2005-02-11 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcmd.h"
34 #include "call-cmds.h"
35 #include "gdb_regex.h"
36 #include "expression.h"
37 #include "language.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "linespec.h"
41 #include "source.h"
42 #include "filenames.h" /* for FILENAME_CMP */
43 #include "objc-lang.h"
44 #include "ada-lang.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58
59 /* Prototypes for local functions */
60
61 static void completion_list_add_name (char *, char *, int, char *, char *);
62
63 static void rbreak_command (char *, int);
64
65 static void types_info (char *, int);
66
67 static void functions_info (char *, int);
68
69 static void variables_info (char *, int);
70
71 static void sources_info (char *, int);
72
73 static void output_source_filename (const char *, int *);
74
75 static int find_line_common (struct linetable *, int, int *);
76
77 /* This one is used by linespec.c */
78
79 char *operator_chars (char *p, char **end);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const char *linkage_name,
83 const struct block *block,
84 const domain_enum domain,
85 int *is_a_field_of_this,
86 struct symtab **symtab);
87
88 static
89 struct symbol *lookup_symbol_aux_local (const char *name,
90 const char *linkage_name,
91 const struct block *block,
92 const domain_enum domain,
93 struct symtab **symtab);
94
95 static
96 struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const char *name,
98 const char *linkage_name,
99 const domain_enum domain,
100 struct symtab **symtab);
101
102 static
103 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
104 const char *name,
105 const char *linkage_name,
106 const domain_enum domain,
107 struct symtab **symtab);
108
109 #if 0
110 static
111 struct symbol *lookup_symbol_aux_minsyms (const char *name,
112 const char *linkage_name,
113 const domain_enum domain,
114 int *is_a_field_of_this,
115 struct symtab **symtab);
116 #endif
117
118 /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c.
119 Signals the presence of objects compiled by HP compilers. */
120 int deprecated_hp_som_som_object_present = 0;
121
122 static void fixup_section (struct general_symbol_info *, struct objfile *);
123
124 static int file_matches (char *, char **, int);
125
126 static void print_symbol_info (domain_enum,
127 struct symtab *, struct symbol *, int, char *);
128
129 static void print_msymbol_info (struct minimal_symbol *);
130
131 static void symtab_symbol_info (char *, domain_enum, int);
132
133 void _initialize_symtab (void);
134
135 /* */
136
137 /* The single non-language-specific builtin type */
138 struct type *builtin_type_error;
139
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144 const struct block *block_found;
145
146 /* Check for a symtab of a specific name; first in symtabs, then in
147 psymtabs. *If* there is no '/' in the name, a match after a '/'
148 in the symtab filename will also work. */
149
150 struct symtab *
151 lookup_symtab (const char *name)
152 {
153 struct symtab *s;
154 struct partial_symtab *ps;
155 struct objfile *objfile;
156 char *real_path = NULL;
157 char *full_path = NULL;
158
159 /* Here we are interested in canonicalizing an absolute path, not
160 absolutizing a relative path. */
161 if (IS_ABSOLUTE_PATH (name))
162 {
163 full_path = xfullpath (name);
164 make_cleanup (xfree, full_path);
165 real_path = gdb_realpath (name);
166 make_cleanup (xfree, real_path);
167 }
168
169 got_symtab:
170
171 /* First, search for an exact match */
172
173 ALL_SYMTABS (objfile, s)
174 {
175 if (FILENAME_CMP (name, s->filename) == 0)
176 {
177 return s;
178 }
179
180 /* If the user gave us an absolute path, try to find the file in
181 this symtab and use its absolute path. */
182
183 if (full_path != NULL)
184 {
185 const char *fp = symtab_to_fullname (s);
186 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
187 {
188 return s;
189 }
190 }
191
192 if (real_path != NULL)
193 {
194 char *fullname = symtab_to_fullname (s);
195 if (fullname != NULL)
196 {
197 char *rp = gdb_realpath (fullname);
198 make_cleanup (xfree, rp);
199 if (FILENAME_CMP (real_path, rp) == 0)
200 {
201 return s;
202 }
203 }
204 }
205 }
206
207 /* Now, search for a matching tail (only if name doesn't have any dirs) */
208
209 if (lbasename (name) == name)
210 ALL_SYMTABS (objfile, s)
211 {
212 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
213 return s;
214 }
215
216 /* Same search rules as above apply here, but now we look thru the
217 psymtabs. */
218
219 ps = lookup_partial_symtab (name);
220 if (!ps)
221 return (NULL);
222
223 if (ps->readin)
224 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
225 ps->filename, name);
226
227 s = PSYMTAB_TO_SYMTAB (ps);
228
229 if (s)
230 return s;
231
232 /* At this point, we have located the psymtab for this file, but
233 the conversion to a symtab has failed. This usually happens
234 when we are looking up an include file. In this case,
235 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
236 been created. So, we need to run through the symtabs again in
237 order to find the file.
238 XXX - This is a crock, and should be fixed inside of the the
239 symbol parsing routines. */
240 goto got_symtab;
241 }
242
243 /* Lookup the partial symbol table of a source file named NAME.
244 *If* there is no '/' in the name, a match after a '/'
245 in the psymtab filename will also work. */
246
247 struct partial_symtab *
248 lookup_partial_symtab (const char *name)
249 {
250 struct partial_symtab *pst;
251 struct objfile *objfile;
252 char *full_path = NULL;
253 char *real_path = NULL;
254
255 /* Here we are interested in canonicalizing an absolute path, not
256 absolutizing a relative path. */
257 if (IS_ABSOLUTE_PATH (name))
258 {
259 full_path = xfullpath (name);
260 make_cleanup (xfree, full_path);
261 real_path = gdb_realpath (name);
262 make_cleanup (xfree, real_path);
263 }
264
265 ALL_PSYMTABS (objfile, pst)
266 {
267 if (FILENAME_CMP (name, pst->filename) == 0)
268 {
269 return (pst);
270 }
271
272 /* If the user gave us an absolute path, try to find the file in
273 this symtab and use its absolute path. */
274 if (full_path != NULL)
275 {
276 psymtab_to_fullname (pst);
277 if (pst->fullname != NULL
278 && FILENAME_CMP (full_path, pst->fullname) == 0)
279 {
280 return pst;
281 }
282 }
283
284 if (real_path != NULL)
285 {
286 char *rp = NULL;
287 psymtab_to_fullname (pst);
288 if (pst->fullname != NULL)
289 {
290 rp = gdb_realpath (pst->fullname);
291 make_cleanup (xfree, rp);
292 }
293 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
294 {
295 return pst;
296 }
297 }
298 }
299
300 /* Now, search for a matching tail (only if name doesn't have any dirs) */
301
302 if (lbasename (name) == name)
303 ALL_PSYMTABS (objfile, pst)
304 {
305 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
306 return (pst);
307 }
308
309 return (NULL);
310 }
311 \f
312 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
313 full method name, which consist of the class name (from T), the unadorned
314 method name from METHOD_ID, and the signature for the specific overload,
315 specified by SIGNATURE_ID. Note that this function is g++ specific. */
316
317 char *
318 gdb_mangle_name (struct type *type, int method_id, int signature_id)
319 {
320 int mangled_name_len;
321 char *mangled_name;
322 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
323 struct fn_field *method = &f[signature_id];
324 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
325 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
326 char *newname = type_name_no_tag (type);
327
328 /* Does the form of physname indicate that it is the full mangled name
329 of a constructor (not just the args)? */
330 int is_full_physname_constructor;
331
332 int is_constructor;
333 int is_destructor = is_destructor_name (physname);
334 /* Need a new type prefix. */
335 char *const_prefix = method->is_const ? "C" : "";
336 char *volatile_prefix = method->is_volatile ? "V" : "";
337 char buf[20];
338 int len = (newname == NULL ? 0 : strlen (newname));
339
340 /* Nothing to do if physname already contains a fully mangled v3 abi name
341 or an operator name. */
342 if ((physname[0] == '_' && physname[1] == 'Z')
343 || is_operator_name (field_name))
344 return xstrdup (physname);
345
346 is_full_physname_constructor = is_constructor_name (physname);
347
348 is_constructor =
349 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
350
351 if (!is_destructor)
352 is_destructor = (strncmp (physname, "__dt", 4) == 0);
353
354 if (is_destructor || is_full_physname_constructor)
355 {
356 mangled_name = (char *) xmalloc (strlen (physname) + 1);
357 strcpy (mangled_name, physname);
358 return mangled_name;
359 }
360
361 if (len == 0)
362 {
363 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
364 }
365 else if (physname[0] == 't' || physname[0] == 'Q')
366 {
367 /* The physname for template and qualified methods already includes
368 the class name. */
369 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
370 newname = NULL;
371 len = 0;
372 }
373 else
374 {
375 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
376 }
377 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
378 + strlen (buf) + len + strlen (physname) + 1);
379
380 {
381 mangled_name = (char *) xmalloc (mangled_name_len);
382 if (is_constructor)
383 mangled_name[0] = '\0';
384 else
385 strcpy (mangled_name, field_name);
386 }
387 strcat (mangled_name, buf);
388 /* If the class doesn't have a name, i.e. newname NULL, then we just
389 mangle it using 0 for the length of the class. Thus it gets mangled
390 as something starting with `::' rather than `classname::'. */
391 if (newname != NULL)
392 strcat (mangled_name, newname);
393
394 strcat (mangled_name, physname);
395 return (mangled_name);
396 }
397
398 \f
399 /* Initialize the language dependent portion of a symbol
400 depending upon the language for the symbol. */
401 void
402 symbol_init_language_specific (struct general_symbol_info *gsymbol,
403 enum language language)
404 {
405 gsymbol->language = language;
406 if (gsymbol->language == language_cplus
407 || gsymbol->language == language_java
408 || gsymbol->language == language_objc)
409 {
410 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
411 }
412 else
413 {
414 memset (&gsymbol->language_specific, 0,
415 sizeof (gsymbol->language_specific));
416 }
417 }
418
419 /* Functions to initialize a symbol's mangled name. */
420
421 /* Create the hash table used for demangled names. Each hash entry is
422 a pair of strings; one for the mangled name and one for the demangled
423 name. The entry is hashed via just the mangled name. */
424
425 static void
426 create_demangled_names_hash (struct objfile *objfile)
427 {
428 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
429 The hash table code will round this up to the next prime number.
430 Choosing a much larger table size wastes memory, and saves only about
431 1% in symbol reading. */
432
433 objfile->demangled_names_hash = htab_create_alloc
434 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
435 NULL, xcalloc, xfree);
436 }
437
438 /* Try to determine the demangled name for a symbol, based on the
439 language of that symbol. If the language is set to language_auto,
440 it will attempt to find any demangling algorithm that works and
441 then set the language appropriately. The returned name is allocated
442 by the demangler and should be xfree'd. */
443
444 static char *
445 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
446 const char *mangled)
447 {
448 char *demangled = NULL;
449
450 if (gsymbol->language == language_unknown)
451 gsymbol->language = language_auto;
452
453 if (gsymbol->language == language_objc
454 || gsymbol->language == language_auto)
455 {
456 demangled =
457 objc_demangle (mangled, 0);
458 if (demangled != NULL)
459 {
460 gsymbol->language = language_objc;
461 return demangled;
462 }
463 }
464 if (gsymbol->language == language_cplus
465 || gsymbol->language == language_auto)
466 {
467 demangled =
468 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
469 if (demangled != NULL)
470 {
471 gsymbol->language = language_cplus;
472 return demangled;
473 }
474 }
475 if (gsymbol->language == language_java)
476 {
477 demangled =
478 cplus_demangle (mangled,
479 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
480 if (demangled != NULL)
481 {
482 gsymbol->language = language_java;
483 return demangled;
484 }
485 }
486 return NULL;
487 }
488
489 /* Set both the mangled and demangled (if any) names for GSYMBOL based
490 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
491 is used, and the memory comes from that objfile's objfile_obstack.
492 LINKAGE_NAME is copied, so the pointer can be discarded after
493 calling this function. */
494
495 /* We have to be careful when dealing with Java names: when we run
496 into a Java minimal symbol, we don't know it's a Java symbol, so it
497 gets demangled as a C++ name. This is unfortunate, but there's not
498 much we can do about it: but when demangling partial symbols and
499 regular symbols, we'd better not reuse the wrong demangled name.
500 (See PR gdb/1039.) We solve this by putting a distinctive prefix
501 on Java names when storing them in the hash table. */
502
503 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
504 don't mind the Java prefix so much: different languages have
505 different demangling requirements, so it's only natural that we
506 need to keep language data around in our demangling cache. But
507 it's not good that the minimal symbol has the wrong demangled name.
508 Unfortunately, I can't think of any easy solution to that
509 problem. */
510
511 #define JAVA_PREFIX "##JAVA$$"
512 #define JAVA_PREFIX_LEN 8
513
514 void
515 symbol_set_names (struct general_symbol_info *gsymbol,
516 const char *linkage_name, int len, struct objfile *objfile)
517 {
518 char **slot;
519 /* A 0-terminated copy of the linkage name. */
520 const char *linkage_name_copy;
521 /* A copy of the linkage name that might have a special Java prefix
522 added to it, for use when looking names up in the hash table. */
523 const char *lookup_name;
524 /* The length of lookup_name. */
525 int lookup_len;
526
527 if (objfile->demangled_names_hash == NULL)
528 create_demangled_names_hash (objfile);
529
530 /* The stabs reader generally provides names that are not
531 NUL-terminated; most of the other readers don't do this, so we
532 can just use the given copy, unless we're in the Java case. */
533 if (gsymbol->language == language_java)
534 {
535 char *alloc_name;
536 lookup_len = len + JAVA_PREFIX_LEN;
537
538 alloc_name = alloca (lookup_len + 1);
539 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
540 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
541 alloc_name[lookup_len] = '\0';
542
543 lookup_name = alloc_name;
544 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
545 }
546 else if (linkage_name[len] != '\0')
547 {
548 char *alloc_name;
549 lookup_len = len;
550
551 alloc_name = alloca (lookup_len + 1);
552 memcpy (alloc_name, linkage_name, len);
553 alloc_name[lookup_len] = '\0';
554
555 lookup_name = alloc_name;
556 linkage_name_copy = alloc_name;
557 }
558 else
559 {
560 lookup_len = len;
561 lookup_name = linkage_name;
562 linkage_name_copy = linkage_name;
563 }
564
565 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
566 lookup_name, INSERT);
567
568 /* If this name is not in the hash table, add it. */
569 if (*slot == NULL)
570 {
571 char *demangled_name = symbol_find_demangled_name (gsymbol,
572 linkage_name_copy);
573 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
574
575 /* If there is a demangled name, place it right after the mangled name.
