e5ed42a49b6d35b7e9d027fb1f75151b1de4d47d
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Symbols don't specify global vs static block.
187 So keep them in separate caches. */
188
189 struct block_symbol_cache
190 {
191 unsigned int hits;
192 unsigned int misses;
193 unsigned int collisions;
194
195 /* SYMBOLS is a variable length array of this size.
196 One can imagine that in general one cache (global/static) should be a
197 fraction of the size of the other, but there's no data at the moment
198 on which to decide. */
199 unsigned int size;
200
201 struct symbol_cache_slot symbols[1];
202 };
203
204 /* The symbol cache.
205
206 Searching for symbols in the static and global blocks over multiple objfiles
207 again and again can be slow, as can searching very big objfiles. This is a
208 simple cache to improve symbol lookup performance, which is critical to
209 overall gdb performance.
210
211 Symbols are hashed on the name, its domain, and block.
212 They are also hashed on their objfile for objfile-specific lookups. */
213
214 struct symbol_cache
215 {
216 symbol_cache () = default;
217
218 ~symbol_cache ()
219 {
220 xfree (global_symbols);
221 xfree (static_symbols);
222 }
223
224 struct block_symbol_cache *global_symbols = nullptr;
225 struct block_symbol_cache *static_symbols = nullptr;
226 };
227
228 /* Program space key for finding its symbol cache. */
229
230 static const program_space_key<symbol_cache> symbol_cache_key;
231
232 /* When non-zero, print debugging messages related to symtab creation. */
233 unsigned int symtab_create_debug = 0;
234
235 /* When non-zero, print debugging messages related to symbol lookup. */
236 unsigned int symbol_lookup_debug = 0;
237
238 /* The size of the cache is staged here. */
239 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
240
241 /* The current value of the symbol cache size.
242 This is saved so that if the user enters a value too big we can restore
243 the original value from here. */
244 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
245
246 /* True if a file may be known by two different basenames.
247 This is the uncommon case, and significantly slows down gdb.
248 Default set to "off" to not slow down the common case. */
249 bool basenames_may_differ = false;
250
251 /* Allow the user to configure the debugger behavior with respect
252 to multiple-choice menus when more than one symbol matches during
253 a symbol lookup. */
254
255 const char multiple_symbols_ask[] = "ask";
256 const char multiple_symbols_all[] = "all";
257 const char multiple_symbols_cancel[] = "cancel";
258 static const char *const multiple_symbols_modes[] =
259 {
260 multiple_symbols_ask,
261 multiple_symbols_all,
262 multiple_symbols_cancel,
263 NULL
264 };
265 static const char *multiple_symbols_mode = multiple_symbols_all;
266
267 /* Read-only accessor to AUTO_SELECT_MODE. */
268
269 const char *
270 multiple_symbols_select_mode (void)
271 {
272 return multiple_symbols_mode;
273 }
274
275 /* Return the name of a domain_enum. */
276
277 const char *
278 domain_name (domain_enum e)
279 {
280 switch (e)
281 {
282 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
283 case VAR_DOMAIN: return "VAR_DOMAIN";
284 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
285 case MODULE_DOMAIN: return "MODULE_DOMAIN";
286 case LABEL_DOMAIN: return "LABEL_DOMAIN";
287 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
288 default: gdb_assert_not_reached ("bad domain_enum");
289 }
290 }
291
292 /* Return the name of a search_domain . */
293
294 const char *
295 search_domain_name (enum search_domain e)
296 {
297 switch (e)
298 {
299 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
300 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
301 case TYPES_DOMAIN: return "TYPES_DOMAIN";
302 case MODULES_DOMAIN: return "MODULES_DOMAIN";
303 case ALL_DOMAIN: return "ALL_DOMAIN";
304 default: gdb_assert_not_reached ("bad search_domain");
305 }
306 }
307
308 /* See symtab.h. */
309
310 struct symtab *
311 compunit_primary_filetab (const struct compunit_symtab *cust)
312 {
313 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
314
315 /* The primary file symtab is the first one in the list. */
316 return COMPUNIT_FILETABS (cust);
317 }
318
319 /* See symtab.h. */
320
321 enum language
322 compunit_language (const struct compunit_symtab *cust)
323 {
324 struct symtab *symtab = compunit_primary_filetab (cust);
325
326 /* The language of the compunit symtab is the language of its primary
327 source file. */
328 return SYMTAB_LANGUAGE (symtab);
329 }
330
331 /* See symtab.h. */
332
333 bool
334 minimal_symbol::data_p () const
335 {
336 return type == mst_data
337 || type == mst_bss
338 || type == mst_abs
339 || type == mst_file_data
340 || type == mst_file_bss;
341 }
342
343 /* See symtab.h. */
344
345 bool
346 minimal_symbol::text_p () const
347 {
348 return type == mst_text
349 || type == mst_text_gnu_ifunc
350 || type == mst_data_gnu_ifunc
351 || type == mst_slot_got_plt
352 || type == mst_solib_trampoline
353 || type == mst_file_text;
354 }
355
356 /* See whether FILENAME matches SEARCH_NAME using the rule that we
357 advertise to the user. (The manual's description of linespecs
358 describes what we advertise). Returns true if they match, false
359 otherwise. */
360
361 bool
362 compare_filenames_for_search (const char *filename, const char *search_name)
363 {
364 int len = strlen (filename);
365 size_t search_len = strlen (search_name);
366
367 if (len < search_len)
368 return false;
369
370 /* The tail of FILENAME must match. */
371 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
372 return false;
373
374 /* Either the names must completely match, or the character
375 preceding the trailing SEARCH_NAME segment of FILENAME must be a
376 directory separator.
377
378 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
379 cannot match FILENAME "/path//dir/file.c" - as user has requested
380 absolute path. The sama applies for "c:\file.c" possibly
381 incorrectly hypothetically matching "d:\dir\c:\file.c".
382
383 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
384 compatible with SEARCH_NAME "file.c". In such case a compiler had
385 to put the "c:file.c" name into debug info. Such compatibility
386 works only on GDB built for DOS host. */
387 return (len == search_len
388 || (!IS_ABSOLUTE_PATH (search_name)
389 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
390 || (HAS_DRIVE_SPEC (filename)
391 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
392 }
393
394 /* Same as compare_filenames_for_search, but for glob-style patterns.
395 Heads up on the order of the arguments. They match the order of
396 compare_filenames_for_search, but it's the opposite of the order of
397 arguments to gdb_filename_fnmatch. */
398
399 bool
400 compare_glob_filenames_for_search (const char *filename,
401 const char *search_name)
402 {
403 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
404 all /s have to be explicitly specified. */
405 int file_path_elements = count_path_elements (filename);
406 int search_path_elements = count_path_elements (search_name);
407
408 if (search_path_elements > file_path_elements)
409 return false;
410
411 if (IS_ABSOLUTE_PATH (search_name))
412 {
413 return (search_path_elements == file_path_elements
414 && gdb_filename_fnmatch (search_name, filename,
415 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
416 }
417
418 {
419 const char *file_to_compare
420 = strip_leading_path_elements (filename,
421 file_path_elements - search_path_elements);
422
423 return gdb_filename_fnmatch (search_name, file_to_compare,
424 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
425 }
426 }
427
428 /* Check for a symtab of a specific name by searching some symtabs.
429 This is a helper function for callbacks of iterate_over_symtabs.
430
431 If NAME is not absolute, then REAL_PATH is NULL
432 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
433
434 The return value, NAME, REAL_PATH and CALLBACK are identical to the
435 `map_symtabs_matching_filename' method of quick_symbol_functions.
436
437 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
438 Each symtab within the specified compunit symtab is also searched.
439 AFTER_LAST is one past the last compunit symtab to search; NULL means to
440 search until the end of the list. */
441
442 bool
443 iterate_over_some_symtabs (const char *name,
444 const char *real_path,
445 struct compunit_symtab *first,
446 struct compunit_symtab *after_last,
447 gdb::function_view<bool (symtab *)> callback)
448 {
449 struct compunit_symtab *cust;
450 const char* base_name = lbasename (name);
451
452 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
453 {
454 for (symtab *s : compunit_filetabs (cust))
455 {
456 if (compare_filenames_for_search (s->filename, name))
457 {
458 if (callback (s))
459 return true;
460 continue;
461 }
462
463 /* Before we invoke realpath, which can get expensive when many
464 files are involved, do a quick comparison of the basenames. */
465 if (! basenames_may_differ
466 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
467 continue;
468
469 if (compare_filenames_for_search (symtab_to_fullname (s), name))
470 {
471 if (callback (s))
472 return true;
473 continue;
474 }
475
476 /* If the user gave us an absolute path, try to find the file in
477 this symtab and use its absolute path. */
478 if (real_path != NULL)
479 {
480 const char *fullname = symtab_to_fullname (s);
481
482 gdb_assert (IS_ABSOLUTE_PATH (real_path));
483 gdb_assert (IS_ABSOLUTE_PATH (name));
484 gdb::unique_xmalloc_ptr<char> fullname_real_path
485 = gdb_realpath (fullname);
486 fullname = fullname_real_path.get ();
487 if (FILENAME_CMP (real_path, fullname) == 0)
488 {
489 if (callback (s))
490 return true;
491 continue;
492 }
493 }
494 }
495 }
496
497 return false;
498 }
499
500 /* Check for a symtab of a specific name; first in symtabs, then in
501 psymtabs. *If* there is no '/' in the name, a match after a '/'
502 in the symtab filename will also work.
