Remove null_block_symbol
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "common/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "common/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
96 const char *name, const domain_enum domain);
97
98 /* Program space key for finding name and language of "main". */
99
100 static const struct program_space_data *main_progspace_key;
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 /* Name of "main". */
107
108 char *name_of_main;
109
110 /* Language of "main". */
111
112 enum language language_of_main;
113 };
114
115 /* Program space key for finding its symbol cache. */
116
117 static const struct program_space_data *symbol_cache_key;
118
119 /* The default symbol cache size.
120 There is no extra cpu cost for large N (except when flushing the cache,
121 which is rare). The value here is just a first attempt. A better default
122 value may be higher or lower. A prime number can make up for a bad hash
123 computation, so that's why the number is what it is. */
124 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
125
126 /* The maximum symbol cache size.
127 There's no method to the decision of what value to use here, other than
128 there's no point in allowing a user typo to make gdb consume all memory. */
129 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
130
131 /* symbol_cache_lookup returns this if a previous lookup failed to find the
132 symbol in any objfile. */
133 #define SYMBOL_LOOKUP_FAILED \
134 ((struct block_symbol) {(struct symbol *) 1, NULL})
135 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
136
137 /* Recording lookups that don't find the symbol is just as important, if not
138 more so, than recording found symbols. */
139
140 enum symbol_cache_slot_state
141 {
142 SYMBOL_SLOT_UNUSED,
143 SYMBOL_SLOT_NOT_FOUND,
144 SYMBOL_SLOT_FOUND
145 };
146
147 struct symbol_cache_slot
148 {
149 enum symbol_cache_slot_state state;
150
151 /* The objfile that was current when the symbol was looked up.
152 This is only needed for global blocks, but for simplicity's sake
153 we allocate the space for both. If data shows the extra space used
154 for static blocks is a problem, we can split things up then.
155
156 Global blocks need cache lookup to include the objfile context because
157 we need to account for gdbarch_iterate_over_objfiles_in_search_order
158 which can traverse objfiles in, effectively, any order, depending on
159 the current objfile, thus affecting which symbol is found. Normally,
160 only the current objfile is searched first, and then the rest are
161 searched in recorded order; but putting cache lookup inside
162 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
163 Instead we just make the current objfile part of the context of
164 cache lookup. This means we can record the same symbol multiple times,
165 each with a different "current objfile" that was in effect when the
166 lookup was saved in the cache, but cache space is pretty cheap. */
167 const struct objfile *objfile_context;
168
169 union
170 {
171 struct block_symbol found;
172 struct
173 {
174 char *name;
175 domain_enum domain;
176 } not_found;
177 } value;
178 };
179
180 /* Symbols don't specify global vs static block.
181 So keep them in separate caches. */
182
183 struct block_symbol_cache
184 {
185 unsigned int hits;
186 unsigned int misses;
187 unsigned int collisions;
188
189 /* SYMBOLS is a variable length array of this size.
190 One can imagine that in general one cache (global/static) should be a
191 fraction of the size of the other, but there's no data at the moment
192 on which to decide. */
193 unsigned int size;
194
195 struct symbol_cache_slot symbols[1];
196 };
197
198 /* The symbol cache.
199
200 Searching for symbols in the static and global blocks over multiple objfiles
201 again and again can be slow, as can searching very big objfiles. This is a
202 simple cache to improve symbol lookup performance, which is critical to
203 overall gdb performance.
204
205 Symbols are hashed on the name, its domain, and block.
206 They are also hashed on their objfile for objfile-specific lookups. */
207
208 struct symbol_cache
209 {
210 struct block_symbol_cache *global_symbols;
211 struct block_symbol_cache *static_symbols;
212 };
213
214 /* When non-zero, print debugging messages related to symtab creation. */
215 unsigned int symtab_create_debug = 0;
216
217 /* When non-zero, print debugging messages related to symbol lookup. */
218 unsigned int symbol_lookup_debug = 0;
219
220 /* The size of the cache is staged here. */
221 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* The current value of the symbol cache size.
224 This is saved so that if the user enters a value too big we can restore
225 the original value from here. */
226 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
227
228 /* Non-zero if a file may be known by two different basenames.
229 This is the uncommon case, and significantly slows down gdb.
230 Default set to "off" to not slow down the common case. */
231 int basenames_may_differ = 0;
232
233 /* Allow the user to configure the debugger behavior with respect
234 to multiple-choice menus when more than one symbol matches during
235 a symbol lookup. */
236
237 const char multiple_symbols_ask[] = "ask";
238 const char multiple_symbols_all[] = "all";
239 const char multiple_symbols_cancel[] = "cancel";
240 static const char *const multiple_symbols_modes[] =
241 {
242 multiple_symbols_ask,
243 multiple_symbols_all,
244 multiple_symbols_cancel,
245 NULL
246 };
247 static const char *multiple_symbols_mode = multiple_symbols_all;
248
249 /* Read-only accessor to AUTO_SELECT_MODE. */
250
251 const char *
252 multiple_symbols_select_mode (void)
253 {
254 return multiple_symbols_mode;
255 }
256
257 /* Return the name of a domain_enum. */
258
259 const char *
260 domain_name (domain_enum e)
261 {
262 switch (e)
263 {
264 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
265 case VAR_DOMAIN: return "VAR_DOMAIN";
266 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
267 case MODULE_DOMAIN: return "MODULE_DOMAIN";
268 case LABEL_DOMAIN: return "LABEL_DOMAIN";
269 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
270 default: gdb_assert_not_reached ("bad domain_enum");
271 }
272 }
273
274 /* Return the name of a search_domain . */
275
276 const char *
277 search_domain_name (enum search_domain e)
278 {
279 switch (e)
280 {
281 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
282 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
283 case TYPES_DOMAIN: return "TYPES_DOMAIN";
284 case ALL_DOMAIN: return "ALL_DOMAIN";
285 default: gdb_assert_not_reached ("bad search_domain");
286 }
287 }
288
289 /* See symtab.h. */
290
291 struct symtab *
292 compunit_primary_filetab (const struct compunit_symtab *cust)
293 {
294 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
295
296 /* The primary file symtab is the first one in the list. */
297 return COMPUNIT_FILETABS (cust);
298 }
299
300 /* See symtab.h. */
301
302 enum language
303 compunit_language (const struct compunit_symtab *cust)
304 {
305 struct symtab *symtab = compunit_primary_filetab (cust);
306
307 /* The language of the compunit symtab is the language of its primary
308 source file. */
309 return SYMTAB_LANGUAGE (symtab);
310 }
311
312 /* See symtab.h. */
313
314 bool
315 minimal_symbol::data_p () const
316 {
317 return type == mst_data
318 || type == mst_bss
319 || type == mst_abs
320 || type == mst_file_data
321 || type == mst_file_bss;
322 }
323
324 /* See symtab.h. */
325
326 bool
327 minimal_symbol::text_p () const
328 {
329 return type == mst_text
330 || type == mst_text_gnu_ifunc
331 || type == mst_data_gnu_ifunc
332 || type == mst_slot_got_plt
333 || type == mst_solib_trampoline
334 || type == mst_file_text;
335 }
336
337 /* See whether FILENAME matches SEARCH_NAME using the rule that we
338 advertise to the user. (The manual's description of linespecs
339 describes what we advertise). Returns true if they match, false
340 otherwise. */
341
342 int
343 compare_filenames_for_search (const char *filename, const char *search_name)
344 {
345 int len = strlen (filename);
346 size_t search_len = strlen (search_name);
347
348 if (len < search_len)
349 return 0;
350
351 /* The tail of FILENAME must match. */
352 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
353 return 0;
354
355 /* Either the names must completely match, or the character
356 preceding the trailing SEARCH_NAME segment of FILENAME must be a
357 directory separator.
358
359 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
360 cannot match FILENAME "/path//dir/file.c" - as user has requested
361 absolute path. The sama applies for "c:\file.c" possibly
362 incorrectly hypothetically matching "d:\dir\c:\file.c".
363
364 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
365 compatible with SEARCH_NAME "file.c". In such case a compiler had
366 to put the "c:file.c" name into debug info. Such compatibility
367 works only on GDB built for DOS host. */
368 return (len == search_len
369 || (!IS_ABSOLUTE_PATH (search_name)
370 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
371 || (HAS_DRIVE_SPEC (filename)
372 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
373 }
374
375 /* Same as compare_filenames_for_search, but for glob-style patterns.
376 Heads up on the order of the arguments. They match the order of
377 compare_filenames_for_search, but it's the opposite of the order of
378 arguments to gdb_filename_fnmatch. */
379
380 int
381 compare_glob_filenames_for_search (const char *filename,
382 const char *search_name)
383 {
384 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
385 all /s have to be explicitly specified. */
386 int file_path_elements = count_path_elements (filename);
387 int search_path_elements = count_path_elements (search_name);
388
389 if (search_path_elements > file_path_elements)
390 return 0;
391
392 if (IS_ABSOLUTE_PATH (search_name))
393 {
394 return (search_path_elements == file_path_elements
395 && gdb_filename_fnmatch (search_name, filename,
396 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
397 }
398
399 {
400 const char *file_to_compare
401 = strip_leading_path_elements (filename,
402 file_path_elements - search_path_elements);
403
404 return gdb_filename_fnmatch (search_name, file_to_compare,
405 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
406 }
407 }
408
409 /* Check for a symtab of a specific name by searching some symtabs.
410 This is a helper function for callbacks of iterate_over_symtabs.
411
412 If NAME is not absolute, then REAL_PATH is NULL
413 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
414
415 The return value, NAME, REAL_PATH and CALLBACK are identical to the
416 `map_symtabs_matching_filename' method of quick_symbol_functions.
417
418 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
419 Each symtab within the specified compunit symtab is also searched.
420 AFTER_LAST is one past the last compunit symtab to search; NULL means to
421 search until the end of the list. */
422
423 bool
424 iterate_over_some_symtabs (const char *name,
425 const char *real_path,
426 struct compunit_symtab *first,
427 struct compunit_symtab *after_last,
428 gdb::function_view<bool (symtab *)> callback)
429 {
430 struct compunit_symtab *cust;
431 const char* base_name = lbasename (name);
432
433 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
434 {
435 for (symtab *s : compunit_filetabs (cust))
436 {
437 if (compare_filenames_for_search (s->filename, name))
438 {
439 if (callback (s))
440 return true;
441 continue;
442 }
443
444 /* Before we invoke realpath, which can get expensive when many
445 files are involved, do a quick comparison of the basenames. */
446 if (! basenames_may_differ
447 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
448 continue;
449
450 if (compare_filenames_for_search (symtab_to_fullname (s), name))
451 {
452 if (callback (s))
453 return true;
454 continue;
455 }
456
457 /* If the user gave us an absolute path, try to find the file in
458 this symtab and use its absolute path. */
459 if (real_path != NULL)
460 {
461 const char *fullname = symtab_to_fullname (s);
462
463 gdb_assert (IS_ABSOLUTE_PATH (real_path));
464 gdb_assert (IS_ABSOLUTE_PATH (name));
465 if (FILENAME_CMP (real_path, fullname) == 0)
466 {
467 if (callback (s))
468 return true;
469 continue;
470 }
471 }
472 }
473 }
474
475 return false;
476 }
477
478 /* Check for a symtab of a specific name; first in symtabs, then in
479 psymtabs. *If* there is no '/' in the name, a match after a '/'
480 in the symtab filename will also work.
481
482 Calls CALLBACK with each symtab that is found. If CALLBACK returns
483 true, the search stops. */
484
485 void
486 iterate_over_symtabs (const char *name,
487 gdb::function_view<bool (symtab *)> callback)
488 {
489 gdb::unique_xmalloc_ptr<char> real_path;
490
491 /* Here we are interested in canonicalizing an absolute path, not
492 absolutizing a relative path. */
493 if (IS_ABSOLUTE_PATH (name))
494 {
495 real_path = gdb_realpath (name);
496 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
497 }
498
499 for (objfile *objfile : current_program_space->objfiles ())
500 {
501 if (iterate_over_some_symtabs (name, real_path.get (),
502 objfile->compunit_symtabs, NULL,
503 callback))
504 return;
505 }
506
507 /* Same search rules as above apply here, but now we look thru the
508 psymtabs. */
509
510 for (objfile *objfile : current_program_space->objfiles ())
511 {
512 if (objfile->sf
513 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
514 name,
515 real_path.get (),
516 callback))
517 return;
518 }
519 }
520
521 /* A wrapper for iterate_over_symtabs that returns the first matching
522 symtab, or NULL. */
523
524 struct symtab *
525 lookup_symtab (const char *name)
526 {
527 struct symtab *result = NULL;
528
529 iterate_over_symtabs (name, [&] (symtab *symtab)
530 {
531 result = symtab;
532 return true;
533 });
534
535 return result;
536 }
537
538 \f
539 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
540 full method name, which consist of the class name (from T), the unadorned
541 method name from METHOD_ID, and the signature for the specific overload,
542 specified by SIGNATURE_ID. Note that this function is g++ specific. */
543
544 char *
545 gdb_mangle_name (struct type *type, int method_id, int signature_id)
546 {
547 int mangled_name_len;
548 char *mangled_name;
549 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
550 struct fn_field *method = &f[signature_id];
551 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
552 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
553 const char *newname = TYPE_NAME (type);
554
555 /* Does the form of physname indicate that it is the full mangled name
556 of a constructor (not just the args)? */
557 int is_full_physname_constructor;
558
559 int is_constructor;
560 int is_destructor = is_destructor_name (physname);
561 /* Need a new type prefix. */
562 const char *const_prefix = method->is_const ? "C" : "";
563 const char *volatile_prefix = method->is_volatile ? "V" : "";
564 char buf[20];
565 int len = (newname == NULL ? 0 : strlen (newname));
566
567 /* Nothing to do if physname already contains a fully mangled v3 abi name
568 or an operator name. */
569 if ((physname[0] == '_' && physname[1] == 'Z')
570 || is_operator_name (field_name))
571 return xstrdup (physname);
572
573 is_full_physname_constructor = is_constructor_name (physname);
574
575 is_constructor = is_full_physname_constructor
576 || (newname && strcmp (field_name, newname) == 0);
577
578 if (!is_destructor)
579 is_destructor = (startswith (physname, "__dt"));
580
581 if (is_destructor || is_full_physname_constructor)
582 {
583 mangled_name = (char *) xmalloc (strlen (physname) + 1);
584 strcpy (mangled_name, physname);
585 return mangled_name;
586 }
587
588 if (len == 0)
589 {
590 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
591 }
592 else if (physname[0] == 't' || physname[0] == 'Q')
593 {
594 /* The physname for template and qualified methods already includes
595 the class name. */
596 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
597 newname = NULL;
598 len = 0;
599 }
600 else
601 {
602 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
603 volatile_prefix, len);
604 }
605 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
606 + strlen (buf) + len + strlen (physname) + 1);
607
608 mangled_name = (char *) xmalloc (mangled_name_len);
609 if (is_constructor)
610 mangled_name[0] = '\0';
611 else
612 strcpy (mangled_name, field_name);
613
614 strcat (mangled_name, buf);
615 /* If the class doesn't have a name, i.e. newname NULL, then we just
616 mangle it using 0 for the length of the class. Thus it gets mangled
617 as something starting with `::' rather than `classname::'. */
618 if (newname != NULL)
619 strcat (mangled_name, newname);
620
621 strcat (mangled_name, physname);
622 return (mangled_name);
623 }
624
625 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
626 correctly allocated. */
627
628 void
629 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
630 const char *name,
631 struct obstack *obstack)
632 {
633 if (gsymbol->language == language_ada)
634 {
635 if (name == NULL)
636 {
637 gsymbol->ada_mangled = 0;
638 gsymbol->language_specific.obstack = obstack;
639 }
640 else
641 {
642 gsymbol->ada_mangled = 1;
643 gsymbol->language_specific.demangled_name = name;
644 }
645 }
646 else
647 gsymbol->language_specific.demangled_name = name;
648 }
649
650 /* Return the demangled name of GSYMBOL. */
651
652 const char *
653 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
654 {
655 if (gsymbol->language == language_ada)
656 {
657 if (!gsymbol->ada_mangled)
658 return NULL;
659 /* Fall through. */
660 }
661
662 return gsymbol->language_specific.demangled_name;
663 }
664
665 \f
666 /* Initialize the language dependent portion of a symbol
667 depending upon the language for the symbol. */
668
669 void
670 symbol_set_language (struct general_symbol_info *gsymbol,
671 enum language language,
672 struct obstack *obstack)
673 {
674 gsymbol->language = language;
675 if (gsymbol->language == language_cplus
676 || gsymbol->language == language_d
677 || gsymbol->language == language_go
678 || gsymbol->language == language_objc
679 || gsymbol->language == language_fortran)
680 {
681 symbol_set_demangled_name (gsymbol, NULL, obstack);
682 }
683 else if (gsymbol->language == language_ada)
684 {
685 gdb_assert (gsymbol->ada_mangled == 0);
686 gsymbol->language_specific.obstack = obstack;
687 }
688 else
689 {
690 memset (&gsymbol->language_specific, 0,
691 sizeof (gsymbol->language_specific));
692 }
693 }
694
695 /* Functions to initialize a symbol's mangled name. */
696
697 /* Objects of this type are stored in the demangled name hash table. */
698 struct demangled_name_entry
699 {
700 const char *mangled;
701 char demangled[1];
702 };
703
704 /* Hash function for the demangled name hash. */
705
706 static hashval_t
707 hash_demangled_name_entry (const void *data)
708 {
709 const struct demangled_name_entry *e
710 = (const struct demangled_name_entry *) data;
711
712 return htab_hash_string (e->mangled);
713 }
714
715 /* Equality function for the demangled name hash. */
716
717 static int
718 eq_demangled_name_entry (const void *a, const void *b)
719 {
720 const struct demangled_name_entry *da
721 = (const struct demangled_name_entry *) a;
722 const struct demangled_name_entry *db
723 = (const struct demangled_name_entry *) b;
724
725 return strcmp (da->mangled, db->mangled) == 0;
726 }
727
728 /* Create the hash table used for demangled names. Each hash entry is
729 a pair of strings; one for the mangled name and one for the demangled
730 name. The entry is hashed via just the mangled name. */
731
732 static void
733 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
734 {
735 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
736 The hash table code will round this up to the next prime number.
737 Choosing a much larger table size wastes memory, and saves only about
738 1% in symbol reading. */
739
740 per_bfd->demangled_names_hash.reset (htab_create_alloc
741 (256, hash_demangled_name_entry, eq_demangled_name_entry,
742 NULL, xcalloc, xfree));
743 }
744
745 /* Try to determine the demangled name for a symbol, based on the
746 language of that symbol. If the language is set to language_auto,
747 it will attempt to find any demangling algorithm that works and
748 then set the language appropriately. The returned name is allocated
749 by the demangler and should be xfree'd. */
750
751 static char *
752 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
753 const char *mangled)
754 {
755 char *demangled = NULL;
756 int i;
757
758 if (gsymbol->language == language_unknown)
759 gsymbol->language = language_auto;
760
761 if (gsymbol->language != language_auto)
762 {
763 const struct language_defn *lang = language_def (gsymbol->language);
764
765 language_sniff_from_mangled_name (lang, mangled, &demangled);
766 return demangled;
767 }
768
769 for (i = language_unknown; i < nr_languages; ++i)
770 {
771 enum language l = (enum language) i;
772 const struct language_defn *lang = language_def (l);
773
774 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
775 {
776 gsymbol->language = l;
777 return demangled;
778 }
779 }
780
781 return NULL;
782 }
783
784 /* Set both the mangled and demangled (if any) names for GSYMBOL based
785 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
786 objfile's obstack; but if COPY_NAME is 0 and if NAME is
787 NUL-terminated, then this function assumes that NAME is already
788 correctly saved (either permanently or with a lifetime tied to the
789 objfile), and it will not be copied.
790
791 The hash table corresponding to OBJFILE is used, and the memory
792 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
793 so the pointer can be discarded after calling this function. */
794
795 void
796 symbol_set_names (struct general_symbol_info *gsymbol,
797 const char *linkage_name, int len, int copy_name,
798 struct objfile_per_bfd_storage *per_bfd)
799 {
800 struct demangled_name_entry **slot;
801 /* A 0-terminated copy of the linkage name. */
802 const char *linkage_name_copy;
803 struct demangled_name_entry entry;
804
805 if (gsymbol->language == language_ada)
806 {
807 /* In Ada, we do the symbol lookups using the mangled name, so
808 we can save some space by not storing the demangled name. */
809 if (!copy_name)
810 gsymbol->name = linkage_name;
811 else
812 {
813 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
814 len + 1);
815
816 memcpy (name, linkage_name, len);
817 name[len] = '\0';
818 gsymbol->name = name;
819 }
820 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
821
822 return;
823 }
824
825 if (per_bfd->demangled_names_hash == NULL)
826 create_demangled_names_hash (per_bfd);
827
828 if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 alloc_name = (char *) alloca (len + 1);
833 memcpy (alloc_name, linkage_name, len);
834 alloc_name[len] = '\0';
835
836 linkage_name_copy = alloc_name;
837 }
838 else
839 linkage_name_copy = linkage_name;
840
841 /* Set the symbol language. */
842 char *demangled_name_ptr
843 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
844 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
845
846 entry.mangled = linkage_name_copy;
847 slot = ((struct demangled_name_entry **)
848 htab_find_slot (per_bfd->demangled_names_hash.get (),
849 &entry, INSERT));
850
851 /* If this name is not in the hash table, add it. */
852 if (*slot == NULL
853 /* A C version of the symbol may have already snuck into the table.
854 This happens to, e.g., main.init (__go_init_main). Cope. */
855 || (gsymbol->language == language_go
856 && (*slot)->demangled[0] == '\0'))
857 {
858 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
859
860 /* Suppose we have demangled_name==NULL, copy_name==0, and
861 linkage_name_copy==linkage_name. In this case, we already have the
862 mangled name saved, and we don't have a demangled name. So,
863 you might think we could save a little space by not recording
864 this in the hash table at all.