576 Otherwise, just place a second zero byte after the end of the mangled
577 name. */
578 *slot = obstack_alloc (&objfile->objfile_obstack,
579 lookup_len + demangled_len + 2);
580 memcpy (*slot, lookup_name, lookup_len + 1);
581 if (demangled_name != NULL)
582 {
583 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
584 xfree (demangled_name);
585 }
586 else
587 (*slot)[lookup_len + 1] = '\0';
588 }
589
590 gsymbol->name = *slot + lookup_len - len;
591 if ((*slot)[lookup_len + 1] != '\0')
592 gsymbol->language_specific.cplus_specific.demangled_name
593 = &(*slot)[lookup_len + 1];
594 else
595 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
596 }
597
598 /* Initialize the demangled name of GSYMBOL if possible. Any required space
599 to store the name is obtained from the specified obstack. The function
600 symbol_set_names, above, should be used instead where possible for more
601 efficient memory usage. */
602
603 void
604 symbol_init_demangled_name (struct general_symbol_info *gsymbol,
605 struct obstack *obstack)
606 {
607 char *mangled = gsymbol->name;
608 char *demangled = NULL;
609
610 demangled = symbol_find_demangled_name (gsymbol, mangled);
611 if (gsymbol->language == language_cplus
612 || gsymbol->language == language_java
613 || gsymbol->language == language_objc)
614 {
615 if (demangled)
616 {
617 gsymbol->language_specific.cplus_specific.demangled_name
618 = obsavestring (demangled, strlen (demangled), obstack);
619 xfree (demangled);
620 }
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624 else
625 {
626 /* Unknown language; just clean up quietly. */
627 if (demangled)
628 xfree (demangled);
629 }
630 }
631
632 /* Return the source code name of a symbol. In languages where
633 demangling is necessary, this is the demangled name. */
634
635 char *
636 symbol_natural_name (const struct general_symbol_info *gsymbol)
637 {
638 switch (gsymbol->language)
639 {
640 case language_cplus:
641 case language_java:
642 case language_objc:
643 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
644 return gsymbol->language_specific.cplus_specific.demangled_name;
645 break;
646 case language_ada:
647 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
648 return gsymbol->language_specific.cplus_specific.demangled_name;
649 else
650 return ada_decode_symbol (gsymbol);
651 break;
652 default:
653 break;
654 }
655 return gsymbol->name;
656 }
657
658 /* Return the demangled name for a symbol based on the language for
659 that symbol. If no demangled name exists, return NULL. */
660 char *
661 symbol_demangled_name (struct general_symbol_info *gsymbol)
662 {
663 switch (gsymbol->language)
664 {
665 case language_cplus:
666 case language_java:
667 case language_objc:
668 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
669 return gsymbol->language_specific.cplus_specific.demangled_name;
670 break;
671 case language_ada:
672 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
673 return gsymbol->language_specific.cplus_specific.demangled_name;
674 else
675 return ada_decode_symbol (gsymbol);
676 break;
677 default:
678 break;
679 }
680 return NULL;
681 }
682
683 /* Return the search name of a symbol---generally the demangled or
684 linkage name of the symbol, depending on how it will be searched for.
685 If there is no distinct demangled name, then returns the same value
686 (same pointer) as SYMBOL_LINKAGE_NAME. */
687 char *
688 symbol_search_name (const struct general_symbol_info *gsymbol)
689 {
690 if (gsymbol->language == language_ada)
691 return gsymbol->name;
692 else
693 return symbol_natural_name (gsymbol);
694 }
695
696 /* Initialize the structure fields to zero values. */
697 void
698 init_sal (struct symtab_and_line *sal)
699 {
700 sal->symtab = 0;
701 sal->section = 0;
702 sal->line = 0;
703 sal->pc = 0;
704 sal->end = 0;
705 }
706 \f
707
708
709 /* Find which partial symtab contains PC and SECTION. Return 0 if
710 none. We return the psymtab that contains a symbol whose address
711 exactly matches PC, or, if we cannot find an exact match, the
712 psymtab that contains a symbol whose address is closest to PC. */
713 struct partial_symtab *
714 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
715 {
716 struct partial_symtab *pst;
717 struct objfile *objfile;
718 struct minimal_symbol *msymbol;
719
720 /* If we know that this is not a text address, return failure. This is
721 necessary because we loop based on texthigh and textlow, which do
722 not include the data ranges. */
723 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
724 if (msymbol
725 && (msymbol->type == mst_data
726 || msymbol->type == mst_bss
727 || msymbol->type == mst_abs
728 || msymbol->type == mst_file_data
729 || msymbol->type == mst_file_bss))
730 return NULL;
731
732 ALL_PSYMTABS (objfile, pst)
733 {
734 if (pc >= pst->textlow && pc < pst->texthigh)
735 {
736 struct partial_symtab *tpst;
737 struct partial_symtab *best_pst = pst;
738 struct partial_symbol *best_psym = NULL;
739
740 /* An objfile that has its functions reordered might have
741 many partial symbol tables containing the PC, but
742 we want the partial symbol table that contains the
743 function containing the PC. */
744 if (!(objfile->flags & OBJF_REORDERED) &&
745 section == 0) /* can't validate section this way */
746 return (pst);
747
748 if (msymbol == NULL)
749 return (pst);
750
751 /* The code range of partial symtabs sometimes overlap, so, in
752 the loop below, we need to check all partial symtabs and
753 find the one that fits better for the given PC address. We
754 select the partial symtab that contains a symbol whose
755 address is closest to the PC address. By closest we mean
756 that find_pc_sect_symbol returns the symbol with address
757 that is closest and still less than the given PC. */
758 for (tpst = pst; tpst != NULL; tpst = tpst->next)
759 {
760 if (pc >= tpst->textlow && pc < tpst->texthigh)
761 {
762 struct partial_symbol *p;
763
764 p = find_pc_sect_psymbol (tpst, pc, section);
765 if (p != NULL
766 && SYMBOL_VALUE_ADDRESS (p)
767 == SYMBOL_VALUE_ADDRESS (msymbol))
768 return (tpst);
769 if (p != NULL)
770 {
771 /* We found a symbol in this partial symtab which
772 matches (or is closest to) PC, check whether it
773 is closer than our current BEST_PSYM. Since
774 this symbol address is necessarily lower or
775 equal to PC, the symbol closer to PC is the
776 symbol which address is the highest. */
777 /* This way we return the psymtab which contains
778 such best match symbol. This can help in cases
779 where the symbol information/debuginfo is not
780 complete, like for instance on IRIX6 with gcc,
781 where no debug info is emitted for
782 statics. (See also the nodebug.exp
783 testcase.) */
784 if (best_psym == NULL
785 || SYMBOL_VALUE_ADDRESS (p)
786 > SYMBOL_VALUE_ADDRESS (best_psym))
787 {
788 best_psym = p;
789 best_pst = tpst;
790 }
791 }
792
793 }
794 }
795 return (best_pst);
796 }
797 }
798 return (NULL);
799 }
800
801 /* Find which partial symtab contains PC. Return 0 if none.
802 Backward compatibility, no section */
803
804 struct partial_symtab *
805 find_pc_psymtab (CORE_ADDR pc)
806 {
807 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
808 }
809
810 /* Find which partial symbol within a psymtab matches PC and SECTION.
811 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
812
813 struct partial_symbol *
814 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
815 asection *section)
816 {
817 struct partial_symbol *best = NULL, *p, **pp;
818 CORE_ADDR best_pc;
819
820 if (!psymtab)
821 psymtab = find_pc_sect_psymtab (pc, section);
822 if (!psymtab)
823 return 0;
824
825 /* Cope with programs that start at address 0 */
826 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
827
828 /* Search the global symbols as well as the static symbols, so that
829 find_pc_partial_function doesn't use a minimal symbol and thus
830 cache a bad endaddr. */
831 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
832 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
833 < psymtab->n_global_syms);
834 pp++)
835 {
836 p = *pp;
837 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
838 && SYMBOL_CLASS (p) == LOC_BLOCK
839 && pc >= SYMBOL_VALUE_ADDRESS (p)
840 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
841 || (psymtab->textlow == 0
842 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
843 {
844 if (section) /* match on a specific section */
845 {
846 fixup_psymbol_section (p, psymtab->objfile);
847 if (SYMBOL_BFD_SECTION (p) != section)
848 continue;
849 }
850 best_pc = SYMBOL_VALUE_ADDRESS (p);
851 best = p;
852 }
853 }
854
855 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
856 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
857 < psymtab->n_static_syms);
858 pp++)
859 {
860 p = *pp;
861 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
862 && SYMBOL_CLASS (p) == LOC_BLOCK
863 && pc >= SYMBOL_VALUE_ADDRESS (p)
864 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
865 || (psymtab->textlow == 0
866 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
867 {
868 if (section) /* match on a specific section */
869 {
870 fixup_psymbol_section (p, psymtab->objfile);
871 if (SYMBOL_BFD_SECTION (p) != section)
872 continue;
873 }
874 best_pc = SYMBOL_VALUE_ADDRESS (p);
875 best = p;
876 }
877 }
878
879 return best;
880 }
881
882 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
883 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
884
885 struct partial_symbol *
886 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
887 {
888 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
889 }
890 \f
891 /* Debug symbols usually don't have section information. We need to dig that
892 out of the minimal symbols and stash that in the debug symbol. */
893
894 static void
895 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
896 {
897 struct minimal_symbol *msym;
898 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
899
900 if (msym)
901 {
902 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
903 ginfo->section = SYMBOL_SECTION (msym);
904 }
905 else if (objfile)
906 {
907 /* Static, function-local variables do appear in the linker
908 (minimal) symbols, but are frequently given names that won't
909 be found via lookup_minimal_symbol(). E.g., it has been
910 observed in frv-uclinux (ELF) executables that a static,
911 function-local variable named "foo" might appear in the
912 linker symbols as "foo.6" or "foo.3". Thus, there is no
913 point in attempting to extend the lookup-by-name mechanism to
914 handle this case due to the fact that there can be multiple
915 names.
916
917 So, instead, search the section table when lookup by name has
918 failed. The ``addr'' and ``endaddr'' fields may have already
919 been relocated. If so, the relocation offset (i.e. the
920 ANOFFSET value) needs to be subtracted from these values when
921 performing the comparison. We unconditionally subtract it,
922 because, when no relocation has been performed, the ANOFFSET
923 value will simply be zero.
924
925 The address of the symbol whose section we're fixing up HAS
926 NOT BEEN adjusted (relocated) yet. It can't have been since
927 the section isn't yet known and knowing the section is
928 necessary in order to add the correct relocation value. In
929 other words, we wouldn't even be in this function (attempting
930 to compute the section) if it were already known.
931
932 Note that it is possible to search the minimal symbols
933 (subtracting the relocation value if necessary) to find the
934 matching minimal symbol, but this is overkill and much less
935 efficient. It is not necessary to find the matching minimal
936 symbol, only its section.
937
938 Note that this technique (of doing a section table search)
939 can fail when unrelocated section addresses overlap. For
940 this reason, we still attempt a lookup by name prior to doing
941 a search of the section table. */
942
943 CORE_ADDR addr;
944 struct obj_section *s;
945
946 addr = ginfo->value.address;
947
948 ALL_OBJFILE_OSECTIONS (objfile, s)
949 {
950 int idx = s->the_bfd_section->index;
951 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
952
953 if (s->addr - offset <= addr && addr < s->endaddr - offset)
954 {
955 ginfo->bfd_section = s->the_bfd_section;
956 ginfo->section = idx;
957 return;
958 }
959 }
960 }
961 }
962
963 struct symbol *
964 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
965 {
966 if (!sym)
967 return NULL;
968
969 if (SYMBOL_BFD_SECTION (sym))
970 return sym;
971
972 fixup_section (&sym->ginfo, objfile);
973
974 return sym;
975 }
976
977 struct partial_symbol *
978 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
979 {
980 if (!psym)
981 return NULL;
982
983 if (SYMBOL_BFD_SECTION (psym))
984 return psym;
985
986 fixup_section (&psym->ginfo, objfile);
987
988 return psym;
989 }
990
991 /* Find the definition for a specified symbol name NAME
992 in domain DOMAIN, visible from lexical block BLOCK.
993 Returns the struct symbol pointer, or zero if no symbol is found.
994 If SYMTAB is non-NULL, store the symbol table in which the
995 symbol was found there, or NULL if not found.
996 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
997 NAME is a field of the current implied argument `this'. If so set
998 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
999 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1000 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1001
1002 /* This function has a bunch of loops in it and it would seem to be
1003 attractive to put in some QUIT's (though I'm not really sure
1004 whether it can run long enough to be really important). But there
1005 are a few calls for which it would appear to be bad news to quit
1006 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1007 that there is C++ code below which can error(), but that probably
1008 doesn't affect these calls since they are looking for a known
1009 variable and thus can probably assume it will never hit the C++
1010 code). */
1011
1012 struct symbol *
1013 lookup_symbol (const char *name, const struct block *block,
1014 const domain_enum domain, int *is_a_field_of_this,
1015 struct symtab **symtab)
1016 {
1017 char *demangled_name = NULL;
1018 const char *modified_name = NULL;
1019 const char *mangled_name = NULL;
1020 int needtofreename = 0;
1021 struct symbol *returnval;
1022
1023 modified_name = name;
1024
1025 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1026 we can always binary search. */
1027 if (current_language->la_language == language_cplus)
1028 {
1029 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1030 if (demangled_name)
1031 {
1032 mangled_name = name;
1033 modified_name = demangled_name;
1034 needtofreename = 1;
1035 }
1036 }
1037 else if (current_language->la_language == language_java)
1038 {
1039 demangled_name = cplus_demangle (name,
1040 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1041 if (demangled_name)
1042 {
1043 mangled_name = name;
1044 modified_name = demangled_name;
1045 needtofreename = 1;
1046 }
1047 }
1048
1049 if (case_sensitivity == case_sensitive_off)
1050 {
1051 char *copy;
1052 int len, i;
1053
1054 len = strlen (name);
1055 copy = (char *) alloca (len + 1);
1056 for (i= 0; i < len; i++)
1057 copy[i] = tolower (name[i]);
1058 copy[len] = 0;
1059 modified_name = copy;
1060 }
1061
1062 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1063 domain, is_a_field_of_this, symtab);
1064 if (needtofreename)
1065 xfree (demangled_name);
1066
1067 return returnval;
1068 }
1069
1070 /* Behave like lookup_symbol_aux except that NAME is the natural name
1071 of the symbol that we're looking for and, if LINKAGE_NAME is
1072 non-NULL, ensure that the symbol's linkage name matches as
1073 well. */
1074
1075 static struct symbol *
1076 lookup_symbol_aux (const char *name, const char *linkage_name,
1077 const struct block *block, const domain_enum domain,
1078 int *is_a_field_of_this, struct symtab **symtab)
1079 {
1080 struct symbol *sym;
1081
1082 /* Make sure we do something sensible with is_a_field_of_this, since
1083 the callers that set this parameter to some non-null value will
1084 certainly use it later and expect it to be either 0 or 1.