503
504 Calls CALLBACK with each symtab that is found. If CALLBACK returns
505 true, the search stops. */
506
507 void
508 iterate_over_symtabs (const char *name,
509 gdb::function_view<bool (symtab *)> callback)
510 {
511 gdb::unique_xmalloc_ptr<char> real_path;
512
513 /* Here we are interested in canonicalizing an absolute path, not
514 absolutizing a relative path. */
515 if (IS_ABSOLUTE_PATH (name))
516 {
517 real_path = gdb_realpath (name);
518 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
519 }
520
521 for (objfile *objfile : current_program_space->objfiles ())
522 {
523 if (iterate_over_some_symtabs (name, real_path.get (),
524 objfile->compunit_symtabs, NULL,
525 callback))
526 return;
527 }
528
529 /* Same search rules as above apply here, but now we look thru the
530 psymtabs. */
531
532 for (objfile *objfile : current_program_space->objfiles ())
533 {
534 if (objfile->sf
535 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
536 name,
537 real_path.get (),
538 callback))
539 return;
540 }
541 }
542
543 /* A wrapper for iterate_over_symtabs that returns the first matching
544 symtab, or NULL. */
545
546 struct symtab *
547 lookup_symtab (const char *name)
548 {
549 struct symtab *result = NULL;
550
551 iterate_over_symtabs (name, [&] (symtab *symtab)
552 {
553 result = symtab;
554 return true;
555 });
556
557 return result;
558 }
559
560 \f
561 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
562 full method name, which consist of the class name (from T), the unadorned
563 method name from METHOD_ID, and the signature for the specific overload,
564 specified by SIGNATURE_ID. Note that this function is g++ specific. */
565
566 char *
567 gdb_mangle_name (struct type *type, int method_id, int signature_id)
568 {
569 int mangled_name_len;
570 char *mangled_name;
571 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
572 struct fn_field *method = &f[signature_id];
573 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
574 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
575 const char *newname = TYPE_NAME (type);
576
577 /* Does the form of physname indicate that it is the full mangled name
578 of a constructor (not just the args)? */
579 int is_full_physname_constructor;
580
581 int is_constructor;
582 int is_destructor = is_destructor_name (physname);
583 /* Need a new type prefix. */
584 const char *const_prefix = method->is_const ? "C" : "";
585 const char *volatile_prefix = method->is_volatile ? "V" : "";
586 char buf[20];
587 int len = (newname == NULL ? 0 : strlen (newname));
588
589 /* Nothing to do if physname already contains a fully mangled v3 abi name
590 or an operator name. */
591 if ((physname[0] == '_' && physname[1] == 'Z')
592 || is_operator_name (field_name))
593 return xstrdup (physname);
594
595 is_full_physname_constructor = is_constructor_name (physname);
596
597 is_constructor = is_full_physname_constructor
598 || (newname && strcmp (field_name, newname) == 0);
599
600 if (!is_destructor)
601 is_destructor = (startswith (physname, "__dt"));
602
603 if (is_destructor || is_full_physname_constructor)
604 {
605 mangled_name = (char *) xmalloc (strlen (physname) + 1);
606 strcpy (mangled_name, physname);
607 return mangled_name;
608 }
609
610 if (len == 0)
611 {
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 }
614 else if (physname[0] == 't' || physname[0] == 'Q')
615 {
616 /* The physname for template and qualified methods already includes
617 the class name. */
618 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
619 newname = NULL;
620 len = 0;
621 }
622 else
623 {
624 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
625 volatile_prefix, len);
626 }
627 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
628 + strlen (buf) + len + strlen (physname) + 1);
629
630 mangled_name = (char *) xmalloc (mangled_name_len);
631 if (is_constructor)
632 mangled_name[0] = '\0';
633 else
634 strcpy (mangled_name, field_name);
635
636 strcat (mangled_name, buf);
637 /* If the class doesn't have a name, i.e. newname NULL, then we just
638 mangle it using 0 for the length of the class. Thus it gets mangled
639 as something starting with `::' rather than `classname::'. */
640 if (newname != NULL)
641 strcat (mangled_name, newname);
642
643 strcat (mangled_name, physname);
644 return (mangled_name);
645 }
646
647 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
648 correctly allocated. */
649
650 void
651 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
652 const char *name,
653 struct obstack *obstack)
654 {
655 if (gsymbol->language == language_ada)
656 {
657 if (name == NULL)
658 {
659 gsymbol->ada_mangled = 0;
660 gsymbol->language_specific.obstack = obstack;
661 }
662 else
663 {
664 gsymbol->ada_mangled = 1;
665 gsymbol->language_specific.demangled_name = name;
666 }
667 }
668 else
669 gsymbol->language_specific.demangled_name = name;
670 }
671
672 /* Return the demangled name of GSYMBOL. */
673
674 const char *
675 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
676 {
677 if (gsymbol->language == language_ada)
678 {
679 if (!gsymbol->ada_mangled)
680 return NULL;
681 /* Fall through. */
682 }
683
684 return gsymbol->language_specific.demangled_name;
685 }
686
687 \f
688 /* Initialize the language dependent portion of a symbol
689 depending upon the language for the symbol. */
690
691 void
692 symbol_set_language (struct general_symbol_info *gsymbol,
693 enum language language,
694 struct obstack *obstack)
695 {
696 gsymbol->language = language;
697 if (gsymbol->language == language_cplus
698 || gsymbol->language == language_d
699 || gsymbol->language == language_go
700 || gsymbol->language == language_objc
701 || gsymbol->language == language_fortran)
702 {
703 symbol_set_demangled_name (gsymbol, NULL, obstack);
704 }
705 else if (gsymbol->language == language_ada)
706 {
707 gdb_assert (gsymbol->ada_mangled == 0);
708 gsymbol->language_specific.obstack = obstack;
709 }
710 else
711 {
712 memset (&gsymbol->language_specific, 0,
713 sizeof (gsymbol->language_specific));
714 }
715 }
716
717 /* Functions to initialize a symbol's mangled name. */
718
719 /* Objects of this type are stored in the demangled name hash table. */
720 struct demangled_name_entry
721 {
722 demangled_name_entry (gdb::string_view mangled_name)
723 : mangled (mangled_name) {}
724
725 gdb::string_view mangled;
726 enum language language;
727 gdb::unique_xmalloc_ptr<char> demangled;
728 };
729
730 /* Hash function for the demangled name hash. */
731
732 static hashval_t
733 hash_demangled_name_entry (const void *data)
734 {
735 const struct demangled_name_entry *e
736 = (const struct demangled_name_entry *) data;
737
738 return fast_hash (e->mangled.data (), e->mangled.length ());
739 }
740
741 /* Equality function for the demangled name hash. */
742
743 static int
744 eq_demangled_name_entry (const void *a, const void *b)
745 {
746 const struct demangled_name_entry *da
747 = (const struct demangled_name_entry *) a;
748 const struct demangled_name_entry *db
749 = (const struct demangled_name_entry *) b;
750
751 return da->mangled == db->mangled;
752 }
753
754 static void
755 free_demangled_name_entry (void *data)
756 {
757 struct demangled_name_entry *e
758 = (struct demangled_name_entry *) data;
759
760 e->~demangled_name_entry();
761 }
762
763 /* Create the hash table used for demangled names. Each hash entry is
764 a pair of strings; one for the mangled name and one for the demangled
765 name. The entry is hashed via just the mangled name. */
766
767 static void
768 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
769 {
770 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
771 The hash table code will round this up to the next prime number.
772 Choosing a much larger table size wastes memory, and saves only about
773 1% in symbol reading. However, if the minsym count is already
774 initialized (e.g. because symbol name setting was deferred to
775 a background thread) we can initialize the hashtable with a count
776 based on that, because we will almost certainly have at least that
777 many entries. If we have a nonzero number but less than 256,
778 we still stay with 256 to have some space for psymbols, etc. */
779
780 /* htab will expand the table when it is 3/4th full, so we account for that
781 here. +2 to round up. */
782 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
783 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
784
785 per_bfd->demangled_names_hash.reset (htab_create_alloc
786 (count, hash_demangled_name_entry, eq_demangled_name_entry,
787 free_demangled_name_entry, xcalloc, xfree));
788 }
789
790 /* See symtab.h */
791
792 char *
793 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
794 const char *mangled)
795 {
796 char *demangled = NULL;
797 int i;
798
799 if (gsymbol->language == language_unknown)
800 gsymbol->language = language_auto;
801
802 if (gsymbol->language != language_auto)
803 {
804 const struct language_defn *lang = language_def (gsymbol->language);
805
806 language_sniff_from_mangled_name (lang, mangled, &demangled);
807 return demangled;
808 }
809
810 for (i = language_unknown; i < nr_languages; ++i)
811 {
812 enum language l = (enum language) i;
813 const struct language_defn *lang = language_def (l);
814
815 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
816 {
817 gsymbol->language = l;
818 return demangled;
819 }
820 }
821
822 return NULL;
823 }
824
825 /* Set both the mangled and demangled (if any) names for GSYMBOL based
826 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
827 objfile's obstack; but if COPY_NAME is 0 and if NAME is
828 NUL-terminated, then this function assumes that NAME is already
829 correctly saved (either permanently or with a lifetime tied to the
830 objfile), and it will not be copied.
831
832 The hash table corresponding to OBJFILE is used, and the memory
833 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
834 so the pointer can be discarded after calling this function. */
835
836 void
837 symbol_set_names (struct general_symbol_info *gsymbol,
838 gdb::string_view linkage_name, bool copy_name,
839 struct objfile_per_bfd_storage *per_bfd)
840 {
841 struct demangled_name_entry **slot;
842
843 if (gsymbol->language == language_ada)
844 {
845 /* In Ada, we do the symbol lookups using the mangled name, so
846 we can save some space by not storing the demangled name. */
847 if (!copy_name)
848 gsymbol->name = linkage_name.data ();
849 else
850 {
851 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
852 linkage_name.length () + 1);
853
854 memcpy (name, linkage_name.data (), linkage_name.length ());
855 name[linkage_name.length ()] = '\0';
856 gsymbol->name = name;
857 }
858 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 slot = ((struct demangled_name_entry **)
868 htab_find_slot (per_bfd->demangled_names_hash.get (),
869 &entry, INSERT));
870
871 /* If this name is not in the hash table, add it. */
872 if (*slot == NULL
873 /* A C version of the symbol may have already snuck into the table.
874 This happens to, e.g., main.init (__go_init_main). Cope. */
875 || (gsymbol->language == language_go && (*slot)->demangled == nullptr))
876 {
877 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
878 to true if the string might not be nullterminated. We have to make
879 this copy because demangling needs a nullterminated string. */
880 gdb::string_view linkage_name_copy;
881 if (copy_name)
882 {
883 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
884 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
885 alloc_name[linkage_name.length ()] = '\0';
886
887 linkage_name_copy = gdb::string_view (alloc_name,
888 linkage_name.length ());
889 }
890 else
891 linkage_name_copy = linkage_name;
892
893 /* The const_cast is safe because the only reason it is already
894 initialized is if we purposefully set it from a background
895 thread to avoid doing the work here. However, it is still
896 allocated from the heap and needs to be freed by us, just
897 like if we called symbol_find_demangled_name here. */
898 gdb::unique_xmalloc_ptr<char> demangled_name
899 (gsymbol->language_specific.demangled_name
900 ? const_cast<char *> (gsymbol->language_specific.demangled_name)
901 : symbol_find_demangled_name (gsymbol, linkage_name_copy.data ()));
902
903 /* Suppose we have demangled_name==NULL, copy_name==0, and
904 linkage_name_copy==linkage_name. In this case, we already have the
905 mangled name saved, and we don't have a demangled name. So,
906 you might think we could save a little space by not recording
907 this in the hash table at all.
908
909 It turns out that it is actually important to still save such
910 an entry in the hash table, because storing this name gives
911 us better bcache hit rates for partial symbols. */
912 if (!copy_name)
913 {
914 *slot
915 = ((struct demangled_name_entry *)
916 obstack_alloc (&per_bfd->storage_obstack,
917 sizeof (demangled_name_entry)));
918 new (*slot) demangled_name_entry (linkage_name);
919 }
920 else
921 {
922 /* If we must copy the mangled name, put it directly after
923 the struct so we can have a single allocation. */
924 *slot
925 = ((struct demangled_name_entry *)
926 obstack_alloc (&per_bfd->storage_obstack,
927 sizeof (demangled_name_entry)
928 + linkage_name.length () + 1));
929 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
930 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
931 mangled_ptr [linkage_name.length ()] = '\0';
932 new (*slot) demangled_name_entry
933 (gdb::string_view (mangled_ptr, linkage_name.length ()));
934 }
935 (*slot)->demangled = std::move (demangled_name);
936 (*slot)->language = gsymbol->language;
937 }
938 else if (gsymbol->language == language_unknown
939 || gsymbol->language == language_auto)
940 gsymbol->language = (*slot)->language;
941
942 gsymbol->name = (*slot)->mangled.data ();
943 if ((*slot)->demangled != nullptr)
944 symbol_set_demangled_name (gsymbol, (*slot)->demangled.get (),
945 &per_bfd->storage_obstack);
946 else
947 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
948 }
949
950 /* See symtab.h. */
951
952 const char *
953 general_symbol_info::natural_name () const
954 {
955 switch (language)
956 {
957 case language_cplus:
958 case language_d:
959 case language_go:
960 case language_objc:
961 case language_fortran:
962 if (symbol_get_demangled_name (this) != NULL)
963 return symbol_get_demangled_name (this);
964 break;
965 case language_ada:
966 return ada_decode_symbol (this);
967 default:
968 break;
969 }
970 return name;
971 }
972
973 /* See symtab.h. */
974
975 const char *
976 general_symbol_info::demangled_name () const
977 {
978 const char *dem_name = NULL;
979
980 switch (language)
981 {
982 case language_cplus:
983 case language_d:
984 case language_go:
985 case language_objc:
986 case language_fortran:
987 dem_name = symbol_get_demangled_name (this);
988 break;
989 case language_ada:
990 dem_name = ada_decode_symbol (this);
991 break;
992 default:
993 break;
994 }
995 return dem_name;
996 }
997
998 /* See symtab.h. */
999
1000 const char *
1001 general_symbol_info::search_name () const
1002 {
1003 if (language == language_ada)
1004 return name;
1005 else
1006 return natural_name ();
1007 }
1008
1009 /* See symtab.h. */
1010
1011 bool
1012 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1013 const lookup_name_info &name)
1014 {
1015 symbol_name_matcher_ftype *name_match
1016 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1017 return name_match (gsymbol->search_name (), name, NULL);
1018 }
1019
1020 \f
1021
1022 /* Return true if the two sections are the same, or if they could
1023 plausibly be copies of each other, one in an original object
1024 file and another in a separated debug file. */
1025
1026 bool
1027 matching_obj_sections (struct obj_section *obj_first,
1028 struct obj_section *obj_second)
1029 {
1030 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1031 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1032
1033 /* If they're the same section, then they match. */
1034 if (first == second)
1035 return true;
1036
1037 /* If either is NULL, give up. */
1038 if (first == NULL || second == NULL)
1039 return false;
1040
1041 /* This doesn't apply to absolute symbols. */
1042 if (first->owner == NULL || second->owner == NULL)
1043 return false;
1044
1045 /* If they're in the same object file, they must be different sections. */
1046 if (first->owner == second->owner)
1047 return false;
1048
1049 /* Check whether the two sections are potentially corresponding. They must
1050 have the same size, address, and name. We can't compare section indexes,
1051 which would be more reliable, because some sections may have been
1052 stripped. */
1053 if (bfd_section_size (first) != bfd_section_size (second))
1054 return false;
1055
1056 /* In-memory addresses may start at a different offset, relativize them. */
1057 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1058 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1059 return false;
1060
1061 if (bfd_section_name (first) == NULL
1062 || bfd_section_name (second) == NULL
1063 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1064 return false;
1065
1066 /* Otherwise check that they are in corresponding objfiles. */
1067
1068 struct objfile *obj = NULL;
1069 for (objfile *objfile : current_program_space->objfiles ())
1070 if (objfile->obfd == first->owner)
1071 {
1072 obj = objfile;
1073 break;
1074 }
1075 gdb_assert (obj != NULL);
1076
1077 if (obj->separate_debug_objfile != NULL
1078 && obj->separate_debug_objfile->obfd == second->owner)
1079 return true;
1080 if (obj->separate_debug_objfile_backlink != NULL
1081 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1082 return true;
1083
1084 return false;
1085 }
1086
1087 /* See symtab.h. */
1088
1089 void
1090 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1091 {
1092 struct bound_minimal_symbol msymbol;
1093
1094 /* If we know that this is not a text address, return failure. This is
1095 necessary because we loop based on texthigh and textlow, which do
1096 not include the data ranges. */
1097 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1098 if (msymbol.minsym && msymbol.minsym->data_p ())
1099 return;
1100
1101 for (objfile *objfile : current_program_space->objfiles ())
1102 {
1103 struct compunit_symtab *cust = NULL;
1104
1105 if (objfile->sf)
1106 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1107 pc, section, 0);
1108 if (cust)
1109 return;
1110 }
1111 }
1112 \f
1113 /* Hash function for the symbol cache. */
1114
1115 static unsigned int
1116 hash_symbol_entry (const struct objfile *objfile_context,
1117 const char *name, domain_enum domain)
1118 {
1119 unsigned int hash = (uintptr_t) objfile_context;
1120
1121 if (name != NULL)
1122 hash += htab_hash_string (name);
1123
1124 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1125 to map to the same slot. */
1126 if (domain == STRUCT_DOMAIN)
1127 hash += VAR_DOMAIN * 7;
1128 else
1129 hash += domain * 7;
1130
1131 return hash;
1132 }
1133
1134 /* Equality function for the symbol cache. */
1135
1136 static int
1137 eq_symbol_entry (const struct symbol_cache_slot *slot,
1138 const struct objfile *objfile_context,
1139 const char *name, domain_enum domain)
1140 {
1141 const char *slot_name;
1142 domain_enum slot_domain;
1143
1144 if (slot->state == SYMBOL_SLOT_UNUSED)
1145 return 0;
1146
1147 if (slot->objfile_context != objfile_context)
1148 return 0;
1149
1150 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1151 {
1152 slot_name = slot->value.not_found.name;
1153 slot_domain = slot->value.not_found.domain;
1154 }
1155 else
1156 {
1157 slot_name = slot->value.found.symbol->search_name ();
1158 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1159 }
1160
1161 /* NULL names match. */
1162 if (slot_name == NULL && name == NULL)
1163 {
1164 /* But there's no point in calling symbol_matches_domain in the
1165 SYMBOL_SLOT_FOUND case. */
1166 if (slot_domain != domain)
1167 return 0;
1168 }
1169 else if (slot_name != NULL && name != NULL)
1170 {
1171 /* It's important that we use the same comparison that was done
1172 the first time through. If the slot records a found symbol,
1173 then this means using the symbol name comparison function of
1174 the symbol's language with symbol->search_name (). See
1175 dictionary.c. It also means using symbol_matches_domain for
1176 found symbols. See block.c.
