2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "linespec.h"
37 #include "source.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
40 #include "d-lang.h"
41 #include "ada-lang.h"
42 #include "go-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "psymtab.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *, int);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 int *is_a_field_of_this);
88
89 static
90 struct symbol *lookup_symbol_aux_local (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
94
95 static
96 struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const char *name,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
102 int block_index,
103 const char *name,
104 const domain_enum domain);
105
106 static void print_msymbol_info (struct minimal_symbol *);
107
108 void _initialize_symtab (void);
109
110 /* */
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). SEARCH_LEN is the length of
150 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
151 Returns true if they match, false otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name,
155 int search_len)
156 {
157 int len = strlen (filename);
158 int offset;
159
160 if (len < search_len)
161 return 0;
162
163 /* The tail of FILENAME must match. */
164 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
165 return 0;
166
167 /* Either the names must completely match, or the character
168 preceding the trailing SEARCH_NAME segment of FILENAME must be a
169 directory separator. */
170 return (len == search_len
171 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
172 || (HAS_DRIVE_SPEC (filename)
173 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
174 }
175
176 /* Check for a symtab of a specific name by searching some symtabs.
177 This is a helper function for callbacks of iterate_over_symtabs.
178
179 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
180 are identical to the `map_symtabs_matching_filename' method of
181 quick_symbol_functions.
182
183 FIRST and AFTER_LAST indicate the range of symtabs to search.
184 AFTER_LAST is one past the last symtab to search; NULL means to
185 search until the end of the list. */
186
187 int
188 iterate_over_some_symtabs (const char *name,
189 const char *full_path,
190 const char *real_path,
191 int (*callback) (struct symtab *symtab,
192 void *data),
193 void *data,
194 struct symtab *first,
195 struct symtab *after_last)
196 {
197 struct symtab *s = NULL;
198 struct cleanup *cleanup;
199 const char* base_name = lbasename (name);
200 int name_len = strlen (name);
201 int is_abs = IS_ABSOLUTE_PATH (name);
202
203 for (s = first; s != NULL && s != after_last; s = s->next)
204 {
205 /* Exact match is always ok. */
206 if (FILENAME_CMP (name, s->filename) == 0)
207 {
208 if (callback (s, data))
209 return 1;
210 }
211
212 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
213 {
214 if (callback (s, data))
215 return 1;
216 }
217
218 /* Before we invoke realpath, which can get expensive when many
219 files are involved, do a quick comparison of the basenames. */
220 if (! basenames_may_differ
221 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
222 continue;
223
224 /* If the user gave us an absolute path, try to find the file in
225 this symtab and use its absolute path. */
226
227 if (full_path != NULL)
228 {
229 const char *fp = symtab_to_fullname (s);
230
231 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
232 {
233 if (callback (s, data))
234 return 1;
235 }
236
237 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
238 name_len))
239 {
240 if (callback (s, data))
241 return 1;
242 }
243 }
244
245 if (real_path != NULL)
246 {
247 char *fullname = symtab_to_fullname (s);
248
249 if (fullname != NULL)
250 {
251 char *rp = gdb_realpath (fullname);
252
253 make_cleanup (xfree, rp);
254 if (FILENAME_CMP (real_path, rp) == 0)
255 {
256 if (callback (s, data))
257 return 1;
258 }
259
260 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
261 {
262 if (callback (s, data))
263 return 1;
264 }
265 }
266 }
267 }
268
269 return 0;
270 }
271
272 /* Check for a symtab of a specific name; first in symtabs, then in
273 psymtabs. *If* there is no '/' in the name, a match after a '/'
274 in the symtab filename will also work.
275
276 Calls CALLBACK with each symtab that is found and with the supplied
277 DATA. If CALLBACK returns true, the search stops. */
278
279 void
280 iterate_over_symtabs (const char *name,
281 int (*callback) (struct symtab *symtab,
282 void *data),
283 void *data)
284 {
285 struct symtab *s = NULL;
286 struct objfile *objfile;
287 char *real_path = NULL;
288 char *full_path = NULL;
289 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
290
291 /* Here we are interested in canonicalizing an absolute path, not
292 absolutizing a relative path. */
293 if (IS_ABSOLUTE_PATH (name))
294 {
295 full_path = xfullpath (name);
296 make_cleanup (xfree, full_path);
297 real_path = gdb_realpath (name);
298 make_cleanup (xfree, real_path);
299 }
300
301 ALL_OBJFILES (objfile)
302 {
303 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
304 objfile->symtabs, NULL))
305 {
306 do_cleanups (cleanups);
307 return;
308 }
309 }
310
311 /* Same search rules as above apply here, but now we look thru the
312 psymtabs. */
313
314 ALL_OBJFILES (objfile)
315 {
316 if (objfile->sf
317 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
318 name,
319 full_path,
320 real_path,
321 callback,
322 data))
323 {
324 do_cleanups (cleanups);
325 return;
326 }
327 }
328
329 do_cleanups (cleanups);
330 }
331
332 /* The callback function used by lookup_symtab. */
333
334 static int
335 lookup_symtab_callback (struct symtab *symtab, void *data)
336 {
337 struct symtab **result_ptr = data;
338
339 *result_ptr = symtab;
340 return 1;
341 }
342
343 /* A wrapper for iterate_over_symtabs that returns the first matching
344 symtab, or NULL. */
345
346 struct symtab *
347 lookup_symtab (const char *name)
348 {
349 struct symtab *result = NULL;
350
351 iterate_over_symtabs (name, lookup_symtab_callback, &result);
352 return result;
353 }
354
355 \f
356 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
357 full method name, which consist of the class name (from T), the unadorned
358 method name from METHOD_ID, and the signature for the specific overload,
359 specified by SIGNATURE_ID. Note that this function is g++ specific. */
360
361 char *
362 gdb_mangle_name (struct type *type, int method_id, int signature_id)
363 {
364 int mangled_name_len;
365 char *mangled_name;
366 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
367 struct fn_field *method = &f[signature_id];
368 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
369 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
370 const char *newname = type_name_no_tag (type);
371
372 /* Does the form of physname indicate that it is the full mangled name
373 of a constructor (not just the args)? */
374 int is_full_physname_constructor;
375
376 int is_constructor;
377 int is_destructor = is_destructor_name (physname);
378 /* Need a new type prefix. */
379 char *const_prefix = method->is_const ? "C" : "";
380 char *volatile_prefix = method->is_volatile ? "V" : "";
381 char buf[20];
382 int len = (newname == NULL ? 0 : strlen (newname));
383
384 /* Nothing to do if physname already contains a fully mangled v3 abi name
385 or an operator name. */
386 if ((physname[0] == '_' && physname[1] == 'Z')
387 || is_operator_name (field_name))
388 return xstrdup (physname);
389
390 is_full_physname_constructor = is_constructor_name (physname);
391
392 is_constructor = is_full_physname_constructor
393 || (newname && strcmp (field_name, newname) == 0);
394
395 if (!is_destructor)
396 is_destructor = (strncmp (physname, "__dt", 4) == 0);
397
398 if (is_destructor || is_full_physname_constructor)
399 {
400 mangled_name = (char *) xmalloc (strlen (physname) + 1);
401 strcpy (mangled_name, physname);
402 return mangled_name;
403 }
404
405 if (len == 0)
406 {
407 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
408 }
409 else if (physname[0] == 't' || physname[0] == 'Q')
410 {
411 /* The physname for template and qualified methods already includes
412 the class name. */
413 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
414 newname = NULL;
415 len = 0;
416 }
417 else
418 {
419 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
420 }
421 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
422 + strlen (buf) + len + strlen (physname) + 1);
423
424 mangled_name = (char *) xmalloc (mangled_name_len);
425 if (is_constructor)
426 mangled_name[0] = '\0';
427 else
428 strcpy (mangled_name, field_name);
429
430 strcat (mangled_name, buf);
431 /* If the class doesn't have a name, i.e. newname NULL, then we just
432 mangle it using 0 for the length of the class. Thus it gets mangled
433 as something starting with `::' rather than `classname::'. */
434 if (newname != NULL)
435 strcat (mangled_name, newname);
436
437 strcat (mangled_name, physname);
438 return (mangled_name);
439 }
440
441 /* Initialize the cplus_specific structure. 'cplus_specific' should
442 only be allocated for use with cplus symbols. */
443
444 static void
445 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
446 struct objfile *objfile)
447 {
448 /* A language_specific structure should not have been previously
449 initialized. */
450 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
451 gdb_assert (objfile != NULL);
452
453 gsymbol->language_specific.cplus_specific =
454 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
455 }
456
457 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
458 correctly allocated. For C++ symbols a cplus_specific struct is
459 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
460 OBJFILE can be NULL. */
461
462 void
463 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 char *name,
465 struct objfile *objfile)
466 {
467 if (gsymbol->language == language_cplus)
468 {
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
471
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 }
474 else
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
476 }
477
478 /* Return the demangled name of GSYMBOL. */
479
480 const char *
481 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
482 {
483 if (gsymbol->language == language_cplus)
484 {
485 if (gsymbol->language_specific.cplus_specific != NULL)
486 return gsymbol->language_specific.cplus_specific->demangled_name;
487 else
488 return NULL;
489 }
490 else
491 return gsymbol->language_specific.mangled_lang.demangled_name;
492 }
493
494 \f
495 /* Initialize the language dependent portion of a symbol
496 depending upon the language for the symbol. */
497
498 void
499 symbol_set_language (struct general_symbol_info *gsymbol,
500 enum language language)
501 {
502 gsymbol->language = language;
503 if (gsymbol->language == language_d
504 || gsymbol->language == language_go
505 || gsymbol->language == language_java
506 || gsymbol->language == language_objc
507 || gsymbol->language == language_fortran)
508 {
509 symbol_set_demangled_name (gsymbol, NULL, NULL);
510 }
511 else if (gsymbol->language == language_cplus)
512 gsymbol->language_specific.cplus_specific = NULL;
513 else
514 {
515 memset (&gsymbol->language_specific, 0,
516 sizeof (gsymbol->language_specific));
517 }
518 }
519
520 /* Functions to initialize a symbol's mangled name. */
521
522 /* Objects of this type are stored in the demangled name hash table. */
523 struct demangled_name_entry
524 {
525 char *mangled;
526 char demangled[1];
527 };
528
529 /* Hash function for the demangled name hash. */
530
531 static hashval_t
532 hash_demangled_name_entry (const void *data)
533 {
534 const struct demangled_name_entry *e = data;
535
536 return htab_hash_string (e->mangled);
537 }
538
539 /* Equality function for the demangled name hash. */
540
541 static int
542 eq_demangled_name_entry (const void *a, const void *b)
543 {
544 const struct demangled_name_entry *da = a;
545 const struct demangled_name_entry *db = b;
546
547 return strcmp (da->mangled, db->mangled) == 0;
548 }
549
550 /* Create the hash table used for demangled names. Each hash entry is
551 a pair of strings; one for the mangled name and one for the demangled
552 name. The entry is hashed via just the mangled name. */
553
554 static void
555 create_demangled_names_hash (struct objfile *objfile)
556 {
557 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
558 The hash table code will round this up to the next prime number.
559 Choosing a much larger table size wastes memory, and saves only about
560 1% in symbol reading. */
561
562 objfile->demangled_names_hash = htab_create_alloc
563 (256, hash_demangled_name_entry, eq_demangled_name_entry,
564 NULL, xcalloc, xfree);
565 }
566
567 /* Try to determine the demangled name for a symbol, based on the
568 language of that symbol. If the language is set to language_auto,
569 it will attempt to find any demangling algorithm that works and
570 then set the language appropriately. The returned name is allocated
571 by the demangler and should be xfree'd. */
572
573 static char *
574 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 const char *mangled)
576 {
577 char *demangled = NULL;
578
579 if (gsymbol->language == language_unknown)
580 gsymbol->language = language_auto;
581
582 if (gsymbol->language == language_objc
583 || gsymbol->language == language_auto)
584 {
585 demangled =
586 objc_demangle (mangled, 0);
587 if (demangled != NULL)
588 {
589 gsymbol->language = language_objc;
590 return demangled;
591 }
592 }
593 if (gsymbol->language == language_cplus
594 || gsymbol->language == language_auto)
595 {
596 demangled =
597 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
598 if (demangled != NULL)
599 {
600 gsymbol->language = language_cplus;
601 return demangled;
602 }
603 }
604 if (gsymbol->language == language_java)
605 {
606 demangled =
607 cplus_demangle (mangled,
608 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
609 if (demangled != NULL)
610 {
611 gsymbol->language = language_java;
612 return demangled;
613 }
614 }
615 if (gsymbol->language == language_d
616 || gsymbol->language == language_auto)
617 {
618 demangled = d_demangle(mangled, 0);
619 if (demangled != NULL)
620 {
621 gsymbol->language = language_d;
622 return demangled;
623 }
624 }
625 /* FIXME(dje): Continually adding languages here is clumsy.
626 Better to just call la_demangle if !auto, and if auto then call
627 a utility routine that tries successive languages in turn and reports
628 which one it finds. I realize the la_demangle options may be different
629 for different languages but there's already a FIXME for that. */
630 if (gsymbol->language == language_go
631 || gsymbol->language == language_auto)
632 {
633 demangled = go_demangle (mangled, 0);
634 if (demangled != NULL)
635 {
636 gsymbol->language = language_go;
637 return demangled;
638 }
639 }
640
641 /* We could support `gsymbol->language == language_fortran' here to provide
642 module namespaces also for inferiors with only minimal symbol table (ELF
643 symbols). Just the mangling standard is not standardized across compilers
644 and there is no DW_AT_producer available for inferiors with only the ELF
645 symbols to check the mangling kind. */
646 return NULL;
647 }
648
649 /* Set both the mangled and demangled (if any) names for GSYMBOL based
650 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
651 objfile's obstack; but if COPY_NAME is 0 and if NAME is
652 NUL-terminated, then this function assumes that NAME is already
653 correctly saved (either permanently or with a lifetime tied to the
654 objfile), and it will not be copied.
655
656 The hash table corresponding to OBJFILE is used, and the memory
657 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
658 so the pointer can be discarded after calling this function. */
659
660 /* We have to be careful when dealing with Java names: when we run
661 into a Java minimal symbol, we don't know it's a Java symbol, so it
662 gets demangled as a C++ name. This is unfortunate, but there's not
663 much we can do about it: but when demangling partial symbols and
664 regular symbols, we'd better not reuse the wrong demangled name.
665 (See PR gdb/1039.) We solve this by putting a distinctive prefix
666 on Java names when storing them in the hash table. */
667
668 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
669 don't mind the Java prefix so much: different languages have
670 different demangling requirements, so it's only natural that we
671 need to keep language data around in our demangling cache. But
672 it's not good that the minimal symbol has the wrong demangled name.
673 Unfortunately, I can't think of any easy solution to that
674 problem. */
675
676 #define JAVA_PREFIX "##JAVA$$"
677 #define JAVA_PREFIX_LEN 8
678
679 void
680 symbol_set_names (struct general_symbol_info *gsymbol,
681 const char *linkage_name, int len, int copy_name,
682 struct objfile *objfile)
683 {
684 struct demangled_name_entry **slot;
685 /* A 0-terminated copy of the linkage name. */
686 const char *linkage_name_copy;
687 /* A copy of the linkage name that might have a special Java prefix
688 added to it, for use when looking names up in the hash table. */
689 const char *lookup_name;
690 /* The length of lookup_name. */
691 int lookup_len;
692 struct demangled_name_entry entry;
693
694 if (gsymbol->language == language_ada)
695 {
696 /* In Ada, we do the symbol lookups using the mangled name, so
697 we can save some space by not storing the demangled name.
698
699 As a side note, we have also observed some overlap between
700 the C++ mangling and Ada mangling, similarly to what has
701 been observed with Java. Because we don't store the demangled
702 name with the symbol, we don't need to use the same trick
703 as Java. */
704 if (!copy_name)
705 gsymbol->name = linkage_name;
706 else
707 {
708 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
709
710 memcpy (name, linkage_name, len);
711 name[len] = '\0';
712 gsymbol->name = name;
713 }
714 symbol_set_demangled_name (gsymbol, NULL, NULL);
715
716 return;
717 }
718
719 if (objfile->demangled_names_hash == NULL)
720 create_demangled_names_hash (objfile);
721
722 /* The stabs reader generally provides names that are not
723 NUL-terminated; most of the other readers don't do this, so we
724 can just use the given copy, unless we're in the Java case. */
725 if (gsymbol->language == language_java)
726 {
727 char *alloc_name;
728
729 lookup_len = len + JAVA_PREFIX_LEN;
730 alloc_name = alloca (lookup_len + 1);
731 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
732 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
733 alloc_name[lookup_len] = '\0';
734
735 lookup_name = alloc_name;
736 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
737 }
738 else if (linkage_name[len] != '\0')
739 {
740 char *alloc_name;
741
742 lookup_len = len;
743 alloc_name = alloca (lookup_len + 1);
744 memcpy (alloc_name, linkage_name, len);
745 alloc_name[lookup_len] = '\0';
746
747 lookup_name = alloc_name;
748 linkage_name_copy = alloc_name;
749 }
750 else
751 {
752 lookup_len = len;
753 lookup_name = linkage_name;
754 linkage_name_copy = linkage_name;
755 }
756
757 entry.mangled = (char *) lookup_name;
758 slot = ((struct demangled_name_entry **)
759 htab_find_slot (objfile->demangled_names_hash,
760 &entry, INSERT));
761
762 /* If this name is not in the hash table, add it. */
763 if (*slot == NULL
764 /* A C version of the symbol may have already snuck into the table.