1085 If we don't set it, the contents of is_a_field_of_this are
1086 undefined. */
1087 if (is_a_field_of_this != NULL)
1088 *is_a_field_of_this = 0;
1089
1090 /* Search specified block and its superiors. Don't search
1091 STATIC_BLOCK or GLOBAL_BLOCK. */
1092
1093 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1094 symtab);
1095 if (sym != NULL)
1096 return sym;
1097
1098 /* If requested to do so by the caller and if appropriate for the
1099 current language, check to see if NAME is a field of `this'. */
1100
1101 if (current_language->la_value_of_this != NULL
1102 && is_a_field_of_this != NULL)
1103 {
1104 struct value *v = current_language->la_value_of_this (0);
1105
1106 if (v && check_field (v, name))
1107 {
1108 *is_a_field_of_this = 1;
1109 if (symtab != NULL)
1110 *symtab = NULL;
1111 return NULL;
1112 }
1113 }
1114
1115 /* Now do whatever is appropriate for the current language to look
1116 up static and global variables. */
1117
1118 sym = current_language->la_lookup_symbol_nonlocal (name, linkage_name,
1119 block, domain,
1120 symtab);
1121 if (sym != NULL)
1122 return sym;
1123
1124 /* Now search all static file-level symbols. Not strictly correct,
1125 but more useful than an error. Do the symtabs first, then check
1126 the psymtabs. If a psymtab indicates the existence of the
1127 desired name as a file-level static, then do psymtab-to-symtab
1128 conversion on the fly and return the found symbol. */
1129
1130 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1131 domain, symtab);
1132 if (sym != NULL)
1133 return sym;
1134
1135 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1136 domain, symtab);
1137 if (sym != NULL)
1138 return sym;
1139
1140 if (symtab != NULL)
1141 *symtab = NULL;
1142 return NULL;
1143 }
1144
1145 /* Check to see if the symbol is defined in BLOCK or its superiors.
1146 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1147
1148 static struct symbol *
1149 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1150 const struct block *block,
1151 const domain_enum domain,
1152 struct symtab **symtab)
1153 {
1154 struct symbol *sym;
1155 const struct block *static_block = block_static_block (block);
1156
1157 /* Check if either no block is specified or it's a global block. */
1158
1159 if (static_block == NULL)
1160 return NULL;
1161
1162 while (block != static_block)
1163 {
1164 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1165 symtab);
1166 if (sym != NULL)
1167 return sym;
1168 block = BLOCK_SUPERBLOCK (block);
1169 }
1170
1171 /* We've reached the static block without finding a result. */
1172
1173 return NULL;
1174 }
1175
1176 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1177 symbol, and set block_found appropriately. */
1178
1179 struct symbol *
1180 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1181 const struct block *block,
1182 const domain_enum domain,
1183 struct symtab **symtab)
1184 {
1185 struct symbol *sym;
1186 struct objfile *objfile = NULL;
1187 struct blockvector *bv;
1188 struct block *b;
1189 struct symtab *s = NULL;
1190
1191 sym = lookup_block_symbol (block, name, linkage_name, domain);
1192 if (sym)
1193 {
1194 block_found = block;
1195 if (symtab != NULL)
1196 {
1197 /* Search the list of symtabs for one which contains the
1198 address of the start of this block. */
1199 ALL_SYMTABS (objfile, s)
1200 {
1201 bv = BLOCKVECTOR (s);
1202 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1203 if (BLOCK_START (b) <= BLOCK_START (block)
1204 && BLOCK_END (b) > BLOCK_START (block))
1205 goto found;
1206 }
1207 found:
1208 *symtab = s;
1209 }
1210
1211 return fixup_symbol_section (sym, objfile);
1212 }
1213
1214 return NULL;
1215 }
1216
1217 /* Check to see if the symbol is defined in one of the symtabs.
1218 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1219 depending on whether or not we want to search global symbols or
1220 static symbols. */
1221
1222 static struct symbol *
1223 lookup_symbol_aux_symtabs (int block_index,
1224 const char *name, const char *linkage_name,
1225 const domain_enum domain,
1226 struct symtab **symtab)
1227 {
1228 struct symbol *sym;
1229 struct objfile *objfile;
1230 struct blockvector *bv;
1231 const struct block *block;
1232 struct symtab *s;
1233
1234 ALL_SYMTABS (objfile, s)
1235 {
1236 bv = BLOCKVECTOR (s);
1237 block = BLOCKVECTOR_BLOCK (bv, block_index);
1238 sym = lookup_block_symbol (block, name, linkage_name, domain);
1239 if (sym)
1240 {
1241 block_found = block;
1242 if (symtab != NULL)
1243 *symtab = s;
1244 return fixup_symbol_section (sym, objfile);
1245 }
1246 }
1247
1248 return NULL;
1249 }
1250
1251 /* Check to see if the symbol is defined in one of the partial
1252 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1253 STATIC_BLOCK, depending on whether or not we want to search global
1254 symbols or static symbols. */
1255
1256 static struct symbol *
1257 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1258 const char *linkage_name,
1259 const domain_enum domain,
1260 struct symtab **symtab)
1261 {
1262 struct symbol *sym;
1263 struct objfile *objfile;
1264 struct blockvector *bv;
1265 const struct block *block;
1266 struct partial_symtab *ps;
1267 struct symtab *s;
1268 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1269
1270 ALL_PSYMTABS (objfile, ps)
1271 {
1272 if (!ps->readin
1273 && lookup_partial_symbol (ps, name, linkage_name,
1274 psymtab_index, domain))
1275 {
1276 s = PSYMTAB_TO_SYMTAB (ps);
1277 bv = BLOCKVECTOR (s);
1278 block = BLOCKVECTOR_BLOCK (bv, block_index);
1279 sym = lookup_block_symbol (block, name, linkage_name, domain);
1280 if (!sym)
1281 {
1282 /* This shouldn't be necessary, but as a last resort try
1283 looking in the statics even though the psymtab claimed
1284 the symbol was global, or vice-versa. It's possible
1285 that the psymtab gets it wrong in some cases. */
1286
1287 /* FIXME: carlton/2002-09-30: Should we really do that?
1288 If that happens, isn't it likely to be a GDB error, in
1289 which case we should fix the GDB error rather than
1290 silently dealing with it here? So I'd vote for
1291 removing the check for the symbol in the other
1292 block. */
1293 block = BLOCKVECTOR_BLOCK (bv,
1294 block_index == GLOBAL_BLOCK ?
1295 STATIC_BLOCK : GLOBAL_BLOCK);
1296 sym = lookup_block_symbol (block, name, linkage_name, domain);
1297 if (!sym)
1298 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1299 block_index == GLOBAL_BLOCK ? "global" : "static",
1300 name, ps->filename, name, name);
1301 }
1302 if (symtab != NULL)
1303 *symtab = s;
1304 return fixup_symbol_section (sym, objfile);
1305 }
1306 }
1307
1308 return NULL;
1309 }
1310
1311 #if 0
1312 /* Check for the possibility of the symbol being a function or a
1313 mangled variable that is stored in one of the minimal symbol
1314 tables. Eventually, all global symbols might be resolved in this
1315 way. */
1316
1317 /* NOTE: carlton/2002-12-05: At one point, this function was part of
1318 lookup_symbol_aux, and what are now 'return' statements within
1319 lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if
1320 sym was NULL. As far as I can tell, this was basically accidental;
1321 it didn't happen every time that msymbol was non-NULL, but only if
1322 some additional conditions held as well, and it caused problems
1323 with HP-generated symbol tables. */
1324
1325 /* NOTE: carlton/2003-05-14: This function was once used as part of
1326 lookup_symbol. It is currently unnecessary for correctness
1327 reasons, however, and using it doesn't seem to be any faster than
1328 using lookup_symbol_aux_psymtabs, so I'm commenting it out. */
1329
1330 static struct symbol *
1331 lookup_symbol_aux_minsyms (const char *name,
1332 const char *linkage_name,
1333 const domain_enum domain,
1334 int *is_a_field_of_this,
1335 struct symtab **symtab)
1336 {
1337 struct symbol *sym;
1338 struct blockvector *bv;
1339 const struct block *block;
1340 struct minimal_symbol *msymbol;
1341 struct symtab *s;
1342
1343 if (domain == VAR_DOMAIN)
1344 {
1345 msymbol = lookup_minimal_symbol (name, NULL, NULL);
1346
1347 if (msymbol != NULL)
1348 {
1349 /* OK, we found a minimal symbol in spite of not finding any
1350 symbol. There are various possible explanations for
1351 this. One possibility is the symbol exists in code not
1352 compiled -g. Another possibility is that the 'psymtab'
1353 isn't doing its job. A third possibility, related to #2,
1354 is that we were confused by name-mangling. For instance,
1355 maybe the psymtab isn't doing its job because it only
1356 know about demangled names, but we were given a mangled
1357 name... */
1358
1359 /* We first use the address in the msymbol to try to locate
1360 the appropriate symtab. Note that find_pc_sect_symtab()
1361 has a side-effect of doing psymtab-to-symtab expansion,
1362 for the found symtab. */
1363 s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol),
1364 SYMBOL_BFD_SECTION (msymbol));
1365 if (s != NULL)
1366 {
1367 /* This is a function which has a symtab for its address. */
1368 bv = BLOCKVECTOR (s);
1369 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1370
1371 /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the
1372 `name' argument to lookup_block_symbol. But the name
1373 of a minimal symbol is always mangled, so that seems
1374 to be clearly the wrong thing to pass as the
1375 unmangled name. */
1376 sym =
1377 lookup_block_symbol (block, name, linkage_name, domain);
1378 /* We kept static functions in minimal symbol table as well as
1379 in static scope. We want to find them in the symbol table. */
1380 if (!sym)
1381 {
1382 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1383 sym = lookup_block_symbol (block, name,
1384 linkage_name, domain);
1385 }
1386
1387 /* NOTE: carlton/2002-12-04: The following comment was
1388 taken from a time when two versions of this function
1389 were part of the body of lookup_symbol_aux: this
1390 comment was taken from the version of the function
1391 that was #ifdef HPUXHPPA, and the comment was right
1392 before the 'return NULL' part of lookup_symbol_aux.
1393 (Hence the "Fall through and return 0" comment.)
1394 Elena did some digging into the situation for
1395 Fortran, and she reports:
1396
1397 "I asked around (thanks to Jeff Knaggs), and I think
1398 the story for Fortran goes like this:
1399
1400 "Apparently, in older Fortrans, '_' was not part of
1401 the user namespace. g77 attached a final '_' to
1402 procedure names as the exported symbols for linkage
1403 (foo_) , but the symbols went in the debug info just
1404 like 'foo'. The rationale behind this is not
1405 completely clear, and maybe it was done to other
1406 symbols as well, not just procedures." */
1407
1408 /* If we get here with sym == 0, the symbol was
1409 found in the minimal symbol table
1410 but not in the symtab.
1411 Fall through and return 0 to use the msymbol
1412 definition of "foo_".
1413 (Note that outer code generally follows up a call
1414 to this routine with a call to lookup_minimal_symbol(),
1415 so a 0 return means we'll just flow into that other routine).
1416
1417 This happens for Fortran "foo_" symbols,
1418 which are "foo" in the symtab.
1419
1420 This can also happen if "asm" is used to make a
1421 regular symbol but not a debugging symbol, e.g.
1422 asm(".globl _main");
1423 asm("_main:");
1424 */
1425
1426 if (symtab != NULL && sym != NULL)
1427 *symtab = s;
1428 return fixup_symbol_section (sym, s->objfile);
1429 }
1430 }
1431 }
1432
1433 return NULL;
1434 }
1435 #endif /* 0 */
1436
1437 /* A default version of lookup_symbol_nonlocal for use by languages
1438 that can't think of anything better to do. This implements the C
1439 lookup rules. */
1440
1441 struct symbol *
1442 basic_lookup_symbol_nonlocal (const char *name,
1443 const char *linkage_name,
1444 const struct block *block,
1445 const domain_enum domain,
1446 struct symtab **symtab)
1447 {
1448 struct symbol *sym;
1449
1450 /* NOTE: carlton/2003-05-19: The comments below were written when
1451 this (or what turned into this) was part of lookup_symbol_aux;
1452 I'm much less worried about these questions now, since these
1453 decisions have turned out well, but I leave these comments here
1454 for posterity. */
1455
1456 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1457 not it would be appropriate to search the current global block
1458 here as well. (That's what this code used to do before the
1459 is_a_field_of_this check was moved up.) On the one hand, it's
1460 redundant with the lookup_symbol_aux_symtabs search that happens
1461 next. On the other hand, if decode_line_1 is passed an argument
1462 like filename:var, then the user presumably wants 'var' to be
1463 searched for in filename. On the third hand, there shouldn't be
1464 multiple global variables all of which are named 'var', and it's
1465 not like decode_line_1 has ever restricted its search to only
1466 global variables in a single filename. All in all, only
1467 searching the static block here seems best: it's correct and it's
1468 cleanest. */
1469
1470 /* NOTE: carlton/2002-12-05: There's also a possible performance
1471 issue here: if you usually search for global symbols in the
1472 current file, then it would be slightly better to search the
1473 current global block before searching all the symtabs. But there
1474 are other factors that have a much greater effect on performance
1475 than that one, so I don't think we should worry about that for
1476 now. */
1477
1478 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1479 if (sym != NULL)
1480 return sym;
1481
1482 return lookup_symbol_global (name, linkage_name, domain, symtab);
1483 }
1484
1485 /* Lookup a symbol in the static block associated to BLOCK, if there
1486 is one; do nothing if BLOCK is NULL or a global block. */
1487
1488 struct symbol *
1489 lookup_symbol_static (const char *name,
1490 const char *linkage_name,
1491 const struct block *block,
1492 const domain_enum domain,
1493 struct symtab **symtab)
1494 {
1495 const struct block *static_block = block_static_block (block);
1496
1497 if (static_block != NULL)
1498 return lookup_symbol_aux_block (name, linkage_name, static_block,
1499 domain, symtab);
1500 else
1501 return NULL;
1502 }
1503
1504 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1505 necessary). */
1506
1507 struct symbol *
1508 lookup_symbol_global (const char *name,
1509 const char *linkage_name,
1510 const domain_enum domain,
1511 struct symtab **symtab)
1512 {
1513 struct symbol *sym;
1514
1515 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1516 domain, symtab);
1517 if (sym != NULL)
1518 return sym;
1519
1520 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1521 domain, symtab);
1522 }
1523
1524 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1525 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1526 linkage name matches it. Check the global symbols if GLOBAL, the
1527 static symbols if not */
1528
1529 struct partial_symbol *
1530 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1531 const char *linkage_name, int global,
1532 domain_enum domain)
1533 {
1534 struct partial_symbol *temp;
1535 struct partial_symbol **start, **psym;
1536 struct partial_symbol **top, **real_top, **bottom, **center;
1537 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1538 int do_linear_search = 1;
1539
1540 if (length == 0)
1541 {
1542 return (NULL);
1543 }
1544 start = (global ?