1177
1178 If the slot records a not-found symbol, then require a precise match.
1179 We could still be lax with whitespace like strcmp_iw though. */
1180
1181 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1182 {
1183 if (strcmp (slot_name, name) != 0)
1184 return 0;
1185 if (slot_domain != domain)
1186 return 0;
1187 }
1188 else
1189 {
1190 struct symbol *sym = slot->value.found.symbol;
1191 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1192
1193 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1194 return 0;
1195
1196 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1197 slot_domain, domain))
1198 return 0;
1199 }
1200 }
1201 else
1202 {
1203 /* Only one name is NULL. */
1204 return 0;
1205 }
1206
1207 return 1;
1208 }
1209
1210 /* Given a cache of size SIZE, return the size of the struct (with variable
1211 length array) in bytes. */
1212
1213 static size_t
1214 symbol_cache_byte_size (unsigned int size)
1215 {
1216 return (sizeof (struct block_symbol_cache)
1217 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1218 }
1219
1220 /* Resize CACHE. */
1221
1222 static void
1223 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1224 {
1225 /* If there's no change in size, don't do anything.
1226 All caches have the same size, so we can just compare with the size
1227 of the global symbols cache. */
1228 if ((cache->global_symbols != NULL
1229 && cache->global_symbols->size == new_size)
1230 || (cache->global_symbols == NULL
1231 && new_size == 0))
1232 return;
1233
1234 xfree (cache->global_symbols);
1235 xfree (cache->static_symbols);
1236
1237 if (new_size == 0)
1238 {
1239 cache->global_symbols = NULL;
1240 cache->static_symbols = NULL;
1241 }
1242 else
1243 {
1244 size_t total_size = symbol_cache_byte_size (new_size);
1245
1246 cache->global_symbols
1247 = (struct block_symbol_cache *) xcalloc (1, total_size);
1248 cache->static_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->global_symbols->size = new_size;
1251 cache->static_symbols->size = new_size;
1252 }
1253 }
1254
1255 /* Return the symbol cache of PSPACE.
1256 Create one if it doesn't exist yet. */
1257
1258 static struct symbol_cache *
1259 get_symbol_cache (struct program_space *pspace)
1260 {
1261 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1262
1263 if (cache == NULL)
1264 {
1265 cache = symbol_cache_key.emplace (pspace);
1266 resize_symbol_cache (cache, symbol_cache_size);
1267 }
1268
1269 return cache;
1270 }
1271
1272 /* Set the size of the symbol cache in all program spaces. */
1273
1274 static void
1275 set_symbol_cache_size (unsigned int new_size)
1276 {
1277 struct program_space *pspace;
1278
1279 ALL_PSPACES (pspace)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Clear out SLOT. */
1374
1375 static void
1376 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1377 {
1378 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1379 xfree (slot->value.not_found.name);
1380 slot->state = SYMBOL_SLOT_UNUSED;
1381 }
1382
1383 /* Mark SYMBOL as found in SLOT.
1384 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1385 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1386 necessarily the objfile the symbol was found in. */
1387
1388 static void
1389 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1390 struct symbol_cache_slot *slot,
1391 struct objfile *objfile_context,
1392 struct symbol *symbol,
1393 const struct block *block)
1394 {
1395 if (bsc == NULL)
1396 return;
1397 if (slot->state != SYMBOL_SLOT_UNUSED)
1398 {
1399 ++bsc->collisions;
1400 symbol_cache_clear_slot (slot);
1401 }
1402 slot->state = SYMBOL_SLOT_FOUND;
1403 slot->objfile_context = objfile_context;
1404 slot->value.found.symbol = symbol;
1405 slot->value.found.block = block;
1406 }
1407
1408 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1409 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1410 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1411
1412 static void
1413 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1414 struct symbol_cache_slot *slot,
1415 struct objfile *objfile_context,
1416 const char *name, domain_enum domain)
1417 {
1418 if (bsc == NULL)
1419 return;
1420 if (slot->state != SYMBOL_SLOT_UNUSED)
1421 {
1422 ++bsc->collisions;
1423 symbol_cache_clear_slot (slot);
1424 }
1425 slot->state = SYMBOL_SLOT_NOT_FOUND;
1426 slot->objfile_context = objfile_context;
1427 slot->value.not_found.name = xstrdup (name);
1428 slot->value.not_found.domain = domain;
1429 }
1430
1431 /* Flush the symbol cache of PSPACE. */
1432
1433 static void
1434 symbol_cache_flush (struct program_space *pspace)
1435 {
1436 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1437 int pass;
1438
1439 if (cache == NULL)
1440 return;
1441 if (cache->global_symbols == NULL)
1442 {
1443 gdb_assert (symbol_cache_size == 0);
1444 gdb_assert (cache->static_symbols == NULL);
1445 return;
1446 }
1447
1448 /* If the cache is untouched since the last flush, early exit.
1449 This is important for performance during the startup of a program linked
1450 with 100s (or 1000s) of shared libraries. */
1451 if (cache->global_symbols->misses == 0
1452 && cache->static_symbols->misses == 0)
1453 return;
1454
1455 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1456 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1457
1458 for (pass = 0; pass < 2; ++pass)
1459 {
1460 struct block_symbol_cache *bsc
1461 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1462 unsigned int i;
1463
1464 for (i = 0; i < bsc->size; ++i)
1465 symbol_cache_clear_slot (&bsc->symbols[i]);
1466 }
1467
1468 cache->global_symbols->hits = 0;
1469 cache->global_symbols->misses = 0;
1470 cache->global_symbols->collisions = 0;
1471 cache->static_symbols->hits = 0;
1472 cache->static_symbols->misses = 0;
1473 cache->static_symbols->collisions = 0;
1474 }
1475
1476 /* Dump CACHE. */
1477
1478 static void
1479 symbol_cache_dump (const struct symbol_cache *cache)
1480 {
1481 int pass;
1482
1483 if (cache->global_symbols == NULL)
1484 {
1485 printf_filtered (" <disabled>\n");
1486 return;
1487 }
1488
1489 for (pass = 0; pass < 2; ++pass)
1490 {
1491 const struct block_symbol_cache *bsc
1492 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1493 unsigned int i;
1494
1495 if (pass == 0)
1496 printf_filtered ("Global symbols:\n");
1497 else
1498 printf_filtered ("Static symbols:\n");
1499
1500 for (i = 0; i < bsc->size; ++i)
1501 {
1502 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1503
1504 QUIT;
1505
1506 switch (slot->state)
1507 {
1508 case SYMBOL_SLOT_UNUSED:
1509 break;
1510 case SYMBOL_SLOT_NOT_FOUND:
1511 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1512 host_address_to_string (slot->objfile_context),
1513 slot->value.not_found.name,
1514 domain_name (slot->value.not_found.domain));
1515 break;
1516 case SYMBOL_SLOT_FOUND:
1517 {
1518 struct symbol *found = slot->value.found.symbol;
1519 const struct objfile *context = slot->objfile_context;
1520
1521 printf_filtered (" [%4u] = %s, %s %s\n", i,
1522 host_address_to_string (context),
1523 found->print_name (),
1524 domain_name (SYMBOL_DOMAIN (found)));
1525 break;
1526 }
1527 }
1528 }
1529 }
1530 }
1531
1532 /* The "mt print symbol-cache" command. */
1533
1534 static void
1535 maintenance_print_symbol_cache (const char *args, int from_tty)
1536 {
1537 struct program_space *pspace;
1538
1539 ALL_PSPACES (pspace)
1540 {
1541 struct symbol_cache *cache;
1542
1543 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1544 pspace->num,
1545 pspace->symfile_object_file != NULL
1546 ? objfile_name (pspace->symfile_object_file)
1547 : "(no object file)");
1548
1549 /* If the cache hasn't been created yet, avoid creating one. */
1550 cache = symbol_cache_key.get (pspace);
1551 if (cache == NULL)
1552 printf_filtered (" <empty>\n");
1553 else
1554 symbol_cache_dump (cache);
1555 }
1556 }
1557
1558 /* The "mt flush-symbol-cache" command. */
1559
1560 static void
1561 maintenance_flush_symbol_cache (const char *args, int from_tty)
1562 {
1563 struct program_space *pspace;
1564
1565 ALL_PSPACES (pspace)
1566 {
1567 symbol_cache_flush (pspace);
1568 }
1569 }
1570
1571 /* Print usage statistics of CACHE. */
1572
1573 static void
1574 symbol_cache_stats (struct symbol_cache *cache)
1575 {
1576 int pass;
1577
1578 if (cache->global_symbols == NULL)
1579 {
1580 printf_filtered (" <disabled>\n");
1581 return;
1582 }
1583
1584 for (pass = 0; pass < 2; ++pass)
1585 {
1586 const struct block_symbol_cache *bsc
1587 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1588
1589 QUIT;
1590
1591 if (pass == 0)
1592 printf_filtered ("Global block cache stats:\n");
1593 else
1594 printf_filtered ("Static block cache stats:\n");
1595
1596 printf_filtered (" size: %u\n", bsc->size);
1597 printf_filtered (" hits: %u\n", bsc->hits);
1598 printf_filtered (" misses: %u\n", bsc->misses);
1599 printf_filtered (" collisions: %u\n", bsc->collisions);
1600 }
1601 }
1602
1603 /* The "mt print symbol-cache-statistics" command. */
1604
1605 static void
1606 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1607 {
1608 struct program_space *pspace;
1609
1610 ALL_PSPACES (pspace)
1611 {
1612 struct symbol_cache *cache;
1613
1614 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1615 pspace->num,
1616 pspace->symfile_object_file != NULL
1617 ? objfile_name (pspace->symfile_object_file)
1618 : "(no object file)");
1619
1620 /* If the cache hasn't been created yet, avoid creating one. */
1621 cache = symbol_cache_key.get (pspace);
1622 if (cache == NULL)
1623 printf_filtered (" empty, no stats available\n");
1624 else
1625 symbol_cache_stats (cache);
1626 }
1627 }
1628
1629 /* This module's 'new_objfile' observer. */
1630
1631 static void
1632 symtab_new_objfile_observer (struct objfile *objfile)
1633 {
1634 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1635 symbol_cache_flush (current_program_space);
1636 }
1637
1638 /* This module's 'free_objfile' observer. */
1639
1640 static void
1641 symtab_free_objfile_observer (struct objfile *objfile)
1642 {
1643 symbol_cache_flush (objfile->pspace);
1644 }
1645 \f
1646 /* Debug symbols usually don't have section information. We need to dig that
1647 out of the minimal symbols and stash that in the debug symbol. */
1648
1649 void
1650 fixup_section (struct general_symbol_info *ginfo,
1651 CORE_ADDR addr, struct objfile *objfile)
1652 {
1653 struct minimal_symbol *msym;
1654
1655 /* First, check whether a minimal symbol with the same name exists
1656 and points to the same address. The address check is required
1657 e.g. on PowerPC64, where the minimal symbol for a function will
1658 point to the function descriptor, while the debug symbol will
1659 point to the actual function code. */
1660 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1661 if (msym)
1662 ginfo->section = MSYMBOL_SECTION (msym);
1663 else
1664 {
1665 /* Static, function-local variables do appear in the linker
1666 (minimal) symbols, but are frequently given names that won't
1667 be found via lookup_minimal_symbol(). E.g., it has been
1668 observed in frv-uclinux (ELF) executables that a static,
1669 function-local variable named "foo" might appear in the
1670 linker symbols as "foo.6" or "foo.3". Thus, there is no
1671 point in attempting to extend the lookup-by-name mechanism to
1672 handle this case due to the fact that there can be multiple
1673 names.