765 This happens to, e.g., main.init (__go_init_main). Cope. */
766 || (gsymbol->language == language_go
767 && (*slot)->demangled[0] == '\0'))
768 {
769 char *demangled_name = symbol_find_demangled_name (gsymbol,
770 linkage_name_copy);
771 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
772
773 /* Suppose we have demangled_name==NULL, copy_name==0, and
774 lookup_name==linkage_name. In this case, we already have the
775 mangled name saved, and we don't have a demangled name. So,
776 you might think we could save a little space by not recording
777 this in the hash table at all.
778
779 It turns out that it is actually important to still save such
780 an entry in the hash table, because storing this name gives
781 us better bcache hit rates for partial symbols. */
782 if (!copy_name && lookup_name == linkage_name)
783 {
784 *slot = obstack_alloc (&objfile->objfile_obstack,
785 offsetof (struct demangled_name_entry,
786 demangled)
787 + demangled_len + 1);
788 (*slot)->mangled = (char *) lookup_name;
789 }
790 else
791 {
792 /* If we must copy the mangled name, put it directly after
793 the demangled name so we can have a single
794 allocation. */
795 *slot = obstack_alloc (&objfile->objfile_obstack,
796 offsetof (struct demangled_name_entry,
797 demangled)
798 + lookup_len + demangled_len + 2);
799 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
800 strcpy ((*slot)->mangled, lookup_name);
801 }
802
803 if (demangled_name != NULL)
804 {
805 strcpy ((*slot)->demangled, demangled_name);
806 xfree (demangled_name);
807 }
808 else
809 (*slot)->demangled[0] = '\0';
810 }
811
812 gsymbol->name = (*slot)->mangled + lookup_len - len;
813 if ((*slot)->demangled[0] != '\0')
814 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
815 else
816 symbol_set_demangled_name (gsymbol, NULL, objfile);
817 }
818
819 /* Return the source code name of a symbol. In languages where
820 demangling is necessary, this is the demangled name. */
821
822 const char *
823 symbol_natural_name (const struct general_symbol_info *gsymbol)
824 {
825 switch (gsymbol->language)
826 {
827 case language_cplus:
828 case language_d:
829 case language_go:
830 case language_java:
831 case language_objc:
832 case language_fortran:
833 if (symbol_get_demangled_name (gsymbol) != NULL)
834 return symbol_get_demangled_name (gsymbol);
835 break;
836 case language_ada:
837 if (symbol_get_demangled_name (gsymbol) != NULL)
838 return symbol_get_demangled_name (gsymbol);
839 else
840 return ada_decode_symbol (gsymbol);
841 break;
842 default:
843 break;
844 }
845 return gsymbol->name;
846 }
847
848 /* Return the demangled name for a symbol based on the language for
849 that symbol. If no demangled name exists, return NULL. */
850
851 const char *
852 symbol_demangled_name (const struct general_symbol_info *gsymbol)
853 {
854 switch (gsymbol->language)
855 {
856 case language_cplus:
857 case language_d:
858 case language_go:
859 case language_java:
860 case language_objc:
861 case language_fortran:
862 if (symbol_get_demangled_name (gsymbol) != NULL)
863 return symbol_get_demangled_name (gsymbol);
864 break;
865 case language_ada:
866 if (symbol_get_demangled_name (gsymbol) != NULL)
867 return symbol_get_demangled_name (gsymbol);
868 else
869 return ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return NULL;
875 }
876
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882 const char *
883 symbol_search_name (const struct general_symbol_info *gsymbol)
884 {
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889 }
890
891 /* Initialize the structure fields to zero values. */
892
893 void
894 init_sal (struct symtab_and_line *sal)
895 {
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905 }
906 \f
907
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912 int
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915 {
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971 }
972
973 struct symtab *
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 {
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003 }
1004 \f
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008 void
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011 {
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 {
1022 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1023 ginfo->section = SYMBOL_SECTION (msym);
1024 }
1025 else
1026 {
1027 /* Static, function-local variables do appear in the linker
1028 (minimal) symbols, but are frequently given names that won't
1029 be found via lookup_minimal_symbol(). E.g., it has been
1030 observed in frv-uclinux (ELF) executables that a static,
1031 function-local variable named "foo" might appear in the
1032 linker symbols as "foo.6" or "foo.3". Thus, there is no
1033 point in attempting to extend the lookup-by-name mechanism to
1034 handle this case due to the fact that there can be multiple
1035 names.
1036
1037 So, instead, search the section table when lookup by name has
1038 failed. The ``addr'' and ``endaddr'' fields may have already
1039 been relocated. If so, the relocation offset (i.e. the
1040 ANOFFSET value) needs to be subtracted from these values when
1041 performing the comparison. We unconditionally subtract it,
1042 because, when no relocation has been performed, the ANOFFSET
1043 value will simply be zero.
1044
1045 The address of the symbol whose section we're fixing up HAS
1046 NOT BEEN adjusted (relocated) yet. It can't have been since
1047 the section isn't yet known and knowing the section is
1048 necessary in order to add the correct relocation value. In
1049 other words, we wouldn't even be in this function (attempting
1050 to compute the section) if it were already known.
1051
1052 Note that it is possible to search the minimal symbols
1053 (subtracting the relocation value if necessary) to find the
1054 matching minimal symbol, but this is overkill and much less
1055 efficient. It is not necessary to find the matching minimal
1056 symbol, only its section.
1057
1058 Note that this technique (of doing a section table search)
1059 can fail when unrelocated section addresses overlap. For
1060 this reason, we still attempt a lookup by name prior to doing
1061 a search of the section table. */
1062
1063 struct obj_section *s;
1064
1065 ALL_OBJFILE_OSECTIONS (objfile, s)
1066 {
1067 int idx = s->the_bfd_section->index;
1068 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1069
1070 if (obj_section_addr (s) - offset <= addr
1071 && addr < obj_section_endaddr (s) - offset)
1072 {
1073 ginfo->obj_section = s;
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078 }
1079 }
1080
1081 struct symbol *
1082 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1083 {
1084 CORE_ADDR addr;
1085
1086 if (!sym)
1087 return NULL;
1088
1089 if (SYMBOL_OBJ_SECTION (sym))
1090 return sym;
1091
1092 /* We either have an OBJFILE, or we can get at it from the sym's
1093 symtab. Anything else is a bug. */
1094 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1095
1096 if (objfile == NULL)
1097 objfile = SYMBOL_SYMTAB (sym)->objfile;
1098
1099 /* We should have an objfile by now. */
1100 gdb_assert (objfile);
1101
1102 switch (SYMBOL_CLASS (sym))
1103 {
1104 case LOC_STATIC:
1105 case LOC_LABEL:
1106 addr = SYMBOL_VALUE_ADDRESS (sym);
1107 break;
1108 case LOC_BLOCK:
1109 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1110 break;
1111
1112 default:
1113 /* Nothing else will be listed in the minsyms -- no use looking
1114 it up. */
1115 return sym;
1116 }
1117
1118 fixup_section (&sym->ginfo, addr, objfile);
1119
1120 return sym;
1121 }
1122
1123 /* Compute the demangled form of NAME as used by the various symbol
1124 lookup functions. The result is stored in *RESULT_NAME. Returns a
1125 cleanup which can be used to clean up the result.
1126
1127 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1128 Normally, Ada symbol lookups are performed using the encoded name
1129 rather than the demangled name, and so it might seem to make sense
1130 for this function to return an encoded version of NAME.
1131 Unfortunately, we cannot do this, because this function is used in
1132 circumstances where it is not appropriate to try to encode NAME.
1133 For instance, when displaying the frame info, we demangle the name
1134 of each parameter, and then perform a symbol lookup inside our
1135 function using that demangled name. In Ada, certain functions
1136 have internally-generated parameters whose name contain uppercase
1137 characters. Encoding those name would result in those uppercase
1138 characters to become lowercase, and thus cause the symbol lookup
1139 to fail. */
1140
1141 struct cleanup *
1142 demangle_for_lookup (const char *name, enum language lang,
1143 const char **result_name)
1144 {
1145 char *demangled_name = NULL;
1146 const char *modified_name = NULL;
1147 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1148
1149 modified_name = name;
1150
1151 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1152 lookup, so we can always binary search. */
1153 if (lang == language_cplus)
1154 {
1155 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1156 if (demangled_name)
1157 {
1158 modified_name = demangled_name;
1159 make_cleanup (xfree, demangled_name);
1160 }
1161 else
1162 {
1163 /* If we were given a non-mangled name, canonicalize it
1164 according to the language (so far only for C++). */
1165 demangled_name = cp_canonicalize_string (name);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 }
1173 else if (lang == language_java)
1174 {
1175 demangled_name = cplus_demangle (name,
1176 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1177 if (demangled_name)
1178 {
1179 modified_name = demangled_name;
1180 make_cleanup (xfree, demangled_name);
1181 }
1182 }
1183 else if (lang == language_d)
1184 {
1185 demangled_name = d_demangle (name, 0);
1186 if (demangled_name)
1187 {
1188 modified_name = demangled_name;
1189 make_cleanup (xfree, demangled_name);
1190 }
1191 }
1192 else if (lang == language_go)
1193 {
1194 demangled_name = go_demangle (name, 0);
1195 if (demangled_name)
1196 {
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1199 }
1200 }
1201
1202 *result_name = modified_name;
1203 return cleanup;
1204 }
1205
1206 /* Find the definition for a specified symbol name NAME
1207 in domain DOMAIN, visible from lexical block BLOCK.
1208 Returns the struct symbol pointer, or zero if no symbol is found.
1209 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1210 NAME is a field of the current implied argument `this'. If so set
1211 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1212 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1213 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1214
1215 /* This function (or rather its subordinates) have a bunch of loops and
1216 it would seem to be attractive to put in some QUIT's (though I'm not really
1217 sure whether it can run long enough to be really important). But there
1218 are a few calls for which it would appear to be bad news to quit
1219 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1220 that there is C++ code below which can error(), but that probably
1221 doesn't affect these calls since they are looking for a known
1222 variable and thus can probably assume it will never hit the C++
1223 code). */
1224
1225 struct symbol *
1226 lookup_symbol_in_language (const char *name, const struct block *block,
1227 const domain_enum domain, enum language lang,
1228 int *is_a_field_of_this)
1229 {
1230 const char *modified_name;
1231 struct symbol *returnval;
1232 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1233
1234 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1235 is_a_field_of_this);
1236 do_cleanups (cleanup);
1237
1238 return returnval;
1239 }
1240
1241 /* Behave like lookup_symbol_in_language, but performed with the
1242 current language. */
1243
1244 struct symbol *
1245 lookup_symbol (const char *name, const struct block *block,
1246 domain_enum domain, int *is_a_field_of_this)
1247 {
1248 return lookup_symbol_in_language (name, block, domain,
1249 current_language->la_language,
1250 is_a_field_of_this);
1251 }
1252
1253 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1254 found, or NULL if not found. */
1255
1256 struct symbol *
1257 lookup_language_this (const struct language_defn *lang,
1258 const struct block *block)
1259 {
1260 if (lang->la_name_of_this == NULL || block == NULL)
1261 return NULL;
1262
1263 while (block)
1264 {
1265 struct symbol *sym;
1266
1267 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1268 if (sym != NULL)
1269 {
1270 block_found = block;
1271 return sym;
1272 }
1273 if (BLOCK_FUNCTION (block))
1274 break;
1275 block = BLOCK_SUPERBLOCK (block);
1276 }
1277
1278 return NULL;
1279 }
1280
1281 /* Behave like lookup_symbol except that NAME is the natural name
1282 (e.g., demangled name) of the symbol that we're looking for. */
1283
1284 static struct symbol *
1285 lookup_symbol_aux (const char *name, const struct block *block,
1286 const domain_enum domain, enum language language,
1287 int *is_a_field_of_this)
1288 {
1289 struct symbol *sym;
1290 const struct language_defn *langdef;
1291
1292 /* Make sure we do something sensible with is_a_field_of_this, since
1293 the callers that set this parameter to some non-null value will
1294 certainly use it later and expect it to be either 0 or 1.
1295 If we don't set it, the contents of is_a_field_of_this are
1296 undefined. */
1297 if (is_a_field_of_this != NULL)
1298 *is_a_field_of_this = 0;
1299
1300 /* Search specified block and its superiors. Don't search
1301 STATIC_BLOCK or GLOBAL_BLOCK. */
1302
1303 sym = lookup_symbol_aux_local (name, block, domain, language);
1304 if (sym != NULL)
1305 return sym;
1306
1307 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1308 check to see if NAME is a field of `this'. */
1309
1310 langdef = language_def (language);
1311
1312 if (is_a_field_of_this != NULL)
1313 {
1314 struct symbol *sym = lookup_language_this (langdef, block);
1315
1316 if (sym)
1317 {
1318 struct type *t = sym->type;
1319
1320 /* I'm not really sure that type of this can ever
1321 be typedefed; just be safe. */
1322 CHECK_TYPEDEF (t);
1323 if (TYPE_CODE (t) == TYPE_CODE_PTR
1324 || TYPE_CODE (t) == TYPE_CODE_REF)
1325 t = TYPE_TARGET_TYPE (t);
1326
1327 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1328 && TYPE_CODE (t) != TYPE_CODE_UNION)
1329 error (_("Internal error: `%s' is not an aggregate"),
1330 langdef->la_name_of_this);
1331
1332 if (check_field (t, name))
1333 {
1334 *is_a_field_of_this = 1;
1335 return NULL;
1336 }
1337 }
1338 }
1339
1340 /* Now do whatever is appropriate for LANGUAGE to look
1341 up static and global variables. */
1342
1343 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1344 if (sym != NULL)
1345 return sym;
1346
1347 /* Now search all static file-level symbols. Not strictly correct,
1348 but more useful than an error. */
1349
1350 return lookup_static_symbol_aux (name, domain);
1351 }
1352
1353 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1354 first, then check the psymtabs. If a psymtab indicates the existence of the
1355 desired name as a file-level static, then do psymtab-to-symtab conversion on
1356 the fly and return the found symbol. */
1357
1358 struct symbol *
1359 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1360 {
1361 struct objfile *objfile;
1362 struct symbol *sym;
1363
1364 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1365 if (sym != NULL)
1366 return sym;
1367
1368 ALL_OBJFILES (objfile)
1369 {
1370 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1371 if (sym != NULL)
1372 return sym;
1373 }
1374
1375 return NULL;
1376 }
1377
1378 /* Check to see if the symbol is defined in BLOCK or its superiors.
1379 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1380
1381 static struct symbol *
1382 lookup_symbol_aux_local (const char *name, const struct block *block,
1383 const domain_enum domain,
1384 enum language language)
1385 {
1386 struct symbol *sym;
1387 const struct block *static_block = block_static_block (block);
1388 const char *scope = block_scope (block);
1389
1390 /* Check if either no block is specified or it's a global block. */
1391
1392 if (static_block == NULL)
1393 return NULL;
1394
1395 while (block != static_block)
1396 {
1397 sym = lookup_symbol_aux_block (name, block, domain);
1398 if (sym != NULL)
1399 return sym;
1400
1401 if (language == language_cplus || language == language_fortran)
1402 {
1403 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1404 domain);
1405 if (sym != NULL)
1406 return sym;
1407 }
1408
1409 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1410 break;
1411 block = BLOCK_SUPERBLOCK (block);
1412 }
1413
1414 /* We've reached the edge of the function without finding a result. */
1415
1416 return NULL;
1417 }
1418
1419 /* Look up OBJFILE to BLOCK. */
1420
1421 struct objfile *
1422 lookup_objfile_from_block (const struct block *block)
1423 {
1424 struct objfile *obj;
1425 struct symtab *s;
1426
1427 if (block == NULL)
1428 return NULL;
1429
1430 block = block_global_block (block);
1431 /* Go through SYMTABS. */
1432 ALL_SYMTABS (obj, s)
1433 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1434 {
1435 if (obj->separate_debug_objfile_backlink)
1436 obj = obj->separate_debug_objfile_backlink;
1437
1438 return obj;
1439 }
1440
1441 return NULL;
1442 }
1443
1444 /* Look up a symbol in a block; if found, fixup the symbol, and set
1445 block_found appropriately. */
1446
1447 struct symbol *
1448 lookup_symbol_aux_block (const char *name, const struct block *block,
1449 const domain_enum domain)
1450 {
1451 struct symbol *sym;
1452
1453 sym = lookup_block_symbol (block, name, domain);
1454 if (sym)
1455 {
1456 block_found = block;
1457 return fixup_symbol_section (sym, NULL);
1458 }
1459
1460 return NULL;
1461 }
1462
1463 /* Check all global symbols in OBJFILE in symtabs and
1464 psymtabs. */
1465
1466 struct symbol *
1467 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1468 const char *name,
1469 const domain_enum domain)
1470 {
1471 const struct objfile *objfile;
1472 struct symbol *sym;
1473 struct blockvector *bv;
1474 const struct block *block;
1475 struct symtab *s;
1476
1477 for (objfile = main_objfile;
1478 objfile;
1479 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1480 {
1481 /* Go through symtabs. */
1482 ALL_OBJFILE_SYMTABS (objfile, s)
1483 {
1484 bv = BLOCKVECTOR (s);
1485 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1486 sym = lookup_block_symbol (block, name, domain);
1487 if (sym)
1488 {
1489 block_found = block;
1490 return fixup_symbol_section (sym, (struct objfile *)objfile);
1491 }
1492 }
1493
1494 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1495 name, domain);
1496 if (sym)
1497 return sym;
1498 }
1499
1500 return NULL;
1501 }
1502
1503 /* Check to see if the symbol is defined in one of the symtabs.