1545 pst->objfile->global_psymbols.list + pst->globals_offset :
1546 pst->objfile->static_psymbols.list + pst->statics_offset);
1547
1548 if (global) /* This means we can use a binary search. */
1549 {
1550 do_linear_search = 0;
1551
1552 /* Binary search. This search is guaranteed to end with center
1553 pointing at the earliest partial symbol whose name might be
1554 correct. At that point *all* partial symbols with an
1555 appropriate name will be checked against the correct
1556 domain. */
1557
1558 bottom = start;
1559 top = start + length - 1;
1560 real_top = top;
1561 while (top > bottom)
1562 {
1563 center = bottom + (top - bottom) / 2;
1564 if (!(center < top))
1565 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1566 if (!do_linear_search
1567 && (SYMBOL_LANGUAGE (*center) == language_java))
1568 {
1569 do_linear_search = 1;
1570 }
1571 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1572 {
1573 top = center;
1574 }
1575 else
1576 {
1577 bottom = center + 1;
1578 }
1579 }
1580 if (!(top == bottom))
1581 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1582
1583 while (top <= real_top
1584 && (linkage_name != NULL
1585 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1586 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1587 {
1588 if (SYMBOL_DOMAIN (*top) == domain)
1589 {
1590 return (*top);
1591 }
1592 top++;
1593 }
1594 }
1595
1596 /* Can't use a binary search or else we found during the binary search that
1597 we should also do a linear search. */
1598
1599 if (do_linear_search)
1600 {
1601 for (psym = start; psym < start + length; psym++)
1602 {
1603 if (domain == SYMBOL_DOMAIN (*psym))
1604 {
1605 if (linkage_name != NULL
1606 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1607 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1608 {
1609 return (*psym);
1610 }
1611 }
1612 }
1613 }
1614
1615 return (NULL);
1616 }
1617
1618 /* Look up a type named NAME in the struct_domain. The type returned
1619 must not be opaque -- i.e., must have at least one field
1620 defined. */
1621
1622 struct type *
1623 lookup_transparent_type (const char *name)
1624 {
1625 return current_language->la_lookup_transparent_type (name);
1626 }
1627
1628 /* The standard implementation of lookup_transparent_type. This code
1629 was modeled on lookup_symbol -- the parts not relevant to looking
1630 up types were just left out. In particular it's assumed here that
1631 types are available in struct_domain and only at file-static or
1632 global blocks. */
1633
1634 struct type *
1635 basic_lookup_transparent_type (const char *name)
1636 {
1637 struct symbol *sym;
1638 struct symtab *s = NULL;
1639 struct partial_symtab *ps;
1640 struct blockvector *bv;
1641 struct objfile *objfile;
1642 struct block *block;
1643
1644 /* Now search all the global symbols. Do the symtab's first, then
1645 check the psymtab's. If a psymtab indicates the existence
1646 of the desired name as a global, then do psymtab-to-symtab
1647 conversion on the fly and return the found symbol. */
1648
1649 ALL_SYMTABS (objfile, s)
1650 {
1651 bv = BLOCKVECTOR (s);
1652 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1653 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1654 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1655 {
1656 return SYMBOL_TYPE (sym);
1657 }
1658 }
1659
1660 ALL_PSYMTABS (objfile, ps)
1661 {
1662 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1663 1, STRUCT_DOMAIN))
1664 {
1665 s = PSYMTAB_TO_SYMTAB (ps);
1666 bv = BLOCKVECTOR (s);
1667 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1668 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1669 if (!sym)
1670 {
1671 /* This shouldn't be necessary, but as a last resort
1672 * try looking in the statics even though the psymtab
1673 * claimed the symbol was global. It's possible that
1674 * the psymtab gets it wrong in some cases.
1675 */
1676 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1677 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1678 if (!sym)
1679 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1680 %s may be an inlined function, or may be a template function\n\
1681 (if a template, try specifying an instantiation: %s<type>)."),
1682 name, ps->filename, name, name);
1683 }
1684 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1685 return SYMBOL_TYPE (sym);
1686 }
1687 }
1688
1689 /* Now search the static file-level symbols.
1690 Not strictly correct, but more useful than an error.
1691 Do the symtab's first, then
1692 check the psymtab's. If a psymtab indicates the existence
1693 of the desired name as a file-level static, then do psymtab-to-symtab
1694 conversion on the fly and return the found symbol.
1695 */
1696
1697 ALL_SYMTABS (objfile, s)
1698 {
1699 bv = BLOCKVECTOR (s);
1700 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1701 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1702 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1703 {
1704 return SYMBOL_TYPE (sym);
1705 }
1706 }
1707
1708 ALL_PSYMTABS (objfile, ps)
1709 {
1710 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1711 {
1712 s = PSYMTAB_TO_SYMTAB (ps);
1713 bv = BLOCKVECTOR (s);
1714 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1715 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1716 if (!sym)
1717 {
1718 /* This shouldn't be necessary, but as a last resort
1719 * try looking in the globals even though the psymtab
1720 * claimed the symbol was static. It's possible that
1721 * the psymtab gets it wrong in some cases.
1722 */
1723 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1724 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1725 if (!sym)
1726 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1727 %s may be an inlined function, or may be a template function\n\
1728 (if a template, try specifying an instantiation: %s<type>)."),
1729 name, ps->filename, name, name);
1730 }
1731 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1732 return SYMBOL_TYPE (sym);
1733 }
1734 }
1735 return (struct type *) 0;
1736 }
1737
1738
1739 /* Find the psymtab containing main(). */
1740 /* FIXME: What about languages without main() or specially linked
1741 executables that have no main() ? */
1742
1743 struct partial_symtab *
1744 find_main_psymtab (void)
1745 {
1746 struct partial_symtab *pst;
1747 struct objfile *objfile;
1748
1749 ALL_PSYMTABS (objfile, pst)
1750 {
1751 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1752 {
1753 return (pst);
1754 }
1755 }
1756 return (NULL);
1757 }
1758
1759 /* Search BLOCK for symbol NAME in DOMAIN.
1760
1761 Note that if NAME is the demangled form of a C++ symbol, we will fail
1762 to find a match during the binary search of the non-encoded names, but
1763 for now we don't worry about the slight inefficiency of looking for
1764 a match we'll never find, since it will go pretty quick. Once the
1765 binary search terminates, we drop through and do a straight linear
1766 search on the symbols. Each symbol which is marked as being a ObjC/C++
1767 symbol (language_cplus or language_objc set) has both the encoded and
1768 non-encoded names tested for a match.
1769
1770 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1771 particular mangled name.
1772 */
1773
1774 struct symbol *
1775 lookup_block_symbol (const struct block *block, const char *name,
1776 const char *linkage_name,
1777 const domain_enum domain)
1778 {
1779 struct dict_iterator iter;
1780 struct symbol *sym;
1781
1782 if (!BLOCK_FUNCTION (block))
1783 {
1784 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1785 sym != NULL;
1786 sym = dict_iter_name_next (name, &iter))
1787 {
1788 if (SYMBOL_DOMAIN (sym) == domain
1789 && (linkage_name != NULL
1790 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1791 return sym;
1792 }
1793 return NULL;
1794 }
1795 else
1796 {
1797 /* Note that parameter symbols do not always show up last in the
1798 list; this loop makes sure to take anything else other than
1799 parameter symbols first; it only uses parameter symbols as a
1800 last resort. Note that this only takes up extra computation
1801 time on a match. */
1802
1803 struct symbol *sym_found = NULL;
1804
1805 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1806 sym != NULL;
1807 sym = dict_iter_name_next (name, &iter))
1808 {
1809 if (SYMBOL_DOMAIN (sym) == domain
1810 && (linkage_name != NULL
1811 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1812 {
1813 sym_found = sym;
1814 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1815 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1816 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1817 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1818 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1819 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1820 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1821 {
1822 break;
1823 }
1824 }
1825 }
1826 return (sym_found); /* Will be NULL if not found. */
1827 }
1828 }
1829
1830 /* Find the symtab associated with PC and SECTION. Look through the
1831 psymtabs and read in another symtab if necessary. */
1832
1833 struct symtab *
1834 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1835 {
1836 struct block *b;
1837 struct blockvector *bv;
1838 struct symtab *s = NULL;
1839 struct symtab *best_s = NULL;
1840 struct partial_symtab *ps;
1841 struct objfile *objfile;
1842 CORE_ADDR distance = 0;
1843 struct minimal_symbol *msymbol;
1844
1845 /* If we know that this is not a text address, return failure. This is
1846 necessary because we loop based on the block's high and low code
1847 addresses, which do not include the data ranges, and because
1848 we call find_pc_sect_psymtab which has a similar restriction based
1849 on the partial_symtab's texthigh and textlow. */
1850 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1851 if (msymbol
1852 && (msymbol->type == mst_data
1853 || msymbol->type == mst_bss
1854 || msymbol->type == mst_abs
1855 || msymbol->type == mst_file_data
1856 || msymbol->type == mst_file_bss))
1857 return NULL;
1858
1859 /* Search all symtabs for the one whose file contains our address, and which
1860 is the smallest of all the ones containing the address. This is designed
1861 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1862 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1863 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1864
1865 This happens for native ecoff format, where code from included files
1866 gets its own symtab. The symtab for the included file should have
1867 been read in already via the dependency mechanism.
1868 It might be swifter to create several symtabs with the same name
1869 like xcoff does (I'm not sure).
1870
1871 It also happens for objfiles that have their functions reordered.
1872 For these, the symtab we are looking for is not necessarily read in. */
1873
1874 ALL_SYMTABS (objfile, s)
1875 {
1876 bv = BLOCKVECTOR (s);
1877 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1878
1879 if (BLOCK_START (b) <= pc
1880 && BLOCK_END (b) > pc
1881 && (distance == 0
1882 || BLOCK_END (b) - BLOCK_START (b) < distance))
1883 {
1884 /* For an objfile that has its functions reordered,
1885 find_pc_psymtab will find the proper partial symbol table
1886 and we simply return its corresponding symtab. */
1887 /* In order to better support objfiles that contain both
1888 stabs and coff debugging info, we continue on if a psymtab
1889 can't be found. */
1890 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1891 {
1892 ps = find_pc_sect_psymtab (pc, section);
1893 if (ps)
1894 return PSYMTAB_TO_SYMTAB (ps);
1895 }
1896 if (section != 0)
1897 {
1898 struct dict_iterator iter;
1899 struct symbol *sym = NULL;
1900
1901 ALL_BLOCK_SYMBOLS (b, iter, sym)
1902 {
1903 fixup_symbol_section (sym, objfile);
1904 if (section == SYMBOL_BFD_SECTION (sym))
1905 break;
1906 }
1907 if (sym == NULL)
1908 continue; /* no symbol in this symtab matches section */
1909 }
1910 distance = BLOCK_END (b) - BLOCK_START (b);
1911 best_s = s;
1912 }
1913 }
1914
1915 if (best_s != NULL)
1916 return (best_s);
1917
1918 s = NULL;
1919 ps = find_pc_sect_psymtab (pc, section);
1920 if (ps)
1921 {
1922 if (ps->readin)
1923 /* Might want to error() here (in case symtab is corrupt and
1924 will cause a core dump), but maybe we can successfully
1925 continue, so let's not. */
1926 warning (_("\
1927 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
1928 paddr_nz (pc));
1929 s = PSYMTAB_TO_SYMTAB (ps);
1930 }
1931 return (s);
1932 }
1933
1934 /* Find the symtab associated with PC. Look through the psymtabs and
1935 read in another symtab if necessary. Backward compatibility, no section */
1936
1937 struct symtab *
1938 find_pc_symtab (CORE_ADDR pc)
1939 {
1940 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1941 }
1942 \f
1943
1944 /* Find the source file and line number for a given PC value and SECTION.
1945 Return a structure containing a symtab pointer, a line number,
1946 and a pc range for the entire source line.
1947 The value's .pc field is NOT the specified pc.
1948 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1949 use the line that ends there. Otherwise, in that case, the line
1950 that begins there is used. */
1951
1952 /* The big complication here is that a line may start in one file, and end just
1953 before the start of another file. This usually occurs when you #include
1954 code in the middle of a subroutine. To properly find the end of a line's PC
1955 range, we must search all symtabs associated with this compilation unit, and
1956 find the one whose first PC is closer than that of the next line in this
1957 symtab. */
1958
1959 /* If it's worth the effort, we could be using a binary search. */
1960
1961 struct symtab_and_line
1962 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
1963 {
1964 struct symtab *s;
1965 struct linetable *l;
1966 int len;
1967 int i;
1968 struct linetable_entry *item;
1969 struct symtab_and_line val;
1970 struct blockvector *bv;
1971 struct minimal_symbol *msymbol;
1972 struct minimal_symbol *mfunsym;
1973
1974 /* Info on best line seen so far, and where it starts, and its file. */
1975
1976 struct linetable_entry *best = NULL;
1977 CORE_ADDR best_end = 0;
1978 struct symtab *best_symtab = 0;
1979
1980 /* Store here the first line number
1981 of a file which contains the line at the smallest pc after PC.
1982 If we don't find a line whose range contains PC,
1983 we will use a line one less than this,
1984 with a range from the start of that file to the first line's pc. */
1985 struct linetable_entry *alt = NULL;
1986 struct symtab *alt_symtab = 0;
1987
1988 /* Info on best line seen in this file. */
1989
1990 struct linetable_entry *prev;
1991
1992 /* If this pc is not from the current frame,
1993 it is the address of the end of a call instruction.
1994 Quite likely that is the start of the following statement.
1995 But what we want is the statement containing the instruction.
1996 Fudge the pc to make sure we get that. */
1997
1998 init_sal (&val); /* initialize to zeroes */
1999
2000 /* It's tempting to assume that, if we can't find debugging info for
2001 any function enclosing PC, that we shouldn't search for line
2002 number info, either. However, GAS can emit line number info for
2003 assembly files --- very helpful when debugging hand-written
2004 assembly code. In such a case, we'd have no debug info for the
2005 function, but we would have line info. */
2006
2007 if (notcurrent)
2008 pc -= 1;
2009
2010 /* elz: added this because this function returned the wrong
2011 information if the pc belongs to a stub (import/export)
2012 to call a shlib function. This stub would be anywhere between
2013 two functions in the target, and the line info was erroneously
2014 taken to be the one of the line before the pc.
2015 */
2016 /* RT: Further explanation:
2017
2018 * We have stubs (trampolines) inserted between procedures.
2019 *
2020 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2021 * exists in the main image.
2022 *
2023 * In the minimal symbol table, we have a bunch of symbols
2024 * sorted by start address. The stubs are marked as "trampoline",
2025 * the others appear as text. E.g.:
2026 *
2027 * Minimal symbol table for main image
2028 * main: code for main (text symbol)
2029 * shr1: stub (trampoline symbol)
2030 * foo: code for foo (text symbol)
2031 * ...
2032 * Minimal symbol table for "shr1" image:
2033 * ...
2034 * shr1: code for shr1 (text symbol)
2035 * ...
2036 *
2037 * So the code below is trying to detect if we are in the stub
2038 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2039 * and if found, do the symbolization from the real-code address
2040 * rather than the stub address.
2041 *
2042 * Assumptions being made about the minimal symbol table:
2043 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2044 * if we're really in the trampoline. If we're beyond it (say
2045 * we're in "foo" in the above example), it'll have a closer
2046 * symbol (the "foo" text symbol for example) and will not
2047 * return the trampoline.
2048 * 2. lookup_minimal_symbol_text() will find a real text symbol
2049 * corresponding to the trampoline, and whose address will
2050 * be different than the trampoline address. I put in a sanity
2051 * check for the address being the same, to avoid an
2052 * infinite recursion.
2053 */
2054 msymbol = lookup_minimal_symbol_by_pc (pc);
2055 if (msymbol != NULL)
2056 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2057 {
2058 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2059 NULL);
2060 if (mfunsym == NULL)
2061 /* I eliminated this warning since it is coming out
2062 * in the following situation:
2063 * gdb shmain // test program with shared libraries
2064 * (gdb) break shr1 // function in shared lib
2065 * Warning: In stub for ...