1674
1675 So, instead, search the section table when lookup by name has
1676 failed. The ``addr'' and ``endaddr'' fields may have already
1677 been relocated. If so, the relocation offset (i.e. the
1678 ANOFFSET value) needs to be subtracted from these values when
1679 performing the comparison. We unconditionally subtract it,
1680 because, when no relocation has been performed, the ANOFFSET
1681 value will simply be zero.
1682
1683 The address of the symbol whose section we're fixing up HAS
1684 NOT BEEN adjusted (relocated) yet. It can't have been since
1685 the section isn't yet known and knowing the section is
1686 necessary in order to add the correct relocation value. In
1687 other words, we wouldn't even be in this function (attempting
1688 to compute the section) if it were already known.
1689
1690 Note that it is possible to search the minimal symbols
1691 (subtracting the relocation value if necessary) to find the
1692 matching minimal symbol, but this is overkill and much less
1693 efficient. It is not necessary to find the matching minimal
1694 symbol, only its section.
1695
1696 Note that this technique (of doing a section table search)
1697 can fail when unrelocated section addresses overlap. For
1698 this reason, we still attempt a lookup by name prior to doing
1699 a search of the section table. */
1700
1701 struct obj_section *s;
1702 int fallback = -1;
1703
1704 ALL_OBJFILE_OSECTIONS (objfile, s)
1705 {
1706 int idx = s - objfile->sections;
1707 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1708
1709 if (fallback == -1)
1710 fallback = idx;
1711
1712 if (obj_section_addr (s) - offset <= addr
1713 && addr < obj_section_endaddr (s) - offset)
1714 {
1715 ginfo->section = idx;
1716 return;
1717 }
1718 }
1719
1720 /* If we didn't find the section, assume it is in the first
1721 section. If there is no allocated section, then it hardly
1722 matters what we pick, so just pick zero. */
1723 if (fallback == -1)
1724 ginfo->section = 0;
1725 else
1726 ginfo->section = fallback;
1727 }
1728 }
1729
1730 struct symbol *
1731 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1732 {
1733 CORE_ADDR addr;
1734
1735 if (!sym)
1736 return NULL;
1737
1738 if (!SYMBOL_OBJFILE_OWNED (sym))
1739 return sym;
1740
1741 /* We either have an OBJFILE, or we can get at it from the sym's
1742 symtab. Anything else is a bug. */
1743 gdb_assert (objfile || symbol_symtab (sym));
1744
1745 if (objfile == NULL)
1746 objfile = symbol_objfile (sym);
1747
1748 if (SYMBOL_OBJ_SECTION (objfile, sym))
1749 return sym;
1750
1751 /* We should have an objfile by now. */
1752 gdb_assert (objfile);
1753
1754 switch (SYMBOL_CLASS (sym))
1755 {
1756 case LOC_STATIC:
1757 case LOC_LABEL:
1758 addr = SYMBOL_VALUE_ADDRESS (sym);
1759 break;
1760 case LOC_BLOCK:
1761 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1762 break;
1763
1764 default:
1765 /* Nothing else will be listed in the minsyms -- no use looking
1766 it up. */
1767 return sym;
1768 }
1769
1770 fixup_section (sym, addr, objfile);
1771
1772 return sym;
1773 }
1774
1775 /* See symtab.h. */
1776
1777 demangle_for_lookup_info::demangle_for_lookup_info
1778 (const lookup_name_info &lookup_name, language lang)
1779 {
1780 demangle_result_storage storage;
1781
1782 if (lookup_name.ignore_parameters () && lang == language_cplus)
1783 {
1784 gdb::unique_xmalloc_ptr<char> without_params
1785 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1786 lookup_name.completion_mode ());
1787
1788 if (without_params != NULL)
1789 {
1790 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1791 m_demangled_name = demangle_for_lookup (without_params.get (),
1792 lang, storage);
1793 return;
1794 }
1795 }
1796
1797 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1798 m_demangled_name = lookup_name.name ();
1799 else
1800 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1801 lang, storage);
1802 }
1803
1804 /* See symtab.h. */
1805
1806 const lookup_name_info &
1807 lookup_name_info::match_any ()
1808 {
1809 /* Lookup any symbol that "" would complete. I.e., this matches all
1810 symbol names. */
1811 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1812 true);
1813
1814 return lookup_name;
1815 }
1816
1817 /* Compute the demangled form of NAME as used by the various symbol
1818 lookup functions. The result can either be the input NAME
1819 directly, or a pointer to a buffer owned by the STORAGE object.
1820
1821 For Ada, this function just returns NAME, unmodified.
1822 Normally, Ada symbol lookups are performed using the encoded name
1823 rather than the demangled name, and so it might seem to make sense
1824 for this function to return an encoded version of NAME.
1825 Unfortunately, we cannot do this, because this function is used in
1826 circumstances where it is not appropriate to try to encode NAME.
1827 For instance, when displaying the frame info, we demangle the name
1828 of each parameter, and then perform a symbol lookup inside our
1829 function using that demangled name. In Ada, certain functions
1830 have internally-generated parameters whose name contain uppercase
1831 characters. Encoding those name would result in those uppercase
1832 characters to become lowercase, and thus cause the symbol lookup
1833 to fail. */
1834
1835 const char *
1836 demangle_for_lookup (const char *name, enum language lang,
1837 demangle_result_storage &storage)
1838 {
1839 /* If we are using C++, D, or Go, demangle the name before doing a
1840 lookup, so we can always binary search. */
1841 if (lang == language_cplus)
1842 {
1843 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1844 if (demangled_name != NULL)
1845 return storage.set_malloc_ptr (demangled_name);
1846
1847 /* If we were given a non-mangled name, canonicalize it
1848 according to the language (so far only for C++). */
1849 std::string canon = cp_canonicalize_string (name);
1850 if (!canon.empty ())
1851 return storage.swap_string (canon);
1852 }
1853 else if (lang == language_d)
1854 {
1855 char *demangled_name = d_demangle (name, 0);
1856 if (demangled_name != NULL)
1857 return storage.set_malloc_ptr (demangled_name);
1858 }
1859 else if (lang == language_go)
1860 {
1861 char *demangled_name = go_demangle (name, 0);
1862 if (demangled_name != NULL)
1863 return storage.set_malloc_ptr (demangled_name);
1864 }
1865
1866 return name;
1867 }
1868
1869 /* See symtab.h. */
1870
1871 unsigned int
1872 search_name_hash (enum language language, const char *search_name)
1873 {
1874 return language_def (language)->la_search_name_hash (search_name);
1875 }
1876
1877 /* See symtab.h.
1878
1879 This function (or rather its subordinates) have a bunch of loops and
1880 it would seem to be attractive to put in some QUIT's (though I'm not really
1881 sure whether it can run long enough to be really important). But there
1882 are a few calls for which it would appear to be bad news to quit
1883 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1884 that there is C++ code below which can error(), but that probably
1885 doesn't affect these calls since they are looking for a known
1886 variable and thus can probably assume it will never hit the C++
1887 code). */
1888
1889 struct block_symbol
1890 lookup_symbol_in_language (const char *name, const struct block *block,
1891 const domain_enum domain, enum language lang,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 demangle_result_storage storage;
1895 const char *modified_name = demangle_for_lookup (name, lang, storage);
1896
1897 return lookup_symbol_aux (modified_name,
1898 symbol_name_match_type::FULL,
1899 block, domain, lang,
1900 is_a_field_of_this);
1901 }
1902
1903 /* See symtab.h. */
1904
1905 struct block_symbol
1906 lookup_symbol (const char *name, const struct block *block,
1907 domain_enum domain,
1908 struct field_of_this_result *is_a_field_of_this)
1909 {
1910 return lookup_symbol_in_language (name, block, domain,
1911 current_language->la_language,
1912 is_a_field_of_this);
1913 }
1914
1915 /* See symtab.h. */
1916
1917 struct block_symbol
1918 lookup_symbol_search_name (const char *search_name, const struct block *block,
1919 domain_enum domain)
1920 {
1921 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1922 block, domain, language_asm, NULL);
1923 }
1924
1925 /* See symtab.h. */
1926
1927 struct block_symbol
1928 lookup_language_this (const struct language_defn *lang,
1929 const struct block *block)
1930 {
1931 if (lang->la_name_of_this == NULL || block == NULL)
1932 return {};
1933
1934 if (symbol_lookup_debug > 1)
1935 {
1936 struct objfile *objfile = lookup_objfile_from_block (block);
1937
1938 fprintf_unfiltered (gdb_stdlog,
1939 "lookup_language_this (%s, %s (objfile %s))",
1940 lang->la_name, host_address_to_string (block),
1941 objfile_debug_name (objfile));
1942 }
1943
1944 while (block)
1945 {
1946 struct symbol *sym;
1947
1948 sym = block_lookup_symbol (block, lang->la_name_of_this,
1949 symbol_name_match_type::SEARCH_NAME,
1950 VAR_DOMAIN);
1951 if (sym != NULL)
1952 {
1953 if (symbol_lookup_debug > 1)
1954 {
1955 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1956 sym->print_name (),
1957 host_address_to_string (sym),
1958 host_address_to_string (block));
1959 }
1960 return (struct block_symbol) {sym, block};
1961 }
1962 if (BLOCK_FUNCTION (block))
1963 break;
1964 block = BLOCK_SUPERBLOCK (block);
1965 }
1966
1967 if (symbol_lookup_debug > 1)
1968 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1969 return {};
1970 }
1971
1972 /* Given TYPE, a structure/union,
1973 return 1 if the component named NAME from the ultimate target
1974 structure/union is defined, otherwise, return 0. */
1975
1976 static int
1977 check_field (struct type *type, const char *name,
1978 struct field_of_this_result *is_a_field_of_this)
1979 {
1980 int i;
1981
1982 /* The type may be a stub. */
1983 type = check_typedef (type);
1984
1985 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1986 {
1987 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1988
1989 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1990 {
1991 is_a_field_of_this->type = type;
1992 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1993 return 1;
1994 }
1995 }
1996
1997 /* C++: If it was not found as a data field, then try to return it
1998 as a pointer to a method. */
1999
2000 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2001 {
2002 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2003 {
2004 is_a_field_of_this->type = type;
2005 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2006 return 1;
2007 }
2008 }
2009
2010 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2011 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2012 return 1;
2013
2014 return 0;
2015 }
2016
2017 /* Behave like lookup_symbol except that NAME is the natural name
2018 (e.g., demangled name) of the symbol that we're looking for. */
2019
2020 static struct block_symbol
2021 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2022 const struct block *block,
2023 const domain_enum domain, enum language language,
2024 struct field_of_this_result *is_a_field_of_this)
2025 {
2026 struct block_symbol result;
2027 const struct language_defn *langdef;
2028
2029 if (symbol_lookup_debug)
2030 {
2031 struct objfile *objfile = lookup_objfile_from_block (block);
2032
2033 fprintf_unfiltered (gdb_stdlog,
2034 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2035 name, host_address_to_string (block),
2036 objfile != NULL
2037 ? objfile_debug_name (objfile) : "NULL",
2038 domain_name (domain), language_str (language));
2039 }
2040
2041 /* Make sure we do something sensible with is_a_field_of_this, since
2042 the callers that set this parameter to some non-null value will
2043 certainly use it later. If we don't set it, the contents of
2044 is_a_field_of_this are undefined. */
2045 if (is_a_field_of_this != NULL)
2046 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2047
2048 /* Search specified block and its superiors. Don't search
2049 STATIC_BLOCK or GLOBAL_BLOCK. */
2050
2051 result = lookup_local_symbol (name, match_type, block, domain, language);
2052 if (result.symbol != NULL)
2053 {
2054 if (symbol_lookup_debug)
2055 {
2056 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2057 host_address_to_string (result.symbol));
2058 }
2059 return result;
2060 }
2061
2062 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2063 check to see if NAME is a field of `this'. */
2064
2065 langdef = language_def (language);
2066
2067 /* Don't do this check if we are searching for a struct. It will
2068 not be found by check_field, but will be found by other
2069 means. */
2070 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2071 {
2072 result = lookup_language_this (langdef, block);
2073
2074 if (result.symbol)
2075 {
2076 struct type *t = result.symbol->type;
2077
2078 /* I'm not really sure that type of this can ever
2079 be typedefed; just be safe. */
2080 t = check_typedef (t);
2081 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2082 t = TYPE_TARGET_TYPE (t);
2083
2084 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2085 && TYPE_CODE (t) != TYPE_CODE_UNION)
2086 error (_("Internal error: `%s' is not an aggregate"),
2087 langdef->la_name_of_this);
2088
2089 if (check_field (t, name, is_a_field_of_this))
2090 {
2091 if (symbol_lookup_debug)
2092 {
2093 fprintf_unfiltered (gdb_stdlog,
2094 "lookup_symbol_aux (...) = NULL\n");
2095 }
2096 return {};
2097 }
2098 }
2099 }
2100
2101 /* Now do whatever is appropriate for LANGUAGE to look
2102 up static and global variables. */
2103
2104 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2105 if (result.symbol != NULL)
2106 {
2107 if (symbol_lookup_debug)
2108 {
2109 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2110 host_address_to_string (result.symbol));
2111 }
2112 return result;
2113 }
2114
2115 /* Now search all static file-level symbols. Not strictly correct,
2116 but more useful than an error. */
2117
2118 result = lookup_static_symbol (name, domain);
2119 if (symbol_lookup_debug)
2120 {
2121 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2122 result.symbol != NULL
2123 ? host_address_to_string (result.symbol)
2124 : "NULL");
2125 }
2126 return result;
2127 }
2128
2129 /* Check to see if the symbol is defined in BLOCK or its superiors.