1504 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1505 depending on whether or not we want to search global symbols or
1506 static symbols. */
1507
1508 static struct symbol *
1509 lookup_symbol_aux_symtabs (int block_index, const char *name,
1510 const domain_enum domain)
1511 {
1512 struct symbol *sym;
1513 struct objfile *objfile;
1514 struct blockvector *bv;
1515 const struct block *block;
1516 struct symtab *s;
1517
1518 ALL_OBJFILES (objfile)
1519 {
1520 if (objfile->sf)
1521 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1522 block_index,
1523 name, domain);
1524
1525 ALL_OBJFILE_SYMTABS (objfile, s)
1526 if (s->primary)
1527 {
1528 bv = BLOCKVECTOR (s);
1529 block = BLOCKVECTOR_BLOCK (bv, block_index);
1530 sym = lookup_block_symbol (block, name, domain);
1531 if (sym)
1532 {
1533 block_found = block;
1534 return fixup_symbol_section (sym, objfile);
1535 }
1536 }
1537 }
1538
1539 return NULL;
1540 }
1541
1542 /* A helper function for lookup_symbol_aux that interfaces with the
1543 "quick" symbol table functions. */
1544
1545 static struct symbol *
1546 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1547 const char *name, const domain_enum domain)
1548 {
1549 struct symtab *symtab;
1550 struct blockvector *bv;
1551 const struct block *block;
1552 struct symbol *sym;
1553
1554 if (!objfile->sf)
1555 return NULL;
1556 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1557 if (!symtab)
1558 return NULL;
1559
1560 bv = BLOCKVECTOR (symtab);
1561 block = BLOCKVECTOR_BLOCK (bv, kind);
1562 sym = lookup_block_symbol (block, name, domain);
1563 if (!sym)
1564 {
1565 /* This shouldn't be necessary, but as a last resort try
1566 looking in the statics even though the psymtab claimed
1567 the symbol was global, or vice-versa. It's possible
1568 that the psymtab gets it wrong in some cases. */
1569
1570 /* FIXME: carlton/2002-09-30: Should we really do that?
1571 If that happens, isn't it likely to be a GDB error, in
1572 which case we should fix the GDB error rather than
1573 silently dealing with it here? So I'd vote for
1574 removing the check for the symbol in the other
1575 block. */
1576 block = BLOCKVECTOR_BLOCK (bv,
1577 kind == GLOBAL_BLOCK ?
1578 STATIC_BLOCK : GLOBAL_BLOCK);
1579 sym = lookup_block_symbol (block, name, domain);
1580 if (!sym)
1581 error (_("\
1582 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1583 %s may be an inlined function, or may be a template function\n\
1584 (if a template, try specifying an instantiation: %s<type>)."),
1585 kind == GLOBAL_BLOCK ? "global" : "static",
1586 name, symtab->filename, name, name);
1587 }
1588 return fixup_symbol_section (sym, objfile);
1589 }
1590
1591 /* A default version of lookup_symbol_nonlocal for use by languages
1592 that can't think of anything better to do. This implements the C
1593 lookup rules. */
1594
1595 struct symbol *
1596 basic_lookup_symbol_nonlocal (const char *name,
1597 const struct block *block,
1598 const domain_enum domain)
1599 {
1600 struct symbol *sym;
1601
1602 /* NOTE: carlton/2003-05-19: The comments below were written when
1603 this (or what turned into this) was part of lookup_symbol_aux;
1604 I'm much less worried about these questions now, since these
1605 decisions have turned out well, but I leave these comments here
1606 for posterity. */
1607
1608 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1609 not it would be appropriate to search the current global block
1610 here as well. (That's what this code used to do before the
1611 is_a_field_of_this check was moved up.) On the one hand, it's
1612 redundant with the lookup_symbol_aux_symtabs search that happens
1613 next. On the other hand, if decode_line_1 is passed an argument
1614 like filename:var, then the user presumably wants 'var' to be
1615 searched for in filename. On the third hand, there shouldn't be
1616 multiple global variables all of which are named 'var', and it's
1617 not like decode_line_1 has ever restricted its search to only
1618 global variables in a single filename. All in all, only
1619 searching the static block here seems best: it's correct and it's
1620 cleanest. */
1621
1622 /* NOTE: carlton/2002-12-05: There's also a possible performance
1623 issue here: if you usually search for global symbols in the
1624 current file, then it would be slightly better to search the
1625 current global block before searching all the symtabs. But there
1626 are other factors that have a much greater effect on performance
1627 than that one, so I don't think we should worry about that for
1628 now. */
1629
1630 sym = lookup_symbol_static (name, block, domain);
1631 if (sym != NULL)
1632 return sym;
1633
1634 return lookup_symbol_global (name, block, domain);
1635 }
1636
1637 /* Lookup a symbol in the static block associated to BLOCK, if there
1638 is one; do nothing if BLOCK is NULL or a global block. */
1639
1640 struct symbol *
1641 lookup_symbol_static (const char *name,
1642 const struct block *block,
1643 const domain_enum domain)
1644 {
1645 const struct block *static_block = block_static_block (block);
1646
1647 if (static_block != NULL)
1648 return lookup_symbol_aux_block (name, static_block, domain);
1649 else
1650 return NULL;
1651 }
1652
1653 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1654 necessary). */
1655
1656 struct symbol *
1657 lookup_symbol_global (const char *name,
1658 const struct block *block,
1659 const domain_enum domain)
1660 {
1661 struct symbol *sym = NULL;
1662 struct objfile *objfile = NULL;
1663
1664 /* Call library-specific lookup procedure. */
1665 objfile = lookup_objfile_from_block (block);
1666 if (objfile != NULL)
1667 sym = solib_global_lookup (objfile, name, domain);
1668 if (sym != NULL)
1669 return sym;
1670
1671 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1672 if (sym != NULL)
1673 return sym;
1674
1675 ALL_OBJFILES (objfile)
1676 {
1677 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1678 if (sym)
1679 return sym;
1680 }
1681
1682 return NULL;
1683 }
1684
1685 int
1686 symbol_matches_domain (enum language symbol_language,
1687 domain_enum symbol_domain,
1688 domain_enum domain)
1689 {
1690 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1691 A Java class declaration also defines a typedef for the class.
1692 Similarly, any Ada type declaration implicitly defines a typedef. */
1693 if (symbol_language == language_cplus
1694 || symbol_language == language_d
1695 || symbol_language == language_java
1696 || symbol_language == language_ada)
1697 {
1698 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1699 && symbol_domain == STRUCT_DOMAIN)
1700 return 1;
1701 }
1702 /* For all other languages, strict match is required. */
1703 return (symbol_domain == domain);
1704 }
1705
1706 /* Look up a type named NAME in the struct_domain. The type returned
1707 must not be opaque -- i.e., must have at least one field
1708 defined. */
1709
1710 struct type *
1711 lookup_transparent_type (const char *name)
1712 {
1713 return current_language->la_lookup_transparent_type (name);
1714 }
1715
1716 /* A helper for basic_lookup_transparent_type that interfaces with the
1717 "quick" symbol table functions. */
1718
1719 static struct type *
1720 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1721 const char *name)
1722 {
1723 struct symtab *symtab;
1724 struct blockvector *bv;
1725 struct block *block;
1726 struct symbol *sym;
1727
1728 if (!objfile->sf)
1729 return NULL;
1730 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1731 if (!symtab)
1732 return NULL;
1733
1734 bv = BLOCKVECTOR (symtab);
1735 block = BLOCKVECTOR_BLOCK (bv, kind);
1736 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1737 if (!sym)
1738 {
1739 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1740
1741 /* This shouldn't be necessary, but as a last resort
1742 * try looking in the 'other kind' even though the psymtab
1743 * claimed the symbol was one thing. It's possible that
1744 * the psymtab gets it wrong in some cases.
1745 */
1746 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1747 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1748 if (!sym)
1749 /* FIXME; error is wrong in one case. */
1750 error (_("\
1751 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1752 %s may be an inlined function, or may be a template function\n\
1753 (if a template, try specifying an instantiation: %s<type>)."),
1754 name, symtab->filename, name, name);
1755 }
1756 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1757 return SYMBOL_TYPE (sym);
1758
1759 return NULL;
1760 }
1761
1762 /* The standard implementation of lookup_transparent_type. This code
1763 was modeled on lookup_symbol -- the parts not relevant to looking
1764 up types were just left out. In particular it's assumed here that
1765 types are available in struct_domain and only at file-static or
1766 global blocks. */
1767
1768 struct type *
1769 basic_lookup_transparent_type (const char *name)
1770 {
1771 struct symbol *sym;
1772 struct symtab *s = NULL;
1773 struct blockvector *bv;
1774 struct objfile *objfile;
1775 struct block *block;
1776 struct type *t;
1777
1778 /* Now search all the global symbols. Do the symtab's first, then
1779 check the psymtab's. If a psymtab indicates the existence
1780 of the desired name as a global, then do psymtab-to-symtab
1781 conversion on the fly and return the found symbol. */
1782
1783 ALL_OBJFILES (objfile)
1784 {
1785 if (objfile->sf)
1786 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1787 GLOBAL_BLOCK,
1788 name, STRUCT_DOMAIN);
1789
1790 ALL_OBJFILE_SYMTABS (objfile, s)
1791 if (s->primary)
1792 {
1793 bv = BLOCKVECTOR (s);
1794 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1795 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1796 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1797 {
1798 return SYMBOL_TYPE (sym);
1799 }
1800 }
1801 }
1802
1803 ALL_OBJFILES (objfile)
1804 {
1805 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1806 if (t)
1807 return t;
1808 }
1809
1810 /* Now search the static file-level symbols.
1811 Not strictly correct, but more useful than an error.
1812 Do the symtab's first, then
1813 check the psymtab's. If a psymtab indicates the existence
1814 of the desired name as a file-level static, then do psymtab-to-symtab
1815 conversion on the fly and return the found symbol. */
1816
1817 ALL_OBJFILES (objfile)
1818 {
1819 if (objfile->sf)
1820 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1821 name, STRUCT_DOMAIN);
1822
1823 ALL_OBJFILE_SYMTABS (objfile, s)
1824 {
1825 bv = BLOCKVECTOR (s);
1826 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1827 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1828 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1829 {
1830 return SYMBOL_TYPE (sym);
1831 }
1832 }
1833 }
1834
1835 ALL_OBJFILES (objfile)
1836 {
1837 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1838 if (t)
1839 return t;
1840 }
1841
1842 return (struct type *) 0;
1843 }
1844
1845 /* Find the name of the file containing main(). */
1846 /* FIXME: What about languages without main() or specially linked
1847 executables that have no main() ? */
1848
1849 const char *
1850 find_main_filename (void)
1851 {
1852 struct objfile *objfile;
1853 char *name = main_name ();
1854
1855 ALL_OBJFILES (objfile)
1856 {
1857 const char *result;
1858
1859 if (!objfile->sf)
1860 continue;
1861 result = objfile->sf->qf->find_symbol_file (objfile, name);
1862 if (result)
1863 return result;
1864 }
1865 return (NULL);
1866 }
1867
1868 /* Search BLOCK for symbol NAME in DOMAIN.
1869
1870 Note that if NAME is the demangled form of a C++ symbol, we will fail
1871 to find a match during the binary search of the non-encoded names, but
1872 for now we don't worry about the slight inefficiency of looking for
1873 a match we'll never find, since it will go pretty quick. Once the
1874 binary search terminates, we drop through and do a straight linear
1875 search on the symbols. Each symbol which is marked as being a ObjC/C++
1876 symbol (language_cplus or language_objc set) has both the encoded and
1877 non-encoded names tested for a match. */
1878
1879 struct symbol *
1880 lookup_block_symbol (const struct block *block, const char *name,
1881 const domain_enum domain)
1882 {
1883 struct dict_iterator iter;
1884 struct symbol *sym;
1885
1886 if (!BLOCK_FUNCTION (block))
1887 {
1888 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1889 sym != NULL;
1890 sym = dict_iter_name_next (name, &iter))
1891 {
1892 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1893 SYMBOL_DOMAIN (sym), domain))
1894 return sym;
1895 }
1896 return NULL;
1897 }
1898 else
1899 {
1900 /* Note that parameter symbols do not always show up last in the
1901 list; this loop makes sure to take anything else other than
1902 parameter symbols first; it only uses parameter symbols as a
1903 last resort. Note that this only takes up extra computation
1904 time on a match. */
1905
1906 struct symbol *sym_found = NULL;
1907
1908 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1909 sym != NULL;
1910 sym = dict_iter_name_next (name, &iter))
1911 {
1912 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1913 SYMBOL_DOMAIN (sym), domain))
1914 {
1915 sym_found = sym;
1916 if (!SYMBOL_IS_ARGUMENT (sym))
1917 {
1918 break;
1919 }
1920 }
1921 }
1922 return (sym_found); /* Will be NULL if not found. */
1923 }
1924 }
1925
1926 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1927 BLOCK.
1928
1929 For each symbol that matches, CALLBACK is called. The symbol and
1930 DATA are passed to the callback.
1931
1932 If CALLBACK returns zero, the iteration ends. Otherwise, the
1933 search continues. This function iterates upward through blocks.
1934 When the outermost block has been finished, the function
1935 returns. */
1936
1937 void
1938 iterate_over_symbols (const struct block *block, const char *name,
1939 const domain_enum domain,
1940 symbol_found_callback_ftype *callback,
1941 void *data)
1942 {
1943 while (block)
1944 {
1945 struct dict_iterator iter;
1946 struct symbol *sym;
1947
1948 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1949 sym != NULL;
1950 sym = dict_iter_name_next (name, &iter))
1951 {
1952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1953 SYMBOL_DOMAIN (sym), domain))
1954 {
1955 if (!callback (sym, data))
1956 return;
1957 }
1958 }
1959
1960 block = BLOCK_SUPERBLOCK (block);
1961 }
1962 }
1963
1964 /* Find the symtab associated with PC and SECTION. Look through the
1965 psymtabs and read in another symtab if necessary. */
1966
1967 struct symtab *
1968 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1969 {
1970 struct block *b;
1971 struct blockvector *bv;
1972 struct symtab *s = NULL;
1973 struct symtab *best_s = NULL;
1974 struct objfile *objfile;
1975 struct program_space *pspace;
1976 CORE_ADDR distance = 0;
1977 struct minimal_symbol *msymbol;
1978
1979 pspace = current_program_space;
1980
1981 /* If we know that this is not a text address, return failure. This is
1982 necessary because we loop based on the block's high and low code
1983 addresses, which do not include the data ranges, and because
1984 we call find_pc_sect_psymtab which has a similar restriction based
1985 on the partial_symtab's texthigh and textlow. */
1986 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1987 if (msymbol
1988 && (MSYMBOL_TYPE (msymbol) == mst_data
1989 || MSYMBOL_TYPE (msymbol) == mst_bss
1990 || MSYMBOL_TYPE (msymbol) == mst_abs
1991 || MSYMBOL_TYPE (msymbol) == mst_file_data
1992 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1993 return NULL;
1994
1995 /* Search all symtabs for the one whose file contains our address, and which
1996 is the smallest of all the ones containing the address. This is designed
1997 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1998 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1999 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2000
2001 This happens for native ecoff format, where code from included files
2002 gets its own symtab. The symtab for the included file should have
2003 been read in already via the dependency mechanism.
2004 It might be swifter to create several symtabs with the same name
2005 like xcoff does (I'm not sure).
2006
2007 It also happens for objfiles that have their functions reordered.
2008 For these, the symtab we are looking for is not necessarily read in. */
2009
2010 ALL_PRIMARY_SYMTABS (objfile, s)
2011 {
2012 bv = BLOCKVECTOR (s);
2013 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2014
2015 if (BLOCK_START (b) <= pc
2016 && BLOCK_END (b) > pc
2017 && (distance == 0
2018 || BLOCK_END (b) - BLOCK_START (b) < distance))
2019 {
2020 /* For an objfile that has its functions reordered,
2021 find_pc_psymtab will find the proper partial symbol table
2022 and we simply return its corresponding symtab. */
2023 /* In order to better support objfiles that contain both
2024 stabs and coff debugging info, we continue on if a psymtab
2025 can't be found. */
2026 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2027 {
2028 struct symtab *result;
2029
2030 result
2031 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2032 msymbol,
2033 pc, section,
2034 0);
2035 if (result)
2036 return result;
2037 }
2038 if (section != 0)
2039 {
2040 struct dict_iterator iter;
2041 struct symbol *sym = NULL;
2042
2043 ALL_BLOCK_SYMBOLS (b, iter, sym)
2044 {
2045 fixup_symbol_section (sym, objfile);
2046 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2047 break;
2048 }
2049 if (sym == NULL)
2050 continue; /* No symbol in this symtab matches
2051 section. */
2052 }
2053 distance = BLOCK_END (b) - BLOCK_START (b);
2054 best_s = s;
2055 }
2056 }
2057
2058 if (best_s != NULL)
2059 return (best_s);
2060
2061 ALL_OBJFILES (objfile)
2062 {
2063 struct symtab *result;
2064
2065 if (!objfile->sf)
2066 continue;
2067 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2068 msymbol,
2069 pc, section,
2070 1);
2071 if (result)
2072 return result;
2073 }
2074
2075 return NULL;
2076 }
2077
2078 /* Find the symtab associated with PC. Look through the psymtabs and read
2079 in another symtab if necessary. Backward compatibility, no section. */
2080
2081 struct symtab *
2082 find_pc_symtab (CORE_ADDR pc)
2083 {
2084 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2085 }
2086 \f
2087
2088 /* Find the source file and line number for a given PC value and SECTION.
