gdb: Split global symbol search into separate functions
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 symbol_set_language (struct general_symbol_info *gsymbol,
716 enum language language,
717 struct obstack *obstack)
718 {
719 gsymbol->language = language;
720 if (gsymbol->language == language_cplus
721 || gsymbol->language == language_d
722 || gsymbol->language == language_go
723 || gsymbol->language == language_objc
724 || gsymbol->language == language_fortran)
725 {
726 symbol_set_demangled_name (gsymbol, NULL, obstack);
727 }
728 else if (gsymbol->language == language_ada)
729 {
730 gdb_assert (gsymbol->ada_mangled == 0);
731 gsymbol->language_specific.obstack = obstack;
732 }
733 else
734 {
735 memset (&gsymbol->language_specific, 0,
736 sizeof (gsymbol->language_specific));
737 }
738 }
739
740 /* Functions to initialize a symbol's mangled name. */
741
742 /* Objects of this type are stored in the demangled name hash table. */
743 struct demangled_name_entry
744 {
745 demangled_name_entry (gdb::string_view mangled_name)
746 : mangled (mangled_name) {}
747
748 gdb::string_view mangled;
749 enum language language;
750 gdb::unique_xmalloc_ptr<char> demangled;
751 };
752
753 /* Hash function for the demangled name hash. */
754
755 static hashval_t
756 hash_demangled_name_entry (const void *data)
757 {
758 const struct demangled_name_entry *e
759 = (const struct demangled_name_entry *) data;
760
761 return fast_hash (e->mangled.data (), e->mangled.length ());
762 }
763
764 /* Equality function for the demangled name hash. */
765
766 static int
767 eq_demangled_name_entry (const void *a, const void *b)
768 {
769 const struct demangled_name_entry *da
770 = (const struct demangled_name_entry *) a;
771 const struct demangled_name_entry *db
772 = (const struct demangled_name_entry *) b;
773
774 return da->mangled == db->mangled;
775 }
776
777 static void
778 free_demangled_name_entry (void *data)
779 {
780 struct demangled_name_entry *e
781 = (struct demangled_name_entry *) data;
782
783 e->~demangled_name_entry();
784 }
785
786 /* Create the hash table used for demangled names. Each hash entry is
787 a pair of strings; one for the mangled name and one for the demangled
788 name. The entry is hashed via just the mangled name. */
789
790 static void
791 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
792 {
793 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
794 The hash table code will round this up to the next prime number.
795 Choosing a much larger table size wastes memory, and saves only about
796 1% in symbol reading. However, if the minsym count is already
797 initialized (e.g. because symbol name setting was deferred to
798 a background thread) we can initialize the hashtable with a count
799 based on that, because we will almost certainly have at least that
800 many entries. If we have a nonzero number but less than 256,
801 we still stay with 256 to have some space for psymbols, etc. */
802
803 /* htab will expand the table when it is 3/4th full, so we account for that
804 here. +2 to round up. */
805 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
806 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
807
808 per_bfd->demangled_names_hash.reset (htab_create_alloc
809 (count, hash_demangled_name_entry, eq_demangled_name_entry,
810 free_demangled_name_entry, xcalloc, xfree));
811 }
812
813 /* See symtab.h */
814
815 char *
816 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
817 const char *mangled)
818 {
819 char *demangled = NULL;
820 int i;
821
822 if (gsymbol->language == language_unknown)
823 gsymbol->language = language_auto;
824
825 if (gsymbol->language != language_auto)
826 {
827 const struct language_defn *lang = language_def (gsymbol->language);
828
829 language_sniff_from_mangled_name (lang, mangled, &demangled);
830 return demangled;
831 }
832
833 for (i = language_unknown; i < nr_languages; ++i)
834 {
835 enum language l = (enum language) i;
836 const struct language_defn *lang = language_def (l);
837
838 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
839 {
840 gsymbol->language = l;
841 return demangled;
842 }
843 }
844
845 return NULL;
846 }
847
848 /* Set both the mangled and demangled (if any) names for GSYMBOL based
849 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
850 objfile's obstack; but if COPY_NAME is 0 and if NAME is
851 NUL-terminated, then this function assumes that NAME is already
852 correctly saved (either permanently or with a lifetime tied to the
853 objfile), and it will not be copied.
854
855 The hash table corresponding to OBJFILE is used, and the memory
856 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
857 so the pointer can be discarded after calling this function. */
858
859 void
860 symbol_set_names (struct general_symbol_info *gsymbol,
861 gdb::string_view linkage_name, bool copy_name,
862 struct objfile_per_bfd_storage *per_bfd,
863 gdb::optional<hashval_t> hash)
864 {
865 struct demangled_name_entry **slot;
866
867 if (gsymbol->language == language_ada)
868 {
869 /* In Ada, we do the symbol lookups using the mangled name, so
870 we can save some space by not storing the demangled name. */
871 if (!copy_name)
872 gsymbol->name = linkage_name.data ();
873 else
874 {
875 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
876 linkage_name.length () + 1);
877
878 memcpy (name, linkage_name.data (), linkage_name.length ());
879 name[linkage_name.length ()] = '\0';
880 gsymbol->name = name;
881 }
882 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
883
884 return;
885 }
886
887 if (per_bfd->demangled_names_hash == NULL)
888 create_demangled_names_hash (per_bfd);
889
890 struct demangled_name_entry entry (linkage_name);
891 if (!hash.has_value ())
892 hash = hash_demangled_name_entry (&entry);
893 slot = ((struct demangled_name_entry **)
894 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
895 &entry, *hash, INSERT));
896
897 /* If this name is not in the hash table, add it. */
898 if (*slot == NULL
899 /* A C version of the symbol may have already snuck into the table.
900 This happens to, e.g., main.init (__go_init_main). Cope. */
901 || (gsymbol->language == language_go && (*slot)->demangled == nullptr))
902 {
903 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
904 to true if the string might not be nullterminated. We have to make
905 this copy because demangling needs a nullterminated string. */
906 gdb::string_view linkage_name_copy;
907 if (copy_name)
908 {
909 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
910 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
911 alloc_name[linkage_name.length ()] = '\0';
912
913 linkage_name_copy = gdb::string_view (alloc_name,
914 linkage_name.length ());
915 }
916 else
917 linkage_name_copy = linkage_name;
918
919 /* The const_cast is safe because the only reason it is already
920 initialized is if we purposefully set it from a background
921 thread to avoid doing the work here. However, it is still
922 allocated from the heap and needs to be freed by us, just
923 like if we called symbol_find_demangled_name here. */
924 gdb::unique_xmalloc_ptr<char> demangled_name
925 (gsymbol->language_specific.demangled_name
926 ? const_cast<char *> (gsymbol->language_specific.demangled_name)
927 : symbol_find_demangled_name (gsymbol, linkage_name_copy.data ()));
928
929 /* Suppose we have demangled_name==NULL, copy_name==0, and
930 linkage_name_copy==linkage_name. In this case, we already have the
931 mangled name saved, and we don't have a demangled name. So,
932 you might think we could save a little space by not recording
933 this in the hash table at all.
934
935 It turns out that it is actually important to still save such
936 an entry in the hash table, because storing this name gives
937 us better bcache hit rates for partial symbols. */
938 if (!copy_name)
939 {
940 *slot
941 = ((struct demangled_name_entry *)
942 obstack_alloc (&per_bfd->storage_obstack,
943 sizeof (demangled_name_entry)));
944 new (*slot) demangled_name_entry (linkage_name);
945 }
946 else
947 {
948 /* If we must copy the mangled name, put it directly after
949 the struct so we can have a single allocation. */
950 *slot
951 = ((struct demangled_name_entry *)
952 obstack_alloc (&per_bfd->storage_obstack,
953 sizeof (demangled_name_entry)
954 + linkage_name.length () + 1));
955 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
956 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
957 mangled_ptr [linkage_name.length ()] = '\0';
958 new (*slot) demangled_name_entry
959 (gdb::string_view (mangled_ptr, linkage_name.length ()));
960 }
961 (*slot)->demangled = std::move (demangled_name);
962 (*slot)->language = gsymbol->language;
963 }
964 else if (gsymbol->language == language_unknown
965 || gsymbol->language == language_auto)
966 gsymbol->language = (*slot)->language;
967
968 gsymbol->name = (*slot)->mangled.data ();
969 if ((*slot)->demangled != nullptr)
970 symbol_set_demangled_name (gsymbol, (*slot)->demangled.get (),
971 &per_bfd->storage_obstack);
972 else
973 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
974 }
975
976 /* See symtab.h. */
977
978 const char *
979 general_symbol_info::natural_name () const
980 {
981 switch (language)
982 {
983 case language_cplus:
984 case language_d:
985 case language_go:
986 case language_objc:
987 case language_fortran:
988 if (symbol_get_demangled_name (this) != NULL)
989 return symbol_get_demangled_name (this);
990 break;
991 case language_ada:
992 return ada_decode_symbol (this);
993 default:
994 break;
995 }
996 return name;
997 }
998
999 /* See symtab.h. */
1000
1001 const char *
1002 general_symbol_info::demangled_name () const
1003 {
1004 const char *dem_name = NULL;
1005
1006 switch (language)
1007 {
1008 case language_cplus:
1009 case language_d:
1010 case language_go:
1011 case language_objc:
1012 case language_fortran:
1013 dem_name = symbol_get_demangled_name (this);
1014 break;
1015 case language_ada:
1016 dem_name = ada_decode_symbol (this);
1017 break;
1018 default:
1019 break;
1020 }
1021 return dem_name;
1022 }
1023
1024 /* See symtab.h. */
1025
1026 const char *
1027 general_symbol_info::search_name () const
1028 {
1029 if (language == language_ada)
1030 return name;
1031 else
1032 return natural_name ();
1033 }
1034
1035 /* See symtab.h. */
1036
1037 bool
1038 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1039 const lookup_name_info &name)
1040 {
1041 symbol_name_matcher_ftype *name_match
1042 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1043 return name_match (gsymbol->search_name (), name, NULL);
1044 }
1045
1046 \f
1047
1048 /* Return true if the two sections are the same, or if they could
1049 plausibly be copies of each other, one in an original object
1050 file and another in a separated debug file. */
1051
1052 bool
1053 matching_obj_sections (struct obj_section *obj_first,
1054 struct obj_section *obj_second)
1055 {
1056 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1057 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1058
1059 /* If they're the same section, then they match. */
1060 if (first == second)
1061 return true;
1062
1063 /* If either is NULL, give up. */
1064 if (first == NULL || second == NULL)
1065 return false;
1066
1067 /* This doesn't apply to absolute symbols. */
1068 if (first->owner == NULL || second->owner == NULL)
1069 return false;
1070
1071 /* If they're in the same object file, they must be different sections. */
1072 if (first->owner == second->owner)
1073 return false;
1074
1075 /* Check whether the two sections are potentially corresponding. They must
1076 have the same size, address, and name. We can't compare section indexes,
1077 which would be more reliable, because some sections may have been
1078 stripped. */
1079 if (bfd_section_size (first) != bfd_section_size (second))
1080 return false;
1081
1082 /* In-memory addresses may start at a different offset, relativize them. */
1083 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1084 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1085 return false;
1086
1087 if (bfd_section_name (first) == NULL
1088 || bfd_section_name (second) == NULL
1089 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1090 return false;
1091
1092 /* Otherwise check that they are in corresponding objfiles. */
1093
1094 struct objfile *obj = NULL;
1095 for (objfile *objfile : current_program_space->objfiles ())
1096 if (objfile->obfd == first->owner)
1097 {
1098 obj = objfile;
1099 break;
1100 }
1101 gdb_assert (obj != NULL);
1102
1103 if (obj->separate_debug_objfile != NULL
1104 && obj->separate_debug_objfile->obfd == second->owner)
1105 return true;
1106 if (obj->separate_debug_objfile_backlink != NULL
1107 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1108 return true;
1109
1110 return false;
1111 }
1112
1113 /* See symtab.h. */
1114
1115 void
1116 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1117 {
1118 struct bound_minimal_symbol msymbol;
1119
1120 /* If we know that this is not a text address, return failure. This is
1121 necessary because we loop based on texthigh and textlow, which do
1122 not include the data ranges. */
1123 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1124 if (msymbol.minsym && msymbol.minsym->data_p ())
1125 return;
1126
1127 for (objfile *objfile : current_program_space->objfiles ())
1128 {
1129 struct compunit_symtab *cust = NULL;
1130
1131 if (objfile->sf)
1132 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1133 pc, section, 0);
1134 if (cust)
1135 return;
1136 }
1137 }
1138 \f
1139 /* Hash function for the symbol cache. */
1140
1141 static unsigned int
1142 hash_symbol_entry (const struct objfile *objfile_context,
1143 const char *name, domain_enum domain)
1144 {
1145 unsigned int hash = (uintptr_t) objfile_context;
1146
1147 if (name != NULL)
1148 hash += htab_hash_string (name);
1149
1150 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1151 to map to the same slot. */
1152 if (domain == STRUCT_DOMAIN)
1153 hash += VAR_DOMAIN * 7;
1154 else
1155 hash += domain * 7;
1156
1157 return hash;
1158 }
1159
1160 /* Equality function for the symbol cache. */
1161
1162 static int
1163 eq_symbol_entry (const struct symbol_cache_slot *slot,
1164 const struct objfile *objfile_context,
1165 const char *name, domain_enum domain)
1166 {
1167 const char *slot_name;
1168 domain_enum slot_domain;
1169
1170 if (slot->state == SYMBOL_SLOT_UNUSED)
1171 return 0;
1172
1173 if (slot->objfile_context != objfile_context)
1174 return 0;
1175
1176 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1177 {
1178 slot_name = slot->value.not_found.name;
1179 slot_domain = slot->value.not_found.domain;
1180 }
1181 else
1182 {
1183 slot_name = slot->value.found.symbol->search_name ();
1184 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1185 }
1186
1187 /* NULL names match. */
1188 if (slot_name == NULL && name == NULL)
1189 {
1190 /* But there's no point in calling symbol_matches_domain in the
1191 SYMBOL_SLOT_FOUND case. */
1192 if (slot_domain != domain)
1193 return 0;
1194 }
1195 else if (slot_name != NULL && name != NULL)
1196 {
1197 /* It's important that we use the same comparison that was done
1198 the first time through. If the slot records a found symbol,
1199 then this means using the symbol name comparison function of
1200 the symbol's language with symbol->search_name (). See
1201 dictionary.c. It also means using symbol_matches_domain for
1202 found symbols. See block.c.
1203
1204 If the slot records a not-found symbol, then require a precise match.
1205 We could still be lax with whitespace like strcmp_iw though. */
1206
1207 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1208 {
1209 if (strcmp (slot_name, name) != 0)
1210 return 0;
1211 if (slot_domain != domain)
1212 return 0;
1213 }
1214 else
1215 {
1216 struct symbol *sym = slot->value.found.symbol;
1217 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1218
1219 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1220 return 0;
1221
1222 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1223 slot_domain, domain))
1224 return 0;
1225 }
1226 }
1227 else
1228 {
1229 /* Only one name is NULL. */
1230 return 0;
1231 }
1232
1233 return 1;
1234 }
1235
1236 /* Given a cache of size SIZE, return the size of the struct (with variable
1237 length array) in bytes. */
1238
1239 static size_t
1240 symbol_cache_byte_size (unsigned int size)
1241 {
1242 return (sizeof (struct block_symbol_cache)
1243 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1244 }
1245
1246 /* Resize CACHE. */
1247
1248 static void
1249 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1250 {
1251 /* If there's no change in size, don't do anything.
1252 All caches have the same size, so we can just compare with the size
1253 of the global symbols cache. */
1254 if ((cache->global_symbols != NULL
1255 && cache->global_symbols->size == new_size)
1256 || (cache->global_symbols == NULL
1257 && new_size == 0))
1258 return;
1259
1260 destroy_block_symbol_cache (cache->global_symbols);
1261 destroy_block_symbol_cache (cache->static_symbols);
1262
1263 if (new_size == 0)
1264 {
1265 cache->global_symbols = NULL;
1266 cache->static_symbols = NULL;
1267 }
1268 else
1269 {
1270 size_t total_size = symbol_cache_byte_size (new_size);
1271
1272 cache->global_symbols
1273 = (struct block_symbol_cache *) xcalloc (1, total_size);
1274 cache->static_symbols
1275 = (struct block_symbol_cache *) xcalloc (1, total_size);
1276 cache->global_symbols->size = new_size;
1277 cache->static_symbols->size = new_size;
1278 }
1279 }
1280
1281 /* Return the symbol cache of PSPACE.
1282 Create one if it doesn't exist yet. */
1283
1284 static struct symbol_cache *
1285 get_symbol_cache (struct program_space *pspace)
1286 {
1287 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1288
1289 if (cache == NULL)
1290 {
1291 cache = symbol_cache_key.emplace (pspace);
1292 resize_symbol_cache (cache, symbol_cache_size);
1293 }
1294
1295 return cache;
1296 }
1297
1298 /* Set the size of the symbol cache in all program spaces. */
1299
1300 static void
1301 set_symbol_cache_size (unsigned int new_size)
1302 {
1303 struct program_space *pspace;
1304
1305 ALL_PSPACES (pspace)
1306 {
1307 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1308
1309 /* The pspace could have been created but not have a cache yet. */
1310 if (cache != NULL)
1311 resize_symbol_cache (cache, new_size);
1312 }
1313 }
1314
1315 /* Called when symbol-cache-size is set. */
1316
1317 static void
1318 set_symbol_cache_size_handler (const char *args, int from_tty,
1319 struct cmd_list_element *c)
1320 {
1321 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1322 {
1323 /* Restore the previous value.
1324 This is the value the "show" command prints. */
1325 new_symbol_cache_size = symbol_cache_size;
1326
1327 error (_("Symbol cache size is too large, max is %u."),
1328 MAX_SYMBOL_CACHE_SIZE);
1329 }
1330 symbol_cache_size = new_symbol_cache_size;
1331
1332 set_symbol_cache_size (symbol_cache_size);
1333 }
1334
1335 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1336 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1337 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1338 failed (and thus this one will too), or NULL if the symbol is not present
1339 in the cache.
1340 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1341 can be used to save the result of a full lookup attempt. */
1342
1343 static struct block_symbol
1344 symbol_cache_lookup (struct symbol_cache *cache,
1345 struct objfile *objfile_context, enum block_enum block,
1346 const char *name, domain_enum domain,
1347 struct block_symbol_cache **bsc_ptr,
1348 struct symbol_cache_slot **slot_ptr)
1349 {
1350 struct block_symbol_cache *bsc;
1351 unsigned int hash;
1352 struct symbol_cache_slot *slot;
1353
1354 if (block == GLOBAL_BLOCK)
1355 bsc = cache->global_symbols;
1356 else
1357 bsc = cache->static_symbols;
1358 if (bsc == NULL)
1359 {
1360 *bsc_ptr = NULL;
1361 *slot_ptr = NULL;
1362 return {};
1363 }
1364
1365 hash = hash_symbol_entry (objfile_context, name, domain);
1366 slot = bsc->symbols + hash % bsc->size;
1367
1368 *bsc_ptr = bsc;
1369 *slot_ptr = slot;
1370
1371 if (eq_symbol_entry (slot, objfile_context, name, domain))
1372 {
1373 if (symbol_lookup_debug)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "%s block symbol cache hit%s for %s, %s\n",
1376 block == GLOBAL_BLOCK ? "Global" : "Static",
1377 slot->state == SYMBOL_SLOT_NOT_FOUND
1378 ? " (not found)" : "",
1379 name, domain_name (domain));
1380 ++bsc->hits;
1381 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1382 return SYMBOL_LOOKUP_FAILED;
1383 return slot->value.found;
1384 }
1385
1386 /* Symbol is not present in the cache. */
1387
1388 if (symbol_lookup_debug)
1389 {
1390 fprintf_unfiltered (gdb_stdlog,
1391 "%s block symbol cache miss for %s, %s\n",
1392 block == GLOBAL_BLOCK ? "Global" : "Static",
1393 name, domain_name (domain));
1394 }
1395 ++bsc->misses;
1396 return {};
1397 }
1398
1399 /* Mark SYMBOL as found in SLOT.
1400 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1401 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1402 necessarily the objfile the symbol was found in. */
1403
1404 static void
1405 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1406 struct symbol_cache_slot *slot,
1407 struct objfile *objfile_context,
1408 struct symbol *symbol,
1409 const struct block *block)
1410 {
1411 if (bsc == NULL)
1412 return;
1413 if (slot->state != SYMBOL_SLOT_UNUSED)
1414 {
1415 ++bsc->collisions;
1416 symbol_cache_clear_slot (slot);
1417 }
1418 slot->state = SYMBOL_SLOT_FOUND;
1419 slot->objfile_context = objfile_context;
1420 slot->value.found.symbol = symbol;
1421 slot->value.found.block = block;
1422 }
1423
1424 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1425 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1426 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1427
1428 static void
1429 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1430 struct symbol_cache_slot *slot,
1431 struct objfile *objfile_context,
1432 const char *name, domain_enum domain)
1433 {
1434 if (bsc == NULL)
1435 return;
1436 if (slot->state != SYMBOL_SLOT_UNUSED)
1437 {
1438 ++bsc->collisions;
1439 symbol_cache_clear_slot (slot);
1440 }
1441 slot->state = SYMBOL_SLOT_NOT_FOUND;
1442 slot->objfile_context = objfile_context;
1443 slot->value.not_found.name = xstrdup (name);
1444 slot->value.not_found.domain = domain;
1445 }
1446
1447 /* Flush the symbol cache of PSPACE. */
1448
1449 static void
1450 symbol_cache_flush (struct program_space *pspace)
1451 {
1452 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1453 int pass;
1454
1455 if (cache == NULL)
1456 return;
1457 if (cache->global_symbols == NULL)
1458 {
1459 gdb_assert (symbol_cache_size == 0);
1460 gdb_assert (cache->static_symbols == NULL);
1461 return;
1462 }
1463
1464 /* If the cache is untouched since the last flush, early exit.