2130 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2131
2132 static struct block_symbol
2133 lookup_local_symbol (const char *name,
2134 symbol_name_match_type match_type,
2135 const struct block *block,
2136 const domain_enum domain,
2137 enum language language)
2138 {
2139 struct symbol *sym;
2140 const struct block *static_block = block_static_block (block);
2141 const char *scope = block_scope (block);
2142
2143 /* Check if either no block is specified or it's a global block. */
2144
2145 if (static_block == NULL)
2146 return {};
2147
2148 while (block != static_block)
2149 {
2150 sym = lookup_symbol_in_block (name, match_type, block, domain);
2151 if (sym != NULL)
2152 return (struct block_symbol) {sym, block};
2153
2154 if (language == language_cplus || language == language_fortran)
2155 {
2156 struct block_symbol blocksym
2157 = cp_lookup_symbol_imports_or_template (scope, name, block,
2158 domain);
2159
2160 if (blocksym.symbol != NULL)
2161 return blocksym;
2162 }
2163
2164 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2165 break;
2166 block = BLOCK_SUPERBLOCK (block);
2167 }
2168
2169 /* We've reached the end of the function without finding a result. */
2170
2171 return {};
2172 }
2173
2174 /* See symtab.h. */
2175
2176 struct objfile *
2177 lookup_objfile_from_block (const struct block *block)
2178 {
2179 if (block == NULL)
2180 return NULL;
2181
2182 block = block_global_block (block);
2183 /* Look through all blockvectors. */
2184 for (objfile *obj : current_program_space->objfiles ())
2185 {
2186 for (compunit_symtab *cust : obj->compunits ())
2187 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2188 GLOBAL_BLOCK))
2189 {
2190 if (obj->separate_debug_objfile_backlink)
2191 obj = obj->separate_debug_objfile_backlink;
2192
2193 return obj;
2194 }
2195 }
2196
2197 return NULL;
2198 }
2199
2200 /* See symtab.h. */
2201
2202 struct symbol *
2203 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2204 const struct block *block,
2205 const domain_enum domain)
2206 {
2207 struct symbol *sym;
2208
2209 if (symbol_lookup_debug > 1)
2210 {
2211 struct objfile *objfile = lookup_objfile_from_block (block);
2212
2213 fprintf_unfiltered (gdb_stdlog,
2214 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2215 name, host_address_to_string (block),
2216 objfile_debug_name (objfile),
2217 domain_name (domain));
2218 }
2219
2220 sym = block_lookup_symbol (block, name, match_type, domain);
2221 if (sym)
2222 {
2223 if (symbol_lookup_debug > 1)
2224 {
2225 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2226 host_address_to_string (sym));
2227 }
2228 return fixup_symbol_section (sym, NULL);
2229 }
2230
2231 if (symbol_lookup_debug > 1)
2232 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2233 return NULL;
2234 }
2235
2236 /* See symtab.h. */
2237
2238 struct block_symbol
2239 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2240 enum block_enum block_index,
2241 const char *name,
2242 const domain_enum domain)
2243 {
2244 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2245
2246 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2247 {
2248 struct block_symbol result
2249 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2250
2251 if (result.symbol != nullptr)
2252 return result;
2253 }
2254
2255 return {};
2256 }
2257
2258 /* Check to see if the symbol is defined in one of the OBJFILE's
2259 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2260 depending on whether or not we want to search global symbols or
2261 static symbols. */
2262
2263 static struct block_symbol
2264 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2265 enum block_enum block_index, const char *name,
2266 const domain_enum domain)
2267 {
2268 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2269
2270 if (symbol_lookup_debug > 1)
2271 {
2272 fprintf_unfiltered (gdb_stdlog,
2273 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2274 objfile_debug_name (objfile),
2275 block_index == GLOBAL_BLOCK
2276 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2277 name, domain_name (domain));
2278 }
2279
2280 for (compunit_symtab *cust : objfile->compunits ())
2281 {
2282 const struct blockvector *bv;
2283 const struct block *block;
2284 struct block_symbol result;
2285
2286 bv = COMPUNIT_BLOCKVECTOR (cust);
2287 block = BLOCKVECTOR_BLOCK (bv, block_index);
2288 result.symbol = block_lookup_symbol_primary (block, name, domain);
2289 result.block = block;
2290 if (result.symbol != NULL)
2291 {
2292 if (symbol_lookup_debug > 1)
2293 {
2294 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2295 host_address_to_string (result.symbol),
2296 host_address_to_string (block));
2297 }
2298 result.symbol = fixup_symbol_section (result.symbol, objfile);
2299 return result;
2300
2301 }
2302 }
2303
2304 if (symbol_lookup_debug > 1)
2305 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2306 return {};
2307 }
2308
2309 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2310 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2311 and all associated separate debug objfiles.
2312
2313 Normally we only look in OBJFILE, and not any separate debug objfiles
2314 because the outer loop will cause them to be searched too. This case is
2315 different. Here we're called from search_symbols where it will only
2316 call us for the objfile that contains a matching minsym. */
2317
2318 static struct block_symbol
2319 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2320 const char *linkage_name,
2321 domain_enum domain)
2322 {
2323 enum language lang = current_language->la_language;
2324 struct objfile *main_objfile;
2325
2326 demangle_result_storage storage;
2327 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2328
2329 if (objfile->separate_debug_objfile_backlink)
2330 main_objfile = objfile->separate_debug_objfile_backlink;
2331 else
2332 main_objfile = objfile;
2333
2334 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2335 {
2336 struct block_symbol result;
2337
2338 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2339 modified_name, domain);
2340 if (result.symbol == NULL)
2341 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2342 modified_name, domain);
2343 if (result.symbol != NULL)
2344 return result;
2345 }
2346
2347 return {};
2348 }
2349
2350 /* A helper function that throws an exception when a symbol was found
2351 in a psymtab but not in a symtab. */
2352
2353 static void ATTRIBUTE_NORETURN
2354 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2355 struct compunit_symtab *cust)
2356 {
2357 error (_("\
2358 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2359 %s may be an inlined function, or may be a template function\n \
2360 (if a template, try specifying an instantiation: %s<type>)."),
2361 block_index == GLOBAL_BLOCK ? "global" : "static",
2362 name,
2363 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2364 name, name);
2365 }
2366
2367 /* A helper function for various lookup routines that interfaces with
2368 the "quick" symbol table functions. */
2369
2370 static struct block_symbol
2371 lookup_symbol_via_quick_fns (struct objfile *objfile,
2372 enum block_enum block_index, const char *name,
2373 const domain_enum domain)
2374 {
2375 struct compunit_symtab *cust;
2376 const struct blockvector *bv;
2377 const struct block *block;
2378 struct block_symbol result;
2379
2380 if (!objfile->sf)
2381 return {};
2382
2383 if (symbol_lookup_debug > 1)
2384 {
2385 fprintf_unfiltered (gdb_stdlog,
2386 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2387 objfile_debug_name (objfile),
2388 block_index == GLOBAL_BLOCK
2389 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2390 name, domain_name (domain));
2391 }
2392
2393 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2394 if (cust == NULL)
2395 {
2396 if (symbol_lookup_debug > 1)
2397 {
2398 fprintf_unfiltered (gdb_stdlog,
2399 "lookup_symbol_via_quick_fns (...) = NULL\n");
2400 }
2401 return {};
2402 }
2403
2404 bv = COMPUNIT_BLOCKVECTOR (cust);
2405 block = BLOCKVECTOR_BLOCK (bv, block_index);
2406 result.symbol = block_lookup_symbol (block, name,
2407 symbol_name_match_type::FULL, domain);
2408 if (result.symbol == NULL)
2409 error_in_psymtab_expansion (block_index, name, cust);
2410
2411 if (symbol_lookup_debug > 1)
2412 {
2413 fprintf_unfiltered (gdb_stdlog,
2414 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2415 host_address_to_string (result.symbol),
2416 host_address_to_string (block));
2417 }
2418
2419 result.symbol = fixup_symbol_section (result.symbol, objfile);
2420 result.block = block;
2421 return result;
2422 }
2423
2424 /* See symtab.h. */
2425
2426 struct block_symbol
2427 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2428 const char *name,
2429 const struct block *block,
2430 const domain_enum domain)
2431 {
2432 struct block_symbol result;
2433
2434 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2435 the current objfile. Searching the current objfile first is useful
2436 for both matching user expectations as well as performance. */
2437
2438 result = lookup_symbol_in_static_block (name, block, domain);
2439 if (result.symbol != NULL)
2440 return result;
2441
2442 /* If we didn't find a definition for a builtin type in the static block,
2443 search for it now. This is actually the right thing to do and can be
2444 a massive performance win. E.g., when debugging a program with lots of
2445 shared libraries we could search all of them only to find out the
2446 builtin type isn't defined in any of them. This is common for types
2447 like "void". */
2448 if (domain == VAR_DOMAIN)
2449 {
2450 struct gdbarch *gdbarch;
2451
2452 if (block == NULL)
2453 gdbarch = target_gdbarch ();
2454 else
2455 gdbarch = block_gdbarch (block);
2456 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2457 gdbarch, name);
2458 result.block = NULL;
2459 if (result.symbol != NULL)
2460 return result;
2461 }
2462
2463 return lookup_global_symbol (name, block, domain);
2464 }
2465
2466 /* See symtab.h. */
2467
2468 struct block_symbol
2469 lookup_symbol_in_static_block (const char *name,
2470 const struct block *block,
2471 const domain_enum domain)
2472 {
2473 const struct block *static_block = block_static_block (block);
2474 struct symbol *sym;
2475
2476 if (static_block == NULL)
2477 return {};
2478
2479 if (symbol_lookup_debug)
2480 {
2481 struct objfile *objfile = lookup_objfile_from_block (static_block);
2482
2483 fprintf_unfiltered (gdb_stdlog,
2484 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2485 " %s)\n",
2486 name,
2487 host_address_to_string (block),
2488 objfile_debug_name (objfile),
2489 domain_name (domain));
2490 }
2491
2492 sym = lookup_symbol_in_block (name,
2493 symbol_name_match_type::FULL,
2494 static_block, domain);
2495 if (symbol_lookup_debug)
2496 {
2497 fprintf_unfiltered (gdb_stdlog,
2498 "lookup_symbol_in_static_block (...) = %s\n",
2499 sym != NULL ? host_address_to_string (sym) : "NULL");
2500 }
2501 return (struct block_symbol) {sym, static_block};
2502 }
2503
2504 /* Perform the standard symbol lookup of NAME in OBJFILE:
2505 1) First search expanded symtabs, and if not found
2506 2) Search the "quick" symtabs (partial or .gdb_index).