2066 * In the above situation, the shared lib is not loaded yet,
2067 * so of course we can't find the real func/line info,
2068 * but the "break" still works, and the warning is annoying.
2069 * So I commented out the warning. RT */
2070 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2071 /* fall through */
2072 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
2073 /* Avoid infinite recursion */
2074 /* See above comment about why warning is commented out */
2075 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2076 /* fall through */
2077 else
2078 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
2079 }
2080
2081
2082 s = find_pc_sect_symtab (pc, section);
2083 if (!s)
2084 {
2085 /* if no symbol information, return previous pc */
2086 if (notcurrent)
2087 pc++;
2088 val.pc = pc;
2089 return val;
2090 }
2091
2092 bv = BLOCKVECTOR (s);
2093
2094 /* Look at all the symtabs that share this blockvector.
2095 They all have the same apriori range, that we found was right;
2096 but they have different line tables. */
2097
2098 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2099 {
2100 /* Find the best line in this symtab. */
2101 l = LINETABLE (s);
2102 if (!l)
2103 continue;
2104 len = l->nitems;
2105 if (len <= 0)
2106 {
2107 /* I think len can be zero if the symtab lacks line numbers
2108 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2109 I'm not sure which, and maybe it depends on the symbol
2110 reader). */
2111 continue;
2112 }
2113
2114 prev = NULL;
2115 item = l->item; /* Get first line info */
2116
2117 /* Is this file's first line closer than the first lines of other files?
2118 If so, record this file, and its first line, as best alternate. */
2119 if (item->pc > pc && (!alt || item->pc < alt->pc))
2120 {
2121 alt = item;
2122 alt_symtab = s;
2123 }
2124
2125 for (i = 0; i < len; i++, item++)
2126 {
2127 /* Leave prev pointing to the linetable entry for the last line
2128 that started at or before PC. */
2129 if (item->pc > pc)
2130 break;
2131
2132 prev = item;
2133 }
2134
2135 /* At this point, prev points at the line whose start addr is <= pc, and
2136 item points at the next line. If we ran off the end of the linetable
2137 (pc >= start of the last line), then prev == item. If pc < start of
2138 the first line, prev will not be set. */
2139
2140 /* Is this file's best line closer than the best in the other files?
2141 If so, record this file, and its best line, as best so far. Don't
2142 save prev if it represents the end of a function (i.e. line number
2143 0) instead of a real line. */
2144
2145 if (prev && prev->line && (!best || prev->pc > best->pc))
2146 {
2147 best = prev;
2148 best_symtab = s;
2149
2150 /* Discard BEST_END if it's before the PC of the current BEST. */
2151 if (best_end <= best->pc)
2152 best_end = 0;
2153 }
2154
2155 /* If another line (denoted by ITEM) is in the linetable and its
2156 PC is after BEST's PC, but before the current BEST_END, then
2157 use ITEM's PC as the new best_end. */
2158 if (best && i < len && item->pc > best->pc
2159 && (best_end == 0 || best_end > item->pc))
2160 best_end = item->pc;
2161 }
2162
2163 if (!best_symtab)
2164 {
2165 if (!alt_symtab)
2166 { /* If we didn't find any line # info, just
2167 return zeros. */
2168 val.pc = pc;
2169 }
2170 else
2171 {
2172 val.symtab = alt_symtab;
2173 val.line = alt->line - 1;
2174
2175 /* Don't return line 0, that means that we didn't find the line. */
2176 if (val.line == 0)
2177 ++val.line;
2178
2179 val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2180 val.end = alt->pc;
2181 }
2182 }
2183 else if (best->line == 0)
2184 {
2185 /* If our best fit is in a range of PC's for which no line
2186 number info is available (line number is zero) then we didn't
2187 find any valid line information. */
2188 val.pc = pc;
2189 }
2190 else
2191 {
2192 val.symtab = best_symtab;
2193 val.line = best->line;
2194 val.pc = best->pc;
2195 if (best_end && (!alt || best_end < alt->pc))
2196 val.end = best_end;
2197 else if (alt)
2198 val.end = alt->pc;
2199 else
2200 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2201 }
2202 val.section = section;
2203 return val;
2204 }
2205
2206 /* Backward compatibility (no section) */
2207
2208 struct symtab_and_line
2209 find_pc_line (CORE_ADDR pc, int notcurrent)
2210 {
2211 asection *section;
2212
2213 section = find_pc_overlay (pc);
2214 if (pc_in_unmapped_range (pc, section))
2215 pc = overlay_mapped_address (pc, section);
2216 return find_pc_sect_line (pc, section, notcurrent);
2217 }
2218 \f
2219 /* Find line number LINE in any symtab whose name is the same as
2220 SYMTAB.
2221
2222 If found, return the symtab that contains the linetable in which it was
2223 found, set *INDEX to the index in the linetable of the best entry
2224 found, and set *EXACT_MATCH nonzero if the value returned is an
2225 exact match.
2226
2227 If not found, return NULL. */
2228
2229 struct symtab *
2230 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2231 {
2232 int exact;
2233
2234 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2235 so far seen. */
2236
2237 int best_index;
2238 struct linetable *best_linetable;
2239 struct symtab *best_symtab;
2240
2241 /* First try looking it up in the given symtab. */
2242 best_linetable = LINETABLE (symtab);
2243 best_symtab = symtab;
2244 best_index = find_line_common (best_linetable, line, &exact);
2245 if (best_index < 0 || !exact)
2246 {
2247 /* Didn't find an exact match. So we better keep looking for
2248 another symtab with the same name. In the case of xcoff,
2249 multiple csects for one source file (produced by IBM's FORTRAN
2250 compiler) produce multiple symtabs (this is unavoidable
2251 assuming csects can be at arbitrary places in memory and that
2252 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2253
2254 /* BEST is the smallest linenumber > LINE so far seen,
2255 or 0 if none has been seen so far.
2256 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2257 int best;
2258
2259 struct objfile *objfile;
2260 struct symtab *s;
2261
2262 if (best_index >= 0)
2263 best = best_linetable->item[best_index].line;
2264 else
2265 best = 0;
2266
2267 ALL_SYMTABS (objfile, s)
2268 {
2269 struct linetable *l;
2270 int ind;
2271
2272 if (strcmp (symtab->filename, s->filename) != 0)
2273 continue;
2274 l = LINETABLE (s);
2275 ind = find_line_common (l, line, &exact);
2276 if (ind >= 0)
2277 {
2278 if (exact)
2279 {
2280 best_index = ind;
2281 best_linetable = l;
2282 best_symtab = s;
2283 goto done;
2284 }
2285 if (best == 0 || l->item[ind].line < best)
2286 {
2287 best = l->item[ind].line;
2288 best_index = ind;
2289 best_linetable = l;
2290 best_symtab = s;
2291 }
2292 }
2293 }
2294 }
2295 done:
2296 if (best_index < 0)
2297 return NULL;
2298
2299 if (index)
2300 *index = best_index;
2301 if (exact_match)
2302 *exact_match = exact;
2303
2304 return best_symtab;
2305 }
2306 \f
2307 /* Set the PC value for a given source file and line number and return true.
2308 Returns zero for invalid line number (and sets the PC to 0).
2309 The source file is specified with a struct symtab. */
2310
2311 int
2312 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2313 {
2314 struct linetable *l;
2315 int ind;
2316
2317 *pc = 0;
2318 if (symtab == 0)
2319 return 0;
2320
2321 symtab = find_line_symtab (symtab, line, &ind, NULL);
2322 if (symtab != NULL)
2323 {
2324 l = LINETABLE (symtab);
2325 *pc = l->item[ind].pc;
2326 return 1;
2327 }
2328 else
2329 return 0;
2330 }
2331
2332 /* Find the range of pc values in a line.
2333 Store the starting pc of the line into *STARTPTR
2334 and the ending pc (start of next line) into *ENDPTR.
2335 Returns 1 to indicate success.
2336 Returns 0 if could not find the specified line. */
2337
2338 int
2339 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2340 CORE_ADDR *endptr)
2341 {
2342 CORE_ADDR startaddr;
2343 struct symtab_and_line found_sal;
2344
2345 startaddr = sal.pc;
2346 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2347 return 0;
2348
2349 /* This whole function is based on address. For example, if line 10 has
2350 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2351 "info line *0x123" should say the line goes from 0x100 to 0x200
2352 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2353 This also insures that we never give a range like "starts at 0x134
2354 and ends at 0x12c". */
2355
2356 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2357 if (found_sal.line != sal.line)
2358 {
2359 /* The specified line (sal) has zero bytes. */
2360 *startptr = found_sal.pc;
2361 *endptr = found_sal.pc;
2362 }
2363 else
2364 {
2365 *startptr = found_sal.pc;
2366 *endptr = found_sal.end;
2367 }
2368 return 1;
2369 }
2370
2371 /* Given a line table and a line number, return the index into the line
2372 table for the pc of the nearest line whose number is >= the specified one.
2373 Return -1 if none is found. The value is >= 0 if it is an index.
2374
2375 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2376
2377 static int
2378 find_line_common (struct linetable *l, int lineno,
2379 int *exact_match)
2380 {
2381 int i;
2382 int len;
2383
2384 /* BEST is the smallest linenumber > LINENO so far seen,
2385 or 0 if none has been seen so far.
2386 BEST_INDEX identifies the item for it. */
2387
2388 int best_index = -1;
2389 int best = 0;
2390
2391 if (lineno <= 0)
2392 return -1;
2393 if (l == 0)
2394 return -1;
2395
2396 len = l->nitems;
2397 for (i = 0; i < len; i++)
2398 {
2399 struct linetable_entry *item = &(l->item[i]);
2400
2401 if (item->line == lineno)
2402 {
2403 /* Return the first (lowest address) entry which matches. */
2404 *exact_match = 1;
2405 return i;
2406 }
2407
2408 if (item->line > lineno && (best == 0 || item->line < best))
2409 {
2410 best = item->line;
2411 best_index = i;
2412 }
2413 }
2414
2415 /* If we got here, we didn't get an exact match. */
2416
2417 *exact_match = 0;
2418 return best_index;
2419 }
2420
2421 int
2422 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2423 {
2424 struct symtab_and_line sal;
2425 sal = find_pc_line (pc, 0);
2426 *startptr = sal.pc;
2427 *endptr = sal.end;
2428 return sal.symtab != 0;
2429 }
2430
2431 /* Given a function symbol SYM, find the symtab and line for the start
2432 of the function.
2433 If the argument FUNFIRSTLINE is nonzero, we want the first line
2434 of real code inside the function. */
2435
2436 struct symtab_and_line
2437 find_function_start_sal (struct symbol *sym, int funfirstline)
2438 {
2439 CORE_ADDR pc;
2440 struct symtab_and_line sal;
2441
2442 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2443 fixup_symbol_section (sym, NULL);
2444 if (funfirstline)
2445 { /* skip "first line" of function (which is actually its prologue) */
2446 asection *section = SYMBOL_BFD_SECTION (sym);
2447 /* If function is in an unmapped overlay, use its unmapped LMA
2448 address, so that SKIP_PROLOGUE has something unique to work on */
2449 if (section_is_overlay (section) &&
2450 !section_is_mapped (section))
2451 pc = overlay_unmapped_address (pc, section);
2452
2453 pc += DEPRECATED_FUNCTION_START_OFFSET;
2454 pc = SKIP_PROLOGUE (pc);
2455
2456 /* For overlays, map pc back into its mapped VMA range */
2457 pc = overlay_mapped_address (pc, section);
2458 }
2459 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2460
2461 /* Check if SKIP_PROLOGUE left us in mid-line, and the next
2462 line is still part of the same function. */
2463 if (sal.pc != pc
2464 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2465 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2466 {
2467 /* First pc of next line */
2468 pc = sal.end;
2469 /* Recalculate the line number (might not be N+1). */
2470 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2471 }
2472 sal.pc = pc;
2473
2474 return sal;
2475 }
2476
2477 /* If P is of the form "operator[ \t]+..." where `...' is
2478 some legitimate operator text, return a pointer to the
2479 beginning of the substring of the operator text.
2480 Otherwise, return "". */
2481 char *
2482 operator_chars (char *p, char **end)
2483 {
2484 *end = "";
2485 if (strncmp (p, "operator", 8))
2486 return *end;
2487 p += 8;
2488
2489 /* Don't get faked out by `operator' being part of a longer
2490 identifier. */
2491 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2492 return *end;
2493
2494 /* Allow some whitespace between `operator' and the operator symbol. */
2495 while (*p == ' ' || *p == '\t')
2496 p++;
2497
2498 /* Recognize 'operator TYPENAME'. */
2499
2500 if (isalpha (*p) || *p == '_' || *p == '$')
2501 {
2502 char *q = p + 1;
2503 while (isalnum (*q) || *q == '_' || *q == '$')
2504 q++;
2505 *end = q;
2506 return p;
2507 }
2508
2509 while (*p)
2510 switch (*p)
2511 {
2512 case '\\': /* regexp quoting */
2513 if (p[1] == '*')
2514 {
2515 if (p[2] == '=') /* 'operator\*=' */
2516 *end = p + 3;
2517 else /* 'operator\*' */
2518 *end = p + 2;
2519 return p;
2520 }
2521 else if (p[1] == '[')
2522 {
2523 if (p[2] == ']')
2524 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2525 else if (p[2] == '\\' && p[3] == ']')
2526 {
2527 *end = p + 4; /* 'operator\[\]' */
2528 return p;
2529 }
2530 else
2531 error (_("nothing is allowed between '[' and ']'"));
2532 }
2533 else
2534 {
2535 /* Gratuitous qoute: skip it and move on. */
2536 p++;
2537 continue;
2538 }
2539 break;
2540 case '!':
2541 case '=':
2542 case '*':
2543 case '/':
2544 case '%':
2545 case '^':
2546 if (p[1] == '=')
2547 *end = p + 2;
2548 else
2549 *end = p + 1;
2550 return p;
2551 case '<':
2552 case '>':
2553 case '+':
2554 case '-':
2555 case '&':
2556 case '|':
2557 if (p[0] == '-' && p[1] == '>')
2558 {
2559 /* Struct pointer member operator 'operator->'. */
2560 if (p[2] == '*')
2561 {
2562 *end = p + 3; /* 'operator->*' */
2563 return p;
2564 }
2565 else if (p[2] == '\\')
2566 {
2567 *end = p + 4; /* Hopefully 'operator->\*' */
2568 return p;
2569 }
2570 else
2571 {
2572 *end = p + 2; /* 'operator->' */
2573 return p;
2574 }
2575 }
2576 if (p[1] == '=' || p[1] == p[0])
2577 *end = p + 2;
2578 else
2579 *end = p + 1;
2580 return p;
2581 case '~':
2582 case ',':
2583 *end = p + 1;
2584 return p;
2585 case '(':
2586 if (p[1] != ')')
2587 error (_("`operator ()' must be specified without whitespace in `()'"));
2588 *end = p + 2;
2589 return p;
2590 case '?':
2591 if (p[1] != ':')
2592 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2593 *end = p + 2;
2594 return p;
2595 case '[':
2596 if (p[1] != ']')
2597 error (_("`operator []' must be specified without whitespace in `[]'"));
2598 *end = p + 2;
2599 return p;
2600 default:
2601 error (_("`operator %s' not supported"), p);
2602 break;
2603 }
2604
2605 *end = "";
2606 return *end;
2607 }
2608 \f
2609
2610 /* If FILE is not already in the table of files, return zero;
2611 otherwise return non-zero. Optionally add FILE to the table if ADD
2612 is non-zero. If *FIRST is non-zero, forget the old table
2613 contents. */
2614 static int
2615 filename_seen (const char *file, int add, int *first)
2616 {
2617 /* Table of files seen so far. */
2618 static const char **tab = NULL;
2619 /* Allocated size of tab in elements.
