partial symbols and
544 regular symbols, we'd better not reuse the wrong demangled name.
545 (See PR gdb/1039.) We solve this by putting a distinctive prefix
546 on Java names when storing them in the hash table. */
547
548 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
549 don't mind the Java prefix so much: different languages have
550 different demangling requirements, so it's only natural that we
551 need to keep language data around in our demangling cache. But
552 it's not good that the minimal symbol has the wrong demangled name.
553 Unfortunately, I can't think of any easy solution to that
554 problem. */
555
556 #define JAVA_PREFIX "##JAVA$$"
557 #define JAVA_PREFIX_LEN 8
558
559 void
560 symbol_set_names (struct general_symbol_info *gsymbol,
561 const char *linkage_name, int len, int copy_name,
562 struct objfile *objfile)
563 {
564 struct demangled_name_entry **slot;
565 /* A 0-terminated copy of the linkage name. */
566 const char *linkage_name_copy;
567 /* A copy of the linkage name that might have a special Java prefix
568 added to it, for use when looking names up in the hash table. */
569 const char *lookup_name;
570 /* The length of lookup_name. */
571 int lookup_len;
572 struct demangled_name_entry entry;
573
574 if (gsymbol->language == language_ada)
575 {
576 /* In Ada, we do the symbol lookups using the mangled name, so
577 we can save some space by not storing the demangled name.
578
579 As a side note, we have also observed some overlap between
580 the C++ mangling and Ada mangling, similarly to what has
581 been observed with Java. Because we don't store the demangled
582 name with the symbol, we don't need to use the same trick
583 as Java. */
584 if (!copy_name)
585 gsymbol->name = (char *) linkage_name;
586 else
587 {
588 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
589 memcpy (gsymbol->name, linkage_name, len);
590 gsymbol->name[len] = '\0';
591 }
592 symbol_set_demangled_name (gsymbol, NULL, NULL);
593
594 return;
595 }
596
597 if (objfile->demangled_names_hash == NULL)
598 create_demangled_names_hash (objfile);
599
600 /* The stabs reader generally provides names that are not
601 NUL-terminated; most of the other readers don't do this, so we
602 can just use the given copy, unless we're in the Java case. */
603 if (gsymbol->language == language_java)
604 {
605 char *alloc_name;
606
607 lookup_len = len + JAVA_PREFIX_LEN;
608 alloc_name = alloca (lookup_len + 1);
609 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
610 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
611 alloc_name[lookup_len] = '\0';
612
613 lookup_name = alloc_name;
614 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
615 }
616 else if (linkage_name[len] != '\0')
617 {
618 char *alloc_name;
619
620 lookup_len = len;
621 alloc_name = alloca (lookup_len + 1);
622 memcpy (alloc_name, linkage_name, len);
623 alloc_name[lookup_len] = '\0';
624
625 lookup_name = alloc_name;
626 linkage_name_copy = alloc_name;
627 }
628 else
629 {
630 lookup_len = len;
631 lookup_name = linkage_name;
632 linkage_name_copy = linkage_name;
633 }
634
635 entry.mangled = (char *) lookup_name;
636 slot = ((struct demangled_name_entry **)
637 htab_find_slot (objfile->demangled_names_hash,
638 &entry, INSERT));
639
640 /* If this name is not in the hash table, add it. */
641 if (*slot == NULL)
642 {
643 char *demangled_name = symbol_find_demangled_name (gsymbol,
644 linkage_name_copy);
645 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
646
647 /* Suppose we have demangled_name==NULL, copy_name==0, and
648 lookup_name==linkage_name. In this case, we already have the
649 mangled name saved, and we don't have a demangled name. So,
650 you might think we could save a little space by not recording
651 this in the hash table at all.
652
653 It turns out that it is actually important to still save such
654 an entry in the hash table, because storing this name gives
655 us better bcache hit rates for partial symbols. */
656 if (!copy_name && lookup_name == linkage_name)
657 {
658 *slot = obstack_alloc (&objfile->objfile_obstack,
659 offsetof (struct demangled_name_entry,
660 demangled)
661 + demangled_len + 1);
662 (*slot)->mangled = (char *) lookup_name;
663 }
664 else
665 {
666 /* If we must copy the mangled name, put it directly after
667 the demangled name so we can have a single
668 allocation. */
669 *slot = obstack_alloc (&objfile->objfile_obstack,
670 offsetof (struct demangled_name_entry,
671 demangled)
672 + lookup_len + demangled_len + 2);
673 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
674 strcpy ((*slot)->mangled, lookup_name);
675 }
676
677 if (demangled_name != NULL)
678 {
679 strcpy ((*slot)->demangled, demangled_name);
680 xfree (demangled_name);
681 }
682 else
683 (*slot)->demangled[0] = '\0';
684 }
685
686 gsymbol->name = (*slot)->mangled + lookup_len - len;
687 if ((*slot)->demangled[0] != '\0')
688 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
689 else
690 symbol_set_demangled_name (gsymbol, NULL, objfile);
691 }
692
693 /* Return the source code name of a symbol. In languages where
694 demangling is necessary, this is the demangled name. */
695
696 char *
697 symbol_natural_name (const struct general_symbol_info *gsymbol)
698 {
699 switch (gsymbol->language)
700 {
701 case language_cplus:
702 case language_d:
703 case language_java:
704 case language_objc:
705 case language_fortran:
706 if (symbol_get_demangled_name (gsymbol) != NULL)
707 return symbol_get_demangled_name (gsymbol);
708 break;
709 case language_ada:
710 if (symbol_get_demangled_name (gsymbol) != NULL)
711 return symbol_get_demangled_name (gsymbol);
712 else
713 return ada_decode_symbol (gsymbol);
714 break;
715 default:
716 break;
717 }
718 return gsymbol->name;
719 }
720
721 /* Return the demangled name for a symbol based on the language for
722 that symbol. If no demangled name exists, return NULL. */
723 char *
724 symbol_demangled_name (const struct general_symbol_info *gsymbol)
725 {
726 switch (gsymbol->language)
727 {
728 case language_cplus:
729 case language_d:
730 case language_java:
731 case language_objc:
732 case language_fortran:
733 if (symbol_get_demangled_name (gsymbol) != NULL)
734 return symbol_get_demangled_name (gsymbol);
735 break;
736 case language_ada:
737 if (symbol_get_demangled_name (gsymbol) != NULL)
738 return symbol_get_demangled_name (gsymbol);
739 else
740 return ada_decode_symbol (gsymbol);
741 break;
742 default:
743 break;
744 }
745 return NULL;
746 }
747
748 /* Return the search name of a symbol---generally the demangled or
749 linkage name of the symbol, depending on how it will be searched for.
750 If there is no distinct demangled name, then returns the same value
751 (same pointer) as SYMBOL_LINKAGE_NAME. */
752 char *
753 symbol_search_name (const struct general_symbol_info *gsymbol)
754 {
755 if (gsymbol->language == language_ada)
756 return gsymbol->name;
757 else
758 return symbol_natural_name (gsymbol);
759 }
760
761 /* Initialize the structure fields to zero values. */
762 void
763 init_sal (struct symtab_and_line *sal)
764 {
765 sal->pspace = NULL;
766 sal->symtab = 0;
767 sal->section = 0;
768 sal->line = 0;
769 sal->pc = 0;
770 sal->end = 0;
771 sal->explicit_pc = 0;
772 sal->explicit_line = 0;
773 }
774 \f
775
776 /* Return 1 if the two sections are the same, or if they could
777 plausibly be copies of each other, one in an original object
778 file and another in a separated debug file. */
779
780 int
781 matching_obj_sections (struct obj_section *obj_first,
782 struct obj_section *obj_second)
783 {
784 asection *first = obj_first? obj_first->the_bfd_section : NULL;
785 asection *second = obj_second? obj_second->the_bfd_section : NULL;
786 struct objfile *obj;
787
788 /* If they're the same section, then they match. */
789 if (first == second)
790 return 1;
791
792 /* If either is NULL, give up. */
793 if (first == NULL || second == NULL)
794 return 0;
795
796 /* This doesn't apply to absolute symbols. */
797 if (first->owner == NULL || second->owner == NULL)
798 return 0;
799
800 /* If they're in the same object file, they must be different sections. */
801 if (first->owner == second->owner)
802 return 0;
803
804 /* Check whether the two sections are potentially corresponding. They must
805 have the same size, address, and name. We can't compare section indexes,
806 which would be more reliable, because some sections may have been
807 stripped. */
808 if (bfd_get_section_size (first) != bfd_get_section_size (second))
809 return 0;
810
811 /* In-memory addresses may start at a different offset, relativize them. */
812 if (bfd_get_section_vma (first->owner, first)
813 - bfd_get_start_address (first->owner)
814 != bfd_get_section_vma (second->owner, second)
815 - bfd_get_start_address (second->owner))
816 return 0;
817
818 if (bfd_get_section_name (first->owner, first) == NULL
819 || bfd_get_section_name (second->owner, second) == NULL
820 || strcmp (bfd_get_section_name (first->owner, first),
821 bfd_get_section_name (second->owner, second)) != 0)
822 return 0;
823
824 /* Otherwise check that they are in corresponding objfiles. */
825
826 ALL_OBJFILES (obj)
827 if (obj->obfd == first->owner)
828 break;
829 gdb_assert (obj != NULL);
830
831 if (obj->separate_debug_objfile != NULL
832 && obj->separate_debug_objfile->obfd == second->owner)
833 return 1;
834 if (obj->separate_debug_objfile_backlink != NULL
835 && obj->separate_debug_objfile_backlink->obfd == second->owner)
836 return 1;
837
838 return 0;
839 }
840
841 struct symtab *
842 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
843 {
844 struct objfile *objfile;
845 struct minimal_symbol *msymbol;
846
847 /* If we know that this is not a text address, return failure. This is
848 necessary because we loop based on texthigh and textlow, which do
849 not include the data ranges. */
850 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
851 if (msymbol
852 && (MSYMBOL_TYPE (msymbol) == mst_data
853 || MSYMBOL_TYPE (msymbol) == mst_bss
854 || MSYMBOL_TYPE (msymbol) == mst_abs
855 || MSYMBOL_TYPE (msymbol) == mst_file_data
856 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
857 return NULL;
858
859 ALL_OBJFILES (objfile)
860 {
861 struct symtab *result = NULL;
862
863 if (objfile->sf)
864 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
865 pc, section, 0);
866 if (result)
867 return result;
868 }
869
870 return NULL;
871 }
872 \f
873 /* Debug symbols usually don't have section information. We need to dig that
874 out of the minimal symbols and stash that in the debug symbol. */
875
876 void
877 fixup_section (struct general_symbol_info *ginfo,
878 CORE_ADDR addr, struct objfile *objfile)
879 {
880 struct minimal_symbol *msym;
881
882 /* First, check whether a minimal symbol with the same name exists
883 and points to the same address. The address check is required
884 e.g. on PowerPC64, where the minimal symbol for a function will
885 point to the function descriptor, while the debug symbol will
886 point to the actual function code. */
887 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
888 if (msym)
889 {
890 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
891 ginfo->section = SYMBOL_SECTION (msym);
892 }
893 else
894 {
895 /* Static, function-local variables do appear in the linker
896 (minimal) symbols, but are frequently given names that won't
897 be found via lookup_minimal_symbol(). E.g., it has been
898 observed in frv-uclinux (ELF) executables that a static,
899 function-local variable named "foo" might appear in the
900 linker symbols as "foo.6" or "foo.3". Thus, there is no
901 point in attempting to extend the lookup-by-name mechanism to
902 handle this case due to the fact that there can be multiple
903 names.
904
905 So, instead, search the section table when lookup by name has
906 failed. The ``addr'' and ``endaddr'' fields may have already
907 been relocated. If so, the relocation offset (i.e. the
908 ANOFFSET value) needs to be subtracted from these values when
909 performing the comparison. We unconditionally subtract it,
910 because, when no relocation has been performed, the ANOFFSET
911 value will simply be zero.
912
913 The address of the symbol whose section we're fixing up HAS
914 NOT BEEN adjusted (relocated) yet. It can't have been since
915 the section isn't yet known and knowing the section is
916 necessary in order to add the correct relocation value. In
917 other words, we wouldn't even be in this function (attempting
918 to compute the section) if it were already known.
919
920 Note that it is possible to search the minimal symbols
921 (subtracting the relocation value if necessary) to find the
922 matching minimal symbol, but this is overkill and much less
923 efficient. It is not necessary to find the matching minimal
924 symbol, only its section.
925
926 Note that this technique (of doing a section table search)
927 can fail when unrelocated section addresses overlap. For
928 this reason, we still attempt a lookup by name prior to doing
929 a search of the section table. */
930
931 struct obj_section *s;
932
933 ALL_OBJFILE_OSECTIONS (objfile, s)
934 {
935 int idx = s->the_bfd_section->index;
936 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
937
938 if (obj_section_addr (s) - offset <= addr
939 && addr < obj_section_endaddr (s) - offset)
940 {
941 ginfo->obj_section = s;
942 ginfo->section = idx;
943 return;
944 }
945 }
946 }
947 }
948
949 struct symbol *
950 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
951 {
952 CORE_ADDR addr;
953
954 if (!sym)
955 return NULL;
956
957 if (SYMBOL_OBJ_SECTION (sym))
958 return sym;
959
960 /* We either have an OBJFILE, or we can get at it from the sym's
961 symtab. Anything else is a bug. */
962 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
963
964 if (objfile == NULL)
965 objfile = SYMBOL_SYMTAB (sym)->objfile;
966
967 /* We should have an objfile by now. */
968 gdb_assert (objfile);
969
970 switch (SYMBOL_CLASS (sym))
971 {
972 case LOC_STATIC:
973 case LOC_LABEL:
974 addr = SYMBOL_VALUE_ADDRESS (sym);
975 break;
976 case LOC_BLOCK:
977 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
978 break;
979
980 default:
981 /* Nothing else will be listed in the minsyms -- no use looking
982 it up. */
983 return sym;
984 }
985
986 fixup_section (&sym->ginfo, addr, objfile);
987
988 return sym;
989 }
990
991 /* Find the definition for a specified symbol name NAME
992 in domain DOMAIN, visible from lexical block BLOCK.