2507 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2508
2509 static struct block_symbol
2510 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2511 const char *name, const domain_enum domain)
2512 {
2513 struct block_symbol result;
2514
2515 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2516
2517 if (symbol_lookup_debug)
2518 {
2519 fprintf_unfiltered (gdb_stdlog,
2520 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2521 objfile_debug_name (objfile),
2522 block_index == GLOBAL_BLOCK
2523 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2524 name, domain_name (domain));
2525 }
2526
2527 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2528 name, domain);
2529 if (result.symbol != NULL)
2530 {
2531 if (symbol_lookup_debug)
2532 {
2533 fprintf_unfiltered (gdb_stdlog,
2534 "lookup_symbol_in_objfile (...) = %s"
2535 " (in symtabs)\n",
2536 host_address_to_string (result.symbol));
2537 }
2538 return result;
2539 }
2540
2541 result = lookup_symbol_via_quick_fns (objfile, block_index,
2542 name, domain);
2543 if (symbol_lookup_debug)
2544 {
2545 fprintf_unfiltered (gdb_stdlog,
2546 "lookup_symbol_in_objfile (...) = %s%s\n",
2547 result.symbol != NULL
2548 ? host_address_to_string (result.symbol)
2549 : "NULL",
2550 result.symbol != NULL ? " (via quick fns)" : "");
2551 }
2552 return result;
2553 }
2554
2555 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2556
2557 struct global_or_static_sym_lookup_data
2558 {
2559 /* The name of the symbol we are searching for. */
2560 const char *name;
2561
2562 /* The domain to use for our search. */
2563 domain_enum domain;
2564
2565 /* The block index in which to search. */
2566 enum block_enum block_index;
2567
2568 /* The field where the callback should store the symbol if found.
2569 It should be initialized to {NULL, NULL} before the search is started. */
2570 struct block_symbol result;
2571 };
2572
2573 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2574 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2575 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2576 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2577
2578 static int
2579 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2580 void *cb_data)
2581 {
2582 struct global_or_static_sym_lookup_data *data =
2583 (struct global_or_static_sym_lookup_data *) cb_data;
2584
2585 gdb_assert (data->result.symbol == NULL
2586 && data->result.block == NULL);
2587
2588 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2589 data->name, data->domain);
2590
2591 /* If we found a match, tell the iterator to stop. Otherwise,
2592 keep going. */
2593 return (data->result.symbol != NULL);
2594 }
2595
2596 /* This function contains the common code of lookup_{global,static}_symbol.
2597 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2598 the objfile to start the lookup in. */
2599
2600 static struct block_symbol
2601 lookup_global_or_static_symbol (const char *name,
2602 enum block_enum block_index,
2603 struct objfile *objfile,
2604 const domain_enum domain)
2605 {
2606 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2607 struct block_symbol result;
2608 struct global_or_static_sym_lookup_data lookup_data;
2609 struct block_symbol_cache *bsc;
2610 struct symbol_cache_slot *slot;
2611
2612 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2613 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2614
2615 /* First see if we can find the symbol in the cache.
2616 This works because we use the current objfile to qualify the lookup. */
2617 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2618 &bsc, &slot);
2619 if (result.symbol != NULL)
2620 {
2621 if (SYMBOL_LOOKUP_FAILED_P (result))
2622 return {};
2623 return result;
2624 }
2625
2626 /* Do a global search (of global blocks, heh). */
2627 if (result.symbol == NULL)
2628 {
2629 memset (&lookup_data, 0, sizeof (lookup_data));
2630 lookup_data.name = name;
2631 lookup_data.block_index = block_index;
2632 lookup_data.domain = domain;
2633 gdbarch_iterate_over_objfiles_in_search_order
2634 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2635 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2636 result = lookup_data.result;
2637 }
2638
2639 if (result.symbol != NULL)
2640 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2641 else
2642 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2643
2644 return result;
2645 }
2646
2647 /* See symtab.h. */
2648
2649 struct block_symbol
2650 lookup_static_symbol (const char *name, const domain_enum domain)
2651 {
2652 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2653 }
2654
2655 /* See symtab.h. */
2656
2657 struct block_symbol
2658 lookup_global_symbol (const char *name,
2659 const struct block *block,
2660 const domain_enum domain)
2661 {
2662 /* If a block was passed in, we want to search the corresponding
2663 global block first. This yields "more expected" behavior, and is
2664 needed to support 'FILENAME'::VARIABLE lookups. */
2665 const struct block *global_block = block_global_block (block);
2666 if (global_block != nullptr)
2667 {
2668 symbol *sym = lookup_symbol_in_block (name,
2669 symbol_name_match_type::FULL,
2670 global_block, domain);
2671 if (sym != nullptr)
2672 return { sym, global_block };
2673 }
2674
2675 struct objfile *objfile = lookup_objfile_from_block (block);
2676 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2677 }
2678
2679 bool
2680 symbol_matches_domain (enum language symbol_language,
2681 domain_enum symbol_domain,
2682 domain_enum domain)
2683 {
2684 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2685 Similarly, any Ada type declaration implicitly defines a typedef. */
2686 if (symbol_language == language_cplus
2687 || symbol_language == language_d
2688 || symbol_language == language_ada
2689 || symbol_language == language_rust)
2690 {
2691 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2692 && symbol_domain == STRUCT_DOMAIN)
2693 return true;
2694 }
2695 /* For all other languages, strict match is required. */
2696 return (symbol_domain == domain);
2697 }
2698
2699 /* See symtab.h. */
2700
2701 struct type *
2702 lookup_transparent_type (const char *name)
2703 {
2704 return current_language->la_lookup_transparent_type (name);
2705 }
2706
2707 /* A helper for basic_lookup_transparent_type that interfaces with the
2708 "quick" symbol table functions. */
2709
2710 static struct type *
2711 basic_lookup_transparent_type_quick (struct objfile *objfile,
2712 enum block_enum block_index,
2713 const char *name)
2714 {
2715 struct compunit_symtab *cust;
2716 const struct blockvector *bv;
2717 const struct block *block;
2718 struct symbol *sym;
2719
2720 if (!objfile->sf)
2721 return NULL;
2722 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2723 STRUCT_DOMAIN);
2724 if (cust == NULL)
2725 return NULL;
2726
2727 bv = COMPUNIT_BLOCKVECTOR (cust);
2728 block = BLOCKVECTOR_BLOCK (bv, block_index);
2729 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2730 block_find_non_opaque_type, NULL);
2731 if (sym == NULL)
2732 error_in_psymtab_expansion (block_index, name, cust);
2733 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2734 return SYMBOL_TYPE (sym);
2735 }
2736
2737 /* Subroutine of basic_lookup_transparent_type to simplify it.
2738 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2739 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2740
2741 static struct type *
2742 basic_lookup_transparent_type_1 (struct objfile *objfile,
2743 enum block_enum block_index,
2744 const char *name)
2745 {
2746 const struct blockvector *bv;
2747 const struct block *block;
2748 const struct symbol *sym;
2749
2750 for (compunit_symtab *cust : objfile->compunits ())
2751 {
2752 bv = COMPUNIT_BLOCKVECTOR (cust);
2753 block = BLOCKVECTOR_BLOCK (bv, block_index);
2754 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2755 block_find_non_opaque_type, NULL);
2756 if (sym != NULL)
2757 {
2758 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2759 return SYMBOL_TYPE (sym);
2760 }
2761 }
2762
2763 return NULL;
2764 }
2765
2766 /* The standard implementation of lookup_transparent_type. This code
2767 was modeled on lookup_symbol -- the parts not relevant to looking
2768 up types were just left out. In particular it's assumed here that
2769 types are available in STRUCT_DOMAIN and only in file-static or
2770 global blocks. */
2771
2772 struct type *
2773 basic_lookup_transparent_type (const char *name)
2774 {
2775 struct type *t;
2776
2777 /* Now search all the global symbols. Do the symtab's first, then
2778 check the psymtab's. If a psymtab indicates the existence
2779 of the desired name as a global, then do psymtab-to-symtab
2780 conversion on the fly and return the found symbol. */
2781
2782 for (objfile *objfile : current_program_space->objfiles ())
2783 {
2784 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2785 if (t)
2786 return t;
2787 }
2788
2789 for (objfile *objfile : current_program_space->objfiles ())
2790 {
2791 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2792 if (t)
2793 return t;
2794 }
2795
2796 /* Now search the static file-level symbols.
2797 Not strictly correct, but more useful than an error.
2798 Do the symtab's first, then
2799 check the psymtab's. If a psymtab indicates the existence
2800 of the desired name as a file-level static, then do psymtab-to-symtab
2801 conversion on the fly and return the found symbol. */
2802
2803 for (objfile *objfile : current_program_space->objfiles ())
2804 {
2805 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2806 if (t)
2807 return t;
2808 }
2809
2810 for (objfile *objfile : current_program_space->objfiles ())
2811 {
2812 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2813 if (t)
2814 return t;
2815 }
2816
2817 return (struct type *) 0;
2818 }
2819
2820 /* See symtab.h. */
2821
2822 bool
2823 iterate_over_symbols (const struct block *block,
2824 const lookup_name_info &name,
2825 const domain_enum domain,
2826 gdb::function_view<symbol_found_callback_ftype> callback)
2827 {
2828 struct block_iterator iter;
2829 struct symbol *sym;
2830
2831 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2832 {
2833 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2834 SYMBOL_DOMAIN (sym), domain))
2835 {
2836 struct block_symbol block_sym = {sym, block};
2837
2838 if (!callback (&block_sym))
2839 return false;
2840 }
2841 }
2842 return true;
2843 }
2844
2845 /* See symtab.h. */
2846
2847 bool
2848 iterate_over_symbols_terminated
2849 (const struct block *block,
2850 const lookup_name_info &name,
2851 const domain_enum domain,
2852 gdb::function_view<symbol_found_callback_ftype> callback)
2853 {
2854 if (!iterate_over_symbols (block, name, domain, callback))
2855 return false;
2856 struct block_symbol block_sym = {nullptr, block};
2857 return callback (&block_sym);
2858 }
2859
2860 /* Find the compunit symtab associated with PC and SECTION.
2861 This will read in debug info as necessary. */
2862
2863 struct compunit_symtab *
2864 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2865 {
2866 struct compunit_symtab *best_cust = NULL;
2867 CORE_ADDR distance = 0;
2868 struct bound_minimal_symbol msymbol;
2869
2870 /* If we know that this is not a text address, return failure. This is
2871 necessary because we loop based on the block's high and low code
2872 addresses, which do not include the data ranges, and because
2873 we call find_pc_sect_psymtab which has a similar restriction based
2874 on the partial_symtab's texthigh and textlow. */
2875 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2876 if (msymbol.minsym && msymbol.minsym->data_p ())
2877 return NULL;
2878
2879 /* Search all symtabs for the one whose file contains our address, and which
2880 is the smallest of all the ones containing the address. This is designed
2881 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2882 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2883 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2884
2885 This happens for native ecoff format, where code from included files
2886 gets its own symtab. The symtab for the included file should have
2887 been read in already via the dependency mechanism.
2888 It might be swifter to create several symtabs with the same name
2889 like xcoff does (I'm not sure).
2890
2891 It also happens for objfiles that have their functions reordered.
2892 For these, the symtab we are looking for is not necessarily read in. */
2893
2894 for (objfile *obj_file : current_program_space->objfiles ())
2895 {
2896 for (compunit_symtab *cust : obj_file->compunits ())
2897 {
2898 const struct block *b;
2899 const struct blockvector *bv;
2900
2901 bv = COMPUNIT_BLOCKVECTOR (cust);
2902 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2903
2904 if (BLOCK_START (b) <= pc
2905 && BLOCK_END (b) > pc
2906 && (distance == 0
2907 || BLOCK_END (b) - BLOCK_START (b) < distance))
2908 {
2909 /* For an objfile that has its functions reordered,
2910 find_pc_psymtab will find the proper partial symbol table
2911 and we simply return its corresponding symtab. */
2912 /* In order to better support objfiles that contain both
2913 stabs and coff debugging info, we continue on if a psymtab
2914 can't be found. */
2915 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2916 {
2917 struct compunit_symtab *result;
2918
2919 result
2920 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2921 msymbol,
2922 pc,
2923 section,
2924 0);
2925 if (result != NULL)
2926 return result;
2927 }
2928 if (section != 0)
2929 {
2930 struct block_iterator iter;
2931 struct symbol *sym = NULL;
2932
2933 ALL_BLOCK_SYMBOLS (b, iter, sym)
2934 {
2935 fixup_symbol_section (sym, obj_file);
2936 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2937 sym),
2938 section))
2939 break;
2940 }
2941 if (sym == NULL)
2942 continue; /* No symbol in this symtab matches
2943 section. */
2944 }
2945 distance = BLOCK_END (b) - BLOCK_START (b);
2946 best_cust = cust;
2947 }
2948 }
2949 }
2950
2951 if (best_cust != NULL)
2952 return best_cust;
2953
2954 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2955
2956 for (objfile *objf : current_program_space->objfiles ())
2957 {
2958 struct compunit_symtab *result;
2959
2960 if (!objf->sf)
2961 continue;
2962 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2963 msymbol,
2964 pc, section,
2965 1);
2966 if (result != NULL)
2967 return result;
2968 }
2969
2970 return NULL;
2971 }
2972
2973 /* Find the compunit symtab associated with PC.