2620 Start with one 256-byte block (when using GNU malloc.c).
2621 24 is the malloc overhead when range checking is in effect. */
2622 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2623 /* Current size of tab in elements. */
2624 static int tab_cur_size;
2625 const char **p;
2626
2627 if (*first)
2628 {
2629 if (tab == NULL)
2630 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2631 tab_cur_size = 0;
2632 }
2633
2634 /* Is FILE in tab? */
2635 for (p = tab; p < tab + tab_cur_size; p++)
2636 if (strcmp (*p, file) == 0)
2637 return 1;
2638
2639 /* No; maybe add it to tab. */
2640 if (add)
2641 {
2642 if (tab_cur_size == tab_alloc_size)
2643 {
2644 tab_alloc_size *= 2;
2645 tab = (const char **) xrealloc ((char *) tab,
2646 tab_alloc_size * sizeof (*tab));
2647 }
2648 tab[tab_cur_size++] = file;
2649 }
2650
2651 return 0;
2652 }
2653
2654 /* Slave routine for sources_info. Force line breaks at ,'s.
2655 NAME is the name to print and *FIRST is nonzero if this is the first
2656 name printed. Set *FIRST to zero. */
2657 static void
2658 output_source_filename (const char *name, int *first)
2659 {
2660 /* Since a single source file can result in several partial symbol
2661 tables, we need to avoid printing it more than once. Note: if
2662 some of the psymtabs are read in and some are not, it gets
2663 printed both under "Source files for which symbols have been
2664 read" and "Source files for which symbols will be read in on
2665 demand". I consider this a reasonable way to deal with the
2666 situation. I'm not sure whether this can also happen for
2667 symtabs; it doesn't hurt to check. */
2668
2669 /* Was NAME already seen? */
2670 if (filename_seen (name, 1, first))
2671 {
2672 /* Yes; don't print it again. */
2673 return;
2674 }
2675 /* No; print it and reset *FIRST. */
2676 if (*first)
2677 {
2678 *first = 0;
2679 }
2680 else
2681 {
2682 printf_filtered (", ");
2683 }
2684
2685 wrap_here ("");
2686 fputs_filtered (name, gdb_stdout);
2687 }
2688
2689 static void
2690 sources_info (char *ignore, int from_tty)
2691 {
2692 struct symtab *s;
2693 struct partial_symtab *ps;
2694 struct objfile *objfile;
2695 int first;
2696
2697 if (!have_full_symbols () && !have_partial_symbols ())
2698 {
2699 error (_("No symbol table is loaded. Use the \"file\" command."));
2700 }
2701
2702 printf_filtered ("Source files for which symbols have been read in:\n\n");
2703
2704 first = 1;
2705 ALL_SYMTABS (objfile, s)
2706 {
2707 const char *fullname = symtab_to_fullname (s);
2708 output_source_filename (fullname ? fullname : s->filename, &first);
2709 }
2710 printf_filtered ("\n\n");
2711
2712 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2713
2714 first = 1;
2715 ALL_PSYMTABS (objfile, ps)
2716 {
2717 if (!ps->readin)
2718 {
2719 const char *fullname = psymtab_to_fullname (ps);
2720 output_source_filename (fullname ? fullname : ps->filename, &first);
2721 }
2722 }
2723 printf_filtered ("\n");
2724 }
2725
2726 static int
2727 file_matches (char *file, char *files[], int nfiles)
2728 {
2729 int i;
2730
2731 if (file != NULL && nfiles != 0)
2732 {
2733 for (i = 0; i < nfiles; i++)
2734 {
2735 if (strcmp (files[i], lbasename (file)) == 0)
2736 return 1;
2737 }
2738 }
2739 else if (nfiles == 0)
2740 return 1;
2741 return 0;
2742 }
2743
2744 /* Free any memory associated with a search. */
2745 void
2746 free_search_symbols (struct symbol_search *symbols)
2747 {
2748 struct symbol_search *p;
2749 struct symbol_search *next;
2750
2751 for (p = symbols; p != NULL; p = next)
2752 {
2753 next = p->next;
2754 xfree (p);
2755 }
2756 }
2757
2758 static void
2759 do_free_search_symbols_cleanup (void *symbols)
2760 {
2761 free_search_symbols (symbols);
2762 }
2763
2764 struct cleanup *
2765 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2766 {
2767 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2768 }
2769
2770 /* Helper function for sort_search_symbols and qsort. Can only
2771 sort symbols, not minimal symbols. */
2772 static int
2773 compare_search_syms (const void *sa, const void *sb)
2774 {
2775 struct symbol_search **sym_a = (struct symbol_search **) sa;
2776 struct symbol_search **sym_b = (struct symbol_search **) sb;
2777
2778 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2779 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2780 }
2781
2782 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2783 prevtail where it is, but update its next pointer to point to
2784 the first of the sorted symbols. */
2785 static struct symbol_search *
2786 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2787 {
2788 struct symbol_search **symbols, *symp, *old_next;
2789 int i;
2790
2791 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2792 * nfound);
2793 symp = prevtail->next;
2794 for (i = 0; i < nfound; i++)
2795 {
2796 symbols[i] = symp;
2797 symp = symp->next;
2798 }
2799 /* Generally NULL. */
2800 old_next = symp;
2801
2802 qsort (symbols, nfound, sizeof (struct symbol_search *),
2803 compare_search_syms);
2804
2805 symp = prevtail;
2806 for (i = 0; i < nfound; i++)
2807 {
2808 symp->next = symbols[i];
2809 symp = symp->next;
2810 }
2811 symp->next = old_next;
2812
2813 xfree (symbols);
2814 return symp;
2815 }
2816
2817 /* Search the symbol table for matches to the regular expression REGEXP,
2818 returning the results in *MATCHES.
2819
2820 Only symbols of KIND are searched:
2821 FUNCTIONS_DOMAIN - search all functions
2822 TYPES_DOMAIN - search all type names
2823 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2824 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2825 and constants (enums)
2826
2827 free_search_symbols should be called when *MATCHES is no longer needed.
2828
2829 The results are sorted locally; each symtab's global and static blocks are
2830 separately alphabetized.
2831 */
2832 void
2833 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2834 struct symbol_search **matches)
2835 {
2836 struct symtab *s;
2837 struct partial_symtab *ps;
2838 struct blockvector *bv;
2839 struct blockvector *prev_bv = 0;
2840 struct block *b;
2841 int i = 0;
2842 struct dict_iterator iter;
2843 struct symbol *sym;
2844 struct partial_symbol **psym;
2845 struct objfile *objfile;
2846 struct minimal_symbol *msymbol;
2847 char *val;
2848 int found_misc = 0;
2849 static enum minimal_symbol_type types[]
2850 =
2851 {mst_data, mst_text, mst_abs, mst_unknown};
2852 static enum minimal_symbol_type types2[]
2853 =
2854 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2855 static enum minimal_symbol_type types3[]
2856 =
2857 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2858 static enum minimal_symbol_type types4[]
2859 =
2860 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2861 enum minimal_symbol_type ourtype;
2862 enum minimal_symbol_type ourtype2;
2863 enum minimal_symbol_type ourtype3;
2864 enum minimal_symbol_type ourtype4;
2865 struct symbol_search *sr;
2866 struct symbol_search *psr;
2867 struct symbol_search *tail;
2868 struct cleanup *old_chain = NULL;
2869
2870 if (kind < VARIABLES_DOMAIN)
2871 error (_("must search on specific domain"));
2872
2873 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2874 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2875 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2876 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2877
2878 sr = *matches = NULL;
2879 tail = NULL;
2880
2881 if (regexp != NULL)
2882 {
2883 /* Make sure spacing is right for C++ operators.
2884 This is just a courtesy to make the matching less sensitive
2885 to how many spaces the user leaves between 'operator'
2886 and <TYPENAME> or <OPERATOR>. */
2887 char *opend;
2888 char *opname = operator_chars (regexp, &opend);
2889 if (*opname)
2890 {
2891 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2892 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2893 {
2894 /* There should 1 space between 'operator' and 'TYPENAME'. */
2895 if (opname[-1] != ' ' || opname[-2] == ' ')
2896 fix = 1;
2897 }
2898 else
2899 {
2900 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2901 if (opname[-1] == ' ')
2902 fix = 0;
2903 }
2904 /* If wrong number of spaces, fix it. */
2905 if (fix >= 0)
2906 {
2907 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2908 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2909 regexp = tmp;
2910 }
2911 }
2912
2913 if (0 != (val = re_comp (regexp)))
2914 error (_("Invalid regexp (%s): %s"), val, regexp);
2915 }
2916
2917 /* Search through the partial symtabs *first* for all symbols
2918 matching the regexp. That way we don't have to reproduce all of
2919 the machinery below. */
2920
2921 ALL_PSYMTABS (objfile, ps)
2922 {
2923 struct partial_symbol **bound, **gbound, **sbound;
2924 int keep_going = 1;
2925
2926 if (ps->readin)
2927 continue;
2928
2929 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
2930 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
2931 bound = gbound;
2932
2933 /* Go through all of the symbols stored in a partial
2934 symtab in one loop. */
2935 psym = objfile->global_psymbols.list + ps->globals_offset;
2936 while (keep_going)
2937 {
2938 if (psym >= bound)
2939 {
2940 if (bound == gbound && ps->n_static_syms != 0)
2941 {
2942 psym = objfile->static_psymbols.list + ps->statics_offset;
2943 bound = sbound;
2944 }
2945 else
2946 keep_going = 0;
2947 continue;
2948 }
2949 else
2950 {
2951 QUIT;
2952
2953 /* If it would match (logic taken from loop below)
2954 load the file and go on to the next one */
2955 if (file_matches (ps->filename, files, nfiles)
2956 && ((regexp == NULL
2957 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
2958 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
2959 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
2960 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
2961 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
2962 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
2963 {
2964 PSYMTAB_TO_SYMTAB (ps);
2965 keep_going = 0;
2966 }
2967 }
2968 psym++;
2969 }
2970 }
2971
2972 /* Here, we search through the minimal symbol tables for functions
2973 and variables that match, and force their symbols to be read.
2974 This is in particular necessary for demangled variable names,
2975 which are no longer put into the partial symbol tables.
2976 The symbol will then be found during the scan of symtabs below.
2977
2978 For functions, find_pc_symtab should succeed if we have debug info
2979 for the function, for variables we have to call lookup_symbol
2980 to determine if the variable has debug info.
2981 If the lookup fails, set found_misc so that we will rescan to print
2982 any matching symbols without debug info.
2983 */
2984
2985 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
2986 {
2987 ALL_MSYMBOLS (objfile, msymbol)
2988 {
2989 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2990 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2991 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2992 MSYMBOL_TYPE (msymbol) == ourtype4)
2993 {
2994 if (regexp == NULL
2995 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
2996 {
2997 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2998 {
2999 /* FIXME: carlton/2003-02-04: Given that the
3000 semantics of lookup_symbol keeps on changing
3001 slightly, it would be a nice idea if we had a
3002 function lookup_symbol_minsym that found the
3003 symbol associated to a given minimal symbol (if
3004 any). */
3005 if (kind == FUNCTIONS_DOMAIN
3006 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3007 (struct block *) NULL,
3008 VAR_DOMAIN,
3009 0, (struct symtab **) NULL) == NULL)
3010 found_misc = 1;
3011 }
3012 }
3013 }
3014 }
3015 }
3016
3017 ALL_SYMTABS (objfile, s)
3018 {
3019 bv = BLOCKVECTOR (s);
3020 /* Often many files share a blockvector.
3021 Scan each blockvector only once so that
3022 we don't get every symbol many times.
3023 It happens that the first symtab in the list
3024 for any given blockvector is the main file. */
3025 if (bv != prev_bv)
3026 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3027 {
3028 struct symbol_search *prevtail = tail;
3029 int nfound = 0;
3030 b = BLOCKVECTOR_BLOCK (bv, i);
3031 ALL_BLOCK_SYMBOLS (b, iter, sym)
3032 {
3033 QUIT;
3034 if (file_matches (s->filename, files, nfiles)
3035 && ((regexp == NULL
3036 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3037 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3038 && SYMBOL_CLASS (sym) != LOC_BLOCK
3039 && SYMBOL_CLASS (sym) != LOC_CONST)
3040 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3041 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3042 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3043 {
3044 /* match */
3045 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3046 psr->block = i;
3047 psr->symtab = s;
3048 psr->symbol = sym;
3049 psr->msymbol = NULL;
3050 psr->next = NULL;
3051 if (tail == NULL)
3052 sr = psr;
3053 else
3054 tail->next = psr;
3055 tail = psr;
3056 nfound ++;
3057 }
3058 }
3059 if (nfound > 0)
3060 {
3061 if (prevtail == NULL)
3062 {
3063 struct symbol_search dummy;
3064
3065 dummy.next = sr;
3066 tail = sort_search_symbols (&dummy, nfound);
3067 sr = dummy.next;
3068
3069 old_chain = make_cleanup_free_search_symbols (sr);
3070 }
3071 else
3072 tail = sort_search_symbols (prevtail, nfound);
3073 }
3074 }
3075 prev_bv = bv;
3076 }
3077
3078 /* If there are no eyes, avoid all contact. I mean, if there are
3079 no debug symbols, then print directly from the msymbol_vector. */
3080
3081 if (found_misc || kind != FUNCTIONS_DOMAIN)
3082 {
3083 ALL_MSYMBOLS (objfile, msymbol)
3084 {
3085 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3086 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3087 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3088 MSYMBOL_TYPE (msymbol) == ourtype4)
3089 {
3090 if (regexp == NULL
3091 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3092 {
3093 /* Functions: Look up by address. */
3094 if (kind != FUNCTIONS_DOMAIN ||
3095 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3096 {
3097 /* Variables/Absolutes: Look up by name */
3098 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3099 (struct block *) NULL, VAR_DOMAIN,
3100 0, (struct symtab **) NULL) == NULL)
3101 {
3102 /* match */
3103 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3104 psr->block = i;
3105 psr->msymbol = msymbol;
3106 psr->symtab = NULL;
3107 psr->symbol = NULL;
3108 psr->next = NULL;
3109 if (tail == NULL)
3110 {
3111 sr = psr;
3112 old_chain = make_cleanup_free_search_symbols (sr);
3113 }
3114 else
3115 tail->next = psr;
3116 tail = psr;
3117 }
3118 }
3119 }
3120 }
3121 }
3122 }
3123
3124 *matches = sr;
3125 if (sr != NULL)
3126 discard_cleanups (old_chain);
3127 }
3128
3129 /* Helper function for symtab_symbol_info, this function uses
3130 the data returned from search_symbols() to print information
3131 regarding the match to gdb_stdout.