865
866 It turns out that it is actually important to still save such
867 an entry in the hash table, because storing this name gives
868 us better bcache hit rates for partial symbols. */
869 if (!copy_name && linkage_name_copy == linkage_name)
870 {
871 *slot
872 = ((struct demangled_name_entry *)
873 obstack_alloc (&per_bfd->storage_obstack,
874 offsetof (struct demangled_name_entry, demangled)
875 + demangled_len + 1));
876 (*slot)->mangled = linkage_name;
877 }
878 else
879 {
880 char *mangled_ptr;
881
882 /* If we must copy the mangled name, put it directly after
883 the demangled name so we can have a single
884 allocation. */
885 *slot
886 = ((struct demangled_name_entry *)
887 obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry, demangled)
889 + len + demangled_len + 2));
890 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
891 strcpy (mangled_ptr, linkage_name_copy);
892 (*slot)->mangled = mangled_ptr;
893 }
894
895 if (demangled_name != NULL)
896 strcpy ((*slot)->demangled, demangled_name.get());
897 else
898 (*slot)->demangled[0] = '\0';
899 }
900
901 gsymbol->name = (*slot)->mangled;
902 if ((*slot)->demangled[0] != '\0')
903 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
904 &per_bfd->storage_obstack);
905 else
906 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
907 }
908
909 /* Return the source code name of a symbol. In languages where
910 demangling is necessary, this is the demangled name. */
911
912 const char *
913 symbol_natural_name (const struct general_symbol_info *gsymbol)
914 {
915 switch (gsymbol->language)
916 {
917 case language_cplus:
918 case language_d:
919 case language_go:
920 case language_objc:
921 case language_fortran:
922 if (symbol_get_demangled_name (gsymbol) != NULL)
923 return symbol_get_demangled_name (gsymbol);
924 break;
925 case language_ada:
926 return ada_decode_symbol (gsymbol);
927 default:
928 break;
929 }
930 return gsymbol->name;
931 }
932
933 /* Return the demangled name for a symbol based on the language for
934 that symbol. If no demangled name exists, return NULL. */
935
936 const char *
937 symbol_demangled_name (const struct general_symbol_info *gsymbol)
938 {
939 const char *dem_name = NULL;
940
941 switch (gsymbol->language)
942 {
943 case language_cplus:
944 case language_d:
945 case language_go:
946 case language_objc:
947 case language_fortran:
948 dem_name = symbol_get_demangled_name (gsymbol);
949 break;
950 case language_ada:
951 dem_name = ada_decode_symbol (gsymbol);
952 break;
953 default:
954 break;
955 }
956 return dem_name;
957 }
958
959 /* Return the search name of a symbol---generally the demangled or
960 linkage name of the symbol, depending on how it will be searched for.
961 If there is no distinct demangled name, then returns the same value
962 (same pointer) as SYMBOL_LINKAGE_NAME. */
963
964 const char *
965 symbol_search_name (const struct general_symbol_info *gsymbol)
966 {
967 if (gsymbol->language == language_ada)
968 return gsymbol->name;
969 else
970 return symbol_natural_name (gsymbol);
971 }
972
973 /* See symtab.h. */
974
975 bool
976 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
977 const lookup_name_info &name)
978 {
979 symbol_name_matcher_ftype *name_match
980 = get_symbol_name_matcher (language_def (gsymbol->language), name);
981 return name_match (symbol_search_name (gsymbol), name, NULL);
982 }
983
984 \f
985
986 /* Return 1 if the two sections are the same, or if they could
987 plausibly be copies of each other, one in an original object
988 file and another in a separated debug file. */
989
990 int
991 matching_obj_sections (struct obj_section *obj_first,
992 struct obj_section *obj_second)
993 {
994 asection *first = obj_first? obj_first->the_bfd_section : NULL;
995 asection *second = obj_second? obj_second->the_bfd_section : NULL;
996
997 /* If they're the same section, then they match. */
998 if (first == second)
999 return 1;
1000
1001 /* If either is NULL, give up. */
1002 if (first == NULL || second == NULL)
1003 return 0;
1004
1005 /* This doesn't apply to absolute symbols. */
1006 if (first->owner == NULL || second->owner == NULL)
1007 return 0;
1008
1009 /* If they're in the same object file, they must be different sections. */
1010 if (first->owner == second->owner)
1011 return 0;
1012
1013 /* Check whether the two sections are potentially corresponding. They must
1014 have the same size, address, and name. We can't compare section indexes,
1015 which would be more reliable, because some sections may have been
1016 stripped. */
1017 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1018 return 0;
1019
1020 /* In-memory addresses may start at a different offset, relativize them. */
1021 if (bfd_get_section_vma (first->owner, first)
1022 - bfd_get_start_address (first->owner)
1023 != bfd_get_section_vma (second->owner, second)
1024 - bfd_get_start_address (second->owner))
1025 return 0;
1026
1027 if (bfd_get_section_name (first->owner, first) == NULL
1028 || bfd_get_section_name (second->owner, second) == NULL
1029 || strcmp (bfd_get_section_name (first->owner, first),
1030 bfd_get_section_name (second->owner, second)) != 0)
1031 return 0;
1032
1033 /* Otherwise check that they are in corresponding objfiles. */
1034
1035 struct objfile *obj = NULL;
1036 for (objfile *objfile : current_program_space->objfiles ())
1037 if (objfile->obfd == first->owner)
1038 {
1039 obj = objfile;
1040 break;
1041 }
1042 gdb_assert (obj != NULL);
1043
1044 if (obj->separate_debug_objfile != NULL
1045 && obj->separate_debug_objfile->obfd == second->owner)
1046 return 1;
1047 if (obj->separate_debug_objfile_backlink != NULL
1048 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1049 return 1;
1050
1051 return 0;
1052 }
1053
1054 /* See symtab.h. */
1055
1056 void
1057 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1058 {
1059 struct bound_minimal_symbol msymbol;
1060
1061 /* If we know that this is not a text address, return failure. This is
1062 necessary because we loop based on texthigh and textlow, which do
1063 not include the data ranges. */
1064 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1065 if (msymbol.minsym && msymbol.minsym->data_p ())
1066 return;
1067
1068 for (objfile *objfile : current_program_space->objfiles ())
1069 {
1070 struct compunit_symtab *cust = NULL;
1071
1072 if (objfile->sf)
1073 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1074 pc, section, 0);
1075 if (cust)
1076 return;
1077 }
1078 }
1079 \f
1080 /* Hash function for the symbol cache. */
1081
1082 static unsigned int
1083 hash_symbol_entry (const struct objfile *objfile_context,
1084 const char *name, domain_enum domain)
1085 {
1086 unsigned int hash = (uintptr_t) objfile_context;
1087
1088 if (name != NULL)
1089 hash += htab_hash_string (name);
1090
1091 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1092 to map to the same slot. */
1093 if (domain == STRUCT_DOMAIN)
1094 hash += VAR_DOMAIN * 7;
1095 else
1096 hash += domain * 7;
1097
1098 return hash;
1099 }
1100
1101 /* Equality function for the symbol cache. */
1102
1103 static int
1104 eq_symbol_entry (const struct symbol_cache_slot *slot,
1105 const struct objfile *objfile_context,
1106 const char *name, domain_enum domain)
1107 {
1108 const char *slot_name;
1109 domain_enum slot_domain;
1110
1111 if (slot->state == SYMBOL_SLOT_UNUSED)
1112 return 0;
1113
1114 if (slot->objfile_context != objfile_context)
1115 return 0;
1116
1117 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1118 {
1119 slot_name = slot->value.not_found.name;
1120 slot_domain = slot->value.not_found.domain;
1121 }
1122 else
1123 {
1124 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1125 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1126 }
1127
1128 /* NULL names match. */
1129 if (slot_name == NULL && name == NULL)
1130 {
1131 /* But there's no point in calling symbol_matches_domain in the
1132 SYMBOL_SLOT_FOUND case. */
1133 if (slot_domain != domain)
1134 return 0;
1135 }
1136 else if (slot_name != NULL && name != NULL)
1137 {
1138 /* It's important that we use the same comparison that was done
1139 the first time through. If the slot records a found symbol,
1140 then this means using the symbol name comparison function of
1141 the symbol's language with SYMBOL_SEARCH_NAME. See
1142 dictionary.c. It also means using symbol_matches_domain for
1143 found symbols. See block.c.
1144
1145 If the slot records a not-found symbol, then require a precise match.
1146 We could still be lax with whitespace like strcmp_iw though. */
1147
1148 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1149 {
1150 if (strcmp (slot_name, name) != 0)
1151 return 0;
1152 if (slot_domain != domain)
1153 return 0;
1154 }
1155 else
1156 {
1157 struct symbol *sym = slot->value.found.symbol;
1158 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1159
1160 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1161 return 0;
1162
1163 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1164 slot_domain, domain))
1165 return 0;
1166 }
1167 }
1168 else
1169 {
1170 /* Only one name is NULL. */
1171 return 0;
1172 }
1173
1174 return 1;
1175 }
1176
1177 /* Given a cache of size SIZE, return the size of the struct (with variable
1178 length array) in bytes. */
1179
1180 static size_t
1181 symbol_cache_byte_size (unsigned int size)
1182 {
1183 return (sizeof (struct block_symbol_cache)
1184 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1185 }
1186
1187 /* Resize CACHE. */
1188
1189 static void
1190 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1191 {
1192 /* If there's no change in size, don't do anything.
1193 All caches have the same size, so we can just compare with the size
1194 of the global symbols cache. */
1195 if ((cache->global_symbols != NULL
1196 && cache->global_symbols->size == new_size)
1197 || (cache->global_symbols == NULL
1198 && new_size == 0))
1199 return;
1200
1201 xfree (cache->global_symbols);
1202 xfree (cache->static_symbols);
1203
1204 if (new_size == 0)
1205 {
1206 cache->global_symbols = NULL;
1207 cache->static_symbols = NULL;
1208 }
1209 else
1210 {
1211 size_t total_size = symbol_cache_byte_size (new_size);
1212
1213 cache->global_symbols
1214 = (struct block_symbol_cache *) xcalloc (1, total_size);
1215 cache->static_symbols
1216 = (struct block_symbol_cache *) xcalloc (1, total_size);
1217 cache->global_symbols->size = new_size;
1218 cache->static_symbols->size = new_size;
1219 }
1220 }
1221
1222 /* Make a symbol cache of size SIZE. */
1223
1224 static struct symbol_cache *
1225 make_symbol_cache (unsigned int size)
1226 {
1227 struct symbol_cache *cache;
1228
1229 cache = XCNEW (struct symbol_cache);
1230 resize_symbol_cache (cache, symbol_cache_size);
1231 return cache;
1232 }
1233
1234 /* Free the space used by CACHE. */
1235
1236 static void
1237 free_symbol_cache (struct symbol_cache *cache)
1238 {
1239 xfree (cache->global_symbols);
1240 xfree (cache->static_symbols);
1241 xfree (cache);
1242 }
1243
1244 /* Return the symbol cache of PSPACE.
1245 Create one if it doesn't exist yet. */
1246
1247 static struct symbol_cache *
1248 get_symbol_cache (struct program_space *pspace)
1249 {
1250 struct symbol_cache *cache
1251 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1252
1253 if (cache == NULL)
1254 {
1255 cache = make_symbol_cache (symbol_cache_size);
1256 set_program_space_data (pspace, symbol_cache_key, cache);
1257 }
1258
1259 return cache;
1260 }
1261
1262 /* Delete the symbol cache of PSPACE.
1263 Called when PSPACE is destroyed. */
1264
1265 static void
1266 symbol_cache_cleanup (struct program_space *pspace, void *data)
1267 {
1268 struct symbol_cache *cache = (struct symbol_cache *) data;
1269
1270 free_symbol_cache (cache);
1271 }
1272
1273 /* Set the size of the symbol cache in all program spaces. */
1274
1275 static void
1276 set_symbol_cache_size (unsigned int new_size)
1277 {
1278 struct program_space *pspace;
1279
1280 ALL_PSPACES (pspace)
1281 {
1282 struct symbol_cache *cache
1283 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1284
1285 /* The pspace could have been created but not have a cache yet. */
1286 if (cache != NULL)
1287 resize_symbol_cache (cache, new_size);
1288 }
1289 }
1290
1291 /* Called when symbol-cache-size is set. */
1292
1293 static void
1294 set_symbol_cache_size_handler (const char *args, int from_tty,
1295 struct cmd_list_element *c)
1296 {
1297 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1298 {
1299 /* Restore the previous value.
1300 This is the value the "show" command prints. */
1301 new_symbol_cache_size = symbol_cache_size;
1302
1303 error (_("Symbol cache size is too large, max is %u."),
1304 MAX_SYMBOL_CACHE_SIZE);
1305 }
1306 symbol_cache_size = new_symbol_cache_size;
1307
1308 set_symbol_cache_size (symbol_cache_size);
1309 }
1310
1311 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1312 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1313 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1314 failed (and thus this one will too), or NULL if the symbol is not present
1315 in the cache.
1316 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1317 set to the cache and slot of the symbol to save the result of a full lookup
1318 attempt. */
1319
1320 static struct block_symbol
1321 symbol_cache_lookup (struct symbol_cache *cache,
1322 struct objfile *objfile_context, int block,
1323 const char *name, domain_enum domain,
1324 struct block_symbol_cache **bsc_ptr,
1325 struct symbol_cache_slot **slot_ptr)
1326 {
1327 struct block_symbol_cache *bsc;
1328 unsigned int hash;
1329 struct symbol_cache_slot *slot;
1330
1331 if (block == GLOBAL_BLOCK)
1332 bsc = cache->global_symbols;
1333 else
1334 bsc = cache->static_symbols;
1335 if (bsc == NULL)
1336 {
1337 *bsc_ptr = NULL;
1338 *slot_ptr = NULL;
1339 return {};
1340 }
1341
1342 hash = hash_symbol_entry (objfile_context, name, domain);
1343 slot = bsc->symbols + hash % bsc->size;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 *bsc_ptr = bsc;
1363 *slot_ptr = slot;
1364
1365 if (symbol_lookup_debug)
1366 {
1367 fprintf_unfiltered (gdb_stdlog,
1368 "%s block symbol cache miss for %s, %s\n",
1369 block == GLOBAL_BLOCK ? "Global" : "Static",
1370 name, domain_name (domain));
1371 }
1372 ++bsc->misses;
1373 return {};
1374 }
1375
1376 /* Clear out SLOT. */
1377
1378 static void
1379 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1380 {
1381 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1382 xfree (slot->value.not_found.name);
1383 slot->state = SYMBOL_SLOT_UNUSED;
1384 }
1385
1386 /* Mark SYMBOL as found in SLOT.
1387 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1388 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1389 necessarily the objfile the symbol was found in. */
1390
1391 static void
1392 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1393 struct symbol_cache_slot *slot,
1394 struct objfile *objfile_context,
1395 struct symbol *symbol,
1396 const struct block *block)
1397 {
1398 if (bsc == NULL)
1399 return;
1400 if (slot->state != SYMBOL_SLOT_UNUSED)
1401 {
1402 ++bsc->collisions;
1403 symbol_cache_clear_slot (slot);
1404 }
1405 slot->state = SYMBOL_SLOT_FOUND;
1406 slot->objfile_context = objfile_context;
1407 slot->value.found.symbol = symbol;
1408 slot->value.found.block = block;
1409 }
1410
1411 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1412 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1413 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1414
1415 static void
1416 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1417 struct symbol_cache_slot *slot,
1418 struct objfile *objfile_context,
1419 const char *name, domain_enum domain)
1420 {
1421 if (bsc == NULL)
1422 return;
1423 if (slot->state != SYMBOL_SLOT_UNUSED)
1424 {
1425 ++bsc->collisions;
1426 symbol_cache_clear_slot (slot);
1427 }
1428 slot->state = SYMBOL_SLOT_NOT_FOUND;
1429 slot->objfile_context = objfile_context;
1430 slot->value.not_found.name = xstrdup (name);
1431 slot->value.not_found.domain = domain;
1432 }
1433
1434 /* Flush the symbol cache of PSPACE. */
1435
1436 static void
1437 symbol_cache_flush (struct program_space *pspace)
1438 {
1439 struct symbol_cache *cache
1440 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1441 int pass;
1442
1443 if (cache == NULL)
1444 return;
1445 if (cache->global_symbols == NULL)
1446 {
1447 gdb_assert (symbol_cache_size == 0);
1448 gdb_assert (cache->static_symbols == NULL);
1449 return;
1450 }
1451
1452 /* If the cache is untouched since the last flush, early exit.
1453 This is important for performance during the startup of a program linked
1454 with 100s (or 1000s) of shared libraries. */
1455 if (cache->global_symbols->misses == 0
1456 && cache->static_symbols->misses == 0)
1457 return;
1458
1459 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1460 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1461
1462 for (pass = 0; pass < 2; ++pass)
1463 {
1464 struct block_symbol_cache *bsc
1465 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1466 unsigned int i;
1467
1468 for (i = 0; i < bsc->size; ++i)
1469 symbol_cache_clear_slot (&bsc->symbols[i]);
1470 }
1471
1472 cache->global_symbols->hits = 0;
1473 cache->global_symbols->misses = 0;
1474 cache->global_symbols->collisions = 0;
1475 cache->static_symbols->hits = 0;
1476 cache->static_symbols->misses = 0;
1477 cache->static_symbols->collisions = 0;
1478 }
1479
1480 /* Dump CACHE. */
1481
1482 static void
1483 symbol_cache_dump (const struct symbol_cache *cache)
1484 {
1485 int pass;
1486
1487 if (cache->global_symbols == NULL)
1488 {
1489 printf_filtered (" <disabled>\n");
1490 return;
1491 }
1492
1493 for (pass = 0; pass < 2; ++pass)
1494 {
1495 const struct block_symbol_cache *bsc
1496 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1497 unsigned int i;
1498
1499 if (pass == 0)
1500 printf_filtered ("Global symbols:\n");
1501 else
1502 printf_filtered ("Static symbols:\n");
1503
1504 for (i = 0; i < bsc->size; ++i)
1505 {
1506 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1507
1508 QUIT;
1509
1510 switch (slot->state)
1511 {
1512 case SYMBOL_SLOT_UNUSED:
1513 break;
1514 case SYMBOL_SLOT_NOT_FOUND:
1515 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1516 host_address_to_string (slot->objfile_context),
1517 slot->value.not_found.name,
1518 domain_name (slot->value.not_found.domain));
1519 break;
1520 case SYMBOL_SLOT_FOUND:
1521 {
1522 struct symbol *found = slot->value.found.symbol;
1523 const struct objfile *context = slot->objfile_context;
1524
1525 printf_filtered (" [%4u] = %s, %s %s\n", i,
1526 host_address_to_string (context),
1527 SYMBOL_PRINT_NAME (found),
1528 domain_name (SYMBOL_DOMAIN (found)));
1529 break;
1530 }
1531 }
1532 }
1533 }
1534 }
1535
1536 /* The "mt print symbol-cache" command. */
1537
1538 static void
1539 maintenance_print_symbol_cache (const char *args, int from_tty)
1540 {
1541 struct program_space *pspace;
1542
1543 ALL_PSPACES (pspace)
1544 {
1545 struct symbol_cache *cache;
1546
1547 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1548 pspace->num,
1549 pspace->symfile_object_file != NULL
1550 ? objfile_name (pspace->symfile_object_file)
1551 : "(no object file)");
1552
1553 /* If the cache hasn't been created yet, avoid creating one. */
1554 cache
1555 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1556 if (cache == NULL)
1557 printf_filtered (" <empty>\n");
1558 else
1559 symbol_cache_dump (cache);
1560 }
1561 }
1562
1563 /* The "mt flush-symbol-cache" command. */
1564
1565 static void
1566 maintenance_flush_symbol_cache (const char *args, int from_tty)
1567 {
1568 struct program_space *pspace;
1569
1570 ALL_PSPACES (pspace)
1571 {
1572 symbol_cache_flush (pspace);
1573 }
1574 }
1575
1576 /* Print usage statistics of CACHE. */
1577
1578 static void
1579 symbol_cache_stats (struct symbol_cache *cache)
1580 {
1581 int pass;
1582
1583 if (cache->global_symbols == NULL)
1584 {
1585 printf_filtered (" <disabled>\n");
1586 return;
1587 }
1588
1589 for (pass = 0; pass < 2; ++pass)
1590 {
1591 const struct block_symbol_cache *bsc
1592 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1593
1594 QUIT;
1595
1596 if (pass == 0)
1597 printf_filtered ("Global block cache stats:\n");
1598 else
1599 printf_filtered ("Static block cache stats:\n");
1600
1601 printf_filtered (" size: %u\n", bsc->size);
1602 printf_filtered (" hits: %u\n", bsc->hits);
1603 printf_filtered (" misses: %u\n", bsc->misses);
1604 printf_filtered (" collisions: %u\n", bsc->collisions);
1605 }
1606 }
1607
1608 /* The "mt print symbol-cache-statistics" command. */
1609
1610 static void
1611 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1612 {
1613 struct program_space *pspace;
1614
1615 ALL_PSPACES (pspace)
1616 {
1617 struct symbol_cache *cache;
1618
1619 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1620 pspace->num,
1621 pspace->symfile_object_file != NULL
1622 ? objfile_name (pspace->symfile_object_file)
1623 : "(no object file)");
1624
1625 /* If the cache hasn't been created yet, avoid creating one. */
1626 cache
1627 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1628 if (cache == NULL)
1629 printf_filtered (" empty, no stats available\n");
1630 else
1631 symbol_cache_stats (cache);
1632 }
1633 }
1634
1635 /* This module's 'new_objfile' observer. */
1636
1637 static void
1638 symtab_new_objfile_observer (struct objfile *objfile)
1639 {
1640 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1641 symbol_cache_flush (current_program_space);
1642 }
1643
1644 /* This module's 'free_objfile' observer. */
1645
1646 static void
1647 symtab_free_objfile_observer (struct objfile *objfile)
1648 {
1649 symbol_cache_flush (objfile->pspace);
1650 }
1651 \f
1652 /* Debug symbols usually don't have section information. We need to dig that
1653 out of the minimal symbols and stash that in the debug symbol. */
1654
1655 void
1656 fixup_section (struct general_symbol_info *ginfo,
1657 CORE_ADDR addr, struct objfile *objfile)
1658 {
1659 struct minimal_symbol *msym;
1660
1661 /* First, check whether a minimal symbol with the same name exists
1662 and points to the same address. The address check is required
1663 e.g. on PowerPC64, where the minimal symbol for a function will
1664 point to the function descriptor, while the debug symbol will
1665 point to the actual function code. */
1666 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1667 if (msym)
1668 ginfo->section = MSYMBOL_SECTION (msym);
1669 else
1670 {
1671 /* Static, function-local variables do appear in the linker
1672 (minimal) symbols, but are frequently given names that won't
1673 be found via lookup_minimal_symbol(). E.g., it has been
1674 observed in frv-uclinux (ELF) executables that a static,
1675 function-local variable named "foo" might appear in the
1676 linker symbols as "foo.6" or "foo.3". Thus, there is no
1677 point in attempting to extend the lookup-by-name mechanism to
1678 handle this case due to the fact that there can be multiple
1679 names.