993 Returns the struct symbol pointer, or zero if no symbol is found.
994 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
995 NAME is a field of the current implied argument `this'. If so set
996 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
997 BLOCK_FOUND is set to the block in which NAME is found (in the case of
998 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
999
1000 /* This function has a bunch of loops in it and it would seem to be
1001 attractive to put in some QUIT's (though I'm not really sure
1002 whether it can run long enough to be really important). But there
1003 are a few calls for which it would appear to be bad news to quit
1004 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1005 that there is C++ code below which can error(), but that probably
1006 doesn't affect these calls since they are looking for a known
1007 variable and thus can probably assume it will never hit the C++
1008 code). */
1009
1010 struct symbol *
1011 lookup_symbol_in_language (const char *name, const struct block *block,
1012 const domain_enum domain, enum language lang,
1013 int *is_a_field_of_this)
1014 {
1015 char *demangled_name = NULL;
1016 const char *modified_name = NULL;
1017 struct symbol *returnval;
1018 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1019
1020 modified_name = name;
1021
1022 /* If we are using C++, D, or Java, demangle the name before doing a
1023 lookup, so we can always binary search. */
1024 if (lang == language_cplus)
1025 {
1026 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1027 if (demangled_name)
1028 {
1029 modified_name = demangled_name;
1030 make_cleanup (xfree, demangled_name);
1031 }
1032 else
1033 {
1034 /* If we were given a non-mangled name, canonicalize it
1035 according to the language (so far only for C++). */
1036 demangled_name = cp_canonicalize_string (name);
1037 if (demangled_name)
1038 {
1039 modified_name = demangled_name;
1040 make_cleanup (xfree, demangled_name);
1041 }
1042 }
1043 }
1044 else if (lang == language_java)
1045 {
1046 demangled_name = cplus_demangle (name,
1047 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1048 if (demangled_name)
1049 {
1050 modified_name = demangled_name;
1051 make_cleanup (xfree, demangled_name);
1052 }
1053 }
1054 else if (lang == language_d)
1055 {
1056 demangled_name = d_demangle (name, 0);
1057 if (demangled_name)
1058 {
1059 modified_name = demangled_name;
1060 make_cleanup (xfree, demangled_name);
1061 }
1062 }
1063
1064 if (case_sensitivity == case_sensitive_off)
1065 {
1066 char *copy;
1067 int len, i;
1068
1069 len = strlen (name);
1070 copy = (char *) alloca (len + 1);
1071 for (i= 0; i < len; i++)
1072 copy[i] = tolower (name[i]);
1073 copy[len] = 0;
1074 modified_name = copy;
1075 }
1076
1077 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1078 is_a_field_of_this);
1079 do_cleanups (cleanup);
1080
1081 return returnval;
1082 }
1083
1084 /* Behave like lookup_symbol_in_language, but performed with the
1085 current language. */
1086
1087 struct symbol *
1088 lookup_symbol (const char *name, const struct block *block,
1089 domain_enum domain, int *is_a_field_of_this)
1090 {
1091 return lookup_symbol_in_language (name, block, domain,
1092 current_language->la_language,
1093 is_a_field_of_this);
1094 }
1095
1096 /* Behave like lookup_symbol except that NAME is the natural name
1097 of the symbol that we're looking for and, if LINKAGE_NAME is
1098 non-NULL, ensure that the symbol's linkage name matches as
1099 well. */
1100
1101 static struct symbol *
1102 lookup_symbol_aux (const char *name, const struct block *block,
1103 const domain_enum domain, enum language language,
1104 int *is_a_field_of_this)
1105 {
1106 struct symbol *sym;
1107 const struct language_defn *langdef;
1108
1109 /* Make sure we do something sensible with is_a_field_of_this, since
1110 the callers that set this parameter to some non-null value will
1111 certainly use it later and expect it to be either 0 or 1.
1112 If we don't set it, the contents of is_a_field_of_this are
1113 undefined. */
1114 if (is_a_field_of_this != NULL)
1115 *is_a_field_of_this = 0;
1116
1117 /* Search specified block and its superiors. Don't search
1118 STATIC_BLOCK or GLOBAL_BLOCK. */
1119
1120 sym = lookup_symbol_aux_local (name, block, domain, language);
1121 if (sym != NULL)
1122 return sym;
1123
1124 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1125 check to see if NAME is a field of `this'. */
1126
1127 langdef = language_def (language);
1128
1129 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1130 && block != NULL)
1131 {
1132 struct symbol *sym = NULL;
1133 const struct block *function_block = block;
1134
1135 /* 'this' is only defined in the function's block, so find the
1136 enclosing function block. */
1137 for (; function_block && !BLOCK_FUNCTION (function_block);
1138 function_block = BLOCK_SUPERBLOCK (function_block));
1139
1140 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1141 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1142 VAR_DOMAIN);
1143 if (sym)
1144 {
1145 struct type *t = sym->type;
1146
1147 /* I'm not really sure that type of this can ever
1148 be typedefed; just be safe. */
1149 CHECK_TYPEDEF (t);
1150 if (TYPE_CODE (t) == TYPE_CODE_PTR
1151 || TYPE_CODE (t) == TYPE_CODE_REF)
1152 t = TYPE_TARGET_TYPE (t);
1153
1154 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1155 && TYPE_CODE (t) != TYPE_CODE_UNION)
1156 error (_("Internal error: `%s' is not an aggregate"),
1157 langdef->la_name_of_this);
1158
1159 if (check_field (t, name))
1160 {
1161 *is_a_field_of_this = 1;
1162 return NULL;
1163 }
1164 }
1165 }
1166
1167 /* Now do whatever is appropriate for LANGUAGE to look
1168 up static and global variables. */
1169
1170 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1171 if (sym != NULL)
1172 return sym;
1173
1174 /* Now search all static file-level symbols. Not strictly correct,
1175 but more useful than an error. */
1176
1177 return lookup_static_symbol_aux (name, domain);
1178 }
1179
1180 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1181 first, then check the psymtabs. If a psymtab indicates the existence of the
1182 desired name as a file-level static, then do psymtab-to-symtab conversion on
1183 the fly and return the found symbol. */
1184
1185 struct symbol *
1186 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1187 {
1188 struct objfile *objfile;
1189 struct symbol *sym;
1190
1191 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1192 if (sym != NULL)
1193 return sym;
1194
1195 ALL_OBJFILES (objfile)
1196 {
1197 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1198 if (sym != NULL)
1199 return sym;
1200 }
1201
1202 return NULL;
1203 }
1204
1205 /* Check to see if the symbol is defined in BLOCK or its superiors.
1206 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1207
1208 static struct symbol *
1209 lookup_symbol_aux_local (const char *name, const struct block *block,
1210 const domain_enum domain,
1211 enum language language)
1212 {
1213 struct symbol *sym;
1214 const struct block *static_block = block_static_block (block);
1215 const char *scope = block_scope (block);
1216
1217 /* Check if either no block is specified or it's a global block. */
1218
1219 if (static_block == NULL)
1220 return NULL;
1221
1222 while (block != static_block)
1223 {
1224 sym = lookup_symbol_aux_block (name, block, domain);
1225 if (sym != NULL)
1226 return sym;
1227
1228 if (language == language_cplus || language == language_fortran)
1229 {
1230 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1231 domain);
1232 if (sym != NULL)
1233 return sym;
1234 }
1235
1236 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1237 break;
1238 block = BLOCK_SUPERBLOCK (block);
1239 }
1240
1241 /* We've reached the edge of the function without finding a result. */
1242
1243 return NULL;
1244 }
1245
1246 /* Look up OBJFILE to BLOCK. */
1247
1248 struct objfile *
1249 lookup_objfile_from_block (const struct block *block)
1250 {
1251 struct objfile *obj;
1252 struct symtab *s;
1253
1254 if (block == NULL)
1255 return NULL;
1256
1257 block = block_global_block (block);
1258 /* Go through SYMTABS. */
1259 ALL_SYMTABS (obj, s)
1260 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1261 {
1262 if (obj->separate_debug_objfile_backlink)
1263 obj = obj->separate_debug_objfile_backlink;
1264
1265 return obj;
1266 }
1267
1268 return NULL;
1269 }
1270
1271 /* Look up a symbol in a block; if found, fixup the symbol, and set
1272 block_found appropriately. */
1273
1274 struct symbol *
1275 lookup_symbol_aux_block (const char *name, const struct block *block,
1276 const domain_enum domain)
1277 {
1278 struct symbol *sym;
1279
1280 sym = lookup_block_symbol (block, name, domain);
1281 if (sym)
1282 {
1283 block_found = block;
1284 return fixup_symbol_section (sym, NULL);
1285 }
1286
1287 return NULL;
1288 }
1289
1290 /* Check all global symbols in OBJFILE in symtabs and
1291 psymtabs. */
1292
1293 struct symbol *
1294 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1295 const char *name,
1296 const domain_enum domain)
1297 {
1298 const struct objfile *objfile;
1299 struct symbol *sym;
1300 struct blockvector *bv;
1301 const struct block *block;
1302 struct symtab *s;
1303
1304 for (objfile = main_objfile;
1305 objfile;
1306 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1307 {
1308 /* Go through symtabs. */
1309 ALL_OBJFILE_SYMTABS (objfile, s)
1310 {
1311 bv = BLOCKVECTOR (s);
1312 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1313 sym = lookup_block_symbol (block, name, domain);
1314 if (sym)
1315 {
1316 block_found = block;
1317 return fixup_symbol_section (sym, (struct objfile *)objfile);
1318 }
1319 }
1320
1321 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1322 name, domain);
1323 if (sym)
1324 return sym;
1325 }
1326
1327 return NULL;
1328 }
1329
1330 /* Check to see if the symbol is defined in one of the symtabs.
1331 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1332 depending on whether or not we want to search global symbols or
1333 static symbols. */
1334
1335 static struct symbol *
1336 lookup_symbol_aux_symtabs (int block_index, const char *name,
1337 const domain_enum domain)
1338 {
1339 struct symbol *sym;
1340 struct objfile *objfile;
1341 struct blockvector *bv;
1342 const struct block *block;
1343 struct symtab *s;
1344
1345 ALL_OBJFILES (objfile)
1346 {
1347 if (objfile->sf)
1348 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1349 block_index,
1350 name, domain);
1351
1352 ALL_OBJFILE_SYMTABS (objfile, s)
1353 if (s->primary)
1354 {
1355 bv = BLOCKVECTOR (s);
1356 block = BLOCKVECTOR_BLOCK (bv, block_index);
1357 sym = lookup_block_symbol (block, name, domain);
1358 if (sym)
1359 {
1360 block_found = block;
1361 return fixup_symbol_section (sym, objfile);
1362 }
1363 }
1364 }
1365
1366 return NULL;
1367 }
1368
1369 /* A helper function for lookup_symbol_aux that interfaces with the
1370 "quick" symbol table functions. */
1371
1372 static struct symbol *
1373 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1374 const char *name, const domain_enum domain)
1375 {
1376 struct symtab *symtab;
1377 struct blockvector *bv;
1378 const struct block *block;
1379 struct symbol *sym;
1380
1381 if (!objfile->sf)
1382 return NULL;
1383 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1384 if (!symtab)
1385 return NULL;
1386
1387 bv = BLOCKVECTOR (symtab);
1388 block = BLOCKVECTOR_BLOCK (bv, kind);
1389 sym = lookup_block_symbol (block, name, domain);
1390 if (!sym)
1391 {
1392 /* This shouldn't be necessary, but as a last resort try
1393 looking in the statics even though the psymtab claimed
1394 the symbol was global, or vice-versa. It's possible
1395 that the psymtab gets it wrong in some cases. */
1396
1397 /* FIXME: carlton/2002-09-30: Should we really do that?
1398 If that happens, isn't it likely to be a GDB error, in
1399 which case we should fix the GDB error rather than
1400 silently dealing with it here? So I'd vote for
1401 removing the check for the symbol in the other
1402 block. */
1403 block = BLOCKVECTOR_BLOCK (bv,
1404 kind == GLOBAL_BLOCK ?
1405 STATIC_BLOCK : GLOBAL_BLOCK);
1406 sym = lookup_block_symbol (block, name, domain);
1407 if (!sym)
1408 error (_("\
1409 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1410 %s may be an inlined function, or may be a template function\n\
1411 (if a template, try specifying an instantiation: %s<type>)."),
1412 kind == GLOBAL_BLOCK ? "global" : "static",
1413 name, symtab->filename, name, name);
1414 }
1415 return fixup_symbol_section (sym, objfile);
1416 }
1417
1418 /* A default version of lookup_symbol_nonlocal for use by languages
1419 that can't think of anything better to do. This implements the C
1420 lookup rules. */
1421
1422 struct symbol *
1423 basic_lookup_symbol_nonlocal (const char *name,
1424 const struct block *block,
1425 const domain_enum domain)
1426 {
1427 struct symbol *sym;
1428
1429 /* NOTE: carlton/2003-05-19: The comments below were written when
1430 this (or what turned into this) was part of lookup_symbol_aux;
1431 I'm much less worried about these questions now, since these
1432 decisions have turned out well, but I leave these comments here
1433 for posterity. */
1434
1435 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1436 not it would be appropriate to search the current global block
1437 here as well. (That's what this code used to do before the
1438 is_a_field_of_this check was moved up.) On the one hand, it's
1439 redundant with the lookup_symbol_aux_symtabs search that happens
1440 next. On the other hand, if decode_line_1 is passed an argument
1441 like filename:var, then the user presumably wants 'var' to be
1442 searched for in filename. On the third hand, there shouldn't be
1443 multiple global variables all of which are named 'var', and it's
1444 not like decode_line_1 has ever restricted its search to only
1445 global variables in a single filename. All in all, only
1446 searching the static block here seems best: it's correct and it's
1447 cleanest. */
1448
1449 /* NOTE: carlton/2002-12-05: There's also a possible performance
1450 issue here: if you usually search for global symbols in the
1451 current file, then it would be slightly better to search the
1452 current global block before searching all the symtabs. But there
1453 are other factors that have a much greater effect on performance
1454 than that one, so I don't think we should worry about that for
1455 now. */
1456
1457 sym = lookup_symbol_static (name, block, domain);
1458 if (sym != NULL)
1459 return sym;
1460
1461 return lookup_symbol_global (name, block, domain);
1462 }
1463
1464 /* Lookup a symbol in the static block associated to BLOCK, if there
1465 is one; do nothing if BLOCK is NULL or a global block. */
1466
1467 struct symbol *
1468 lookup_symbol_static (const char *name,
1469 const struct block *block,
1470 const domain_enum domain)
1471 {
1472 const struct block *static_block = block_static_block (block);
1473
1474 if (static_block != NULL)
1475 return lookup_symbol_aux_block (name, static_block, domain);
1476 else
1477 return NULL;
1478 }
1479
1480 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1481 necessary). */
1482
1483 struct symbol *
1484 lookup_symbol_global (const char *name,
1485 const struct block *block,
1486 const domain_enum domain)
1487 {
1488 struct symbol *sym = NULL;
1489 struct objfile *objfile = NULL;
1490
1491 /* Call library-specific lookup procedure. */
1492 objfile = lookup_objfile_from_block (block);
1493 if (objfile != NULL)
1494 sym = solib_global_lookup (objfile, name, domain);
1495 if (sym != NULL)
1496 return sym;
1497
1498 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1499 if (sym != NULL)
1500 return sym;
1501
1502 ALL_OBJFILES (objfile)
1503 {
1504 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1505 if (sym)
1506 return sym;
1507 }
1508
1509 return NULL;
1510 }
1511
1512 int
1513 symbol_matches_domain (enum language symbol_language,
1514 domain_enum symbol_domain,
1515 domain_enum domain)
1516 {
1517 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1518 A Java class declaration also defines a typedef for the class.
1519 Similarly, any Ada type declaration implicitly defines a typedef. */
1520 if (symbol_language == language_cplus
1521 || symbol_language == language_d
1522 || symbol_language == language_java
1523 || symbol_language == language_ada)
1524 {
1525 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1526 && symbol_domain == STRUCT_DOMAIN)
1527 return 1;
1528 }
1529 /* For all other languages, strict match is required. */
1530 return (symbol_domain == domain);
1531 }
1532
1533 /* Look up a type named NAME in the struct_domain. The type returned
1534 must not be opaque -- i.e., must have at least one field
1535 defined. */
1536
1537 struct type *
1538 lookup_transparent_type (const char *name)
1539 {
1540 return current_language->la_lookup_transparent_type (name);
1541 }
1542
1543 /* A helper for basic_lookup_transparent_type that interfaces with the
1544 "quick" symbol table functions. */
1545
1546 static struct type *
1547 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1548 const char *name)
1549 {
1550 struct symtab *symtab;
1551 struct blockvector *bv;
1552 struct block *block;
1553 struct symbol *sym;
1554
1555 if (!objfile->sf)
1556 return NULL;
1557 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1558 if (!symtab)
1559 return NULL;
1560
1561 bv = BLOCKVECTOR (symtab);
1562 block = BLOCKVECTOR_BLOCK (bv, kind);
1563 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1564 if (!sym)
1565 {
1566 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1567
1568 /* This shouldn't be necessary, but as a last resort
1569 * try looking in the 'other kind' even though the psymtab
1570 * claimed the symbol was one thing. It's possible that
1571 * the psymtab gets it wrong in some cases.