3132 */
3133 static void
3134 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3135 int block, char *last)
3136 {
3137 if (last == NULL || strcmp (last, s->filename) != 0)
3138 {
3139 fputs_filtered ("\nFile ", gdb_stdout);
3140 fputs_filtered (s->filename, gdb_stdout);
3141 fputs_filtered (":\n", gdb_stdout);
3142 }
3143
3144 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3145 printf_filtered ("static ");
3146
3147 /* Typedef that is not a C++ class */
3148 if (kind == TYPES_DOMAIN
3149 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3150 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3151 /* variable, func, or typedef-that-is-c++-class */
3152 else if (kind < TYPES_DOMAIN ||
3153 (kind == TYPES_DOMAIN &&
3154 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3155 {
3156 type_print (SYMBOL_TYPE (sym),
3157 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3158 ? "" : SYMBOL_PRINT_NAME (sym)),
3159 gdb_stdout, 0);
3160
3161 printf_filtered (";\n");
3162 }
3163 }
3164
3165 /* This help function for symtab_symbol_info() prints information
3166 for non-debugging symbols to gdb_stdout.
3167 */
3168 static void
3169 print_msymbol_info (struct minimal_symbol *msymbol)
3170 {
3171 char *tmp;
3172
3173 if (TARGET_ADDR_BIT <= 32)
3174 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3175 & (CORE_ADDR) 0xffffffff,
3176 8);
3177 else
3178 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3179 16);
3180 printf_filtered ("%s %s\n",
3181 tmp, SYMBOL_PRINT_NAME (msymbol));
3182 }
3183
3184 /* This is the guts of the commands "info functions", "info types", and
3185 "info variables". It calls search_symbols to find all matches and then
3186 print_[m]symbol_info to print out some useful information about the
3187 matches.
3188 */
3189 static void
3190 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3191 {
3192 static char *classnames[]
3193 =
3194 {"variable", "function", "type", "method"};
3195 struct symbol_search *symbols;
3196 struct symbol_search *p;
3197 struct cleanup *old_chain;
3198 char *last_filename = NULL;
3199 int first = 1;
3200
3201 /* must make sure that if we're interrupted, symbols gets freed */
3202 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3203 old_chain = make_cleanup_free_search_symbols (symbols);
3204
3205 printf_filtered (regexp
3206 ? "All %ss matching regular expression \"%s\":\n"
3207 : "All defined %ss:\n",
3208 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3209
3210 for (p = symbols; p != NULL; p = p->next)
3211 {
3212 QUIT;
3213
3214 if (p->msymbol != NULL)
3215 {
3216 if (first)
3217 {
3218 printf_filtered ("\nNon-debugging symbols:\n");
3219 first = 0;
3220 }
3221 print_msymbol_info (p->msymbol);
3222 }
3223 else
3224 {
3225 print_symbol_info (kind,
3226 p->symtab,
3227 p->symbol,
3228 p->block,
3229 last_filename);
3230 last_filename = p->symtab->filename;
3231 }
3232 }
3233
3234 do_cleanups (old_chain);
3235 }
3236
3237 static void
3238 variables_info (char *regexp, int from_tty)
3239 {
3240 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3241 }
3242
3243 static void
3244 functions_info (char *regexp, int from_tty)
3245 {
3246 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3247 }
3248
3249
3250 static void
3251 types_info (char *regexp, int from_tty)
3252 {
3253 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3254 }
3255
3256 /* Breakpoint all functions matching regular expression. */
3257
3258 void
3259 rbreak_command_wrapper (char *regexp, int from_tty)
3260 {
3261 rbreak_command (regexp, from_tty);
3262 }
3263
3264 static void
3265 rbreak_command (char *regexp, int from_tty)
3266 {
3267 struct symbol_search *ss;
3268 struct symbol_search *p;
3269 struct cleanup *old_chain;
3270
3271 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3272 old_chain = make_cleanup_free_search_symbols (ss);
3273
3274 for (p = ss; p != NULL; p = p->next)
3275 {
3276 if (p->msymbol == NULL)
3277 {
3278 char *string = alloca (strlen (p->symtab->filename)
3279 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3280 + 4);
3281 strcpy (string, p->symtab->filename);
3282 strcat (string, ":'");
3283 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3284 strcat (string, "'");
3285 break_command (string, from_tty);
3286 print_symbol_info (FUNCTIONS_DOMAIN,
3287 p->symtab,
3288 p->symbol,
3289 p->block,
3290 p->symtab->filename);
3291 }
3292 else
3293 {
3294 break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty);
3295 printf_filtered ("<function, no debug info> %s;\n",
3296 SYMBOL_PRINT_NAME (p->msymbol));
3297 }
3298 }
3299
3300 do_cleanups (old_chain);
3301 }
3302 \f
3303
3304 /* Helper routine for make_symbol_completion_list. */
3305
3306 static int return_val_size;
3307 static int return_val_index;
3308 static char **return_val;
3309
3310 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3311 completion_list_add_name \
3312 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3313
3314 /* Test to see if the symbol specified by SYMNAME (which is already
3315 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3316 characters. If so, add it to the current completion list. */
3317
3318 static void
3319 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3320 char *text, char *word)
3321 {
3322 int newsize;
3323 int i;
3324
3325 /* clip symbols that cannot match */
3326
3327 if (strncmp (symname, sym_text, sym_text_len) != 0)
3328 {
3329 return;
3330 }
3331
3332 /* We have a match for a completion, so add SYMNAME to the current list
3333 of matches. Note that the name is moved to freshly malloc'd space. */
3334
3335 {
3336 char *new;
3337 if (word == sym_text)
3338 {
3339 new = xmalloc (strlen (symname) + 5);
3340 strcpy (new, symname);
3341 }
3342 else if (word > sym_text)
3343 {
3344 /* Return some portion of symname. */
3345 new = xmalloc (strlen (symname) + 5);
3346 strcpy (new, symname + (word - sym_text));
3347 }
3348 else
3349 {
3350 /* Return some of SYM_TEXT plus symname. */
3351 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3352 strncpy (new, word, sym_text - word);
3353 new[sym_text - word] = '\0';
3354 strcat (new, symname);
3355 }
3356
3357 if (return_val_index + 3 > return_val_size)
3358 {
3359 newsize = (return_val_size *= 2) * sizeof (char *);
3360 return_val = (char **) xrealloc ((char *) return_val, newsize);
3361 }
3362 return_val[return_val_index++] = new;
3363 return_val[return_val_index] = NULL;
3364 }
3365 }
3366
3367 /* ObjC: In case we are completing on a selector, look as the msymbol
3368 again and feed all the selectors into the mill. */
3369
3370 static void
3371 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3372 int sym_text_len, char *text, char *word)
3373 {
3374 static char *tmp = NULL;
3375 static unsigned int tmplen = 0;
3376
3377 char *method, *category, *selector;
3378 char *tmp2 = NULL;
3379
3380 method = SYMBOL_NATURAL_NAME (msymbol);
3381
3382 /* Is it a method? */
3383 if ((method[0] != '-') && (method[0] != '+'))
3384 return;
3385
3386 if (sym_text[0] == '[')
3387 /* Complete on shortened method method. */
3388 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3389
3390 while ((strlen (method) + 1) >= tmplen)
3391 {
3392 if (tmplen == 0)
3393 tmplen = 1024;
3394 else
3395 tmplen *= 2;
3396 tmp = xrealloc (tmp, tmplen);
3397 }
3398 selector = strchr (method, ' ');
3399 if (selector != NULL)
3400 selector++;
3401
3402 category = strchr (method, '(');
3403
3404 if ((category != NULL) && (selector != NULL))
3405 {
3406 memcpy (tmp, method, (category - method));
3407 tmp[category - method] = ' ';
3408 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3409 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3410 if (sym_text[0] == '[')
3411 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3412 }
3413
3414 if (selector != NULL)
3415 {
3416 /* Complete on selector only. */
3417 strcpy (tmp, selector);
3418 tmp2 = strchr (tmp, ']');
3419 if (tmp2 != NULL)
3420 *tmp2 = '\0';
3421
3422 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3423 }
3424 }
3425
3426 /* Break the non-quoted text based on the characters which are in
3427 symbols. FIXME: This should probably be language-specific. */
3428
3429 static char *
3430 language_search_unquoted_string (char *text, char *p)
3431 {
3432 for (; p > text; --p)
3433 {
3434 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3435 continue;
3436 else
3437 {
3438 if ((current_language->la_language == language_objc))
3439 {
3440 if (p[-1] == ':') /* might be part of a method name */
3441 continue;
3442 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3443 p -= 2; /* beginning of a method name */
3444 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3445 { /* might be part of a method name */
3446 char *t = p;
3447
3448 /* Seeing a ' ' or a '(' is not conclusive evidence
3449 that we are in the middle of a method name. However,
3450 finding "-[" or "+[" should be pretty un-ambiguous.
3451 Unfortunately we have to find it now to decide. */
3452
3453 while (t > text)
3454 if (isalnum (t[-1]) || t[-1] == '_' ||
3455 t[-1] == ' ' || t[-1] == ':' ||
3456 t[-1] == '(' || t[-1] == ')')
3457 --t;
3458 else
3459 break;
3460
3461 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3462 p = t - 2; /* method name detected */
3463 /* else we leave with p unchanged */
3464 }
3465 }
3466 break;
3467 }
3468 }
3469 return p;
3470 }
3471
3472
3473 /* Return a NULL terminated array of all symbols (regardless of class)
3474 which begin by matching TEXT. If the answer is no symbols, then
3475 the return value is an array which contains only a NULL pointer.
3476
3477 Problem: All of the symbols have to be copied because readline frees them.
3478 I'm not going to worry about this; hopefully there won't be that many. */
3479
3480 char **
3481 make_symbol_completion_list (char *text, char *word)
3482 {
3483 struct symbol *sym;
3484 struct symtab *s;
3485 struct partial_symtab *ps;
3486 struct minimal_symbol *msymbol;
3487 struct objfile *objfile;
3488 struct block *b, *surrounding_static_block = 0;
3489 struct dict_iterator iter;
3490 int j;
3491 struct partial_symbol **psym;
3492 /* The symbol we are completing on. Points in same buffer as text. */
3493 char *sym_text;
3494 /* Length of sym_text. */
3495 int sym_text_len;
3496
3497 /* Now look for the symbol we are supposed to complete on.
3498 FIXME: This should be language-specific. */
3499 {
3500 char *p;
3501 char quote_found;
3502 char *quote_pos = NULL;
3503
3504 /* First see if this is a quoted string. */
3505 quote_found = '\0';
3506 for (p = text; *p != '\0'; ++p)
3507 {
3508 if (quote_found != '\0')
3509 {
3510 if (*p == quote_found)
3511 /* Found close quote. */
3512 quote_found = '\0';
3513 else if (*p == '\\' && p[1] == quote_found)
3514 /* A backslash followed by the quote character
3515 doesn't end the string. */
3516 ++p;
3517 }
3518 else if (*p == '\'' || *p == '"')
3519 {
3520 quote_found = *p;
3521 quote_pos = p;
3522 }
3523 }
3524 if (quote_found == '\'')
3525 /* A string within single quotes can be a symbol, so complete on it. */
3526 sym_text = quote_pos + 1;
3527 else if (quote_found == '"')
3528 /* A double-quoted string is never a symbol, nor does it make sense
3529 to complete it any other way. */
3530 {
3531 return_val = (char **) xmalloc (sizeof (char *));
3532 return_val[0] = NULL;
3533 return return_val;
3534 }
3535 else
3536 {
3537 /* It is not a quoted string. Break it based on the characters
3538 which are in symbols. */
3539 while (p > text)
3540 {
3541 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3542 --p;
3543 else
3544 break;
3545 }
3546 sym_text = p;
3547 }
3548 }
3549
3550 sym_text_len = strlen (sym_text);
3551
3552 return_val_size = 100;
3553 return_val_index = 0;
3554 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3555 return_val[0] = NULL;
3556
3557 /* Look through the partial symtabs for all symbols which begin
3558 by matching SYM_TEXT. Add each one that you find to the list. */
3559
3560 ALL_PSYMTABS (objfile, ps)
3561 {
3562 /* If the psymtab's been read in we'll get it when we search
3563 through the blockvector. */
3564 if (ps->readin)
3565 continue;
3566
3567 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3568 psym < (objfile->global_psymbols.list + ps->globals_offset
3569 + ps->n_global_syms);
3570 psym++)
3571 {
3572 /* If interrupted, then quit. */
3573 QUIT;
3574 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3575 }
3576
3577 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3578 psym < (objfile->static_psymbols.list + ps->statics_offset
3579 + ps->n_static_syms);
3580 psym++)
3581 {
3582 QUIT;
3583 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3584 }
3585 }
3586
3587 /* At this point scan through the misc symbol vectors and add each
3588 symbol you find to the list. Eventually we want to ignore
3589 anything that isn't a text symbol (everything else will be
3590 handled by the psymtab code above). */
3591
3592 ALL_MSYMBOLS (objfile, msymbol)
3593 {
3594 QUIT;
3595 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3596
3597 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3598 }
3599
3600 /* Search upwards from currently selected frame (so that we can
3601 complete on local vars. */
3602
3603 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3604 {
3605 if (!BLOCK_SUPERBLOCK (b))
3606 {
3607 surrounding_static_block = b; /* For elmin of dups */
3608 }
3609
3610 /* Also catch fields of types defined in this places which match our
3611 text string. Only complete on types visible from current context. */
3612
3613 ALL_BLOCK_SYMBOLS (b, iter, sym)
3614 {
3615 QUIT;
3616 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3617 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3618 {
3619 struct type *t = SYMBOL_TYPE (sym);
3620 enum type_code c = TYPE_CODE (t);
3621
3622 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3623 {
3624 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3625 {
3626 if (TYPE_FIELD_NAME (t, j))
3627 {
3628 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3629 sym_text, sym_text_len, text, word);
3630 }
3631 }
3632 }
3633 }
3634 }
3635 }
3636
3637 /* Go through the symtabs and check the externs and statics for
3638 symbols which match. */
3639
3640 ALL_SYMTABS (objfile, s)
3641 {
3642 QUIT;
3643 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3644 ALL_BLOCK_SYMBOLS (b, iter, sym)
3645 {
3646 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3647 }
3648 }
3649
3650 ALL_SYMTABS (objfile, s)
3651 {
3652 QUIT;
3653 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3654 /* Don't do this block twice. */
3655 if (b == surrounding_static_block)
3656 continue;
3657 ALL_BLOCK_SYMBOLS (b, iter, sym)
3658 {
3659 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3660 }
3661 }
3662
3663 return (return_val);
3664 }
3665
3666 /* Like make_symbol_completion_list, but returns a list of symbols
3667 defined in a source file FILE. */
3668
3669 char **
3670 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3671 {
3672 struct symbol *sym;
3673 struct symtab *s;
3674 struct block *b;
3675 struct dict_iterator iter;
3676 /* The symbol we are completing on. Points in same buffer as text. */
3677 char *sym_text;
3678 /* Length of sym_text. */
3679 int sym_text_len;
3680
3681 /* Now look for the symbol we are supposed to complete on.