1680
1681 So, instead, search the section table when lookup by name has
1682 failed. The ``addr'' and ``endaddr'' fields may have already
1683 been relocated. If so, the relocation offset (i.e. the
1684 ANOFFSET value) needs to be subtracted from these values when
1685 performing the comparison. We unconditionally subtract it,
1686 because, when no relocation has been performed, the ANOFFSET
1687 value will simply be zero.
1688
1689 The address of the symbol whose section we're fixing up HAS
1690 NOT BEEN adjusted (relocated) yet. It can't have been since
1691 the section isn't yet known and knowing the section is
1692 necessary in order to add the correct relocation value. In
1693 other words, we wouldn't even be in this function (attempting
1694 to compute the section) if it were already known.
1695
1696 Note that it is possible to search the minimal symbols
1697 (subtracting the relocation value if necessary) to find the
1698 matching minimal symbol, but this is overkill and much less
1699 efficient. It is not necessary to find the matching minimal
1700 symbol, only its section.
1701
1702 Note that this technique (of doing a section table search)
1703 can fail when unrelocated section addresses overlap. For
1704 this reason, we still attempt a lookup by name prior to doing
1705 a search of the section table. */
1706
1707 struct obj_section *s;
1708 int fallback = -1;
1709
1710 ALL_OBJFILE_OSECTIONS (objfile, s)
1711 {
1712 int idx = s - objfile->sections;
1713 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1714
1715 if (fallback == -1)
1716 fallback = idx;
1717
1718 if (obj_section_addr (s) - offset <= addr
1719 && addr < obj_section_endaddr (s) - offset)
1720 {
1721 ginfo->section = idx;
1722 return;
1723 }
1724 }
1725
1726 /* If we didn't find the section, assume it is in the first
1727 section. If there is no allocated section, then it hardly
1728 matters what we pick, so just pick zero. */
1729 if (fallback == -1)
1730 ginfo->section = 0;
1731 else
1732 ginfo->section = fallback;
1733 }
1734 }
1735
1736 struct symbol *
1737 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1738 {
1739 CORE_ADDR addr;
1740
1741 if (!sym)
1742 return NULL;
1743
1744 if (!SYMBOL_OBJFILE_OWNED (sym))
1745 return sym;
1746
1747 /* We either have an OBJFILE, or we can get at it from the sym's
1748 symtab. Anything else is a bug. */
1749 gdb_assert (objfile || symbol_symtab (sym));
1750
1751 if (objfile == NULL)
1752 objfile = symbol_objfile (sym);
1753
1754 if (SYMBOL_OBJ_SECTION (objfile, sym))
1755 return sym;
1756
1757 /* We should have an objfile by now. */
1758 gdb_assert (objfile);
1759
1760 switch (SYMBOL_CLASS (sym))
1761 {
1762 case LOC_STATIC:
1763 case LOC_LABEL:
1764 addr = SYMBOL_VALUE_ADDRESS (sym);
1765 break;
1766 case LOC_BLOCK:
1767 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1768 break;
1769
1770 default:
1771 /* Nothing else will be listed in the minsyms -- no use looking
1772 it up. */
1773 return sym;
1774 }
1775
1776 fixup_section (&sym->ginfo, addr, objfile);
1777
1778 return sym;
1779 }
1780
1781 /* See symtab.h. */
1782
1783 demangle_for_lookup_info::demangle_for_lookup_info
1784 (const lookup_name_info &lookup_name, language lang)
1785 {
1786 demangle_result_storage storage;
1787
1788 if (lookup_name.ignore_parameters () && lang == language_cplus)
1789 {
1790 gdb::unique_xmalloc_ptr<char> without_params
1791 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1792 lookup_name.completion_mode ());
1793
1794 if (without_params != NULL)
1795 {
1796 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1797 m_demangled_name = demangle_for_lookup (without_params.get (),
1798 lang, storage);
1799 return;
1800 }
1801 }
1802
1803 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1804 m_demangled_name = lookup_name.name ();
1805 else
1806 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1807 lang, storage);
1808 }
1809
1810 /* See symtab.h. */
1811
1812 const lookup_name_info &
1813 lookup_name_info::match_any ()
1814 {
1815 /* Lookup any symbol that "" would complete. I.e., this matches all
1816 symbol names. */
1817 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1818 true);
1819
1820 return lookup_name;
1821 }
1822
1823 /* Compute the demangled form of NAME as used by the various symbol
1824 lookup functions. The result can either be the input NAME
1825 directly, or a pointer to a buffer owned by the STORAGE object.
1826
1827 For Ada, this function just returns NAME, unmodified.
1828 Normally, Ada symbol lookups are performed using the encoded name
1829 rather than the demangled name, and so it might seem to make sense
1830 for this function to return an encoded version of NAME.
1831 Unfortunately, we cannot do this, because this function is used in
1832 circumstances where it is not appropriate to try to encode NAME.
1833 For instance, when displaying the frame info, we demangle the name
1834 of each parameter, and then perform a symbol lookup inside our
1835 function using that demangled name. In Ada, certain functions
1836 have internally-generated parameters whose name contain uppercase
1837 characters. Encoding those name would result in those uppercase
1838 characters to become lowercase, and thus cause the symbol lookup
1839 to fail. */
1840
1841 const char *
1842 demangle_for_lookup (const char *name, enum language lang,
1843 demangle_result_storage &storage)
1844 {
1845 /* If we are using C++, D, or Go, demangle the name before doing a
1846 lookup, so we can always binary search. */
1847 if (lang == language_cplus)
1848 {
1849 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1850 if (demangled_name != NULL)
1851 return storage.set_malloc_ptr (demangled_name);
1852
1853 /* If we were given a non-mangled name, canonicalize it
1854 according to the language (so far only for C++). */
1855 std::string canon = cp_canonicalize_string (name);
1856 if (!canon.empty ())
1857 return storage.swap_string (canon);
1858 }
1859 else if (lang == language_d)
1860 {
1861 char *demangled_name = d_demangle (name, 0);
1862 if (demangled_name != NULL)
1863 return storage.set_malloc_ptr (demangled_name);
1864 }
1865 else if (lang == language_go)
1866 {
1867 char *demangled_name = go_demangle (name, 0);
1868 if (demangled_name != NULL)
1869 return storage.set_malloc_ptr (demangled_name);
1870 }
1871
1872 return name;
1873 }
1874
1875 /* See symtab.h. */
1876
1877 unsigned int
1878 search_name_hash (enum language language, const char *search_name)
1879 {
1880 return language_def (language)->la_search_name_hash (search_name);
1881 }
1882
1883 /* See symtab.h.
1884
1885 This function (or rather its subordinates) have a bunch of loops and
1886 it would seem to be attractive to put in some QUIT's (though I'm not really
1887 sure whether it can run long enough to be really important). But there
1888 are a few calls for which it would appear to be bad news to quit
1889 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1890 that there is C++ code below which can error(), but that probably
1891 doesn't affect these calls since they are looking for a known
1892 variable and thus can probably assume it will never hit the C++
1893 code). */
1894
1895 struct block_symbol
1896 lookup_symbol_in_language (const char *name, const struct block *block,
1897 const domain_enum domain, enum language lang,
1898 struct field_of_this_result *is_a_field_of_this)
1899 {
1900 demangle_result_storage storage;
1901 const char *modified_name = demangle_for_lookup (name, lang, storage);
1902
1903 return lookup_symbol_aux (modified_name,
1904 symbol_name_match_type::FULL,
1905 block, domain, lang,
1906 is_a_field_of_this);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_symbol (const char *name, const struct block *block,
1913 domain_enum domain,
1914 struct field_of_this_result *is_a_field_of_this)
1915 {
1916 return lookup_symbol_in_language (name, block, domain,
1917 current_language->la_language,
1918 is_a_field_of_this);
1919 }
1920
1921 /* See symtab.h. */
1922
1923 struct block_symbol
1924 lookup_symbol_search_name (const char *search_name, const struct block *block,
1925 domain_enum domain)
1926 {
1927 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1928 block, domain, language_asm, NULL);
1929 }
1930
1931 /* See symtab.h. */
1932
1933 struct block_symbol
1934 lookup_language_this (const struct language_defn *lang,
1935 const struct block *block)
1936 {
1937 if (lang->la_name_of_this == NULL || block == NULL)
1938 return {};
1939
1940 if (symbol_lookup_debug > 1)
1941 {
1942 struct objfile *objfile = lookup_objfile_from_block (block);
1943
1944 fprintf_unfiltered (gdb_stdlog,
1945 "lookup_language_this (%s, %s (objfile %s))",
1946 lang->la_name, host_address_to_string (block),
1947 objfile_debug_name (objfile));
1948 }
1949
1950 while (block)
1951 {
1952 struct symbol *sym;
1953
1954 sym = block_lookup_symbol (block, lang->la_name_of_this,
1955 symbol_name_match_type::SEARCH_NAME,
1956 VAR_DOMAIN);
1957 if (sym != NULL)
1958 {
1959 if (symbol_lookup_debug > 1)
1960 {
1961 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1962 SYMBOL_PRINT_NAME (sym),
1963 host_address_to_string (sym),
1964 host_address_to_string (block));
1965 }
1966 return (struct block_symbol) {sym, block};
1967 }
1968 if (BLOCK_FUNCTION (block))
1969 break;
1970 block = BLOCK_SUPERBLOCK (block);
1971 }
1972
1973 if (symbol_lookup_debug > 1)
1974 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1975 return {};
1976 }
1977
1978 /* Given TYPE, a structure/union,
1979 return 1 if the component named NAME from the ultimate target
1980 structure/union is defined, otherwise, return 0. */
1981
1982 static int
1983 check_field (struct type *type, const char *name,
1984 struct field_of_this_result *is_a_field_of_this)
1985 {
1986 int i;
1987
1988 /* The type may be a stub. */
1989 type = check_typedef (type);
1990
1991 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1992 {
1993 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1994
1995 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1996 {
1997 is_a_field_of_this->type = type;
1998 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1999 return 1;
2000 }
2001 }
2002
2003 /* C++: If it was not found as a data field, then try to return it
2004 as a pointer to a method. */
2005
2006 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2007 {
2008 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2009 {
2010 is_a_field_of_this->type = type;
2011 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2012 return 1;
2013 }
2014 }
2015
2016 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2017 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2018 return 1;
2019
2020 return 0;
2021 }
2022
2023 /* Behave like lookup_symbol except that NAME is the natural name
2024 (e.g., demangled name) of the symbol that we're looking for. */
2025
2026 static struct block_symbol
2027 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2028 const struct block *block,
2029 const domain_enum domain, enum language language,
2030 struct field_of_this_result *is_a_field_of_this)
2031 {
2032 struct block_symbol result;
2033 const struct language_defn *langdef;
2034
2035 if (symbol_lookup_debug)
2036 {
2037 struct objfile *objfile = lookup_objfile_from_block (block);
2038
2039 fprintf_unfiltered (gdb_stdlog,
2040 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2041 name, host_address_to_string (block),
2042 objfile != NULL
2043 ? objfile_debug_name (objfile) : "NULL",
2044 domain_name (domain), language_str (language));
2045 }
2046
2047 /* Make sure we do something sensible with is_a_field_of_this, since
2048 the callers that set this parameter to some non-null value will
2049 certainly use it later. If we don't set it, the contents of
2050 is_a_field_of_this are undefined. */
2051 if (is_a_field_of_this != NULL)
2052 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2053
2054 /* Search specified block and its superiors. Don't search
2055 STATIC_BLOCK or GLOBAL_BLOCK. */
2056
2057 result = lookup_local_symbol (name, match_type, block, domain, language);
2058 if (result.symbol != NULL)
2059 {
2060 if (symbol_lookup_debug)
2061 {
2062 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2063 host_address_to_string (result.symbol));
2064 }
2065 return result;
2066 }
2067
2068 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2069 check to see if NAME is a field of `this'. */
2070
2071 langdef = language_def (language);
2072
2073 /* Don't do this check if we are searching for a struct. It will
2074 not be found by check_field, but will be found by other
2075 means. */
2076 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2077 {
2078 result = lookup_language_this (langdef, block);
2079
2080 if (result.symbol)
2081 {
2082 struct type *t = result.symbol->type;
2083
2084 /* I'm not really sure that type of this can ever
2085 be typedefed; just be safe. */
2086 t = check_typedef (t);
2087 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2088 t = TYPE_TARGET_TYPE (t);
2089
2090 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2091 && TYPE_CODE (t) != TYPE_CODE_UNION)
2092 error (_("Internal error: `%s' is not an aggregate"),
2093 langdef->la_name_of_this);
2094
2095 if (check_field (t, name, is_a_field_of_this))
2096 {
2097 if (symbol_lookup_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog,
2100 "lookup_symbol_aux (...) = NULL\n");
2101 }
2102 return {};
2103 }
2104 }
2105 }
2106
2107 /* Now do whatever is appropriate for LANGUAGE to look
2108 up static and global variables. */
2109
2110 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2111 if (result.symbol != NULL)
2112 {
2113 if (symbol_lookup_debug)
2114 {
2115 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2116 host_address_to_string (result.symbol));
2117 }
2118 return result;
2119 }
2120
2121 /* Now search all static file-level symbols. Not strictly correct,
2122 but more useful than an error. */
2123
2124 result = lookup_static_symbol (name, domain);
2125 if (symbol_lookup_debug)
2126 {
2127 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2128 result.symbol != NULL
2129 ? host_address_to_string (result.symbol)
2130 : "NULL");
2131 }
2132 return result;
2133 }
2134
2135 /* Check to see if the symbol is defined in BLOCK or its superiors.
2136 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2137
2138 static struct block_symbol
2139 lookup_local_symbol (const char *name,
2140 symbol_name_match_type match_type,
2141 const struct block *block,
2142 const domain_enum domain,
2143 enum language language)
2144 {
2145 struct symbol *sym;
2146 const struct block *static_block = block_static_block (block);
2147 const char *scope = block_scope (block);
2148
2149 /* Check if either no block is specified or it's a global block. */
2150
2151 if (static_block == NULL)
2152 return {};
2153
2154 while (block != static_block)
2155 {
2156 sym = lookup_symbol_in_block (name, match_type, block, domain);
2157 if (sym != NULL)
2158 return (struct block_symbol) {sym, block};
2159
2160 if (language == language_cplus || language == language_fortran)
2161 {
2162 struct block_symbol blocksym
2163 = cp_lookup_symbol_imports_or_template (scope, name, block,
2164 domain);
2165
2166 if (blocksym.symbol != NULL)
2167 return blocksym;
2168 }
2169
2170 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2171 break;
2172 block = BLOCK_SUPERBLOCK (block);
2173 }
2174
2175 /* We've reached the end of the function without finding a result. */
2176
2177 return {};
2178 }
2179
2180 /* See symtab.h. */
2181
2182 struct objfile *
2183 lookup_objfile_from_block (const struct block *block)
2184 {
2185 if (block == NULL)
2186 return NULL;
2187
2188 block = block_global_block (block);
2189 /* Look through all blockvectors. */
2190 for (objfile *obj : current_program_space->objfiles ())
2191 {
2192 for (compunit_symtab *cust : obj->compunits ())
2193 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2194 GLOBAL_BLOCK))
2195 {
2196 if (obj->separate_debug_objfile_backlink)
2197 obj = obj->separate_debug_objfile_backlink;
2198
2199 return obj;
2200 }
2201 }
2202
2203 return NULL;
2204 }
2205
2206 /* See symtab.h. */
2207
2208 struct symbol *
2209 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2210 const struct block *block,
2211 const domain_enum domain)
2212 {
2213 struct symbol *sym;
2214
2215 if (symbol_lookup_debug > 1)
2216 {
2217 struct objfile *objfile = lookup_objfile_from_block (block);
2218
2219 fprintf_unfiltered (gdb_stdlog,
2220 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2221 name, host_address_to_string (block),
2222 objfile_debug_name (objfile),
2223 domain_name (domain));
2224 }
2225
2226 sym = block_lookup_symbol (block, name, match_type, domain);
2227 if (sym)
2228 {
2229 if (symbol_lookup_debug > 1)
2230 {
2231 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2232 host_address_to_string (sym));
2233 }
2234 return fixup_symbol_section (sym, NULL);
2235 }
2236
2237 if (symbol_lookup_debug > 1)
2238 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2239 return NULL;
2240 }
2241
2242 /* See symtab.h. */
2243
2244 struct block_symbol
2245 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2246 const char *name,
2247 const domain_enum domain)
2248 {
2249 struct objfile *objfile;
2250
2251 for (objfile = main_objfile;
2252 objfile;
2253 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2254 {
2255 struct block_symbol result
2256 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2257
2258 if (result.symbol != NULL)
2259 return result;
2260 }
2261
2262 return {};
2263 }
2264
2265 /* Check to see if the symbol is defined in one of the OBJFILE's
2266 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2267 depending on whether or not we want to search global symbols or
2268 static symbols. */
2269
2270 static struct block_symbol
2271 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2272 const char *name, const domain_enum domain)
2273 {
2274 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2275
2276 if (symbol_lookup_debug > 1)
2277 {
2278 fprintf_unfiltered (gdb_stdlog,
2279 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2280 objfile_debug_name (objfile),
2281 block_index == GLOBAL_BLOCK
2282 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2283 name, domain_name (domain));
2284 }
2285
2286 for (compunit_symtab *cust : objfile->compunits ())
2287 {
2288 const struct blockvector *bv;
2289 const struct block *block;
2290 struct block_symbol result;
2291
2292 bv = COMPUNIT_BLOCKVECTOR (cust);
2293 block = BLOCKVECTOR_BLOCK (bv, block_index);
2294 result.symbol = block_lookup_symbol_primary (block, name, domain);
2295 result.block = block;
2296 if (result.symbol != NULL)
2297 {
2298 if (symbol_lookup_debug > 1)
2299 {
2300 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2301 host_address_to_string (result.symbol),
2302 host_address_to_string (block));
2303 }
2304 result.symbol = fixup_symbol_section (result.symbol, objfile);
2305 return result;
2306
2307 }
2308 }
2309
2310 if (symbol_lookup_debug > 1)
2311 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2312 return {};
2313 }
2314
2315 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2316 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2317 and all associated separate debug objfiles.
2318
2319 Normally we only look in OBJFILE, and not any separate debug objfiles
2320 because the outer loop will cause them to be searched too. This case is
2321 different. Here we're called from search_symbols where it will only
2322 call us for the objfile that contains a matching minsym. */
2323
2324 static struct block_symbol
2325 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2326 const char *linkage_name,
2327 domain_enum domain)
2328 {
2329 enum language lang = current_language->la_language;
2330 struct objfile *main_objfile, *cur_objfile;
2331
2332 demangle_result_storage storage;
2333 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2334
2335 if (objfile->separate_debug_objfile_backlink)
2336 main_objfile = objfile->separate_debug_objfile_backlink;
2337 else
2338 main_objfile = objfile;
2339
2340 for (cur_objfile = main_objfile;
2341 cur_objfile;
2342 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2343 {
2344 struct block_symbol result;
2345
2346 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2347 modified_name, domain);
2348 if (result.symbol == NULL)
2349 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2350 modified_name, domain);
2351 if (result.symbol != NULL)
2352 return result;
2353 }
2354
2355 return {};
2356 }
2357
2358 /* A helper function that throws an exception when a symbol was found
2359 in a psymtab but not in a symtab. */
2360
2361 static void ATTRIBUTE_NORETURN
2362 error_in_psymtab_expansion (int block_index, const char *name,
2363 struct compunit_symtab *cust)
2364 {
2365 error (_("\
2366 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2367 %s may be an inlined function, or may be a template function\n \
2368 (if a template, try specifying an instantiation: %s<type>)."),
2369 block_index == GLOBAL_BLOCK ? "global" : "static",
2370 name,
2371 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2372 name, name);
2373 }
2374
2375 /* A helper function for various lookup routines that interfaces with
2376 the "quick" symbol table functions. */
2377
2378 static struct block_symbol
2379 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2380 const char *name, const domain_enum domain)
2381 {
2382 struct compunit_symtab *cust;
2383 const struct blockvector *bv;
2384 const struct block *block;
2385 struct block_symbol result;
2386
2387 if (!objfile->sf)
2388 return {};
2389
2390 if (symbol_lookup_debug > 1)
2391 {
2392 fprintf_unfiltered (gdb_stdlog,
2393 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2394 objfile_debug_name (objfile),
2395 block_index == GLOBAL_BLOCK
2396 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2397 name, domain_name (domain));
2398 }
2399
2400 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2401 if (cust == NULL)
2402 {
2403 if (symbol_lookup_debug > 1)
2404 {
2405 fprintf_unfiltered (gdb_stdlog,
2406 "lookup_symbol_via_quick_fns (...) = NULL\n");
2407 }
2408 return {};
2409 }
2410
2411 bv = COMPUNIT_BLOCKVECTOR (cust);
2412 block = BLOCKVECTOR_BLOCK (bv, block_index);
2413 result.symbol = block_lookup_symbol (block, name,
2414 symbol_name_match_type::FULL, domain);
2415 if (result.symbol == NULL)
2416 error_in_psymtab_expansion (block_index, name, cust);
2417
2418 if (symbol_lookup_debug > 1)
2419 {
2420 fprintf_unfiltered (gdb_stdlog,
2421 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2422 host_address_to_string (result.symbol),
2423 host_address_to_string (block));
2424 }
2425
2426 result.symbol = fixup_symbol_section (result.symbol, objfile);
2427 result.block = block;
2428 return result;
2429 }
2430
2431 /* See symtab.h. */
2432
2433 struct block_symbol
2434 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2435 const char *name,
2436 const struct block *block,
2437 const domain_enum domain)
2438 {
2439 struct block_symbol result;
2440
2441 /* NOTE: carlton/2003-05-19: The comments below were written when
2442 this (or what turned into this) was part of lookup_symbol_aux;
2443 I'm much less worried about these questions now, since these
2444 decisions have turned out well, but I leave these comments here
2445 for posterity. */
2446
2447 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2448 not it would be appropriate to search the current global block
2449 here as well. (That's what this code used to do before the
2450 is_a_field_of_this check was moved up.) On the one hand, it's
2451 redundant with the lookup in all objfiles search that happens
2452 next. On the other hand, if decode_line_1 is passed an argument
2453 like filename:var, then the user presumably wants 'var' to be
2454 searched for in filename. On the third hand, there shouldn't be
2455 multiple global variables all of which are named 'var', and it's
2456 not like decode_line_1 has ever restricted its search to only
2457 global variables in a single filename. All in all, only
2458 searching the static block here seems best: it's correct and it's
2459 cleanest. */
2460
2461 /* NOTE: carlton/2002-12-05: There's also a possible performance
2462 issue here: if you usually search for global symbols in the
2463 current file, then it would be slightly better to search the
2464 current global block before searching all the symtabs. But there
2465 are other factors that have a much greater effect on performance
2466 than that one, so I don't think we should worry about that for
2467 now. */
2468
2469 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2470 the current objfile. Searching the current objfile first is useful
2471 for both matching user expectations as well as performance. */
2472
2473 result = lookup_symbol_in_static_block (name, block, domain);
2474 if (result.symbol != NULL)
2475 return result;
2476
2477 /* If we didn't find a definition for a builtin type in the static block,
2478 search for it now. This is actually the right thing to do and can be
2479 a massive performance win. E.g., when debugging a program with lots of
2480 shared libraries we could search all of them only to find out the
2481 builtin type isn't defined in any of them. This is common for types
2482 like "void". */
2483 if (domain == VAR_DOMAIN)
2484 {
2485 struct gdbarch *gdbarch;
2486
2487 if (block == NULL)
2488 gdbarch = target_gdbarch ();
2489 else
2490 gdbarch = block_gdbarch (block);
2491 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2492 gdbarch, name);
2493 result.block = NULL;
2494 if (result.symbol != NULL)
2495 return result;
2496 }
2497
2498 return lookup_global_symbol (name, block, domain);
2499 }
2500
2501 /* See symtab.h. */
2502
2503 struct block_symbol
2504 lookup_symbol_in_static_block (const char *name,
2505 const struct block *block,
2506 const domain_enum domain)
2507 {
2508 const struct block *static_block = block_static_block (block);
2509 struct symbol *sym;
2510
2511 if (static_block == NULL)
2512 return {};
2513
2514 if (symbol_lookup_debug)
2515 {
2516 struct objfile *objfile = lookup_objfile_from_block (static_block);
2517
2518 fprintf_unfiltered (gdb_stdlog,
2519 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2520 " %s)\n",
2521 name,
2522 host_address_to_string (block),
2523 objfile_debug_name (objfile),
2524 domain_name (domain));
2525 }
2526
2527 sym = lookup_symbol_in_block (name,
2528 symbol_name_match_type::FULL,
2529 static_block, domain);
2530 if (symbol_lookup_debug)
2531 {
2532 fprintf_unfiltered (gdb_stdlog,
2533 "lookup_symbol_in_static_block (...) = %s\n",
2534 sym != NULL ? host_address_to_string (sym) : "NULL");
2535 }
2536 return (struct block_symbol) {sym, static_block};
2537 }
2538
2539 /* Perform the standard symbol lookup of NAME in OBJFILE:
2540 1) First search expanded symtabs, and if not found
2541 2) Search the "quick" symtabs (partial or .gdb_index).