2974 This will read in debug info as necessary.
2975 Backward compatibility, no section. */
2976
2977 struct compunit_symtab *
2978 find_pc_compunit_symtab (CORE_ADDR pc)
2979 {
2980 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2981 }
2982
2983 /* See symtab.h. */
2984
2985 struct symbol *
2986 find_symbol_at_address (CORE_ADDR address)
2987 {
2988 for (objfile *objfile : current_program_space->objfiles ())
2989 {
2990 if (objfile->sf == NULL
2991 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2992 continue;
2993
2994 struct compunit_symtab *symtab
2995 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2996 if (symtab != NULL)
2997 {
2998 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2999
3000 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3001 {
3002 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3003 struct block_iterator iter;
3004 struct symbol *sym;
3005
3006 ALL_BLOCK_SYMBOLS (b, iter, sym)
3007 {
3008 if (SYMBOL_CLASS (sym) == LOC_STATIC
3009 && SYMBOL_VALUE_ADDRESS (sym) == address)
3010 return sym;
3011 }
3012 }
3013 }
3014 }
3015
3016 return NULL;
3017 }
3018
3019 \f
3020
3021 /* Find the source file and line number for a given PC value and SECTION.
3022 Return a structure containing a symtab pointer, a line number,
3023 and a pc range for the entire source line.
3024 The value's .pc field is NOT the specified pc.
3025 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3026 use the line that ends there. Otherwise, in that case, the line
3027 that begins there is used. */
3028
3029 /* The big complication here is that a line may start in one file, and end just
3030 before the start of another file. This usually occurs when you #include
3031 code in the middle of a subroutine. To properly find the end of a line's PC
3032 range, we must search all symtabs associated with this compilation unit, and
3033 find the one whose first PC is closer than that of the next line in this
3034 symtab. */
3035
3036 struct symtab_and_line
3037 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3038 {
3039 struct compunit_symtab *cust;
3040 struct linetable *l;
3041 int len;
3042 struct linetable_entry *item;
3043 const struct blockvector *bv;
3044 struct bound_minimal_symbol msymbol;
3045
3046 /* Info on best line seen so far, and where it starts, and its file. */
3047
3048 struct linetable_entry *best = NULL;
3049 CORE_ADDR best_end = 0;
3050 struct symtab *best_symtab = 0;
3051
3052 /* Store here the first line number
3053 of a file which contains the line at the smallest pc after PC.
3054 If we don't find a line whose range contains PC,
3055 we will use a line one less than this,
3056 with a range from the start of that file to the first line's pc. */
3057 struct linetable_entry *alt = NULL;
3058
3059 /* Info on best line seen in this file. */
3060
3061 struct linetable_entry *prev;
3062
3063 /* If this pc is not from the current frame,
3064 it is the address of the end of a call instruction.
3065 Quite likely that is the start of the following statement.
3066 But what we want is the statement containing the instruction.
3067 Fudge the pc to make sure we get that. */
3068
3069 /* It's tempting to assume that, if we can't find debugging info for
3070 any function enclosing PC, that we shouldn't search for line
3071 number info, either. However, GAS can emit line number info for
3072 assembly files --- very helpful when debugging hand-written
3073 assembly code. In such a case, we'd have no debug info for the
3074 function, but we would have line info. */
3075
3076 if (notcurrent)
3077 pc -= 1;
3078
3079 /* elz: added this because this function returned the wrong
3080 information if the pc belongs to a stub (import/export)
3081 to call a shlib function. This stub would be anywhere between
3082 two functions in the target, and the line info was erroneously
3083 taken to be the one of the line before the pc. */
3084
3085 /* RT: Further explanation:
3086
3087 * We have stubs (trampolines) inserted between procedures.
3088 *
3089 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3090 * exists in the main image.
3091 *
3092 * In the minimal symbol table, we have a bunch of symbols
3093 * sorted by start address. The stubs are marked as "trampoline",
3094 * the others appear as text. E.g.:
3095 *
3096 * Minimal symbol table for main image
3097 * main: code for main (text symbol)
3098 * shr1: stub (trampoline symbol)
3099 * foo: code for foo (text symbol)
3100 * ...
3101 * Minimal symbol table for "shr1" image:
3102 * ...
3103 * shr1: code for shr1 (text symbol)
3104 * ...
3105 *
3106 * So the code below is trying to detect if we are in the stub
3107 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3108 * and if found, do the symbolization from the real-code address
3109 * rather than the stub address.
3110 *
3111 * Assumptions being made about the minimal symbol table:
3112 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3113 * if we're really in the trampoline.s If we're beyond it (say
3114 * we're in "foo" in the above example), it'll have a closer
3115 * symbol (the "foo" text symbol for example) and will not
3116 * return the trampoline.
3117 * 2. lookup_minimal_symbol_text() will find a real text symbol
3118 * corresponding to the trampoline, and whose address will
3119 * be different than the trampoline address. I put in a sanity
3120 * check for the address being the same, to avoid an
3121 * infinite recursion.
3122 */
3123 msymbol = lookup_minimal_symbol_by_pc (pc);
3124 if (msymbol.minsym != NULL)
3125 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3126 {
3127 struct bound_minimal_symbol mfunsym
3128 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3129 NULL);
3130
3131 if (mfunsym.minsym == NULL)
3132 /* I eliminated this warning since it is coming out
3133 * in the following situation:
3134 * gdb shmain // test program with shared libraries
3135 * (gdb) break shr1 // function in shared lib
3136 * Warning: In stub for ...
3137 * In the above situation, the shared lib is not loaded yet,
3138 * so of course we can't find the real func/line info,
3139 * but the "break" still works, and the warning is annoying.
3140 * So I commented out the warning. RT */
3141 /* warning ("In stub for %s; unable to find real function/line info",
3142 msymbol->linkage_name ()); */
3143 ;
3144 /* fall through */
3145 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3146 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3147 /* Avoid infinite recursion */
3148 /* See above comment about why warning is commented out. */
3149 /* warning ("In stub for %s; unable to find real function/line info",
3150 msymbol->linkage_name ()); */
3151 ;
3152 /* fall through */
3153 else
3154 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3155 }
3156
3157 symtab_and_line val;
3158 val.pspace = current_program_space;
3159
3160 cust = find_pc_sect_compunit_symtab (pc, section);
3161 if (cust == NULL)
3162 {
3163 /* If no symbol information, return previous pc. */
3164 if (notcurrent)
3165 pc++;
3166 val.pc = pc;
3167 return val;
3168 }
3169
3170 bv = COMPUNIT_BLOCKVECTOR (cust);
3171
3172 /* Look at all the symtabs that share this blockvector.
3173 They all have the same apriori range, that we found was right;
3174 but they have different line tables. */
3175
3176 for (symtab *iter_s : compunit_filetabs (cust))
3177 {
3178 /* Find the best line in this symtab. */
3179 l = SYMTAB_LINETABLE (iter_s);
3180 if (!l)
3181 continue;
3182 len = l->nitems;
3183 if (len <= 0)
3184 {
3185 /* I think len can be zero if the symtab lacks line numbers
3186 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3187 I'm not sure which, and maybe it depends on the symbol
3188 reader). */
3189 continue;
3190 }
3191
3192 prev = NULL;
3193 item = l->item; /* Get first line info. */
3194
3195 /* Is this file's first line closer than the first lines of other files?
3196 If so, record this file, and its first line, as best alternate. */
3197 if (item->pc > pc && (!alt || item->pc < alt->pc))
3198 alt = item;
3199
3200 auto pc_compare = [](const CORE_ADDR & comp_pc,
3201 const struct linetable_entry & lhs)->bool
3202 {
3203 return comp_pc < lhs.pc;
3204 };
3205
3206 struct linetable_entry *first = item;
3207 struct linetable_entry *last = item + len;
3208 item = std::upper_bound (first, last, pc, pc_compare);
3209 if (item != first)
3210 prev = item - 1; /* Found a matching item. */
3211
3212 /* At this point, prev points at the line whose start addr is <= pc, and
3213 item points at the next line. If we ran off the end of the linetable
3214 (pc >= start of the last line), then prev == item. If pc < start of
3215 the first line, prev will not be set. */
3216
3217 /* Is this file's best line closer than the best in the other files?
3218 If so, record this file, and its best line, as best so far. Don't
3219 save prev if it represents the end of a function (i.e. line number
3220 0) instead of a real line. */
3221
3222 if (prev && prev->line && (!best || prev->pc > best->pc))
3223 {
3224 best = prev;
3225 best_symtab = iter_s;
3226
3227 /* Discard BEST_END if it's before the PC of the current BEST. */
3228 if (best_end <= best->pc)
3229 best_end = 0;
3230 }
3231
3232 /* If another line (denoted by ITEM) is in the linetable and its
3233 PC is after BEST's PC, but before the current BEST_END, then
3234 use ITEM's PC as the new best_end. */
3235 if (best && item < last && item->pc > best->pc
3236 && (best_end == 0 || best_end > item->pc))
3237 best_end = item->pc;
3238 }
3239
3240 if (!best_symtab)
3241 {
3242 /* If we didn't find any line number info, just return zeros.
3243 We used to return alt->line - 1 here, but that could be
3244 anywhere; if we don't have line number info for this PC,
3245 don't make some up. */
3246 val.pc = pc;
3247 }
3248 else if (best->line == 0)
3249 {
3250 /* If our best fit is in a range of PC's for which no line
3251 number info is available (line number is zero) then we didn't
3252 find any valid line information. */
3253 val.pc = pc;
3254 }
3255 else
3256 {
3257 val.symtab = best_symtab;
3258 val.line = best->line;
3259 val.pc = best->pc;
3260 if (best_end && (!alt || best_end < alt->pc))
3261 val.end = best_end;
3262 else if (alt)
3263 val.end = alt->pc;
3264 else
3265 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3266 }
3267 val.section = section;
3268 return val;
3269 }
3270
3271 /* Backward compatibility (no section). */
3272
3273 struct symtab_and_line
3274 find_pc_line (CORE_ADDR pc, int notcurrent)
3275 {
3276 struct obj_section *section;
3277
3278 section = find_pc_overlay (pc);
3279 if (pc_in_unmapped_range (pc, section))
3280 pc = overlay_mapped_address (pc, section);
3281 return find_pc_sect_line (pc, section, notcurrent);
3282 }
3283
3284 /* See symtab.h. */
3285
3286 struct symtab *
3287 find_pc_line_symtab (CORE_ADDR pc)
3288 {
3289 struct symtab_and_line sal;
3290
3291 /* This always passes zero for NOTCURRENT to find_pc_line.
3292 There are currently no callers that ever pass non-zero. */
3293 sal = find_pc_line (pc, 0);
3294 return sal.symtab;
3295 }
3296 \f
3297 /* Find line number LINE in any symtab whose name is the same as
3298 SYMTAB.
3299
3300 If found, return the symtab that contains the linetable in which it was
3301 found, set *INDEX to the index in the linetable of the best entry
3302 found, and set *EXACT_MATCH to true if the value returned is an
3303 exact match.
3304
3305 If not found, return NULL. */
3306
3307 struct symtab *
3308 find_line_symtab (struct symtab *sym_tab, int line,
3309 int *index, bool *exact_match)
3310 {
3311 int exact = 0; /* Initialized here to avoid a compiler warning. */
3312
3313 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3314 so far seen. */
3315
3316 int best_index;
3317 struct linetable *best_linetable;
3318 struct symtab *best_symtab;
3319
3320 /* First try looking it up in the given symtab. */
3321 best_linetable = SYMTAB_LINETABLE (sym_tab);
3322 best_symtab = sym_tab;
3323 best_index = find_line_common (best_linetable, line, &exact, 0);
3324 if (best_index < 0 || !exact)
3325 {
3326 /* Didn't find an exact match. So we better keep looking for
3327 another symtab with the same name. In the case of xcoff,
3328 multiple csects for one source file (produced by IBM's FORTRAN
3329 compiler) produce multiple symtabs (this is unavoidable
3330 assuming csects can be at arbitrary places in memory and that
3331 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3332
3333 /* BEST is the smallest linenumber > LINE so far seen,
3334 or 0 if none has been seen so far.