3682 FIXME: This should be language-specific. */
3683 {
3684 char *p;
3685 char quote_found;
3686 char *quote_pos = NULL;
3687
3688 /* First see if this is a quoted string. */
3689 quote_found = '\0';
3690 for (p = text; *p != '\0'; ++p)
3691 {
3692 if (quote_found != '\0')
3693 {
3694 if (*p == quote_found)
3695 /* Found close quote. */
3696 quote_found = '\0';
3697 else if (*p == '\\' && p[1] == quote_found)
3698 /* A backslash followed by the quote character
3699 doesn't end the string. */
3700 ++p;
3701 }
3702 else if (*p == '\'' || *p == '"')
3703 {
3704 quote_found = *p;
3705 quote_pos = p;
3706 }
3707 }
3708 if (quote_found == '\'')
3709 /* A string within single quotes can be a symbol, so complete on it. */
3710 sym_text = quote_pos + 1;
3711 else if (quote_found == '"')
3712 /* A double-quoted string is never a symbol, nor does it make sense
3713 to complete it any other way. */
3714 {
3715 return_val = (char **) xmalloc (sizeof (char *));
3716 return_val[0] = NULL;
3717 return return_val;
3718 }
3719 else
3720 {
3721 /* Not a quoted string. */
3722 sym_text = language_search_unquoted_string (text, p);
3723 }
3724 }
3725
3726 sym_text_len = strlen (sym_text);
3727
3728 return_val_size = 10;
3729 return_val_index = 0;
3730 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3731 return_val[0] = NULL;
3732
3733 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3734 in). */
3735 s = lookup_symtab (srcfile);
3736 if (s == NULL)
3737 {
3738 /* Maybe they typed the file with leading directories, while the
3739 symbol tables record only its basename. */
3740 const char *tail = lbasename (srcfile);
3741
3742 if (tail > srcfile)
3743 s = lookup_symtab (tail);
3744 }
3745
3746 /* If we have no symtab for that file, return an empty list. */
3747 if (s == NULL)
3748 return (return_val);
3749
3750 /* Go through this symtab and check the externs and statics for
3751 symbols which match. */
3752
3753 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3754 ALL_BLOCK_SYMBOLS (b, iter, sym)
3755 {
3756 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3757 }
3758
3759 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3760 ALL_BLOCK_SYMBOLS (b, iter, sym)
3761 {
3762 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3763 }
3764
3765 return (return_val);
3766 }
3767
3768 /* A helper function for make_source_files_completion_list. It adds
3769 another file name to a list of possible completions, growing the
3770 list as necessary. */
3771
3772 static void
3773 add_filename_to_list (const char *fname, char *text, char *word,
3774 char ***list, int *list_used, int *list_alloced)
3775 {
3776 char *new;
3777 size_t fnlen = strlen (fname);
3778
3779 if (*list_used + 1 >= *list_alloced)
3780 {
3781 *list_alloced *= 2;
3782 *list = (char **) xrealloc ((char *) *list,
3783 *list_alloced * sizeof (char *));
3784 }
3785
3786 if (word == text)
3787 {
3788 /* Return exactly fname. */
3789 new = xmalloc (fnlen + 5);
3790 strcpy (new, fname);
3791 }
3792 else if (word > text)
3793 {
3794 /* Return some portion of fname. */
3795 new = xmalloc (fnlen + 5);
3796 strcpy (new, fname + (word - text));
3797 }
3798 else
3799 {
3800 /* Return some of TEXT plus fname. */
3801 new = xmalloc (fnlen + (text - word) + 5);
3802 strncpy (new, word, text - word);
3803 new[text - word] = '\0';
3804 strcat (new, fname);
3805 }
3806 (*list)[*list_used] = new;
3807 (*list)[++*list_used] = NULL;
3808 }
3809
3810 static int
3811 not_interesting_fname (const char *fname)
3812 {
3813 static const char *illegal_aliens[] = {
3814 "_globals_", /* inserted by coff_symtab_read */
3815 NULL
3816 };
3817 int i;
3818
3819 for (i = 0; illegal_aliens[i]; i++)
3820 {
3821 if (strcmp (fname, illegal_aliens[i]) == 0)
3822 return 1;
3823 }
3824 return 0;
3825 }
3826
3827 /* Return a NULL terminated array of all source files whose names
3828 begin with matching TEXT. The file names are looked up in the
3829 symbol tables of this program. If the answer is no matchess, then
3830 the return value is an array which contains only a NULL pointer. */
3831
3832 char **
3833 make_source_files_completion_list (char *text, char *word)
3834 {
3835 struct symtab *s;
3836 struct partial_symtab *ps;
3837 struct objfile *objfile;
3838 int first = 1;
3839 int list_alloced = 1;
3840 int list_used = 0;
3841 size_t text_len = strlen (text);
3842 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3843 const char *base_name;
3844
3845 list[0] = NULL;
3846
3847 if (!have_full_symbols () && !have_partial_symbols ())
3848 return list;
3849
3850 ALL_SYMTABS (objfile, s)
3851 {
3852 if (not_interesting_fname (s->filename))
3853 continue;
3854 if (!filename_seen (s->filename, 1, &first)
3855 #if HAVE_DOS_BASED_FILE_SYSTEM
3856 && strncasecmp (s->filename, text, text_len) == 0
3857 #else
3858 && strncmp (s->filename, text, text_len) == 0
3859 #endif
3860 )
3861 {
3862 /* This file matches for a completion; add it to the current
3863 list of matches. */
3864 add_filename_to_list (s->filename, text, word,
3865 &list, &list_used, &list_alloced);
3866 }
3867 else
3868 {
3869 /* NOTE: We allow the user to type a base name when the
3870 debug info records leading directories, but not the other
3871 way around. This is what subroutines of breakpoint
3872 command do when they parse file names. */
3873 base_name = lbasename (s->filename);
3874 if (base_name != s->filename
3875 && !filename_seen (base_name, 1, &first)
3876 #if HAVE_DOS_BASED_FILE_SYSTEM
3877 && strncasecmp (base_name, text, text_len) == 0
3878 #else
3879 && strncmp (base_name, text, text_len) == 0
3880 #endif
3881 )
3882 add_filename_to_list (base_name, text, word,
3883 &list, &list_used, &list_alloced);
3884 }
3885 }
3886
3887 ALL_PSYMTABS (objfile, ps)
3888 {
3889 if (not_interesting_fname (ps->filename))
3890 continue;
3891 if (!ps->readin)
3892 {
3893 if (!filename_seen (ps->filename, 1, &first)
3894 #if HAVE_DOS_BASED_FILE_SYSTEM
3895 && strncasecmp (ps->filename, text, text_len) == 0
3896 #else
3897 && strncmp (ps->filename, text, text_len) == 0
3898 #endif
3899 )
3900 {
3901 /* This file matches for a completion; add it to the
3902 current list of matches. */
3903 add_filename_to_list (ps->filename, text, word,
3904 &list, &list_used, &list_alloced);
3905
3906 }
3907 else
3908 {
3909 base_name = lbasename (ps->filename);
3910 if (base_name != ps->filename
3911 && !filename_seen (base_name, 1, &first)
3912 #if HAVE_DOS_BASED_FILE_SYSTEM
3913 && strncasecmp (base_name, text, text_len) == 0
3914 #else
3915 && strncmp (base_name, text, text_len) == 0
3916 #endif
3917 )
3918 add_filename_to_list (base_name, text, word,
3919 &list, &list_used, &list_alloced);
3920 }
3921 }
3922 }
3923
3924 return list;
3925 }
3926
3927 /* Determine if PC is in the prologue of a function. The prologue is the area
3928 between the first instruction of a function, and the first executable line.
3929 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3930
3931 If non-zero, func_start is where we think the prologue starts, possibly
3932 by previous examination of symbol table information.
3933 */
3934
3935 int
3936 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
3937 {
3938 struct symtab_and_line sal;
3939 CORE_ADDR func_addr, func_end;
3940
3941 /* We have several sources of information we can consult to figure
3942 this out.
3943 - Compilers usually emit line number info that marks the prologue
3944 as its own "source line". So the ending address of that "line"
3945 is the end of the prologue. If available, this is the most
3946 reliable method.
3947 - The minimal symbols and partial symbols, which can usually tell
3948 us the starting and ending addresses of a function.
3949 - If we know the function's start address, we can call the
3950 architecture-defined SKIP_PROLOGUE function to analyze the
3951 instruction stream and guess where the prologue ends.
3952 - Our `func_start' argument; if non-zero, this is the caller's
3953 best guess as to the function's entry point. At the time of
3954 this writing, handle_inferior_event doesn't get this right, so
3955 it should be our last resort. */
3956
3957 /* Consult the partial symbol table, to find which function
3958 the PC is in. */
3959 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3960 {
3961 CORE_ADDR prologue_end;
3962
3963 /* We don't even have minsym information, so fall back to using
3964 func_start, if given. */
3965 if (! func_start)
3966 return 1; /* We *might* be in a prologue. */
3967
3968 prologue_end = SKIP_PROLOGUE (func_start);
3969
3970 return func_start <= pc && pc < prologue_end;
3971 }
3972
3973 /* If we have line number information for the function, that's
3974 usually pretty reliable. */
3975 sal = find_pc_line (func_addr, 0);
3976
3977 /* Now sal describes the source line at the function's entry point,
3978 which (by convention) is the prologue. The end of that "line",
3979 sal.end, is the end of the prologue.
3980
3981 Note that, for functions whose source code is all on a single
3982 line, the line number information doesn't always end up this way.
3983 So we must verify that our purported end-of-prologue address is
3984 *within* the function, not at its start or end. */
3985 if (sal.line == 0
3986 || sal.end <= func_addr
3987 || func_end <= sal.end)
3988 {
3989 /* We don't have any good line number info, so use the minsym
3990 information, together with the architecture-specific prologue
3991 scanning code. */
3992 CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr);
3993
3994 return func_addr <= pc && pc < prologue_end;
3995 }
3996
3997 /* We have line number info, and it looks good. */
3998 return func_addr <= pc && pc < sal.end;
3999 }
4000
4001 /* Given PC at the function's start address, attempt to find the
4002 prologue end using SAL information. Return zero if the skip fails.
4003
4004 A non-optimized prologue traditionally has one SAL for the function
4005 and a second for the function body. A single line function has
4006 them both pointing at the same line.
4007
4008 An optimized prologue is similar but the prologue may contain
4009 instructions (SALs) from the instruction body. Need to skip those
4010 while not getting into the function body.
4011
4012 The functions end point and an increasing SAL line are used as
4013 indicators of the prologue's endpoint.
4014
4015 This code is based on the function refine_prologue_limit (versions
4016 found in both ia64 and ppc). */
4017
4018 CORE_ADDR
4019 skip_prologue_using_sal (CORE_ADDR func_addr)
4020 {
4021 struct symtab_and_line prologue_sal;
4022 CORE_ADDR start_pc;
4023 CORE_ADDR end_pc;
4024
4025 /* Get an initial range for the function. */
4026 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4027 start_pc += DEPRECATED_FUNCTION_START_OFFSET;
4028
4029 prologue_sal = find_pc_line (start_pc, 0);
4030 if (prologue_sal.line != 0)
4031 {
4032 while (prologue_sal.end < end_pc)
4033 {
4034 struct symtab_and_line sal;
4035
4036 sal = find_pc_line (prologue_sal.end, 0);
4037 if (sal.line == 0)
4038 break;
4039 /* Assume that a consecutive SAL for the same (or larger)
4040 line mark the prologue -> body transition. */
4041 if (sal.line >= prologue_sal.line)
4042 break;
4043 /* The case in which compiler's optimizer/scheduler has
4044 moved instructions into the prologue. We look ahead in
4045 the function looking for address ranges whose
4046 corresponding line number is less the first one that we
4047 found for the function. This is more conservative then
4048 refine_prologue_limit which scans a large number of SALs
4049 looking for any in the prologue */
4050 prologue_sal = sal;
4051 }
4052 }
4053 return prologue_sal.end;
4054 }
4055 \f
4056 struct symtabs_and_lines
4057 decode_line_spec (char *string, int funfirstline)
4058 {
4059 struct symtabs_and_lines sals;
4060 struct symtab_and_line cursal;
4061
4062 if (string == 0)
4063 error (_("Empty line specification."));
4064
4065 /* We use whatever is set as the current source line. We do not try
4066 and get a default or it will recursively call us! */
4067 cursal = get_current_source_symtab_and_line ();
4068
4069 sals = decode_line_1 (&string, funfirstline,
4070 cursal.symtab, cursal.line,
4071 (char ***) NULL, NULL);
4072
4073 if (*string)
4074 error (_("Junk at end of line specification: %s"), string);
4075 return sals;
4076 }
4077
4078 /* Track MAIN */
4079 static char *name_of_main;
4080
4081 void
4082 set_main_name (const char *name)
4083 {
4084 if (name_of_main != NULL)
4085 {
4086 xfree (name_of_main);
4087 name_of_main = NULL;
4088 }
4089 if (name != NULL)
4090 {
4091 name_of_main = xstrdup (name);
4092 }
4093 }
4094
4095 char *
4096 main_name (void)
4097 {
4098 if (name_of_main != NULL)
4099 return name_of_main;
4100 else
4101 return "main";
4102 }
4103
4104
4105 void
4106 _initialize_symtab (void)
4107 {
4108 add_info ("variables", variables_info,
4109 "All global and static variable names, or those matching REGEXP.");
4110 if (dbx_commands)
4111 add_com ("whereis", class_info, variables_info,
4112 "All global and static variable names, or those matching REGEXP.");
4113
4114 add_info ("functions", functions_info,
4115 "All function names, or those matching REGEXP.");
4116
4117
4118 /* FIXME: This command has at least the following problems:
4119 1. It prints builtin types (in a very strange and confusing fashion).
4120 2. It doesn't print right, e.g. with
4121 typedef struct foo *FOO
4122 type_print prints "FOO" when we want to make it (in this situation)
4123 print "struct foo *".
4124 I also think "ptype" or "whatis" is more likely to be useful (but if
4125 there is much disagreement "info types" can be fixed). */
4126 add_info ("types", types_info,
4127 "All type names, or those matching REGEXP.");
4128
4129 add_info ("sources", sources_info,
4130 "Source files in the program.");
4131
4132 add_com ("rbreak", class_breakpoint, rbreak_command,
4133 "Set a breakpoint for all functions matching REGEXP.");
4134
4135 if (xdb_commands)
4136 {
4137 add_com ("lf", class_info, sources_info, "Source files in the program");
4138 add_com ("lg", class_info, variables_info,
4139 "All global and static variable names, or those matching REGEXP.");
4140 }
4141
4142 /* Initialize the one built-in type that isn't language dependent... */
4143 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4144 "<unknown type>", (struct objfile *) NULL);
4145 }
This page took 0.121667 seconds and 4 git commands to generate.