2542 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2543
2544 static struct block_symbol
2545 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2546 const char *name, const domain_enum domain)
2547 {
2548 struct block_symbol result;
2549
2550 if (symbol_lookup_debug)
2551 {
2552 fprintf_unfiltered (gdb_stdlog,
2553 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2554 objfile_debug_name (objfile),
2555 block_index == GLOBAL_BLOCK
2556 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2557 name, domain_name (domain));
2558 }
2559
2560 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2561 name, domain);
2562 if (result.symbol != NULL)
2563 {
2564 if (symbol_lookup_debug)
2565 {
2566 fprintf_unfiltered (gdb_stdlog,
2567 "lookup_symbol_in_objfile (...) = %s"
2568 " (in symtabs)\n",
2569 host_address_to_string (result.symbol));
2570 }
2571 return result;
2572 }
2573
2574 result = lookup_symbol_via_quick_fns (objfile, block_index,
2575 name, domain);
2576 if (symbol_lookup_debug)
2577 {
2578 fprintf_unfiltered (gdb_stdlog,
2579 "lookup_symbol_in_objfile (...) = %s%s\n",
2580 result.symbol != NULL
2581 ? host_address_to_string (result.symbol)
2582 : "NULL",
2583 result.symbol != NULL ? " (via quick fns)" : "");
2584 }
2585 return result;
2586 }
2587
2588 /* See symtab.h. */
2589
2590 struct block_symbol
2591 lookup_static_symbol (const char *name, const domain_enum domain)
2592 {
2593 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2594 struct block_symbol result;
2595 struct block_symbol_cache *bsc;
2596 struct symbol_cache_slot *slot;
2597
2598 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2599 NULL for OBJFILE_CONTEXT. */
2600 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2601 &bsc, &slot);
2602 if (result.symbol != NULL)
2603 {
2604 if (SYMBOL_LOOKUP_FAILED_P (result))
2605 return {};
2606 return result;
2607 }
2608
2609 for (objfile *objfile : current_program_space->objfiles ())
2610 {
2611 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2612 if (result.symbol != NULL)
2613 {
2614 /* Still pass NULL for OBJFILE_CONTEXT here. */
2615 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2616 result.block);
2617 return result;
2618 }
2619 }
2620
2621 /* Still pass NULL for OBJFILE_CONTEXT here. */
2622 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2623 return {};
2624 }
2625
2626 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2627
2628 struct global_sym_lookup_data
2629 {
2630 /* The name of the symbol we are searching for. */
2631 const char *name;
2632
2633 /* The domain to use for our search. */
2634 domain_enum domain;
2635
2636 /* The field where the callback should store the symbol if found.
2637 It should be initialized to {NULL, NULL} before the search is started. */
2638 struct block_symbol result;
2639 };
2640
2641 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2642 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2643 OBJFILE. The arguments for the search are passed via CB_DATA,
2644 which in reality is a pointer to struct global_sym_lookup_data. */
2645
2646 static int
2647 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2648 void *cb_data)
2649 {
2650 struct global_sym_lookup_data *data =
2651 (struct global_sym_lookup_data *) cb_data;
2652
2653 gdb_assert (data->result.symbol == NULL
2654 && data->result.block == NULL);
2655
2656 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2657 data->name, data->domain);
2658
2659 /* If we found a match, tell the iterator to stop. Otherwise,
2660 keep going. */
2661 return (data->result.symbol != NULL);
2662 }
2663
2664 /* See symtab.h. */
2665
2666 struct block_symbol
2667 lookup_global_symbol (const char *name,
2668 const struct block *block,
2669 const domain_enum domain)
2670 {
2671 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2672 struct block_symbol result;
2673 struct objfile *objfile;
2674 struct global_sym_lookup_data lookup_data;
2675 struct block_symbol_cache *bsc;
2676 struct symbol_cache_slot *slot;
2677
2678 objfile = lookup_objfile_from_block (block);
2679
2680 /* First see if we can find the symbol in the cache.
2681 This works because we use the current objfile to qualify the lookup. */
2682 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2683 &bsc, &slot);
2684 if (result.symbol != NULL)
2685 {
2686 if (SYMBOL_LOOKUP_FAILED_P (result))
2687 return {};
2688 return result;
2689 }
2690
2691 /* Call library-specific lookup procedure. */
2692 if (objfile != NULL)
2693 result = solib_global_lookup (objfile, name, domain);
2694
2695 /* If that didn't work go a global search (of global blocks, heh). */
2696 if (result.symbol == NULL)
2697 {
2698 memset (&lookup_data, 0, sizeof (lookup_data));
2699 lookup_data.name = name;
2700 lookup_data.domain = domain;
2701 gdbarch_iterate_over_objfiles_in_search_order
2702 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2703 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2704 result = lookup_data.result;
2705 }
2706
2707 if (result.symbol != NULL)
2708 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2709 else
2710 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2711
2712 return result;
2713 }
2714
2715 int
2716 symbol_matches_domain (enum language symbol_language,
2717 domain_enum symbol_domain,
2718 domain_enum domain)
2719 {
2720 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2721 Similarly, any Ada type declaration implicitly defines a typedef. */
2722 if (symbol_language == language_cplus
2723 || symbol_language == language_d
2724 || symbol_language == language_ada
2725 || symbol_language == language_rust)
2726 {
2727 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2728 && symbol_domain == STRUCT_DOMAIN)
2729 return 1;
2730 }
2731 /* For all other languages, strict match is required. */
2732 return (symbol_domain == domain);
2733 }
2734
2735 /* See symtab.h. */
2736
2737 struct type *
2738 lookup_transparent_type (const char *name)
2739 {
2740 return current_language->la_lookup_transparent_type (name);
2741 }
2742
2743 /* A helper for basic_lookup_transparent_type that interfaces with the
2744 "quick" symbol table functions. */
2745
2746 static struct type *
2747 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2748 const char *name)
2749 {
2750 struct compunit_symtab *cust;
2751 const struct blockvector *bv;
2752 const struct block *block;
2753 struct symbol *sym;
2754
2755 if (!objfile->sf)
2756 return NULL;
2757 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2758 STRUCT_DOMAIN);
2759 if (cust == NULL)
2760 return NULL;
2761
2762 bv = COMPUNIT_BLOCKVECTOR (cust);
2763 block = BLOCKVECTOR_BLOCK (bv, block_index);
2764 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2765 block_find_non_opaque_type, NULL);
2766 if (sym == NULL)
2767 error_in_psymtab_expansion (block_index, name, cust);
2768 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2769 return SYMBOL_TYPE (sym);
2770 }
2771
2772 /* Subroutine of basic_lookup_transparent_type to simplify it.
2773 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2774 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2775
2776 static struct type *
2777 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2778 const char *name)
2779 {
2780 const struct blockvector *bv;
2781 const struct block *block;
2782 const struct symbol *sym;
2783
2784 for (compunit_symtab *cust : objfile->compunits ())
2785 {
2786 bv = COMPUNIT_BLOCKVECTOR (cust);
2787 block = BLOCKVECTOR_BLOCK (bv, block_index);
2788 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2789 block_find_non_opaque_type, NULL);
2790 if (sym != NULL)
2791 {
2792 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2793 return SYMBOL_TYPE (sym);
2794 }
2795 }
2796
2797 return NULL;
2798 }
2799
2800 /* The standard implementation of lookup_transparent_type. This code
2801 was modeled on lookup_symbol -- the parts not relevant to looking
2802 up types were just left out. In particular it's assumed here that
2803 types are available in STRUCT_DOMAIN and only in file-static or
2804 global blocks. */
2805
2806 struct type *
2807 basic_lookup_transparent_type (const char *name)
2808 {
2809 struct type *t;
2810
2811 /* Now search all the global symbols. Do the symtab's first, then
2812 check the psymtab's. If a psymtab indicates the existence
2813 of the desired name as a global, then do psymtab-to-symtab
2814 conversion on the fly and return the found symbol. */
2815
2816 for (objfile *objfile : current_program_space->objfiles ())
2817 {
2818 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2819 if (t)
2820 return t;
2821 }
2822
2823 for (objfile *objfile : current_program_space->objfiles ())
2824 {
2825 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2826 if (t)
2827 return t;
2828 }
2829
2830 /* Now search the static file-level symbols.
2831 Not strictly correct, but more useful than an error.
2832 Do the symtab's first, then
2833 check the psymtab's. If a psymtab indicates the existence
2834 of the desired name as a file-level static, then do psymtab-to-symtab
2835 conversion on the fly and return the found symbol. */
2836
2837 for (objfile *objfile : current_program_space->objfiles ())
2838 {
2839 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2840 if (t)
2841 return t;
2842 }
2843
2844 for (objfile *objfile : current_program_space->objfiles ())
2845 {
2846 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2847 if (t)
2848 return t;
2849 }
2850
2851 return (struct type *) 0;
2852 }
2853
2854 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2855
2856 For each symbol that matches, CALLBACK is called. The symbol is
2857 passed to the callback.
2858
2859 If CALLBACK returns false, the iteration ends. Otherwise, the
2860 search continues. */
2861
2862 void
2863 iterate_over_symbols (const struct block *block,
2864 const lookup_name_info &name,
2865 const domain_enum domain,
2866 gdb::function_view<symbol_found_callback_ftype> callback)
2867 {
2868 struct block_iterator iter;
2869 struct symbol *sym;
2870
2871 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2872 {
2873 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2874 SYMBOL_DOMAIN (sym), domain))
2875 {
2876 struct block_symbol block_sym = {sym, block};
2877
2878 if (!callback (&block_sym))
2879 return;
2880 }
2881 }
2882 }
2883
2884 /* Find the compunit symtab associated with PC and SECTION.
2885 This will read in debug info as necessary. */
2886
2887 struct compunit_symtab *
2888 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2889 {
2890 struct compunit_symtab *best_cust = NULL;
2891 CORE_ADDR distance = 0;
2892 struct bound_minimal_symbol msymbol;
2893
2894 /* If we know that this is not a text address, return failure. This is
2895 necessary because we loop based on the block's high and low code
2896 addresses, which do not include the data ranges, and because
2897 we call find_pc_sect_psymtab which has a similar restriction based
2898 on the partial_symtab's texthigh and textlow. */
2899 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2900 if (msymbol.minsym && msymbol.minsym->data_p ())
2901 return NULL;
2902
2903 /* Search all symtabs for the one whose file contains our address, and which
2904 is the smallest of all the ones containing the address. This is designed
2905 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2906 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2907 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2908
2909 This happens for native ecoff format, where code from included files
2910 gets its own symtab. The symtab for the included file should have
2911 been read in already via the dependency mechanism.
2912 It might be swifter to create several symtabs with the same name
2913 like xcoff does (I'm not sure).
2914
2915 It also happens for objfiles that have their functions reordered.
2916 For these, the symtab we are looking for is not necessarily read in. */
2917
2918 for (objfile *obj_file : current_program_space->objfiles ())
2919 {
2920 for (compunit_symtab *cust : obj_file->compunits ())
2921 {
2922 const struct block *b;
2923 const struct blockvector *bv;
2924
2925 bv = COMPUNIT_BLOCKVECTOR (cust);
2926 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2927
2928 if (BLOCK_START (b) <= pc
2929 && BLOCK_END (b) > pc
2930 && (distance == 0
2931 || BLOCK_END (b) - BLOCK_START (b) < distance))
2932 {
2933 /* For an objfile that has its functions reordered,
2934 find_pc_psymtab will find the proper partial symbol table
2935 and we simply return its corresponding symtab. */
2936 /* In order to better support objfiles that contain both
2937 stabs and coff debugging info, we continue on if a psymtab
2938 can't be found. */
2939 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2940 {
2941 struct compunit_symtab *result;
2942
2943 result
2944 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2945 msymbol,
2946 pc,
2947 section,
2948 0);
2949 if (result != NULL)
2950 return result;
2951 }
2952 if (section != 0)
2953 {
2954 struct block_iterator iter;
2955 struct symbol *sym = NULL;
2956
2957 ALL_BLOCK_SYMBOLS (b, iter, sym)
2958 {
2959 fixup_symbol_section (sym, obj_file);
2960 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2961 sym),
2962 section))
2963 break;
2964 }
2965 if (sym == NULL)
2966 continue; /* No symbol in this symtab matches
2967 section. */
2968 }
2969 distance = BLOCK_END (b) - BLOCK_START (b);
2970 best_cust = cust;
2971 }
2972 }
2973 }
2974
2975 if (best_cust != NULL)
2976 return best_cust;
2977
2978 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2979
2980 for (objfile *objf : current_program_space->objfiles ())
2981 {
2982 struct compunit_symtab *result;
2983
2984 if (!objf->sf)
2985 continue;
2986 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2987 msymbol,
2988 pc, section,
2989 1);
2990 if (result != NULL)
2991 return result;
2992 }
2993
2994 return NULL;
2995 }
2996
2997 /* Find the compunit symtab associated with PC.
2998 This will read in debug info as necessary.
2999 Backward compatibility, no section. */
3000
3001 struct compunit_symtab *
3002 find_pc_compunit_symtab (CORE_ADDR pc)
3003 {
3004 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3005 }
3006
3007 /* See symtab.h. */
3008
3009 struct symbol *
3010 find_symbol_at_address (CORE_ADDR address)
3011 {
3012 for (objfile *objfile : current_program_space->objfiles ())
3013 {
3014 if (objfile->sf == NULL
3015 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3016 continue;
3017
3018 struct compunit_symtab *symtab
3019 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3020 if (symtab != NULL)
3021 {
3022 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3023
3024 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3025 {
3026 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3027 struct block_iterator iter;
3028 struct symbol *sym;
3029
3030 ALL_BLOCK_SYMBOLS (b, iter, sym)
3031 {
3032 if (SYMBOL_CLASS (sym) == LOC_STATIC
3033 && SYMBOL_VALUE_ADDRESS (sym) == address)
3034 return sym;
3035 }
3036 }
3037 }
3038 }
3039
3040 return NULL;
3041 }
3042
3043 \f
3044
3045 /* Find the source file and line number for a given PC value and SECTION.
3046 Return a structure containing a symtab pointer, a line number,
3047 and a pc range for the entire source line.
3048 The value's .pc field is NOT the specified pc.
3049 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3050 use the line that ends there. Otherwise, in that case, the line
3051 that begins there is used. */
3052
3053 /* The big complication here is that a line may start in one file, and end just
3054 before the start of another file. This usually occurs when you #include
3055 code in the middle of a subroutine. To properly find the end of a line's PC
3056 range, we must search all symtabs associated with this compilation unit, and
3057 find the one whose first PC is closer than that of the next line in this
3058 symtab. */
3059
3060 struct symtab_and_line
3061 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3062 {
3063 struct compunit_symtab *cust;
3064 struct linetable *l;
3065 int len;
3066 struct linetable_entry *item;
3067 const struct blockvector *bv;
3068 struct bound_minimal_symbol msymbol;
3069
3070 /* Info on best line seen so far, and where it starts, and its file. */
3071
3072 struct linetable_entry *best = NULL;
3073 CORE_ADDR best_end = 0;
3074 struct symtab *best_symtab = 0;
3075
3076 /* Store here the first line number
3077 of a file which contains the line at the smallest pc after PC.
3078 If we don't find a line whose range contains PC,
3079 we will use a line one less than this,
3080 with a range from the start of that file to the first line's pc. */
3081 struct linetable_entry *alt = NULL;
3082
3083 /* Info on best line seen in this file. */
3084
3085 struct linetable_entry *prev;
3086
3087 /* If this pc is not from the current frame,
3088 it is the address of the end of a call instruction.
3089 Quite likely that is the start of the following statement.
3090 But what we want is the statement containing the instruction.
3091 Fudge the pc to make sure we get that. */
3092
3093 /* It's tempting to assume that, if we can't find debugging info for
3094 any function enclosing PC, that we shouldn't search for line
3095 number info, either. However, GAS can emit line number info for
3096 assembly files --- very helpful when debugging hand-written
3097 assembly code. In such a case, we'd have no debug info for the
3098 function, but we would have line info. */
3099
3100 if (notcurrent)
3101 pc -= 1;
3102
3103 /* elz: added this because this function returned the wrong
3104 information if the pc belongs to a stub (import/export)
3105 to call a shlib function. This stub would be anywhere between
3106 two functions in the target, and the line info was erroneously
3107 taken to be the one of the line before the pc. */
3108
3109 /* RT: Further explanation:
3110
3111 * We have stubs (trampolines) inserted between procedures.
3112 *
3113 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3114 * exists in the main image.
3115 *
3116 * In the minimal symbol table, we have a bunch of symbols
3117 * sorted by start address. The stubs are marked as "trampoline",
3118 * the others appear as text. E.g.:
3119 *
3120 * Minimal symbol table for main image
3121 * main: code for main (text symbol)
3122 * shr1: stub (trampoline symbol)
3123 * foo: code for foo (text symbol)
3124 * ...
3125 * Minimal symbol table for "shr1" image:
3126 * ...
3127 * shr1: code for shr1 (text symbol)
3128 * ...
3129 *
3130 * So the code below is trying to detect if we are in the stub
3131 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3132 * and if found, do the symbolization from the real-code address
3133 * rather than the stub address.
3134 *
3135 * Assumptions being made about the minimal symbol table:
3136 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3137 * if we're really in the trampoline.s If we're beyond it (say
3138 * we're in "foo" in the above example), it'll have a closer
3139 * symbol (the "foo" text symbol for example) and will not
3140 * return the trampoline.
3141 * 2. lookup_minimal_symbol_text() will find a real text symbol
3142 * corresponding to the trampoline, and whose address will
3143 * be different than the trampoline address. I put in a sanity
3144 * check for the address being the same, to avoid an
3145 * infinite recursion.
3146 */
3147 msymbol = lookup_minimal_symbol_by_pc (pc);
3148 if (msymbol.minsym != NULL)
3149 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3150 {
3151 struct bound_minimal_symbol mfunsym
3152 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3153 NULL);
3154
3155 if (mfunsym.minsym == NULL)
3156 /* I eliminated this warning since it is coming out
3157 * in the following situation:
3158 * gdb shmain // test program with shared libraries
3159 * (gdb) break shr1 // function in shared lib
3160 * Warning: In stub for ...
3161 * In the above situation, the shared lib is not loaded yet,
3162 * so of course we can't find the real func/line info,
3163 * but the "break" still works, and the warning is annoying.
3164 * So I commented out the warning. RT */
3165 /* warning ("In stub for %s; unable to find real function/line info",
3166 SYMBOL_LINKAGE_NAME (msymbol)); */
3167 ;
3168 /* fall through */
3169 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3170 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3171 /* Avoid infinite recursion */
3172 /* See above comment about why warning is commented out. */
3173 /* warning ("In stub for %s; unable to find real function/line info",
3174 SYMBOL_LINKAGE_NAME (msymbol)); */
3175 ;
3176 /* fall through */
3177 else
3178 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3179 }
3180
3181 symtab_and_line val;
3182 val.pspace = current_program_space;
3183
3184 cust = find_pc_sect_compunit_symtab (pc, section);
3185 if (cust == NULL)
3186 {
3187 /* If no symbol information, return previous pc. */
3188 if (notcurrent)
3189 pc++;
3190 val.pc = pc;
3191 return val;
3192 }
3193
3194 bv = COMPUNIT_BLOCKVECTOR (cust);
3195
3196 /* Look at all the symtabs that share this blockvector.