1572 */
1573 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1574 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1575 if (!sym)
1576 /* FIXME; error is wrong in one case */
1577 error (_("\
1578 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1579 %s may be an inlined function, or may be a template function\n\
1580 (if a template, try specifying an instantiation: %s<type>)."),
1581 name, symtab->filename, name, name);
1582 }
1583 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1584 return SYMBOL_TYPE (sym);
1585
1586 return NULL;
1587 }
1588
1589 /* The standard implementation of lookup_transparent_type. This code
1590 was modeled on lookup_symbol -- the parts not relevant to looking
1591 up types were just left out. In particular it's assumed here that
1592 types are available in struct_domain and only at file-static or
1593 global blocks. */
1594
1595 struct type *
1596 basic_lookup_transparent_type (const char *name)
1597 {
1598 struct symbol *sym;
1599 struct symtab *s = NULL;
1600 struct blockvector *bv;
1601 struct objfile *objfile;
1602 struct block *block;
1603 struct type *t;
1604
1605 /* Now search all the global symbols. Do the symtab's first, then
1606 check the psymtab's. If a psymtab indicates the existence
1607 of the desired name as a global, then do psymtab-to-symtab
1608 conversion on the fly and return the found symbol. */
1609
1610 ALL_OBJFILES (objfile)
1611 {
1612 if (objfile->sf)
1613 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1614 GLOBAL_BLOCK,
1615 name, STRUCT_DOMAIN);
1616
1617 ALL_OBJFILE_SYMTABS (objfile, s)
1618 if (s->primary)
1619 {
1620 bv = BLOCKVECTOR (s);
1621 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1622 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1623 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1624 {
1625 return SYMBOL_TYPE (sym);
1626 }
1627 }
1628 }
1629
1630 ALL_OBJFILES (objfile)
1631 {
1632 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1633 if (t)
1634 return t;
1635 }
1636
1637 /* Now search the static file-level symbols.
1638 Not strictly correct, but more useful than an error.
1639 Do the symtab's first, then
1640 check the psymtab's. If a psymtab indicates the existence
1641 of the desired name as a file-level static, then do psymtab-to-symtab
1642 conversion on the fly and return the found symbol.
1643 */
1644
1645 ALL_OBJFILES (objfile)
1646 {
1647 if (objfile->sf)
1648 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1649 name, STRUCT_DOMAIN);
1650
1651 ALL_OBJFILE_SYMTABS (objfile, s)
1652 {
1653 bv = BLOCKVECTOR (s);
1654 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1655 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1656 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1657 {
1658 return SYMBOL_TYPE (sym);
1659 }
1660 }
1661 }
1662
1663 ALL_OBJFILES (objfile)
1664 {
1665 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1666 if (t)
1667 return t;
1668 }
1669
1670 return (struct type *) 0;
1671 }
1672
1673
1674 /* Find the name of the file containing main(). */
1675 /* FIXME: What about languages without main() or specially linked
1676 executables that have no main() ? */
1677
1678 const char *
1679 find_main_filename (void)
1680 {
1681 struct objfile *objfile;
1682 char *name = main_name ();
1683
1684 ALL_OBJFILES (objfile)
1685 {
1686 const char *result;
1687
1688 if (!objfile->sf)
1689 continue;
1690 result = objfile->sf->qf->find_symbol_file (objfile, name);
1691 if (result)
1692 return result;
1693 }
1694 return (NULL);
1695 }
1696
1697 /* Search BLOCK for symbol NAME in DOMAIN.
1698
1699 Note that if NAME is the demangled form of a C++ symbol, we will fail
1700 to find a match during the binary search of the non-encoded names, but
1701 for now we don't worry about the slight inefficiency of looking for
1702 a match we'll never find, since it will go pretty quick. Once the
1703 binary search terminates, we drop through and do a straight linear
1704 search on the symbols. Each symbol which is marked as being a ObjC/C++
1705 symbol (language_cplus or language_objc set) has both the encoded and
1706 non-encoded names tested for a match.
1707 */
1708
1709 struct symbol *
1710 lookup_block_symbol (const struct block *block, const char *name,
1711 const domain_enum domain)
1712 {
1713 struct dict_iterator iter;
1714 struct symbol *sym;
1715
1716 if (!BLOCK_FUNCTION (block))
1717 {
1718 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1719 sym != NULL;
1720 sym = dict_iter_name_next (name, &iter))
1721 {
1722 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1723 SYMBOL_DOMAIN (sym), domain))
1724 return sym;
1725 }
1726 return NULL;
1727 }
1728 else
1729 {
1730 /* Note that parameter symbols do not always show up last in the
1731 list; this loop makes sure to take anything else other than
1732 parameter symbols first; it only uses parameter symbols as a
1733 last resort. Note that this only takes up extra computation
1734 time on a match. */
1735
1736 struct symbol *sym_found = NULL;
1737
1738 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1739 sym != NULL;
1740 sym = dict_iter_name_next (name, &iter))
1741 {
1742 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1743 SYMBOL_DOMAIN (sym), domain))
1744 {
1745 sym_found = sym;
1746 if (!SYMBOL_IS_ARGUMENT (sym))
1747 {
1748 break;
1749 }
1750 }
1751 }
1752 return (sym_found); /* Will be NULL if not found. */
1753 }
1754 }
1755
1756 /* Find the symtab associated with PC and SECTION. Look through the
1757 psymtabs and read in another symtab if necessary. */
1758
1759 struct symtab *
1760 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1761 {
1762 struct block *b;
1763 struct blockvector *bv;
1764 struct symtab *s = NULL;
1765 struct symtab *best_s = NULL;
1766 struct objfile *objfile;
1767 struct program_space *pspace;
1768 CORE_ADDR distance = 0;
1769 struct minimal_symbol *msymbol;
1770
1771 pspace = current_program_space;
1772
1773 /* If we know that this is not a text address, return failure. This is
1774 necessary because we loop based on the block's high and low code
1775 addresses, which do not include the data ranges, and because
1776 we call find_pc_sect_psymtab which has a similar restriction based
1777 on the partial_symtab's texthigh and textlow. */
1778 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1779 if (msymbol
1780 && (MSYMBOL_TYPE (msymbol) == mst_data
1781 || MSYMBOL_TYPE (msymbol) == mst_bss
1782 || MSYMBOL_TYPE (msymbol) == mst_abs
1783 || MSYMBOL_TYPE (msymbol) == mst_file_data
1784 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1785 return NULL;
1786
1787 /* Search all symtabs for the one whose file contains our address, and which
1788 is the smallest of all the ones containing the address. This is designed
1789 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1790 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1791 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1792
1793 This happens for native ecoff format, where code from included files
1794 gets its own symtab. The symtab for the included file should have
1795 been read in already via the dependency mechanism.
1796 It might be swifter to create several symtabs with the same name
1797 like xcoff does (I'm not sure).
1798
1799 It also happens for objfiles that have their functions reordered.
1800 For these, the symtab we are looking for is not necessarily read in. */
1801
1802 ALL_PRIMARY_SYMTABS (objfile, s)
1803 {
1804 bv = BLOCKVECTOR (s);
1805 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1806
1807 if (BLOCK_START (b) <= pc
1808 && BLOCK_END (b) > pc
1809 && (distance == 0
1810 || BLOCK_END (b) - BLOCK_START (b) < distance))
1811 {
1812 /* For an objfile that has its functions reordered,
1813 find_pc_psymtab will find the proper partial symbol table
1814 and we simply return its corresponding symtab. */
1815 /* In order to better support objfiles that contain both
1816 stabs and coff debugging info, we continue on if a psymtab
1817 can't be found. */
1818 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1819 {
1820 struct symtab *result;
1821
1822 result
1823 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1824 msymbol,
1825 pc, section,
1826 0);
1827 if (result)
1828 return result;
1829 }
1830 if (section != 0)
1831 {
1832 struct dict_iterator iter;
1833 struct symbol *sym = NULL;
1834
1835 ALL_BLOCK_SYMBOLS (b, iter, sym)
1836 {
1837 fixup_symbol_section (sym, objfile);
1838 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1839 break;
1840 }
1841 if (sym == NULL)
1842 continue; /* no symbol in this symtab matches section */
1843 }
1844 distance = BLOCK_END (b) - BLOCK_START (b);
1845 best_s = s;
1846 }
1847 }
1848
1849 if (best_s != NULL)
1850 return (best_s);
1851
1852 ALL_OBJFILES (objfile)
1853 {
1854 struct symtab *result;
1855
1856 if (!objfile->sf)
1857 continue;
1858 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1859 msymbol,
1860 pc, section,
1861 1);
1862 if (result)
1863 return result;
1864 }
1865
1866 return NULL;
1867 }
1868
1869 /* Find the symtab associated with PC. Look through the psymtabs and
1870 read in another symtab if necessary. Backward compatibility, no section */
1871
1872 struct symtab *
1873 find_pc_symtab (CORE_ADDR pc)
1874 {
1875 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1876 }
1877 \f
1878
1879 /* Find the source file and line number for a given PC value and SECTION.
1880 Return a structure containing a symtab pointer, a line number,
1881 and a pc range for the entire source line.
1882 The value's .pc field is NOT the specified pc.
1883 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1884 use the line that ends there. Otherwise, in that case, the line
1885 that begins there is used. */
1886
1887 /* The big complication here is that a line may start in one file, and end just
1888 before the start of another file. This usually occurs when you #include
1889 code in the middle of a subroutine. To properly find the end of a line's PC
1890 range, we must search all symtabs associated with this compilation unit, and
1891 find the one whose first PC is closer than that of the next line in this
1892 symtab. */
1893
1894 /* If it's worth the effort, we could be using a binary search. */
1895
1896 struct symtab_and_line
1897 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1898 {
1899 struct symtab *s;
1900 struct linetable *l;
1901 int len;
1902 int i;
1903 struct linetable_entry *item;
1904 struct symtab_and_line val;
1905 struct blockvector *bv;
1906 struct minimal_symbol *msymbol;
1907 struct minimal_symbol *mfunsym;
1908
1909 /* Info on best line seen so far, and where it starts, and its file. */
1910
1911 struct linetable_entry *best = NULL;
1912 CORE_ADDR best_end = 0;
1913 struct symtab *best_symtab = 0;
1914
1915 /* Store here the first line number
1916 of a file which contains the line at the smallest pc after PC.
1917 If we don't find a line whose range contains PC,
1918 we will use a line one less than this,
1919 with a range from the start of that file to the first line's pc. */
1920 struct linetable_entry *alt = NULL;
1921 struct symtab *alt_symtab = 0;
1922
1923 /* Info on best line seen in this file. */
1924
1925 struct linetable_entry *prev;
1926
1927 /* If this pc is not from the current frame,
1928 it is the address of the end of a call instruction.
1929 Quite likely that is the start of the following statement.
1930 But what we want is the statement containing the instruction.
1931 Fudge the pc to make sure we get that. */
1932
1933 init_sal (&val); /* initialize to zeroes */
1934
1935 val.pspace = current_program_space;
1936
1937 /* It's tempting to assume that, if we can't find debugging info for
1938 any function enclosing PC, that we shouldn't search for line
1939 number info, either. However, GAS can emit line number info for
1940 assembly files --- very helpful when debugging hand-written
1941 assembly code. In such a case, we'd have no debug info for the
1942 function, but we would have line info. */
1943
1944 if (notcurrent)
1945 pc -= 1;
1946
1947 /* elz: added this because this function returned the wrong
1948 information if the pc belongs to a stub (import/export)
1949 to call a shlib function. This stub would be anywhere between
1950 two functions in the target, and the line info was erroneously
1951 taken to be the one of the line before the pc.
1952 */
1953 /* RT: Further explanation:
1954
1955 * We have stubs (trampolines) inserted between procedures.
1956 *
1957 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1958 * exists in the main image.
1959 *
1960 * In the minimal symbol table, we have a bunch of symbols
1961 * sorted by start address. The stubs are marked as "trampoline",
1962 * the others appear as text. E.g.:
1963 *
1964 * Minimal symbol table for main image
1965 * main: code for main (text symbol)
1966 * shr1: stub (trampoline symbol)
1967 * foo: code for foo (text symbol)
1968 * ...
1969 * Minimal symbol table for "shr1" image:
1970 * ...
1971 * shr1: code for shr1 (text symbol)
1972 * ...
1973 *
1974 * So the code below is trying to detect if we are in the stub
1975 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1976 * and if found, do the symbolization from the real-code address
1977 * rather than the stub address.
1978 *
1979 * Assumptions being made about the minimal symbol table:
1980 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1981 * if we're really in the trampoline. If we're beyond it (say
1982 * we're in "foo" in the above example), it'll have a closer
1983 * symbol (the "foo" text symbol for example) and will not
1984 * return the trampoline.
1985 * 2. lookup_minimal_symbol_text() will find a real text symbol
1986 * corresponding to the trampoline, and whose address will
1987 * be different than the trampoline address. I put in a sanity
1988 * check for the address being the same, to avoid an
1989 * infinite recursion.
1990 */
1991 msymbol = lookup_minimal_symbol_by_pc (pc);
1992 if (msymbol != NULL)
1993 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1994 {
1995 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1996 NULL);
1997 if (mfunsym == NULL)
1998 /* I eliminated this warning since it is coming out
1999 * in the following situation:
2000 * gdb shmain // test program with shared libraries
2001 * (gdb) break shr1 // function in shared lib
2002 * Warning: In stub for ...
2003 * In the above situation, the shared lib is not loaded yet,
2004 * so of course we can't find the real func/line info,
2005 * but the "break" still works, and the warning is annoying.
2006 * So I commented out the warning. RT */
2007 /* warning ("In stub for %s; unable to find real function/line info",
2008 SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2009 /* fall through */
2010 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2011 == SYMBOL_VALUE_ADDRESS (msymbol))
2012 /* Avoid infinite recursion */
2013 /* See above comment about why warning is commented out */
2014 /* warning ("In stub for %s; unable to find real function/line info",
2015 SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2016 /* fall through */
2017 else
2018 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2019 }
2020
2021
2022 s = find_pc_sect_symtab (pc, section);
2023 if (!s)
2024 {
2025 /* if no symbol information, return previous pc */
2026 if (notcurrent)
2027 pc++;
2028 val.pc = pc;
2029 return val;
2030 }
2031
2032 bv = BLOCKVECTOR (s);
2033
2034 /* Look at all the symtabs that share this blockvector.
2035 They all have the same apriori range, that we found was right;
2036 but they have different line tables. */
2037
2038 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2039 {
2040 /* Find the best line in this symtab. */
2041 l = LINETABLE (s);
2042 if (!l)
2043 continue;
2044 len = l->nitems;
2045 if (len <= 0)
2046 {
2047 /* I think len can be zero if the symtab lacks line numbers
2048 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2049 I'm not sure which, and maybe it depends on the symbol
2050 reader). */
2051 continue;
2052 }
2053
2054 prev = NULL;
2055 item = l->item; /* Get first line info */
2056
2057 /* Is this file's first line closer than the first lines of other files?
2058 If so, record this file, and its first line, as best alternate. */
2059 if (item->pc > pc && (!alt || item->pc < alt->pc))
2060 {
2061 alt = item;
2062 alt_symtab = s;
2063 }
2064
2065 for (i = 0; i < len; i++, item++)
2066 {
2067 /* Leave prev pointing to the linetable entry for the last line
2068 that started at or before PC. */
2069 if (item->pc > pc)
2070 break;
2071
2072 prev = item;
2073 }
2074
2075 /* At this point, prev points at the line whose start addr is <= pc, and
2076 item points at the next line. If we ran off the end of the linetable
2077 (pc >= start of the last line), then prev == item. If pc < start of
2078 the first line, prev will not be set. */
2079
2080 /* Is this file's best line closer than the best in the other files?
2081 If so, record this file, and its best line, as best so far. Don't
2082 save prev if it represents the end of a function (i.e. line number
2083 0) instead of a real line. */
2084
2085 if (prev && prev->line && (!best || prev->pc > best->pc))
2086 {
2087 best = prev;
2088 best_symtab = s;
2089
2090 /* Discard BEST_END if it's before the PC of the current BEST. */
2091 if (best_end <= best->pc)
2092 best_end = 0;
2093 }
2094
2095 /* If another line (denoted by ITEM) is in the linetable and its
2096 PC is after BEST's PC, but before the current BEST_END, then
2097 use ITEM's PC as the new best_end. */
2098 if (best && i < len && item->pc > best->pc
2099 && (best_end == 0 || best_end > item->pc))
2100 best_end = item->pc;
2101 }
2102
2103 if (!best_symtab)
2104 {
2105 /* If we didn't find any line number info, just return zeros.