1465 This is important for performance during the startup of a program linked
1466 with 100s (or 1000s) of shared libraries. */
1467 if (cache->global_symbols->misses == 0
1468 && cache->static_symbols->misses == 0)
1469 return;
1470
1471 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1472 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1473
1474 for (pass = 0; pass < 2; ++pass)
1475 {
1476 struct block_symbol_cache *bsc
1477 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1478 unsigned int i;
1479
1480 for (i = 0; i < bsc->size; ++i)
1481 symbol_cache_clear_slot (&bsc->symbols[i]);
1482 }
1483
1484 cache->global_symbols->hits = 0;
1485 cache->global_symbols->misses = 0;
1486 cache->global_symbols->collisions = 0;
1487 cache->static_symbols->hits = 0;
1488 cache->static_symbols->misses = 0;
1489 cache->static_symbols->collisions = 0;
1490 }
1491
1492 /* Dump CACHE. */
1493
1494 static void
1495 symbol_cache_dump (const struct symbol_cache *cache)
1496 {
1497 int pass;
1498
1499 if (cache->global_symbols == NULL)
1500 {
1501 printf_filtered (" <disabled>\n");
1502 return;
1503 }
1504
1505 for (pass = 0; pass < 2; ++pass)
1506 {
1507 const struct block_symbol_cache *bsc
1508 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1509 unsigned int i;
1510
1511 if (pass == 0)
1512 printf_filtered ("Global symbols:\n");
1513 else
1514 printf_filtered ("Static symbols:\n");
1515
1516 for (i = 0; i < bsc->size; ++i)
1517 {
1518 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1519
1520 QUIT;
1521
1522 switch (slot->state)
1523 {
1524 case SYMBOL_SLOT_UNUSED:
1525 break;
1526 case SYMBOL_SLOT_NOT_FOUND:
1527 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1528 host_address_to_string (slot->objfile_context),
1529 slot->value.not_found.name,
1530 domain_name (slot->value.not_found.domain));
1531 break;
1532 case SYMBOL_SLOT_FOUND:
1533 {
1534 struct symbol *found = slot->value.found.symbol;
1535 const struct objfile *context = slot->objfile_context;
1536
1537 printf_filtered (" [%4u] = %s, %s %s\n", i,
1538 host_address_to_string (context),
1539 found->print_name (),
1540 domain_name (SYMBOL_DOMAIN (found)));
1541 break;
1542 }
1543 }
1544 }
1545 }
1546 }
1547
1548 /* The "mt print symbol-cache" command. */
1549
1550 static void
1551 maintenance_print_symbol_cache (const char *args, int from_tty)
1552 {
1553 struct program_space *pspace;
1554
1555 ALL_PSPACES (pspace)
1556 {
1557 struct symbol_cache *cache;
1558
1559 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1560 pspace->num,
1561 pspace->symfile_object_file != NULL
1562 ? objfile_name (pspace->symfile_object_file)
1563 : "(no object file)");
1564
1565 /* If the cache hasn't been created yet, avoid creating one. */
1566 cache = symbol_cache_key.get (pspace);
1567 if (cache == NULL)
1568 printf_filtered (" <empty>\n");
1569 else
1570 symbol_cache_dump (cache);
1571 }
1572 }
1573
1574 /* The "mt flush-symbol-cache" command. */
1575
1576 static void
1577 maintenance_flush_symbol_cache (const char *args, int from_tty)
1578 {
1579 struct program_space *pspace;
1580
1581 ALL_PSPACES (pspace)
1582 {
1583 symbol_cache_flush (pspace);
1584 }
1585 }
1586
1587 /* Print usage statistics of CACHE. */
1588
1589 static void
1590 symbol_cache_stats (struct symbol_cache *cache)
1591 {
1592 int pass;
1593
1594 if (cache->global_symbols == NULL)
1595 {
1596 printf_filtered (" <disabled>\n");
1597 return;
1598 }
1599
1600 for (pass = 0; pass < 2; ++pass)
1601 {
1602 const struct block_symbol_cache *bsc
1603 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1604
1605 QUIT;
1606
1607 if (pass == 0)
1608 printf_filtered ("Global block cache stats:\n");
1609 else
1610 printf_filtered ("Static block cache stats:\n");
1611
1612 printf_filtered (" size: %u\n", bsc->size);
1613 printf_filtered (" hits: %u\n", bsc->hits);
1614 printf_filtered (" misses: %u\n", bsc->misses);
1615 printf_filtered (" collisions: %u\n", bsc->collisions);
1616 }
1617 }
1618
1619 /* The "mt print symbol-cache-statistics" command. */
1620
1621 static void
1622 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1623 {
1624 struct program_space *pspace;
1625
1626 ALL_PSPACES (pspace)
1627 {
1628 struct symbol_cache *cache;
1629
1630 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1631 pspace->num,
1632 pspace->symfile_object_file != NULL
1633 ? objfile_name (pspace->symfile_object_file)
1634 : "(no object file)");
1635
1636 /* If the cache hasn't been created yet, avoid creating one. */
1637 cache = symbol_cache_key.get (pspace);
1638 if (cache == NULL)
1639 printf_filtered (" empty, no stats available\n");
1640 else
1641 symbol_cache_stats (cache);
1642 }
1643 }
1644
1645 /* This module's 'new_objfile' observer. */
1646
1647 static void
1648 symtab_new_objfile_observer (struct objfile *objfile)
1649 {
1650 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1651 symbol_cache_flush (current_program_space);
1652 }
1653
1654 /* This module's 'free_objfile' observer. */
1655
1656 static void
1657 symtab_free_objfile_observer (struct objfile *objfile)
1658 {
1659 symbol_cache_flush (objfile->pspace);
1660 }
1661 \f
1662 /* Debug symbols usually don't have section information. We need to dig that
1663 out of the minimal symbols and stash that in the debug symbol. */
1664
1665 void
1666 fixup_section (struct general_symbol_info *ginfo,
1667 CORE_ADDR addr, struct objfile *objfile)
1668 {
1669 struct minimal_symbol *msym;
1670
1671 /* First, check whether a minimal symbol with the same name exists
1672 and points to the same address. The address check is required
1673 e.g. on PowerPC64, where the minimal symbol for a function will
1674 point to the function descriptor, while the debug symbol will
1675 point to the actual function code. */
1676 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1677 if (msym)
1678 ginfo->section = MSYMBOL_SECTION (msym);
1679 else
1680 {
1681 /* Static, function-local variables do appear in the linker
1682 (minimal) symbols, but are frequently given names that won't
1683 be found via lookup_minimal_symbol(). E.g., it has been
1684 observed in frv-uclinux (ELF) executables that a static,
1685 function-local variable named "foo" might appear in the
1686 linker symbols as "foo.6" or "foo.3". Thus, there is no
1687 point in attempting to extend the lookup-by-name mechanism to
1688 handle this case due to the fact that there can be multiple
1689 names.
1690
1691 So, instead, search the section table when lookup by name has
1692 failed. The ``addr'' and ``endaddr'' fields may have already
1693 been relocated. If so, the relocation offset (i.e. the
1694 ANOFFSET value) needs to be subtracted from these values when
1695 performing the comparison. We unconditionally subtract it,
1696 because, when no relocation has been performed, the ANOFFSET
1697 value will simply be zero.
1698
1699 The address of the symbol whose section we're fixing up HAS
1700 NOT BEEN adjusted (relocated) yet. It can't have been since
1701 the section isn't yet known and knowing the section is
1702 necessary in order to add the correct relocation value. In
1703 other words, we wouldn't even be in this function (attempting
1704 to compute the section) if it were already known.
1705
1706 Note that it is possible to search the minimal symbols
1707 (subtracting the relocation value if necessary) to find the
1708 matching minimal symbol, but this is overkill and much less
1709 efficient. It is not necessary to find the matching minimal
1710 symbol, only its section.
1711
1712 Note that this technique (of doing a section table search)
1713 can fail when unrelocated section addresses overlap. For
1714 this reason, we still attempt a lookup by name prior to doing
1715 a search of the section table. */
1716
1717 struct obj_section *s;
1718 int fallback = -1;
1719
1720 ALL_OBJFILE_OSECTIONS (objfile, s)
1721 {
1722 int idx = s - objfile->sections;
1723 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1724
1725 if (fallback == -1)
1726 fallback = idx;
1727
1728 if (obj_section_addr (s) - offset <= addr
1729 && addr < obj_section_endaddr (s) - offset)
1730 {
1731 ginfo->section = idx;
1732 return;
1733 }
1734 }
1735
1736 /* If we didn't find the section, assume it is in the first
1737 section. If there is no allocated section, then it hardly
1738 matters what we pick, so just pick zero. */
1739 if (fallback == -1)
1740 ginfo->section = 0;
1741 else
1742 ginfo->section = fallback;
1743 }
1744 }
1745
1746 struct symbol *
1747 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1748 {
1749 CORE_ADDR addr;
1750
1751 if (!sym)
1752 return NULL;
1753
1754 if (!SYMBOL_OBJFILE_OWNED (sym))
1755 return sym;
1756
1757 /* We either have an OBJFILE, or we can get at it from the sym's
1758 symtab. Anything else is a bug. */
1759 gdb_assert (objfile || symbol_symtab (sym));
1760
1761 if (objfile == NULL)
1762 objfile = symbol_objfile (sym);
1763
1764 if (SYMBOL_OBJ_SECTION (objfile, sym))
1765 return sym;
1766
1767 /* We should have an objfile by now. */
1768 gdb_assert (objfile);
1769
1770 switch (SYMBOL_CLASS (sym))
1771 {
1772 case LOC_STATIC:
1773 case LOC_LABEL:
1774 addr = SYMBOL_VALUE_ADDRESS (sym);
1775 break;
1776 case LOC_BLOCK:
1777 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1778 break;
1779
1780 default:
1781 /* Nothing else will be listed in the minsyms -- no use looking
1782 it up. */
1783 return sym;
1784 }
1785
1786 fixup_section (sym, addr, objfile);
1787
1788 return sym;
1789 }
1790
1791 /* See symtab.h. */
1792
1793 demangle_for_lookup_info::demangle_for_lookup_info
1794 (const lookup_name_info &lookup_name, language lang)
1795 {
1796 demangle_result_storage storage;
1797
1798 if (lookup_name.ignore_parameters () && lang == language_cplus)
1799 {
1800 gdb::unique_xmalloc_ptr<char> without_params
1801 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1802 lookup_name.completion_mode ());
1803
1804 if (without_params != NULL)
1805 {
1806 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1807 m_demangled_name = demangle_for_lookup (without_params.get (),
1808 lang, storage);
1809 return;
1810 }
1811 }
1812
1813 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1814 m_demangled_name = lookup_name.name ();
1815 else
1816 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1817 lang, storage);
1818 }
1819
1820 /* See symtab.h. */
1821
1822 const lookup_name_info &
1823 lookup_name_info::match_any ()
1824 {
1825 /* Lookup any symbol that "" would complete. I.e., this matches all
1826 symbol names. */
1827 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1828 true);
1829
1830 return lookup_name;
1831 }
1832
1833 /* Compute the demangled form of NAME as used by the various symbol
1834 lookup functions. The result can either be the input NAME
1835 directly, or a pointer to a buffer owned by the STORAGE object.
1836
1837 For Ada, this function just returns NAME, unmodified.
1838 Normally, Ada symbol lookups are performed using the encoded name
1839 rather than the demangled name, and so it might seem to make sense
1840 for this function to return an encoded version of NAME.
1841 Unfortunately, we cannot do this, because this function is used in
1842 circumstances where it is not appropriate to try to encode NAME.
1843 For instance, when displaying the frame info, we demangle the name
1844 of each parameter, and then perform a symbol lookup inside our
1845 function using that demangled name. In Ada, certain functions
1846 have internally-generated parameters whose name contain uppercase
1847 characters. Encoding those name would result in those uppercase
1848 characters to become lowercase, and thus cause the symbol lookup
1849 to fail. */
1850
1851 const char *
1852 demangle_for_lookup (const char *name, enum language lang,
1853 demangle_result_storage &storage)
1854 {
1855 /* If we are using C++, D, or Go, demangle the name before doing a
1856 lookup, so we can always binary search. */
1857 if (lang == language_cplus)
1858 {
1859 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1860 if (demangled_name != NULL)
1861 return storage.set_malloc_ptr (demangled_name);
1862
1863 /* If we were given a non-mangled name, canonicalize it
1864 according to the language (so far only for C++). */
1865 std::string canon = cp_canonicalize_string (name);
1866 if (!canon.empty ())
1867 return storage.swap_string (canon);
1868 }
1869 else if (lang == language_d)
1870 {
1871 char *demangled_name = d_demangle (name, 0);
1872 if (demangled_name != NULL)
1873 return storage.set_malloc_ptr (demangled_name);
1874 }
1875 else if (lang == language_go)
1876 {
1877 char *demangled_name = go_demangle (name, 0);
1878 if (demangled_name != NULL)
1879 return storage.set_malloc_ptr (demangled_name);
1880 }
1881
1882 return name;
1883 }
1884
1885 /* See symtab.h. */
1886
1887 unsigned int
1888 search_name_hash (enum language language, const char *search_name)
1889 {
1890 return language_def (language)->la_search_name_hash (search_name);
1891 }
1892
1893 /* See symtab.h.
1894
1895 This function (or rather its subordinates) have a bunch of loops and
1896 it would seem to be attractive to put in some QUIT's (though I'm not really
1897 sure whether it can run long enough to be really important). But there
1898 are a few calls for which it would appear to be bad news to quit
1899 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1900 that there is C++ code below which can error(), but that probably
1901 doesn't affect these calls since they are looking for a known
1902 variable and thus can probably assume it will never hit the C++
1903 code). */
1904
1905 struct block_symbol
1906 lookup_symbol_in_language (const char *name, const struct block *block,
1907 const domain_enum domain, enum language lang,
1908 struct field_of_this_result *is_a_field_of_this)
1909 {
1910 demangle_result_storage storage;
1911 const char *modified_name = demangle_for_lookup (name, lang, storage);
1912
1913 return lookup_symbol_aux (modified_name,
1914 symbol_name_match_type::FULL,
1915 block, domain, lang,
1916 is_a_field_of_this);
1917 }
1918
1919 /* See symtab.h. */
1920
1921 struct block_symbol
1922 lookup_symbol (const char *name, const struct block *block,
1923 domain_enum domain,
1924 struct field_of_this_result *is_a_field_of_this)
1925 {
1926 return lookup_symbol_in_language (name, block, domain,
1927 current_language->la_language,
1928 is_a_field_of_this);
1929 }
1930
1931 /* See symtab.h. */
1932
1933 struct block_symbol
1934 lookup_symbol_search_name (const char *search_name, const struct block *block,
1935 domain_enum domain)
1936 {
1937 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1938 block, domain, language_asm, NULL);
1939 }
1940
1941 /* See symtab.h. */
1942
1943 struct block_symbol
1944 lookup_language_this (const struct language_defn *lang,
1945 const struct block *block)
1946 {
1947 if (lang->la_name_of_this == NULL || block == NULL)
1948 return {};
1949
1950 if (symbol_lookup_debug > 1)
1951 {
1952 struct objfile *objfile = lookup_objfile_from_block (block);
1953
1954 fprintf_unfiltered (gdb_stdlog,
1955 "lookup_language_this (%s, %s (objfile %s))",
1956 lang->la_name, host_address_to_string (block),
1957 objfile_debug_name (objfile));
1958 }
1959
1960 while (block)
1961 {
1962 struct symbol *sym;
1963
1964 sym = block_lookup_symbol (block, lang->la_name_of_this,
1965 symbol_name_match_type::SEARCH_NAME,
1966 VAR_DOMAIN);
1967 if (sym != NULL)
1968 {
1969 if (symbol_lookup_debug > 1)
1970 {
1971 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1972 sym->print_name (),
1973 host_address_to_string (sym),
1974 host_address_to_string (block));
1975 }
1976 return (struct block_symbol) {sym, block};
1977 }
1978 if (BLOCK_FUNCTION (block))
1979 break;
1980 block = BLOCK_SUPERBLOCK (block);
1981 }
1982
1983 if (symbol_lookup_debug > 1)
1984 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1985 return {};
1986 }
1987
1988 /* Given TYPE, a structure/union,
1989 return 1 if the component named NAME from the ultimate target
1990 structure/union is defined, otherwise, return 0. */
1991
1992 static int
1993 check_field (struct type *type, const char *name,
1994 struct field_of_this_result *is_a_field_of_this)
1995 {
1996 int i;
1997
1998 /* The type may be a stub. */
1999 type = check_typedef (type);
2000
2001 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2002 {
2003 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2004
2005 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2006 {
2007 is_a_field_of_this->type = type;
2008 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2009 return 1;
2010 }
2011 }
2012
2013 /* C++: If it was not found as a data field, then try to return it
2014 as a pointer to a method. */
2015
2016 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2017 {
2018 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2019 {
2020 is_a_field_of_this->type = type;
2021 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2022 return 1;
2023 }
2024 }
2025
2026 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2027 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2028 return 1;
2029
2030 return 0;
2031 }
2032
2033 /* Behave like lookup_symbol except that NAME is the natural name
2034 (e.g., demangled name) of the symbol that we're looking for. */
2035
2036 static struct block_symbol
2037 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2038 const struct block *block,
2039 const domain_enum domain, enum language language,
2040 struct field_of_this_result *is_a_field_of_this)
2041 {
2042 struct block_symbol result;
2043 const struct language_defn *langdef;
2044
2045 if (symbol_lookup_debug)
2046 {
2047 struct objfile *objfile = lookup_objfile_from_block (block);
2048
2049 fprintf_unfiltered (gdb_stdlog,
2050 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2051 name, host_address_to_string (block),
2052 objfile != NULL
2053 ? objfile_debug_name (objfile) : "NULL",
2054 domain_name (domain), language_str (language));
2055 }
2056
2057 /* Make sure we do something sensible with is_a_field_of_this, since
2058 the callers that set this parameter to some non-null value will
2059 certainly use it later. If we don't set it, the contents of
2060 is_a_field_of_this are undefined. */
2061 if (is_a_field_of_this != NULL)
2062 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2063
2064 /* Search specified block and its superiors. Don't search
2065 STATIC_BLOCK or GLOBAL_BLOCK. */
2066
2067 result = lookup_local_symbol (name, match_type, block, domain, language);
2068 if (result.symbol != NULL)
2069 {
2070 if (symbol_lookup_debug)
2071 {
2072 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2073 host_address_to_string (result.symbol));
2074 }
2075 return result;
2076 }
2077
2078 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2079 check to see if NAME is a field of `this'. */
2080
2081 langdef = language_def (language);
2082
2083 /* Don't do this check if we are searching for a struct. It will
2084 not be found by check_field, but will be found by other
2085 means. */
2086 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2087 {
2088 result = lookup_language_this (langdef, block);
2089
2090 if (result.symbol)
2091 {
2092 struct type *t = result.symbol->type;
2093
2094 /* I'm not really sure that type of this can ever
2095 be typedefed; just be safe. */
2096 t = check_typedef (t);
2097 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2098 t = TYPE_TARGET_TYPE (t);
2099
2100 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2101 && TYPE_CODE (t) != TYPE_CODE_UNION)
2102 error (_("Internal error: `%s' is not an aggregate"),
2103 langdef->la_name_of_this);
2104
2105 if (check_field (t, name, is_a_field_of_this))
2106 {
2107 if (symbol_lookup_debug)
2108 {
2109 fprintf_unfiltered (gdb_stdlog,
2110 "lookup_symbol_aux (...) = NULL\n");
2111 }
2112 return {};
2113 }
2114 }
2115 }
2116
2117 /* Now do whatever is appropriate for LANGUAGE to look
2118 up static and global variables. */
2119
2120 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2121 if (result.symbol != NULL)
2122 {
2123 if (symbol_lookup_debug)
2124 {
2125 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2126 host_address_to_string (result.symbol));
2127 }
2128 return result;
2129 }
2130
2131 /* Now search all static file-level symbols. Not strictly correct,
2132 but more useful than an error. */
2133
2134 result = lookup_static_symbol (name, domain);
2135 if (symbol_lookup_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2138 result.symbol != NULL
2139 ? host_address_to_string (result.symbol)
2140 : "NULL");
2141 }
2142 return result;
2143 }
2144
2145 /* Check to see if the symbol is defined in BLOCK or its superiors.
2146 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2147
2148 static struct block_symbol
2149 lookup_local_symbol (const char *name,
2150 symbol_name_match_type match_type,
2151 const struct block *block,
2152 const domain_enum domain,
2153 enum language language)
2154 {
2155 struct symbol *sym;
2156 const struct block *static_block = block_static_block (block);
2157 const char *scope = block_scope (block);
2158
2159 /* Check if either no block is specified or it's a global block. */
2160
2161 if (static_block == NULL)
2162 return {};
2163
2164 while (block != static_block)
2165 {
2166 sym = lookup_symbol_in_block (name, match_type, block, domain);
2167 if (sym != NULL)
2168 return (struct block_symbol) {sym, block};
2169
2170 if (language == language_cplus || language == language_fortran)
2171 {
2172 struct block_symbol blocksym
2173 = cp_lookup_symbol_imports_or_template (scope, name, block,
2174 domain);
2175
2176 if (blocksym.symbol != NULL)
2177 return blocksym;
2178 }
2179
2180 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2181 break;
2182 block = BLOCK_SUPERBLOCK (block);
2183 }
2184
2185 /* We've reached the end of the function without finding a result. */
2186
2187 return {};
2188 }
2189
2190 /* See symtab.h. */
2191
2192 struct objfile *
2193 lookup_objfile_from_block (const struct block *block)
2194 {
2195 if (block == NULL)
2196 return NULL;
2197
2198 block = block_global_block (block);
2199 /* Look through all blockvectors. */
2200 for (objfile *obj : current_program_space->objfiles ())
2201 {
2202 for (compunit_symtab *cust : obj->compunits ())
2203 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2204 GLOBAL_BLOCK))
2205 {
2206 if (obj->separate_debug_objfile_backlink)
2207 obj = obj->separate_debug_objfile_backlink;
2208
2209 return obj;
2210 }
2211 }
2212
2213 return NULL;
2214 }
2215
2216 /* See symtab.h. */
2217
2218 struct symbol *
2219 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2220 const struct block *block,
2221 const domain_enum domain)
2222 {
2223 struct symbol *sym;
2224
2225 if (symbol_lookup_debug > 1)
2226 {
2227 struct objfile *objfile = lookup_objfile_from_block (block);
2228
2229 fprintf_unfiltered (gdb_stdlog,
2230 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2231 name, host_address_to_string (block),
2232 objfile_debug_name (objfile),
2233 domain_name (domain));
2234 }
2235
2236 sym = block_lookup_symbol (block, name, match_type, domain);
2237 if (sym)
2238 {
2239 if (symbol_lookup_debug > 1)
2240 {
2241 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2242 host_address_to_string (sym));
2243 }
2244 return fixup_symbol_section (sym, NULL);
2245 }
2246
2247 if (symbol_lookup_debug > 1)
2248 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2249 return NULL;
2250 }
2251
2252 /* See symtab.h. */
2253
2254 struct block_symbol
2255 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2256 enum block_enum block_index,
2257 const char *name,
2258 const domain_enum domain)
2259 {
2260 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2261
2262 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2263 {
2264 struct block_symbol result
2265 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2266
2267 if (result.symbol != nullptr)
2268 return result;
2269 }
2270
2271 return {};
2272 }
2273
2274 /* Check to see if the symbol is defined in one of the OBJFILE's
2275 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2276 depending on whether or not we want to search global symbols or
2277 static symbols. */
2278
2279 static struct block_symbol
2280 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2281 enum block_enum block_index, const char *name,
2282 const domain_enum domain)
2283 {
2284 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2285
2286 if (symbol_lookup_debug > 1)
2287 {
2288 fprintf_unfiltered (gdb_stdlog,
2289 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2290 objfile_debug_name (objfile),
2291 block_index == GLOBAL_BLOCK
2292 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2293 name, domain_name (domain));
2294 }
2295
2296 for (compunit_symtab *cust : objfile->compunits ())
2297 {
2298 const struct blockvector *bv;
2299 const struct block *block;
2300 struct block_symbol result;
2301
2302 bv = COMPUNIT_BLOCKVECTOR (cust);
2303 block = BLOCKVECTOR_BLOCK (bv, block_index);
2304 result.symbol = block_lookup_symbol_primary (block, name, domain);
2305 result.block = block;
2306 if (result.symbol != NULL)
2307 {
2308 if (symbol_lookup_debug > 1)
2309 {
2310 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2311 host_address_to_string (result.symbol),
2312 host_address_to_string (block));
2313 }
2314 result.symbol = fixup_symbol_section (result.symbol, objfile);
2315 return result;
2316
2317 }
2318 }
2319
2320 if (symbol_lookup_debug > 1)
2321 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2322 return {};
2323 }
2324
2325 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2326 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2327 and all associated separate debug objfiles.