3197 They all have the same apriori range, that we found was right;
3198 but they have different line tables. */
3199
3200 for (symtab *iter_s : compunit_filetabs (cust))
3201 {
3202 /* Find the best line in this symtab. */
3203 l = SYMTAB_LINETABLE (iter_s);
3204 if (!l)
3205 continue;
3206 len = l->nitems;
3207 if (len <= 0)
3208 {
3209 /* I think len can be zero if the symtab lacks line numbers
3210 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3211 I'm not sure which, and maybe it depends on the symbol
3212 reader). */
3213 continue;
3214 }
3215
3216 prev = NULL;
3217 item = l->item; /* Get first line info. */
3218
3219 /* Is this file's first line closer than the first lines of other files?
3220 If so, record this file, and its first line, as best alternate. */
3221 if (item->pc > pc && (!alt || item->pc < alt->pc))
3222 alt = item;
3223
3224 auto pc_compare = [](const CORE_ADDR & comp_pc,
3225 const struct linetable_entry & lhs)->bool
3226 {
3227 return comp_pc < lhs.pc;
3228 };
3229
3230 struct linetable_entry *first = item;
3231 struct linetable_entry *last = item + len;
3232 item = std::upper_bound (first, last, pc, pc_compare);
3233 if (item != first)
3234 prev = item - 1; /* Found a matching item. */
3235
3236 /* At this point, prev points at the line whose start addr is <= pc, and
3237 item points at the next line. If we ran off the end of the linetable
3238 (pc >= start of the last line), then prev == item. If pc < start of
3239 the first line, prev will not be set. */
3240
3241 /* Is this file's best line closer than the best in the other files?
3242 If so, record this file, and its best line, as best so far. Don't
3243 save prev if it represents the end of a function (i.e. line number
3244 0) instead of a real line. */
3245
3246 if (prev && prev->line && (!best || prev->pc > best->pc))
3247 {
3248 best = prev;
3249 best_symtab = iter_s;
3250
3251 /* Discard BEST_END if it's before the PC of the current BEST. */
3252 if (best_end <= best->pc)
3253 best_end = 0;
3254 }
3255
3256 /* If another line (denoted by ITEM) is in the linetable and its
3257 PC is after BEST's PC, but before the current BEST_END, then
3258 use ITEM's PC as the new best_end. */
3259 if (best && item < last && item->pc > best->pc
3260 && (best_end == 0 || best_end > item->pc))
3261 best_end = item->pc;
3262 }
3263
3264 if (!best_symtab)
3265 {
3266 /* If we didn't find any line number info, just return zeros.
3267 We used to return alt->line - 1 here, but that could be
3268 anywhere; if we don't have line number info for this PC,
3269 don't make some up. */
3270 val.pc = pc;
3271 }
3272 else if (best->line == 0)
3273 {
3274 /* If our best fit is in a range of PC's for which no line
3275 number info is available (line number is zero) then we didn't
3276 find any valid line information. */
3277 val.pc = pc;
3278 }
3279 else
3280 {
3281 val.symtab = best_symtab;
3282 val.line = best->line;
3283 val.pc = best->pc;
3284 if (best_end && (!alt || best_end < alt->pc))
3285 val.end = best_end;
3286 else if (alt)
3287 val.end = alt->pc;
3288 else
3289 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3290 }
3291 val.section = section;
3292 return val;
3293 }
3294
3295 /* Backward compatibility (no section). */
3296
3297 struct symtab_and_line
3298 find_pc_line (CORE_ADDR pc, int notcurrent)
3299 {
3300 struct obj_section *section;
3301
3302 section = find_pc_overlay (pc);
3303 if (pc_in_unmapped_range (pc, section))
3304 pc = overlay_mapped_address (pc, section);
3305 return find_pc_sect_line (pc, section, notcurrent);
3306 }
3307
3308 /* See symtab.h. */
3309
3310 struct symtab *
3311 find_pc_line_symtab (CORE_ADDR pc)
3312 {
3313 struct symtab_and_line sal;
3314
3315 /* This always passes zero for NOTCURRENT to find_pc_line.
3316 There are currently no callers that ever pass non-zero. */
3317 sal = find_pc_line (pc, 0);
3318 return sal.symtab;
3319 }
3320 \f
3321 /* Find line number LINE in any symtab whose name is the same as
3322 SYMTAB.
3323
3324 If found, return the symtab that contains the linetable in which it was
3325 found, set *INDEX to the index in the linetable of the best entry
3326 found, and set *EXACT_MATCH nonzero if the value returned is an
3327 exact match.
3328
3329 If not found, return NULL. */
3330
3331 struct symtab *
3332 find_line_symtab (struct symtab *sym_tab, int line,
3333 int *index, int *exact_match)
3334 {
3335 int exact = 0; /* Initialized here to avoid a compiler warning. */
3336
3337 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3338 so far seen. */
3339
3340 int best_index;
3341 struct linetable *best_linetable;
3342 struct symtab *best_symtab;
3343
3344 /* First try looking it up in the given symtab. */
3345 best_linetable = SYMTAB_LINETABLE (sym_tab);
3346 best_symtab = sym_tab;
3347 best_index = find_line_common (best_linetable, line, &exact, 0);
3348 if (best_index < 0 || !exact)
3349 {
3350 /* Didn't find an exact match. So we better keep looking for
3351 another symtab with the same name. In the case of xcoff,
3352 multiple csects for one source file (produced by IBM's FORTRAN
3353 compiler) produce multiple symtabs (this is unavoidable
3354 assuming csects can be at arbitrary places in memory and that
3355 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3356
3357 /* BEST is the smallest linenumber > LINE so far seen,
3358 or 0 if none has been seen so far.
3359 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3360 int best;
3361
3362 if (best_index >= 0)
3363 best = best_linetable->item[best_index].line;
3364 else
3365 best = 0;
3366
3367 for (objfile *objfile : current_program_space->objfiles ())
3368 {
3369 if (objfile->sf)
3370 objfile->sf->qf->expand_symtabs_with_fullname
3371 (objfile, symtab_to_fullname (sym_tab));
3372 }
3373
3374 for (objfile *objfile : current_program_space->objfiles ())
3375 {
3376 for (compunit_symtab *cu : objfile->compunits ())
3377 {
3378 for (symtab *s : compunit_filetabs (cu))
3379 {
3380 struct linetable *l;
3381 int ind;
3382
3383 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3384 continue;
3385 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3386 symtab_to_fullname (s)) != 0)
3387 continue;
3388 l = SYMTAB_LINETABLE (s);
3389 ind = find_line_common (l, line, &exact, 0);
3390 if (ind >= 0)
3391 {
3392 if (exact)
3393 {
3394 best_index = ind;
3395 best_linetable = l;
3396 best_symtab = s;
3397 goto done;
3398 }
3399 if (best == 0 || l->item[ind].line < best)
3400 {
3401 best = l->item[ind].line;
3402 best_index = ind;
3403 best_linetable = l;
3404 best_symtab = s;
3405 }
3406 }
3407 }
3408 }
3409 }
3410 }
3411 done:
3412 if (best_index < 0)
3413 return NULL;
3414
3415 if (index)
3416 *index = best_index;
3417 if (exact_match)
3418 *exact_match = exact;
3419
3420 return best_symtab;
3421 }
3422
3423 /* Given SYMTAB, returns all the PCs function in the symtab that
3424 exactly match LINE. Returns an empty vector if there are no exact
3425 matches, but updates BEST_ITEM in this case. */
3426
3427 std::vector<CORE_ADDR>
3428 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3429 struct linetable_entry **best_item)
3430 {
3431 int start = 0;
3432 std::vector<CORE_ADDR> result;
3433
3434 /* First, collect all the PCs that are at this line. */
3435 while (1)
3436 {
3437 int was_exact;
3438 int idx;
3439
3440 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3441 start);
3442 if (idx < 0)
3443 break;
3444
3445 if (!was_exact)
3446 {
3447 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3448
3449 if (*best_item == NULL || item->line < (*best_item)->line)
3450 *best_item = item;
3451
3452 break;
3453 }
3454
3455 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3456 start = idx + 1;
3457 }
3458
3459 return result;
3460 }
3461
3462 \f
3463 /* Set the PC value for a given source file and line number and return true.
3464 Returns zero for invalid line number (and sets the PC to 0).
3465 The source file is specified with a struct symtab. */
3466
3467 int
3468 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3469 {
3470 struct linetable *l;
3471 int ind;
3472
3473 *pc = 0;
3474 if (symtab == 0)
3475 return 0;
3476
3477 symtab = find_line_symtab (symtab, line, &ind, NULL);
3478 if (symtab != NULL)
3479 {
3480 l = SYMTAB_LINETABLE (symtab);
3481 *pc = l->item[ind].pc;
3482 return 1;
3483 }
3484 else
3485 return 0;
3486 }
3487
3488 /* Find the range of pc values in a line.
3489 Store the starting pc of the line into *STARTPTR
3490 and the ending pc (start of next line) into *ENDPTR.
3491 Returns 1 to indicate success.
3492 Returns 0 if could not find the specified line. */
3493
3494 int
3495 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3496 CORE_ADDR *endptr)
3497 {
3498 CORE_ADDR startaddr;
3499 struct symtab_and_line found_sal;
3500
3501 startaddr = sal.pc;
3502 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3503 return 0;
3504
3505 /* This whole function is based on address. For example, if line 10 has
3506 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3507 "info line *0x123" should say the line goes from 0x100 to 0x200
3508 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3509 This also insures that we never give a range like "starts at 0x134
3510 and ends at 0x12c". */
3511
3512 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3513 if (found_sal.line != sal.line)
3514 {
3515 /* The specified line (sal) has zero bytes. */
3516 *startptr = found_sal.pc;
3517 *endptr = found_sal.pc;
3518 }
3519 else
3520 {
3521 *startptr = found_sal.pc;
3522 *endptr = found_sal.end;
3523 }
3524 return 1;
3525 }
3526
3527 /* Given a line table and a line number, return the index into the line
3528 table for the pc of the nearest line whose number is >= the specified one.
3529 Return -1 if none is found. The value is >= 0 if it is an index.
3530 START is the index at which to start searching the line table.
3531
3532 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3533
3534 static int
3535 find_line_common (struct linetable *l, int lineno,
3536 int *exact_match, int start)
3537 {
3538 int i;
3539 int len;
3540
3541 /* BEST is the smallest linenumber > LINENO so far seen,
3542 or 0 if none has been seen so far.
3543 BEST_INDEX identifies the item for it. */
3544
3545 int best_index = -1;
3546 int best = 0;
3547
3548 *exact_match = 0;
3549
3550 if (lineno <= 0)
3551 return -1;
3552 if (l == 0)
3553 return -1;
3554
3555 len = l->nitems;
3556 for (i = start; i < len; i++)
3557 {
3558 struct linetable_entry *item = &(l->item[i]);
3559
3560 if (item->line == lineno)
3561 {
3562 /* Return the first (lowest address) entry which matches. */
3563 *exact_match = 1;
3564 return i;
3565 }
3566
3567 if (item->line > lineno && (best == 0 || item->line < best))
3568 {
3569 best = item->line;
3570 best_index = i;
3571 }
3572 }
3573
3574 /* If we got here, we didn't get an exact match. */
3575 return best_index;
3576 }
3577
3578 int
3579 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3580 {
3581 struct symtab_and_line sal;
3582
3583 sal = find_pc_line (pc, 0);
3584 *startptr = sal.pc;
3585 *endptr = sal.end;
3586 return sal.symtab != 0;
3587 }
3588
3589 /* Helper for find_function_start_sal. Does most of the work, except
3590 setting the sal's symbol. */
3591
3592 static symtab_and_line
3593 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3594 bool funfirstline)
3595 {
3596 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3597
3598 if (funfirstline && sal.symtab != NULL
3599 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3600 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3601 {
3602 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3603
3604 sal.pc = func_addr;
3605 if (gdbarch_skip_entrypoint_p (gdbarch))
3606 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3607 return sal;
3608 }
3609
3610 /* We always should have a line for the function start address.
3611 If we don't, something is odd. Create a plain SAL referring
3612 just the PC and hope that skip_prologue_sal (if requested)
3613 can find a line number for after the prologue. */
3614 if (sal.pc < func_addr)
3615 {
3616 sal = {};
3617 sal.pspace = current_program_space;
3618 sal.pc = func_addr;
3619 sal.section = section;
3620 }
3621
3622 if (funfirstline)
3623 skip_prologue_sal (&sal);
3624
3625 return sal;
3626 }
3627
3628 /* See symtab.h. */
3629
3630 symtab_and_line
3631 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3632 bool funfirstline)
3633 {
3634 symtab_and_line sal
3635 = find_function_start_sal_1 (func_addr, section, funfirstline);
3636
3637 /* find_function_start_sal_1 does a linetable search, so it finds
3638 the symtab and linenumber, but not a symbol. Fill in the
3639 function symbol too. */
3640 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3641
3642 return sal;
3643 }
3644
3645 /* See symtab.h. */
3646
3647 symtab_and_line
3648 find_function_start_sal (symbol *sym, bool funfirstline)
3649 {
3650 fixup_symbol_section (sym, NULL);
3651 symtab_and_line sal
3652 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3653 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3654 funfirstline);
3655 sal.symbol = sym;
3656 return sal;
3657 }
3658
3659
3660 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3661 address for that function that has an entry in SYMTAB's line info
3662 table. If such an entry cannot be found, return FUNC_ADDR
3663 unaltered. */
3664
3665 static CORE_ADDR
3666 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3667 {
3668 CORE_ADDR func_start, func_end;
3669 struct linetable *l;
3670 int i;
3671
3672 /* Give up if this symbol has no lineinfo table. */
3673 l = SYMTAB_LINETABLE (symtab);
3674 if (l == NULL)
3675 return func_addr;
3676
3677 /* Get the range for the function's PC values, or give up if we
3678 cannot, for some reason. */
3679 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3680 return func_addr;
3681
3682 /* Linetable entries are ordered by PC values, see the commentary in
3683 symtab.h where `struct linetable' is defined. Thus, the first
3684 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3685 address we are looking for. */
3686 for (i = 0; i < l->nitems; i++)
3687 {
3688 struct linetable_entry *item = &(l->item[i]);
3689
3690 /* Don't use line numbers of zero, they mark special entries in
3691 the table. See the commentary on symtab.h before the
3692 definition of struct linetable. */
3693 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3694 return item->pc;
3695 }
3696
3697 return func_addr;
3698 }
3699
3700 /* Adjust SAL to the first instruction past the function prologue.
3701 If the PC was explicitly specified, the SAL is not changed.
3702 If the line number was explicitly specified, at most the SAL's PC
3703 is updated. If SAL is already past the prologue, then do nothing. */
3704
3705 void
3706 skip_prologue_sal (struct symtab_and_line *sal)
3707 {
3708 struct symbol *sym;
3709 struct symtab_and_line start_sal;
3710 CORE_ADDR pc, saved_pc;
3711 struct obj_section *section;
3712 const char *name;
3713 struct objfile *objfile;
3714 struct gdbarch *gdbarch;
3715 const struct block *b, *function_block;
3716 int force_skip, skip;
3717
3718 /* Do not change the SAL if PC was specified explicitly. */
3719 if (sal->explicit_pc)
3720 return;
3721
3722 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3723
3724 switch_to_program_space_and_thread (sal->pspace);
3725
3726 sym = find_pc_sect_function (sal->pc, sal->section);
3727 if (sym != NULL)
3728 {
3729 fixup_symbol_section (sym, NULL);
3730
3731 objfile = symbol_objfile (sym);
3732 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3733 section = SYMBOL_OBJ_SECTION (objfile, sym);
3734 name = SYMBOL_LINKAGE_NAME (sym);
3735 }
3736 else
3737 {
3738 struct bound_minimal_symbol msymbol
3739 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3740
3741 if (msymbol.minsym == NULL)
3742 return;
3743
3744 objfile = msymbol.objfile;
3745 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3746 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3747 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3748 }
3749
3750 gdbarch = get_objfile_arch (objfile);
3751
3752 /* Process the prologue in two passes. In the first pass try to skip the
3753 prologue (SKIP is true) and verify there is a real need for it (indicated
3754 by FORCE_SKIP). If no such reason was found run a second pass where the
3755 prologue is not skipped (SKIP is false). */
3756
3757 skip = 1;
3758 force_skip = 1;
3759
3760 /* Be conservative - allow direct PC (without skipping prologue) only if we
3761 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3762 have to be set by the caller so we use SYM instead. */
3763 if (sym != NULL
3764 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3765 force_skip = 0;
3766
3767 saved_pc = pc;
3768 do
3769 {
3770 pc = saved_pc;
3771
3772 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3773 so that gdbarch_skip_prologue has something unique to work on. */
3774 if (section_is_overlay (section) && !section_is_mapped (section))
3775 pc = overlay_unmapped_address (pc, section);
3776
3777 /* Skip "first line" of function (which is actually its prologue). */
3778 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3779 if (gdbarch_skip_entrypoint_p (gdbarch))
3780 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3781 if (skip)
3782 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3783
3784 /* For overlays, map pc back into its mapped VMA range. */
3785 pc = overlay_mapped_address (pc, section);
3786
3787 /* Calculate line number. */
3788 start_sal = find_pc_sect_line (pc, section, 0);
3789
3790 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3791 line is still part of the same function. */
3792 if (skip && start_sal.pc != pc
3793 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3794 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3795 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3796 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3797 {
3798 /* First pc of next line */
3799 pc = start_sal.end;
3800 /* Recalculate the line number (might not be N+1). */
3801 start_sal = find_pc_sect_line (pc, section, 0);
3802 }
3803
3804 /* On targets with executable formats that don't have a concept of
3805 constructors (ELF with .init has, PE doesn't), gcc emits a call
3806 to `__main' in `main' between the prologue and before user
3807 code. */
3808 if (gdbarch_skip_main_prologue_p (gdbarch)
3809 && name && strcmp_iw (name, "main") == 0)
3810 {
3811 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3812 /* Recalculate the line number (might not be N+1). */
3813 start_sal = find_pc_sect_line (pc, section, 0);
3814 force_skip = 1;
3815 }
3816 }
3817 while (!force_skip && skip--);
3818
3819 /* If we still don't have a valid source line, try to find the first
3820 PC in the lineinfo table that belongs to the same function. This
3821 happens with COFF debug info, which does not seem to have an
3822 entry in lineinfo table for the code after the prologue which has
3823 no direct relation to source. For example, this was found to be
3824 the case with the DJGPP target using "gcc -gcoff" when the
3825 compiler inserted code after the prologue to make sure the stack
3826 is aligned. */
3827 if (!force_skip && sym && start_sal.symtab == NULL)
3828 {
3829 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3830 /* Recalculate the line number. */
3831 start_sal = find_pc_sect_line (pc, section, 0);
3832 }
3833
3834 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3835 forward SAL to the end of the prologue. */
3836 if (sal->pc >= pc)
3837 return;
3838
3839 sal->pc = pc;
3840 sal->section = section;
3841
3842 /* Unless the explicit_line flag was set, update the SAL line
3843 and symtab to correspond to the modified PC location. */
3844 if (sal->explicit_line)
3845 return;
3846
3847 sal->symtab = start_sal.symtab;
3848 sal->line = start_sal.line;
3849 sal->end = start_sal.end;
3850
3851 /* Check if we are now inside an inlined function. If we can,
3852 use the call site of the function instead. */
3853 b = block_for_pc_sect (sal->pc, sal->section);
3854 function_block = NULL;
3855 while (b != NULL)
3856 {
3857 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3858 function_block = b;
3859 else if (BLOCK_FUNCTION (b) != NULL)
3860 break;
3861 b = BLOCK_SUPERBLOCK (b);
3862 }
3863 if (function_block != NULL
3864 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3865 {
3866 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3867 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3868 }
3869 }
3870
3871 /* Given PC at the function's start address, attempt to find the
3872 prologue end using SAL information. Return zero if the skip fails.
3873
3874 A non-optimized prologue traditionally has one SAL for the function
3875 and a second for the function body. A single line function has
3876 them both pointing at the same line.
3877
3878 An optimized prologue is similar but the prologue may contain
3879 instructions (SALs) from the instruction body. Need to skip those
3880 while not getting into the function body.
3881
3882 The functions end point and an increasing SAL line are used as
3883 indicators of the prologue's endpoint.
3884
3885 This code is based on the function refine_prologue_limit
3886 (found in ia64). */
3887
3888 CORE_ADDR
3889 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3890 {
3891 struct symtab_and_line prologue_sal;
3892 CORE_ADDR start_pc;
3893 CORE_ADDR end_pc;
3894 const struct block *bl;
3895
3896 /* Get an initial range for the function. */
3897 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3898 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3899
3900 prologue_sal = find_pc_line (start_pc, 0);
3901 if (prologue_sal.line != 0)
3902 {
3903 /* For languages other than assembly, treat two consecutive line
3904 entries at the same address as a zero-instruction prologue.