2106 We used to return alt->line - 1 here, but that could be
2107 anywhere; if we don't have line number info for this PC,
2108 don't make some up. */
2109 val.pc = pc;
2110 }
2111 else if (best->line == 0)
2112 {
2113 /* If our best fit is in a range of PC's for which no line
2114 number info is available (line number is zero) then we didn't
2115 find any valid line information. */
2116 val.pc = pc;
2117 }
2118 else
2119 {
2120 val.symtab = best_symtab;
2121 val.line = best->line;
2122 val.pc = best->pc;
2123 if (best_end && (!alt || best_end < alt->pc))
2124 val.end = best_end;
2125 else if (alt)
2126 val.end = alt->pc;
2127 else
2128 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2129 }
2130 val.section = section;
2131 return val;
2132 }
2133
2134 /* Backward compatibility (no section) */
2135
2136 struct symtab_and_line
2137 find_pc_line (CORE_ADDR pc, int notcurrent)
2138 {
2139 struct obj_section *section;
2140
2141 section = find_pc_overlay (pc);
2142 if (pc_in_unmapped_range (pc, section))
2143 pc = overlay_mapped_address (pc, section);
2144 return find_pc_sect_line (pc, section, notcurrent);
2145 }
2146 \f
2147 /* Find line number LINE in any symtab whose name is the same as
2148 SYMTAB.
2149
2150 If found, return the symtab that contains the linetable in which it was
2151 found, set *INDEX to the index in the linetable of the best entry
2152 found, and set *EXACT_MATCH nonzero if the value returned is an
2153 exact match.
2154
2155 If not found, return NULL. */
2156
2157 struct symtab *
2158 find_line_symtab (struct symtab *symtab, int line,
2159 int *index, int *exact_match)
2160 {
2161 int exact = 0; /* Initialized here to avoid a compiler warning. */
2162
2163 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2164 so far seen. */
2165
2166 int best_index;
2167 struct linetable *best_linetable;
2168 struct symtab *best_symtab;
2169
2170 /* First try looking it up in the given symtab. */
2171 best_linetable = LINETABLE (symtab);
2172 best_symtab = symtab;
2173 best_index = find_line_common (best_linetable, line, &exact);
2174 if (best_index < 0 || !exact)
2175 {
2176 /* Didn't find an exact match. So we better keep looking for
2177 another symtab with the same name. In the case of xcoff,
2178 multiple csects for one source file (produced by IBM's FORTRAN
2179 compiler) produce multiple symtabs (this is unavoidable
2180 assuming csects can be at arbitrary places in memory and that
2181 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2182
2183 /* BEST is the smallest linenumber > LINE so far seen,
2184 or 0 if none has been seen so far.
2185 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2186 int best;
2187
2188 struct objfile *objfile;
2189 struct symtab *s;
2190
2191 if (best_index >= 0)
2192 best = best_linetable->item[best_index].line;
2193 else
2194 best = 0;
2195
2196 ALL_OBJFILES (objfile)
2197 {
2198 if (objfile->sf)
2199 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2200 symtab->filename);
2201 }
2202
2203 /* Get symbol full file name if possible. */
2204 symtab_to_fullname (symtab);
2205
2206 ALL_SYMTABS (objfile, s)
2207 {
2208 struct linetable *l;
2209 int ind;
2210
2211 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2212 continue;
2213 if (symtab->fullname != NULL
2214 && symtab_to_fullname (s) != NULL
2215 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2216 continue;
2217 l = LINETABLE (s);
2218 ind = find_line_common (l, line, &exact);
2219 if (ind >= 0)
2220 {
2221 if (exact)
2222 {
2223 best_index = ind;
2224 best_linetable = l;
2225 best_symtab = s;
2226 goto done;
2227 }
2228 if (best == 0 || l->item[ind].line < best)
2229 {
2230 best = l->item[ind].line;
2231 best_index = ind;
2232 best_linetable = l;
2233 best_symtab = s;
2234 }
2235 }
2236 }
2237 }
2238 done:
2239 if (best_index < 0)
2240 return NULL;
2241
2242 if (index)
2243 *index = best_index;
2244 if (exact_match)
2245 *exact_match = exact;
2246
2247 return best_symtab;
2248 }
2249 \f
2250 /* Set the PC value for a given source file and line number and return true.
2251 Returns zero for invalid line number (and sets the PC to 0).
2252 The source file is specified with a struct symtab. */
2253
2254 int
2255 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2256 {
2257 struct linetable *l;
2258 int ind;
2259
2260 *pc = 0;
2261 if (symtab == 0)
2262 return 0;
2263
2264 symtab = find_line_symtab (symtab, line, &ind, NULL);
2265 if (symtab != NULL)
2266 {
2267 l = LINETABLE (symtab);
2268 *pc = l->item[ind].pc;
2269 return 1;
2270 }
2271 else
2272 return 0;
2273 }
2274
2275 /* Find the range of pc values in a line.
2276 Store the starting pc of the line into *STARTPTR
2277 and the ending pc (start of next line) into *ENDPTR.
2278 Returns 1 to indicate success.
2279 Returns 0 if could not find the specified line. */
2280
2281 int
2282 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2283 CORE_ADDR *endptr)
2284 {
2285 CORE_ADDR startaddr;
2286 struct symtab_and_line found_sal;
2287
2288 startaddr = sal.pc;
2289 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2290 return 0;
2291
2292 /* This whole function is based on address. For example, if line 10 has
2293 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2294 "info line *0x123" should say the line goes from 0x100 to 0x200
2295 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2296 This also insures that we never give a range like "starts at 0x134
2297 and ends at 0x12c". */
2298
2299 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2300 if (found_sal.line != sal.line)
2301 {
2302 /* The specified line (sal) has zero bytes. */
2303 *startptr = found_sal.pc;
2304 *endptr = found_sal.pc;
2305 }
2306 else
2307 {
2308 *startptr = found_sal.pc;
2309 *endptr = found_sal.end;
2310 }
2311 return 1;
2312 }
2313
2314 /* Given a line table and a line number, return the index into the line
2315 table for the pc of the nearest line whose number is >= the specified one.
2316 Return -1 if none is found. The value is >= 0 if it is an index.
2317
2318 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2319
2320 static int
2321 find_line_common (struct linetable *l, int lineno,
2322 int *exact_match)
2323 {
2324 int i;
2325 int len;
2326
2327 /* BEST is the smallest linenumber > LINENO so far seen,
2328 or 0 if none has been seen so far.
2329 BEST_INDEX identifies the item for it. */
2330
2331 int best_index = -1;
2332 int best = 0;
2333
2334 *exact_match = 0;
2335
2336 if (lineno <= 0)
2337 return -1;
2338 if (l == 0)
2339 return -1;
2340
2341 len = l->nitems;
2342 for (i = 0; i < len; i++)
2343 {
2344 struct linetable_entry *item = &(l->item[i]);
2345
2346 if (item->line == lineno)
2347 {
2348 /* Return the first (lowest address) entry which matches. */
2349 *exact_match = 1;
2350 return i;
2351 }
2352
2353 if (item->line > lineno && (best == 0 || item->line < best))
2354 {
2355 best = item->line;
2356 best_index = i;
2357 }
2358 }
2359
2360 /* If we got here, we didn't get an exact match. */
2361 return best_index;
2362 }
2363
2364 int
2365 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2366 {
2367 struct symtab_and_line sal;
2368
2369 sal = find_pc_line (pc, 0);
2370 *startptr = sal.pc;
2371 *endptr = sal.end;
2372 return sal.symtab != 0;
2373 }
2374
2375 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2376 address for that function that has an entry in SYMTAB's line info
2377 table. If such an entry cannot be found, return FUNC_ADDR
2378 unaltered. */
2379 CORE_ADDR
2380 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2381 {
2382 CORE_ADDR func_start, func_end;
2383 struct linetable *l;
2384 int i;
2385
2386 /* Give up if this symbol has no lineinfo table. */
2387 l = LINETABLE (symtab);
2388 if (l == NULL)
2389 return func_addr;
2390
2391 /* Get the range for the function's PC values, or give up if we
2392 cannot, for some reason. */
2393 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2394 return func_addr;
2395
2396 /* Linetable entries are ordered by PC values, see the commentary in
2397 symtab.h where `struct linetable' is defined. Thus, the first
2398 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2399 address we are looking for. */
2400 for (i = 0; i < l->nitems; i++)
2401 {
2402 struct linetable_entry *item = &(l->item[i]);
2403
2404 /* Don't use line numbers of zero, they mark special entries in
2405 the table. See the commentary on symtab.h before the
2406 definition of struct linetable. */
2407 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2408 return item->pc;
2409 }
2410
2411 return func_addr;
2412 }
2413
2414 /* Given a function symbol SYM, find the symtab and line for the start
2415 of the function.
2416 If the argument FUNFIRSTLINE is nonzero, we want the first line
2417 of real code inside the function. */
2418
2419 struct symtab_and_line
2420 find_function_start_sal (struct symbol *sym, int funfirstline)
2421 {
2422 struct symtab_and_line sal;
2423
2424 fixup_symbol_section (sym, NULL);
2425 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2426 SYMBOL_OBJ_SECTION (sym), 0);
2427
2428 /* We always should have a line for the function start address.
2429 If we don't, something is odd. Create a plain SAL refering
2430 just the PC and hope that skip_prologue_sal (if requested)
2431 can find a line number for after the prologue. */
2432 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2433 {
2434 init_sal (&sal);
2435 sal.pspace = current_program_space;
2436 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2437 sal.section = SYMBOL_OBJ_SECTION (sym);
2438 }
2439
2440 if (funfirstline)
2441 skip_prologue_sal (&sal);
2442
2443 return sal;
2444 }
2445
2446 /* Adjust SAL to the first instruction past the function prologue.
2447 If the PC was explicitly specified, the SAL is not changed.
2448 If the line number was explicitly specified, at most the SAL's PC
2449 is updated. If SAL is already past the prologue, then do nothing. */
2450 void
2451 skip_prologue_sal (struct symtab_and_line *sal)
2452 {
2453 struct symbol *sym;
2454 struct symtab_and_line start_sal;
2455 struct cleanup *old_chain;
2456 CORE_ADDR pc;
2457 struct obj_section *section;
2458 const char *name;
2459 struct objfile *objfile;
2460 struct gdbarch *gdbarch;
2461 struct block *b, *function_block;
2462
2463 /* Do not change the SAL is PC was specified explicitly. */
2464 if (sal->explicit_pc)
2465 return;
2466
2467 old_chain = save_current_space_and_thread ();
2468 switch_to_program_space_and_thread (sal->pspace);
2469
2470 sym = find_pc_sect_function (sal->pc, sal->section);
2471 if (sym != NULL)
2472 {
2473 fixup_symbol_section (sym, NULL);
2474
2475 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2476 section = SYMBOL_OBJ_SECTION (sym);
2477 name = SYMBOL_LINKAGE_NAME (sym);
2478 objfile = SYMBOL_SYMTAB (sym)->objfile;
2479 }
2480 else
2481 {
2482 struct minimal_symbol *msymbol
2483 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2484
2485 if (msymbol == NULL)
2486 {
2487 do_cleanups (old_chain);
2488 return;
2489 }
2490
2491 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2492 section = SYMBOL_OBJ_SECTION (msymbol);
2493 name = SYMBOL_LINKAGE_NAME (msymbol);
2494 objfile = msymbol_objfile (msymbol);
2495 }
2496
2497 gdbarch = get_objfile_arch (objfile);
2498
2499 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2500 so that gdbarch_skip_prologue has something unique to work on. */
2501 if (section_is_overlay (section) && !section_is_mapped (section))
2502 pc = overlay_unmapped_address (pc, section);
2503
2504 /* Skip "first line" of function (which is actually its prologue). */
2505 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2506 pc = gdbarch_skip_prologue (gdbarch, pc);
2507
2508 /* For overlays, map pc back into its mapped VMA range. */
2509 pc = overlay_mapped_address (pc, section);
2510
2511 /* Calculate line number. */
2512 start_sal = find_pc_sect_line (pc, section, 0);
2513
2514 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2515 line is still part of the same function. */
2516 if (start_sal.pc != pc
2517 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2518 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2519 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2520 == lookup_minimal_symbol_by_pc_section (pc, section))))
2521 {
2522 /* First pc of next line */
2523 pc = start_sal.end;
2524 /* Recalculate the line number (might not be N+1). */
2525 start_sal = find_pc_sect_line (pc, section, 0);
2526 }
2527
2528 /* On targets with executable formats that don't have a concept of
2529 constructors (ELF with .init has, PE doesn't), gcc emits a call
2530 to `__main' in `main' between the prologue and before user
2531 code. */
2532 if (gdbarch_skip_main_prologue_p (gdbarch)
2533 && name && strcmp (name, "main") == 0)
2534 {
2535 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2536 /* Recalculate the line number (might not be N+1). */
2537 start_sal = find_pc_sect_line (pc, section, 0);
2538 }
2539
2540 /* If we still don't have a valid source line, try to find the first
2541 PC in the lineinfo table that belongs to the same function. This
2542 happens with COFF debug info, which does not seem to have an
2543 entry in lineinfo table for the code after the prologue which has
2544 no direct relation to source. For example, this was found to be
2545 the case with the DJGPP target using "gcc -gcoff" when the
2546 compiler inserted code after the prologue to make sure the stack
2547 is aligned. */
2548 if (sym && start_sal.symtab == NULL)
2549 {
2550 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2551 /* Recalculate the line number. */
2552 start_sal = find_pc_sect_line (pc, section, 0);
2553 }
2554
2555 do_cleanups (old_chain);
2556
2557 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2558 forward SAL to the end of the prologue. */
2559 if (sal->pc >= pc)
2560 return;
2561
2562 sal->pc = pc;
2563 sal->section = section;
2564
2565 /* Unless the explicit_line flag was set, update the SAL line
2566 and symtab to correspond to the modified PC location. */
2567 if (sal->explicit_line)
2568 return;
2569
2570 sal->symtab = start_sal.symtab;
2571 sal->line = start_sal.line;
2572 sal->end = start_sal.end;
2573
2574 /* Check if we are now inside an inlined function. If we can,
2575 use the call site of the function instead. */
2576 b = block_for_pc_sect (sal->pc, sal->section);
2577 function_block = NULL;
2578 while (b != NULL)
2579 {
2580 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2581 function_block = b;
2582 else if (BLOCK_FUNCTION (b) != NULL)
2583 break;
2584 b = BLOCK_SUPERBLOCK (b);
2585 }
2586 if (function_block != NULL
2587 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2588 {
2589 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2590 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2591 }
2592 }
2593
2594 /* If P is of the form "operator[ \t]+..." where `...' is
2595 some legitimate operator text, return a pointer to the
2596 beginning of the substring of the operator text.