2089 Return a structure containing a symtab pointer, a line number,
2090 and a pc range for the entire source line.
2091 The value's .pc field is NOT the specified pc.
2092 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2093 use the line that ends there. Otherwise, in that case, the line
2094 that begins there is used. */
2095
2096 /* The big complication here is that a line may start in one file, and end just
2097 before the start of another file. This usually occurs when you #include
2098 code in the middle of a subroutine. To properly find the end of a line's PC
2099 range, we must search all symtabs associated with this compilation unit, and
2100 find the one whose first PC is closer than that of the next line in this
2101 symtab. */
2102
2103 /* If it's worth the effort, we could be using a binary search. */
2104
2105 struct symtab_and_line
2106 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2107 {
2108 struct symtab *s;
2109 struct linetable *l;
2110 int len;
2111 int i;
2112 struct linetable_entry *item;
2113 struct symtab_and_line val;
2114 struct blockvector *bv;
2115 struct minimal_symbol *msymbol;
2116 struct minimal_symbol *mfunsym;
2117 struct objfile *objfile;
2118
2119 /* Info on best line seen so far, and where it starts, and its file. */
2120
2121 struct linetable_entry *best = NULL;
2122 CORE_ADDR best_end = 0;
2123 struct symtab *best_symtab = 0;
2124
2125 /* Store here the first line number
2126 of a file which contains the line at the smallest pc after PC.
2127 If we don't find a line whose range contains PC,
2128 we will use a line one less than this,
2129 with a range from the start of that file to the first line's pc. */
2130 struct linetable_entry *alt = NULL;
2131 struct symtab *alt_symtab = 0;
2132
2133 /* Info on best line seen in this file. */
2134
2135 struct linetable_entry *prev;
2136
2137 /* If this pc is not from the current frame,
2138 it is the address of the end of a call instruction.
2139 Quite likely that is the start of the following statement.
2140 But what we want is the statement containing the instruction.
2141 Fudge the pc to make sure we get that. */
2142
2143 init_sal (&val); /* initialize to zeroes */
2144
2145 val.pspace = current_program_space;
2146
2147 /* It's tempting to assume that, if we can't find debugging info for
2148 any function enclosing PC, that we shouldn't search for line
2149 number info, either. However, GAS can emit line number info for
2150 assembly files --- very helpful when debugging hand-written
2151 assembly code. In such a case, we'd have no debug info for the
2152 function, but we would have line info. */
2153
2154 if (notcurrent)
2155 pc -= 1;
2156
2157 /* elz: added this because this function returned the wrong
2158 information if the pc belongs to a stub (import/export)
2159 to call a shlib function. This stub would be anywhere between
2160 two functions in the target, and the line info was erroneously
2161 taken to be the one of the line before the pc. */
2162
2163 /* RT: Further explanation:
2164
2165 * We have stubs (trampolines) inserted between procedures.
2166 *
2167 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2168 * exists in the main image.
2169 *
2170 * In the minimal symbol table, we have a bunch of symbols
2171 * sorted by start address. The stubs are marked as "trampoline",
2172 * the others appear as text. E.g.:
2173 *
2174 * Minimal symbol table for main image
2175 * main: code for main (text symbol)
2176 * shr1: stub (trampoline symbol)
2177 * foo: code for foo (text symbol)
2178 * ...
2179 * Minimal symbol table for "shr1" image:
2180 * ...
2181 * shr1: code for shr1 (text symbol)
2182 * ...
2183 *
2184 * So the code below is trying to detect if we are in the stub
2185 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2186 * and if found, do the symbolization from the real-code address
2187 * rather than the stub address.
2188 *
2189 * Assumptions being made about the minimal symbol table:
2190 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2191 * if we're really in the trampoline.s If we're beyond it (say
2192 * we're in "foo" in the above example), it'll have a closer
2193 * symbol (the "foo" text symbol for example) and will not
2194 * return the trampoline.
2195 * 2. lookup_minimal_symbol_text() will find a real text symbol
2196 * corresponding to the trampoline, and whose address will
2197 * be different than the trampoline address. I put in a sanity
2198 * check for the address being the same, to avoid an
2199 * infinite recursion.
2200 */
2201 msymbol = lookup_minimal_symbol_by_pc (pc);
2202 if (msymbol != NULL)
2203 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2204 {
2205 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2206 NULL);
2207 if (mfunsym == NULL)
2208 /* I eliminated this warning since it is coming out
2209 * in the following situation:
2210 * gdb shmain // test program with shared libraries
2211 * (gdb) break shr1 // function in shared lib
2212 * Warning: In stub for ...
2213 * In the above situation, the shared lib is not loaded yet,
2214 * so of course we can't find the real func/line info,
2215 * but the "break" still works, and the warning is annoying.
2216 * So I commented out the warning. RT */
2217 /* warning ("In stub for %s; unable to find real function/line info",
2218 SYMBOL_LINKAGE_NAME (msymbol)); */
2219 ;
2220 /* fall through */
2221 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2222 == SYMBOL_VALUE_ADDRESS (msymbol))
2223 /* Avoid infinite recursion */
2224 /* See above comment about why warning is commented out. */
2225 /* warning ("In stub for %s; unable to find real function/line info",
2226 SYMBOL_LINKAGE_NAME (msymbol)); */
2227 ;
2228 /* fall through */
2229 else
2230 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2231 }
2232
2233
2234 s = find_pc_sect_symtab (pc, section);
2235 if (!s)
2236 {
2237 /* If no symbol information, return previous pc. */
2238 if (notcurrent)
2239 pc++;
2240 val.pc = pc;
2241 return val;
2242 }
2243
2244 bv = BLOCKVECTOR (s);
2245 objfile = s->objfile;
2246
2247 /* Look at all the symtabs that share this blockvector.
2248 They all have the same apriori range, that we found was right;
2249 but they have different line tables. */
2250
2251 ALL_OBJFILE_SYMTABS (objfile, s)
2252 {
2253 if (BLOCKVECTOR (s) != bv)
2254 continue;
2255
2256 /* Find the best line in this symtab. */
2257 l = LINETABLE (s);
2258 if (!l)
2259 continue;
2260 len = l->nitems;
2261 if (len <= 0)
2262 {
2263 /* I think len can be zero if the symtab lacks line numbers
2264 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2265 I'm not sure which, and maybe it depends on the symbol
2266 reader). */
2267 continue;
2268 }
2269
2270 prev = NULL;
2271 item = l->item; /* Get first line info. */
2272
2273 /* Is this file's first line closer than the first lines of other files?
2274 If so, record this file, and its first line, as best alternate. */
2275 if (item->pc > pc && (!alt || item->pc < alt->pc))
2276 {
2277 alt = item;
2278 alt_symtab = s;
2279 }
2280
2281 for (i = 0; i < len; i++, item++)
2282 {
2283 /* Leave prev pointing to the linetable entry for the last line
2284 that started at or before PC. */
2285 if (item->pc > pc)
2286 break;
2287
2288 prev = item;
2289 }
2290
2291 /* At this point, prev points at the line whose start addr is <= pc, and
2292 item points at the next line. If we ran off the end of the linetable
2293 (pc >= start of the last line), then prev == item. If pc < start of
2294 the first line, prev will not be set. */
2295
2296 /* Is this file's best line closer than the best in the other files?
2297 If so, record this file, and its best line, as best so far. Don't
2298 save prev if it represents the end of a function (i.e. line number
2299 0) instead of a real line. */
2300
2301 if (prev && prev->line && (!best || prev->pc > best->pc))
2302 {
2303 best = prev;
2304 best_symtab = s;
2305
2306 /* Discard BEST_END if it's before the PC of the current BEST. */
2307 if (best_end <= best->pc)
2308 best_end = 0;
2309 }
2310
2311 /* If another line (denoted by ITEM) is in the linetable and its
2312 PC is after BEST's PC, but before the current BEST_END, then
2313 use ITEM's PC as the new best_end. */
2314 if (best && i < len && item->pc > best->pc
2315 && (best_end == 0 || best_end > item->pc))
2316 best_end = item->pc;
2317 }
2318
2319 if (!best_symtab)
2320 {
2321 /* If we didn't find any line number info, just return zeros.
2322 We used to return alt->line - 1 here, but that could be
2323 anywhere; if we don't have line number info for this PC,
2324 don't make some up. */
2325 val.pc = pc;
2326 }
2327 else if (best->line == 0)
2328 {
2329 /* If our best fit is in a range of PC's for which no line
2330 number info is available (line number is zero) then we didn't
2331 find any valid line information. */
2332 val.pc = pc;
2333 }
2334 else
2335 {
2336 val.symtab = best_symtab;
2337 val.line = best->line;
2338 val.pc = best->pc;
2339 if (best_end && (!alt || best_end < alt->pc))
2340 val.end = best_end;
2341 else if (alt)
2342 val.end = alt->pc;
2343 else
2344 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2345 }
2346 val.section = section;
2347 return val;
2348 }
2349
2350 /* Backward compatibility (no section). */
2351
2352 struct symtab_and_line
2353 find_pc_line (CORE_ADDR pc, int notcurrent)
2354 {
2355 struct obj_section *section;
2356
2357 section = find_pc_overlay (pc);
2358 if (pc_in_unmapped_range (pc, section))
2359 pc = overlay_mapped_address (pc, section);
2360 return find_pc_sect_line (pc, section, notcurrent);
2361 }
2362 \f
2363 /* Find line number LINE in any symtab whose name is the same as
2364 SYMTAB.
2365
2366 If found, return the symtab that contains the linetable in which it was
2367 found, set *INDEX to the index in the linetable of the best entry
2368 found, and set *EXACT_MATCH nonzero if the value returned is an
2369 exact match.
2370
2371 If not found, return NULL. */
2372
2373 struct symtab *
2374 find_line_symtab (struct symtab *symtab, int line,
2375 int *index, int *exact_match)
2376 {
2377 int exact = 0; /* Initialized here to avoid a compiler warning. */
2378
2379 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2380 so far seen. */
2381
2382 int best_index;
2383 struct linetable *best_linetable;
2384 struct symtab *best_symtab;
2385
2386 /* First try looking it up in the given symtab. */
2387 best_linetable = LINETABLE (symtab);
2388 best_symtab = symtab;
2389 best_index = find_line_common (best_linetable, line, &exact, 0);
2390 if (best_index < 0 || !exact)
2391 {
2392 /* Didn't find an exact match. So we better keep looking for
2393 another symtab with the same name. In the case of xcoff,
2394 multiple csects for one source file (produced by IBM's FORTRAN
2395 compiler) produce multiple symtabs (this is unavoidable
2396 assuming csects can be at arbitrary places in memory and that
2397 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2398
2399 /* BEST is the smallest linenumber > LINE so far seen,
2400 or 0 if none has been seen so far.
2401 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2402 int best;
2403
2404 struct objfile *objfile;
2405 struct symtab *s;
2406
2407 if (best_index >= 0)
2408 best = best_linetable->item[best_index].line;
2409 else
2410 best = 0;
2411
2412 ALL_OBJFILES (objfile)
2413 {
2414 if (objfile->sf)
2415 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2416 symtab->filename);
2417 }
2418
2419 /* Get symbol full file name if possible. */
2420 symtab_to_fullname (symtab);
2421
2422 ALL_SYMTABS (objfile, s)
2423 {
2424 struct linetable *l;
2425 int ind;
2426
2427 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2428 continue;
2429 if (symtab->fullname != NULL
2430 && symtab_to_fullname (s) != NULL
2431 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2432 continue;
2433 l = LINETABLE (s);
2434 ind = find_line_common (l, line, &exact, 0);
2435 if (ind >= 0)
2436 {
2437 if (exact)
2438 {
2439 best_index = ind;
2440 best_linetable = l;
2441 best_symtab = s;
2442 goto done;
2443 }
2444 if (best == 0 || l->item[ind].line < best)
2445 {
2446 best = l->item[ind].line;
2447 best_index = ind;
2448 best_linetable = l;
2449 best_symtab = s;
2450 }
2451 }
2452 }
2453 }
2454 done:
2455 if (best_index < 0)
2456 return NULL;
2457
2458 if (index)
2459 *index = best_index;
2460 if (exact_match)
2461 *exact_match = exact;
2462
2463 return best_symtab;
2464 }
2465
2466 /* Given SYMTAB, returns all the PCs function in the symtab that
2467 exactly match LINE. Returns NULL if there are no exact matches,
2468 but updates BEST_ITEM in this case. */
2469
2470 VEC (CORE_ADDR) *
2471 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2472 struct linetable_entry **best_item)
2473 {
2474 int start = 0, ix;
2475 struct symbol *previous_function = NULL;
2476 VEC (CORE_ADDR) *result = NULL;
2477
2478 /* First, collect all the PCs that are at this line. */
2479 while (1)
2480 {
2481 int was_exact;
2482 int idx;
2483
2484 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2485 if (idx < 0)
2486 break;
2487
2488 if (!was_exact)
2489 {
2490 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2491
2492 if (*best_item == NULL || item->line < (*best_item)->line)
2493 *best_item = item;
2494
2495 break;
2496 }
2497
2498 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2499 start = idx + 1;
2500 }
2501
2502 return result;
2503 }
2504
2505 \f
2506 /* Set the PC value for a given source file and line number and return true.
2507 Returns zero for invalid line number (and sets the PC to 0).
2508 The source file is specified with a struct symtab. */
2509
2510 int
2511 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2512 {
2513 struct linetable *l;
2514 int ind;
2515
2516 *pc = 0;
2517 if (symtab == 0)
2518 return 0;
2519
2520 symtab = find_line_symtab (symtab, line, &ind, NULL);
2521 if (symtab != NULL)
2522 {
2523 l = LINETABLE (symtab);
2524 *pc = l->item[ind].pc;
2525 return 1;
2526 }
2527 else
2528 return 0;
2529 }
2530
2531 /* Find the range of pc values in a line.
2532 Store the starting pc of the line into *STARTPTR
2533 and the ending pc (start of next line) into *ENDPTR.
2534 Returns 1 to indicate success.
2535 Returns 0 if could not find the specified line. */
2536
2537 int
2538 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2539 CORE_ADDR *endptr)
2540 {
2541 CORE_ADDR startaddr;
2542 struct symtab_and_line found_sal;
2543
2544 startaddr = sal.pc;
2545 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2546 return 0;
2547
2548 /* This whole function is based on address. For example, if line 10 has
2549 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2550 "info line *0x123" should say the line goes from 0x100 to 0x200
2551 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2552 This also insures that we never give a range like "starts at 0x134
2553 and ends at 0x12c". */
2554
2555 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2556 if (found_sal.line != sal.line)
2557 {
2558 /* The specified line (sal) has zero bytes. */
2559 *startptr = found_sal.pc;
2560 *endptr = found_sal.pc;
2561 }
2562 else
2563 {
2564 *startptr = found_sal.pc;
2565 *endptr = found_sal.end;
2566 }
2567 return 1;
2568 }
2569
2570 /* Given a line table and a line number, return the index into the line
2571 table for the pc of the nearest line whose number is >= the specified one.
2572 Return -1 if none is found. The value is >= 0 if it is an index.
2573 START is the index at which to start searching the line table.
2574
2575 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2576
2577 static int
2578 find_line_common (struct linetable *l, int lineno,
2579 int *exact_match, int start)
2580 {
2581 int i;
2582 int len;
2583
2584 /* BEST is the smallest linenumber > LINENO so far seen,
2585 or 0 if none has been seen so far.
2586 BEST_INDEX identifies the item for it. */
2587
2588 int best_index = -1;
2589 int best = 0;
2590
2591 *exact_match = 0;
2592
2593 if (lineno <= 0)
2594 return -1;
2595 if (l == 0)
2596 return -1;
2597
2598 len = l->nitems;
2599 for (i = start; i < len; i++)
2600 {
2601 struct linetable_entry *item = &(l->item[i]);
2602
2603 if (item->line == lineno)
2604 {
2605 /* Return the first (lowest address) entry which matches. */
2606 *exact_match = 1;
2607 return i;
2608 }
2609
2610 if (item->line > lineno && (best == 0 || item->line < best))
2611 {
2612 best = item->line;
2613 best_index = i;
2614 }
2615 }
2616
2617 /* If we got here, we didn't get an exact match. */
2618 return best_index;
2619 }
2620
2621 int
2622 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2623 {
2624 struct symtab_and_line sal;
2625
2626 sal = find_pc_line (pc, 0);
2627 *startptr = sal.pc;
2628 *endptr = sal.end;
2629 return sal.symtab != 0;
2630 }
2631
2632 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2633 address for that function that has an entry in SYMTAB's line info
2634 table. If such an entry cannot be found, return FUNC_ADDR
2635 unaltered. */
2636
2637 static CORE_ADDR
2638 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2639 {
2640 CORE_ADDR func_start, func_end;
2641 struct linetable *l;
2642 int i;
2643
2644 /* Give up if this symbol has no lineinfo table. */
2645 l = LINETABLE (symtab);
2646 if (l == NULL)
2647 return func_addr;
2648
2649 /* Get the range for the function's PC values, or give up if we
2650 cannot, for some reason. */
2651 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2652 return func_addr;
2653
2654 /* Linetable entries are ordered by PC values, see the commentary in
2655 symtab.h where `struct linetable' is defined. Thus, the first
2656 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2657 address we are looking for. */
2658 for (i = 0; i < l->nitems; i++)
2659 {
2660 struct linetable_entry *item = &(l->item[i]);
2661
2662 /* Don't use line numbers of zero, they mark special entries in
2663 the table. See the commentary on symtab.h before the
2664 definition of struct linetable. */
2665 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2666 return item->pc;
2667 }
2668
2669 return func_addr;
2670 }
2671
2672 /* Given a function symbol SYM, find the symtab and line for the start
2673 of the function.