3905 The GNU assembler emits separate line notes for each instruction
3906 in a multi-instruction macro, but compilers generally will not
3907 do this. */
3908 if (prologue_sal.symtab->language != language_asm)
3909 {
3910 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3911 int idx = 0;
3912
3913 /* Skip any earlier lines, and any end-of-sequence marker
3914 from a previous function. */
3915 while (linetable->item[idx].pc != prologue_sal.pc
3916 || linetable->item[idx].line == 0)
3917 idx++;
3918
3919 if (idx+1 < linetable->nitems
3920 && linetable->item[idx+1].line != 0
3921 && linetable->item[idx+1].pc == start_pc)
3922 return start_pc;
3923 }
3924
3925 /* If there is only one sal that covers the entire function,
3926 then it is probably a single line function, like
3927 "foo(){}". */
3928 if (prologue_sal.end >= end_pc)
3929 return 0;
3930
3931 while (prologue_sal.end < end_pc)
3932 {
3933 struct symtab_and_line sal;
3934
3935 sal = find_pc_line (prologue_sal.end, 0);
3936 if (sal.line == 0)
3937 break;
3938 /* Assume that a consecutive SAL for the same (or larger)
3939 line mark the prologue -> body transition. */
3940 if (sal.line >= prologue_sal.line)
3941 break;
3942 /* Likewise if we are in a different symtab altogether
3943 (e.g. within a file included via #include).  */
3944 if (sal.symtab != prologue_sal.symtab)
3945 break;
3946
3947 /* The line number is smaller. Check that it's from the
3948 same function, not something inlined. If it's inlined,
3949 then there is no point comparing the line numbers. */
3950 bl = block_for_pc (prologue_sal.end);
3951 while (bl)
3952 {
3953 if (block_inlined_p (bl))
3954 break;
3955 if (BLOCK_FUNCTION (bl))
3956 {
3957 bl = NULL;
3958 break;
3959 }
3960 bl = BLOCK_SUPERBLOCK (bl);
3961 }
3962 if (bl != NULL)
3963 break;
3964
3965 /* The case in which compiler's optimizer/scheduler has
3966 moved instructions into the prologue. We look ahead in
3967 the function looking for address ranges whose
3968 corresponding line number is less the first one that we
3969 found for the function. This is more conservative then
3970 refine_prologue_limit which scans a large number of SALs
3971 looking for any in the prologue. */
3972 prologue_sal = sal;
3973 }
3974 }
3975
3976 if (prologue_sal.end < end_pc)
3977 /* Return the end of this line, or zero if we could not find a
3978 line. */
3979 return prologue_sal.end;
3980 else
3981 /* Don't return END_PC, which is past the end of the function. */
3982 return prologue_sal.pc;
3983 }
3984
3985 /* See symtab.h. */
3986
3987 symbol *
3988 find_function_alias_target (bound_minimal_symbol msymbol)
3989 {
3990 CORE_ADDR func_addr;
3991 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3992 return NULL;
3993
3994 symbol *sym = find_pc_function (func_addr);
3995 if (sym != NULL
3996 && SYMBOL_CLASS (sym) == LOC_BLOCK
3997 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3998 return sym;
3999
4000 return NULL;
4001 }
4002
4003 \f
4004 /* If P is of the form "operator[ \t]+..." where `...' is
4005 some legitimate operator text, return a pointer to the
4006 beginning of the substring of the operator text.
4007 Otherwise, return "". */
4008
4009 static const char *
4010 operator_chars (const char *p, const char **end)
4011 {
4012 *end = "";
4013 if (!startswith (p, CP_OPERATOR_STR))
4014 return *end;
4015 p += CP_OPERATOR_LEN;
4016
4017 /* Don't get faked out by `operator' being part of a longer
4018 identifier. */
4019 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4020 return *end;
4021
4022 /* Allow some whitespace between `operator' and the operator symbol. */
4023 while (*p == ' ' || *p == '\t')
4024 p++;
4025
4026 /* Recognize 'operator TYPENAME'. */
4027
4028 if (isalpha (*p) || *p == '_' || *p == '$')
4029 {
4030 const char *q = p + 1;
4031
4032 while (isalnum (*q) || *q == '_' || *q == '$')
4033 q++;
4034 *end = q;
4035 return p;
4036 }
4037
4038 while (*p)
4039 switch (*p)
4040 {
4041 case '\\': /* regexp quoting */
4042 if (p[1] == '*')
4043 {
4044 if (p[2] == '=') /* 'operator\*=' */
4045 *end = p + 3;
4046 else /* 'operator\*' */
4047 *end = p + 2;
4048 return p;
4049 }
4050 else if (p[1] == '[')
4051 {
4052 if (p[2] == ']')
4053 error (_("mismatched quoting on brackets, "
4054 "try 'operator\\[\\]'"));
4055 else if (p[2] == '\\' && p[3] == ']')
4056 {
4057 *end = p + 4; /* 'operator\[\]' */
4058 return p;
4059 }
4060 else
4061 error (_("nothing is allowed between '[' and ']'"));
4062 }
4063 else
4064 {
4065 /* Gratuitous qoute: skip it and move on. */
4066 p++;
4067 continue;
4068 }
4069 break;
4070 case '!':
4071 case '=':
4072 case '*':
4073 case '/':
4074 case '%':
4075 case '^':
4076 if (p[1] == '=')
4077 *end = p + 2;
4078 else
4079 *end = p + 1;
4080 return p;
4081 case '<':
4082 case '>':
4083 case '+':
4084 case '-':
4085 case '&':
4086 case '|':
4087 if (p[0] == '-' && p[1] == '>')
4088 {
4089 /* Struct pointer member operator 'operator->'. */
4090 if (p[2] == '*')
4091 {
4092 *end = p + 3; /* 'operator->*' */
4093 return p;
4094 }
4095 else if (p[2] == '\\')
4096 {
4097 *end = p + 4; /* Hopefully 'operator->\*' */
4098 return p;
4099 }
4100 else
4101 {
4102 *end = p + 2; /* 'operator->' */
4103 return p;
4104 }
4105 }
4106 if (p[1] == '=' || p[1] == p[0])
4107 *end = p + 2;
4108 else
4109 *end = p + 1;
4110 return p;
4111 case '~':
4112 case ',':
4113 *end = p + 1;
4114 return p;
4115 case '(':
4116 if (p[1] != ')')
4117 error (_("`operator ()' must be specified "
4118 "without whitespace in `()'"));
4119 *end = p + 2;
4120 return p;
4121 case '?':
4122 if (p[1] != ':')
4123 error (_("`operator ?:' must be specified "
4124 "without whitespace in `?:'"));
4125 *end = p + 2;
4126 return p;
4127 case '[':
4128 if (p[1] != ']')
4129 error (_("`operator []' must be specified "
4130 "without whitespace in `[]'"));
4131 *end = p + 2;
4132 return p;
4133 default:
4134 error (_("`operator %s' not supported"), p);
4135 break;
4136 }
4137
4138 *end = "";
4139 return *end;
4140 }
4141 \f
4142
4143 /* Data structure to maintain printing state for output_source_filename. */
4144
4145 struct output_source_filename_data
4146 {
4147 /* Cache of what we've seen so far. */
4148 struct filename_seen_cache *filename_seen_cache;
4149
4150 /* Flag of whether we're printing the first one. */
4151 int first;
4152 };
4153
4154 /* Slave routine for sources_info. Force line breaks at ,'s.
4155 NAME is the name to print.
4156 DATA contains the state for printing and watching for duplicates. */
4157
4158 static void
4159 output_source_filename (const char *name,
4160 struct output_source_filename_data *data)
4161 {
4162 /* Since a single source file can result in several partial symbol
4163 tables, we need to avoid printing it more than once. Note: if
4164 some of the psymtabs are read in and some are not, it gets
4165 printed both under "Source files for which symbols have been
4166 read" and "Source files for which symbols will be read in on
4167 demand". I consider this a reasonable way to deal with the
4168 situation. I'm not sure whether this can also happen for
4169 symtabs; it doesn't hurt to check. */
4170
4171 /* Was NAME already seen? */
4172 if (data->filename_seen_cache->seen (name))
4173 {
4174 /* Yes; don't print it again. */
4175 return;
4176 }
4177
4178 /* No; print it and reset *FIRST. */
4179 if (! data->first)
4180 printf_filtered (", ");
4181 data->first = 0;
4182
4183 wrap_here ("");
4184 fputs_styled (name, file_name_style.style (), gdb_stdout);
4185 }
4186
4187 /* A callback for map_partial_symbol_filenames. */
4188
4189 static void
4190 output_partial_symbol_filename (const char *filename, const char *fullname,
4191 void *data)
4192 {
4193 output_source_filename (fullname ? fullname : filename,
4194 (struct output_source_filename_data *) data);
4195 }
4196
4197 static void
4198 info_sources_command (const char *ignore, int from_tty)
4199 {
4200 struct output_source_filename_data data;
4201
4202 if (!have_full_symbols () && !have_partial_symbols ())
4203 {
4204 error (_("No symbol table is loaded. Use the \"file\" command."));
4205 }
4206
4207 filename_seen_cache filenames_seen;
4208
4209 data.filename_seen_cache = &filenames_seen;
4210
4211 printf_filtered ("Source files for which symbols have been read in:\n\n");
4212
4213 data.first = 1;
4214 for (objfile *objfile : current_program_space->objfiles ())
4215 {
4216 for (compunit_symtab *cu : objfile->compunits ())
4217 {
4218 for (symtab *s : compunit_filetabs (cu))
4219 {
4220 const char *fullname = symtab_to_fullname (s);
4221
4222 output_source_filename (fullname, &data);
4223 }
4224 }
4225 }
4226 printf_filtered ("\n\n");
4227
4228 printf_filtered ("Source files for which symbols "
4229 "will be read in on demand:\n\n");
4230
4231 filenames_seen.clear ();
4232 data.first = 1;
4233 map_symbol_filenames (output_partial_symbol_filename, &data,
4234 1 /*need_fullname*/);
4235 printf_filtered ("\n");
4236 }
4237
4238 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4239 non-zero compare only lbasename of FILES. */
4240
4241 static int
4242 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4243 {
4244 int i;
4245
4246 if (file != NULL && nfiles != 0)
4247 {
4248 for (i = 0; i < nfiles; i++)
4249 {
4250 if (compare_filenames_for_search (file, (basenames
4251 ? lbasename (files[i])
4252 : files[i])))
4253 return 1;
4254 }
4255 }
4256 else if (nfiles == 0)
4257 return 1;
4258 return 0;
4259 }
4260
4261 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4262 sort symbols, not minimal symbols. */
4263
4264 int
4265 symbol_search::compare_search_syms (const symbol_search &sym_a,
4266 const symbol_search &sym_b)
4267 {
4268 int c;
4269
4270 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4271 symbol_symtab (sym_b.symbol)->filename);
4272 if (c != 0)
4273 return c;
4274
4275 if (sym_a.block != sym_b.block)
4276 return sym_a.block - sym_b.block;
4277
4278 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4279 SYMBOL_PRINT_NAME (sym_b.symbol));
4280 }
4281
4282 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4283 If SYM has no symbol_type or symbol_name, returns false. */
4284
4285 bool
4286 treg_matches_sym_type_name (const compiled_regex &treg,
4287 const struct symbol *sym)
4288 {
4289 struct type *sym_type;
4290 std::string printed_sym_type_name;
4291
4292 if (symbol_lookup_debug > 1)
4293 {
4294 fprintf_unfiltered (gdb_stdlog,
4295 "treg_matches_sym_type_name\n sym %s\n",
4296 SYMBOL_NATURAL_NAME (sym));
4297 }
4298
4299 sym_type = SYMBOL_TYPE (sym);
4300 if (sym_type == NULL)
4301 return false;
4302
4303 {
4304 scoped_switch_to_sym_language_if_auto l (sym);
4305
4306 printed_sym_type_name = type_to_string (sym_type);
4307 }
4308
4309
4310 if (symbol_lookup_debug > 1)
4311 {
4312 fprintf_unfiltered (gdb_stdlog,
4313 " sym_type_name %s\n",
4314 printed_sym_type_name.c_str ());
4315 }
4316
4317
4318 if (printed_sym_type_name.empty ())
4319 return false;
4320
4321 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4322 }
4323
4324
4325 /* Sort the symbols in RESULT and remove duplicates. */
4326
4327 static void
4328 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4329 {
4330 std::sort (result->begin (), result->end ());
4331 result->erase (std::unique (result->begin (), result->end ()),
4332 result->end ());
4333 }
4334
4335 /* Search the symbol table for matches to the regular expression REGEXP,
4336 returning the results.
4337
4338 Only symbols of KIND are searched:
4339 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4340 and constants (enums).
4341 if T_REGEXP is not NULL, only returns var that have
4342 a type matching regular expression T_REGEXP.
4343 FUNCTIONS_DOMAIN - search all functions
4344 TYPES_DOMAIN - search all type names
4345 ALL_DOMAIN - an internal error for this function
4346
4347 Within each file the results are sorted locally; each symtab's global and
4348 static blocks are separately alphabetized.
4349 Duplicate entries are removed. */
4350
4351 std::vector<symbol_search>
4352 search_symbols (const char *regexp, enum search_domain kind,
4353 const char *t_regexp,
4354 int nfiles, const char *files[])
4355 {
4356 const struct blockvector *bv;
4357 const struct block *b;
4358 int i = 0;
4359 struct block_iterator iter;
4360 struct symbol *sym;
4361 int found_misc = 0;
4362 static const enum minimal_symbol_type types[]
4363 = {mst_data, mst_text, mst_abs};
4364 static const enum minimal_symbol_type types2[]
4365 = {mst_bss, mst_file_text, mst_abs};
4366 static const enum minimal_symbol_type types3[]
4367 = {mst_file_data, mst_solib_trampoline, mst_abs};
4368 static const enum minimal_symbol_type types4[]
4369 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4370 enum minimal_symbol_type ourtype;
4371 enum minimal_symbol_type ourtype2;
4372 enum minimal_symbol_type ourtype3;
4373 enum minimal_symbol_type ourtype4;
4374 std::vector<symbol_search> result;
4375 gdb::optional<compiled_regex> preg;
4376 gdb::optional<compiled_regex> treg;
4377
4378 gdb_assert (kind <= TYPES_DOMAIN);
4379
4380 ourtype = types[kind];
4381 ourtype2 = types2[kind];
4382 ourtype3 = types3[kind];
4383 ourtype4 = types4[kind];
4384
4385 if (regexp != NULL)
4386 {
4387 /* Make sure spacing is right for C++ operators.
4388 This is just a courtesy to make the matching less sensitive
4389 to how many spaces the user leaves between 'operator'
4390 and <TYPENAME> or <OPERATOR>. */
4391 const char *opend;
4392 const char *opname = operator_chars (regexp, &opend);
4393
4394 if (*opname)
4395 {
4396 int fix = -1; /* -1 means ok; otherwise number of
4397 spaces needed. */
4398
4399 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4400 {
4401 /* There should 1 space between 'operator' and 'TYPENAME'. */
4402 if (opname[-1] != ' ' || opname[-2] == ' ')
4403 fix = 1;
4404 }
4405 else
4406 {
4407 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4408 if (opname[-1] == ' ')
4409 fix = 0;
4410 }
4411 /* If wrong number of spaces, fix it. */
4412 if (fix >= 0)
4413 {
4414 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4415
4416 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4417 regexp = tmp;
4418 }
4419 }
4420
4421 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4422 ? REG_ICASE : 0);
4423 preg.emplace (regexp, cflags, _("Invalid regexp"));
4424 }
4425
4426 if (t_regexp != NULL)
4427 {
4428 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4429 ? REG_ICASE : 0);
4430 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4431 }
4432
4433 /* Search through the partial symtabs *first* for all symbols
4434 matching the regexp. That way we don't have to reproduce all of
4435 the machinery below. */
4436 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4437 {
4438 return file_matches (filename, files, nfiles,
4439 basenames);
4440 },
4441 lookup_name_info::match_any (),
4442 [&] (const char *symname)
4443 {
4444 return (!preg.has_value ()
4445 || preg->exec (symname,
4446 0, NULL, 0) == 0);
4447 },
4448 NULL,
4449 kind);
4450
4451 /* Here, we search through the minimal symbol tables for functions
4452 and variables that match, and force their symbols to be read.
4453 This is in particular necessary for demangled variable names,
4454 which are no longer put into the partial symbol tables.
4455 The symbol will then be found during the scan of symtabs below.
4456
4457 For functions, find_pc_symtab should succeed if we have debug info
4458 for the function, for variables we have to call
4459 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4460 has debug info.
4461 If the lookup fails, set found_misc so that we will rescan to print
4462 any matching symbols without debug info.
4463 We only search the objfile the msymbol came from, we no longer search
4464 all objfiles. In large programs (1000s of shared libs) searching all
4465 objfiles is not worth the pain. */
4466
4467 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4468 {
4469 for (objfile *objfile : current_program_space->objfiles ())
4470 {
4471 for (minimal_symbol *msymbol : objfile->msymbols ())
4472 {
4473 QUIT;
4474
4475 if (msymbol->created_by_gdb)
4476 continue;
4477
4478 if (MSYMBOL_TYPE (msymbol) == ourtype
4479 || MSYMBOL_TYPE (msymbol) == ourtype2
4480 || MSYMBOL_TYPE (msymbol) == ourtype3
4481 || MSYMBOL_TYPE (msymbol) == ourtype4)
4482 {
4483 if (!preg.has_value ()
4484 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4485 NULL, 0) == 0)
4486 {
4487 /* Note: An important side-effect of these
4488 lookup functions is to expand the symbol
4489 table if msymbol is found, for the benefit of
4490 the next loop on compunits. */
4491 if (kind == FUNCTIONS_DOMAIN
4492 ? (find_pc_compunit_symtab
4493 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4494 == NULL)
4495 : (lookup_symbol_in_objfile_from_linkage_name
4496 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4497 VAR_DOMAIN)
4498 .symbol == NULL))
4499 found_misc = 1;
4500 }
4501 }
4502 }
4503 }
4504 }
4505
4506 for (objfile *objfile : current_program_space->objfiles ())
4507 {
4508 for (compunit_symtab *cust : objfile->compunits ())
4509 {
4510 bv = COMPUNIT_BLOCKVECTOR (cust);
4511 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4512 {
4513 b = BLOCKVECTOR_BLOCK (bv, i);
4514 ALL_BLOCK_SYMBOLS (b, iter, sym)
4515 {
4516 struct symtab *real_symtab = symbol_symtab (sym);
4517
4518 QUIT;
4519
4520 /* Check first sole REAL_SYMTAB->FILENAME. It does
4521 not need to be a substring of symtab_to_fullname as
4522 it may contain "./" etc. */
4523 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4524 || ((basenames_may_differ
4525 || file_matches (lbasename (real_symtab->filename),
4526 files, nfiles, 1))
4527 && file_matches (symtab_to_fullname (real_symtab),
4528 files, nfiles, 0)))
4529 && ((!preg.has_value ()
4530 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4531 NULL, 0) == 0)
4532 && ((kind == VARIABLES_DOMAIN
4533 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4534 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4535 && SYMBOL_CLASS (sym) != LOC_BLOCK
4536 /* LOC_CONST can be used for more than
4537 just enums, e.g., c++ static const
4538 members. We only want to skip enums
4539 here. */
4540 && !(SYMBOL_CLASS (sym) == LOC_CONST
4541 && (TYPE_CODE (SYMBOL_TYPE (sym))
4542 == TYPE_CODE_ENUM))
4543 && (!treg.has_value ()
4544 || treg_matches_sym_type_name (*treg, sym)))
4545 || (kind == FUNCTIONS_DOMAIN
4546 && SYMBOL_CLASS (sym) == LOC_BLOCK
4547 && (!treg.has_value ()
4548 || treg_matches_sym_type_name (*treg,
4549 sym)))
4550 || (kind == TYPES_DOMAIN
4551 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4552 {
4553 /* match */
4554 result.emplace_back (i, sym);
4555 }
4556 }
4557 }
4558 }
4559 }
4560
4561 if (!result.empty ())
4562 sort_search_symbols_remove_dups (&result);
4563
4564 /* If there are no eyes, avoid all contact. I mean, if there are
4565 no debug symbols, then add matching minsyms. But if the user wants
4566 to see symbols matching a type regexp, then never give a minimal symbol,
4567 as we assume that a minimal symbol does not have a type. */
4568
4569 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4570 && !treg.has_value ())
4571 {
4572 for (objfile *objfile : current_program_space->objfiles ())
4573 {
4574 for (minimal_symbol *msymbol : objfile->msymbols ())
4575 {
4576 QUIT;
4577
4578 if (msymbol->created_by_gdb)
4579 continue;
4580
4581 if (MSYMBOL_TYPE (msymbol) == ourtype
4582 || MSYMBOL_TYPE (msymbol) == ourtype2
4583 || MSYMBOL_TYPE (msymbol) == ourtype3
4584 || MSYMBOL_TYPE (msymbol) == ourtype4)
4585 {
4586 if (!preg.has_value ()
4587 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4588 NULL, 0) == 0)
4589 {
4590 /* For functions we can do a quick check of whether the
4591 symbol might be found via find_pc_symtab. */
4592 if (kind != FUNCTIONS_DOMAIN
4593 || (find_pc_compunit_symtab
4594 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4595 == NULL))
4596 {
4597 if (lookup_symbol_in_objfile_from_linkage_name
4598 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4599 VAR_DOMAIN)
4600 .symbol == NULL)
4601 {
4602 /* match */
4603 result.emplace_back (i, msymbol, objfile);
4604 }
4605 }
4606 }
4607 }
4608 }
4609 }
4610 }
4611
4612 return result;
4613 }
4614
4615 /* Helper function for symtab_symbol_info, this function uses
4616 the data returned from search_symbols() to print information
4617 regarding the match to gdb_stdout. If LAST is not NULL,
4618 print file and line number information for the symbol as
4619 well. Skip printing the filename if it matches LAST. */
4620
4621 static void
4622 print_symbol_info (enum search_domain kind,
4623 struct symbol *sym,
4624 int block, const char *last)
4625 {
4626 scoped_switch_to_sym_language_if_auto l (sym);
4627 struct symtab *s = symbol_symtab (sym);
4628
4629 if (last != NULL)
4630 {
4631 const char *s_filename = symtab_to_filename_for_display (s);
4632
4633 if (filename_cmp (last, s_filename) != 0)
4634 {
4635 fputs_filtered ("\nFile ", gdb_stdout);
4636 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4637 fputs_filtered (":\n", gdb_stdout);
4638 }
4639
4640 if (SYMBOL_LINE (sym) != 0)
4641 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4642 else
4643 puts_filtered ("\t");
4644 }
4645
4646 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4647 printf_filtered ("static ");
4648
4649 /* Typedef that is not a C++ class. */
4650 if (kind == TYPES_DOMAIN
4651 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4652 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4653 /* variable, func, or typedef-that-is-c++-class. */
4654 else if (kind < TYPES_DOMAIN
4655 || (kind == TYPES_DOMAIN
4656 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4657 {
4658 type_print (SYMBOL_TYPE (sym),
4659 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4660 ? "" : SYMBOL_PRINT_NAME (sym)),
4661 gdb_stdout, 0);
4662
4663 printf_filtered (";\n");
4664 }
4665 }
4666
4667 /* This help function for symtab_symbol_info() prints information
4668 for non-debugging symbols to gdb_stdout. */
4669
4670 static void
4671 print_msymbol_info (struct bound_minimal_symbol msymbol)
4672 {
4673 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4674 char *tmp;
4675
4676 if (gdbarch_addr_bit (gdbarch) <= 32)
4677 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4678 & (CORE_ADDR) 0xffffffff,
4679 8);
4680 else
4681 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4682 16);
4683 fputs_styled (tmp, address_style.style (), gdb_stdout);
4684 fputs_filtered (" ", gdb_stdout);
4685 if (msymbol.minsym->text_p ())
4686 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4687 function_name_style.style (),
4688 gdb_stdout);
4689 else
4690 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4691 fputs_filtered ("\n", gdb_stdout);
4692 }
4693
4694 /* This is the guts of the commands "info functions", "info types", and