2597 Otherwise, return "". */
2598 char *
2599 operator_chars (char *p, char **end)
2600 {
2601 *end = "";
2602 if (strncmp (p, "operator", 8))
2603 return *end;
2604 p += 8;
2605
2606 /* Don't get faked out by `operator' being part of a longer
2607 identifier. */
2608 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2609 return *end;
2610
2611 /* Allow some whitespace between `operator' and the operator symbol. */
2612 while (*p == ' ' || *p == '\t')
2613 p++;
2614
2615 /* Recognize 'operator TYPENAME'. */
2616
2617 if (isalpha (*p) || *p == '_' || *p == '$')
2618 {
2619 char *q = p + 1;
2620
2621 while (isalnum (*q) || *q == '_' || *q == '$')
2622 q++;
2623 *end = q;
2624 return p;
2625 }
2626
2627 while (*p)
2628 switch (*p)
2629 {
2630 case '\\': /* regexp quoting */
2631 if (p[1] == '*')
2632 {
2633 if (p[2] == '=') /* 'operator\*=' */
2634 *end = p + 3;
2635 else /* 'operator\*' */
2636 *end = p + 2;
2637 return p;
2638 }
2639 else if (p[1] == '[')
2640 {
2641 if (p[2] == ']')
2642 error (_("mismatched quoting on brackets, "
2643 "try 'operator\\[\\]'"));
2644 else if (p[2] == '\\' && p[3] == ']')
2645 {
2646 *end = p + 4; /* 'operator\[\]' */
2647 return p;
2648 }
2649 else
2650 error (_("nothing is allowed between '[' and ']'"));
2651 }
2652 else
2653 {
2654 /* Gratuitous qoute: skip it and move on. */
2655 p++;
2656 continue;
2657 }
2658 break;
2659 case '!':
2660 case '=':
2661 case '*':
2662 case '/':
2663 case '%':
2664 case '^':
2665 if (p[1] == '=')
2666 *end = p + 2;
2667 else
2668 *end = p + 1;
2669 return p;
2670 case '<':
2671 case '>':
2672 case '+':
2673 case '-':
2674 case '&':
2675 case '|':
2676 if (p[0] == '-' && p[1] == '>')
2677 {
2678 /* Struct pointer member operator 'operator->'. */
2679 if (p[2] == '*')
2680 {
2681 *end = p + 3; /* 'operator->*' */
2682 return p;
2683 }
2684 else if (p[2] == '\\')
2685 {
2686 *end = p + 4; /* Hopefully 'operator->\*' */
2687 return p;
2688 }
2689 else
2690 {
2691 *end = p + 2; /* 'operator->' */
2692 return p;
2693 }
2694 }
2695 if (p[1] == '=' || p[1] == p[0])
2696 *end = p + 2;
2697 else
2698 *end = p + 1;
2699 return p;
2700 case '~':
2701 case ',':
2702 *end = p + 1;
2703 return p;
2704 case '(':
2705 if (p[1] != ')')
2706 error (_("`operator ()' must be specified "
2707 "without whitespace in `()'"));
2708 *end = p + 2;
2709 return p;
2710 case '?':
2711 if (p[1] != ':')
2712 error (_("`operator ?:' must be specified "
2713 "without whitespace in `?:'"));
2714 *end = p + 2;
2715 return p;
2716 case '[':
2717 if (p[1] != ']')
2718 error (_("`operator []' must be specified "
2719 "without whitespace in `[]'"));
2720 *end = p + 2;
2721 return p;
2722 default:
2723 error (_("`operator %s' not supported"), p);
2724 break;
2725 }
2726
2727 *end = "";
2728 return *end;
2729 }
2730 \f
2731
2732 /* If FILE is not already in the table of files, return zero;
2733 otherwise return non-zero. Optionally add FILE to the table if ADD
2734 is non-zero. If *FIRST is non-zero, forget the old table
2735 contents. */
2736 static int
2737 filename_seen (const char *file, int add, int *first)
2738 {
2739 /* Table of files seen so far. */
2740 static const char **tab = NULL;
2741 /* Allocated size of tab in elements.
2742 Start with one 256-byte block (when using GNU malloc.c).
2743 24 is the malloc overhead when range checking is in effect. */
2744 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2745 /* Current size of tab in elements. */
2746 static int tab_cur_size;
2747 const char **p;
2748
2749 if (*first)
2750 {
2751 if (tab == NULL)
2752 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2753 tab_cur_size = 0;
2754 }
2755
2756 /* Is FILE in tab? */
2757 for (p = tab; p < tab + tab_cur_size; p++)
2758 if (strcmp (*p, file) == 0)
2759 return 1;
2760
2761 /* No; maybe add it to tab. */
2762 if (add)
2763 {
2764 if (tab_cur_size == tab_alloc_size)
2765 {
2766 tab_alloc_size *= 2;
2767 tab = (const char **) xrealloc ((char *) tab,
2768 tab_alloc_size * sizeof (*tab));
2769 }
2770 tab[tab_cur_size++] = file;
2771 }
2772
2773 return 0;
2774 }
2775
2776 /* Slave routine for sources_info. Force line breaks at ,'s.
2777 NAME is the name to print and *FIRST is nonzero if this is the first
2778 name printed. Set *FIRST to zero. */
2779 static void
2780 output_source_filename (const char *name, int *first)
2781 {
2782 /* Since a single source file can result in several partial symbol
2783 tables, we need to avoid printing it more than once. Note: if
2784 some of the psymtabs are read in and some are not, it gets
2785 printed both under "Source files for which symbols have been
2786 read" and "Source files for which symbols will be read in on
2787 demand". I consider this a reasonable way to deal with the
2788 situation. I'm not sure whether this can also happen for
2789 symtabs; it doesn't hurt to check. */
2790
2791 /* Was NAME already seen? */
2792 if (filename_seen (name, 1, first))
2793 {
2794 /* Yes; don't print it again. */
2795 return;
2796 }
2797 /* No; print it and reset *FIRST. */
2798 if (*first)
2799 {
2800 *first = 0;
2801 }
2802 else
2803 {
2804 printf_filtered (", ");
2805 }
2806
2807 wrap_here ("");
2808 fputs_filtered (name, gdb_stdout);
2809 }
2810
2811 /* A callback for map_partial_symbol_filenames. */
2812 static void
2813 output_partial_symbol_filename (const char *fullname, const char *filename,
2814 void *data)
2815 {
2816 output_source_filename (fullname ? fullname : filename, data);
2817 }
2818
2819 static void
2820 sources_info (char *ignore, int from_tty)
2821 {
2822 struct symtab *s;
2823 struct objfile *objfile;
2824 int first;
2825
2826 if (!have_full_symbols () && !have_partial_symbols ())
2827 {
2828 error (_("No symbol table is loaded. Use the \"file\" command."));
2829 }
2830
2831 printf_filtered ("Source files for which symbols have been read in:\n\n");
2832
2833 first = 1;
2834 ALL_SYMTABS (objfile, s)
2835 {
2836 const char *fullname = symtab_to_fullname (s);
2837
2838 output_source_filename (fullname ? fullname : s->filename, &first);
2839 }
2840 printf_filtered ("\n\n");
2841
2842 printf_filtered ("Source files for which symbols "
2843 "will be read in on demand:\n\n");
2844
2845 first = 1;
2846 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2847 printf_filtered ("\n");
2848 }
2849
2850 static int
2851 file_matches (const char *file, char *files[], int nfiles)
2852 {
2853 int i;
2854
2855 if (file != NULL && nfiles != 0)
2856 {
2857 for (i = 0; i < nfiles; i++)
2858 {
2859 if (strcmp (files[i], lbasename (file)) == 0)
2860 return 1;
2861 }
2862 }
2863 else if (nfiles == 0)
2864 return 1;
2865 return 0;
2866 }
2867
2868 /* Free any memory associated with a search. */
2869 void
2870 free_search_symbols (struct symbol_search *symbols)
2871 {
2872 struct symbol_search *p;
2873 struct symbol_search *next;
2874
2875 for (p = symbols; p != NULL; p = next)
2876 {
2877 next = p->next;
2878 xfree (p);
2879 }
2880 }
2881
2882 static void
2883 do_free_search_symbols_cleanup (void *symbols)
2884 {
2885 free_search_symbols (symbols);
2886 }
2887
2888 struct cleanup *
2889 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2890 {
2891 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2892 }
2893
2894 /* Helper function for sort_search_symbols and qsort. Can only
2895 sort symbols, not minimal symbols. */
2896 static int
2897 compare_search_syms (const void *sa, const void *sb)
2898 {
2899 struct symbol_search **sym_a = (struct symbol_search **) sa;
2900 struct symbol_search **sym_b = (struct symbol_search **) sb;
2901
2902 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2903 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2904 }
2905
2906 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2907 prevtail where it is, but update its next pointer to point to
2908 the first of the sorted symbols. */
2909 static struct symbol_search *
2910 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2911 {
2912 struct symbol_search **symbols, *symp, *old_next;
2913 int i;
2914
2915 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2916 * nfound);
2917 symp = prevtail->next;
2918 for (i = 0; i < nfound; i++)
2919 {
2920 symbols[i] = symp;
2921 symp = symp->next;
2922 }
2923 /* Generally NULL. */
2924 old_next = symp;
2925
2926 qsort (symbols, nfound, sizeof (struct symbol_search *),
2927 compare_search_syms);
2928
2929 symp = prevtail;
2930 for (i = 0; i < nfound; i++)
2931 {
2932 symp->next = symbols[i];
2933 symp = symp->next;
2934 }
2935 symp->next = old_next;
2936
2937 xfree (symbols);
2938 return symp;
2939 }
2940
2941 /* An object of this type is passed as the user_data to the
2942 expand_symtabs_matching method. */
2943 struct search_symbols_data
2944 {
2945 int nfiles;
2946 char **files;
2947 char *regexp;
2948 };
2949
2950 /* A callback for expand_symtabs_matching. */
2951 static int
2952 search_symbols_file_matches (const char *filename, void *user_data)
2953 {
2954 struct search_symbols_data *data = user_data;
2955
2956 return file_matches (filename, data->files, data->nfiles);
2957 }
2958
2959 /* A callback for expand_symtabs_matching. */
2960 static int
2961 search_symbols_name_matches (const char *symname, void *user_data)
2962 {
2963 struct search_symbols_data *data = user_data;
2964
2965 return data->regexp == NULL || re_exec (symname);
2966 }
2967
2968 /* Search the symbol table for matches to the regular expression REGEXP,
2969 returning the results in *MATCHES.
2970
2971 Only symbols of KIND are searched:
2972 FUNCTIONS_DOMAIN - search all functions
2973 TYPES_DOMAIN - search all type names
2974 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2975 and constants (enums)
2976
2977 free_search_symbols should be called when *MATCHES is no longer needed.
2978
2979 The results are sorted locally; each symtab's global and static blocks are
2980 separately alphabetized.
2981 */
2982 void
2983 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2984 struct symbol_search **matches)
2985 {
2986 struct symtab *s;
2987 struct blockvector *bv;
2988 struct block *b;
2989 int i = 0;
2990 struct dict_iterator iter;
2991 struct symbol *sym;
2992 struct objfile *objfile;
2993 struct minimal_symbol *msymbol;
2994 char *val;
2995 int found_misc = 0;
2996 static const enum minimal_symbol_type types[]
2997 = {mst_data, mst_text, mst_abs, mst_unknown};
2998 static const enum minimal_symbol_type types2[]
2999 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
3000 static const enum minimal_symbol_type types3[]
3001 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3002 static const enum minimal_symbol_type types4[]
3003 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
3004 enum minimal_symbol_type ourtype;
3005 enum minimal_symbol_type ourtype2;
3006 enum minimal_symbol_type ourtype3;
3007 enum minimal_symbol_type ourtype4;
3008 struct symbol_search *sr;
3009 struct symbol_search *psr;
3010 struct symbol_search *tail;
3011 struct cleanup *old_chain = NULL;
3012 struct search_symbols_data datum;
3013
3014 if (kind < VARIABLES_DOMAIN)
3015 error (_("must search on specific domain"));
3016
3017 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3018 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3019 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3020 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3021
3022 sr = *matches = NULL;
3023 tail = NULL;
3024
3025 if (regexp != NULL)
3026 {
3027 /* Make sure spacing is right for C++ operators.
3028 This is just a courtesy to make the matching less sensitive
3029 to how many spaces the user leaves between 'operator'
3030 and <TYPENAME> or <OPERATOR>. */
3031 char *opend;
3032 char *opname = operator_chars (regexp, &opend);
3033
3034 if (*opname)
3035 {
3036 int fix = -1; /* -1 means ok; otherwise number of
3037 spaces needed. */
3038
3039 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3040 {
3041 /* There should 1 space between 'operator' and 'TYPENAME'. */
3042 if (opname[-1] != ' ' || opname[-2] == ' ')
3043 fix = 1;
3044 }
3045 else
3046 {
3047 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3048 if (opname[-1] == ' ')
3049 fix = 0;
3050 }
3051 /* If wrong number of spaces, fix it. */
3052 if (fix >= 0)
3053 {
3054 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3055
3056 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3057 regexp = tmp;
3058 }
3059 }
3060
3061 if (0 != (val = re_comp (regexp)))
3062 error (_("Invalid regexp (%s): %s"), val, regexp);
3063 }
3064
3065 /* Search through the partial symtabs *first* for all symbols
3066 matching the regexp. That way we don't have to reproduce all of
3067 the machinery below. */
3068
3069 datum.nfiles = nfiles;
3070 datum.files = files;
3071 datum.regexp = regexp;
3072 ALL_OBJFILES (objfile)
3073 {
3074 if (objfile->sf)
3075 objfile->sf->qf->expand_symtabs_matching (objfile,
3076 search_symbols_file_matches,
3077 search_symbols_name_matches,
3078 kind,
3079 &datum);
3080 }
3081
3082 /* Here, we search through the minimal symbol tables for functions
3083 and variables that match, and force their symbols to be read.
3084 This is in particular necessary for demangled variable names,
3085 which are no longer put into the partial symbol tables.
3086 The symbol will then be found during the scan of symtabs below.
3087
3088 For functions, find_pc_symtab should succeed if we have debug info
3089 for the function, for variables we have to call lookup_symbol
3090 to determine if the variable has debug info.
3091 If the lookup fails, set found_misc so that we will rescan to print
3092 any matching symbols without debug info.
3093 */
3094
3095 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3096 {
3097 ALL_MSYMBOLS (objfile, msymbol)
3098 {
3099 QUIT;
3100
3101 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3102 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3103 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3104 MSYMBOL_TYPE (msymbol) == ourtype4)
3105 {
3106 if (regexp == NULL
3107 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3108 {
3109 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3110 {
3111 /* FIXME: carlton/2003-02-04: Given that the
3112 semantics of lookup_symbol keeps on changing
3113 slightly, it would be a nice idea if we had a
3114 function lookup_symbol_minsym that found the
3115 symbol associated to a given minimal symbol (if
3116 any). */
3117 if (kind == FUNCTIONS_DOMAIN
3118 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3119 (struct block *) NULL,
3120 VAR_DOMAIN, 0)
3121 == NULL)
3122 found_misc = 1;
3123 }
3124 }
3125 }
3126 }
3127 }
3128
3129 ALL_PRIMARY_SYMTABS (objfile, s)
3130 {
3131 bv = BLOCKVECTOR (s);
3132 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3133 {
3134 struct symbol_search *prevtail = tail;
3135 int nfound = 0;
3136
3137 b = BLOCKVECTOR_BLOCK (bv, i);
3138 ALL_BLOCK_SYMBOLS (b, iter, sym)
3139 {
3140 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3141
3142 QUIT;
3143
3144 if (file_matches (real_symtab->filename, files, nfiles)
3145 && ((regexp == NULL
3146 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3147 && ((kind == VARIABLES_DOMAIN
3148 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3149 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3150 && SYMBOL_CLASS (sym) != LOC_BLOCK
3151 /* LOC_CONST can be used for more than just enums,
3152 e.g., c++ static const members.