2328
2329 Normally we only look in OBJFILE, and not any separate debug objfiles
2330 because the outer loop will cause them to be searched too. This case is
2331 different. Here we're called from search_symbols where it will only
2332 call us for the objfile that contains a matching minsym. */
2333
2334 static struct block_symbol
2335 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2336 const char *linkage_name,
2337 domain_enum domain)
2338 {
2339 enum language lang = current_language->la_language;
2340 struct objfile *main_objfile;
2341
2342 demangle_result_storage storage;
2343 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2344
2345 if (objfile->separate_debug_objfile_backlink)
2346 main_objfile = objfile->separate_debug_objfile_backlink;
2347 else
2348 main_objfile = objfile;
2349
2350 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2351 {
2352 struct block_symbol result;
2353
2354 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2355 modified_name, domain);
2356 if (result.symbol == NULL)
2357 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2358 modified_name, domain);
2359 if (result.symbol != NULL)
2360 return result;
2361 }
2362
2363 return {};
2364 }
2365
2366 /* A helper function that throws an exception when a symbol was found
2367 in a psymtab but not in a symtab. */
2368
2369 static void ATTRIBUTE_NORETURN
2370 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2371 struct compunit_symtab *cust)
2372 {
2373 error (_("\
2374 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2375 %s may be an inlined function, or may be a template function\n \
2376 (if a template, try specifying an instantiation: %s<type>)."),
2377 block_index == GLOBAL_BLOCK ? "global" : "static",
2378 name,
2379 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2380 name, name);
2381 }
2382
2383 /* A helper function for various lookup routines that interfaces with
2384 the "quick" symbol table functions. */
2385
2386 static struct block_symbol
2387 lookup_symbol_via_quick_fns (struct objfile *objfile,
2388 enum block_enum block_index, const char *name,
2389 const domain_enum domain)
2390 {
2391 struct compunit_symtab *cust;
2392 const struct blockvector *bv;
2393 const struct block *block;
2394 struct block_symbol result;
2395
2396 if (!objfile->sf)
2397 return {};
2398
2399 if (symbol_lookup_debug > 1)
2400 {
2401 fprintf_unfiltered (gdb_stdlog,
2402 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2403 objfile_debug_name (objfile),
2404 block_index == GLOBAL_BLOCK
2405 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2406 name, domain_name (domain));
2407 }
2408
2409 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2410 if (cust == NULL)
2411 {
2412 if (symbol_lookup_debug > 1)
2413 {
2414 fprintf_unfiltered (gdb_stdlog,
2415 "lookup_symbol_via_quick_fns (...) = NULL\n");
2416 }
2417 return {};
2418 }
2419
2420 bv = COMPUNIT_BLOCKVECTOR (cust);
2421 block = BLOCKVECTOR_BLOCK (bv, block_index);
2422 result.symbol = block_lookup_symbol (block, name,
2423 symbol_name_match_type::FULL, domain);
2424 if (result.symbol == NULL)
2425 error_in_psymtab_expansion (block_index, name, cust);
2426
2427 if (symbol_lookup_debug > 1)
2428 {
2429 fprintf_unfiltered (gdb_stdlog,
2430 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2431 host_address_to_string (result.symbol),
2432 host_address_to_string (block));
2433 }
2434
2435 result.symbol = fixup_symbol_section (result.symbol, objfile);
2436 result.block = block;
2437 return result;
2438 }
2439
2440 /* See symtab.h. */
2441
2442 struct block_symbol
2443 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2444 const char *name,
2445 const struct block *block,
2446 const domain_enum domain)
2447 {
2448 struct block_symbol result;
2449
2450 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2451 the current objfile. Searching the current objfile first is useful
2452 for both matching user expectations as well as performance. */
2453
2454 result = lookup_symbol_in_static_block (name, block, domain);
2455 if (result.symbol != NULL)
2456 return result;
2457
2458 /* If we didn't find a definition for a builtin type in the static block,
2459 search for it now. This is actually the right thing to do and can be
2460 a massive performance win. E.g., when debugging a program with lots of
2461 shared libraries we could search all of them only to find out the
2462 builtin type isn't defined in any of them. This is common for types
2463 like "void". */
2464 if (domain == VAR_DOMAIN)
2465 {
2466 struct gdbarch *gdbarch;
2467
2468 if (block == NULL)
2469 gdbarch = target_gdbarch ();
2470 else
2471 gdbarch = block_gdbarch (block);
2472 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2473 gdbarch, name);
2474 result.block = NULL;
2475 if (result.symbol != NULL)
2476 return result;
2477 }
2478
2479 return lookup_global_symbol (name, block, domain);
2480 }
2481
2482 /* See symtab.h. */
2483
2484 struct block_symbol
2485 lookup_symbol_in_static_block (const char *name,
2486 const struct block *block,
2487 const domain_enum domain)
2488 {
2489 const struct block *static_block = block_static_block (block);
2490 struct symbol *sym;
2491
2492 if (static_block == NULL)
2493 return {};
2494
2495 if (symbol_lookup_debug)
2496 {
2497 struct objfile *objfile = lookup_objfile_from_block (static_block);
2498
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2501 " %s)\n",
2502 name,
2503 host_address_to_string (block),
2504 objfile_debug_name (objfile),
2505 domain_name (domain));
2506 }
2507
2508 sym = lookup_symbol_in_block (name,
2509 symbol_name_match_type::FULL,
2510 static_block, domain);
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_static_block (...) = %s\n",
2515 sym != NULL ? host_address_to_string (sym) : "NULL");
2516 }
2517 return (struct block_symbol) {sym, static_block};
2518 }
2519
2520 /* Perform the standard symbol lookup of NAME in OBJFILE:
2521 1) First search expanded symtabs, and if not found
2522 2) Search the "quick" symtabs (partial or .gdb_index).
2523 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2524
2525 static struct block_symbol
2526 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2527 const char *name, const domain_enum domain)
2528 {
2529 struct block_symbol result;
2530
2531 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2532
2533 if (symbol_lookup_debug)
2534 {
2535 fprintf_unfiltered (gdb_stdlog,
2536 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2537 objfile_debug_name (objfile),
2538 block_index == GLOBAL_BLOCK
2539 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2540 name, domain_name (domain));
2541 }
2542
2543 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2544 name, domain);
2545 if (result.symbol != NULL)
2546 {
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s"
2551 " (in symtabs)\n",
2552 host_address_to_string (result.symbol));
2553 }
2554 return result;
2555 }
2556
2557 result = lookup_symbol_via_quick_fns (objfile, block_index,
2558 name, domain);
2559 if (symbol_lookup_debug)
2560 {
2561 fprintf_unfiltered (gdb_stdlog,
2562 "lookup_symbol_in_objfile (...) = %s%s\n",
2563 result.symbol != NULL
2564 ? host_address_to_string (result.symbol)
2565 : "NULL",
2566 result.symbol != NULL ? " (via quick fns)" : "");
2567 }
2568 return result;
2569 }
2570
2571 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2572
2573 struct global_or_static_sym_lookup_data
2574 {
2575 /* The name of the symbol we are searching for. */
2576 const char *name;
2577
2578 /* The domain to use for our search. */
2579 domain_enum domain;
2580
2581 /* The block index in which to search. */
2582 enum block_enum block_index;
2583
2584 /* The field where the callback should store the symbol if found.
2585 It should be initialized to {NULL, NULL} before the search is started. */
2586 struct block_symbol result;
2587 };
2588
2589 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2590 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2591 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2592 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2593
2594 static int
2595 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2596 void *cb_data)
2597 {
2598 struct global_or_static_sym_lookup_data *data =
2599 (struct global_or_static_sym_lookup_data *) cb_data;
2600
2601 gdb_assert (data->result.symbol == NULL
2602 && data->result.block == NULL);
2603
2604 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2605 data->name, data->domain);
2606
2607 /* If we found a match, tell the iterator to stop. Otherwise,
2608 keep going. */
2609 return (data->result.symbol != NULL);
2610 }
2611
2612 /* This function contains the common code of lookup_{global,static}_symbol.
2613 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2614 the objfile to start the lookup in. */
2615
2616 static struct block_symbol
2617 lookup_global_or_static_symbol (const char *name,
2618 enum block_enum block_index,
2619 struct objfile *objfile,
2620 const domain_enum domain)
2621 {
2622 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2623 struct block_symbol result;
2624 struct global_or_static_sym_lookup_data lookup_data;
2625 struct block_symbol_cache *bsc;
2626 struct symbol_cache_slot *slot;
2627
2628 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2629 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2630
2631 /* First see if we can find the symbol in the cache.
2632 This works because we use the current objfile to qualify the lookup. */
2633 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2634 &bsc, &slot);
2635 if (result.symbol != NULL)
2636 {
2637 if (SYMBOL_LOOKUP_FAILED_P (result))
2638 return {};
2639 return result;
2640 }
2641
2642 /* Do a global search (of global blocks, heh). */
2643 if (result.symbol == NULL)
2644 {
2645 memset (&lookup_data, 0, sizeof (lookup_data));
2646 lookup_data.name = name;
2647 lookup_data.block_index = block_index;
2648 lookup_data.domain = domain;
2649 gdbarch_iterate_over_objfiles_in_search_order
2650 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2651 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2652 result = lookup_data.result;
2653 }
2654
2655 if (result.symbol != NULL)
2656 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2657 else
2658 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2659
2660 return result;
2661 }
2662
2663 /* See symtab.h. */
2664
2665 struct block_symbol
2666 lookup_static_symbol (const char *name, const domain_enum domain)
2667 {
2668 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2669 }
2670
2671 /* See symtab.h. */
2672
2673 struct block_symbol
2674 lookup_global_symbol (const char *name,
2675 const struct block *block,
2676 const domain_enum domain)
2677 {
2678 /* If a block was passed in, we want to search the corresponding
2679 global block first. This yields "more expected" behavior, and is
2680 needed to support 'FILENAME'::VARIABLE lookups. */
2681 const struct block *global_block = block_global_block (block);
2682 if (global_block != nullptr)
2683 {
2684 symbol *sym = lookup_symbol_in_block (name,
2685 symbol_name_match_type::FULL,
2686 global_block, domain);
2687 if (sym != nullptr)
2688 return { sym, global_block };
2689 }
2690
2691 struct objfile *objfile = lookup_objfile_from_block (block);
2692 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 }
2694
2695 bool
2696 symbol_matches_domain (enum language symbol_language,
2697 domain_enum symbol_domain,
2698 domain_enum domain)
2699 {
2700 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2701 Similarly, any Ada type declaration implicitly defines a typedef. */
2702 if (symbol_language == language_cplus
2703 || symbol_language == language_d
2704 || symbol_language == language_ada
2705 || symbol_language == language_rust)
2706 {
2707 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2708 && symbol_domain == STRUCT_DOMAIN)
2709 return true;
2710 }
2711 /* For all other languages, strict match is required. */
2712 return (symbol_domain == domain);
2713 }
2714
2715 /* See symtab.h. */
2716
2717 struct type *
2718 lookup_transparent_type (const char *name)
2719 {
2720 return current_language->la_lookup_transparent_type (name);
2721 }
2722
2723 /* A helper for basic_lookup_transparent_type that interfaces with the
2724 "quick" symbol table functions. */
2725
2726 static struct type *
2727 basic_lookup_transparent_type_quick (struct objfile *objfile,
2728 enum block_enum block_index,
2729 const char *name)
2730 {
2731 struct compunit_symtab *cust;
2732 const struct blockvector *bv;
2733 const struct block *block;
2734 struct symbol *sym;
2735
2736 if (!objfile->sf)
2737 return NULL;
2738 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2739 STRUCT_DOMAIN);
2740 if (cust == NULL)
2741 return NULL;
2742
2743 bv = COMPUNIT_BLOCKVECTOR (cust);
2744 block = BLOCKVECTOR_BLOCK (bv, block_index);
2745 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2746 block_find_non_opaque_type, NULL);
2747 if (sym == NULL)
2748 error_in_psymtab_expansion (block_index, name, cust);
2749 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2750 return SYMBOL_TYPE (sym);
2751 }
2752
2753 /* Subroutine of basic_lookup_transparent_type to simplify it.
2754 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2755 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2756
2757 static struct type *
2758 basic_lookup_transparent_type_1 (struct objfile *objfile,
2759 enum block_enum block_index,
2760 const char *name)
2761 {
2762 const struct blockvector *bv;
2763 const struct block *block;
2764 const struct symbol *sym;
2765
2766 for (compunit_symtab *cust : objfile->compunits ())
2767 {
2768 bv = COMPUNIT_BLOCKVECTOR (cust);
2769 block = BLOCKVECTOR_BLOCK (bv, block_index);
2770 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2771 block_find_non_opaque_type, NULL);
2772 if (sym != NULL)
2773 {
2774 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2775 return SYMBOL_TYPE (sym);
2776 }
2777 }
2778
2779 return NULL;
2780 }
2781
2782 /* The standard implementation of lookup_transparent_type. This code
2783 was modeled on lookup_symbol -- the parts not relevant to looking
2784 up types were just left out. In particular it's assumed here that
2785 types are available in STRUCT_DOMAIN and only in file-static or
2786 global blocks. */
2787
2788 struct type *
2789 basic_lookup_transparent_type (const char *name)
2790 {
2791 struct type *t;
2792
2793 /* Now search all the global symbols. Do the symtab's first, then
2794 check the psymtab's. If a psymtab indicates the existence
2795 of the desired name as a global, then do psymtab-to-symtab
2796 conversion on the fly and return the found symbol. */
2797
2798 for (objfile *objfile : current_program_space->objfiles ())
2799 {
2800 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2801 if (t)
2802 return t;
2803 }
2804
2805 for (objfile *objfile : current_program_space->objfiles ())
2806 {
2807 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2808 if (t)
2809 return t;
2810 }
2811
2812 /* Now search the static file-level symbols.
2813 Not strictly correct, but more useful than an error.
2814 Do the symtab's first, then
2815 check the psymtab's. If a psymtab indicates the existence
2816 of the desired name as a file-level static, then do psymtab-to-symtab
2817 conversion on the fly and return the found symbol. */
2818
2819 for (objfile *objfile : current_program_space->objfiles ())
2820 {
2821 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2822 if (t)
2823 return t;
2824 }
2825
2826 for (objfile *objfile : current_program_space->objfiles ())
2827 {
2828 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2829 if (t)
2830 return t;
2831 }
2832
2833 return (struct type *) 0;
2834 }
2835
2836 /* See symtab.h. */
2837
2838 bool
2839 iterate_over_symbols (const struct block *block,
2840 const lookup_name_info &name,
2841 const domain_enum domain,
2842 gdb::function_view<symbol_found_callback_ftype> callback)
2843 {
2844 struct block_iterator iter;
2845 struct symbol *sym;
2846
2847 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2848 {
2849 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2850 SYMBOL_DOMAIN (sym), domain))
2851 {
2852 struct block_symbol block_sym = {sym, block};
2853
2854 if (!callback (&block_sym))
2855 return false;
2856 }
2857 }
2858 return true;
2859 }
2860
2861 /* See symtab.h. */
2862
2863 bool
2864 iterate_over_symbols_terminated
2865 (const struct block *block,
2866 const lookup_name_info &name,
2867 const domain_enum domain,
2868 gdb::function_view<symbol_found_callback_ftype> callback)
2869 {
2870 if (!iterate_over_symbols (block, name, domain, callback))
2871 return false;
2872 struct block_symbol block_sym = {nullptr, block};
2873 return callback (&block_sym);
2874 }
2875
2876 /* Find the compunit symtab associated with PC and SECTION.
2877 This will read in debug info as necessary. */
2878
2879 struct compunit_symtab *
2880 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2881 {
2882 struct compunit_symtab *best_cust = NULL;
2883 CORE_ADDR distance = 0;
2884 struct bound_minimal_symbol msymbol;
2885
2886 /* If we know that this is not a text address, return failure. This is
2887 necessary because we loop based on the block's high and low code
2888 addresses, which do not include the data ranges, and because
2889 we call find_pc_sect_psymtab which has a similar restriction based
2890 on the partial_symtab's texthigh and textlow. */
2891 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2892 if (msymbol.minsym && msymbol.minsym->data_p ())
2893 return NULL;
2894
2895 /* Search all symtabs for the one whose file contains our address, and which
2896 is the smallest of all the ones containing the address. This is designed
2897 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2898 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2899 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2900
2901 This happens for native ecoff format, where code from included files
2902 gets its own symtab. The symtab for the included file should have
2903 been read in already via the dependency mechanism.
2904 It might be swifter to create several symtabs with the same name
2905 like xcoff does (I'm not sure).
2906
2907 It also happens for objfiles that have their functions reordered.
2908 For these, the symtab we are looking for is not necessarily read in. */
2909
2910 for (objfile *obj_file : current_program_space->objfiles ())
2911 {
2912 for (compunit_symtab *cust : obj_file->compunits ())
2913 {
2914 const struct block *b;
2915 const struct blockvector *bv;
2916
2917 bv = COMPUNIT_BLOCKVECTOR (cust);
2918 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2919
2920 if (BLOCK_START (b) <= pc
2921 && BLOCK_END (b) > pc
2922 && (distance == 0
2923 || BLOCK_END (b) - BLOCK_START (b) < distance))
2924 {
2925 /* For an objfile that has its functions reordered,
2926 find_pc_psymtab will find the proper partial symbol table
2927 and we simply return its corresponding symtab. */
2928 /* In order to better support objfiles that contain both
2929 stabs and coff debugging info, we continue on if a psymtab
2930 can't be found. */
2931 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2932 {
2933 struct compunit_symtab *result;
2934
2935 result
2936 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2937 msymbol,
2938 pc,
2939 section,
2940 0);
2941 if (result != NULL)
2942 return result;
2943 }
2944 if (section != 0)
2945 {
2946 struct block_iterator iter;
2947 struct symbol *sym = NULL;
2948
2949 ALL_BLOCK_SYMBOLS (b, iter, sym)
2950 {
2951 fixup_symbol_section (sym, obj_file);
2952 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2953 sym),
2954 section))
2955 break;
2956 }
2957 if (sym == NULL)
2958 continue; /* No symbol in this symtab matches
2959 section. */
2960 }
2961 distance = BLOCK_END (b) - BLOCK_START (b);
2962 best_cust = cust;
2963 }
2964 }
2965 }
2966
2967 if (best_cust != NULL)
2968 return best_cust;
2969
2970 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2971
2972 for (objfile *objf : current_program_space->objfiles ())
2973 {
2974 struct compunit_symtab *result;
2975
2976 if (!objf->sf)
2977 continue;
2978 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2979 msymbol,
2980 pc, section,
2981 1);
2982 if (result != NULL)
2983 return result;
2984 }
2985
2986 return NULL;
2987 }
2988
2989 /* Find the compunit symtab associated with PC.
2990 This will read in debug info as necessary.
2991 Backward compatibility, no section. */
2992
2993 struct compunit_symtab *
2994 find_pc_compunit_symtab (CORE_ADDR pc)
2995 {
2996 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2997 }
2998
2999 /* See symtab.h. */
3000
3001 struct symbol *
3002 find_symbol_at_address (CORE_ADDR address)
3003 {
3004 for (objfile *objfile : current_program_space->objfiles ())
3005 {
3006 if (objfile->sf == NULL
3007 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3008 continue;
3009
3010 struct compunit_symtab *symtab
3011 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3012 if (symtab != NULL)
3013 {
3014 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3015
3016 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3017 {
3018 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3019 struct block_iterator iter;
3020 struct symbol *sym;
3021
3022 ALL_BLOCK_SYMBOLS (b, iter, sym)
3023 {
3024 if (SYMBOL_CLASS (sym) == LOC_STATIC
3025 && SYMBOL_VALUE_ADDRESS (sym) == address)
3026 return sym;
3027 }
3028 }
3029 }
3030 }
3031
3032 return NULL;
3033 }
3034
3035 \f
3036
3037 /* Find the source file and line number for a given PC value and SECTION.
3038 Return a structure containing a symtab pointer, a line number,
3039 and a pc range for the entire source line.
3040 The value's .pc field is NOT the specified pc.
3041 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3042 use the line that ends there. Otherwise, in that case, the line
3043 that begins there is used. */
3044
3045 /* The big complication here is that a line may start in one file, and end just
3046 before the start of another file. This usually occurs when you #include
3047 code in the middle of a subroutine. To properly find the end of a line's PC
3048 range, we must search all symtabs associated with this compilation unit, and
3049 find the one whose first PC is closer than that of the next line in this
3050 symtab. */
3051
3052 struct symtab_and_line
3053 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3054 {
3055 struct compunit_symtab *cust;
3056 struct linetable *l;
3057 int len;
3058 struct linetable_entry *item;
3059 const struct blockvector *bv;
3060 struct bound_minimal_symbol msymbol;
3061
3062 /* Info on best line seen so far, and where it starts, and its file. */
3063
3064 struct linetable_entry *best = NULL;
3065 CORE_ADDR best_end = 0;
3066 struct symtab *best_symtab = 0;
3067
3068 /* Store here the first line number
3069 of a file which contains the line at the smallest pc after PC.