4695 "info variables". It calls search_symbols to find all matches and then
4696 print_[m]symbol_info to print out some useful information about the
4697 matches. */
4698
4699 static void
4700 symtab_symbol_info (bool quiet,
4701 const char *regexp, enum search_domain kind,
4702 const char *t_regexp, int from_tty)
4703 {
4704 static const char * const classnames[] =
4705 {"variable", "function", "type"};
4706 const char *last_filename = "";
4707 int first = 1;
4708
4709 gdb_assert (kind <= TYPES_DOMAIN);
4710
4711 /* Must make sure that if we're interrupted, symbols gets freed. */
4712 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4713 t_regexp, 0, NULL);
4714
4715 if (!quiet)
4716 {
4717 if (regexp != NULL)
4718 {
4719 if (t_regexp != NULL)
4720 printf_filtered
4721 (_("All %ss matching regular expression \"%s\""
4722 " with type matching regular expression \"%s\":\n"),
4723 classnames[kind], regexp, t_regexp);
4724 else
4725 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4726 classnames[kind], regexp);
4727 }
4728 else
4729 {
4730 if (t_regexp != NULL)
4731 printf_filtered
4732 (_("All defined %ss"
4733 " with type matching regular expression \"%s\" :\n"),
4734 classnames[kind], t_regexp);
4735 else
4736 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4737 }
4738 }
4739
4740 for (const symbol_search &p : symbols)
4741 {
4742 QUIT;
4743
4744 if (p.msymbol.minsym != NULL)
4745 {
4746 if (first)
4747 {
4748 if (!quiet)
4749 printf_filtered (_("\nNon-debugging symbols:\n"));
4750 first = 0;
4751 }
4752 print_msymbol_info (p.msymbol);
4753 }
4754 else
4755 {
4756 print_symbol_info (kind,
4757 p.symbol,
4758 p.block,
4759 last_filename);
4760 last_filename
4761 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4762 }
4763 }
4764 }
4765
4766 static void
4767 info_variables_command (const char *args, int from_tty)
4768 {
4769 std::string regexp;
4770 std::string t_regexp;
4771 bool quiet = false;
4772
4773 while (args != NULL
4774 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4775 ;
4776
4777 if (args != NULL)
4778 report_unrecognized_option_error ("info variables", args);
4779
4780 symtab_symbol_info (quiet,
4781 regexp.empty () ? NULL : regexp.c_str (),
4782 VARIABLES_DOMAIN,
4783 t_regexp.empty () ? NULL : t_regexp.c_str (),
4784 from_tty);
4785 }
4786
4787
4788 static void
4789 info_functions_command (const char *args, int from_tty)
4790 {
4791 std::string regexp;
4792 std::string t_regexp;
4793 bool quiet = false;
4794
4795 while (args != NULL
4796 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4797 ;
4798
4799 if (args != NULL)
4800 report_unrecognized_option_error ("info functions", args);
4801
4802 symtab_symbol_info (quiet,
4803 regexp.empty () ? NULL : regexp.c_str (),
4804 FUNCTIONS_DOMAIN,
4805 t_regexp.empty () ? NULL : t_regexp.c_str (),
4806 from_tty);
4807 }
4808
4809
4810 static void
4811 info_types_command (const char *regexp, int from_tty)
4812 {
4813 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4814 }
4815
4816 /* Breakpoint all functions matching regular expression. */
4817
4818 void
4819 rbreak_command_wrapper (char *regexp, int from_tty)
4820 {
4821 rbreak_command (regexp, from_tty);
4822 }
4823
4824 static void
4825 rbreak_command (const char *regexp, int from_tty)
4826 {
4827 std::string string;
4828 const char **files = NULL;
4829 const char *file_name;
4830 int nfiles = 0;
4831
4832 if (regexp)
4833 {
4834 const char *colon = strchr (regexp, ':');
4835
4836 if (colon && *(colon + 1) != ':')
4837 {
4838 int colon_index;
4839 char *local_name;
4840
4841 colon_index = colon - regexp;
4842 local_name = (char *) alloca (colon_index + 1);
4843 memcpy (local_name, regexp, colon_index);
4844 local_name[colon_index--] = 0;
4845 while (isspace (local_name[colon_index]))
4846 local_name[colon_index--] = 0;
4847 file_name = local_name;
4848 files = &file_name;
4849 nfiles = 1;
4850 regexp = skip_spaces (colon + 1);
4851 }
4852 }
4853
4854 std::vector<symbol_search> symbols = search_symbols (regexp,
4855 FUNCTIONS_DOMAIN,
4856 NULL,
4857 nfiles, files);
4858
4859 scoped_rbreak_breakpoints finalize;
4860 for (const symbol_search &p : symbols)
4861 {
4862 if (p.msymbol.minsym == NULL)
4863 {
4864 struct symtab *symtab = symbol_symtab (p.symbol);
4865 const char *fullname = symtab_to_fullname (symtab);
4866
4867 string = string_printf ("%s:'%s'", fullname,
4868 SYMBOL_LINKAGE_NAME (p.symbol));
4869 break_command (&string[0], from_tty);
4870 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4871 }
4872 else
4873 {
4874 string = string_printf ("'%s'",
4875 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4876
4877 break_command (&string[0], from_tty);
4878 printf_filtered ("<function, no debug info> %s;\n",
4879 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4880 }
4881 }
4882 }
4883 \f
4884
4885 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4886
4887 static int
4888 compare_symbol_name (const char *symbol_name, language symbol_language,
4889 const lookup_name_info &lookup_name,
4890 completion_match_result &match_res)
4891 {
4892 const language_defn *lang = language_def (symbol_language);
4893
4894 symbol_name_matcher_ftype *name_match
4895 = get_symbol_name_matcher (lang, lookup_name);
4896
4897 return name_match (symbol_name, lookup_name, &match_res);
4898 }
4899
4900 /* See symtab.h. */
4901
4902 void
4903 completion_list_add_name (completion_tracker &tracker,
4904 language symbol_language,
4905 const char *symname,
4906 const lookup_name_info &lookup_name,
4907 const char *text, const char *word)
4908 {
4909 completion_match_result &match_res
4910 = tracker.reset_completion_match_result ();
4911
4912 /* Clip symbols that cannot match. */
4913 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4914 return;
4915
4916 /* Refresh SYMNAME from the match string. It's potentially
4917 different depending on language. (E.g., on Ada, the match may be
4918 the encoded symbol name wrapped in "<>"). */
4919 symname = match_res.match.match ();
4920 gdb_assert (symname != NULL);
4921
4922 /* We have a match for a completion, so add SYMNAME to the current list
4923 of matches. Note that the name is moved to freshly malloc'd space. */
4924
4925 {
4926 gdb::unique_xmalloc_ptr<char> completion
4927 = make_completion_match_str (symname, text, word);
4928
4929 /* Here we pass the match-for-lcd object to add_completion. Some
4930 languages match the user text against substrings of symbol
4931 names in some cases. E.g., in C++, "b push_ba" completes to
4932 "std::vector::push_back", "std::string::push_back", etc., and
4933 in this case we want the completion lowest common denominator
4934 to be "push_back" instead of "std::". */
4935 tracker.add_completion (std::move (completion),
4936 &match_res.match_for_lcd, text, word);
4937 }
4938 }
4939
4940 /* completion_list_add_name wrapper for struct symbol. */
4941
4942 static void
4943 completion_list_add_symbol (completion_tracker &tracker,
4944 symbol *sym,
4945 const lookup_name_info &lookup_name,
4946 const char *text, const char *word)
4947 {
4948 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4949 SYMBOL_NATURAL_NAME (sym),
4950 lookup_name, text, word);
4951 }
4952
4953 /* completion_list_add_name wrapper for struct minimal_symbol. */
4954
4955 static void
4956 completion_list_add_msymbol (completion_tracker &tracker,
4957 minimal_symbol *sym,
4958 const lookup_name_info &lookup_name,
4959 const char *text, const char *word)
4960 {
4961 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4962 MSYMBOL_NATURAL_NAME (sym),
4963 lookup_name, text, word);
4964 }
4965
4966
4967 /* ObjC: In case we are completing on a selector, look as the msymbol
4968 again and feed all the selectors into the mill. */
4969
4970 static void
4971 completion_list_objc_symbol (completion_tracker &tracker,
4972 struct minimal_symbol *msymbol,
4973 const lookup_name_info &lookup_name,
4974 const char *text, const char *word)
4975 {
4976 static char *tmp = NULL;
4977 static unsigned int tmplen = 0;
4978
4979 const char *method, *category, *selector;
4980 char *tmp2 = NULL;
4981
4982 method = MSYMBOL_NATURAL_NAME (msymbol);
4983
4984 /* Is it a method? */
4985 if ((method[0] != '-') && (method[0] != '+'))
4986 return;
4987
4988 if (text[0] == '[')
4989 /* Complete on shortened method method. */
4990 completion_list_add_name (tracker, language_objc,
4991 method + 1,
4992 lookup_name,
4993 text, word);
4994
4995 while ((strlen (method) + 1) >= tmplen)
4996 {
4997 if (tmplen == 0)
4998 tmplen = 1024;
4999 else
5000 tmplen *= 2;
5001 tmp = (char *) xrealloc (tmp, tmplen);
5002 }
5003 selector = strchr (method, ' ');
5004 if (selector != NULL)
5005 selector++;
5006
5007 category = strchr (method, '(');
5008
5009 if ((category != NULL) && (selector != NULL))
5010 {
5011 memcpy (tmp, method, (category - method));
5012 tmp[category - method] = ' ';
5013 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5014 completion_list_add_name (tracker, language_objc, tmp,
5015 lookup_name, text, word);
5016 if (text[0] == '[')
5017 completion_list_add_name (tracker, language_objc, tmp + 1,
5018 lookup_name, text, word);
5019 }
5020
5021 if (selector != NULL)
5022 {
5023 /* Complete on selector only. */
5024 strcpy (tmp, selector);
5025 tmp2 = strchr (tmp, ']');
5026 if (tmp2 != NULL)
5027 *tmp2 = '\0';
5028
5029 completion_list_add_name (tracker, language_objc, tmp,
5030 lookup_name, text, word);
5031 }
5032 }
5033
5034 /* Break the non-quoted text based on the characters which are in
5035 symbols. FIXME: This should probably be language-specific. */
5036
5037 static const char *
5038 language_search_unquoted_string (const char *text, const char *p)
5039 {
5040 for (; p > text; --p)
5041 {
5042 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5043 continue;
5044 else
5045 {
5046 if ((current_language->la_language == language_objc))
5047 {
5048 if (p[-1] == ':') /* Might be part of a method name. */
5049 continue;
5050 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5051 p -= 2; /* Beginning of a method name. */
5052 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5053 { /* Might be part of a method name. */
5054 const char *t = p;
5055
5056 /* Seeing a ' ' or a '(' is not conclusive evidence
5057 that we are in the middle of a method name. However,
5058 finding "-[" or "+[" should be pretty un-ambiguous.
5059 Unfortunately we have to find it now to decide. */
5060
5061 while (t > text)
5062 if (isalnum (t[-1]) || t[-1] == '_' ||
5063 t[-1] == ' ' || t[-1] == ':' ||
5064 t[-1] == '(' || t[-1] == ')')
5065 --t;
5066 else
5067 break;
5068
5069 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5070 p = t - 2; /* Method name detected. */
5071 /* Else we leave with p unchanged. */
5072 }
5073 }
5074 break;
5075 }
5076 }
5077 return p;
5078 }
5079
5080 static void
5081 completion_list_add_fields (completion_tracker &tracker,
5082 struct symbol *sym,
5083 const lookup_name_info &lookup_name,
5084 const char *text, const char *word)
5085 {
5086 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5087 {
5088 struct type *t = SYMBOL_TYPE (sym);
5089 enum type_code c = TYPE_CODE (t);
5090 int j;
5091
5092 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5093 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5094 if (TYPE_FIELD_NAME (t, j))
5095 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5096 TYPE_FIELD_NAME (t, j),
5097 lookup_name, text, word);
5098 }
5099 }
5100
5101 /* See symtab.h. */
5102
5103 bool
5104 symbol_is_function_or_method (symbol *sym)
5105 {
5106 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5107 {
5108 case TYPE_CODE_FUNC:
5109 case TYPE_CODE_METHOD:
5110 return true;
5111 default:
5112 return false;
5113 }
5114 }
5115
5116 /* See symtab.h. */
5117
5118 bool
5119 symbol_is_function_or_method (minimal_symbol *msymbol)
5120 {
5121 switch (MSYMBOL_TYPE (msymbol))
5122 {
5123 case mst_text:
5124 case mst_text_gnu_ifunc:
5125 case mst_solib_trampoline:
5126 case mst_file_text:
5127 return true;
5128 default:
5129 return false;
5130 }
5131 }
5132
5133 /* See symtab.h. */
5134
5135 bound_minimal_symbol
5136 find_gnu_ifunc (const symbol *sym)
5137 {
5138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5139 return {};
5140
5141 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5142 symbol_name_match_type::SEARCH_NAME);
5143 struct objfile *objfile = symbol_objfile (sym);
5144
5145 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5146 minimal_symbol *ifunc = NULL;
5147
5148 iterate_over_minimal_symbols (objfile, lookup_name,
5149 [&] (minimal_symbol *minsym)
5150 {
5151 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5152 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5153 {
5154 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5155 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5156 {
5157 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5158 msym_addr
5159 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5160 msym_addr,
5161 current_top_target ());
5162 }
5163 if (msym_addr == address)
5164 {
5165 ifunc = minsym;
5166 return true;
5167 }
5168 }
5169 return false;
5170 });
5171
5172 if (ifunc != NULL)
5173 return {ifunc, objfile};
5174 return {};
5175 }
5176
5177 /* Add matching symbols from SYMTAB to the current completion list. */
5178
5179 static void
5180 add_symtab_completions (struct compunit_symtab *cust,
5181 completion_tracker &tracker,
5182 complete_symbol_mode mode,
5183 const lookup_name_info &lookup_name,
5184 const char *text, const char *word,
5185 enum type_code code)
5186 {
5187 struct symbol *sym;
5188 const struct block *b;
5189 struct block_iterator iter;
5190 int i;
5191
5192 if (cust == NULL)
5193 return;
5194
5195 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5196 {
5197 QUIT;
5198 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5199 ALL_BLOCK_SYMBOLS (b, iter, sym)
5200 {
5201 if (completion_skip_symbol (mode, sym))
5202 continue;
5203
5204 if (code == TYPE_CODE_UNDEF
5205 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5206 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5207 completion_list_add_symbol (tracker, sym,
5208 lookup_name,
5209 text, word);
5210 }
5211 }
5212 }
5213
5214 void
5215 default_collect_symbol_completion_matches_break_on
5216 (completion_tracker &tracker, complete_symbol_mode mode,
5217 symbol_name_match_type name_match_type,
5218 const char *text, const char *word,
5219 const char *break_on, enum type_code code)
5220 {
5221 /* Problem: All of the symbols have to be copied because readline
5222 frees them. I'm not going to worry about this; hopefully there
5223 won't be that many. */
5224
5225 struct symbol *sym;
5226 const struct block *b;
5227 const struct block *surrounding_static_block, *surrounding_global_block;
5228 struct block_iterator iter;
5229 /* The symbol we are completing on. Points in same buffer as text. */
5230 const char *sym_text;
5231
5232 /* Now look for the symbol we are supposed to complete on. */
5233 if (mode == complete_symbol_mode::LINESPEC)
5234 sym_text = text;
5235 else
5236 {
5237 const char *p;
5238 char quote_found;
5239 const char *quote_pos = NULL;
5240
5241 /* First see if this is a quoted string. */
5242 quote_found = '\0';
5243 for (p = text; *p != '\0'; ++p)
5244 {
5245 if (quote_found != '\0')
5246 {
5247 if (*p == quote_found)
5248 /* Found close quote. */
5249 quote_found = '\0';
5250 else if (*p == '\\' && p[1] == quote_found)
5251 /* A backslash followed by the quote character
5252 doesn't end the string. */
5253 ++p;
5254 }
5255 else if (*p == '\'' || *p == '"')
5256 {
5257 quote_found = *p;
5258 quote_pos = p;
5259 }
5260 }
5261 if (quote_found == '\'')
5262 /* A string within single quotes can be a symbol, so complete on it. */
5263 sym_text = quote_pos + 1;
5264 else if (quote_found == '"')
5265 /* A double-quoted string is never a symbol, nor does it make sense
5266 to complete it any other way. */
5267 {
5268 return;
5269 }
5270 else
5271 {
5272 /* It is not a quoted string. Break it based on the characters
5273 which are in symbols. */
5274 while (p > text)
5275 {
5276 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5277 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5278 --p;
5279 else
5280 break;
5281 }
5282 sym_text = p;
5283 }
5284 }
5285
5286 lookup_name_info lookup_name (sym_text, name_match_type, true);
5287
5288 /* At this point scan through the misc symbol vectors and add each
5289 symbol you find to the list. Eventually we want to ignore
5290 anything that isn't a text symbol (everything else will be
5291 handled by the psymtab code below). */
5292
5293 if (code == TYPE_CODE_UNDEF)
5294 {
5295 for (objfile *objfile : current_program_space->objfiles ())
5296 {
5297 for (minimal_symbol *msymbol : objfile->msymbols ())
5298 {
5299 QUIT;
5300
5301 if (completion_skip_symbol (mode, msymbol))
5302 continue;
5303
5304 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5305 sym_text, word);
5306
5307 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5308 sym_text, word);
5309 }
5310 }
5311 }
5312
5313 /* Add completions for all currently loaded symbol tables. */
5314 for (objfile *objfile : current_program_space->objfiles ())
5315 {
5316 for (compunit_symtab *cust : objfile->compunits ())
5317 add_symtab_completions (cust, tracker, mode, lookup_name,
5318 sym_text, word, code);
5319 }
5320
5321 /* Look through the partial symtabs for all symbols which begin by
5322 matching SYM_TEXT. Expand all CUs that you find to the list. */
5323 expand_symtabs_matching (NULL,
5324 lookup_name,
5325 NULL,
5326 [&] (compunit_symtab *symtab) /* expansion notify */
5327 {
5328 add_symtab_completions (symtab,
5329 tracker, mode, lookup_name,
5330 sym_text, word, code);
5331 },
5332 ALL_DOMAIN);
5333
5334 /* Search upwards from currently selected frame (so that we can
5335 complete on local vars). Also catch fields of types defined in
5336 this places which match our text string. Only complete on types
5337 visible from current context. */
5338
5339 b = get_selected_block (0);
5340 surrounding_static_block = block_static_block (b);
5341 surrounding_global_block = block_global_block (b);
5342 if (surrounding_static_block != NULL)
5343 while (b != surrounding_static_block)
5344 {
5345 QUIT;
5346
5347 ALL_BLOCK_SYMBOLS (b, iter, sym)
5348 {
5349 if (code == TYPE_CODE_UNDEF)
5350 {
5351 completion_list_add_symbol (tracker, sym, lookup_name,
5352 sym_text, word);
5353 completion_list_add_fields (tracker, sym, lookup_name,
5354 sym_text, word);
5355 }
5356 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5357 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5358 completion_list_add_symbol (tracker, sym, lookup_name,
5359 sym_text, word);
5360 }
5361
5362 /* Stop when we encounter an enclosing function. Do not stop for
5363 non-inlined functions - the locals of the enclosing function
5364 are in scope for a nested function. */
5365 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5366 break;
5367 b = BLOCK_SUPERBLOCK (b);
5368 }
5369
5370 /* Add fields from the file's types; symbols will be added below. */
5371
5372 if (code == TYPE_CODE_UNDEF)
5373 {
5374 if (surrounding_static_block != NULL)
5375 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5376 completion_list_add_fields (tracker, sym, lookup_name,
5377 sym_text, word);
5378
5379 if (surrounding_global_block != NULL)
5380 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5381 completion_list_add_fields (tracker, sym, lookup_name,
5382 sym_text, word);
5383 }
5384
5385 /* Skip macros if we are completing a struct tag -- arguable but
5386 usually what is expected. */
5387 if (current_language->la_macro_expansion == macro_expansion_c
5388 && code == TYPE_CODE_UNDEF)
5389 {
5390 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5391
5392 /* This adds a macro's name to the current completion list. */
5393 auto add_macro_name = [&] (const char *macro_name,
5394 const macro_definition *,
5395 macro_source_file *,
5396 int)
5397 {
5398 completion_list_add_name (tracker, language_c, macro_name,
5399 lookup_name, sym_text, word);
5400 };
5401
5402 /* Add any macros visible in the default scope. Note that this
5403 may yield the occasional wrong result, because an expression
5404 might be evaluated in a scope other than the default. For
5405 example, if the user types "break file:line if <TAB>", the
5406 resulting expression will be evaluated at "file:line" -- but
5407 at there does not seem to be a way to detect this at
5408 completion time. */
5409 scope = default_macro_scope ();
5410 if (scope)
5411 macro_for_each_in_scope (scope->file, scope->line,
5412 add_macro_name);
5413
5414 /* User-defined macros are always visible. */
5415 macro_for_each (macro_user_macros, add_macro_name);
5416 }
5417 }
5418
5419 void
5420 default_collect_symbol_completion_matches (completion_tracker &tracker,
5421 complete_symbol_mode mode,
5422 symbol_name_match_type name_match_type,
5423 const char *text, const char *word,
5424 enum type_code code)
5425 {
5426 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5427 name_match_type,
5428 text, word, "",
5429 code);
5430 }
5431
5432 /* Collect all symbols (regardless of class) which begin by matching
5433 TEXT. */
5434
5435 void
5436 collect_symbol_completion_matches (completion_tracker &tracker,
5437 complete_symbol_mode mode,
5438 symbol_name_match_type name_match_type,
5439 const char *text, const char *word)
5440 {
5441 current_language->la_collect_symbol_completion_matches (tracker, mode,
5442 name_match_type,
5443 text, word,
5444 TYPE_CODE_UNDEF);
5445 }
5446
5447 /* Like collect_symbol_completion_matches, but only collect
5448 STRUCT_DOMAIN symbols whose type code is CODE. */
5449
5450 void
5451 collect_symbol_completion_matches_type (completion_tracker &tracker,
5452 const char *text, const char *word,
5453 enum type_code code)
5454 {
5455 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5456 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5457
5458 gdb_assert (code == TYPE_CODE_UNION
5459 || code == TYPE_CODE_STRUCT
5460 || code == TYPE_CODE_ENUM);
5461 current_language->la_collect_symbol_completion_matches (tracker, mode,
5462 name_match_type,
5463 text, word, code);
5464 }
5465
5466 /* Like collect_symbol_completion_matches, but collects a list of
5467 symbols defined in all source files named SRCFILE. */
5468
5469 void
5470 collect_file_symbol_completion_matches (completion_tracker &tracker,
5471 complete_symbol_mode mode,
5472 symbol_name_match_type name_match_type,
5473 const char *text, const char *word,
5474 const char *srcfile)
5475 {
5476 /* The symbol we are completing on. Points in same buffer as text. */
5477 const char *sym_text;
5478
5479 /* Now look for the symbol we are supposed to complete on.