3153 We only want to skip enums here. */
3154 && !(SYMBOL_CLASS (sym) == LOC_CONST
3155 && TYPE_CODE (SYMBOL_TYPE (sym))
3156 == TYPE_CODE_ENUM))
3157 || (kind == FUNCTIONS_DOMAIN
3158 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3159 || (kind == TYPES_DOMAIN
3160 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3161 {
3162 /* match */
3163 psr = (struct symbol_search *)
3164 xmalloc (sizeof (struct symbol_search));
3165 psr->block = i;
3166 psr->symtab = real_symtab;
3167 psr->symbol = sym;
3168 psr->msymbol = NULL;
3169 psr->next = NULL;
3170 if (tail == NULL)
3171 sr = psr;
3172 else
3173 tail->next = psr;
3174 tail = psr;
3175 nfound ++;
3176 }
3177 }
3178 if (nfound > 0)
3179 {
3180 if (prevtail == NULL)
3181 {
3182 struct symbol_search dummy;
3183
3184 dummy.next = sr;
3185 tail = sort_search_symbols (&dummy, nfound);
3186 sr = dummy.next;
3187
3188 old_chain = make_cleanup_free_search_symbols (sr);
3189 }
3190 else
3191 tail = sort_search_symbols (prevtail, nfound);
3192 }
3193 }
3194 }
3195
3196 /* If there are no eyes, avoid all contact. I mean, if there are
3197 no debug symbols, then print directly from the msymbol_vector. */
3198
3199 if (found_misc || kind != FUNCTIONS_DOMAIN)
3200 {
3201 ALL_MSYMBOLS (objfile, msymbol)
3202 {
3203 QUIT;
3204
3205 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3206 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3207 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3208 MSYMBOL_TYPE (msymbol) == ourtype4)
3209 {
3210 if (regexp == NULL
3211 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3212 {
3213 /* Functions: Look up by address. */
3214 if (kind != FUNCTIONS_DOMAIN ||
3215 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3216 {
3217 /* Variables/Absolutes: Look up by name */
3218 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3219 (struct block *) NULL, VAR_DOMAIN, 0)
3220 == NULL)
3221 {
3222 /* match */
3223 psr = (struct symbol_search *)
3224 xmalloc (sizeof (struct symbol_search));
3225 psr->block = i;
3226 psr->msymbol = msymbol;
3227 psr->symtab = NULL;
3228 psr->symbol = NULL;
3229 psr->next = NULL;
3230 if (tail == NULL)
3231 {
3232 sr = psr;
3233 old_chain = make_cleanup_free_search_symbols (sr);
3234 }
3235 else
3236 tail->next = psr;
3237 tail = psr;
3238 }
3239 }
3240 }
3241 }
3242 }
3243 }
3244
3245 *matches = sr;
3246 if (sr != NULL)
3247 discard_cleanups (old_chain);
3248 }
3249
3250 /* Helper function for symtab_symbol_info, this function uses
3251 the data returned from search_symbols() to print information
3252 regarding the match to gdb_stdout.
3253 */
3254 static void
3255 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3256 int block, char *last)
3257 {
3258 if (last == NULL || strcmp (last, s->filename) != 0)
3259 {
3260 fputs_filtered ("\nFile ", gdb_stdout);
3261 fputs_filtered (s->filename, gdb_stdout);
3262 fputs_filtered (":\n", gdb_stdout);
3263 }
3264
3265 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3266 printf_filtered ("static ");
3267
3268 /* Typedef that is not a C++ class */
3269 if (kind == TYPES_DOMAIN
3270 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3271 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3272 /* variable, func, or typedef-that-is-c++-class */
3273 else if (kind < TYPES_DOMAIN ||
3274 (kind == TYPES_DOMAIN &&
3275 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3276 {
3277 type_print (SYMBOL_TYPE (sym),
3278 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3279 ? "" : SYMBOL_PRINT_NAME (sym)),
3280 gdb_stdout, 0);
3281
3282 printf_filtered (";\n");
3283 }
3284 }
3285
3286 /* This help function for symtab_symbol_info() prints information
3287 for non-debugging symbols to gdb_stdout.
3288 */
3289 static void
3290 print_msymbol_info (struct minimal_symbol *msymbol)
3291 {
3292 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3293 char *tmp;
3294
3295 if (gdbarch_addr_bit (gdbarch) <= 32)
3296 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3297 & (CORE_ADDR) 0xffffffff,
3298 8);
3299 else
3300 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3301 16);
3302 printf_filtered ("%s %s\n",
3303 tmp, SYMBOL_PRINT_NAME (msymbol));
3304 }
3305
3306 /* This is the guts of the commands "info functions", "info types", and
3307 "info variables". It calls search_symbols to find all matches and then
3308 print_[m]symbol_info to print out some useful information about the
3309 matches.
3310 */
3311 static void
3312 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3313 {
3314 static const char * const classnames[] =
3315 {"variable", "function", "type", "method"};
3316 struct symbol_search *symbols;
3317 struct symbol_search *p;
3318 struct cleanup *old_chain;
3319 char *last_filename = NULL;
3320 int first = 1;
3321
3322 /* must make sure that if we're interrupted, symbols gets freed */
3323 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3324 old_chain = make_cleanup_free_search_symbols (symbols);
3325
3326 printf_filtered (regexp
3327 ? "All %ss matching regular expression \"%s\":\n"
3328 : "All defined %ss:\n",
3329 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3330
3331 for (p = symbols; p != NULL; p = p->next)
3332 {
3333 QUIT;
3334
3335 if (p->msymbol != NULL)
3336 {
3337 if (first)
3338 {
3339 printf_filtered ("\nNon-debugging symbols:\n");
3340 first = 0;
3341 }
3342 print_msymbol_info (p->msymbol);
3343 }
3344 else
3345 {
3346 print_symbol_info (kind,
3347 p->symtab,
3348 p->symbol,
3349 p->block,
3350 last_filename);
3351 last_filename = p->symtab->filename;
3352 }
3353 }
3354
3355 do_cleanups (old_chain);
3356 }
3357
3358 static void
3359 variables_info (char *regexp, int from_tty)
3360 {
3361 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3362 }
3363
3364 static void
3365 functions_info (char *regexp, int from_tty)
3366 {
3367 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3368 }
3369
3370
3371 static void
3372 types_info (char *regexp, int from_tty)
3373 {
3374 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3375 }
3376
3377 /* Breakpoint all functions matching regular expression. */
3378
3379 void
3380 rbreak_command_wrapper (char *regexp, int from_tty)
3381 {
3382 rbreak_command (regexp, from_tty);
3383 }
3384
3385 /* A cleanup function that calls end_rbreak_breakpoints. */
3386
3387 static void
3388 do_end_rbreak_breakpoints (void *ignore)
3389 {
3390 end_rbreak_breakpoints ();
3391 }
3392
3393 static void
3394 rbreak_command (char *regexp, int from_tty)
3395 {
3396 struct symbol_search *ss;
3397 struct symbol_search *p;
3398 struct cleanup *old_chain;
3399 char *string = NULL;
3400 int len = 0;
3401 char **files = NULL;
3402 int nfiles = 0;
3403
3404 if (regexp)
3405 {
3406 char *colon = strchr (regexp, ':');
3407
3408 if (colon && *(colon + 1) != ':')
3409 {
3410 int colon_index;
3411 char * file_name;
3412
3413 colon_index = colon - regexp;
3414 file_name = alloca (colon_index + 1);
3415 memcpy (file_name, regexp, colon_index);
3416 file_name[colon_index--] = 0;
3417 while (isspace (file_name[colon_index]))
3418 file_name[colon_index--] = 0;
3419 files = &file_name;
3420 nfiles = 1;
3421 regexp = colon + 1;
3422 while (isspace (*regexp)) regexp++;
3423 }
3424 }
3425
3426 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3427 old_chain = make_cleanup_free_search_symbols (ss);
3428 make_cleanup (free_current_contents, &string);
3429
3430 start_rbreak_breakpoints ();
3431 make_cleanup (do_end_rbreak_breakpoints, NULL);
3432 for (p = ss; p != NULL; p = p->next)
3433 {
3434 if (p->msymbol == NULL)
3435 {
3436 int newlen = (strlen (p->symtab->filename)
3437 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3438 + 4);
3439
3440 if (newlen > len)
3441 {
3442 string = xrealloc (string, newlen);
3443 len = newlen;
3444 }
3445 strcpy (string, p->symtab->filename);
3446 strcat (string, ":'");
3447 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3448 strcat (string, "'");
3449 break_command (string, from_tty);
3450 print_symbol_info (FUNCTIONS_DOMAIN,
3451 p->symtab,
3452 p->symbol,
3453 p->block,
3454 p->symtab->filename);
3455 }
3456 else
3457 {
3458 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3459
3460 if (newlen > len)
3461 {
3462 string = xrealloc (string, newlen);
3463 len = newlen;
3464 }
3465 strcpy (string, "'");
3466 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3467 strcat (string, "'");
3468
3469 break_command (string, from_tty);
3470 printf_filtered ("<function, no debug info> %s;\n",
3471 SYMBOL_PRINT_NAME (p->msymbol));
3472 }
3473 }
3474
3475 do_cleanups (old_chain);
3476 }
3477 \f
3478
3479 /* Helper routine for make_symbol_completion_list. */
3480
3481 static int return_val_size;
3482 static int return_val_index;
3483 static char **return_val;
3484
3485 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3486 completion_list_add_name \
3487 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3488
3489 /* Test to see if the symbol specified by SYMNAME (which is already
3490 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3491 characters. If so, add it to the current completion list. */
3492
3493 static void
3494 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3495 char *text, char *word)
3496 {
3497 int newsize;
3498
3499 /* clip symbols that cannot match */
3500
3501 if (strncmp (symname, sym_text, sym_text_len) != 0)
3502 {
3503 return;
3504 }
3505
3506 /* We have a match for a completion, so add SYMNAME to the current list
3507 of matches. Note that the name is moved to freshly malloc'd space. */
3508
3509 {
3510 char *new;
3511
3512 if (word == sym_text)
3513 {
3514 new = xmalloc (strlen (symname) + 5);
3515 strcpy (new, symname);
3516 }
3517 else if (word > sym_text)
3518 {
3519 /* Return some portion of symname. */
3520 new = xmalloc (strlen (symname) + 5);
3521 strcpy (new, symname + (word - sym_text));
3522 }
3523 else
3524 {
3525 /* Return some of SYM_TEXT plus symname. */
3526 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3527 strncpy (new, word, sym_text - word);
3528 new[sym_text - word] = '\0';
3529 strcat (new, symname);
3530 }
3531
3532 if (return_val_index + 3 > return_val_size)
3533 {
3534 newsize = (return_val_size *= 2) * sizeof (char *);
3535 return_val = (char **) xrealloc ((char *) return_val, newsize);
3536 }
3537 return_val[return_val_index++] = new;
3538 return_val[return_val_index] = NULL;
3539 }
3540 }
3541
3542 /* ObjC: In case we are completing on a selector, look as the msymbol
3543 again and feed all the selectors into the mill. */
3544
3545 static void
3546 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3547 int sym_text_len, char *text, char *word)
3548 {
3549 static char *tmp = NULL;
3550 static unsigned int tmplen = 0;
3551
3552 char *method, *category, *selector;
3553 char *tmp2 = NULL;
3554
3555 method = SYMBOL_NATURAL_NAME (msymbol);
3556
3557 /* Is it a method? */
3558 if ((method[0] != '-') && (method[0] != '+'))
3559 return;
3560
3561 if (sym_text[0] == '[')
3562 /* Complete on shortened method method. */
3563 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3564
3565 while ((strlen (method) + 1) >= tmplen)
3566 {
3567 if (tmplen == 0)
3568 tmplen = 1024;
3569 else
3570 tmplen *= 2;
3571 tmp = xrealloc (tmp, tmplen);
3572 }
3573 selector = strchr (method, ' ');
3574 if (selector != NULL)
3575 selector++;
3576
3577 category = strchr (method, '(');
3578
3579 if ((category != NULL) && (selector != NULL))
3580 {
3581 memcpy (tmp, method, (category - method));
3582 tmp[category - method] = ' ';
3583 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3584 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3585 if (sym_text[0] == '[')
3586 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3587 }
3588
3589 if (selector != NULL)
3590 {
3591 /* Complete on selector only. */
3592 strcpy (tmp, selector);
3593 tmp2 = strchr (tmp, ']');
3594 if (tmp2 != NULL)
3595 *tmp2 = '\0';
3596
3597 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3598 }
3599 }
3600
3601 /* Break the non-quoted text based on the characters which are in
3602 symbols. FIXME: This should probably be language-specific. */
3603
3604 static char *
3605 language_search_unquoted_string (char *text, char *p)
3606 {
3607 for (; p > text; --p)
3608 {
3609 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3610 continue;
3611 else
3612 {
3613 if ((current_language->la_language == language_objc))
3614 {
3615 if (p[-1] == ':') /* might be part of a method name */
3616 continue;
3617 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3618 p -= 2; /* beginning of a method name */
3619 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3620 { /* might be part of a method name */
3621 char *t = p;
3622
3623 /* Seeing a ' ' or a '(' is not conclusive evidence
3624 that we are in the middle of a method name. However,
3625 finding "-[" or "+[" should be pretty un-ambiguous.
3626 Unfortunately we have to find it now to decide. */
3627
3628 while (t > text)
3629 if (isalnum (t[-1]) || t[-1] == '_' ||
3630 t[-1] == ' ' || t[-1] == ':' ||
3631 t[-1] == '(' || t[-1] == ')')
3632 --t;
3633 else
3634 break;
3635
3636 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3637 p = t - 2; /* method name detected */
3638 /* else we leave with p unchanged */
3639 }
3640 }
3641 break;
3642 }
3643 }
3644 return p;
3645 }
3646
3647 static void
3648 completion_list_add_fields (struct symbol *sym, char *sym_text,
3649 int sym_text_len, char *text, char *word)
3650 {
3651 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3652 {
3653 struct type *t = SYMBOL_TYPE (sym);
3654 enum type_code c = TYPE_CODE (t);
3655 int j;
3656
3657 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3658 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3659 if (TYPE_FIELD_NAME (t, j))
3660 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3661 sym_text, sym_text_len, text, word);
3662 }
3663 }
3664
3665 /* Type of the user_data argument passed to add_macro_name or
3666 add_partial_symbol_name. The contents are simply whatever is
3667 needed by completion_list_add_name. */
3668 struct add_name_data
3669 {
3670 char *sym_text;
3671 int sym_text_len;
3672 char *text;
3673 char *word;
3674 };
3675
3676 /* A callback used with macro_for_each and macro_for_each_in_scope.