2674 If the argument FUNFIRSTLINE is nonzero, we want the first line
2675 of real code inside the function. */
2676
2677 struct symtab_and_line
2678 find_function_start_sal (struct symbol *sym, int funfirstline)
2679 {
2680 struct symtab_and_line sal;
2681
2682 fixup_symbol_section (sym, NULL);
2683 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2684 SYMBOL_OBJ_SECTION (sym), 0);
2685
2686 /* We always should have a line for the function start address.
2687 If we don't, something is odd. Create a plain SAL refering
2688 just the PC and hope that skip_prologue_sal (if requested)
2689 can find a line number for after the prologue. */
2690 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2691 {
2692 init_sal (&sal);
2693 sal.pspace = current_program_space;
2694 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2695 sal.section = SYMBOL_OBJ_SECTION (sym);
2696 }
2697
2698 if (funfirstline)
2699 skip_prologue_sal (&sal);
2700
2701 return sal;
2702 }
2703
2704 /* Adjust SAL to the first instruction past the function prologue.
2705 If the PC was explicitly specified, the SAL is not changed.
2706 If the line number was explicitly specified, at most the SAL's PC
2707 is updated. If SAL is already past the prologue, then do nothing. */
2708
2709 void
2710 skip_prologue_sal (struct symtab_and_line *sal)
2711 {
2712 struct symbol *sym;
2713 struct symtab_and_line start_sal;
2714 struct cleanup *old_chain;
2715 CORE_ADDR pc, saved_pc;
2716 struct obj_section *section;
2717 const char *name;
2718 struct objfile *objfile;
2719 struct gdbarch *gdbarch;
2720 struct block *b, *function_block;
2721 int force_skip, skip;
2722
2723 /* Do not change the SAL is PC was specified explicitly. */
2724 if (sal->explicit_pc)
2725 return;
2726
2727 old_chain = save_current_space_and_thread ();
2728 switch_to_program_space_and_thread (sal->pspace);
2729
2730 sym = find_pc_sect_function (sal->pc, sal->section);
2731 if (sym != NULL)
2732 {
2733 fixup_symbol_section (sym, NULL);
2734
2735 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2736 section = SYMBOL_OBJ_SECTION (sym);
2737 name = SYMBOL_LINKAGE_NAME (sym);
2738 objfile = SYMBOL_SYMTAB (sym)->objfile;
2739 }
2740 else
2741 {
2742 struct minimal_symbol *msymbol
2743 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2744
2745 if (msymbol == NULL)
2746 {
2747 do_cleanups (old_chain);
2748 return;
2749 }
2750
2751 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2752 section = SYMBOL_OBJ_SECTION (msymbol);
2753 name = SYMBOL_LINKAGE_NAME (msymbol);
2754 objfile = msymbol_objfile (msymbol);
2755 }
2756
2757 gdbarch = get_objfile_arch (objfile);
2758
2759 /* Process the prologue in two passes. In the first pass try to skip the
2760 prologue (SKIP is true) and verify there is a real need for it (indicated
2761 by FORCE_SKIP). If no such reason was found run a second pass where the
2762 prologue is not skipped (SKIP is false). */
2763
2764 skip = 1;
2765 force_skip = 1;
2766
2767 /* Be conservative - allow direct PC (without skipping prologue) only if we
2768 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2769 have to be set by the caller so we use SYM instead. */
2770 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2771 force_skip = 0;
2772
2773 saved_pc = pc;
2774 do
2775 {
2776 pc = saved_pc;
2777
2778 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2779 so that gdbarch_skip_prologue has something unique to work on. */
2780 if (section_is_overlay (section) && !section_is_mapped (section))
2781 pc = overlay_unmapped_address (pc, section);
2782
2783 /* Skip "first line" of function (which is actually its prologue). */
2784 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2785 if (skip)
2786 pc = gdbarch_skip_prologue (gdbarch, pc);
2787
2788 /* For overlays, map pc back into its mapped VMA range. */
2789 pc = overlay_mapped_address (pc, section);
2790
2791 /* Calculate line number. */
2792 start_sal = find_pc_sect_line (pc, section, 0);
2793
2794 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2795 line is still part of the same function. */
2796 if (skip && start_sal.pc != pc
2797 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2798 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2799 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2800 == lookup_minimal_symbol_by_pc_section (pc, section))))
2801 {
2802 /* First pc of next line */
2803 pc = start_sal.end;
2804 /* Recalculate the line number (might not be N+1). */
2805 start_sal = find_pc_sect_line (pc, section, 0);
2806 }
2807
2808 /* On targets with executable formats that don't have a concept of
2809 constructors (ELF with .init has, PE doesn't), gcc emits a call
2810 to `__main' in `main' between the prologue and before user
2811 code. */
2812 if (gdbarch_skip_main_prologue_p (gdbarch)
2813 && name && strcmp_iw (name, "main") == 0)
2814 {
2815 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2816 /* Recalculate the line number (might not be N+1). */
2817 start_sal = find_pc_sect_line (pc, section, 0);
2818 force_skip = 1;
2819 }
2820 }
2821 while (!force_skip && skip--);
2822
2823 /* If we still don't have a valid source line, try to find the first
2824 PC in the lineinfo table that belongs to the same function. This
2825 happens with COFF debug info, which does not seem to have an
2826 entry in lineinfo table for the code after the prologue which has
2827 no direct relation to source. For example, this was found to be
2828 the case with the DJGPP target using "gcc -gcoff" when the
2829 compiler inserted code after the prologue to make sure the stack
2830 is aligned. */
2831 if (!force_skip && sym && start_sal.symtab == NULL)
2832 {
2833 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2834 /* Recalculate the line number. */
2835 start_sal = find_pc_sect_line (pc, section, 0);
2836 }
2837
2838 do_cleanups (old_chain);
2839
2840 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2841 forward SAL to the end of the prologue. */
2842 if (sal->pc >= pc)
2843 return;
2844
2845 sal->pc = pc;
2846 sal->section = section;
2847
2848 /* Unless the explicit_line flag was set, update the SAL line
2849 and symtab to correspond to the modified PC location. */
2850 if (sal->explicit_line)
2851 return;
2852
2853 sal->symtab = start_sal.symtab;
2854 sal->line = start_sal.line;
2855 sal->end = start_sal.end;
2856
2857 /* Check if we are now inside an inlined function. If we can,
2858 use the call site of the function instead. */
2859 b = block_for_pc_sect (sal->pc, sal->section);
2860 function_block = NULL;
2861 while (b != NULL)
2862 {
2863 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2864 function_block = b;
2865 else if (BLOCK_FUNCTION (b) != NULL)
2866 break;
2867 b = BLOCK_SUPERBLOCK (b);
2868 }
2869 if (function_block != NULL
2870 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2871 {
2872 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2873 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2874 }
2875 }
2876
2877 /* If P is of the form "operator[ \t]+..." where `...' is
2878 some legitimate operator text, return a pointer to the
2879 beginning of the substring of the operator text.
2880 Otherwise, return "". */
2881
2882 static char *
2883 operator_chars (char *p, char **end)
2884 {
2885 *end = "";
2886 if (strncmp (p, "operator", 8))
2887 return *end;
2888 p += 8;
2889
2890 /* Don't get faked out by `operator' being part of a longer
2891 identifier. */
2892 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2893 return *end;
2894
2895 /* Allow some whitespace between `operator' and the operator symbol. */
2896 while (*p == ' ' || *p == '\t')
2897 p++;
2898
2899 /* Recognize 'operator TYPENAME'. */
2900
2901 if (isalpha (*p) || *p == '_' || *p == '$')
2902 {
2903 char *q = p + 1;
2904
2905 while (isalnum (*q) || *q == '_' || *q == '$')
2906 q++;
2907 *end = q;
2908 return p;
2909 }
2910
2911 while (*p)
2912 switch (*p)
2913 {
2914 case '\\': /* regexp quoting */
2915 if (p[1] == '*')
2916 {
2917 if (p[2] == '=') /* 'operator\*=' */
2918 *end = p + 3;
2919 else /* 'operator\*' */
2920 *end = p + 2;
2921 return p;
2922 }
2923 else if (p[1] == '[')
2924 {
2925 if (p[2] == ']')
2926 error (_("mismatched quoting on brackets, "
2927 "try 'operator\\[\\]'"));
2928 else if (p[2] == '\\' && p[3] == ']')
2929 {
2930 *end = p + 4; /* 'operator\[\]' */
2931 return p;
2932 }
2933 else
2934 error (_("nothing is allowed between '[' and ']'"));
2935 }
2936 else
2937 {
2938 /* Gratuitous qoute: skip it and move on. */
2939 p++;
2940 continue;
2941 }
2942 break;
2943 case '!':
2944 case '=':
2945 case '*':
2946 case '/':
2947 case '%':
2948 case '^':
2949 if (p[1] == '=')
2950 *end = p + 2;
2951 else
2952 *end = p + 1;
2953 return p;
2954 case '<':
2955 case '>':
2956 case '+':
2957 case '-':
2958 case '&':
2959 case '|':
2960 if (p[0] == '-' && p[1] == '>')
2961 {
2962 /* Struct pointer member operator 'operator->'. */
2963 if (p[2] == '*')
2964 {
2965 *end = p + 3; /* 'operator->*' */
2966 return p;
2967 }
2968 else if (p[2] == '\\')
2969 {
2970 *end = p + 4; /* Hopefully 'operator->\*' */
2971 return p;
2972 }
2973 else
2974 {
2975 *end = p + 2; /* 'operator->' */
2976 return p;
2977 }
2978 }
2979 if (p[1] == '=' || p[1] == p[0])
2980 *end = p + 2;
2981 else
2982 *end = p + 1;
2983 return p;
2984 case '~':
2985 case ',':
2986 *end = p + 1;
2987 return p;
2988 case '(':
2989 if (p[1] != ')')
2990 error (_("`operator ()' must be specified "
2991 "without whitespace in `()'"));
2992 *end = p + 2;
2993 return p;
2994 case '?':
2995 if (p[1] != ':')
2996 error (_("`operator ?:' must be specified "
2997 "without whitespace in `?:'"));
2998 *end = p + 2;
2999 return p;
3000 case '[':
3001 if (p[1] != ']')
3002 error (_("`operator []' must be specified "
3003 "without whitespace in `[]'"));
3004 *end = p + 2;
3005 return p;
3006 default:
3007 error (_("`operator %s' not supported"), p);
3008 break;
3009 }
3010
3011 *end = "";
3012 return *end;
3013 }
3014 \f
3015
3016 /* If FILE is not already in the table of files, return zero;
3017 otherwise return non-zero. Optionally add FILE to the table if ADD
3018 is non-zero. If *FIRST is non-zero, forget the old table
3019 contents. */
3020
3021 static int
3022 filename_seen (const char *file, int add, int *first)
3023 {
3024 /* Table of files seen so far. */
3025 static const char **tab = NULL;
3026 /* Allocated size of tab in elements.
3027 Start with one 256-byte block (when using GNU malloc.c).
3028 24 is the malloc overhead when range checking is in effect. */
3029 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3030 /* Current size of tab in elements. */
3031 static int tab_cur_size;
3032 const char **p;
3033
3034 if (*first)
3035 {
3036 if (tab == NULL)
3037 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3038 tab_cur_size = 0;
3039 }
3040
3041 /* Is FILE in tab? */
3042 for (p = tab; p < tab + tab_cur_size; p++)
3043 if (filename_cmp (*p, file) == 0)
3044 return 1;
3045
3046 /* No; maybe add it to tab. */
3047 if (add)
3048 {
3049 if (tab_cur_size == tab_alloc_size)
3050 {
3051 tab_alloc_size *= 2;
3052 tab = (const char **) xrealloc ((char *) tab,
3053 tab_alloc_size * sizeof (*tab));
3054 }
3055 tab[tab_cur_size++] = file;
3056 }
3057
3058 return 0;
3059 }
3060
3061 /* Slave routine for sources_info. Force line breaks at ,'s.
3062 NAME is the name to print and *FIRST is nonzero if this is the first
3063 name printed. Set *FIRST to zero. */
3064
3065 static void
3066 output_source_filename (const char *name, int *first)
3067 {
3068 /* Since a single source file can result in several partial symbol
3069 tables, we need to avoid printing it more than once. Note: if
3070 some of the psymtabs are read in and some are not, it gets
3071 printed both under "Source files for which symbols have been
3072 read" and "Source files for which symbols will be read in on
3073 demand". I consider this a reasonable way to deal with the
3074 situation. I'm not sure whether this can also happen for
3075 symtabs; it doesn't hurt to check. */
3076
3077 /* Was NAME already seen? */
3078 if (filename_seen (name, 1, first))
3079 {
3080 /* Yes; don't print it again. */
3081 return;
3082 }
3083 /* No; print it and reset *FIRST. */
3084 if (*first)
3085 {
3086 *first = 0;
3087 }
3088 else
3089 {
3090 printf_filtered (", ");
3091 }
3092
3093 wrap_here ("");
3094 fputs_filtered (name, gdb_stdout);
3095 }
3096
3097 /* A callback for map_partial_symbol_filenames. */
3098
3099 static void
3100 output_partial_symbol_filename (const char *filename, const char *fullname,
3101 void *data)
3102 {
3103 output_source_filename (fullname ? fullname : filename, data);
3104 }
3105
3106 static void
3107 sources_info (char *ignore, int from_tty)
3108 {
3109 struct symtab *s;
3110 struct objfile *objfile;
3111 int first;
3112
3113 if (!have_full_symbols () && !have_partial_symbols ())
3114 {
3115 error (_("No symbol table is loaded. Use the \"file\" command."));
3116 }
3117
3118 printf_filtered ("Source files for which symbols have been read in:\n\n");
3119
3120 first = 1;
3121 ALL_SYMTABS (objfile, s)
3122 {
3123 const char *fullname = symtab_to_fullname (s);
3124
3125 output_source_filename (fullname ? fullname : s->filename, &first);
3126 }
3127 printf_filtered ("\n\n");
3128
3129 printf_filtered ("Source files for which symbols "
3130 "will be read in on demand:\n\n");
3131
3132 first = 1;
3133 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3134 1 /*need_fullname*/);
3135 printf_filtered ("\n");
3136 }
3137
3138 static int
3139 file_matches (const char *file, char *files[], int nfiles)
3140 {
3141 int i;
3142
3143 if (file != NULL && nfiles != 0)
3144 {
3145 for (i = 0; i < nfiles; i++)
3146 {
3147 if (filename_cmp (files[i], lbasename (file)) == 0)
3148 return 1;
3149 }
3150 }
3151 else if (nfiles == 0)
3152 return 1;
3153 return 0;
3154 }
3155
3156 /* Free any memory associated with a search. */
3157
3158 void
3159 free_search_symbols (struct symbol_search *symbols)
3160 {
3161 struct symbol_search *p;
3162 struct symbol_search *next;
3163
3164 for (p = symbols; p != NULL; p = next)
3165 {
3166 next = p->next;
3167 xfree (p);
3168 }
3169 }
3170
3171 static void
3172 do_free_search_symbols_cleanup (void *symbols)
3173 {
3174 free_search_symbols (symbols);
3175 }
3176
3177 struct cleanup *
3178 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3179 {
3180 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3181 }
3182
3183 /* Helper function for sort_search_symbols and qsort. Can only
3184 sort symbols, not minimal symbols. */
3185
3186 static int
3187 compare_search_syms (const void *sa, const void *sb)
3188 {
3189 struct symbol_search **sym_a = (struct symbol_search **) sa;
3190 struct symbol_search **sym_b = (struct symbol_search **) sb;
3191
3192 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3193 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3194 }
3195
3196 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3197 prevtail where it is, but update its next pointer to point to
3198 the first of the sorted symbols. */
3199
3200 static struct symbol_search *
3201 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3202 {
3203 struct symbol_search **symbols, *symp, *old_next;
3204 int i;
3205
3206 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3207 * nfound);
3208 symp = prevtail->next;
3209 for (i = 0; i < nfound; i++)
3210 {
3211 symbols[i] = symp;
3212 symp = symp->next;
3213 }
3214 /* Generally NULL. */
3215 old_next = symp;
3216
3217 qsort (symbols, nfound, sizeof (struct symbol_search *),
3218 compare_search_syms);
3219
3220 symp = prevtail;
3221 for (i = 0; i < nfound; i++)
3222 {
3223 symp->next = symbols[i];
3224 symp = symp->next;
3225 }
3226 symp->next = old_next;
3227
3228 xfree (symbols);
3229 return symp;
3230 }
3231
3232 /* An object of this type is passed as the user_data to the
3233 expand_symtabs_matching method. */
3234 struct search_symbols_data
3235 {
3236 int nfiles;
3237 char **files;
3238
3239 /* It is true if PREG contains valid data, false otherwise. */
3240 unsigned preg_p : 1;
3241 regex_t preg;
3242 };
3243
3244 /* A callback for expand_symtabs_matching. */
3245
3246 static int
3247 search_symbols_file_matches (const char *filename, void *user_data)
3248 {
3249 struct search_symbols_data *data = user_data;
3250
3251 return file_matches (filename, data->files, data->nfiles);
3252 }
3253
3254 /* A callback for expand_symtabs_matching. */
3255
3256 static int
3257 search_symbols_name_matches (const char *symname, void *user_data)
3258 {
3259 struct search_symbols_data *data = user_data;
3260
3261 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3262 }
3263
3264 /* Search the symbol table for matches to the regular expression REGEXP,
3265 returning the results in *MATCHES.