5480 FIXME: This should be language-specific. */
5481 if (mode == complete_symbol_mode::LINESPEC)
5482 sym_text = text;
5483 else
5484 {
5485 const char *p;
5486 char quote_found;
5487 const char *quote_pos = NULL;
5488
5489 /* First see if this is a quoted string. */
5490 quote_found = '\0';
5491 for (p = text; *p != '\0'; ++p)
5492 {
5493 if (quote_found != '\0')
5494 {
5495 if (*p == quote_found)
5496 /* Found close quote. */
5497 quote_found = '\0';
5498 else if (*p == '\\' && p[1] == quote_found)
5499 /* A backslash followed by the quote character
5500 doesn't end the string. */
5501 ++p;
5502 }
5503 else if (*p == '\'' || *p == '"')
5504 {
5505 quote_found = *p;
5506 quote_pos = p;
5507 }
5508 }
5509 if (quote_found == '\'')
5510 /* A string within single quotes can be a symbol, so complete on it. */
5511 sym_text = quote_pos + 1;
5512 else if (quote_found == '"')
5513 /* A double-quoted string is never a symbol, nor does it make sense
5514 to complete it any other way. */
5515 {
5516 return;
5517 }
5518 else
5519 {
5520 /* Not a quoted string. */
5521 sym_text = language_search_unquoted_string (text, p);
5522 }
5523 }
5524
5525 lookup_name_info lookup_name (sym_text, name_match_type, true);
5526
5527 /* Go through symtabs for SRCFILE and check the externs and statics
5528 for symbols which match. */
5529 iterate_over_symtabs (srcfile, [&] (symtab *s)
5530 {
5531 add_symtab_completions (SYMTAB_COMPUNIT (s),
5532 tracker, mode, lookup_name,
5533 sym_text, word, TYPE_CODE_UNDEF);
5534 return false;
5535 });
5536 }
5537
5538 /* A helper function for make_source_files_completion_list. It adds
5539 another file name to a list of possible completions, growing the
5540 list as necessary. */
5541
5542 static void
5543 add_filename_to_list (const char *fname, const char *text, const char *word,
5544 completion_list *list)
5545 {
5546 list->emplace_back (make_completion_match_str (fname, text, word));
5547 }
5548
5549 static int
5550 not_interesting_fname (const char *fname)
5551 {
5552 static const char *illegal_aliens[] = {
5553 "_globals_", /* inserted by coff_symtab_read */
5554 NULL
5555 };
5556 int i;
5557
5558 for (i = 0; illegal_aliens[i]; i++)
5559 {
5560 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5561 return 1;
5562 }
5563 return 0;
5564 }
5565
5566 /* An object of this type is passed as the user_data argument to
5567 map_partial_symbol_filenames. */
5568 struct add_partial_filename_data
5569 {
5570 struct filename_seen_cache *filename_seen_cache;
5571 const char *text;
5572 const char *word;
5573 int text_len;
5574 completion_list *list;
5575 };
5576
5577 /* A callback for map_partial_symbol_filenames. */
5578
5579 static void
5580 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5581 void *user_data)
5582 {
5583 struct add_partial_filename_data *data
5584 = (struct add_partial_filename_data *) user_data;
5585
5586 if (not_interesting_fname (filename))
5587 return;
5588 if (!data->filename_seen_cache->seen (filename)
5589 && filename_ncmp (filename, data->text, data->text_len) == 0)
5590 {
5591 /* This file matches for a completion; add it to the
5592 current list of matches. */
5593 add_filename_to_list (filename, data->text, data->word, data->list);
5594 }
5595 else
5596 {
5597 const char *base_name = lbasename (filename);
5598
5599 if (base_name != filename
5600 && !data->filename_seen_cache->seen (base_name)
5601 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5602 add_filename_to_list (base_name, data->text, data->word, data->list);
5603 }
5604 }
5605
5606 /* Return a list of all source files whose names begin with matching
5607 TEXT. The file names are looked up in the symbol tables of this
5608 program. */
5609
5610 completion_list
5611 make_source_files_completion_list (const char *text, const char *word)
5612 {
5613 size_t text_len = strlen (text);
5614 completion_list list;
5615 const char *base_name;
5616 struct add_partial_filename_data datum;
5617
5618 if (!have_full_symbols () && !have_partial_symbols ())
5619 return list;
5620
5621 filename_seen_cache filenames_seen;
5622
5623 for (objfile *objfile : current_program_space->objfiles ())
5624 {
5625 for (compunit_symtab *cu : objfile->compunits ())
5626 {
5627 for (symtab *s : compunit_filetabs (cu))
5628 {
5629 if (not_interesting_fname (s->filename))
5630 continue;
5631 if (!filenames_seen.seen (s->filename)
5632 && filename_ncmp (s->filename, text, text_len) == 0)
5633 {
5634 /* This file matches for a completion; add it to the current
5635 list of matches. */
5636 add_filename_to_list (s->filename, text, word, &list);
5637 }
5638 else
5639 {
5640 /* NOTE: We allow the user to type a base name when the
5641 debug info records leading directories, but not the other
5642 way around. This is what subroutines of breakpoint
5643 command do when they parse file names. */
5644 base_name = lbasename (s->filename);
5645 if (base_name != s->filename
5646 && !filenames_seen.seen (base_name)
5647 && filename_ncmp (base_name, text, text_len) == 0)
5648 add_filename_to_list (base_name, text, word, &list);
5649 }
5650 }
5651 }
5652 }
5653
5654 datum.filename_seen_cache = &filenames_seen;
5655 datum.text = text;
5656 datum.word = word;
5657 datum.text_len = text_len;
5658 datum.list = &list;
5659 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5660 0 /*need_fullname*/);
5661
5662 return list;
5663 }
5664 \f
5665 /* Track MAIN */
5666
5667 /* Return the "main_info" object for the current program space. If
5668 the object has not yet been created, create it and fill in some
5669 default values. */
5670
5671 static struct main_info *
5672 get_main_info (void)
5673 {
5674 struct main_info *info
5675 = (struct main_info *) program_space_data (current_program_space,
5676 main_progspace_key);
5677
5678 if (info == NULL)
5679 {
5680 /* It may seem strange to store the main name in the progspace
5681 and also in whatever objfile happens to see a main name in
5682 its debug info. The reason for this is mainly historical:
5683 gdb returned "main" as the name even if no function named
5684 "main" was defined the program; and this approach lets us
5685 keep compatibility. */
5686 info = XCNEW (struct main_info);
5687 info->language_of_main = language_unknown;
5688 set_program_space_data (current_program_space, main_progspace_key,
5689 info);
5690 }
5691
5692 return info;
5693 }
5694
5695 /* A cleanup to destroy a struct main_info when a progspace is
5696 destroyed. */
5697
5698 static void
5699 main_info_cleanup (struct program_space *pspace, void *data)
5700 {
5701 struct main_info *info = (struct main_info *) data;
5702
5703 if (info != NULL)
5704 xfree (info->name_of_main);
5705 xfree (info);
5706 }
5707
5708 static void
5709 set_main_name (const char *name, enum language lang)
5710 {
5711 struct main_info *info = get_main_info ();
5712
5713 if (info->name_of_main != NULL)
5714 {
5715 xfree (info->name_of_main);
5716 info->name_of_main = NULL;
5717 info->language_of_main = language_unknown;
5718 }
5719 if (name != NULL)
5720 {
5721 info->name_of_main = xstrdup (name);
5722 info->language_of_main = lang;
5723 }
5724 }
5725
5726 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5727 accordingly. */
5728
5729 static void
5730 find_main_name (void)
5731 {
5732 const char *new_main_name;
5733
5734 /* First check the objfiles to see whether a debuginfo reader has
5735 picked up the appropriate main name. Historically the main name
5736 was found in a more or less random way; this approach instead
5737 relies on the order of objfile creation -- which still isn't
5738 guaranteed to get the correct answer, but is just probably more
5739 accurate. */
5740 for (objfile *objfile : current_program_space->objfiles ())
5741 {
5742 if (objfile->per_bfd->name_of_main != NULL)
5743 {
5744 set_main_name (objfile->per_bfd->name_of_main,
5745 objfile->per_bfd->language_of_main);
5746 return;
5747 }
5748 }
5749
5750 /* Try to see if the main procedure is in Ada. */
5751 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5752 be to add a new method in the language vector, and call this
5753 method for each language until one of them returns a non-empty
5754 name. This would allow us to remove this hard-coded call to
5755 an Ada function. It is not clear that this is a better approach
5756 at this point, because all methods need to be written in a way
5757 such that false positives never be returned. For instance, it is
5758 important that a method does not return a wrong name for the main
5759 procedure if the main procedure is actually written in a different
5760 language. It is easy to guaranty this with Ada, since we use a
5761 special symbol generated only when the main in Ada to find the name
5762 of the main procedure. It is difficult however to see how this can
5763 be guarantied for languages such as C, for instance. This suggests
5764 that order of call for these methods becomes important, which means
5765 a more complicated approach. */
5766 new_main_name = ada_main_name ();
5767 if (new_main_name != NULL)
5768 {
5769 set_main_name (new_main_name, language_ada);
5770 return;
5771 }
5772
5773 new_main_name = d_main_name ();
5774 if (new_main_name != NULL)
5775 {
5776 set_main_name (new_main_name, language_d);
5777 return;
5778 }
5779
5780 new_main_name = go_main_name ();
5781 if (new_main_name != NULL)
5782 {
5783 set_main_name (new_main_name, language_go);
5784 return;
5785 }
5786
5787 new_main_name = pascal_main_name ();
5788 if (new_main_name != NULL)
5789 {
5790 set_main_name (new_main_name, language_pascal);
5791 return;
5792 }
5793
5794 /* The languages above didn't identify the name of the main procedure.
5795 Fallback to "main". */
5796 set_main_name ("main", language_unknown);
5797 }
5798
5799 char *
5800 main_name (void)
5801 {
5802 struct main_info *info = get_main_info ();
5803
5804 if (info->name_of_main == NULL)
5805 find_main_name ();
5806
5807 return info->name_of_main;
5808 }
5809
5810 /* Return the language of the main function. If it is not known,
5811 return language_unknown. */
5812
5813 enum language
5814 main_language (void)
5815 {
5816 struct main_info *info = get_main_info ();
5817
5818 if (info->name_of_main == NULL)
5819 find_main_name ();
5820
5821 return info->language_of_main;
5822 }
5823
5824 /* Handle ``executable_changed'' events for the symtab module. */
5825
5826 static void
5827 symtab_observer_executable_changed (void)
5828 {
5829 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5830 set_main_name (NULL, language_unknown);
5831 }
5832
5833 /* Return 1 if the supplied producer string matches the ARM RealView
5834 compiler (armcc). */
5835
5836 int
5837 producer_is_realview (const char *producer)
5838 {
5839 static const char *const arm_idents[] = {
5840 "ARM C Compiler, ADS",
5841 "Thumb C Compiler, ADS",
5842 "ARM C++ Compiler, ADS",
5843 "Thumb C++ Compiler, ADS",
5844 "ARM/Thumb C/C++ Compiler, RVCT",
5845 "ARM C/C++ Compiler, RVCT"
5846 };
5847 int i;
5848
5849 if (producer == NULL)
5850 return 0;
5851
5852 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5853 if (startswith (producer, arm_idents[i]))
5854 return 1;
5855
5856 return 0;
5857 }
5858
5859 \f
5860
5861 /* The next index to hand out in response to a registration request. */
5862
5863 static int next_aclass_value = LOC_FINAL_VALUE;
5864
5865 /* The maximum number of "aclass" registrations we support. This is
5866 constant for convenience. */
5867 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5868
5869 /* The objects representing the various "aclass" values. The elements
5870 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5871 elements are those registered at gdb initialization time. */
5872
5873 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5874
5875 /* The globally visible pointer. This is separate from 'symbol_impl'
5876 so that it can be const. */
5877
5878 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5879
5880 /* Make sure we saved enough room in struct symbol. */
5881
5882 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5883
5884 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5885 is the ops vector associated with this index. This returns the new
5886 index, which should be used as the aclass_index field for symbols
5887 of this type. */
5888
5889 int
5890 register_symbol_computed_impl (enum address_class aclass,
5891 const struct symbol_computed_ops *ops)
5892 {
5893 int result = next_aclass_value++;
5894
5895 gdb_assert (aclass == LOC_COMPUTED);
5896 gdb_assert (result < MAX_SYMBOL_IMPLS);
5897 symbol_impl[result].aclass = aclass;
5898 symbol_impl[result].ops_computed = ops;
5899
5900 /* Sanity check OPS. */
5901 gdb_assert (ops != NULL);
5902 gdb_assert (ops->tracepoint_var_ref != NULL);
5903 gdb_assert (ops->describe_location != NULL);
5904 gdb_assert (ops->get_symbol_read_needs != NULL);
5905 gdb_assert (ops->read_variable != NULL);
5906
5907 return result;
5908 }
5909
5910 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5911 OPS is the ops vector associated with this index. This returns the
5912 new index, which should be used as the aclass_index field for symbols
5913 of this type. */
5914
5915 int
5916 register_symbol_block_impl (enum address_class aclass,
5917 const struct symbol_block_ops *ops)
5918 {
5919 int result = next_aclass_value++;
5920
5921 gdb_assert (aclass == LOC_BLOCK);
5922 gdb_assert (result < MAX_SYMBOL_IMPLS);
5923 symbol_impl[result].aclass = aclass;
5924 symbol_impl[result].ops_block = ops;
5925
5926 /* Sanity check OPS. */
5927 gdb_assert (ops != NULL);
5928 gdb_assert (ops->find_frame_base_location != NULL);
5929
5930 return result;
5931 }
5932
5933 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5934 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5935 this index. This returns the new index, which should be used as
5936 the aclass_index field for symbols of this type. */
5937
5938 int
5939 register_symbol_register_impl (enum address_class aclass,
5940 const struct symbol_register_ops *ops)
5941 {
5942 int result = next_aclass_value++;
5943
5944 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5945 gdb_assert (result < MAX_SYMBOL_IMPLS);
5946 symbol_impl[result].aclass = aclass;
5947 symbol_impl[result].ops_register = ops;
5948
5949 return result;
5950 }
5951
5952 /* Initialize elements of 'symbol_impl' for the constants in enum
5953 address_class. */
5954
5955 static void
5956 initialize_ordinary_address_classes (void)
5957 {
5958 int i;
5959
5960 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5961 symbol_impl[i].aclass = (enum address_class) i;
5962 }
5963
5964 \f
5965
5966 /* Helper function to initialize the fields of an objfile-owned symbol.
5967 It assumed that *SYM is already all zeroes. */
5968
5969 static void
5970 initialize_objfile_symbol_1 (struct symbol *sym)
5971 {
5972 SYMBOL_OBJFILE_OWNED (sym) = 1;
5973 SYMBOL_SECTION (sym) = -1;
5974 }
5975
5976 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5977
5978 void
5979 initialize_objfile_symbol (struct symbol *sym)
5980 {
5981 memset (sym, 0, sizeof (*sym));
5982 initialize_objfile_symbol_1 (sym);
5983 }
5984
5985 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5986 obstack. */
5987
5988 struct symbol *
5989 allocate_symbol (struct objfile *objfile)
5990 {
5991 struct symbol *result;
5992
5993 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5994 initialize_objfile_symbol_1 (result);
5995
5996 return result;
5997 }
5998
5999 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6000 obstack. */
6001
6002 struct template_symbol *
6003 allocate_template_symbol (struct objfile *objfile)
6004 {
6005 struct template_symbol *result;
6006
6007 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6008 initialize_objfile_symbol_1 (result);
6009
6010 return result;
6011 }
6012
6013 /* See symtab.h. */
6014
6015 struct objfile *
6016 symbol_objfile (const struct symbol *symbol)
6017 {
6018 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6019 return SYMTAB_OBJFILE (symbol->owner.symtab);
6020 }
6021
6022 /* See symtab.h. */
6023
6024 struct gdbarch *
6025 symbol_arch (const struct symbol *symbol)
6026 {
6027 if (!SYMBOL_OBJFILE_OWNED (symbol))
6028 return symbol->owner.arch;
6029 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6030 }
6031
6032 /* See symtab.h. */
6033
6034 struct symtab *
6035 symbol_symtab (const struct symbol *symbol)
6036 {
6037 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6038 return symbol->owner.symtab;
6039 }
6040
6041 /* See symtab.h. */
6042
6043 void
6044 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6045 {
6046 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6047 symbol->owner.symtab = symtab;
6048 }
6049
6050 \f
6051
6052 void
6053 _initialize_symtab (void)
6054 {
6055 initialize_ordinary_address_classes ();
6056
6057 main_progspace_key
6058 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6059
6060 symbol_cache_key
6061 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6062
6063 add_info ("variables", info_variables_command,
6064 info_print_args_help (_("\
6065 All global and static variable names or those matching REGEXPs.\n\
6066 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6067 Prints the global and static variables.\n"),
6068 _("global and static variables")));
6069 if (dbx_commands)
6070 add_com ("whereis", class_info, info_variables_command,
6071 info_print_args_help (_("\
6072 All global and static variable names, or those matching REGEXPs.\n\
6073 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6074 Prints the global and static variables.\n"),
6075 _("global and static variables")));
6076
6077 add_info ("functions", info_functions_command,
6078 info_print_args_help (_("\
6079 All function names or those matching REGEXPs.\n\
6080 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6081 Prints the functions.\n"),
6082 _("functions")));
6083
6084 /* FIXME: This command has at least the following problems:
6085 1. It prints builtin types (in a very strange and confusing fashion).
6086 2. It doesn't print right, e.g. with
6087 typedef struct foo *FOO
6088 type_print prints "FOO" when we want to make it (in this situation)
6089 print "struct foo *".
6090 I also think "ptype" or "whatis" is more likely to be useful (but if
6091 there is much disagreement "info types" can be fixed). */
6092 add_info ("types", info_types_command,
6093 _("All type names, or those matching REGEXP."));
6094
6095 add_info ("sources", info_sources_command,
6096 _("Source files in the program."));
6097
6098 add_com ("rbreak", class_breakpoint, rbreak_command,
6099 _("Set a breakpoint for all functions matching REGEXP."));
6100
6101 add_setshow_enum_cmd ("multiple-symbols", no_class,
6102 multiple_symbols_modes, &multiple_symbols_mode,
6103 _("\
6104 Set the debugger behavior when more than one symbol are possible matches\n\
6105 in an expression."), _("\
6106 Show how the debugger handles ambiguities in expressions."), _("\
6107 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6108 NULL, NULL, &setlist, &showlist);
6109
6110 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6111 &basenames_may_differ, _("\
6112 Set whether a source file may have multiple base names."), _("\
6113 Show whether a source file may have multiple base names."), _("\
6114 (A \"base name\" is the name of a file with the directory part removed.\n\
6115 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6116 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6117 before comparing them. Canonicalization is an expensive operation,\n\
6118 but it allows the same file be known by more than one base name.\n\
6119 If not set (the default), all source files are assumed to have just\n\
6120 one base name, and gdb will do file name comparisons more efficiently."),
6121 NULL, NULL,
6122 &setlist, &showlist);
6123
6124 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6125 _("Set debugging of symbol table creation."),
6126 _("Show debugging of symbol table creation."), _("\
6127 When enabled (non-zero), debugging messages are printed when building\n\
6128 symbol tables. A value of 1 (one) normally provides enough information.\n\
6129 A value greater than 1 provides more verbose information."),
6130 NULL,
6131 NULL,
6132 &setdebuglist, &showdebuglist);
6133
6134 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6135 _("\
6136 Set debugging of symbol lookup."), _("\
6137 Show debugging of symbol lookup."), _("\
6138 When enabled (non-zero), symbol lookups are logged."),
6139 NULL, NULL,
6140 &setdebuglist, &showdebuglist);
6141
6142 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6143 &new_symbol_cache_size,
6144 _("Set the size of the symbol cache."),
6145 _("Show the size of the symbol cache."), _("\
6146 The size of the symbol cache.\n\
6147 If zero then the symbol cache is disabled."),
6148 set_symbol_cache_size_handler, NULL,
6149 &maintenance_set_cmdlist,
6150 &maintenance_show_cmdlist);
6151
6152 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6153 _("Dump the symbol cache for each program space."),
6154 &maintenanceprintlist);
6155
6156 add_cmd ("symbol-cache-statistics", class_maintenance,
6157 maintenance_print_symbol_cache_statistics,
6158 _("Print symbol cache statistics for each program space."),
6159 &maintenanceprintlist);
6160
6161 add_cmd ("flush-symbol-cache", class_maintenance,
6162 maintenance_flush_symbol_cache,
6163 _("Flush the symbol cache for each program space."),
6164 &maintenancelist);
6165
6166 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6167 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6168 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6169 }
This page took 0.21889 seconds and 4 git commands to generate.