3070 If we don't find a line whose range contains PC,
3071 we will use a line one less than this,
3072 with a range from the start of that file to the first line's pc. */
3073 struct linetable_entry *alt = NULL;
3074
3075 /* Info on best line seen in this file. */
3076
3077 struct linetable_entry *prev;
3078
3079 /* If this pc is not from the current frame,
3080 it is the address of the end of a call instruction.
3081 Quite likely that is the start of the following statement.
3082 But what we want is the statement containing the instruction.
3083 Fudge the pc to make sure we get that. */
3084
3085 /* It's tempting to assume that, if we can't find debugging info for
3086 any function enclosing PC, that we shouldn't search for line
3087 number info, either. However, GAS can emit line number info for
3088 assembly files --- very helpful when debugging hand-written
3089 assembly code. In such a case, we'd have no debug info for the
3090 function, but we would have line info. */
3091
3092 if (notcurrent)
3093 pc -= 1;
3094
3095 /* elz: added this because this function returned the wrong
3096 information if the pc belongs to a stub (import/export)
3097 to call a shlib function. This stub would be anywhere between
3098 two functions in the target, and the line info was erroneously
3099 taken to be the one of the line before the pc. */
3100
3101 /* RT: Further explanation:
3102
3103 * We have stubs (trampolines) inserted between procedures.
3104 *
3105 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3106 * exists in the main image.
3107 *
3108 * In the minimal symbol table, we have a bunch of symbols
3109 * sorted by start address. The stubs are marked as "trampoline",
3110 * the others appear as text. E.g.:
3111 *
3112 * Minimal symbol table for main image
3113 * main: code for main (text symbol)
3114 * shr1: stub (trampoline symbol)
3115 * foo: code for foo (text symbol)
3116 * ...
3117 * Minimal symbol table for "shr1" image:
3118 * ...
3119 * shr1: code for shr1 (text symbol)
3120 * ...
3121 *
3122 * So the code below is trying to detect if we are in the stub
3123 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3124 * and if found, do the symbolization from the real-code address
3125 * rather than the stub address.
3126 *
3127 * Assumptions being made about the minimal symbol table:
3128 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3129 * if we're really in the trampoline.s If we're beyond it (say
3130 * we're in "foo" in the above example), it'll have a closer
3131 * symbol (the "foo" text symbol for example) and will not
3132 * return the trampoline.
3133 * 2. lookup_minimal_symbol_text() will find a real text symbol
3134 * corresponding to the trampoline, and whose address will
3135 * be different than the trampoline address. I put in a sanity
3136 * check for the address being the same, to avoid an
3137 * infinite recursion.
3138 */
3139 msymbol = lookup_minimal_symbol_by_pc (pc);
3140 if (msymbol.minsym != NULL)
3141 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3142 {
3143 struct bound_minimal_symbol mfunsym
3144 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3145 NULL);
3146
3147 if (mfunsym.minsym == NULL)
3148 /* I eliminated this warning since it is coming out
3149 * in the following situation:
3150 * gdb shmain // test program with shared libraries
3151 * (gdb) break shr1 // function in shared lib
3152 * Warning: In stub for ...
3153 * In the above situation, the shared lib is not loaded yet,
3154 * so of course we can't find the real func/line info,
3155 * but the "break" still works, and the warning is annoying.
3156 * So I commented out the warning. RT */
3157 /* warning ("In stub for %s; unable to find real function/line info",
3158 msymbol->linkage_name ()); */
3159 ;
3160 /* fall through */
3161 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3162 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3163 /* Avoid infinite recursion */
3164 /* See above comment about why warning is commented out. */
3165 /* warning ("In stub for %s; unable to find real function/line info",
3166 msymbol->linkage_name ()); */
3167 ;
3168 /* fall through */
3169 else
3170 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3171 }
3172
3173 symtab_and_line val;
3174 val.pspace = current_program_space;
3175
3176 cust = find_pc_sect_compunit_symtab (pc, section);
3177 if (cust == NULL)
3178 {
3179 /* If no symbol information, return previous pc. */
3180 if (notcurrent)
3181 pc++;
3182 val.pc = pc;
3183 return val;
3184 }
3185
3186 bv = COMPUNIT_BLOCKVECTOR (cust);
3187
3188 /* Look at all the symtabs that share this blockvector.
3189 They all have the same apriori range, that we found was right;
3190 but they have different line tables. */
3191
3192 for (symtab *iter_s : compunit_filetabs (cust))
3193 {
3194 /* Find the best line in this symtab. */
3195 l = SYMTAB_LINETABLE (iter_s);
3196 if (!l)
3197 continue;
3198 len = l->nitems;
3199 if (len <= 0)
3200 {
3201 /* I think len can be zero if the symtab lacks line numbers
3202 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3203 I'm not sure which, and maybe it depends on the symbol
3204 reader). */
3205 continue;
3206 }
3207
3208 prev = NULL;
3209 item = l->item; /* Get first line info. */
3210
3211 /* Is this file's first line closer than the first lines of other files?
3212 If so, record this file, and its first line, as best alternate. */
3213 if (item->pc > pc && (!alt || item->pc < alt->pc))
3214 alt = item;
3215
3216 auto pc_compare = [](const CORE_ADDR & comp_pc,
3217 const struct linetable_entry & lhs)->bool
3218 {
3219 return comp_pc < lhs.pc;
3220 };
3221
3222 struct linetable_entry *first = item;
3223 struct linetable_entry *last = item + len;
3224 item = std::upper_bound (first, last, pc, pc_compare);
3225 if (item != first)
3226 prev = item - 1; /* Found a matching item. */
3227
3228 /* At this point, prev points at the line whose start addr is <= pc, and
3229 item points at the next line. If we ran off the end of the linetable
3230 (pc >= start of the last line), then prev == item. If pc < start of
3231 the first line, prev will not be set. */
3232
3233 /* Is this file's best line closer than the best in the other files?
3234 If so, record this file, and its best line, as best so far. Don't
3235 save prev if it represents the end of a function (i.e. line number
3236 0) instead of a real line. */
3237
3238 if (prev && prev->line && (!best || prev->pc > best->pc))
3239 {
3240 best = prev;
3241 best_symtab = iter_s;
3242
3243 /* Discard BEST_END if it's before the PC of the current BEST. */
3244 if (best_end <= best->pc)
3245 best_end = 0;
3246 }
3247
3248 /* If another line (denoted by ITEM) is in the linetable and its
3249 PC is after BEST's PC, but before the current BEST_END, then
3250 use ITEM's PC as the new best_end. */
3251 if (best && item < last && item->pc > best->pc
3252 && (best_end == 0 || best_end > item->pc))
3253 best_end = item->pc;
3254 }
3255
3256 if (!best_symtab)
3257 {
3258 /* If we didn't find any line number info, just return zeros.
3259 We used to return alt->line - 1 here, but that could be
3260 anywhere; if we don't have line number info for this PC,
3261 don't make some up. */
3262 val.pc = pc;
3263 }
3264 else if (best->line == 0)
3265 {
3266 /* If our best fit is in a range of PC's for which no line
3267 number info is available (line number is zero) then we didn't
3268 find any valid line information. */
3269 val.pc = pc;
3270 }
3271 else
3272 {
3273 val.symtab = best_symtab;
3274 val.line = best->line;
3275 val.pc = best->pc;
3276 if (best_end && (!alt || best_end < alt->pc))
3277 val.end = best_end;
3278 else if (alt)
3279 val.end = alt->pc;
3280 else
3281 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3282 }
3283 val.section = section;
3284 return val;
3285 }
3286
3287 /* Backward compatibility (no section). */
3288
3289 struct symtab_and_line
3290 find_pc_line (CORE_ADDR pc, int notcurrent)
3291 {
3292 struct obj_section *section;
3293
3294 section = find_pc_overlay (pc);
3295 if (pc_in_unmapped_range (pc, section))
3296 pc = overlay_mapped_address (pc, section);
3297 return find_pc_sect_line (pc, section, notcurrent);
3298 }
3299
3300 /* See symtab.h. */
3301
3302 struct symtab *
3303 find_pc_line_symtab (CORE_ADDR pc)
3304 {
3305 struct symtab_and_line sal;
3306
3307 /* This always passes zero for NOTCURRENT to find_pc_line.
3308 There are currently no callers that ever pass non-zero. */
3309 sal = find_pc_line (pc, 0);
3310 return sal.symtab;
3311 }
3312 \f
3313 /* Find line number LINE in any symtab whose name is the same as
3314 SYMTAB.
3315
3316 If found, return the symtab that contains the linetable in which it was
3317 found, set *INDEX to the index in the linetable of the best entry
3318 found, and set *EXACT_MATCH to true if the value returned is an
3319 exact match.
3320
3321 If not found, return NULL. */
3322
3323 struct symtab *
3324 find_line_symtab (struct symtab *sym_tab, int line,
3325 int *index, bool *exact_match)
3326 {
3327 int exact = 0; /* Initialized here to avoid a compiler warning. */
3328
3329 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3330 so far seen. */
3331
3332 int best_index;
3333 struct linetable *best_linetable;
3334 struct symtab *best_symtab;
3335
3336 /* First try looking it up in the given symtab. */
3337 best_linetable = SYMTAB_LINETABLE (sym_tab);
3338 best_symtab = sym_tab;
3339 best_index = find_line_common (best_linetable, line, &exact, 0);
3340 if (best_index < 0 || !exact)
3341 {
3342 /* Didn't find an exact match. So we better keep looking for
3343 another symtab with the same name. In the case of xcoff,
3344 multiple csects for one source file (produced by IBM's FORTRAN
3345 compiler) produce multiple symtabs (this is unavoidable
3346 assuming csects can be at arbitrary places in memory and that
3347 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3348
3349 /* BEST is the smallest linenumber > LINE so far seen,
3350 or 0 if none has been seen so far.
3351 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3352 int best;
3353
3354 if (best_index >= 0)
3355 best = best_linetable->item[best_index].line;
3356 else
3357 best = 0;
3358
3359 for (objfile *objfile : current_program_space->objfiles ())
3360 {
3361 if (objfile->sf)
3362 objfile->sf->qf->expand_symtabs_with_fullname
3363 (objfile, symtab_to_fullname (sym_tab));
3364 }
3365
3366 for (objfile *objfile : current_program_space->objfiles ())
3367 {
3368 for (compunit_symtab *cu : objfile->compunits ())
3369 {
3370 for (symtab *s : compunit_filetabs (cu))
3371 {
3372 struct linetable *l;
3373 int ind;
3374
3375 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3376 continue;
3377 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3378 symtab_to_fullname (s)) != 0)
3379 continue;
3380 l = SYMTAB_LINETABLE (s);
3381 ind = find_line_common (l, line, &exact, 0);
3382 if (ind >= 0)
3383 {
3384 if (exact)
3385 {
3386 best_index = ind;
3387 best_linetable = l;
3388 best_symtab = s;
3389 goto done;
3390 }
3391 if (best == 0 || l->item[ind].line < best)
3392 {
3393 best = l->item[ind].line;
3394 best_index = ind;
3395 best_linetable = l;
3396 best_symtab = s;
3397 }
3398 }
3399 }
3400 }
3401 }
3402 }
3403 done:
3404 if (best_index < 0)
3405 return NULL;
3406
3407 if (index)
3408 *index = best_index;
3409 if (exact_match)
3410 *exact_match = (exact != 0);
3411
3412 return best_symtab;
3413 }
3414
3415 /* Given SYMTAB, returns all the PCs function in the symtab that
3416 exactly match LINE. Returns an empty vector if there are no exact
3417 matches, but updates BEST_ITEM in this case. */
3418
3419 std::vector<CORE_ADDR>
3420 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3421 struct linetable_entry **best_item)
3422 {
3423 int start = 0;
3424 std::vector<CORE_ADDR> result;
3425
3426 /* First, collect all the PCs that are at this line. */
3427 while (1)
3428 {
3429 int was_exact;
3430 int idx;
3431
3432 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3433 start);
3434 if (idx < 0)
3435 break;
3436
3437 if (!was_exact)
3438 {
3439 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3440
3441 if (*best_item == NULL || item->line < (*best_item)->line)
3442 *best_item = item;
3443
3444 break;
3445 }
3446
3447 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3448 start = idx + 1;
3449 }
3450
3451 return result;
3452 }
3453
3454 \f
3455 /* Set the PC value for a given source file and line number and return true.
3456 Returns false for invalid line number (and sets the PC to 0).
3457 The source file is specified with a struct symtab. */
3458
3459 bool
3460 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3461 {
3462 struct linetable *l;
3463 int ind;
3464
3465 *pc = 0;
3466 if (symtab == 0)
3467 return false;
3468
3469 symtab = find_line_symtab (symtab, line, &ind, NULL);
3470 if (symtab != NULL)
3471 {
3472 l = SYMTAB_LINETABLE (symtab);
3473 *pc = l->item[ind].pc;
3474 return true;
3475 }
3476 else
3477 return false;
3478 }
3479
3480 /* Find the range of pc values in a line.
3481 Store the starting pc of the line into *STARTPTR
3482 and the ending pc (start of next line) into *ENDPTR.
3483 Returns true to indicate success.
3484 Returns false if could not find the specified line. */
3485
3486 bool
3487 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3488 CORE_ADDR *endptr)
3489 {
3490 CORE_ADDR startaddr;
3491 struct symtab_and_line found_sal;
3492
3493 startaddr = sal.pc;
3494 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3495 return false;
3496
3497 /* This whole function is based on address. For example, if line 10 has
3498 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3499 "info line *0x123" should say the line goes from 0x100 to 0x200
3500 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3501 This also insures that we never give a range like "starts at 0x134
3502 and ends at 0x12c". */
3503
3504 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3505 if (found_sal.line != sal.line)
3506 {
3507 /* The specified line (sal) has zero bytes. */
3508 *startptr = found_sal.pc;
3509 *endptr = found_sal.pc;
3510 }
3511 else
3512 {
3513 *startptr = found_sal.pc;
3514 *endptr = found_sal.end;
3515 }
3516 return true;
3517 }
3518
3519 /* Given a line table and a line number, return the index into the line
3520 table for the pc of the nearest line whose number is >= the specified one.
3521 Return -1 if none is found. The value is >= 0 if it is an index.
3522 START is the index at which to start searching the line table.
3523
3524 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3525
3526 static int
3527 find_line_common (struct linetable *l, int lineno,
3528 int *exact_match, int start)
3529 {
3530 int i;
3531 int len;
3532
3533 /* BEST is the smallest linenumber > LINENO so far seen,
3534 or 0 if none has been seen so far.
3535 BEST_INDEX identifies the item for it. */
3536
3537 int best_index = -1;
3538 int best = 0;
3539
3540 *exact_match = 0;
3541
3542 if (lineno <= 0)
3543 return -1;
3544 if (l == 0)
3545 return -1;
3546
3547 len = l->nitems;
3548 for (i = start; i < len; i++)
3549 {
3550 struct linetable_entry *item = &(l->item[i]);
3551
3552 if (item->line == lineno)
3553 {
3554 /* Return the first (lowest address) entry which matches. */
3555 *exact_match = 1;
3556 return i;
3557 }
3558
3559 if (item->line > lineno && (best == 0 || item->line < best))
3560 {
3561 best = item->line;
3562 best_index = i;
3563 }
3564 }
3565
3566 /* If we got here, we didn't get an exact match. */
3567 return best_index;
3568 }
3569
3570 bool
3571 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3572 {
3573 struct symtab_and_line sal;
3574
3575 sal = find_pc_line (pc, 0);
3576 *startptr = sal.pc;
3577 *endptr = sal.end;
3578 return sal.symtab != 0;
3579 }
3580
3581 /* Helper for find_function_start_sal. Does most of the work, except
3582 setting the sal's symbol. */
3583
3584 static symtab_and_line
3585 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3586 bool funfirstline)
3587 {
3588 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3589
3590 if (funfirstline && sal.symtab != NULL
3591 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3592 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3593 {
3594 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3595
3596 sal.pc = func_addr;
3597 if (gdbarch_skip_entrypoint_p (gdbarch))
3598 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3599 return sal;
3600 }
3601
3602 /* We always should have a line for the function start address.
3603 If we don't, something is odd. Create a plain SAL referring
3604 just the PC and hope that skip_prologue_sal (if requested)
3605 can find a line number for after the prologue. */
3606 if (sal.pc < func_addr)
3607 {
3608 sal = {};
3609 sal.pspace = current_program_space;
3610 sal.pc = func_addr;
3611 sal.section = section;
3612 }
3613
3614 if (funfirstline)
3615 skip_prologue_sal (&sal);
3616
3617 return sal;
3618 }
3619
3620 /* See symtab.h. */
3621
3622 symtab_and_line
3623 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3624 bool funfirstline)
3625 {
3626 symtab_and_line sal
3627 = find_function_start_sal_1 (func_addr, section, funfirstline);
3628
3629 /* find_function_start_sal_1 does a linetable search, so it finds
3630 the symtab and linenumber, but not a symbol. Fill in the
3631 function symbol too. */
3632 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3633
3634 return sal;
3635 }
3636
3637 /* See symtab.h. */
3638
3639 symtab_and_line
3640 find_function_start_sal (symbol *sym, bool funfirstline)
3641 {
3642 fixup_symbol_section (sym, NULL);
3643 symtab_and_line sal
3644 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3645 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3646 funfirstline);
3647 sal.symbol = sym;
3648 return sal;
3649 }
3650
3651
3652 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3653 address for that function that has an entry in SYMTAB's line info
3654 table. If such an entry cannot be found, return FUNC_ADDR
3655 unaltered. */
3656
3657 static CORE_ADDR
3658 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3659 {
3660 CORE_ADDR func_start, func_end;
3661 struct linetable *l;
3662 int i;
3663
3664 /* Give up if this symbol has no lineinfo table. */
3665 l = SYMTAB_LINETABLE (symtab);
3666 if (l == NULL)
3667 return func_addr;
3668
3669 /* Get the range for the function's PC values, or give up if we
3670 cannot, for some reason. */
3671 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3672 return func_addr;
3673
3674 /* Linetable entries are ordered by PC values, see the commentary in
3675 symtab.h where `struct linetable' is defined. Thus, the first
3676 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3677 address we are looking for. */
3678 for (i = 0; i < l->nitems; i++)
3679 {
3680 struct linetable_entry *item = &(l->item[i]);
3681
3682 /* Don't use line numbers of zero, they mark special entries in
3683 the table. See the commentary on symtab.h before the
3684 definition of struct linetable. */
3685 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3686 return item->pc;
3687 }
3688
3689 return func_addr;
3690 }
3691
3692 /* Adjust SAL to the first instruction past the function prologue.
3693 If the PC was explicitly specified, the SAL is not changed.
3694 If the line number was explicitly specified then the SAL can still be
3695 updated, unless the language for SAL is assembler, in which case the SAL
3696 will be left unchanged.
3697 If SAL is already past the prologue, then do nothing. */
3698
3699 void
3700 skip_prologue_sal (struct symtab_and_line *sal)
3701 {
3702 struct symbol *sym;
3703 struct symtab_and_line start_sal;
3704 CORE_ADDR pc, saved_pc;
3705 struct obj_section *section;
3706 const char *name;
3707 struct objfile *objfile;
3708 struct gdbarch *gdbarch;
3709 const struct block *b, *function_block;
3710 int force_skip, skip;
3711
3712 /* Do not change the SAL if PC was specified explicitly. */
3713 if (sal->explicit_pc)
3714 return;
3715
3716 /* In assembly code, if the user asks for a specific line then we should
3717 not adjust the SAL. The user already has instruction level
3718 visibility in this case, so selecting a line other than one requested
3719 is likely to be the wrong choice. */
3720 if (sal->symtab != nullptr
3721 && sal->explicit_line
3722 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3723 return;
3724
3725 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3726
3727 switch_to_program_space_and_thread (sal->pspace);
3728
3729 sym = find_pc_sect_function (sal->pc, sal->section);
3730 if (sym != NULL)
3731 {
3732 fixup_symbol_section (sym, NULL);
3733
3734 objfile = symbol_objfile (sym);
3735 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3736 section = SYMBOL_OBJ_SECTION (objfile, sym);
3737 name = sym->linkage_name ();
3738 }
3739 else
3740 {
3741 struct bound_minimal_symbol msymbol
3742 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3743
3744 if (msymbol.minsym == NULL)
3745 return;
3746
3747 objfile = msymbol.objfile;
3748 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3749 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3750 name = msymbol.minsym->linkage_name ();
3751 }
3752
3753 gdbarch = get_objfile_arch (objfile);
3754
3755 /* Process the prologue in two passes. In the first pass try to skip the
3756 prologue (SKIP is true) and verify there is a real need for it (indicated
3757 by FORCE_SKIP). If no such reason was found run a second pass where the
3758 prologue is not skipped (SKIP is false). */
3759
3760 skip = 1;
3761 force_skip = 1;
3762
3763 /* Be conservative - allow direct PC (without skipping prologue) only if we
3764 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3765 have to be set by the caller so we use SYM instead. */
3766 if (sym != NULL
3767 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3768 force_skip = 0;
3769
3770 saved_pc = pc;
3771 do
3772 {
3773 pc = saved_pc;
3774
3775 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3776 so that gdbarch_skip_prologue has something unique to work on. */
3777 if (section_is_overlay (section) && !section_is_mapped (section))
3778 pc = overlay_unmapped_address (pc, section);
3779
3780 /* Skip "first line" of function (which is actually its prologue). */
3781 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3782 if (gdbarch_skip_entrypoint_p (gdbarch))
3783 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3784 if (skip)
3785 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3786
3787 /* For overlays, map pc back into its mapped VMA range. */
3788 pc = overlay_mapped_address (pc, section);
3789
3790 /* Calculate line number. */
3791 start_sal = find_pc_sect_line (pc, section, 0);
3792
3793 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3794 line is still part of the same function. */
3795 if (skip && start_sal.pc != pc
3796 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3797 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3798 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3799 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3800 {
3801 /* First pc of next line */
3802 pc = start_sal.end;
3803 /* Recalculate the line number (might not be N+1). */
3804 start_sal = find_pc_sect_line (pc, section, 0);
3805 }
3806
3807 /* On targets with executable formats that don't have a concept of
3808 constructors (ELF with .init has, PE doesn't), gcc emits a call
3809 to `__main' in `main' between the prologue and before user
3810 code. */
3811 if (gdbarch_skip_main_prologue_p (gdbarch)
3812 && name && strcmp_iw (name, "main") == 0)
3813 {
3814 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3815 /* Recalculate the line number (might not be N+1). */
3816 start_sal = find_pc_sect_line (pc, section, 0);
3817 force_skip = 1;
3818 }
3819 }
3820 while (!force_skip && skip--);
3821
3822 /* If we still don't have a valid source line, try to find the first
3823 PC in the lineinfo table that belongs to the same function. This
3824 happens with COFF debug info, which does not seem to have an
3825 entry in lineinfo table for the code after the prologue which has
3826 no direct relation to source. For example, this was found to be
3827 the case with the DJGPP target using "gcc -gcoff" when the
3828 compiler inserted code after the prologue to make sure the stack
3829 is aligned. */
3830 if (!force_skip && sym && start_sal.symtab == NULL)
3831 {
3832 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3833 /* Recalculate the line number. */
3834 start_sal = find_pc_sect_line (pc, section, 0);
3835 }
3836
3837 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3838 forward SAL to the end of the prologue. */
3839 if (sal->pc >= pc)
3840 return;
3841
3842 sal->pc = pc;
3843 sal->section = section;
3844 sal->symtab = start_sal.symtab;
3845 sal->line = start_sal.line;
3846 sal->end = start_sal.end;
3847
3848 /* Check if we are now inside an inlined function. If we can,
3849 use the call site of the function instead. */
3850 b = block_for_pc_sect (sal->pc, sal->section);
3851 function_block = NULL;
3852 while (b != NULL)
3853 {
3854 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3855 function_block = b;
3856 else if (BLOCK_FUNCTION (b) != NULL)
3857 break;
3858 b = BLOCK_SUPERBLOCK (b);
3859 }
3860 if (function_block != NULL
3861 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3862 {
3863 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3864 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3865 }
3866 }
3867
3868 /* Given PC at the function's start address, attempt to find the
3869 prologue end using SAL information. Return zero if the skip fails.