3266
3267 Only symbols of KIND are searched:
3268 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3269 and constants (enums)
3270 FUNCTIONS_DOMAIN - search all functions
3271 TYPES_DOMAIN - search all type names
3272 ALL_DOMAIN - an internal error for this function
3273
3274 free_search_symbols should be called when *MATCHES is no longer needed.
3275
3276 The results are sorted locally; each symtab's global and static blocks are
3277 separately alphabetized. */
3278
3279 void
3280 search_symbols (char *regexp, enum search_domain kind,
3281 int nfiles, char *files[],
3282 struct symbol_search **matches)
3283 {
3284 struct symtab *s;
3285 struct blockvector *bv;
3286 struct block *b;
3287 int i = 0;
3288 struct dict_iterator iter;
3289 struct symbol *sym;
3290 struct objfile *objfile;
3291 struct minimal_symbol *msymbol;
3292 char *val;
3293 int found_misc = 0;
3294 static const enum minimal_symbol_type types[]
3295 = {mst_data, mst_text, mst_abs};
3296 static const enum minimal_symbol_type types2[]
3297 = {mst_bss, mst_file_text, mst_abs};
3298 static const enum minimal_symbol_type types3[]
3299 = {mst_file_data, mst_solib_trampoline, mst_abs};
3300 static const enum minimal_symbol_type types4[]
3301 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3302 enum minimal_symbol_type ourtype;
3303 enum minimal_symbol_type ourtype2;
3304 enum minimal_symbol_type ourtype3;
3305 enum minimal_symbol_type ourtype4;
3306 struct symbol_search *sr;
3307 struct symbol_search *psr;
3308 struct symbol_search *tail;
3309 struct search_symbols_data datum;
3310
3311 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3312 CLEANUP_CHAIN is freed only in the case of an error. */
3313 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3314 struct cleanup *retval_chain;
3315
3316 gdb_assert (kind <= TYPES_DOMAIN);
3317
3318 ourtype = types[kind];
3319 ourtype2 = types2[kind];
3320 ourtype3 = types3[kind];
3321 ourtype4 = types4[kind];
3322
3323 sr = *matches = NULL;
3324 tail = NULL;
3325 datum.preg_p = 0;
3326
3327 if (regexp != NULL)
3328 {
3329 /* Make sure spacing is right for C++ operators.
3330 This is just a courtesy to make the matching less sensitive
3331 to how many spaces the user leaves between 'operator'
3332 and <TYPENAME> or <OPERATOR>. */
3333 char *opend;
3334 char *opname = operator_chars (regexp, &opend);
3335 int errcode;
3336
3337 if (*opname)
3338 {
3339 int fix = -1; /* -1 means ok; otherwise number of
3340 spaces needed. */
3341
3342 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3343 {
3344 /* There should 1 space between 'operator' and 'TYPENAME'. */
3345 if (opname[-1] != ' ' || opname[-2] == ' ')
3346 fix = 1;
3347 }
3348 else
3349 {
3350 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3351 if (opname[-1] == ' ')
3352 fix = 0;
3353 }
3354 /* If wrong number of spaces, fix it. */
3355 if (fix >= 0)
3356 {
3357 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3358
3359 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3360 regexp = tmp;
3361 }
3362 }
3363
3364 errcode = regcomp (&datum.preg, regexp,
3365 REG_NOSUB | (case_sensitivity == case_sensitive_off
3366 ? REG_ICASE : 0));
3367 if (errcode != 0)
3368 {
3369 char *err = get_regcomp_error (errcode, &datum.preg);
3370
3371 make_cleanup (xfree, err);
3372 error (_("Invalid regexp (%s): %s"), err, regexp);
3373 }
3374 datum.preg_p = 1;
3375 make_regfree_cleanup (&datum.preg);
3376 }
3377
3378 /* Search through the partial symtabs *first* for all symbols
3379 matching the regexp. That way we don't have to reproduce all of
3380 the machinery below. */
3381
3382 datum.nfiles = nfiles;
3383 datum.files = files;
3384 ALL_OBJFILES (objfile)
3385 {
3386 if (objfile->sf)
3387 objfile->sf->qf->expand_symtabs_matching (objfile,
3388 search_symbols_file_matches,
3389 search_symbols_name_matches,
3390 kind,
3391 &datum);
3392 }
3393
3394 retval_chain = old_chain;
3395
3396 /* Here, we search through the minimal symbol tables for functions
3397 and variables that match, and force their symbols to be read.
3398 This is in particular necessary for demangled variable names,
3399 which are no longer put into the partial symbol tables.
3400 The symbol will then be found during the scan of symtabs below.
3401
3402 For functions, find_pc_symtab should succeed if we have debug info
3403 for the function, for variables we have to call lookup_symbol
3404 to determine if the variable has debug info.
3405 If the lookup fails, set found_misc so that we will rescan to print
3406 any matching symbols without debug info. */
3407
3408 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3409 {
3410 ALL_MSYMBOLS (objfile, msymbol)
3411 {
3412 QUIT;
3413
3414 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3415 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3416 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3417 MSYMBOL_TYPE (msymbol) == ourtype4)
3418 {
3419 if (!datum.preg_p
3420 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3421 NULL, 0) == 0)
3422 {
3423 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3424 {
3425 /* FIXME: carlton/2003-02-04: Given that the
3426 semantics of lookup_symbol keeps on changing
3427 slightly, it would be a nice idea if we had a
3428 function lookup_symbol_minsym that found the
3429 symbol associated to a given minimal symbol (if
3430 any). */
3431 if (kind == FUNCTIONS_DOMAIN
3432 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3433 (struct block *) NULL,
3434 VAR_DOMAIN, 0)
3435 == NULL)
3436 found_misc = 1;
3437 }
3438 }
3439 }
3440 }
3441 }
3442
3443 ALL_PRIMARY_SYMTABS (objfile, s)
3444 {
3445 bv = BLOCKVECTOR (s);
3446 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3447 {
3448 struct symbol_search *prevtail = tail;
3449 int nfound = 0;
3450
3451 b = BLOCKVECTOR_BLOCK (bv, i);
3452 ALL_BLOCK_SYMBOLS (b, iter, sym)
3453 {
3454 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3455
3456 QUIT;
3457
3458 if (file_matches (real_symtab->filename, files, nfiles)
3459 && ((!datum.preg_p
3460 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3461 NULL, 0) == 0)
3462 && ((kind == VARIABLES_DOMAIN
3463 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3464 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3465 && SYMBOL_CLASS (sym) != LOC_BLOCK
3466 /* LOC_CONST can be used for more than just enums,
3467 e.g., c++ static const members.
3468 We only want to skip enums here. */
3469 && !(SYMBOL_CLASS (sym) == LOC_CONST
3470 && TYPE_CODE (SYMBOL_TYPE (sym))
3471 == TYPE_CODE_ENUM))
3472 || (kind == FUNCTIONS_DOMAIN
3473 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3474 || (kind == TYPES_DOMAIN
3475 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3476 {
3477 /* match */
3478 psr = (struct symbol_search *)
3479 xmalloc (sizeof (struct symbol_search));
3480 psr->block = i;
3481 psr->symtab = real_symtab;
3482 psr->symbol = sym;
3483 psr->msymbol = NULL;
3484 psr->next = NULL;
3485 if (tail == NULL)
3486 sr = psr;
3487 else
3488 tail->next = psr;
3489 tail = psr;
3490 nfound ++;
3491 }
3492 }
3493 if (nfound > 0)
3494 {
3495 if (prevtail == NULL)
3496 {
3497 struct symbol_search dummy;
3498
3499 dummy.next = sr;
3500 tail = sort_search_symbols (&dummy, nfound);
3501 sr = dummy.next;
3502
3503 make_cleanup_free_search_symbols (sr);
3504 }
3505 else
3506 tail = sort_search_symbols (prevtail, nfound);
3507 }
3508 }
3509 }
3510
3511 /* If there are no eyes, avoid all contact. I mean, if there are
3512 no debug symbols, then print directly from the msymbol_vector. */
3513
3514 if (found_misc || kind != FUNCTIONS_DOMAIN)
3515 {
3516 ALL_MSYMBOLS (objfile, msymbol)
3517 {
3518 QUIT;
3519
3520 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3521 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3522 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3523 MSYMBOL_TYPE (msymbol) == ourtype4)
3524 {
3525 if (!datum.preg_p
3526 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3527 NULL, 0) == 0)
3528 {
3529 /* Functions: Look up by address. */
3530 if (kind != FUNCTIONS_DOMAIN ||
3531 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3532 {
3533 /* Variables/Absolutes: Look up by name. */
3534 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3535 (struct block *) NULL, VAR_DOMAIN, 0)
3536 == NULL)
3537 {
3538 /* match */
3539 psr = (struct symbol_search *)
3540 xmalloc (sizeof (struct symbol_search));
3541 psr->block = i;
3542 psr->msymbol = msymbol;
3543 psr->symtab = NULL;
3544 psr->symbol = NULL;
3545 psr->next = NULL;
3546 if (tail == NULL)
3547 {
3548 sr = psr;
3549 make_cleanup_free_search_symbols (sr);
3550 }
3551 else
3552 tail->next = psr;
3553 tail = psr;
3554 }
3555 }
3556 }
3557 }
3558 }
3559 }
3560
3561 discard_cleanups (retval_chain);
3562 do_cleanups (old_chain);
3563 *matches = sr;
3564 }
3565
3566 /* Helper function for symtab_symbol_info, this function uses
3567 the data returned from search_symbols() to print information
3568 regarding the match to gdb_stdout. */
3569
3570 static void
3571 print_symbol_info (enum search_domain kind,
3572 struct symtab *s, struct symbol *sym,
3573 int block, char *last)
3574 {
3575 if (last == NULL || filename_cmp (last, s->filename) != 0)
3576 {
3577 fputs_filtered ("\nFile ", gdb_stdout);
3578 fputs_filtered (s->filename, gdb_stdout);
3579 fputs_filtered (":\n", gdb_stdout);
3580 }
3581
3582 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3583 printf_filtered ("static ");
3584
3585 /* Typedef that is not a C++ class. */
3586 if (kind == TYPES_DOMAIN
3587 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3588 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3589 /* variable, func, or typedef-that-is-c++-class. */
3590 else if (kind < TYPES_DOMAIN ||
3591 (kind == TYPES_DOMAIN &&
3592 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3593 {
3594 type_print (SYMBOL_TYPE (sym),
3595 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3596 ? "" : SYMBOL_PRINT_NAME (sym)),
3597 gdb_stdout, 0);
3598
3599 printf_filtered (";\n");
3600 }
3601 }
3602
3603 /* This help function for symtab_symbol_info() prints information
3604 for non-debugging symbols to gdb_stdout. */
3605
3606 static void
3607 print_msymbol_info (struct minimal_symbol *msymbol)
3608 {
3609 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3610 char *tmp;
3611
3612 if (gdbarch_addr_bit (gdbarch) <= 32)
3613 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3614 & (CORE_ADDR) 0xffffffff,
3615 8);
3616 else
3617 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3618 16);
3619 printf_filtered ("%s %s\n",
3620 tmp, SYMBOL_PRINT_NAME (msymbol));
3621 }
3622
3623 /* This is the guts of the commands "info functions", "info types", and
3624 "info variables". It calls search_symbols to find all matches and then
3625 print_[m]symbol_info to print out some useful information about the
3626 matches. */
3627
3628 static void
3629 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3630 {
3631 static const char * const classnames[] =
3632 {"variable", "function", "type"};
3633 struct symbol_search *symbols;
3634 struct symbol_search *p;
3635 struct cleanup *old_chain;
3636 char *last_filename = NULL;
3637 int first = 1;
3638
3639 gdb_assert (kind <= TYPES_DOMAIN);
3640
3641 /* Must make sure that if we're interrupted, symbols gets freed. */
3642 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3643 old_chain = make_cleanup_free_search_symbols (symbols);
3644
3645 printf_filtered (regexp
3646 ? "All %ss matching regular expression \"%s\":\n"
3647 : "All defined %ss:\n",
3648 classnames[kind], regexp);
3649
3650 for (p = symbols; p != NULL; p = p->next)
3651 {
3652 QUIT;
3653
3654 if (p->msymbol != NULL)
3655 {
3656 if (first)
3657 {
3658 printf_filtered ("\nNon-debugging symbols:\n");
3659 first = 0;
3660 }
3661 print_msymbol_info (p->msymbol);
3662 }
3663 else
3664 {
3665 print_symbol_info (kind,
3666 p->symtab,
3667 p->symbol,
3668 p->block,
3669 last_filename);
3670 last_filename = p->symtab->filename;
3671 }
3672 }
3673
3674 do_cleanups (old_chain);
3675 }
3676
3677 static void
3678 variables_info (char *regexp, int from_tty)
3679 {
3680 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3681 }
3682
3683 static void
3684 functions_info (char *regexp, int from_tty)
3685 {
3686 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3687 }
3688
3689
3690 static void
3691 types_info (char *regexp, int from_tty)
3692 {
3693 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3694 }
3695
3696 /* Breakpoint all functions matching regular expression. */
3697
3698 void
3699 rbreak_command_wrapper (char *regexp, int from_tty)
3700 {
3701 rbreak_command (regexp, from_tty);
3702 }
3703
3704 /* A cleanup function that calls end_rbreak_breakpoints. */
3705
3706 static void
3707 do_end_rbreak_breakpoints (void *ignore)
3708 {
3709 end_rbreak_breakpoints ();
3710 }
3711
3712 static void
3713 rbreak_command (char *regexp, int from_tty)
3714 {
3715 struct symbol_search *ss;
3716 struct symbol_search *p;
3717 struct cleanup *old_chain;
3718 char *string = NULL;
3719 int len = 0;
3720 char **files = NULL, *file_name;
3721 int nfiles = 0;
3722
3723 if (regexp)
3724 {
3725 char *colon = strchr (regexp, ':');
3726
3727 if (colon && *(colon + 1) != ':')
3728 {
3729 int colon_index;
3730
3731 colon_index = colon - regexp;
3732 file_name = alloca (colon_index + 1);
3733 memcpy (file_name, regexp, colon_index);
3734 file_name[colon_index--] = 0;
3735 while (isspace (file_name[colon_index]))
3736 file_name[colon_index--] = 0;
3737 files = &file_name;
3738 nfiles = 1;
3739 regexp = colon + 1;
3740 while (isspace (*regexp)) regexp++;
3741 }
3742 }
3743
3744 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3745 old_chain = make_cleanup_free_search_symbols (ss);
3746 make_cleanup (free_current_contents, &string);
3747
3748 start_rbreak_breakpoints ();
3749 make_cleanup (do_end_rbreak_breakpoints, NULL);
3750 for (p = ss; p != NULL; p = p->next)
3751 {
3752 if (p->msymbol == NULL)
3753 {
3754 int newlen = (strlen (p->symtab->filename)
3755 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3756 + 4);
3757
3758 if (newlen > len)
3759 {
3760 string = xrealloc (string, newlen);
3761 len = newlen;
3762 }
3763 strcpy (string, p->symtab->filename);
3764 strcat (string, ":'");
3765 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3766 strcat (string, "'");
3767 break_command (string, from_tty);
3768 print_symbol_info (FUNCTIONS_DOMAIN,
3769 p->symtab,
3770 p->symbol,
3771 p->block,
3772 p->symtab->filename);
3773 }
3774 else
3775 {
3776 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3777
3778 if (newlen > len)
3779 {
3780 string = xrealloc (string, newlen);
3781 len = newlen;
3782 }
3783 strcpy (string, "'");
3784 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3785 strcat (string, "'");
3786
3787 break_command (string, from_tty);
3788 printf_filtered ("<function, no debug info> %s;\n",
3789 SYMBOL_PRINT_NAME (p->msymbol));
3790 }
3791 }
3792
3793 do_cleanups (old_chain);
3794 }
3795 \f
3796
3797 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3798
3799 Either sym_text[sym_text_len] != '(' and then we search for any
3800 symbol starting with SYM_TEXT text.