3677 This adds a macro's name to the current completion list. */
3678 static void
3679 add_macro_name (const char *name, const struct macro_definition *ignore,
3680 void *user_data)
3681 {
3682 struct add_name_data *datum = (struct add_name_data *) user_data;
3683
3684 completion_list_add_name ((char *) name,
3685 datum->sym_text, datum->sym_text_len,
3686 datum->text, datum->word);
3687 }
3688
3689 /* A callback for map_partial_symbol_names. */
3690 static void
3691 add_partial_symbol_name (const char *name, void *user_data)
3692 {
3693 struct add_name_data *datum = (struct add_name_data *) user_data;
3694
3695 completion_list_add_name ((char *) name,
3696 datum->sym_text, datum->sym_text_len,
3697 datum->text, datum->word);
3698 }
3699
3700 char **
3701 default_make_symbol_completion_list_break_on (char *text, char *word,
3702 const char *break_on)
3703 {
3704 /* Problem: All of the symbols have to be copied because readline
3705 frees them. I'm not going to worry about this; hopefully there
3706 won't be that many. */
3707
3708 struct symbol *sym;
3709 struct symtab *s;
3710 struct minimal_symbol *msymbol;
3711 struct objfile *objfile;
3712 struct block *b;
3713 const struct block *surrounding_static_block, *surrounding_global_block;
3714 struct dict_iterator iter;
3715 /* The symbol we are completing on. Points in same buffer as text. */
3716 char *sym_text;
3717 /* Length of sym_text. */
3718 int sym_text_len;
3719 struct add_name_data datum;
3720
3721 /* Now look for the symbol we are supposed to complete on. */
3722 {
3723 char *p;
3724 char quote_found;
3725 char *quote_pos = NULL;
3726
3727 /* First see if this is a quoted string. */
3728 quote_found = '\0';
3729 for (p = text; *p != '\0'; ++p)
3730 {
3731 if (quote_found != '\0')
3732 {
3733 if (*p == quote_found)
3734 /* Found close quote. */
3735 quote_found = '\0';
3736 else if (*p == '\\' && p[1] == quote_found)
3737 /* A backslash followed by the quote character
3738 doesn't end the string. */
3739 ++p;
3740 }
3741 else if (*p == '\'' || *p == '"')
3742 {
3743 quote_found = *p;
3744 quote_pos = p;
3745 }
3746 }
3747 if (quote_found == '\'')
3748 /* A string within single quotes can be a symbol, so complete on it. */
3749 sym_text = quote_pos + 1;
3750 else if (quote_found == '"')
3751 /* A double-quoted string is never a symbol, nor does it make sense
3752 to complete it any other way. */
3753 {
3754 return_val = (char **) xmalloc (sizeof (char *));
3755 return_val[0] = NULL;
3756 return return_val;
3757 }
3758 else
3759 {
3760 /* It is not a quoted string. Break it based on the characters
3761 which are in symbols. */
3762 while (p > text)
3763 {
3764 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3765 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3766 --p;
3767 else
3768 break;
3769 }
3770 sym_text = p;
3771 }
3772 }
3773
3774 sym_text_len = strlen (sym_text);
3775
3776 return_val_size = 100;
3777 return_val_index = 0;
3778 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3779 return_val[0] = NULL;
3780
3781 datum.sym_text = sym_text;
3782 datum.sym_text_len = sym_text_len;
3783 datum.text = text;
3784 datum.word = word;
3785
3786 /* Look through the partial symtabs for all symbols which begin
3787 by matching SYM_TEXT. Add each one that you find to the list. */
3788 map_partial_symbol_names (add_partial_symbol_name, &datum);
3789
3790 /* At this point scan through the misc symbol vectors and add each
3791 symbol you find to the list. Eventually we want to ignore
3792 anything that isn't a text symbol (everything else will be
3793 handled by the psymtab code above). */
3794
3795 ALL_MSYMBOLS (objfile, msymbol)
3796 {
3797 QUIT;
3798 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3799
3800 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3801 }
3802
3803 /* Search upwards from currently selected frame (so that we can
3804 complete on local vars). Also catch fields of types defined in
3805 this places which match our text string. Only complete on types
3806 visible from current context. */
3807
3808 b = get_selected_block (0);
3809 surrounding_static_block = block_static_block (b);
3810 surrounding_global_block = block_global_block (b);
3811 if (surrounding_static_block != NULL)
3812 while (b != surrounding_static_block)
3813 {
3814 QUIT;
3815
3816 ALL_BLOCK_SYMBOLS (b, iter, sym)
3817 {
3818 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3819 word);
3820 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3821 word);
3822 }
3823
3824 /* Stop when we encounter an enclosing function. Do not stop for
3825 non-inlined functions - the locals of the enclosing function
3826 are in scope for a nested function. */
3827 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3828 break;
3829 b = BLOCK_SUPERBLOCK (b);
3830 }
3831
3832 /* Add fields from the file's types; symbols will be added below. */
3833
3834 if (surrounding_static_block != NULL)
3835 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3836 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3837
3838 if (surrounding_global_block != NULL)
3839 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3840 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3841
3842 /* Go through the symtabs and check the externs and statics for
3843 symbols which match. */
3844
3845 ALL_PRIMARY_SYMTABS (objfile, s)
3846 {
3847 QUIT;
3848 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3849 ALL_BLOCK_SYMBOLS (b, iter, sym)
3850 {
3851 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3852 }
3853 }
3854
3855 ALL_PRIMARY_SYMTABS (objfile, s)
3856 {
3857 QUIT;
3858 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3859 ALL_BLOCK_SYMBOLS (b, iter, sym)
3860 {
3861 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3862 }
3863 }
3864
3865 if (current_language->la_macro_expansion == macro_expansion_c)
3866 {
3867 struct macro_scope *scope;
3868
3869 /* Add any macros visible in the default scope. Note that this
3870 may yield the occasional wrong result, because an expression
3871 might be evaluated in a scope other than the default. For
3872 example, if the user types "break file:line if <TAB>", the
3873 resulting expression will be evaluated at "file:line" -- but
3874 at there does not seem to be a way to detect this at
3875 completion time. */
3876 scope = default_macro_scope ();
3877 if (scope)
3878 {
3879 macro_for_each_in_scope (scope->file, scope->line,
3880 add_macro_name, &datum);
3881 xfree (scope);
3882 }
3883
3884 /* User-defined macros are always visible. */
3885 macro_for_each (macro_user_macros, add_macro_name, &datum);
3886 }
3887
3888 return (return_val);
3889 }
3890
3891 char **
3892 default_make_symbol_completion_list (char *text, char *word)
3893 {
3894 return default_make_symbol_completion_list_break_on (text, word, "");
3895 }
3896
3897 /* Return a NULL terminated array of all symbols (regardless of class)
3898 which begin by matching TEXT. If the answer is no symbols, then
3899 the return value is an array which contains only a NULL pointer. */
3900
3901 char **
3902 make_symbol_completion_list (char *text, char *word)
3903 {
3904 return current_language->la_make_symbol_completion_list (text, word);
3905 }
3906
3907 /* Like make_symbol_completion_list, but suitable for use as a
3908 completion function. */
3909
3910 char **
3911 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3912 char *text, char *word)
3913 {
3914 return make_symbol_completion_list (text, word);
3915 }
3916
3917 /* Like make_symbol_completion_list, but returns a list of symbols
3918 defined in a source file FILE. */
3919
3920 char **
3921 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3922 {
3923 struct symbol *sym;
3924 struct symtab *s;
3925 struct block *b;
3926 struct dict_iterator iter;
3927 /* The symbol we are completing on. Points in same buffer as text. */
3928 char *sym_text;
3929 /* Length of sym_text. */
3930 int sym_text_len;
3931
3932 /* Now look for the symbol we are supposed to complete on.
3933 FIXME: This should be language-specific. */
3934 {
3935 char *p;
3936 char quote_found;
3937 char *quote_pos = NULL;
3938
3939 /* First see if this is a quoted string. */
3940 quote_found = '\0';
3941 for (p = text; *p != '\0'; ++p)
3942 {
3943 if (quote_found != '\0')
3944 {
3945 if (*p == quote_found)
3946 /* Found close quote. */
3947 quote_found = '\0';
3948 else if (*p == '\\' && p[1] == quote_found)
3949 /* A backslash followed by the quote character
3950 doesn't end the string. */
3951 ++p;
3952 }
3953 else if (*p == '\'' || *p == '"')
3954 {
3955 quote_found = *p;
3956 quote_pos = p;
3957 }
3958 }
3959 if (quote_found == '\'')
3960 /* A string within single quotes can be a symbol, so complete on it. */
3961 sym_text = quote_pos + 1;
3962 else if (quote_found == '"')
3963 /* A double-quoted string is never a symbol, nor does it make sense
3964 to complete it any other way. */
3965 {
3966 return_val = (char **) xmalloc (sizeof (char *));
3967 return_val[0] = NULL;
3968 return return_val;
3969 }
3970 else
3971 {
3972 /* Not a quoted string. */
3973 sym_text = language_search_unquoted_string (text, p);
3974 }
3975 }
3976
3977 sym_text_len = strlen (sym_text);
3978
3979 return_val_size = 10;
3980 return_val_index = 0;
3981 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3982 return_val[0] = NULL;
3983
3984 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3985 in). */
3986 s = lookup_symtab (srcfile);
3987 if (s == NULL)
3988 {
3989 /* Maybe they typed the file with leading directories, while the
3990 symbol tables record only its basename. */
3991 const char *tail = lbasename (srcfile);
3992
3993 if (tail > srcfile)
3994 s = lookup_symtab (tail);
3995 }
3996
3997 /* If we have no symtab for that file, return an empty list. */
3998 if (s == NULL)
3999 return (return_val);
4000
4001 /* Go through this symtab and check the externs and statics for
4002 symbols which match. */
4003
4004 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4005 ALL_BLOCK_SYMBOLS (b, iter, sym)
4006 {
4007 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4008 }
4009
4010 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4011 ALL_BLOCK_SYMBOLS (b, iter, sym)
4012 {
4013 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4014 }
4015
4016 return (return_val);
4017 }
4018
4019 /* A helper function for make_source_files_completion_list. It adds
4020 another file name to a list of possible completions, growing the
4021 list as necessary. */
4022
4023 static void
4024 add_filename_to_list (const char *fname, char *text, char *word,
4025 char ***list, int *list_used, int *list_alloced)
4026 {
4027 char *new;
4028 size_t fnlen = strlen (fname);
4029
4030 if (*list_used + 1 >= *list_alloced)
4031 {
4032 *list_alloced *= 2;
4033 *list = (char **) xrealloc ((char *) *list,
4034 *list_alloced * sizeof (char *));
4035 }
4036
4037 if (word == text)
4038 {
4039 /* Return exactly fname. */
4040 new = xmalloc (fnlen + 5);
4041 strcpy (new, fname);
4042 }
4043 else if (word > text)
4044 {
4045 /* Return some portion of fname. */
4046 new = xmalloc (fnlen + 5);
4047 strcpy (new, fname + (word - text));
4048 }
4049 else
4050 {
4051 /* Return some of TEXT plus fname. */
4052 new = xmalloc (fnlen + (text - word) + 5);
4053 strncpy (new, word, text - word);
4054 new[text - word] = '\0';
4055 strcat (new, fname);
4056 }
4057 (*list)[*list_used] = new;
4058 (*list)[++*list_used] = NULL;
4059 }
4060
4061 static int
4062 not_interesting_fname (const char *fname)
4063 {
4064 static const char *illegal_aliens[] = {
4065 "_globals_", /* inserted by coff_symtab_read */
4066 NULL
4067 };
4068 int i;
4069
4070 for (i = 0; illegal_aliens[i]; i++)
4071 {
4072 if (strcmp (fname, illegal_aliens[i]) == 0)
4073 return 1;
4074 }
4075 return 0;
4076 }
4077
4078 /* An object of this type is passed as the user_data argument to
4079 map_partial_symbol_filenames. */
4080 struct add_partial_filename_data
4081 {
4082 int *first;
4083 char *text;
4084 char *word;
4085 int text_len;
4086 char ***list;
4087 int *list_used;
4088 int *list_alloced;
4089 };
4090
4091 /* A callback for map_partial_symbol_filenames. */
4092 static void
4093 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4094 void *user_data)
4095 {
4096 struct add_partial_filename_data *data = user_data;
4097
4098 if (not_interesting_fname (filename))
4099 return;
4100 if (!filename_seen (filename, 1, data->first)
4101 #if HAVE_DOS_BASED_FILE_SYSTEM
4102 && strncasecmp (filename, data->text, data->text_len) == 0
4103 #else
4104 && strncmp (filename, data->text, data->text_len) == 0
4105 #endif
4106 )
4107 {
4108 /* This file matches for a completion; add it to the
4109 current list of matches. */
4110 add_filename_to_list (filename, data->text, data->word,
4111 data->list, data->list_used, data->list_alloced);
4112 }
4113 else
4114 {
4115 const char *base_name = lbasename (filename);
4116
4117 if (base_name != filename
4118 && !filename_seen (base_name, 1, data->first)
4119 #if HAVE_DOS_BASED_FILE_SYSTEM
4120 && strncasecmp (base_name, data->text, data->text_len) == 0
4121 #else
4122 && strncmp (base_name, data->text, data->text_len) == 0
4123 #endif
4124 )
4125 add_filename_to_list (base_name, data->text, data->word,
4126 data->list, data->list_used, data->list_alloced);
4127 }
4128 }
4129
4130 /* Return a NULL terminated array of all source files whose names
4131 begin with matching TEXT. The file names are looked up in the
4132 symbol tables of this program. If the answer is no matchess, then
4133 the return value is an array which contains only a NULL pointer. */
4134
4135 char **
4136 make_source_files_completion_list (char *text, char *word)
4137 {
4138 struct symtab *s;
4139 struct objfile *objfile;
4140 int first = 1;
4141 int list_alloced = 1;
4142 int list_used = 0;
4143 size_t text_len = strlen (text);
4144 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4145 const char *base_name;
4146 struct add_partial_filename_data datum;
4147
4148 list[0] = NULL;
4149
4150 if (!have_full_symbols () && !have_partial_symbols ())
4151 return list;
4152
4153 ALL_SYMTABS (objfile, s)
4154 {
4155 if (not_interesting_fname (s->filename))
4156 continue;
4157 if (!filename_seen (s->filename, 1, &first)
4158 #if HAVE_DOS_BASED_FILE_SYSTEM
4159 && strncasecmp (s->filename, text, text_len) == 0
4160 #else
4161 && strncmp (s->filename, text, text_len) == 0
4162 #endif
4163 )
4164 {
4165 /* This file matches for a completion; add it to the current
4166 list of matches. */
4167 add_filename_to_list (s->filename, text, word,
4168 &list, &list_used, &list_alloced);
4169 }
4170 else
4171 {
4172 /* NOTE: We allow the user to type a base name when the
4173 debug info records leading directories, but not the other
4174 way around. This is what subroutines of breakpoint
4175 command do when they parse file names. */
4176 base_name = lbasename (s->filename);
4177 if (base_name != s->filename
4178 && !filename_seen (base_name, 1, &first)
4179 #if HAVE_DOS_BASED_FILE_SYSTEM
4180 && strncasecmp (base_name, text, text_len) == 0
4181 #else
4182 && strncmp (base_name, text, text_len) == 0
4183 #endif
4184 )
4185 add_filename_to_list (base_name, text, word,
4186 &list, &list_used, &list_alloced);
4187 }
4188 }
4189
4190 datum.first = &first;
4191 datum.text = text;
4192 datum.word = word;
4193 datum.text_len = text_len;
4194 datum.list = &list;
4195 datum.list_used = &list_used;
4196 datum.list_alloced = &list_alloced;
4197 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4198
4199 return list;
4200 }
4201
4202 /* Determine if PC is in the prologue of a function. The prologue is the area
4203 between the first instruction of a function, and the first executable line.
4204 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4205
4206 If non-zero, func_start is where we think the prologue starts, possibly
4207 by previous examination of symbol table information.
4208 */
4209
4210 int
4211 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4212 {
4213 struct symtab_and_line sal;
4214 CORE_ADDR func_addr, func_end;
4215
4216 /* We have several sources of information we can consult to figure
4217 this out.
4218 - Compilers usually emit line number info that marks the prologue
4219 as its own "source line". So the ending address of that "line"
4220 is the end of the prologue. If available, this is the most
4221 reliable method.
4222 - The minimal symbols and partial symbols, which can usually tell
4223 us the starting and ending addresses of a function.
4224 - If we know the function's start address, we can call the
4225 architecture-defined gdbarch_skip_prologue function to analyze the
4226 instruction stream and guess where the prologue ends.
4227 - Our `func_start' argument; if non-zero, this is the caller's
4228 best guess as to the function's entry point. At the time of
4229 this writing, handle_inferior_event doesn't get this right, so
4230 it should be our last resort. */
4231
4232 /* Consult the partial symbol table, to find which function
4233 the PC is in. */
4234 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4235 {
4236 CORE_ADDR prologue_end;
4237
4238 /* We don't even have minsym information, so fall back to using
4239 func_start, if given. */
4240 if (! func_start)
4241 return 1; /* We *might* be in a prologue. */
4242
4243 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4244
4245 return func_start <= pc && pc < prologue_end;
4246 }
4247
4248 /* If we have line number information for the function, that's
4249 usually pretty reliable. */
4250 sal = find_pc_line (func_addr, 0);
4251
4252 /* Now sal describes the source line at the function's entry point,
4253 which (by convention) is the prologue. The end of that "line",
4254 sal.end, is the end of the prologue.
4255
4256 Note that, for functions whose source code is all on a single
4257 line, the line number information doesn't always end up this way.
4258 So we must verify that our purported end-of-prologue address is
4259 *within* the function, not at its start or end. */
4260 if (sal.line == 0
4261 || sal.end <= func_addr
4262 || func_end <= sal.end)
4263 {
4264 /* We don't have any good line number info, so use the minsym
4265 information, together with the architecture-specific prologue
4266 scanning code. */
4267 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4268
4269 return func_addr <= pc && pc < prologue_end;
4270 }
4271
4272 /* We have line number info, and it looks good. */
4273 return func_addr <= pc && pc < sal.end;
4274 }
4275
4276 /* Given PC at the function's start address, attempt to find the
4277 prologue end using SAL information. Return zero if the skip fails.