3870
3871 A non-optimized prologue traditionally has one SAL for the function
3872 and a second for the function body. A single line function has
3873 them both pointing at the same line.
3874
3875 An optimized prologue is similar but the prologue may contain
3876 instructions (SALs) from the instruction body. Need to skip those
3877 while not getting into the function body.
3878
3879 The functions end point and an increasing SAL line are used as
3880 indicators of the prologue's endpoint.
3881
3882 This code is based on the function refine_prologue_limit
3883 (found in ia64). */
3884
3885 CORE_ADDR
3886 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3887 {
3888 struct symtab_and_line prologue_sal;
3889 CORE_ADDR start_pc;
3890 CORE_ADDR end_pc;
3891 const struct block *bl;
3892
3893 /* Get an initial range for the function. */
3894 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3895 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3896
3897 prologue_sal = find_pc_line (start_pc, 0);
3898 if (prologue_sal.line != 0)
3899 {
3900 /* For languages other than assembly, treat two consecutive line
3901 entries at the same address as a zero-instruction prologue.
3902 The GNU assembler emits separate line notes for each instruction
3903 in a multi-instruction macro, but compilers generally will not
3904 do this. */
3905 if (prologue_sal.symtab->language != language_asm)
3906 {
3907 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3908 int idx = 0;
3909
3910 /* Skip any earlier lines, and any end-of-sequence marker
3911 from a previous function. */
3912 while (linetable->item[idx].pc != prologue_sal.pc
3913 || linetable->item[idx].line == 0)
3914 idx++;
3915
3916 if (idx+1 < linetable->nitems
3917 && linetable->item[idx+1].line != 0
3918 && linetable->item[idx+1].pc == start_pc)
3919 return start_pc;
3920 }
3921
3922 /* If there is only one sal that covers the entire function,
3923 then it is probably a single line function, like
3924 "foo(){}". */
3925 if (prologue_sal.end >= end_pc)
3926 return 0;
3927
3928 while (prologue_sal.end < end_pc)
3929 {
3930 struct symtab_and_line sal;
3931
3932 sal = find_pc_line (prologue_sal.end, 0);
3933 if (sal.line == 0)
3934 break;
3935 /* Assume that a consecutive SAL for the same (or larger)
3936 line mark the prologue -> body transition. */
3937 if (sal.line >= prologue_sal.line)
3938 break;
3939 /* Likewise if we are in a different symtab altogether
3940 (e.g. within a file included via #include).  */
3941 if (sal.symtab != prologue_sal.symtab)
3942 break;
3943
3944 /* The line number is smaller. Check that it's from the
3945 same function, not something inlined. If it's inlined,
3946 then there is no point comparing the line numbers. */
3947 bl = block_for_pc (prologue_sal.end);
3948 while (bl)
3949 {
3950 if (block_inlined_p (bl))
3951 break;
3952 if (BLOCK_FUNCTION (bl))
3953 {
3954 bl = NULL;
3955 break;
3956 }
3957 bl = BLOCK_SUPERBLOCK (bl);
3958 }
3959 if (bl != NULL)
3960 break;
3961
3962 /* The case in which compiler's optimizer/scheduler has
3963 moved instructions into the prologue. We look ahead in
3964 the function looking for address ranges whose
3965 corresponding line number is less the first one that we
3966 found for the function. This is more conservative then
3967 refine_prologue_limit which scans a large number of SALs
3968 looking for any in the prologue. */
3969 prologue_sal = sal;
3970 }
3971 }
3972
3973 if (prologue_sal.end < end_pc)
3974 /* Return the end of this line, or zero if we could not find a
3975 line. */
3976 return prologue_sal.end;
3977 else
3978 /* Don't return END_PC, which is past the end of the function. */
3979 return prologue_sal.pc;
3980 }
3981
3982 /* See symtab.h. */
3983
3984 symbol *
3985 find_function_alias_target (bound_minimal_symbol msymbol)
3986 {
3987 CORE_ADDR func_addr;
3988 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3989 return NULL;
3990
3991 symbol *sym = find_pc_function (func_addr);
3992 if (sym != NULL
3993 && SYMBOL_CLASS (sym) == LOC_BLOCK
3994 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3995 return sym;
3996
3997 return NULL;
3998 }
3999
4000 \f
4001 /* If P is of the form "operator[ \t]+..." where `...' is
4002 some legitimate operator text, return a pointer to the
4003 beginning of the substring of the operator text.
4004 Otherwise, return "". */
4005
4006 static const char *
4007 operator_chars (const char *p, const char **end)
4008 {
4009 *end = "";
4010 if (!startswith (p, CP_OPERATOR_STR))
4011 return *end;
4012 p += CP_OPERATOR_LEN;
4013
4014 /* Don't get faked out by `operator' being part of a longer
4015 identifier. */
4016 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4017 return *end;
4018
4019 /* Allow some whitespace between `operator' and the operator symbol. */
4020 while (*p == ' ' || *p == '\t')
4021 p++;
4022
4023 /* Recognize 'operator TYPENAME'. */
4024
4025 if (isalpha (*p) || *p == '_' || *p == '$')
4026 {
4027 const char *q = p + 1;
4028
4029 while (isalnum (*q) || *q == '_' || *q == '$')
4030 q++;
4031 *end = q;
4032 return p;
4033 }
4034
4035 while (*p)
4036 switch (*p)
4037 {
4038 case '\\': /* regexp quoting */
4039 if (p[1] == '*')
4040 {
4041 if (p[2] == '=') /* 'operator\*=' */
4042 *end = p + 3;
4043 else /* 'operator\*' */
4044 *end = p + 2;
4045 return p;
4046 }
4047 else if (p[1] == '[')
4048 {
4049 if (p[2] == ']')
4050 error (_("mismatched quoting on brackets, "
4051 "try 'operator\\[\\]'"));
4052 else if (p[2] == '\\' && p[3] == ']')
4053 {
4054 *end = p + 4; /* 'operator\[\]' */
4055 return p;
4056 }
4057 else
4058 error (_("nothing is allowed between '[' and ']'"));
4059 }
4060 else
4061 {
4062 /* Gratuitous quote: skip it and move on. */
4063 p++;
4064 continue;
4065 }
4066 break;
4067 case '!':
4068 case '=':
4069 case '*':
4070 case '/':
4071 case '%':
4072 case '^':
4073 if (p[1] == '=')
4074 *end = p + 2;
4075 else
4076 *end = p + 1;
4077 return p;
4078 case '<':
4079 case '>':
4080 case '+':
4081 case '-':
4082 case '&':
4083 case '|':
4084 if (p[0] == '-' && p[1] == '>')
4085 {
4086 /* Struct pointer member operator 'operator->'. */
4087 if (p[2] == '*')
4088 {
4089 *end = p + 3; /* 'operator->*' */
4090 return p;
4091 }
4092 else if (p[2] == '\\')
4093 {
4094 *end = p + 4; /* Hopefully 'operator->\*' */
4095 return p;
4096 }
4097 else
4098 {
4099 *end = p + 2; /* 'operator->' */
4100 return p;
4101 }
4102 }
4103 if (p[1] == '=' || p[1] == p[0])
4104 *end = p + 2;
4105 else
4106 *end = p + 1;
4107 return p;
4108 case '~':
4109 case ',':
4110 *end = p + 1;
4111 return p;
4112 case '(':
4113 if (p[1] != ')')
4114 error (_("`operator ()' must be specified "
4115 "without whitespace in `()'"));
4116 *end = p + 2;
4117 return p;
4118 case '?':
4119 if (p[1] != ':')
4120 error (_("`operator ?:' must be specified "
4121 "without whitespace in `?:'"));
4122 *end = p + 2;
4123 return p;
4124 case '[':
4125 if (p[1] != ']')
4126 error (_("`operator []' must be specified "
4127 "without whitespace in `[]'"));
4128 *end = p + 2;
4129 return p;
4130 default:
4131 error (_("`operator %s' not supported"), p);
4132 break;
4133 }
4134
4135 *end = "";
4136 return *end;
4137 }
4138 \f
4139
4140 /* What part to match in a file name. */
4141
4142 struct filename_partial_match_opts
4143 {
4144 /* Only match the directory name part. */
4145 bool dirname = false;
4146
4147 /* Only match the basename part. */
4148 bool basename = false;
4149 };
4150
4151 /* Data structure to maintain printing state for output_source_filename. */
4152
4153 struct output_source_filename_data
4154 {
4155 /* Output only filenames matching REGEXP. */
4156 std::string regexp;
4157 gdb::optional<compiled_regex> c_regexp;
4158 /* Possibly only match a part of the filename. */
4159 filename_partial_match_opts partial_match;
4160
4161
4162 /* Cache of what we've seen so far. */
4163 struct filename_seen_cache *filename_seen_cache;
4164
4165 /* Flag of whether we're printing the first one. */
4166 int first;
4167 };
4168
4169 /* Slave routine for sources_info. Force line breaks at ,'s.
4170 NAME is the name to print.
4171 DATA contains the state for printing and watching for duplicates. */
4172
4173 static void
4174 output_source_filename (const char *name,
4175 struct output_source_filename_data *data)
4176 {
4177 /* Since a single source file can result in several partial symbol
4178 tables, we need to avoid printing it more than once. Note: if
4179 some of the psymtabs are read in and some are not, it gets
4180 printed both under "Source files for which symbols have been
4181 read" and "Source files for which symbols will be read in on
4182 demand". I consider this a reasonable way to deal with the
4183 situation. I'm not sure whether this can also happen for
4184 symtabs; it doesn't hurt to check. */
4185
4186 /* Was NAME already seen? */
4187 if (data->filename_seen_cache->seen (name))
4188 {
4189 /* Yes; don't print it again. */
4190 return;
4191 }
4192
4193 /* Does it match data->regexp? */
4194 if (data->c_regexp.has_value ())
4195 {
4196 const char *to_match;
4197 std::string dirname;
4198
4199 if (data->partial_match.dirname)
4200 {
4201 dirname = ldirname (name);
4202 to_match = dirname.c_str ();
4203 }
4204 else if (data->partial_match.basename)
4205 to_match = lbasename (name);
4206 else
4207 to_match = name;
4208
4209 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4210 return;
4211 }
4212
4213 /* Print it and reset *FIRST. */
4214 if (! data->first)
4215 printf_filtered (", ");
4216 data->first = 0;
4217
4218 wrap_here ("");
4219 fputs_styled (name, file_name_style.style (), gdb_stdout);
4220 }
4221
4222 /* A callback for map_partial_symbol_filenames. */
4223
4224 static void
4225 output_partial_symbol_filename (const char *filename, const char *fullname,
4226 void *data)
4227 {
4228 output_source_filename (fullname ? fullname : filename,
4229 (struct output_source_filename_data *) data);
4230 }
4231
4232 using isrc_flag_option_def
4233 = gdb::option::flag_option_def<filename_partial_match_opts>;
4234
4235 static const gdb::option::option_def info_sources_option_defs[] = {
4236
4237 isrc_flag_option_def {
4238 "dirname",
4239 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4240 N_("Show only the files having a dirname matching REGEXP."),
4241 },
4242
4243 isrc_flag_option_def {
4244 "basename",
4245 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4246 N_("Show only the files having a basename matching REGEXP."),
4247 },
4248
4249 };
4250
4251 /* Create an option_def_group for the "info sources" options, with
4252 ISRC_OPTS as context. */
4253
4254 static inline gdb::option::option_def_group
4255 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4256 {
4257 return {{info_sources_option_defs}, isrc_opts};
4258 }
4259
4260 /* Prints the header message for the source files that will be printed
4261 with the matching info present in DATA. SYMBOL_MSG is a message
4262 that tells what will or has been done with the symbols of the
4263 matching source files. */
4264
4265 static void
4266 print_info_sources_header (const char *symbol_msg,
4267 const struct output_source_filename_data *data)
4268 {
4269 puts_filtered (symbol_msg);
4270 if (!data->regexp.empty ())
4271 {
4272 if (data->partial_match.dirname)
4273 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4274 data->regexp.c_str ());
4275 else if (data->partial_match.basename)
4276 printf_filtered (_("(basename matching regular expression \"%s\")"),
4277 data->regexp.c_str ());
4278 else
4279 printf_filtered (_("(filename matching regular expression \"%s\")"),
4280 data->regexp.c_str ());
4281 }
4282 puts_filtered ("\n");
4283 }
4284
4285 /* Completer for "info sources". */
4286
4287 static void
4288 info_sources_command_completer (cmd_list_element *ignore,
4289 completion_tracker &tracker,
4290 const char *text, const char *word)
4291 {
4292 const auto group = make_info_sources_options_def_group (nullptr);
4293 if (gdb::option::complete_options
4294 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4295 return;
4296 }
4297
4298 static void
4299 info_sources_command (const char *args, int from_tty)
4300 {
4301 struct output_source_filename_data data;
4302
4303 if (!have_full_symbols () && !have_partial_symbols ())
4304 {
4305 error (_("No symbol table is loaded. Use the \"file\" command."));
4306 }
4307
4308 filename_seen_cache filenames_seen;
4309
4310 auto group = make_info_sources_options_def_group (&data.partial_match);
4311
4312 gdb::option::process_options
4313 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4314
4315 if (args != NULL && *args != '\000')
4316 data.regexp = args;
4317
4318 data.filename_seen_cache = &filenames_seen;
4319 data.first = 1;
4320
4321 if (data.partial_match.dirname && data.partial_match.basename)
4322 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4323 if ((data.partial_match.dirname || data.partial_match.basename)
4324 && data.regexp.empty ())
4325 error (_("Missing REGEXP for 'info sources'."));
4326
4327 if (data.regexp.empty ())
4328 data.c_regexp.reset ();
4329 else
4330 {
4331 int cflags = REG_NOSUB;
4332 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4333 cflags |= REG_ICASE;
4334 #endif
4335 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4336 _("Invalid regexp"));
4337 }
4338
4339 print_info_sources_header
4340 (_("Source files for which symbols have been read in:\n"), &data);
4341
4342 for (objfile *objfile : current_program_space->objfiles ())
4343 {
4344 for (compunit_symtab *cu : objfile->compunits ())
4345 {
4346 for (symtab *s : compunit_filetabs (cu))
4347 {
4348 const char *fullname = symtab_to_fullname (s);
4349
4350 output_source_filename (fullname, &data);
4351 }
4352 }
4353 }
4354 printf_filtered ("\n\n");
4355
4356 print_info_sources_header
4357 (_("Source files for which symbols will be read in on demand:\n"), &data);
4358
4359 filenames_seen.clear ();
4360 data.first = 1;
4361 map_symbol_filenames (output_partial_symbol_filename, &data,
4362 1 /*need_fullname*/);
4363 printf_filtered ("\n");
4364 }
4365
4366 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4367 true compare only lbasename of FILENAMES. */
4368
4369 static bool
4370 file_matches (const char *file, const std::vector<const char *> &filenames,
4371 bool basenames)
4372 {
4373 if (filenames.empty ())
4374 return true;
4375
4376 for (const char *name : filenames)
4377 {
4378 name = (basenames ? lbasename (name) : name);
4379 if (compare_filenames_for_search (file, name))
4380 return true;
4381 }
4382
4383 return false;
4384 }
4385
4386 /* Helper function for std::sort on symbol_search objects. Can only sort
4387 symbols, not minimal symbols. */
4388
4389 int
4390 symbol_search::compare_search_syms (const symbol_search &sym_a,
4391 const symbol_search &sym_b)
4392 {
4393 int c;
4394
4395 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4396 symbol_symtab (sym_b.symbol)->filename);
4397 if (c != 0)
4398 return c;
4399
4400 if (sym_a.block != sym_b.block)
4401 return sym_a.block - sym_b.block;
4402
4403 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4404 }
4405
4406 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4407 If SYM has no symbol_type or symbol_name, returns false. */
4408
4409 bool
4410 treg_matches_sym_type_name (const compiled_regex &treg,
4411 const struct symbol *sym)
4412 {
4413 struct type *sym_type;
4414 std::string printed_sym_type_name;
4415
4416 if (symbol_lookup_debug > 1)
4417 {
4418 fprintf_unfiltered (gdb_stdlog,
4419 "treg_matches_sym_type_name\n sym %s\n",
4420 sym->natural_name ());
4421 }
4422
4423 sym_type = SYMBOL_TYPE (sym);
4424 if (sym_type == NULL)
4425 return false;
4426
4427 {
4428 scoped_switch_to_sym_language_if_auto l (sym);
4429
4430 printed_sym_type_name = type_to_string (sym_type);
4431 }
4432
4433
4434 if (symbol_lookup_debug > 1)
4435 {
4436 fprintf_unfiltered (gdb_stdlog,
4437 " sym_type_name %s\n",
4438 printed_sym_type_name.c_str ());
4439 }
4440
4441
4442 if (printed_sym_type_name.empty ())
4443 return false;
4444
4445 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4446 }
4447
4448 /* See symtab.h. */
4449
4450 bool
4451 global_symbol_searcher::is_suitable_msymbol
4452 (const enum search_domain kind, const minimal_symbol *msymbol)
4453 {
4454 switch (MSYMBOL_TYPE (msymbol))
4455 {
4456 case mst_data:
4457 case mst_bss:
4458 case mst_file_data:
4459 case mst_file_bss:
4460 return kind == VARIABLES_DOMAIN;
4461 case mst_text:
4462 case mst_file_text:
4463 case mst_solib_trampoline:
4464 case mst_text_gnu_ifunc:
4465 return kind == FUNCTIONS_DOMAIN;
4466 default:
4467 return false;
4468 }
4469 }
4470
4471 /* See symtab.h. */
4472
4473 bool
4474 global_symbol_searcher::expand_symtabs
4475 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4476 {
4477 enum search_domain kind = m_kind;
4478 bool found_msymbol = false;
4479
4480 if (objfile->sf)
4481 objfile->sf->qf->expand_symtabs_matching
4482 (objfile,
4483 [&] (const char *filename, bool basenames)
4484 {
4485 return file_matches (filename, filenames, basenames);
4486 },
4487 lookup_name_info::match_any (),
4488 [&] (const char *symname)
4489 {
4490 return (!preg.has_value ()
4491 || preg->exec (symname, 0, NULL, 0) == 0);
4492 },
4493 NULL,
4494 kind);
4495
4496 /* Here, we search through the minimal symbol tables for functions and
4497 variables that match, and force their symbols to be read. This is in
4498 particular necessary for demangled variable names, which are no longer
4499 put into the partial symbol tables. The symbol will then be found
4500 during the scan of symtabs later.
4501
4502 For functions, find_pc_symtab should succeed if we have debug info for
4503 the function, for variables we have to call
4504 lookup_symbol_in_objfile_from_linkage_name to determine if the
4505 variable has debug info. If the lookup fails, set found_msymbol so
4506 that we will rescan to print any matching symbols without debug info.