3801
3802 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3803 be terminated at that point. Partial symbol tables do not have parameters
3804 information. */
3805
3806 static int
3807 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3808 {
3809 int (*ncmp) (const char *, const char *, size_t);
3810
3811 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3812
3813 if (ncmp (name, sym_text, sym_text_len) != 0)
3814 return 0;
3815
3816 if (sym_text[sym_text_len] == '(')
3817 {
3818 /* User searches for `name(someth...'. Require NAME to be terminated.
3819 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3820 present but accept even parameters presence. In this case this
3821 function is in fact strcmp_iw but whitespace skipping is not supported
3822 for tab completion. */
3823
3824 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3825 return 0;
3826 }
3827
3828 return 1;
3829 }
3830
3831 /* Free any memory associated with a completion list. */
3832
3833 static void
3834 free_completion_list (char ***list_ptr)
3835 {
3836 int i = 0;
3837 char **list = *list_ptr;
3838
3839 while (list[i] != NULL)
3840 {
3841 xfree (list[i]);
3842 i++;
3843 }
3844 xfree (list);
3845 }
3846
3847 /* Callback for make_cleanup. */
3848
3849 static void
3850 do_free_completion_list (void *list)
3851 {
3852 free_completion_list (list);
3853 }
3854
3855 /* Helper routine for make_symbol_completion_list. */
3856
3857 static int return_val_size;
3858 static int return_val_index;
3859 static char **return_val;
3860
3861 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3862 completion_list_add_name \
3863 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3864
3865 /* Test to see if the symbol specified by SYMNAME (which is already
3866 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3867 characters. If so, add it to the current completion list. */
3868
3869 static void
3870 completion_list_add_name (const char *symname,
3871 const char *sym_text, int sym_text_len,
3872 const char *text, const char *word)
3873 {
3874 int newsize;
3875
3876 /* Clip symbols that cannot match. */
3877 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3878 return;
3879
3880 /* We have a match for a completion, so add SYMNAME to the current list
3881 of matches. Note that the name is moved to freshly malloc'd space. */
3882
3883 {
3884 char *new;
3885
3886 if (word == sym_text)
3887 {
3888 new = xmalloc (strlen (symname) + 5);
3889 strcpy (new, symname);
3890 }
3891 else if (word > sym_text)
3892 {
3893 /* Return some portion of symname. */
3894 new = xmalloc (strlen (symname) + 5);
3895 strcpy (new, symname + (word - sym_text));
3896 }
3897 else
3898 {
3899 /* Return some of SYM_TEXT plus symname. */
3900 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3901 strncpy (new, word, sym_text - word);
3902 new[sym_text - word] = '\0';
3903 strcat (new, symname);
3904 }
3905
3906 if (return_val_index + 3 > return_val_size)
3907 {
3908 newsize = (return_val_size *= 2) * sizeof (char *);
3909 return_val = (char **) xrealloc ((char *) return_val, newsize);
3910 }
3911 return_val[return_val_index++] = new;
3912 return_val[return_val_index] = NULL;
3913 }
3914 }
3915
3916 /* ObjC: In case we are completing on a selector, look as the msymbol
3917 again and feed all the selectors into the mill. */
3918
3919 static void
3920 completion_list_objc_symbol (struct minimal_symbol *msymbol,
3921 const char *sym_text, int sym_text_len,
3922 const char *text, const char *word)
3923 {
3924 static char *tmp = NULL;
3925 static unsigned int tmplen = 0;
3926
3927 const char *method, *category, *selector;
3928 char *tmp2 = NULL;
3929
3930 method = SYMBOL_NATURAL_NAME (msymbol);
3931
3932 /* Is it a method? */
3933 if ((method[0] != '-') && (method[0] != '+'))
3934 return;
3935
3936 if (sym_text[0] == '[')
3937 /* Complete on shortened method method. */
3938 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3939
3940 while ((strlen (method) + 1) >= tmplen)
3941 {
3942 if (tmplen == 0)
3943 tmplen = 1024;
3944 else
3945 tmplen *= 2;
3946 tmp = xrealloc (tmp, tmplen);
3947 }
3948 selector = strchr (method, ' ');
3949 if (selector != NULL)
3950 selector++;
3951
3952 category = strchr (method, '(');
3953
3954 if ((category != NULL) && (selector != NULL))
3955 {
3956 memcpy (tmp, method, (category - method));
3957 tmp[category - method] = ' ';
3958 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3959 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3960 if (sym_text[0] == '[')
3961 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3962 }
3963
3964 if (selector != NULL)
3965 {
3966 /* Complete on selector only. */
3967 strcpy (tmp, selector);
3968 tmp2 = strchr (tmp, ']');
3969 if (tmp2 != NULL)
3970 *tmp2 = '\0';
3971
3972 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3973 }
3974 }
3975
3976 /* Break the non-quoted text based on the characters which are in
3977 symbols. FIXME: This should probably be language-specific. */
3978
3979 static char *
3980 language_search_unquoted_string (char *text, char *p)
3981 {
3982 for (; p > text; --p)
3983 {
3984 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3985 continue;
3986 else
3987 {
3988 if ((current_language->la_language == language_objc))
3989 {
3990 if (p[-1] == ':') /* Might be part of a method name. */
3991 continue;
3992 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3993 p -= 2; /* Beginning of a method name. */
3994 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3995 { /* Might be part of a method name. */
3996 char *t = p;
3997
3998 /* Seeing a ' ' or a '(' is not conclusive evidence
3999 that we are in the middle of a method name. However,
4000 finding "-[" or "+[" should be pretty un-ambiguous.
4001 Unfortunately we have to find it now to decide. */
4002
4003 while (t > text)
4004 if (isalnum (t[-1]) || t[-1] == '_' ||
4005 t[-1] == ' ' || t[-1] == ':' ||
4006 t[-1] == '(' || t[-1] == ')')
4007 --t;
4008 else
4009 break;
4010
4011 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4012 p = t - 2; /* Method name detected. */
4013 /* Else we leave with p unchanged. */
4014 }
4015 }
4016 break;
4017 }
4018 }
4019 return p;
4020 }
4021
4022 static void
4023 completion_list_add_fields (struct symbol *sym, char *sym_text,
4024 int sym_text_len, char *text, char *word)
4025 {
4026 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4027 {
4028 struct type *t = SYMBOL_TYPE (sym);
4029 enum type_code c = TYPE_CODE (t);
4030 int j;
4031
4032 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4033 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4034 if (TYPE_FIELD_NAME (t, j))
4035 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4036 sym_text, sym_text_len, text, word);
4037 }
4038 }
4039
4040 /* Type of the user_data argument passed to add_macro_name or
4041 expand_partial_symbol_name. The contents are simply whatever is
4042 needed by completion_list_add_name. */
4043 struct add_name_data
4044 {
4045 char *sym_text;
4046 int sym_text_len;
4047 char *text;
4048 char *word;
4049 };
4050
4051 /* A callback used with macro_for_each and macro_for_each_in_scope.
4052 This adds a macro's name to the current completion list. */
4053
4054 static void
4055 add_macro_name (const char *name, const struct macro_definition *ignore,
4056 struct macro_source_file *ignore2, int ignore3,
4057 void *user_data)
4058 {
4059 struct add_name_data *datum = (struct add_name_data *) user_data;
4060
4061 completion_list_add_name ((char *) name,
4062 datum->sym_text, datum->sym_text_len,
4063 datum->text, datum->word);
4064 }
4065
4066 /* A callback for expand_partial_symbol_names. */
4067
4068 static int
4069 expand_partial_symbol_name (const char *name, void *user_data)
4070 {
4071 struct add_name_data *datum = (struct add_name_data *) user_data;
4072
4073 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4074 }
4075
4076 char **
4077 default_make_symbol_completion_list_break_on (char *text, char *word,
4078 const char *break_on)
4079 {
4080 /* Problem: All of the symbols have to be copied because readline
4081 frees them. I'm not going to worry about this; hopefully there
4082 won't be that many. */
4083
4084 struct symbol *sym;
4085 struct symtab *s;
4086 struct minimal_symbol *msymbol;
4087 struct objfile *objfile;
4088 struct block *b;
4089 const struct block *surrounding_static_block, *surrounding_global_block;
4090 struct dict_iterator iter;
4091 /* The symbol we are completing on. Points in same buffer as text. */
4092 char *sym_text;
4093 /* Length of sym_text. */
4094 int sym_text_len;
4095 struct add_name_data datum;
4096 struct cleanup *back_to;
4097
4098 /* Now look for the symbol we are supposed to complete on. */
4099 {
4100 char *p;
4101 char quote_found;
4102 char *quote_pos = NULL;
4103
4104 /* First see if this is a quoted string. */
4105 quote_found = '\0';
4106 for (p = text; *p != '\0'; ++p)
4107 {
4108 if (quote_found != '\0')
4109 {
4110 if (*p == quote_found)
4111 /* Found close quote. */
4112 quote_found = '\0';
4113 else if (*p == '\\' && p[1] == quote_found)
4114 /* A backslash followed by the quote character
4115 doesn't end the string. */
4116 ++p;
4117 }
4118 else if (*p == '\'' || *p == '"')
4119 {
4120 quote_found = *p;
4121 quote_pos = p;
4122 }
4123 }
4124 if (quote_found == '\'')
4125 /* A string within single quotes can be a symbol, so complete on it. */
4126 sym_text = quote_pos + 1;
4127 else if (quote_found == '"')
4128 /* A double-quoted string is never a symbol, nor does it make sense
4129 to complete it any other way. */
4130 {
4131 return_val = (char **) xmalloc (sizeof (char *));
4132 return_val[0] = NULL;
4133 return return_val;
4134 }
4135 else
4136 {
4137 /* It is not a quoted string. Break it based on the characters
4138 which are in symbols. */
4139 while (p > text)
4140 {
4141 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4142 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4143 --p;
4144 else
4145 break;
4146 }
4147 sym_text = p;
4148 }
4149 }
4150
4151 sym_text_len = strlen (sym_text);
4152
4153 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4154
4155 if (current_language->la_language == language_cplus
4156 || current_language->la_language == language_java
4157 || current_language->la_language == language_fortran)
4158 {
4159 /* These languages may have parameters entered by user but they are never
4160 present in the partial symbol tables. */
4161
4162 const char *cs = memchr (sym_text, '(', sym_text_len);
4163
4164 if (cs)
4165 sym_text_len = cs - sym_text;
4166 }
4167 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4168
4169 return_val_size = 100;
4170 return_val_index = 0;
4171 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4172 return_val[0] = NULL;
4173 back_to = make_cleanup (do_free_completion_list, &return_val);
4174
4175 datum.sym_text = sym_text;
4176 datum.sym_text_len = sym_text_len;
4177 datum.text = text;
4178 datum.word = word;
4179
4180 /* Look through the partial symtabs for all symbols which begin
4181 by matching SYM_TEXT. Expand all CUs that you find to the list.
4182 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4183 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4184
4185 /* At this point scan through the misc symbol vectors and add each
4186 symbol you find to the list. Eventually we want to ignore
4187 anything that isn't a text symbol (everything else will be
4188 handled by the psymtab code above). */
4189
4190 ALL_MSYMBOLS (objfile, msymbol)
4191 {
4192 QUIT;
4193 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4194
4195 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4196 }
4197
4198 /* Search upwards from currently selected frame (so that we can
4199 complete on local vars). Also catch fields of types defined in
4200 this places which match our text string. Only complete on types
4201 visible from current context. */
4202
4203 b = get_selected_block (0);
4204 surrounding_static_block = block_static_block (b);
4205 surrounding_global_block = block_global_block (b);
4206 if (surrounding_static_block != NULL)
4207 while (b != surrounding_static_block)
4208 {
4209 QUIT;
4210
4211 ALL_BLOCK_SYMBOLS (b, iter, sym)
4212 {
4213 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4214 word);
4215 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4216 word);
4217 }
4218
4219 /* Stop when we encounter an enclosing function. Do not stop for
4220 non-inlined functions - the locals of the enclosing function
4221 are in scope for a nested function. */
4222 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4223 break;
4224 b = BLOCK_SUPERBLOCK (b);
4225 }
4226
4227 /* Add fields from the file's types; symbols will be added below. */
4228
4229 if (surrounding_static_block != NULL)
4230 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4231 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4232
4233 if (surrounding_global_block != NULL)
4234 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4235 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4236
4237 /* Go through the symtabs and check the externs and statics for
4238 symbols which match. */
4239
4240 ALL_PRIMARY_SYMTABS (objfile, s)
4241 {
4242 QUIT;
4243 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4244 ALL_BLOCK_SYMBOLS (b, iter, sym)
4245 {
4246 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4247 }
4248 }
4249
4250 ALL_PRIMARY_SYMTABS (objfile, s)
4251 {
4252 QUIT;
4253 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4254 ALL_BLOCK_SYMBOLS (b, iter, sym)
4255 {
4256 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4257 }
4258 }
4259
4260 if (current_language->la_macro_expansion == macro_expansion_c)
4261 {
4262 struct macro_scope *scope;
4263
4264 /* Add any macros visible in the default scope. Note that this
4265 may yield the occasional wrong result, because an expression
4266 might be evaluated in a scope other than the default. For
4267 example, if the user types "break file:line if <TAB>", the
4268 resulting expression will be evaluated at "file:line" -- but
4269 at there does not seem to be a way to detect this at
4270 completion time. */
4271 scope = default_macro_scope ();
4272 if (scope)
4273 {
4274 macro_for_each_in_scope (scope->file, scope->line,
4275 add_macro_name, &datum);
4276 xfree (scope);
4277 }
4278
4279 /* User-defined macros are always visible. */
4280 macro_for_each (macro_user_macros, add_macro_name, &datum);
4281 }
4282
4283 discard_cleanups (back_to);
4284 return (return_val);
4285 }
4286
4287 char **
4288 default_make_symbol_completion_list (char *text, char *word)
4289 {
4290 return default_make_symbol_completion_list_break_on (text, word, "");
4291 }
4292
4293 /* Return a NULL terminated array of all symbols (regardless of class)
4294 which begin by matching TEXT. If the answer is no symbols, then
4295 the return value is an array which contains only a NULL pointer. */
4296
4297 char **
4298 make_symbol_completion_list (char *text, char *word)
4299 {
4300 return current_language->la_make_symbol_completion_list (text, word);
4301 }
4302
4303 /* Like make_symbol_completion_list, but suitable for use as a
4304 completion function. */
4305
4306 char **
4307 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4308 char *text, char *word)
4309 {
4310 return make_symbol_completion_list (text, word);
4311 }
4312
4313 /* Like make_symbol_completion_list, but returns a list of symbols
4314 defined in a source file FILE. */
4315
4316 char **
4317 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4318 {
4319 struct symbol *sym;
4320 struct symtab *s;
4321 struct block *b;
4322 struct dict_iterator iter;
4323 /* The symbol we are completing on. Points in same buffer as text. */
4324 char *sym_text;
4325 /* Length of sym_text. */
4326 int sym_text_len;
4327
4328 /* Now look for the symbol we are supposed to complete on.