4278
4279 A non-optimized prologue traditionally has one SAL for the function
4280 and a second for the function body. A single line function has
4281 them both pointing at the same line.
4282
4283 An optimized prologue is similar but the prologue may contain
4284 instructions (SALs) from the instruction body. Need to skip those
4285 while not getting into the function body.
4286
4287 The functions end point and an increasing SAL line are used as
4288 indicators of the prologue's endpoint.
4289
4290 This code is based on the function refine_prologue_limit (versions
4291 found in both ia64 and ppc). */
4292
4293 CORE_ADDR
4294 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4295 {
4296 struct symtab_and_line prologue_sal;
4297 CORE_ADDR start_pc;
4298 CORE_ADDR end_pc;
4299 struct block *bl;
4300
4301 /* Get an initial range for the function. */
4302 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4303 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4304
4305 prologue_sal = find_pc_line (start_pc, 0);
4306 if (prologue_sal.line != 0)
4307 {
4308 /* For langauges other than assembly, treat two consecutive line
4309 entries at the same address as a zero-instruction prologue.
4310 The GNU assembler emits separate line notes for each instruction
4311 in a multi-instruction macro, but compilers generally will not
4312 do this. */
4313 if (prologue_sal.symtab->language != language_asm)
4314 {
4315 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4316 int idx = 0;
4317
4318 /* Skip any earlier lines, and any end-of-sequence marker
4319 from a previous function. */
4320 while (linetable->item[idx].pc != prologue_sal.pc
4321 || linetable->item[idx].line == 0)
4322 idx++;
4323
4324 if (idx+1 < linetable->nitems
4325 && linetable->item[idx+1].line != 0
4326 && linetable->item[idx+1].pc == start_pc)
4327 return start_pc;
4328 }
4329
4330 /* If there is only one sal that covers the entire function,
4331 then it is probably a single line function, like
4332 "foo(){}". */
4333 if (prologue_sal.end >= end_pc)
4334 return 0;
4335
4336 while (prologue_sal.end < end_pc)
4337 {
4338 struct symtab_and_line sal;
4339
4340 sal = find_pc_line (prologue_sal.end, 0);
4341 if (sal.line == 0)
4342 break;
4343 /* Assume that a consecutive SAL for the same (or larger)
4344 line mark the prologue -> body transition. */
4345 if (sal.line >= prologue_sal.line)
4346 break;
4347
4348 /* The line number is smaller. Check that it's from the
4349 same function, not something inlined. If it's inlined,
4350 then there is no point comparing the line numbers. */
4351 bl = block_for_pc (prologue_sal.end);
4352 while (bl)
4353 {
4354 if (block_inlined_p (bl))
4355 break;
4356 if (BLOCK_FUNCTION (bl))
4357 {
4358 bl = NULL;
4359 break;
4360 }
4361 bl = BLOCK_SUPERBLOCK (bl);
4362 }
4363 if (bl != NULL)
4364 break;
4365
4366 /* The case in which compiler's optimizer/scheduler has
4367 moved instructions into the prologue. We look ahead in
4368 the function looking for address ranges whose
4369 corresponding line number is less the first one that we
4370 found for the function. This is more conservative then
4371 refine_prologue_limit which scans a large number of SALs
4372 looking for any in the prologue */
4373 prologue_sal = sal;
4374 }
4375 }
4376
4377 if (prologue_sal.end < end_pc)
4378 /* Return the end of this line, or zero if we could not find a
4379 line. */
4380 return prologue_sal.end;
4381 else
4382 /* Don't return END_PC, which is past the end of the function. */
4383 return prologue_sal.pc;
4384 }
4385 \f
4386 struct symtabs_and_lines
4387 decode_line_spec (char *string, int funfirstline)
4388 {
4389 struct symtabs_and_lines sals;
4390 struct symtab_and_line cursal;
4391
4392 if (string == 0)
4393 error (_("Empty line specification."));
4394
4395 /* We use whatever is set as the current source line. We do not try
4396 and get a default or it will recursively call us! */
4397 cursal = get_current_source_symtab_and_line ();
4398
4399 sals = decode_line_1 (&string, funfirstline,
4400 cursal.symtab, cursal.line,
4401 (char ***) NULL, NULL);
4402
4403 if (*string)
4404 error (_("Junk at end of line specification: %s"), string);
4405 return sals;
4406 }
4407
4408 /* Track MAIN */
4409 static char *name_of_main;
4410 enum language language_of_main = language_unknown;
4411
4412 void
4413 set_main_name (const char *name)
4414 {
4415 if (name_of_main != NULL)
4416 {
4417 xfree (name_of_main);
4418 name_of_main = NULL;
4419 language_of_main = language_unknown;
4420 }
4421 if (name != NULL)
4422 {
4423 name_of_main = xstrdup (name);
4424 language_of_main = language_unknown;
4425 }
4426 }
4427
4428 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4429 accordingly. */
4430
4431 static void
4432 find_main_name (void)
4433 {
4434 const char *new_main_name;
4435
4436 /* Try to see if the main procedure is in Ada. */
4437 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4438 be to add a new method in the language vector, and call this
4439 method for each language until one of them returns a non-empty
4440 name. This would allow us to remove this hard-coded call to
4441 an Ada function. It is not clear that this is a better approach
4442 at this point, because all methods need to be written in a way
4443 such that false positives never be returned. For instance, it is
4444 important that a method does not return a wrong name for the main
4445 procedure if the main procedure is actually written in a different
4446 language. It is easy to guaranty this with Ada, since we use a
4447 special symbol generated only when the main in Ada to find the name
4448 of the main procedure. It is difficult however to see how this can
4449 be guarantied for languages such as C, for instance. This suggests
4450 that order of call for these methods becomes important, which means
4451 a more complicated approach. */
4452 new_main_name = ada_main_name ();
4453 if (new_main_name != NULL)
4454 {
4455 set_main_name (new_main_name);
4456 return;
4457 }
4458
4459 new_main_name = pascal_main_name ();
4460 if (new_main_name != NULL)
4461 {
4462 set_main_name (new_main_name);
4463 return;
4464 }
4465
4466 /* The languages above didn't identify the name of the main procedure.
4467 Fallback to "main". */
4468 set_main_name ("main");
4469 }
4470
4471 char *
4472 main_name (void)
4473 {
4474 if (name_of_main == NULL)
4475 find_main_name ();
4476
4477 return name_of_main;
4478 }
4479
4480 /* Handle ``executable_changed'' events for the symtab module. */
4481
4482 static void
4483 symtab_observer_executable_changed (void)
4484 {
4485 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4486 set_main_name (NULL);
4487 }
4488
4489 /* Helper to expand_line_sal below. Appends new sal to SAL,
4490 initializing it from SYMTAB, LINENO and PC. */
4491 static void
4492 append_expanded_sal (struct symtabs_and_lines *sal,
4493 struct program_space *pspace,
4494 struct symtab *symtab,
4495 int lineno, CORE_ADDR pc)
4496 {
4497 sal->sals = xrealloc (sal->sals,
4498 sizeof (sal->sals[0])
4499 * (sal->nelts + 1));
4500 init_sal (sal->sals + sal->nelts);
4501 sal->sals[sal->nelts].pspace = pspace;
4502 sal->sals[sal->nelts].symtab = symtab;
4503 sal->sals[sal->nelts].section = NULL;
4504 sal->sals[sal->nelts].end = 0;
4505 sal->sals[sal->nelts].line = lineno;
4506 sal->sals[sal->nelts].pc = pc;
4507 ++sal->nelts;
4508 }
4509
4510 /* Helper to expand_line_sal below. Search in the symtabs for any
4511 linetable entry that exactly matches FULLNAME and LINENO and append
4512 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4513 use FILENAME and LINENO instead. If there is at least one match,
4514 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4515 and BEST_SYMTAB. */
4516
4517 static int
4518 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4519 struct symtabs_and_lines *ret,
4520 struct linetable_entry **best_item,
4521 struct symtab **best_symtab)
4522 {
4523 struct program_space *pspace;
4524 struct objfile *objfile;
4525 struct symtab *symtab;
4526 int exact = 0;
4527 int j;
4528 *best_item = 0;
4529 *best_symtab = 0;
4530
4531 ALL_PSPACES (pspace)
4532 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4533 {
4534 if (FILENAME_CMP (filename, symtab->filename) == 0)
4535 {
4536 struct linetable *l;
4537 int len;
4538
4539 if (fullname != NULL
4540 && symtab_to_fullname (symtab) != NULL
4541 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4542 continue;
4543 l = LINETABLE (symtab);
4544 if (!l)
4545 continue;
4546 len = l->nitems;
4547
4548 for (j = 0; j < len; j++)
4549 {
4550 struct linetable_entry *item = &(l->item[j]);
4551
4552 if (item->line == lineno)
4553 {
4554 exact = 1;
4555 append_expanded_sal (ret, objfile->pspace,
4556 symtab, lineno, item->pc);
4557 }
4558 else if (!exact && item->line > lineno
4559 && (*best_item == NULL
4560 || item->line < (*best_item)->line))
4561 {
4562 *best_item = item;
4563 *best_symtab = symtab;
4564 }
4565 }
4566 }
4567 }
4568 return exact;
4569 }
4570
4571 /* Compute a set of all sals in all program spaces that correspond to
4572 same file and line as SAL and return those. If there are several
4573 sals that belong to the same block, only one sal for the block is
4574 included in results. */
4575
4576 struct symtabs_and_lines
4577 expand_line_sal (struct symtab_and_line sal)
4578 {
4579 struct symtabs_and_lines ret;
4580 int i, j;
4581 struct objfile *objfile;
4582 int lineno;
4583 int deleted = 0;
4584 struct block **blocks = NULL;
4585 int *filter;
4586 struct cleanup *old_chain;
4587
4588 ret.nelts = 0;
4589 ret.sals = NULL;
4590
4591 /* Only expand sals that represent file.c:line. */
4592 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4593 {
4594 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4595 ret.sals[0] = sal;
4596 ret.nelts = 1;
4597 return ret;
4598 }
4599 else
4600 {
4601 struct program_space *pspace;
4602 struct linetable_entry *best_item = 0;
4603 struct symtab *best_symtab = 0;
4604 int exact = 0;
4605 char *match_filename;
4606
4607 lineno = sal.line;
4608 match_filename = sal.symtab->filename;
4609
4610 /* We need to find all symtabs for a file which name
4611 is described by sal. We cannot just directly
4612 iterate over symtabs, since a symtab might not be
4613 yet created. We also cannot iterate over psymtabs,
4614 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4615 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4616 corresponding to an included file. Therefore, we do
4617 first pass over psymtabs, reading in those with
4618 the right name. Then, we iterate over symtabs, knowing
4619 that all symtabs we're interested in are loaded. */
4620
4621 old_chain = save_current_program_space ();
4622 ALL_PSPACES (pspace)
4623 {
4624 set_current_program_space (pspace);
4625 ALL_PSPACE_OBJFILES (pspace, objfile)
4626 {
4627 if (objfile->sf)
4628 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4629 sal.symtab->filename);
4630 }
4631 }
4632 do_cleanups (old_chain);
4633
4634 /* Now search the symtab for exact matches and append them. If
4635 none is found, append the best_item and all its exact
4636 matches. */
4637 symtab_to_fullname (sal.symtab);
4638 exact = append_exact_match_to_sals (sal.symtab->filename,
4639 sal.symtab->fullname, lineno,
4640 &ret, &best_item, &best_symtab);
4641 if (!exact && best_item)
4642 append_exact_match_to_sals (best_symtab->filename,
4643 best_symtab->fullname, best_item->line,
4644 &ret, &best_item, &best_symtab);
4645 }
4646
4647 /* For optimized code, compiler can scatter one source line accross
4648 disjoint ranges of PC values, even when no duplicate functions
4649 or inline functions are involved. For example, 'for (;;)' inside
4650 non-template non-inline non-ctor-or-dtor function can result
4651 in two PC ranges. In this case, we don't want to set breakpoint
4652 on first PC of each range. To filter such cases, we use containing
4653 blocks -- for each PC found above we see if there are other PCs
4654 that are in the same block. If yes, the other PCs are filtered out. */
4655
4656 old_chain = save_current_program_space ();
4657 filter = alloca (ret.nelts * sizeof (int));
4658 blocks = alloca (ret.nelts * sizeof (struct block *));
4659 for (i = 0; i < ret.nelts; ++i)
4660 {
4661 set_current_program_space (ret.sals[i].pspace);
4662
4663 filter[i] = 1;
4664 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4665
4666 }
4667 do_cleanups (old_chain);
4668
4669 for (i = 0; i < ret.nelts; ++i)
4670 if (blocks[i] != NULL)
4671 for (j = i+1; j < ret.nelts; ++j)
4672 if (blocks[j] == blocks[i])
4673 {
4674 filter[j] = 0;
4675 ++deleted;
4676 break;
4677 }
4678
4679 {
4680 struct symtab_and_line *final =
4681 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4682
4683 for (i = 0, j = 0; i < ret.nelts; ++i)
4684 if (filter[i])
4685 final[j++] = ret.sals[i];
4686
4687 ret.nelts -= deleted;
4688 xfree (ret.sals);
4689 ret.sals = final;
4690 }
4691
4692 return ret;
4693 }
4694
4695 /* Return 1 if the supplied producer string matches the ARM RealView
4696 compiler (armcc). */
4697
4698 int
4699 producer_is_realview (const char *producer)
4700 {
4701 static const char *const arm_idents[] = {
4702 "ARM C Compiler, ADS",
4703 "Thumb C Compiler, ADS",
4704 "ARM C++ Compiler, ADS",
4705 "Thumb C++ Compiler, ADS",
4706 "ARM/Thumb C/C++ Compiler, RVCT",
4707 "ARM C/C++ Compiler, RVCT"
4708 };
4709 int i;
4710
4711 if (producer == NULL)
4712 return 0;
4713
4714 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4715 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4716 return 1;
4717
4718 return 0;
4719 }
4720
4721 void
4722 _initialize_symtab (void)
4723 {
4724 add_info ("variables", variables_info, _("\
4725 All global and static variable names, or those matching REGEXP."));
4726 if (dbx_commands)
4727 add_com ("whereis", class_info, variables_info, _("\
4728 All global and static variable names, or those matching REGEXP."));
4729
4730 add_info ("functions", functions_info,
4731 _("All function names, or those matching REGEXP."));
4732
4733 /* FIXME: This command has at least the following problems:
4734 1. It prints builtin types (in a very strange and confusing fashion).
4735 2. It doesn't print right, e.g. with
4736 typedef struct foo *FOO
4737 type_print prints "FOO" when we want to make it (in this situation)
4738 print "struct foo *".
4739 I also think "ptype" or "whatis" is more likely to be useful (but if
4740 there is much disagreement "info types" can be fixed). */
4741 add_info ("types", types_info,
4742 _("All type names, or those matching REGEXP."));
4743
4744 add_info ("sources", sources_info,
4745 _("Source files in the program."));
4746
4747 add_com ("rbreak", class_breakpoint, rbreak_command,
4748 _("Set a breakpoint for all functions matching REGEXP."));
4749
4750 if (xdb_commands)
4751 {
4752 add_com ("lf", class_info, sources_info,
4753 _("Source files in the program"));
4754 add_com ("lg", class_info, variables_info, _("\
4755 All global and static variable names, or those matching REGEXP."));
4756 }
4757
4758 add_setshow_enum_cmd ("multiple-symbols", no_class,
4759 multiple_symbols_modes, &multiple_symbols_mode,
4760 _("\
4761 Set the debugger behavior when more than one symbol are possible matches\n\
4762 in an expression."), _("\
4763 Show how the debugger handles ambiguities in expressions."), _("\
4764 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4765 NULL, NULL, &setlist, &showlist);
4766
4767 observer_attach_executable_changed (symtab_observer_executable_changed);
4768 }
This page took 0.188507 seconds and 4 git commands to generate.