4507 We only search the objfile the msymbol came from, we no longer search
4508 all objfiles. In large programs (1000s of shared libs) searching all
4509 objfiles is not worth the pain. */
4510 if (filenames.empty ()
4511 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4512 {
4513 for (minimal_symbol *msymbol : objfile->msymbols ())
4514 {
4515 QUIT;
4516
4517 if (msymbol->created_by_gdb)
4518 continue;
4519
4520 if (is_suitable_msymbol (kind, msymbol))
4521 {
4522 if (!preg.has_value ()
4523 || preg->exec (msymbol->natural_name (), 0,
4524 NULL, 0) == 0)
4525 {
4526 /* An important side-effect of these lookup functions is
4527 to expand the symbol table if msymbol is found, later
4528 in the process we will add matching symbols or
4529 msymbols to the results list, and that requires that
4530 the symbols tables are expanded. */
4531 if (kind == FUNCTIONS_DOMAIN
4532 ? (find_pc_compunit_symtab
4533 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4534 == NULL)
4535 : (lookup_symbol_in_objfile_from_linkage_name
4536 (objfile, msymbol->linkage_name (),
4537 VAR_DOMAIN)
4538 .symbol == NULL))
4539 found_msymbol = true;
4540 }
4541 }
4542 }
4543 }
4544
4545 return found_msymbol;
4546 }
4547
4548 /* See symtab.h. */
4549
4550 void
4551 global_symbol_searcher::add_matching_symbols
4552 (objfile *objfile,
4553 const gdb::optional<compiled_regex> &preg,
4554 const gdb::optional<compiled_regex> &treg,
4555 std::vector<symbol_search> *results) const
4556 {
4557 enum search_domain kind = m_kind;
4558
4559 /* Add matching symbols (if not already present). */
4560 for (compunit_symtab *cust : objfile->compunits ())
4561 {
4562 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4563
4564 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4565 {
4566 struct block_iterator iter;
4567 struct symbol *sym;
4568 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4569
4570 ALL_BLOCK_SYMBOLS (b, iter, sym)
4571 {
4572 struct symtab *real_symtab = symbol_symtab (sym);
4573
4574 QUIT;
4575
4576 /* Check first sole REAL_SYMTAB->FILENAME. It does
4577 not need to be a substring of symtab_to_fullname as
4578 it may contain "./" etc. */
4579 if ((file_matches (real_symtab->filename, filenames, false)
4580 || ((basenames_may_differ
4581 || file_matches (lbasename (real_symtab->filename),
4582 filenames, true))
4583 && file_matches (symtab_to_fullname (real_symtab),
4584 filenames, false)))
4585 && ((!preg.has_value ()
4586 || preg->exec (sym->natural_name (), 0,
4587 NULL, 0) == 0)
4588 && ((kind == VARIABLES_DOMAIN
4589 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4590 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4591 && SYMBOL_CLASS (sym) != LOC_BLOCK
4592 /* LOC_CONST can be used for more than
4593 just enums, e.g., c++ static const
4594 members. We only want to skip enums
4595 here. */
4596 && !(SYMBOL_CLASS (sym) == LOC_CONST
4597 && (TYPE_CODE (SYMBOL_TYPE (sym))
4598 == TYPE_CODE_ENUM))
4599 && (!treg.has_value ()
4600 || treg_matches_sym_type_name (*treg, sym)))
4601 || (kind == FUNCTIONS_DOMAIN
4602 && SYMBOL_CLASS (sym) == LOC_BLOCK
4603 && (!treg.has_value ()
4604 || treg_matches_sym_type_name (*treg,
4605 sym)))
4606 || (kind == TYPES_DOMAIN
4607 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4608 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4609 || (kind == MODULES_DOMAIN
4610 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4611 && SYMBOL_LINE (sym) != 0))))
4612 {
4613 /* Matching msymbol, add it to the results list. */
4614 results->emplace_back (block, sym);
4615 }
4616 }
4617 }
4618 }
4619 }
4620
4621 /* See symtab.h. */
4622
4623 void
4624 global_symbol_searcher::add_matching_msymbols
4625 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4626 std::vector<symbol_search> *results) const
4627 {
4628 enum search_domain kind = m_kind;
4629
4630 for (minimal_symbol *msymbol : objfile->msymbols ())
4631 {
4632 QUIT;
4633
4634 if (msymbol->created_by_gdb)
4635 continue;
4636
4637 if (is_suitable_msymbol (kind, msymbol))
4638 {
4639 if (!preg.has_value ()
4640 || preg->exec (msymbol->natural_name (), 0,
4641 NULL, 0) == 0)
4642 {
4643 /* For functions we can do a quick check of whether the
4644 symbol might be found via find_pc_symtab. */
4645 if (kind != FUNCTIONS_DOMAIN
4646 || (find_pc_compunit_symtab
4647 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4648 == NULL))
4649 {
4650 if (lookup_symbol_in_objfile_from_linkage_name
4651 (objfile, msymbol->linkage_name (),
4652 VAR_DOMAIN).symbol == NULL)
4653 {
4654 /* Matching msymbol, add it to the results list. */
4655 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4656 }
4657 }
4658 }
4659 }
4660 }
4661 }
4662
4663 /* Sort the symbols in RESULT and remove duplicates. */
4664
4665 static void
4666 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4667 {
4668 std::sort (result->begin (), result->end ());
4669 result->erase (std::unique (result->begin (), result->end ()),
4670 result->end ());
4671 }
4672
4673 /* See symtab.h. */
4674
4675 std::vector<symbol_search>
4676 global_symbol_searcher::search () const
4677 {
4678 gdb::optional<compiled_regex> preg;
4679 gdb::optional<compiled_regex> treg;
4680
4681 gdb_assert (m_kind != ALL_DOMAIN);
4682
4683 if (m_symbol_name_regexp != NULL)
4684 {
4685 const char *symbol_name_regexp = m_symbol_name_regexp;
4686
4687 /* Make sure spacing is right for C++ operators.
4688 This is just a courtesy to make the matching less sensitive
4689 to how many spaces the user leaves between 'operator'
4690 and <TYPENAME> or <OPERATOR>. */
4691 const char *opend;
4692 const char *opname = operator_chars (symbol_name_regexp, &opend);
4693
4694 if (*opname)
4695 {
4696 int fix = -1; /* -1 means ok; otherwise number of
4697 spaces needed. */
4698
4699 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4700 {
4701 /* There should 1 space between 'operator' and 'TYPENAME'. */
4702 if (opname[-1] != ' ' || opname[-2] == ' ')
4703 fix = 1;
4704 }
4705 else
4706 {
4707 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4708 if (opname[-1] == ' ')
4709 fix = 0;
4710 }
4711 /* If wrong number of spaces, fix it. */
4712 if (fix >= 0)
4713 {
4714 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4715
4716 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4717 symbol_name_regexp = tmp;
4718 }
4719 }
4720
4721 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4722 ? REG_ICASE : 0);
4723 preg.emplace (symbol_name_regexp, cflags,
4724 _("Invalid regexp"));
4725 }
4726
4727 if (m_symbol_type_regexp != NULL)
4728 {
4729 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4730 ? REG_ICASE : 0);
4731 treg.emplace (m_symbol_type_regexp, cflags,
4732 _("Invalid regexp"));
4733 }
4734
4735 bool found_msymbol = false;
4736 std::vector<symbol_search> result;
4737 for (objfile *objfile : current_program_space->objfiles ())
4738 {
4739 /* Expand symtabs within objfile that possibly contain matching
4740 symbols. */
4741 found_msymbol |= expand_symtabs (objfile, preg);
4742
4743 /* Find matching symbols within OBJFILE and add them in to the RESULT
4744 vector. */
4745 add_matching_symbols (objfile, preg, treg, &result);
4746 }
4747
4748 if (!result.empty ())
4749 sort_search_symbols_remove_dups (&result);
4750
4751 /* If there are no debug symbols, then add matching minsyms. But if the
4752 user wants to see symbols matching a type regexp, then never give a
4753 minimal symbol, as we assume that a minimal symbol does not have a
4754 type. */
4755 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4756 && !m_exclude_minsyms
4757 && !treg.has_value ())
4758 {
4759 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4760 for (objfile *objfile : current_program_space->objfiles ())
4761 add_matching_msymbols (objfile, preg, &result);
4762 }
4763
4764 return result;
4765 }
4766
4767 /* See symtab.h. */
4768
4769 std::string
4770 symbol_to_info_string (struct symbol *sym, int block,
4771 enum search_domain kind)
4772 {
4773 std::string str;
4774
4775 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4776
4777 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4778 str += "static ";
4779
4780 /* Typedef that is not a C++ class. */
4781 if (kind == TYPES_DOMAIN
4782 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4783 {
4784 string_file tmp_stream;
4785
4786 /* FIXME: For C (and C++) we end up with a difference in output here
4787 between how a typedef is printed, and non-typedefs are printed.
4788 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4789 appear C-like, while TYPE_PRINT doesn't.
4790
4791 For the struct printing case below, things are worse, we force
4792 printing of the ";" in this function, which is going to be wrong
4793 for languages that don't require a ";" between statements. */
4794 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4795 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4796 else
4797 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4798 str += tmp_stream.string ();
4799 }
4800 /* variable, func, or typedef-that-is-c++-class. */
4801 else if (kind < TYPES_DOMAIN
4802 || (kind == TYPES_DOMAIN
4803 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4804 {
4805 string_file tmp_stream;
4806
4807 type_print (SYMBOL_TYPE (sym),
4808 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4809 ? "" : sym->print_name ()),
4810 &tmp_stream, 0);
4811
4812 str += tmp_stream.string ();
4813 str += ";";
4814 }
4815 /* Printing of modules is currently done here, maybe at some future
4816 point we might want a language specific method to print the module
4817 symbol so that we can customise the output more. */
4818 else if (kind == MODULES_DOMAIN)
4819 str += sym->print_name ();
4820
4821 return str;
4822 }
4823
4824 /* Helper function for symbol info commands, for example 'info functions',
4825 'info variables', etc. KIND is the kind of symbol we searched for, and
4826 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4827 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4828 print file and line number information for the symbol as well. Skip
4829 printing the filename if it matches LAST. */
4830
4831 static void
4832 print_symbol_info (enum search_domain kind,
4833 struct symbol *sym,
4834 int block, const char *last)
4835 {
4836 scoped_switch_to_sym_language_if_auto l (sym);
4837 struct symtab *s = symbol_symtab (sym);
4838
4839 if (last != NULL)
4840 {
4841 const char *s_filename = symtab_to_filename_for_display (s);
4842
4843 if (filename_cmp (last, s_filename) != 0)
4844 {
4845 printf_filtered (_("\nFile %ps:\n"),
4846 styled_string (file_name_style.style (),
4847 s_filename));
4848 }
4849
4850 if (SYMBOL_LINE (sym) != 0)
4851 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4852 else
4853 puts_filtered ("\t");
4854 }
4855
4856 std::string str = symbol_to_info_string (sym, block, kind);
4857 printf_filtered ("%s\n", str.c_str ());
4858 }
4859
4860 /* This help function for symtab_symbol_info() prints information
4861 for non-debugging symbols to gdb_stdout. */
4862
4863 static void
4864 print_msymbol_info (struct bound_minimal_symbol msymbol)
4865 {
4866 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4867 char *tmp;
4868
4869 if (gdbarch_addr_bit (gdbarch) <= 32)
4870 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4871 & (CORE_ADDR) 0xffffffff,
4872 8);
4873 else
4874 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4875 16);
4876
4877 ui_file_style sym_style = (msymbol.minsym->text_p ()
4878 ? function_name_style.style ()
4879 : ui_file_style ());
4880
4881 printf_filtered (_("%ps %ps\n"),
4882 styled_string (address_style.style (), tmp),
4883 styled_string (sym_style, msymbol.minsym->print_name ()));
4884 }
4885
4886 /* This is the guts of the commands "info functions", "info types", and
4887 "info variables". It calls search_symbols to find all matches and then
4888 print_[m]symbol_info to print out some useful information about the
4889 matches. */
4890
4891 static void
4892 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4893 const char *regexp, enum search_domain kind,
4894 const char *t_regexp, int from_tty)
4895 {
4896 static const char * const classnames[] =
4897 {"variable", "function", "type", "module"};
4898 const char *last_filename = "";
4899 int first = 1;
4900
4901 gdb_assert (kind != ALL_DOMAIN);
4902
4903 if (regexp != nullptr && *regexp == '\0')
4904 regexp = nullptr;
4905
4906 global_symbol_searcher spec (kind, regexp);
4907 spec.set_symbol_type_regexp (t_regexp);
4908 spec.set_exclude_minsyms (exclude_minsyms);
4909 std::vector<symbol_search> symbols = spec.search ();
4910
4911 if (!quiet)
4912 {
4913 if (regexp != NULL)
4914 {
4915 if (t_regexp != NULL)
4916 printf_filtered
4917 (_("All %ss matching regular expression \"%s\""
4918 " with type matching regular expression \"%s\":\n"),
4919 classnames[kind], regexp, t_regexp);
4920 else
4921 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4922 classnames[kind], regexp);
4923 }
4924 else
4925 {
4926 if (t_regexp != NULL)
4927 printf_filtered
4928 (_("All defined %ss"
4929 " with type matching regular expression \"%s\" :\n"),
4930 classnames[kind], t_regexp);
4931 else
4932 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4933 }
4934 }
4935
4936 for (const symbol_search &p : symbols)
4937 {
4938 QUIT;
4939
4940 if (p.msymbol.minsym != NULL)
4941 {
4942 if (first)
4943 {
4944 if (!quiet)
4945 printf_filtered (_("\nNon-debugging symbols:\n"));
4946 first = 0;
4947 }
4948 print_msymbol_info (p.msymbol);
4949 }
4950 else
4951 {
4952 print_symbol_info (kind,
4953 p.symbol,
4954 p.block,
4955 last_filename);
4956 last_filename
4957 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4958 }
4959 }
4960 }
4961
4962 /* Structure to hold the values of the options used by the 'info variables'
4963 and 'info functions' commands. These correspond to the -q, -t, and -n
4964 options. */
4965
4966 struct info_print_options
4967 {
4968 bool quiet = false;
4969 bool exclude_minsyms = false;
4970 char *type_regexp = nullptr;
4971
4972 ~info_print_options ()
4973 {
4974 xfree (type_regexp);
4975 }
4976 };
4977
4978 /* The options used by the 'info variables' and 'info functions'
4979 commands. */
4980
4981 static const gdb::option::option_def info_print_options_defs[] = {
4982 gdb::option::boolean_option_def<info_print_options> {
4983 "q",
4984 [] (info_print_options *opt) { return &opt->quiet; },
4985 nullptr, /* show_cmd_cb */
4986 nullptr /* set_doc */
4987 },
4988
4989 gdb::option::boolean_option_def<info_print_options> {
4990 "n",
4991 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4992 nullptr, /* show_cmd_cb */
4993 nullptr /* set_doc */
4994 },
4995
4996 gdb::option::string_option_def<info_print_options> {
4997 "t",
4998 [] (info_print_options *opt) { return &opt->type_regexp; },
4999 nullptr, /* show_cmd_cb */
5000 nullptr /* set_doc */
5001 }
5002 };
5003
5004 /* Returns the option group used by 'info variables' and 'info
5005 functions'. */
5006
5007 static gdb::option::option_def_group
5008 make_info_print_options_def_group (info_print_options *opts)
5009 {
5010 return {{info_print_options_defs}, opts};
5011 }
5012
5013 /* Command completer for 'info variables' and 'info functions'. */
5014
5015 static void
5016 info_print_command_completer (struct cmd_list_element *ignore,
5017 completion_tracker &tracker,
5018 const char *text, const char * /* word */)
5019 {
5020 const auto group
5021 = make_info_print_options_def_group (nullptr);
5022 if (gdb::option::complete_options
5023 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5024 return;
5025
5026 const char *word = advance_to_expression_complete_word_point (tracker, text);
5027 symbol_completer (ignore, tracker, text, word);
5028 }
5029
5030 /* Implement the 'info variables' command. */
5031
5032 static void
5033 info_variables_command (const char *args, int from_tty)
5034 {
5035 info_print_options opts;
5036 auto grp = make_info_print_options_def_group (&opts);
5037 gdb::option::process_options
5038 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5039 if (args != nullptr && *args == '\0')
5040 args = nullptr;
5041
5042 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5043 opts.type_regexp, from_tty);
5044 }
5045
5046 /* Implement the 'info functions' command. */
5047
5048 static void
5049 info_functions_command (const char *args, int from_tty)
5050 {
5051 info_print_options opts;
5052 auto grp = make_info_print_options_def_group (&opts);
5053 gdb::option::process_options
5054 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5055 if (args != nullptr && *args == '\0')
5056 args = nullptr;
5057
5058 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5059 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5060 }
5061
5062 /* Holds the -q option for the 'info types' command. */
5063
5064 struct info_types_options
5065 {
5066 bool quiet = false;
5067 };
5068
5069 /* The options used by the 'info types' command. */
5070
5071 static const gdb::option::option_def info_types_options_defs[] = {
5072 gdb::option::boolean_option_def<info_types_options> {
5073 "q",
5074 [] (info_types_options *opt) { return &opt->quiet; },
5075 nullptr, /* show_cmd_cb */
5076 nullptr /* set_doc */
5077 }
5078 };
5079
5080 /* Returns the option group used by 'info types'. */
5081
5082 static gdb::option::option_def_group
5083 make_info_types_options_def_group (info_types_options *opts)
5084 {
5085 return {{info_types_options_defs}, opts};
5086 }
5087
5088 /* Implement the 'info types' command. */
5089
5090 static void
5091 info_types_command (const char *args, int from_tty)
5092 {
5093 info_types_options opts;
5094
5095 auto grp = make_info_types_options_def_group (&opts);
5096 gdb::option::process_options
5097 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5098 if (args != nullptr && *args == '\0')
5099 args = nullptr;
5100 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5101 }
5102
5103 /* Command completer for 'info types' command. */
5104
5105 static void
5106 info_types_command_completer (struct cmd_list_element *ignore,
5107 completion_tracker &tracker,
5108 const char *text, const char * /* word */)
5109 {
5110 const auto group
5111 = make_info_types_options_def_group (nullptr);
5112 if (gdb::option::complete_options
5113 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5114 return;
5115
5116 const char *word = advance_to_expression_complete_word_point (tracker, text);
5117 symbol_completer (ignore, tracker, text, word);
5118 }
5119
5120 /* Implement the 'info modules' command. */
5121
5122 static void
5123 info_modules_command (const char *args, int from_tty)
5124 {
5125 info_types_options opts;
5126
5127 auto grp = make_info_types_options_def_group (&opts);
5128 gdb::option::process_options
5129 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5130 if (args != nullptr && *args == '\0')
5131 args = nullptr;
5132 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5133 from_tty);
5134 }
5135
5136 static void
5137 rbreak_command (const char *regexp, int from_tty)
5138 {
5139 std::string string;
5140 const char *file_name = nullptr;
5141
5142 if (regexp != nullptr)
5143 {
5144 const char *colon = strchr (regexp, ':');
5145
5146 if (colon && *(colon + 1) != ':')
5147 {
5148 int colon_index;
5149 char *local_name;
5150
5151 colon_index = colon - regexp;
5152 local_name = (char *) alloca (colon_index + 1);
5153 memcpy (local_name, regexp, colon_index);
5154 local_name[colon_index--] = 0;
5155 while (isspace (local_name[colon_index]))
5156 local_name[colon_index--] = 0;
5157 file_name = local_name;
5158 regexp = skip_spaces (colon + 1);
5159 }
5160 }
5161
5162 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5163 if (file_name != nullptr)
5164 spec.filenames.push_back (file_name);
5165 std::vector<symbol_search> symbols = spec.search ();
5166
5167 scoped_rbreak_breakpoints finalize;
5168 for (const symbol_search &p : symbols)
5169 {
5170 if (p.msymbol.minsym == NULL)
5171 {
5172 struct symtab *symtab = symbol_symtab (p.symbol);
5173 const char *fullname = symtab_to_fullname (symtab);
5174
5175 string = string_printf ("%s:'%s'", fullname,
5176 p.symbol->linkage_name ());
5177 break_command (&string[0], from_tty);
5178 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5179 }
5180 else
5181 {
5182 string = string_printf ("'%s'",
5183 p.msymbol.minsym->linkage_name ());
5184
5185 break_command (&string[0], from_tty);
5186 printf_filtered ("<function, no debug info> %s;\n",
5187 p.msymbol.minsym->print_name ());
5188 }
5189 }
5190 }
5191 \f
5192
5193 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5194
5195 static int
5196 compare_symbol_name (const char *symbol_name, language symbol_language,
5197 const lookup_name_info &lookup_name,
5198 completion_match_result &match_res)
5199 {
5200 const language_defn *lang = language_def (symbol_language);
5201
5202 symbol_name_matcher_ftype *name_match
5203 = get_symbol_name_matcher (lang, lookup_name);
5204
5205 return name_match (symbol_name, lookup_name, &match_res);
5206 }
5207
5208 /* See symtab.h. */
5209
5210 void
5211 completion_list_add_name (completion_tracker &tracker,
5212 language symbol_language,
5213 const char *symname,
5214 const lookup_name_info &lookup_name,
5215 const char *text, const char *word)
5216 {
5217 completion_match_result &match_res
5218 = tracker.reset_completion_match_result ();
5219
5220 /* Clip symbols that cannot match. */
5221 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5222 return;
5223
5224 /* Refresh SYMNAME from the match string. It's potentially
5225 different depending on language. (E.g., on Ada, the match may be
5226 the encoded symbol name wrapped in "<>"). */
5227 symname = match_res.match.match ();
5228 gdb_assert (symname != NULL);
5229
5230 /* We have a match for a completion, so add SYMNAME to the current list
5231 of matches. Note that the name is moved to freshly malloc'd space. */
5232
5233 {
5234 gdb::unique_xmalloc_ptr<char> completion
5235 = make_completion_match_str (symname, text, word);
5236
5237 /* Here we pass the match-for-lcd object to add_completion. Some
5238 languages match the user text against substrings of symbol
5239 names in some cases. E.g., in C++, "b push_ba" completes to
5240 "std::vector::push_back", "std::string::push_back", etc., and
5241 in this case we want the completion lowest common denominator
5242 to be "push_back" instead of "std::". */
5243 tracker.add_completion (std::move (completion),
5244 &match_res.match_for_lcd, text, word);
5245 }
5246 }
5247
5248 /* completion_list_add_name wrapper for struct symbol. */
5249
5250 static void
5251 completion_list_add_symbol (completion_tracker &tracker,
5252 symbol *sym,
5253 const lookup_name_info &lookup_name,
5254 const char *text, const char *word)
5255 {
5256 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5257 sym->natural_name (),
5258 lookup_name, text, word);
5259 }
5260
5261 /* completion_list_add_name wrapper for struct minimal_symbol. */
5262
5263 static void
5264 completion_list_add_msymbol (completion_tracker &tracker,
5265 minimal_symbol *sym,
5266 const lookup_name_info &lookup_name,
5267 const char *text, const char *word)
5268 {
5269 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5270 sym->natural_name (),
5271 lookup_name, text, word);
5272 }
5273
5274
5275 /* ObjC: In case we are completing on a selector, look as the msymbol
5276 again and feed all the selectors into the mill. */
5277
5278 static void
5279 completion_list_objc_symbol (completion_tracker &tracker,
5280 struct minimal_symbol *msymbol,
5281 const lookup_name_info &lookup_name,
5282 const char *text, const char *word)
5283 {
5284 static char *tmp = NULL;
5285 static unsigned int tmplen = 0;
5286
5287 const char *method, *category, *selector;
5288 char *tmp2 = NULL;
5289
5290 method = msymbol->natural_name ();
5291
5292 /* Is it a method? */
5293 if ((method[0] != '-') && (method[0] != '+'))
5294 return;
5295
5296 if (text[0] == '[')
5297 /* Complete on shortened method method. */
5298 completion_list_add_name (tracker, language_objc,
5299 method + 1,
5300 lookup_name,
5301 text, word);
5302
5303 while ((strlen (method) + 1) >= tmplen)
5304 {
5305 if (tmplen == 0)
5306 tmplen = 1024;
5307 else
5308 tmplen *= 2;
5309 tmp = (char *) xrealloc (tmp, tmplen);
5310 }
5311 selector = strchr (method, ' ');
5312 if (selector != NULL)
5313 selector++;
5314
5315 category = strchr (method, '(');
5316
5317 if ((category != NULL) && (selector != NULL))
5318 {
5319 memcpy (tmp, method, (category - method));
5320 tmp[category - method] = ' ';
5321 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5322 completion_list_add_name (tracker, language_objc, tmp,
5323 lookup_name, text, word);
5324 if (text[0] == '[')
5325 completion_list_add_name (tracker, language_objc, tmp + 1,
5326 lookup_name, text, word);
5327 }
5328
5329 if (selector != NULL)
5330 {
5331 /* Complete on selector only. */
5332 strcpy (tmp, selector);
5333 tmp2 = strchr (tmp, ']');
5334 if (tmp2 != NULL)
5335 *tmp2 = '\0';
5336
5337 completion_list_add_name (tracker, language_objc, tmp,
5338 lookup_name, text, word);
5339 }
5340 }
5341
5342 /* Break the non-quoted text based on the characters which are in
5343 symbols. FIXME: This should probably be language-specific. */
5344
5345 static const char *
5346 language_search_unquoted_string (const char *text, const char *p)
5347 {
5348 for (; p > text; --p)
5349 {
5350 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5351 continue;
5352 else
5353 {
5354 if ((current_language->la_language == language_objc))
5355 {
5356 if (p[-1] == ':') /* Might be part of a method name. */
5357 continue;
5358 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5359 p -= 2; /* Beginning of a method name. */
5360 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5361 { /* Might be part of a method name. */
5362 const char *t = p;
5363
5364 /* Seeing a ' ' or a '(' is not conclusive evidence
5365 that we are in the middle of a method name. However,
5366 finding "-[" or "+[" should be pretty un-ambiguous.