4329 FIXME: This should be language-specific. */
4330 {
4331 char *p;
4332 char quote_found;
4333 char *quote_pos = NULL;
4334
4335 /* First see if this is a quoted string. */
4336 quote_found = '\0';
4337 for (p = text; *p != '\0'; ++p)
4338 {
4339 if (quote_found != '\0')
4340 {
4341 if (*p == quote_found)
4342 /* Found close quote. */
4343 quote_found = '\0';
4344 else if (*p == '\\' && p[1] == quote_found)
4345 /* A backslash followed by the quote character
4346 doesn't end the string. */
4347 ++p;
4348 }
4349 else if (*p == '\'' || *p == '"')
4350 {
4351 quote_found = *p;
4352 quote_pos = p;
4353 }
4354 }
4355 if (quote_found == '\'')
4356 /* A string within single quotes can be a symbol, so complete on it. */
4357 sym_text = quote_pos + 1;
4358 else if (quote_found == '"')
4359 /* A double-quoted string is never a symbol, nor does it make sense
4360 to complete it any other way. */
4361 {
4362 return_val = (char **) xmalloc (sizeof (char *));
4363 return_val[0] = NULL;
4364 return return_val;
4365 }
4366 else
4367 {
4368 /* Not a quoted string. */
4369 sym_text = language_search_unquoted_string (text, p);
4370 }
4371 }
4372
4373 sym_text_len = strlen (sym_text);
4374
4375 return_val_size = 10;
4376 return_val_index = 0;
4377 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4378 return_val[0] = NULL;
4379
4380 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4381 in). */
4382 s = lookup_symtab (srcfile);
4383 if (s == NULL)
4384 {
4385 /* Maybe they typed the file with leading directories, while the
4386 symbol tables record only its basename. */
4387 const char *tail = lbasename (srcfile);
4388
4389 if (tail > srcfile)
4390 s = lookup_symtab (tail);
4391 }
4392
4393 /* If we have no symtab for that file, return an empty list. */
4394 if (s == NULL)
4395 return (return_val);
4396
4397 /* Go through this symtab and check the externs and statics for
4398 symbols which match. */
4399
4400 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4401 ALL_BLOCK_SYMBOLS (b, iter, sym)
4402 {
4403 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4404 }
4405
4406 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4407 ALL_BLOCK_SYMBOLS (b, iter, sym)
4408 {
4409 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4410 }
4411
4412 return (return_val);
4413 }
4414
4415 /* A helper function for make_source_files_completion_list. It adds
4416 another file name to a list of possible completions, growing the
4417 list as necessary. */
4418
4419 static void
4420 add_filename_to_list (const char *fname, char *text, char *word,
4421 char ***list, int *list_used, int *list_alloced)
4422 {
4423 char *new;
4424 size_t fnlen = strlen (fname);
4425
4426 if (*list_used + 1 >= *list_alloced)
4427 {
4428 *list_alloced *= 2;
4429 *list = (char **) xrealloc ((char *) *list,
4430 *list_alloced * sizeof (char *));
4431 }
4432
4433 if (word == text)
4434 {
4435 /* Return exactly fname. */
4436 new = xmalloc (fnlen + 5);
4437 strcpy (new, fname);
4438 }
4439 else if (word > text)
4440 {
4441 /* Return some portion of fname. */
4442 new = xmalloc (fnlen + 5);
4443 strcpy (new, fname + (word - text));
4444 }
4445 else
4446 {
4447 /* Return some of TEXT plus fname. */
4448 new = xmalloc (fnlen + (text - word) + 5);
4449 strncpy (new, word, text - word);
4450 new[text - word] = '\0';
4451 strcat (new, fname);
4452 }
4453 (*list)[*list_used] = new;
4454 (*list)[++*list_used] = NULL;
4455 }
4456
4457 static int
4458 not_interesting_fname (const char *fname)
4459 {
4460 static const char *illegal_aliens[] = {
4461 "_globals_", /* inserted by coff_symtab_read */
4462 NULL
4463 };
4464 int i;
4465
4466 for (i = 0; illegal_aliens[i]; i++)
4467 {
4468 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4469 return 1;
4470 }
4471 return 0;
4472 }
4473
4474 /* An object of this type is passed as the user_data argument to
4475 map_partial_symbol_filenames. */
4476 struct add_partial_filename_data
4477 {
4478 int *first;
4479 char *text;
4480 char *word;
4481 int text_len;
4482 char ***list;
4483 int *list_used;
4484 int *list_alloced;
4485 };
4486
4487 /* A callback for map_partial_symbol_filenames. */
4488
4489 static void
4490 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4491 void *user_data)
4492 {
4493 struct add_partial_filename_data *data = user_data;
4494
4495 if (not_interesting_fname (filename))
4496 return;
4497 if (!filename_seen (filename, 1, data->first)
4498 && filename_ncmp (filename, data->text, data->text_len) == 0)
4499 {
4500 /* This file matches for a completion; add it to the
4501 current list of matches. */
4502 add_filename_to_list (filename, data->text, data->word,
4503 data->list, data->list_used, data->list_alloced);
4504 }
4505 else
4506 {
4507 const char *base_name = lbasename (filename);
4508
4509 if (base_name != filename
4510 && !filename_seen (base_name, 1, data->first)
4511 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4512 add_filename_to_list (base_name, data->text, data->word,
4513 data->list, data->list_used, data->list_alloced);
4514 }
4515 }
4516
4517 /* Return a NULL terminated array of all source files whose names
4518 begin with matching TEXT. The file names are looked up in the
4519 symbol tables of this program. If the answer is no matchess, then
4520 the return value is an array which contains only a NULL pointer. */
4521
4522 char **
4523 make_source_files_completion_list (char *text, char *word)
4524 {
4525 struct symtab *s;
4526 struct objfile *objfile;
4527 int first = 1;
4528 int list_alloced = 1;
4529 int list_used = 0;
4530 size_t text_len = strlen (text);
4531 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4532 const char *base_name;
4533 struct add_partial_filename_data datum;
4534 struct cleanup *back_to;
4535
4536 list[0] = NULL;
4537
4538 if (!have_full_symbols () && !have_partial_symbols ())
4539 return list;
4540
4541 back_to = make_cleanup (do_free_completion_list, &list);
4542
4543 ALL_SYMTABS (objfile, s)
4544 {
4545 if (not_interesting_fname (s->filename))
4546 continue;
4547 if (!filename_seen (s->filename, 1, &first)
4548 && filename_ncmp (s->filename, text, text_len) == 0)
4549 {
4550 /* This file matches for a completion; add it to the current
4551 list of matches. */
4552 add_filename_to_list (s->filename, text, word,
4553 &list, &list_used, &list_alloced);
4554 }
4555 else
4556 {
4557 /* NOTE: We allow the user to type a base name when the
4558 debug info records leading directories, but not the other
4559 way around. This is what subroutines of breakpoint
4560 command do when they parse file names. */
4561 base_name = lbasename (s->filename);
4562 if (base_name != s->filename
4563 && !filename_seen (base_name, 1, &first)
4564 && filename_ncmp (base_name, text, text_len) == 0)
4565 add_filename_to_list (base_name, text, word,
4566 &list, &list_used, &list_alloced);
4567 }
4568 }
4569
4570 datum.first = &first;
4571 datum.text = text;
4572 datum.word = word;
4573 datum.text_len = text_len;
4574 datum.list = &list;
4575 datum.list_used = &list_used;
4576 datum.list_alloced = &list_alloced;
4577 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4578 0 /*need_fullname*/);
4579 discard_cleanups (back_to);
4580
4581 return list;
4582 }
4583
4584 /* Determine if PC is in the prologue of a function. The prologue is the area
4585 between the first instruction of a function, and the first executable line.
4586 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4587
4588 If non-zero, func_start is where we think the prologue starts, possibly
4589 by previous examination of symbol table information. */
4590
4591 int
4592 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4593 {
4594 struct symtab_and_line sal;
4595 CORE_ADDR func_addr, func_end;
4596
4597 /* We have several sources of information we can consult to figure
4598 this out.
4599 - Compilers usually emit line number info that marks the prologue
4600 as its own "source line". So the ending address of that "line"
4601 is the end of the prologue. If available, this is the most
4602 reliable method.
4603 - The minimal symbols and partial symbols, which can usually tell
4604 us the starting and ending addresses of a function.
4605 - If we know the function's start address, we can call the
4606 architecture-defined gdbarch_skip_prologue function to analyze the
4607 instruction stream and guess where the prologue ends.
4608 - Our `func_start' argument; if non-zero, this is the caller's
4609 best guess as to the function's entry point. At the time of
4610 this writing, handle_inferior_event doesn't get this right, so
4611 it should be our last resort. */
4612
4613 /* Consult the partial symbol table, to find which function
4614 the PC is in. */
4615 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4616 {
4617 CORE_ADDR prologue_end;
4618
4619 /* We don't even have minsym information, so fall back to using
4620 func_start, if given. */
4621 if (! func_start)
4622 return 1; /* We *might* be in a prologue. */
4623
4624 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4625
4626 return func_start <= pc && pc < prologue_end;
4627 }
4628
4629 /* If we have line number information for the function, that's
4630 usually pretty reliable. */
4631 sal = find_pc_line (func_addr, 0);
4632
4633 /* Now sal describes the source line at the function's entry point,
4634 which (by convention) is the prologue. The end of that "line",
4635 sal.end, is the end of the prologue.
4636
4637 Note that, for functions whose source code is all on a single
4638 line, the line number information doesn't always end up this way.
4639 So we must verify that our purported end-of-prologue address is
4640 *within* the function, not at its start or end. */
4641 if (sal.line == 0
4642 || sal.end <= func_addr
4643 || func_end <= sal.end)
4644 {
4645 /* We don't have any good line number info, so use the minsym
4646 information, together with the architecture-specific prologue
4647 scanning code. */
4648 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4649
4650 return func_addr <= pc && pc < prologue_end;
4651 }
4652
4653 /* We have line number info, and it looks good. */
4654 return func_addr <= pc && pc < sal.end;
4655 }
4656
4657 /* Given PC at the function's start address, attempt to find the
4658 prologue end using SAL information. Return zero if the skip fails.
4659
4660 A non-optimized prologue traditionally has one SAL for the function
4661 and a second for the function body. A single line function has
4662 them both pointing at the same line.
4663
4664 An optimized prologue is similar but the prologue may contain
4665 instructions (SALs) from the instruction body. Need to skip those
4666 while not getting into the function body.
4667
4668 The functions end point and an increasing SAL line are used as
4669 indicators of the prologue's endpoint.
4670
4671 This code is based on the function refine_prologue_limit
4672 (found in ia64). */
4673
4674 CORE_ADDR
4675 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4676 {
4677 struct symtab_and_line prologue_sal;
4678 CORE_ADDR start_pc;
4679 CORE_ADDR end_pc;
4680 struct block *bl;
4681
4682 /* Get an initial range for the function. */
4683 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4684 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4685
4686 prologue_sal = find_pc_line (start_pc, 0);
4687 if (prologue_sal.line != 0)
4688 {
4689 /* For languages other than assembly, treat two consecutive line
4690 entries at the same address as a zero-instruction prologue.
4691 The GNU assembler emits separate line notes for each instruction
4692 in a multi-instruction macro, but compilers generally will not
4693 do this. */
4694 if (prologue_sal.symtab->language != language_asm)
4695 {
4696 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4697 int idx = 0;
4698
4699 /* Skip any earlier lines, and any end-of-sequence marker
4700 from a previous function. */
4701 while (linetable->item[idx].pc != prologue_sal.pc
4702 || linetable->item[idx].line == 0)
4703 idx++;
4704
4705 if (idx+1 < linetable->nitems
4706 && linetable->item[idx+1].line != 0
4707 && linetable->item[idx+1].pc == start_pc)
4708 return start_pc;
4709 }
4710
4711 /* If there is only one sal that covers the entire function,
4712 then it is probably a single line function, like
4713 "foo(){}". */
4714 if (prologue_sal.end >= end_pc)
4715 return 0;
4716
4717 while (prologue_sal.end < end_pc)
4718 {
4719 struct symtab_and_line sal;
4720
4721 sal = find_pc_line (prologue_sal.end, 0);
4722 if (sal.line == 0)
4723 break;
4724 /* Assume that a consecutive SAL for the same (or larger)
4725 line mark the prologue -> body transition. */
4726 if (sal.line >= prologue_sal.line)
4727 break;
4728
4729 /* The line number is smaller. Check that it's from the
4730 same function, not something inlined. If it's inlined,
4731 then there is no point comparing the line numbers. */
4732 bl = block_for_pc (prologue_sal.end);
4733 while (bl)
4734 {
4735 if (block_inlined_p (bl))
4736 break;
4737 if (BLOCK_FUNCTION (bl))
4738 {
4739 bl = NULL;
4740 break;
4741 }
4742 bl = BLOCK_SUPERBLOCK (bl);
4743 }
4744 if (bl != NULL)
4745 break;
4746
4747 /* The case in which compiler's optimizer/scheduler has
4748 moved instructions into the prologue. We look ahead in
4749 the function looking for address ranges whose
4750 corresponding line number is less the first one that we
4751 found for the function. This is more conservative then
4752 refine_prologue_limit which scans a large number of SALs
4753 looking for any in the prologue. */
4754 prologue_sal = sal;
4755 }
4756 }
4757
4758 if (prologue_sal.end < end_pc)
4759 /* Return the end of this line, or zero if we could not find a
4760 line. */
4761 return prologue_sal.end;
4762 else
4763 /* Don't return END_PC, which is past the end of the function. */
4764 return prologue_sal.pc;
4765 }
4766 \f
4767 struct symtabs_and_lines
4768 decode_line_spec (char *string, int flags)
4769 {
4770 struct symtabs_and_lines sals;
4771 struct symtab_and_line cursal;
4772
4773 if (string == 0)
4774 error (_("Empty line specification."));
4775
4776 /* We use whatever is set as the current source line. We do not try
4777 and get a default or it will recursively call us! */
4778 cursal = get_current_source_symtab_and_line ();
4779
4780 sals = decode_line_1 (&string, flags,
4781 cursal.symtab, cursal.line);
4782
4783 if (*string)
4784 error (_("Junk at end of line specification: %s"), string);
4785 return sals;
4786 }
4787
4788 /* Track MAIN */
4789 static char *name_of_main;
4790 enum language language_of_main = language_unknown;
4791
4792 void
4793 set_main_name (const char *name)
4794 {
4795 if (name_of_main != NULL)
4796 {
4797 xfree (name_of_main);
4798 name_of_main = NULL;
4799 language_of_main = language_unknown;
4800 }
4801 if (name != NULL)
4802 {
4803 name_of_main = xstrdup (name);
4804 language_of_main = language_unknown;
4805 }
4806 }
4807
4808 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4809 accordingly. */
4810
4811 static void
4812 find_main_name (void)
4813 {
4814 const char *new_main_name;
4815
4816 /* Try to see if the main procedure is in Ada. */
4817 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4818 be to add a new method in the language vector, and call this
4819 method for each language until one of them returns a non-empty
4820 name. This would allow us to remove this hard-coded call to
4821 an Ada function. It is not clear that this is a better approach
4822 at this point, because all methods need to be written in a way
4823 such that false positives never be returned. For instance, it is
4824 important that a method does not return a wrong name for the main
4825 procedure if the main procedure is actually written in a different
4826 language. It is easy to guaranty this with Ada, since we use a
4827 special symbol generated only when the main in Ada to find the name
4828 of the main procedure. It is difficult however to see how this can
4829 be guarantied for languages such as C, for instance. This suggests
4830 that order of call for these methods becomes important, which means
4831 a more complicated approach. */
4832 new_main_name = ada_main_name ();
4833 if (new_main_name != NULL)
4834 {
4835 set_main_name (new_main_name);
4836 return;
4837 }
4838
4839 new_main_name = go_main_name ();
4840 if (new_main_name != NULL)
4841 {
4842 set_main_name (new_main_name);
4843 return;
4844 }
4845
4846 new_main_name = pascal_main_name ();
4847 if (new_main_name != NULL)
4848 {
4849 set_main_name (new_main_name);
4850 return;
4851 }
4852
4853 /* The languages above didn't identify the name of the main procedure.
4854 Fallback to "main". */
4855 set_main_name ("main");
4856 }
4857
4858 char *
4859 main_name (void)
4860 {
4861 if (name_of_main == NULL)
4862 find_main_name ();
4863
4864 return name_of_main;
4865 }
4866
4867 /* Handle ``executable_changed'' events for the symtab module. */
4868
4869 static void
4870 symtab_observer_executable_changed (void)
4871 {
4872 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4873 set_main_name (NULL);
4874 }
4875
4876 /* Return 1 if the supplied producer string matches the ARM RealView
4877 compiler (armcc). */
4878
4879 int
4880 producer_is_realview (const char *producer)
4881 {
4882 static const char *const arm_idents[] = {
4883 "ARM C Compiler, ADS",
4884 "Thumb C Compiler, ADS",
4885 "ARM C++ Compiler, ADS",
4886 "Thumb C++ Compiler, ADS",
4887 "ARM/Thumb C/C++ Compiler, RVCT",
4888 "ARM C/C++ Compiler, RVCT"
4889 };
4890 int i;
4891
4892 if (producer == NULL)
4893 return 0;
4894
4895 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4896 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4897 return 1;
4898
4899 return 0;
4900 }
4901
4902 void
4903 _initialize_symtab (void)
4904 {
4905 add_info ("variables", variables_info, _("\
4906 All global and static variable names, or those matching REGEXP."));
4907 if (dbx_commands)
4908 add_com ("whereis", class_info, variables_info, _("\
4909 All global and static variable names, or those matching REGEXP."));
4910
4911 add_info ("functions", functions_info,
4912 _("All function names, or those matching REGEXP."));
4913
4914 /* FIXME: This command has at least the following problems:
4915 1. It prints builtin types (in a very strange and confusing fashion).
4916 2. It doesn't print right, e.g. with
4917 typedef struct foo *FOO
4918 type_print prints "FOO" when we want to make it (in this situation)
4919 print "struct foo *".
4920 I also think "ptype" or "whatis" is more likely to be useful (but if
4921 there is much disagreement "info types" can be fixed). */
4922 add_info ("types", types_info,
4923 _("All type names, or those matching REGEXP."));
4924
4925 add_info ("sources", sources_info,
4926 _("Source files in the program."));
4927
4928 add_com ("rbreak", class_breakpoint, rbreak_command,
4929 _("Set a breakpoint for all functions matching REGEXP."));
4930
4931 if (xdb_commands)
4932 {
4933 add_com ("lf", class_info, sources_info,
4934 _("Source files in the program"));
4935 add_com ("lg", class_info, variables_info, _("\
4936 All global and static variable names, or those matching REGEXP."));
4937 }
4938
4939 add_setshow_enum_cmd ("multiple-symbols", no_class,
4940 multiple_symbols_modes, &multiple_symbols_mode,
4941 _("\
4942 Set the debugger behavior when more than one symbol are possible matches\n\
4943 in an expression."), _("\
4944 Show how the debugger handles ambiguities in expressions."), _("\
4945 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4946 NULL, NULL, &setlist, &showlist);
4947
4948 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4949 &basenames_may_differ, _("\
4950 Set whether a source file may have multiple base names."), _("\
4951 Show whether a source file may have multiple base names."), _("\
4952 (A \"base name\" is the name of a file with the directory part removed.\n\
4953 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4954 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4955 before comparing them. Canonicalization is an expensive operation,\n\
4956 but it allows the same file be known by more than one base name.\n\
4957 If not set (the default), all source files are assumed to have just\n\
4958 one base name, and gdb will do file name comparisons more efficiently."),
4959 NULL, NULL,
4960 &setlist, &showlist);
4961
4962 observer_attach_executable_changed (symtab_observer_executable_changed);
4963 }
This page took 0.264859 seconds and 4 git commands to generate.