5367 Unfortunately we have to find it now to decide. */
5368
5369 while (t > text)
5370 if (isalnum (t[-1]) || t[-1] == '_' ||
5371 t[-1] == ' ' || t[-1] == ':' ||
5372 t[-1] == '(' || t[-1] == ')')
5373 --t;
5374 else
5375 break;
5376
5377 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5378 p = t - 2; /* Method name detected. */
5379 /* Else we leave with p unchanged. */
5380 }
5381 }
5382 break;
5383 }
5384 }
5385 return p;
5386 }
5387
5388 static void
5389 completion_list_add_fields (completion_tracker &tracker,
5390 struct symbol *sym,
5391 const lookup_name_info &lookup_name,
5392 const char *text, const char *word)
5393 {
5394 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5395 {
5396 struct type *t = SYMBOL_TYPE (sym);
5397 enum type_code c = TYPE_CODE (t);
5398 int j;
5399
5400 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5401 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5402 if (TYPE_FIELD_NAME (t, j))
5403 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5404 TYPE_FIELD_NAME (t, j),
5405 lookup_name, text, word);
5406 }
5407 }
5408
5409 /* See symtab.h. */
5410
5411 bool
5412 symbol_is_function_or_method (symbol *sym)
5413 {
5414 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5415 {
5416 case TYPE_CODE_FUNC:
5417 case TYPE_CODE_METHOD:
5418 return true;
5419 default:
5420 return false;
5421 }
5422 }
5423
5424 /* See symtab.h. */
5425
5426 bool
5427 symbol_is_function_or_method (minimal_symbol *msymbol)
5428 {
5429 switch (MSYMBOL_TYPE (msymbol))
5430 {
5431 case mst_text:
5432 case mst_text_gnu_ifunc:
5433 case mst_solib_trampoline:
5434 case mst_file_text:
5435 return true;
5436 default:
5437 return false;
5438 }
5439 }
5440
5441 /* See symtab.h. */
5442
5443 bound_minimal_symbol
5444 find_gnu_ifunc (const symbol *sym)
5445 {
5446 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5447 return {};
5448
5449 lookup_name_info lookup_name (sym->search_name (),
5450 symbol_name_match_type::SEARCH_NAME);
5451 struct objfile *objfile = symbol_objfile (sym);
5452
5453 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5454 minimal_symbol *ifunc = NULL;
5455
5456 iterate_over_minimal_symbols (objfile, lookup_name,
5457 [&] (minimal_symbol *minsym)
5458 {
5459 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5460 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5461 {
5462 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5463 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5464 {
5465 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5466 msym_addr
5467 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5468 msym_addr,
5469 current_top_target ());
5470 }
5471 if (msym_addr == address)
5472 {
5473 ifunc = minsym;
5474 return true;
5475 }
5476 }
5477 return false;
5478 });
5479
5480 if (ifunc != NULL)
5481 return {ifunc, objfile};
5482 return {};
5483 }
5484
5485 /* Add matching symbols from SYMTAB to the current completion list. */
5486
5487 static void
5488 add_symtab_completions (struct compunit_symtab *cust,
5489 completion_tracker &tracker,
5490 complete_symbol_mode mode,
5491 const lookup_name_info &lookup_name,
5492 const char *text, const char *word,
5493 enum type_code code)
5494 {
5495 struct symbol *sym;
5496 const struct block *b;
5497 struct block_iterator iter;
5498 int i;
5499
5500 if (cust == NULL)
5501 return;
5502
5503 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5504 {
5505 QUIT;
5506 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5507 ALL_BLOCK_SYMBOLS (b, iter, sym)
5508 {
5509 if (completion_skip_symbol (mode, sym))
5510 continue;
5511
5512 if (code == TYPE_CODE_UNDEF
5513 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5514 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5515 completion_list_add_symbol (tracker, sym,
5516 lookup_name,
5517 text, word);
5518 }
5519 }
5520 }
5521
5522 void
5523 default_collect_symbol_completion_matches_break_on
5524 (completion_tracker &tracker, complete_symbol_mode mode,
5525 symbol_name_match_type name_match_type,
5526 const char *text, const char *word,
5527 const char *break_on, enum type_code code)
5528 {
5529 /* Problem: All of the symbols have to be copied because readline
5530 frees them. I'm not going to worry about this; hopefully there
5531 won't be that many. */
5532
5533 struct symbol *sym;
5534 const struct block *b;
5535 const struct block *surrounding_static_block, *surrounding_global_block;
5536 struct block_iterator iter;
5537 /* The symbol we are completing on. Points in same buffer as text. */
5538 const char *sym_text;
5539
5540 /* Now look for the symbol we are supposed to complete on. */
5541 if (mode == complete_symbol_mode::LINESPEC)
5542 sym_text = text;
5543 else
5544 {
5545 const char *p;
5546 char quote_found;
5547 const char *quote_pos = NULL;
5548
5549 /* First see if this is a quoted string. */
5550 quote_found = '\0';
5551 for (p = text; *p != '\0'; ++p)
5552 {
5553 if (quote_found != '\0')
5554 {
5555 if (*p == quote_found)
5556 /* Found close quote. */
5557 quote_found = '\0';
5558 else if (*p == '\\' && p[1] == quote_found)
5559 /* A backslash followed by the quote character
5560 doesn't end the string. */
5561 ++p;
5562 }
5563 else if (*p == '\'' || *p == '"')
5564 {
5565 quote_found = *p;
5566 quote_pos = p;
5567 }
5568 }
5569 if (quote_found == '\'')
5570 /* A string within single quotes can be a symbol, so complete on it. */
5571 sym_text = quote_pos + 1;
5572 else if (quote_found == '"')
5573 /* A double-quoted string is never a symbol, nor does it make sense
5574 to complete it any other way. */
5575 {
5576 return;
5577 }
5578 else
5579 {
5580 /* It is not a quoted string. Break it based on the characters
5581 which are in symbols. */
5582 while (p > text)
5583 {
5584 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5585 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5586 --p;
5587 else
5588 break;
5589 }
5590 sym_text = p;
5591 }
5592 }
5593
5594 lookup_name_info lookup_name (sym_text, name_match_type, true);
5595
5596 /* At this point scan through the misc symbol vectors and add each
5597 symbol you find to the list. Eventually we want to ignore
5598 anything that isn't a text symbol (everything else will be
5599 handled by the psymtab code below). */
5600
5601 if (code == TYPE_CODE_UNDEF)
5602 {
5603 for (objfile *objfile : current_program_space->objfiles ())
5604 {
5605 for (minimal_symbol *msymbol : objfile->msymbols ())
5606 {
5607 QUIT;
5608
5609 if (completion_skip_symbol (mode, msymbol))
5610 continue;
5611
5612 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5613 sym_text, word);
5614
5615 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5616 sym_text, word);
5617 }
5618 }
5619 }
5620
5621 /* Add completions for all currently loaded symbol tables. */
5622 for (objfile *objfile : current_program_space->objfiles ())
5623 {
5624 for (compunit_symtab *cust : objfile->compunits ())
5625 add_symtab_completions (cust, tracker, mode, lookup_name,
5626 sym_text, word, code);
5627 }
5628
5629 /* Look through the partial symtabs for all symbols which begin by
5630 matching SYM_TEXT. Expand all CUs that you find to the list. */
5631 expand_symtabs_matching (NULL,
5632 lookup_name,
5633 NULL,
5634 [&] (compunit_symtab *symtab) /* expansion notify */
5635 {
5636 add_symtab_completions (symtab,
5637 tracker, mode, lookup_name,
5638 sym_text, word, code);
5639 },
5640 ALL_DOMAIN);
5641
5642 /* Search upwards from currently selected frame (so that we can
5643 complete on local vars). Also catch fields of types defined in
5644 this places which match our text string. Only complete on types
5645 visible from current context. */
5646
5647 b = get_selected_block (0);
5648 surrounding_static_block = block_static_block (b);
5649 surrounding_global_block = block_global_block (b);
5650 if (surrounding_static_block != NULL)
5651 while (b != surrounding_static_block)
5652 {
5653 QUIT;
5654
5655 ALL_BLOCK_SYMBOLS (b, iter, sym)
5656 {
5657 if (code == TYPE_CODE_UNDEF)
5658 {
5659 completion_list_add_symbol (tracker, sym, lookup_name,
5660 sym_text, word);
5661 completion_list_add_fields (tracker, sym, lookup_name,
5662 sym_text, word);
5663 }
5664 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5665 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5666 completion_list_add_symbol (tracker, sym, lookup_name,
5667 sym_text, word);
5668 }
5669
5670 /* Stop when we encounter an enclosing function. Do not stop for
5671 non-inlined functions - the locals of the enclosing function
5672 are in scope for a nested function. */
5673 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5674 break;
5675 b = BLOCK_SUPERBLOCK (b);
5676 }
5677
5678 /* Add fields from the file's types; symbols will be added below. */
5679
5680 if (code == TYPE_CODE_UNDEF)
5681 {
5682 if (surrounding_static_block != NULL)
5683 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5684 completion_list_add_fields (tracker, sym, lookup_name,
5685 sym_text, word);
5686
5687 if (surrounding_global_block != NULL)
5688 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5689 completion_list_add_fields (tracker, sym, lookup_name,
5690 sym_text, word);
5691 }
5692
5693 /* Skip macros if we are completing a struct tag -- arguable but
5694 usually what is expected. */
5695 if (current_language->la_macro_expansion == macro_expansion_c
5696 && code == TYPE_CODE_UNDEF)
5697 {
5698 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5699
5700 /* This adds a macro's name to the current completion list. */
5701 auto add_macro_name = [&] (const char *macro_name,
5702 const macro_definition *,
5703 macro_source_file *,
5704 int)
5705 {
5706 completion_list_add_name (tracker, language_c, macro_name,
5707 lookup_name, sym_text, word);
5708 };
5709
5710 /* Add any macros visible in the default scope. Note that this
5711 may yield the occasional wrong result, because an expression
5712 might be evaluated in a scope other than the default. For
5713 example, if the user types "break file:line if <TAB>", the
5714 resulting expression will be evaluated at "file:line" -- but
5715 at there does not seem to be a way to detect this at
5716 completion time. */
5717 scope = default_macro_scope ();
5718 if (scope)
5719 macro_for_each_in_scope (scope->file, scope->line,
5720 add_macro_name);
5721
5722 /* User-defined macros are always visible. */
5723 macro_for_each (macro_user_macros, add_macro_name);
5724 }
5725 }
5726
5727 void
5728 default_collect_symbol_completion_matches (completion_tracker &tracker,
5729 complete_symbol_mode mode,
5730 symbol_name_match_type name_match_type,
5731 const char *text, const char *word,
5732 enum type_code code)
5733 {
5734 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5735 name_match_type,
5736 text, word, "",
5737 code);
5738 }
5739
5740 /* Collect all symbols (regardless of class) which begin by matching
5741 TEXT. */
5742
5743 void
5744 collect_symbol_completion_matches (completion_tracker &tracker,
5745 complete_symbol_mode mode,
5746 symbol_name_match_type name_match_type,
5747 const char *text, const char *word)
5748 {
5749 current_language->la_collect_symbol_completion_matches (tracker, mode,
5750 name_match_type,
5751 text, word,
5752 TYPE_CODE_UNDEF);
5753 }
5754
5755 /* Like collect_symbol_completion_matches, but only collect
5756 STRUCT_DOMAIN symbols whose type code is CODE. */
5757
5758 void
5759 collect_symbol_completion_matches_type (completion_tracker &tracker,
5760 const char *text, const char *word,
5761 enum type_code code)
5762 {
5763 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5764 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5765
5766 gdb_assert (code == TYPE_CODE_UNION
5767 || code == TYPE_CODE_STRUCT
5768 || code == TYPE_CODE_ENUM);
5769 current_language->la_collect_symbol_completion_matches (tracker, mode,
5770 name_match_type,
5771 text, word, code);
5772 }
5773
5774 /* Like collect_symbol_completion_matches, but collects a list of
5775 symbols defined in all source files named SRCFILE. */
5776
5777 void
5778 collect_file_symbol_completion_matches (completion_tracker &tracker,
5779 complete_symbol_mode mode,
5780 symbol_name_match_type name_match_type,
5781 const char *text, const char *word,
5782 const char *srcfile)
5783 {
5784 /* The symbol we are completing on. Points in same buffer as text. */
5785 const char *sym_text;
5786
5787 /* Now look for the symbol we are supposed to complete on.
5788 FIXME: This should be language-specific. */
5789 if (mode == complete_symbol_mode::LINESPEC)
5790 sym_text = text;
5791 else
5792 {
5793 const char *p;
5794 char quote_found;
5795 const char *quote_pos = NULL;
5796
5797 /* First see if this is a quoted string. */
5798 quote_found = '\0';
5799 for (p = text; *p != '\0'; ++p)
5800 {
5801 if (quote_found != '\0')
5802 {
5803 if (*p == quote_found)
5804 /* Found close quote. */
5805 quote_found = '\0';
5806 else if (*p == '\\' && p[1] == quote_found)
5807 /* A backslash followed by the quote character
5808 doesn't end the string. */
5809 ++p;
5810 }
5811 else if (*p == '\'' || *p == '"')
5812 {
5813 quote_found = *p;
5814 quote_pos = p;
5815 }
5816 }
5817 if (quote_found == '\'')
5818 /* A string within single quotes can be a symbol, so complete on it. */
5819 sym_text = quote_pos + 1;
5820 else if (quote_found == '"')
5821 /* A double-quoted string is never a symbol, nor does it make sense
5822 to complete it any other way. */
5823 {
5824 return;
5825 }
5826 else
5827 {
5828 /* Not a quoted string. */
5829 sym_text = language_search_unquoted_string (text, p);
5830 }
5831 }
5832
5833 lookup_name_info lookup_name (sym_text, name_match_type, true);
5834
5835 /* Go through symtabs for SRCFILE and check the externs and statics
5836 for symbols which match. */
5837 iterate_over_symtabs (srcfile, [&] (symtab *s)
5838 {
5839 add_symtab_completions (SYMTAB_COMPUNIT (s),
5840 tracker, mode, lookup_name,
5841 sym_text, word, TYPE_CODE_UNDEF);
5842 return false;
5843 });
5844 }
5845
5846 /* A helper function for make_source_files_completion_list. It adds
5847 another file name to a list of possible completions, growing the
5848 list as necessary. */
5849
5850 static void
5851 add_filename_to_list (const char *fname, const char *text, const char *word,
5852 completion_list *list)
5853 {
5854 list->emplace_back (make_completion_match_str (fname, text, word));
5855 }
5856
5857 static int
5858 not_interesting_fname (const char *fname)
5859 {
5860 static const char *illegal_aliens[] = {
5861 "_globals_", /* inserted by coff_symtab_read */
5862 NULL
5863 };
5864 int i;
5865
5866 for (i = 0; illegal_aliens[i]; i++)
5867 {
5868 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5869 return 1;
5870 }
5871 return 0;
5872 }
5873
5874 /* An object of this type is passed as the user_data argument to
5875 map_partial_symbol_filenames. */
5876 struct add_partial_filename_data
5877 {
5878 struct filename_seen_cache *filename_seen_cache;
5879 const char *text;
5880 const char *word;
5881 int text_len;
5882 completion_list *list;
5883 };
5884
5885 /* A callback for map_partial_symbol_filenames. */
5886
5887 static void
5888 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5889 void *user_data)
5890 {
5891 struct add_partial_filename_data *data
5892 = (struct add_partial_filename_data *) user_data;
5893
5894 if (not_interesting_fname (filename))
5895 return;
5896 if (!data->filename_seen_cache->seen (filename)
5897 && filename_ncmp (filename, data->text, data->text_len) == 0)
5898 {
5899 /* This file matches for a completion; add it to the
5900 current list of matches. */
5901 add_filename_to_list (filename, data->text, data->word, data->list);
5902 }
5903 else
5904 {
5905 const char *base_name = lbasename (filename);
5906
5907 if (base_name != filename
5908 && !data->filename_seen_cache->seen (base_name)
5909 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5910 add_filename_to_list (base_name, data->text, data->word, data->list);
5911 }
5912 }
5913
5914 /* Return a list of all source files whose names begin with matching
5915 TEXT. The file names are looked up in the symbol tables of this
5916 program. */
5917
5918 completion_list
5919 make_source_files_completion_list (const char *text, const char *word)
5920 {
5921 size_t text_len = strlen (text);
5922 completion_list list;
5923 const char *base_name;
5924 struct add_partial_filename_data datum;
5925
5926 if (!have_full_symbols () && !have_partial_symbols ())
5927 return list;
5928
5929 filename_seen_cache filenames_seen;
5930
5931 for (objfile *objfile : current_program_space->objfiles ())
5932 {
5933 for (compunit_symtab *cu : objfile->compunits ())
5934 {
5935 for (symtab *s : compunit_filetabs (cu))
5936 {
5937 if (not_interesting_fname (s->filename))
5938 continue;
5939 if (!filenames_seen.seen (s->filename)
5940 && filename_ncmp (s->filename, text, text_len) == 0)
5941 {
5942 /* This file matches for a completion; add it to the current
5943 list of matches. */
5944 add_filename_to_list (s->filename, text, word, &list);
5945 }
5946 else
5947 {
5948 /* NOTE: We allow the user to type a base name when the
5949 debug info records leading directories, but not the other
5950 way around. This is what subroutines of breakpoint
5951 command do when they parse file names. */
5952 base_name = lbasename (s->filename);
5953 if (base_name != s->filename
5954 && !filenames_seen.seen (base_name)
5955 && filename_ncmp (base_name, text, text_len) == 0)
5956 add_filename_to_list (base_name, text, word, &list);
5957 }
5958 }
5959 }
5960 }
5961
5962 datum.filename_seen_cache = &filenames_seen;
5963 datum.text = text;
5964 datum.word = word;
5965 datum.text_len = text_len;
5966 datum.list = &list;
5967 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5968 0 /*need_fullname*/);
5969
5970 return list;
5971 }
5972 \f
5973 /* Track MAIN */
5974
5975 /* Return the "main_info" object for the current program space. If
5976 the object has not yet been created, create it and fill in some
5977 default values. */
5978
5979 static struct main_info *
5980 get_main_info (void)
5981 {
5982 struct main_info *info = main_progspace_key.get (current_program_space);
5983
5984 if (info == NULL)
5985 {
5986 /* It may seem strange to store the main name in the progspace
5987 and also in whatever objfile happens to see a main name in
5988 its debug info. The reason for this is mainly historical:
5989 gdb returned "main" as the name even if no function named
5990 "main" was defined the program; and this approach lets us
5991 keep compatibility. */
5992 info = main_progspace_key.emplace (current_program_space);
5993 }
5994
5995 return info;
5996 }
5997
5998 static void
5999 set_main_name (const char *name, enum language lang)
6000 {
6001 struct main_info *info = get_main_info ();
6002
6003 if (info->name_of_main != NULL)
6004 {
6005 xfree (info->name_of_main);
6006 info->name_of_main = NULL;
6007 info->language_of_main = language_unknown;
6008 }
6009 if (name != NULL)
6010 {
6011 info->name_of_main = xstrdup (name);
6012 info->language_of_main = lang;
6013 }
6014 }
6015
6016 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6017 accordingly. */
6018
6019 static void
6020 find_main_name (void)
6021 {
6022 const char *new_main_name;
6023
6024 /* First check the objfiles to see whether a debuginfo reader has
6025 picked up the appropriate main name. Historically the main name
6026 was found in a more or less random way; this approach instead
6027 relies on the order of objfile creation -- which still isn't
6028 guaranteed to get the correct answer, but is just probably more
6029 accurate. */
6030 for (objfile *objfile : current_program_space->objfiles ())
6031 {
6032 if (objfile->per_bfd->name_of_main != NULL)
6033 {
6034 set_main_name (objfile->per_bfd->name_of_main,
6035 objfile->per_bfd->language_of_main);
6036 return;
6037 }
6038 }
6039
6040 /* Try to see if the main procedure is in Ada. */
6041 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6042 be to add a new method in the language vector, and call this
6043 method for each language until one of them returns a non-empty
6044 name. This would allow us to remove this hard-coded call to
6045 an Ada function. It is not clear that this is a better approach
6046 at this point, because all methods need to be written in a way
6047 such that false positives never be returned. For instance, it is
6048 important that a method does not return a wrong name for the main
6049 procedure if the main procedure is actually written in a different
6050 language. It is easy to guaranty this with Ada, since we use a
6051 special symbol generated only when the main in Ada to find the name
6052 of the main procedure. It is difficult however to see how this can
6053 be guarantied for languages such as C, for instance. This suggests
6054 that order of call for these methods becomes important, which means
6055 a more complicated approach. */
6056 new_main_name = ada_main_name ();
6057 if (new_main_name != NULL)
6058 {
6059 set_main_name (new_main_name, language_ada);
6060 return;
6061 }
6062
6063 new_main_name = d_main_name ();
6064 if (new_main_name != NULL)
6065 {
6066 set_main_name (new_main_name, language_d);
6067 return;
6068 }
6069
6070 new_main_name = go_main_name ();
6071 if (new_main_name != NULL)
6072 {
6073 set_main_name (new_main_name, language_go);
6074 return;
6075 }
6076
6077 new_main_name = pascal_main_name ();
6078 if (new_main_name != NULL)
6079 {
6080 set_main_name (new_main_name, language_pascal);
6081 return;
6082 }
6083
6084 /* The languages above didn't identify the name of the main procedure.
6085 Fallback to "main". */
6086 set_main_name ("main", language_unknown);
6087 }
6088
6089 /* See symtab.h. */
6090
6091 const char *
6092 main_name ()
6093 {
6094 struct main_info *info = get_main_info ();
6095
6096 if (info->name_of_main == NULL)
6097 find_main_name ();
6098
6099 return info->name_of_main;
6100 }
6101
6102 /* Return the language of the main function. If it is not known,
6103 return language_unknown. */
6104
6105 enum language
6106 main_language (void)
6107 {
6108 struct main_info *info = get_main_info ();
6109
6110 if (info->name_of_main == NULL)
6111 find_main_name ();
6112
6113 return info->language_of_main;
6114 }
6115
6116 /* Handle ``executable_changed'' events for the symtab module. */
6117
6118 static void
6119 symtab_observer_executable_changed (void)
6120 {
6121 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6122 set_main_name (NULL, language_unknown);
6123 }
6124
6125 /* Return 1 if the supplied producer string matches the ARM RealView
6126 compiler (armcc). */
6127
6128 bool
6129 producer_is_realview (const char *producer)
6130 {
6131 static const char *const arm_idents[] = {
6132 "ARM C Compiler, ADS",
6133 "Thumb C Compiler, ADS",
6134 "ARM C++ Compiler, ADS",
6135 "Thumb C++ Compiler, ADS",
6136 "ARM/Thumb C/C++ Compiler, RVCT",
6137 "ARM C/C++ Compiler, RVCT"
6138 };
6139 int i;
6140
6141 if (producer == NULL)
6142 return false;
6143
6144 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6145 if (startswith (producer, arm_idents[i]))
6146 return true;
6147
6148 return false;
6149 }
6150
6151 \f
6152
6153 /* The next index to hand out in response to a registration request. */
6154
6155 static int next_aclass_value = LOC_FINAL_VALUE;
6156
6157 /* The maximum number of "aclass" registrations we support. This is
6158 constant for convenience. */
6159 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6160
6161 /* The objects representing the various "aclass" values. The elements
6162 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6163 elements are those registered at gdb initialization time. */
6164
6165 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6166
6167 /* The globally visible pointer. This is separate from 'symbol_impl'
6168 so that it can be const. */
6169
6170 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6171
6172 /* Make sure we saved enough room in struct symbol. */
6173
6174 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6175
6176 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6177 is the ops vector associated with this index. This returns the new
6178 index, which should be used as the aclass_index field for symbols
6179 of this type. */
6180
6181 int
6182 register_symbol_computed_impl (enum address_class aclass,
6183 const struct symbol_computed_ops *ops)
6184 {
6185 int result = next_aclass_value++;
6186
6187 gdb_assert (aclass == LOC_COMPUTED);
6188 gdb_assert (result < MAX_SYMBOL_IMPLS);
6189 symbol_impl[result].aclass = aclass;
6190 symbol_impl[result].ops_computed = ops;
6191
6192 /* Sanity check OPS. */
6193 gdb_assert (ops != NULL);
6194 gdb_assert (ops->tracepoint_var_ref != NULL);
6195 gdb_assert (ops->describe_location != NULL);
6196 gdb_assert (ops->get_symbol_read_needs != NULL);
6197 gdb_assert (ops->read_variable != NULL);
6198
6199 return result;
6200 }
6201
6202 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6203 OPS is the ops vector associated with this index. This returns the
6204 new index, which should be used as the aclass_index field for symbols
6205 of this type. */
6206
6207 int
6208 register_symbol_block_impl (enum address_class aclass,
6209 const struct symbol_block_ops *ops)
6210 {
6211 int result = next_aclass_value++;
6212
6213 gdb_assert (aclass == LOC_BLOCK);
6214 gdb_assert (result < MAX_SYMBOL_IMPLS);
6215 symbol_impl[result].aclass = aclass;
6216 symbol_impl[result].ops_block = ops;
6217
6218 /* Sanity check OPS. */
6219 gdb_assert (ops != NULL);
6220 gdb_assert (ops->find_frame_base_location != NULL);
6221
6222 return result;
6223 }
6224
6225 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6226 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6227 this index. This returns the new index, which should be used as
6228 the aclass_index field for symbols of this type. */
6229
6230 int
6231 register_symbol_register_impl (enum address_class aclass,
6232 const struct symbol_register_ops *ops)
6233 {
6234 int result = next_aclass_value++;
6235
6236 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6237 gdb_assert (result < MAX_SYMBOL_IMPLS);
6238 symbol_impl[result].aclass = aclass;
6239 symbol_impl[result].ops_register = ops;
6240
6241 return result;
6242 }
6243
6244 /* Initialize elements of 'symbol_impl' for the constants in enum
6245 address_class. */
6246
6247 static void
6248 initialize_ordinary_address_classes (void)
6249 {
6250 int i;
6251
6252 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6253 symbol_impl[i].aclass = (enum address_class) i;
6254 }
6255
6256 \f
6257
6258 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6259
6260 void
6261 initialize_objfile_symbol (struct symbol *sym)
6262 {
6263 SYMBOL_OBJFILE_OWNED (sym) = 1;
6264 SYMBOL_SECTION (sym) = -1;
6265 }
6266
6267 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6268 obstack. */
6269
6270 struct symbol *
6271 allocate_symbol (struct objfile *objfile)
6272 {
6273 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6274
6275 initialize_objfile_symbol (result);
6276
6277 return result;
6278 }
6279
6280 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6281 obstack. */
6282
6283 struct template_symbol *
6284 allocate_template_symbol (struct objfile *objfile)
6285 {
6286 struct template_symbol *result;
6287
6288 result = new (&objfile->objfile_obstack) template_symbol ();
6289 initialize_objfile_symbol (result);
6290
6291 return result;
6292 }
6293
6294 /* See symtab.h. */
6295
6296 struct objfile *
6297 symbol_objfile (const struct symbol *symbol)
6298 {
6299 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6300 return SYMTAB_OBJFILE (symbol->owner.symtab);
6301 }
6302
6303 /* See symtab.h. */
6304
6305 struct gdbarch *
6306 symbol_arch (const struct symbol *symbol)
6307 {
6308 if (!SYMBOL_OBJFILE_OWNED (symbol))
6309 return symbol->owner.arch;
6310 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6311 }
6312
6313 /* See symtab.h. */
6314
6315 struct symtab *
6316 symbol_symtab (const struct symbol *symbol)
6317 {
6318 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6319 return symbol->owner.symtab;
6320 }
6321
6322 /* See symtab.h. */
6323
6324 void
6325 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6326 {
6327 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6328 symbol->owner.symtab = symtab;
6329 }
6330
6331 /* See symtab.h. */
6332
6333 CORE_ADDR
6334 get_symbol_address (const struct symbol *sym)
6335 {
6336 gdb_assert (sym->maybe_copied);
6337 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6338
6339 const char *linkage_name = sym->linkage_name ();
6340
6341 for (objfile *objfile : current_program_space->objfiles ())
6342 {
6343 bound_minimal_symbol minsym
6344 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6345 if (minsym.minsym != nullptr)
6346 return BMSYMBOL_VALUE_ADDRESS (minsym);
6347 }
6348 return sym->value.address;
6349 }
6350
6351 /* See symtab.h. */
6352
6353 CORE_ADDR
6354 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6355 {
6356 gdb_assert (minsym->maybe_copied);
6357 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6358
6359 const char *linkage_name = minsym->linkage_name ();
6360
6361 for (objfile *objfile : current_program_space->objfiles ())
6362 {
6363 if ((objfile->flags & OBJF_MAINLINE) != 0)
6364 {
6365 bound_minimal_symbol found
6366 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6367 if (found.minsym != nullptr)
6368 return BMSYMBOL_VALUE_ADDRESS (found);
6369 }
6370 }
6371 return (minsym->value.address
6372 + ANOFFSET (objf->section_offsets, minsym->section));
6373 }
6374
6375 \f
6376
6377 /* Hold the sub-commands of 'info module'. */
6378
6379 static struct cmd_list_element *info_module_cmdlist = NULL;
6380
6381 /* Implement the 'info module' command, just displays some help text for
6382 the available sub-commands. */
6383
6384 static void
6385 info_module_command (const char *args, int from_tty)
6386 {
6387 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6388 }
6389
6390 /* See symtab.h. */
6391
6392 std::vector<module_symbol_search>
6393 search_module_symbols (const char *module_regexp, const char *regexp,
6394 const char *type_regexp, search_domain kind)
6395 {
6396 std::vector<module_symbol_search> results;
6397
6398 /* Search for all modules matching MODULE_REGEXP. */
6399 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6400 spec1.set_exclude_minsyms (true);
6401 std::vector<symbol_search> modules = spec1.search ();
6402
6403 /* Now search for all symbols of the required KIND matching the required
6404 regular expressions. We figure out which ones are in which modules
6405 below. */
6406 global_symbol_searcher spec2 (kind, regexp);
6407 spec2.set_symbol_type_regexp (type_regexp);
6408 spec2.set_exclude_minsyms (true);
6409 std::vector<symbol_search> symbols = spec2.search ();
6410
6411 /* Now iterate over all MODULES, checking to see which items from
6412 SYMBOLS are in each module. */
6413 for (const symbol_search &p : modules)
6414 {
6415 QUIT;
6416
6417 /* This is a module. */
6418 gdb_assert (p.symbol != nullptr);
6419
6420 std::string prefix = p.symbol->print_name ();
6421 prefix += "::";
6422
6423 for (const symbol_search &q : symbols)
6424 {
6425 if (q.symbol == nullptr)
6426 continue;
6427
6428 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6429 prefix.size ()) != 0)
6430 continue;
6431
6432 results.push_back ({p, q});
6433 }
6434 }
6435
6436 return results;
6437 }
6438
6439 /* Implement the core of both 'info module functions' and 'info module
6440 variables'. */
6441
6442 static void
6443 info_module_subcommand (bool quiet, const char *module_regexp,
6444 const char *regexp, const char *type_regexp,
6445 search_domain kind)
6446 {
6447 /* Print a header line. Don't build the header line bit by bit as this
6448 prevents internationalisation. */
6449 if (!quiet)
6450 {
6451 if (module_regexp == nullptr)
6452 {
6453 if (type_regexp == nullptr)
6454 {
6455 if (regexp == nullptr)
6456 printf_filtered ((kind == VARIABLES_DOMAIN
6457 ? _("All variables in all modules:")
6458 : _("All functions in all modules:")));
6459 else
6460 printf_filtered
6461 ((kind == VARIABLES_DOMAIN
6462 ? _("All variables matching regular expression"
6463 " \"%s\" in all modules:")
6464 : _("All functions matching regular expression"
6465 " \"%s\" in all modules:")),
6466 regexp);
6467 }
6468 else
6469 {
6470 if (regexp == nullptr)
6471 printf_filtered
6472 ((kind == VARIABLES_DOMAIN
6473 ? _("All variables with type matching regular "
6474 "expression \"%s\" in all modules:")
6475 : _("All functions with type matching regular "
6476 "expression \"%s\" in all modules:")),
6477 type_regexp);
6478 else
6479 printf_filtered
6480 ((kind == VARIABLES_DOMAIN
6481 ? _("All variables matching regular expression "
6482 "\"%s\",\n\twith type matching regular "
6483 "expression \"%s\" in all modules:")
6484 : _("All functions matching regular expression "
6485 "\"%s\",\n\twith type matching regular "
6486 "expression \"%s\" in all modules:")),
6487 regexp, type_regexp);
6488 }
6489 }
6490 else
6491 {
6492 if (type_regexp == nullptr)
6493 {
6494 if (regexp == nullptr)
6495 printf_filtered
6496 ((kind == VARIABLES_DOMAIN
6497 ? _("All variables in all modules matching regular "
6498 "expression \"%s\":")
6499 : _("All functions in all modules matching regular "
6500 "expression \"%s\":")),
6501 module_regexp);
6502 else
6503 printf_filtered
6504 ((kind == VARIABLES_DOMAIN
6505 ? _("All variables matching regular expression "
6506 "\"%s\",\n\tin all modules matching regular "
6507 "expression \"%s\":")
6508 : _("All functions matching regular expression "
6509 "\"%s\",\n\tin all modules matching regular "
6510 "expression \"%s\":")),
6511 regexp, module_regexp);
6512 }
6513 else
6514 {
6515 if (regexp == nullptr)
6516 printf_filtered
6517 ((kind == VARIABLES_DOMAIN
6518 ? _("All variables with type matching regular "
6519 "expression \"%s\"\n\tin all modules matching "
6520 "regular expression \"%s\":")
6521 : _("All functions with type matching regular "
6522 "expression \"%s\"\n\tin all modules matching "
6523 "regular expression \"%s\":")),
6524 type_regexp, module_regexp);
6525 else
6526 printf_filtered
6527 ((kind == VARIABLES_DOMAIN
6528 ? _("All variables matching regular expression "
6529 "\"%s\",\n\twith type matching regular expression "
6530 "\"%s\",\n\tin all modules matching regular "
6531 "expression \"%s\":")
6532 : _("All functions matching regular expression "
6533 "\"%s\",\n\twith type matching regular expression "
6534 "\"%s\",\n\tin all modules matching regular "
6535 "expression \"%s\":")),
6536 regexp, type_regexp, module_regexp);
6537 }
6538 }
6539 printf_filtered ("\n");
6540 }
6541
6542 /* Find all symbols of type KIND matching the given regular expressions
6543 along with the symbols for the modules in which those symbols
6544 reside. */
6545 std::vector<module_symbol_search> module_symbols
6546 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6547
6548 std::sort (module_symbols.begin (), module_symbols.end (),
6549 [] (const module_symbol_search &a, const module_symbol_search &b)
6550 {
6551 if (a.first < b.first)
6552 return true;
6553 else if (a.first == b.first)
6554 return a.second < b.second;
6555 else
6556 return false;
6557 });
6558
6559 const char *last_filename = "";
6560 const symbol *last_module_symbol = nullptr;
6561 for (const module_symbol_search &ms : module_symbols)
6562 {
6563 const symbol_search &p = ms.first;
6564 const symbol_search &q = ms.second;
6565
6566 gdb_assert (q.symbol != nullptr);
6567
6568 if (last_module_symbol != p.symbol)
6569 {
6570 printf_filtered ("\n");
6571 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6572 last_module_symbol = p.symbol;
6573 last_filename = "";
6574 }
6575
6576 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6577 last_filename);
6578 last_filename
6579 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6580 }
6581 }
6582
6583 /* Hold the option values for the 'info module .....' sub-commands. */
6584
6585 struct info_modules_var_func_options
6586 {
6587 bool quiet = false;
6588 char *type_regexp = nullptr;
6589 char *module_regexp = nullptr;
6590
6591 ~info_modules_var_func_options ()
6592 {
6593 xfree (type_regexp);
6594 xfree (module_regexp);
6595 }
6596 };
6597
6598 /* The options used by 'info module variables' and 'info module functions'
6599 commands. */
6600
6601 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6602 gdb::option::boolean_option_def<info_modules_var_func_options> {
6603 "q",
6604 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6605 nullptr, /* show_cmd_cb */
6606 nullptr /* set_doc */
6607 },
6608
6609 gdb::option::string_option_def<info_modules_var_func_options> {
6610 "t",
6611 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6612 nullptr, /* show_cmd_cb */
6613 nullptr /* set_doc */
6614 },
6615
6616 gdb::option::string_option_def<info_modules_var_func_options> {
6617 "m",
6618 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6619 nullptr, /* show_cmd_cb */
6620 nullptr /* set_doc */
6621 }
6622 };
6623
6624 /* Return the option group used by the 'info module ...' sub-commands. */
6625
6626 static inline gdb::option::option_def_group
6627 make_info_modules_var_func_options_def_group
6628 (info_modules_var_func_options *opts)
6629 {
6630 return {{info_modules_var_func_options_defs}, opts};
6631 }
6632
6633 /* Implements the 'info module functions' command. */
6634
6635 static void
6636 info_module_functions_command (const char *args, int from_tty)
6637 {
6638 info_modules_var_func_options opts;
6639 auto grp = make_info_modules_var_func_options_def_group (&opts);
6640 gdb::option::process_options
6641 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6642 if (args != nullptr && *args == '\0')
6643 args = nullptr;
6644
6645 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6646 opts.type_regexp, FUNCTIONS_DOMAIN);
6647 }
6648
6649 /* Implements the 'info module variables' command. */
6650
6651 static void
6652 info_module_variables_command (const char *args, int from_tty)
6653 {
6654 info_modules_var_func_options opts;
6655 auto grp = make_info_modules_var_func_options_def_group (&opts);
6656 gdb::option::process_options
6657 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6658 if (args != nullptr && *args == '\0')
6659 args = nullptr;
6660
6661 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6662 opts.type_regexp, VARIABLES_DOMAIN);
6663 }
6664
6665 /* Command completer for 'info module ...' sub-commands. */
6666
6667 static void
6668 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6669 completion_tracker &tracker,
6670 const char *text,
6671 const char * /* word */)
6672 {
6673
6674 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6675 if (gdb::option::complete_options
6676 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6677 return;
6678
6679 const char *word = advance_to_expression_complete_word_point (tracker, text);
6680 symbol_completer (ignore, tracker, text, word);
6681 }
6682
6683 \f
6684
6685 void
6686 _initialize_symtab (void)
6687 {
6688 cmd_list_element *c;
6689
6690 initialize_ordinary_address_classes ();
6691
6692 c = add_info ("variables", info_variables_command,
6693 info_print_args_help (_("\
6694 All global and static variable names or those matching REGEXPs.\n\
6695 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6696 Prints the global and static variables.\n"),
6697 _("global and static variables"),
6698 true));
6699 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6700 if (dbx_commands)
6701 {
6702 c = add_com ("whereis", class_info, info_variables_command,
6703 info_print_args_help (_("\
6704 All global and static variable names, or those matching REGEXPs.\n\
6705 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6706 Prints the global and static variables.\n"),
6707 _("global and static variables"),
6708 true));
6709 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6710 }
6711
6712 c = add_info ("functions", info_functions_command,
6713 info_print_args_help (_("\
6714 All function names or those matching REGEXPs.\n\
6715 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6716 Prints the functions.\n"),
6717 _("functions"),
6718 true));
6719 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6720
6721 c = add_info ("types", info_types_command, _("\
6722 All type names, or those matching REGEXP.\n\
6723 Usage: info types [-q] [REGEXP]\n\
6724 Print information about all types matching REGEXP, or all types if no\n\
6725 REGEXP is given. The optional flag -q disables printing of headers."));
6726 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6727
6728 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6729
6730 static std::string info_sources_help
6731 = gdb::option::build_help (_("\
6732 All source files in the program or those matching REGEXP.\n\
6733 Usage: info sources [OPTION]... [REGEXP]\n\
6734 By default, REGEXP is used to match anywhere in the filename.\n\
6735 \n\
6736 Options:\n\
6737 %OPTIONS%"),
6738 info_sources_opts);
6739
6740 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6741 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6742
6743 c = add_info ("modules", info_modules_command,
6744 _("All module names, or those matching REGEXP."));
6745 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6746
6747 add_prefix_cmd ("module", class_info, info_module_command, _("\
6748 Print information about modules."),
6749 &info_module_cmdlist, "info module ",
6750 0, &infolist);
6751
6752 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6753 Display functions arranged by modules.\n\
6754 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6755 Print a summary of all functions within each Fortran module, grouped by\n\
6756 module and file. For each function the line on which the function is\n\
6757 defined is given along with the type signature and name of the function.\n\
6758 \n\
6759 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6760 listed. If MODREGEXP is provided then only functions in modules matching\n\
6761 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6762 type signature matches TYPEREGEXP are listed.\n\
6763 \n\
6764 The -q flag suppresses printing some header information."),
6765 &info_module_cmdlist);
6766 set_cmd_completer_handle_brkchars
6767 (c, info_module_var_func_command_completer);
6768
6769 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6770 Display variables arranged by modules.\n\
6771 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6772 Print a summary of all variables within each Fortran module, grouped by\n\
6773 module and file. For each variable the line on which the variable is\n\
6774 defined is given along with the type and name of the variable.\n\
6775 \n\
6776 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6777 listed. If MODREGEXP is provided then only variables in modules matching\n\
6778 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6779 type matches TYPEREGEXP are listed.\n\
6780 \n\
6781 The -q flag suppresses printing some header information."),
6782 &info_module_cmdlist);
6783 set_cmd_completer_handle_brkchars
6784 (c, info_module_var_func_command_completer);
6785
6786 add_com ("rbreak", class_breakpoint, rbreak_command,
6787 _("Set a breakpoint for all functions matching REGEXP."));
6788
6789 add_setshow_enum_cmd ("multiple-symbols", no_class,
6790 multiple_symbols_modes, &multiple_symbols_mode,
6791 _("\
6792 Set how the debugger handles ambiguities in expressions."), _("\
6793 Show how the debugger handles ambiguities in expressions."), _("\
6794 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6795 NULL, NULL, &setlist, &showlist);
6796
6797 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6798 &basenames_may_differ, _("\
6799 Set whether a source file may have multiple base names."), _("\
6800 Show whether a source file may have multiple base names."), _("\
6801 (A \"base name\" is the name of a file with the directory part removed.\n\
6802 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6803 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6804 before comparing them. Canonicalization is an expensive operation,\n\
6805 but it allows the same file be known by more than one base name.\n\
6806 If not set (the default), all source files are assumed to have just\n\
6807 one base name, and gdb will do file name comparisons more efficiently."),
6808 NULL, NULL,
6809 &setlist, &showlist);
6810
6811 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6812 _("Set debugging of symbol table creation."),
6813 _("Show debugging of symbol table creation."), _("\
6814 When enabled (non-zero), debugging messages are printed when building\n\
6815 symbol tables. A value of 1 (one) normally provides enough information.\n\
6816 A value greater than 1 provides more verbose information."),
6817 NULL,
6818 NULL,
6819 &setdebuglist, &showdebuglist);
6820
6821 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6822 _("\
6823 Set debugging of symbol lookup."), _("\
6824 Show debugging of symbol lookup."), _("\
6825 When enabled (non-zero), symbol lookups are logged."),
6826 NULL, NULL,
6827 &setdebuglist, &showdebuglist);
6828
6829 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6830 &new_symbol_cache_size,
6831 _("Set the size of the symbol cache."),
6832 _("Show the size of the symbol cache."), _("\
6833 The size of the symbol cache.\n\
6834 If zero then the symbol cache is disabled."),
6835 set_symbol_cache_size_handler, NULL,
6836 &maintenance_set_cmdlist,
6837 &maintenance_show_cmdlist);
6838
6839 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6840 _("Dump the symbol cache for each program space."),
6841 &maintenanceprintlist);
6842
6843 add_cmd ("symbol-cache-statistics", class_maintenance,
6844 maintenance_print_symbol_cache_statistics,
6845 _("Print symbol cache statistics for each program space."),
6846 &maintenanceprintlist);
6847
6848 add_cmd ("flush-symbol-cache", class_maintenance,
6849 maintenance_flush_symbol_cache,
6850 _("Flush the symbol cache for each program space."),
6851 &maintenancelist);
6852
6853 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6854 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6855 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6856 }
This page took 0.193297 seconds and 4 git commands to generate.