3335 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3336 int best;
3337
3338 if (best_index >= 0)
3339 best = best_linetable->item[best_index].line;
3340 else
3341 best = 0;
3342
3343 for (objfile *objfile : current_program_space->objfiles ())
3344 {
3345 if (objfile->sf)
3346 objfile->sf->qf->expand_symtabs_with_fullname
3347 (objfile, symtab_to_fullname (sym_tab));
3348 }
3349
3350 for (objfile *objfile : current_program_space->objfiles ())
3351 {
3352 for (compunit_symtab *cu : objfile->compunits ())
3353 {
3354 for (symtab *s : compunit_filetabs (cu))
3355 {
3356 struct linetable *l;
3357 int ind;
3358
3359 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3360 continue;
3361 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3362 symtab_to_fullname (s)) != 0)
3363 continue;
3364 l = SYMTAB_LINETABLE (s);
3365 ind = find_line_common (l, line, &exact, 0);
3366 if (ind >= 0)
3367 {
3368 if (exact)
3369 {
3370 best_index = ind;
3371 best_linetable = l;
3372 best_symtab = s;
3373 goto done;
3374 }
3375 if (best == 0 || l->item[ind].line < best)
3376 {
3377 best = l->item[ind].line;
3378 best_index = ind;
3379 best_linetable = l;
3380 best_symtab = s;
3381 }
3382 }
3383 }
3384 }
3385 }
3386 }
3387 done:
3388 if (best_index < 0)
3389 return NULL;
3390
3391 if (index)
3392 *index = best_index;
3393 if (exact_match)
3394 *exact_match = (exact != 0);
3395
3396 return best_symtab;
3397 }
3398
3399 /* Given SYMTAB, returns all the PCs function in the symtab that
3400 exactly match LINE. Returns an empty vector if there are no exact
3401 matches, but updates BEST_ITEM in this case. */
3402
3403 std::vector<CORE_ADDR>
3404 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3405 struct linetable_entry **best_item)
3406 {
3407 int start = 0;
3408 std::vector<CORE_ADDR> result;
3409
3410 /* First, collect all the PCs that are at this line. */
3411 while (1)
3412 {
3413 int was_exact;
3414 int idx;
3415
3416 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3417 start);
3418 if (idx < 0)
3419 break;
3420
3421 if (!was_exact)
3422 {
3423 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3424
3425 if (*best_item == NULL || item->line < (*best_item)->line)
3426 *best_item = item;
3427
3428 break;
3429 }
3430
3431 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3432 start = idx + 1;
3433 }
3434
3435 return result;
3436 }
3437
3438 \f
3439 /* Set the PC value for a given source file and line number and return true.
3440 Returns false for invalid line number (and sets the PC to 0).
3441 The source file is specified with a struct symtab. */
3442
3443 bool
3444 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3445 {
3446 struct linetable *l;
3447 int ind;
3448
3449 *pc = 0;
3450 if (symtab == 0)
3451 return false;
3452
3453 symtab = find_line_symtab (symtab, line, &ind, NULL);
3454 if (symtab != NULL)
3455 {
3456 l = SYMTAB_LINETABLE (symtab);
3457 *pc = l->item[ind].pc;
3458 return true;
3459 }
3460 else
3461 return false;
3462 }
3463
3464 /* Find the range of pc values in a line.
3465 Store the starting pc of the line into *STARTPTR
3466 and the ending pc (start of next line) into *ENDPTR.
3467 Returns true to indicate success.
3468 Returns false if could not find the specified line. */
3469
3470 bool
3471 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3472 CORE_ADDR *endptr)
3473 {
3474 CORE_ADDR startaddr;
3475 struct symtab_and_line found_sal;
3476
3477 startaddr = sal.pc;
3478 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3479 return false;
3480
3481 /* This whole function is based on address. For example, if line 10 has
3482 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3483 "info line *0x123" should say the line goes from 0x100 to 0x200
3484 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3485 This also insures that we never give a range like "starts at 0x134
3486 and ends at 0x12c". */
3487
3488 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3489 if (found_sal.line != sal.line)
3490 {
3491 /* The specified line (sal) has zero bytes. */
3492 *startptr = found_sal.pc;
3493 *endptr = found_sal.pc;
3494 }
3495 else
3496 {
3497 *startptr = found_sal.pc;
3498 *endptr = found_sal.end;
3499 }
3500 return true;
3501 }
3502
3503 /* Given a line table and a line number, return the index into the line
3504 table for the pc of the nearest line whose number is >= the specified one.
3505 Return -1 if none is found. The value is >= 0 if it is an index.
3506 START is the index at which to start searching the line table.
3507
3508 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3509
3510 static int
3511 find_line_common (struct linetable *l, int lineno,
3512 int *exact_match, int start)
3513 {
3514 int i;
3515 int len;
3516
3517 /* BEST is the smallest linenumber > LINENO so far seen,
3518 or 0 if none has been seen so far.
3519 BEST_INDEX identifies the item for it. */
3520
3521 int best_index = -1;
3522 int best = 0;
3523
3524 *exact_match = 0;
3525
3526 if (lineno <= 0)
3527 return -1;
3528 if (l == 0)
3529 return -1;
3530
3531 len = l->nitems;
3532 for (i = start; i < len; i++)
3533 {
3534 struct linetable_entry *item = &(l->item[i]);
3535
3536 if (item->line == lineno)
3537 {
3538 /* Return the first (lowest address) entry which matches. */
3539 *exact_match = 1;
3540 return i;
3541 }
3542
3543 if (item->line > lineno && (best == 0 || item->line < best))
3544 {
3545 best = item->line;
3546 best_index = i;
3547 }
3548 }
3549
3550 /* If we got here, we didn't get an exact match. */
3551 return best_index;
3552 }
3553
3554 bool
3555 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3556 {
3557 struct symtab_and_line sal;
3558
3559 sal = find_pc_line (pc, 0);
3560 *startptr = sal.pc;
3561 *endptr = sal.end;
3562 return sal.symtab != 0;
3563 }
3564
3565 /* Helper for find_function_start_sal. Does most of the work, except
3566 setting the sal's symbol. */
3567
3568 static symtab_and_line
3569 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3570 bool funfirstline)
3571 {
3572 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3573
3574 if (funfirstline && sal.symtab != NULL
3575 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3576 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3577 {
3578 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3579
3580 sal.pc = func_addr;
3581 if (gdbarch_skip_entrypoint_p (gdbarch))
3582 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3583 return sal;
3584 }
3585
3586 /* We always should have a line for the function start address.
3587 If we don't, something is odd. Create a plain SAL referring
3588 just the PC and hope that skip_prologue_sal (if requested)
3589 can find a line number for after the prologue. */
3590 if (sal.pc < func_addr)
3591 {
3592 sal = {};
3593 sal.pspace = current_program_space;
3594 sal.pc = func_addr;
3595 sal.section = section;
3596 }
3597
3598 if (funfirstline)
3599 skip_prologue_sal (&sal);
3600
3601 return sal;
3602 }
3603
3604 /* See symtab.h. */
3605
3606 symtab_and_line
3607 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3608 bool funfirstline)
3609 {
3610 symtab_and_line sal
3611 = find_function_start_sal_1 (func_addr, section, funfirstline);
3612
3613 /* find_function_start_sal_1 does a linetable search, so it finds
3614 the symtab and linenumber, but not a symbol. Fill in the
3615 function symbol too. */
3616 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3617
3618 return sal;
3619 }
3620
3621 /* See symtab.h. */
3622
3623 symtab_and_line
3624 find_function_start_sal (symbol *sym, bool funfirstline)
3625 {
3626 fixup_symbol_section (sym, NULL);
3627 symtab_and_line sal
3628 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3629 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3630 funfirstline);
3631 sal.symbol = sym;
3632 return sal;
3633 }
3634
3635
3636 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3637 address for that function that has an entry in SYMTAB's line info
3638 table. If such an entry cannot be found, return FUNC_ADDR
3639 unaltered. */
3640
3641 static CORE_ADDR
3642 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3643 {
3644 CORE_ADDR func_start, func_end;
3645 struct linetable *l;
3646 int i;
3647
3648 /* Give up if this symbol has no lineinfo table. */
3649 l = SYMTAB_LINETABLE (symtab);
3650 if (l == NULL)
3651 return func_addr;
3652
3653 /* Get the range for the function's PC values, or give up if we
3654 cannot, for some reason. */
3655 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3656 return func_addr;
3657
3658 /* Linetable entries are ordered by PC values, see the commentary in
3659 symtab.h where `struct linetable' is defined. Thus, the first
3660 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3661 address we are looking for. */
3662 for (i = 0; i < l->nitems; i++)
3663 {
3664 struct linetable_entry *item = &(l->item[i]);
3665
3666 /* Don't use line numbers of zero, they mark special entries in
3667 the table. See the commentary on symtab.h before the
3668 definition of struct linetable. */
3669 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3670 return item->pc;
3671 }
3672
3673 return func_addr;
3674 }
3675
3676 /* Adjust SAL to the first instruction past the function prologue.
3677 If the PC was explicitly specified, the SAL is not changed.
3678 If the line number was explicitly specified then the SAL can still be
3679 updated, unless the language for SAL is assembler, in which case the SAL
3680 will be left unchanged.
3681 If SAL is already past the prologue, then do nothing. */
3682
3683 void
3684 skip_prologue_sal (struct symtab_and_line *sal)
3685 {
3686 struct symbol *sym;
3687 struct symtab_and_line start_sal;
3688 CORE_ADDR pc, saved_pc;
3689 struct obj_section *section;
3690 const char *name;
3691 struct objfile *objfile;
3692 struct gdbarch *gdbarch;
3693 const struct block *b, *function_block;
3694 int force_skip, skip;
3695
3696 /* Do not change the SAL if PC was specified explicitly. */
3697 if (sal->explicit_pc)
3698 return;
3699
3700 /* In assembly code, if the user asks for a specific line then we should
3701 not adjust the SAL. The user already has instruction level
3702 visibility in this case, so selecting a line other than one requested
3703 is likely to be the wrong choice. */
3704 if (sal->symtab != nullptr
3705 && sal->explicit_line
3706 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3707 return;
3708
3709 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3710
3711 switch_to_program_space_and_thread (sal->pspace);
3712
3713 sym = find_pc_sect_function (sal->pc, sal->section);
3714 if (sym != NULL)
3715 {
3716 fixup_symbol_section (sym, NULL);
3717
3718 objfile = symbol_objfile (sym);
3719 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3720 section = SYMBOL_OBJ_SECTION (objfile, sym);
3721 name = sym->linkage_name ();
3722 }
3723 else
3724 {
3725 struct bound_minimal_symbol msymbol
3726 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3727
3728 if (msymbol.minsym == NULL)
3729 return;
3730
3731 objfile = msymbol.objfile;
3732 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3733 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3734 name = msymbol.minsym->linkage_name ();
3735 }
3736
3737 gdbarch = get_objfile_arch (objfile);
3738
3739 /* Process the prologue in two passes. In the first pass try to skip the
3740 prologue (SKIP is true) and verify there is a real need for it (indicated
3741 by FORCE_SKIP). If no such reason was found run a second pass where the
3742 prologue is not skipped (SKIP is false). */
3743
3744 skip = 1;
3745 force_skip = 1;
3746
3747 /* Be conservative - allow direct PC (without skipping prologue) only if we
3748 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3749 have to be set by the caller so we use SYM instead. */
3750 if (sym != NULL
3751 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3752 force_skip = 0;
3753
3754 saved_pc = pc;
3755 do
3756 {
3757 pc = saved_pc;
3758
3759 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3760 so that gdbarch_skip_prologue has something unique to work on. */
3761 if (section_is_overlay (section) && !section_is_mapped (section))
3762 pc = overlay_unmapped_address (pc, section);
3763
3764 /* Skip "first line" of function (which is actually its prologue). */
3765 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3766 if (gdbarch_skip_entrypoint_p (gdbarch))
3767 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3768 if (skip)
3769 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3770
3771 /* For overlays, map pc back into its mapped VMA range. */
3772 pc = overlay_mapped_address (pc, section);
3773
3774 /* Calculate line number. */
3775 start_sal = find_pc_sect_line (pc, section, 0);
3776
3777 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3778 line is still part of the same function. */
3779 if (skip && start_sal.pc != pc
3780 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3781 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3782 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3783 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3784 {
3785 /* First pc of next line */
3786 pc = start_sal.end;
3787 /* Recalculate the line number (might not be N+1). */
3788 start_sal = find_pc_sect_line (pc, section, 0);
3789 }
3790
3791 /* On targets with executable formats that don't have a concept of
3792 constructors (ELF with .init has, PE doesn't), gcc emits a call
3793 to `__main' in `main' between the prologue and before user
3794 code. */
3795 if (gdbarch_skip_main_prologue_p (gdbarch)
3796 && name && strcmp_iw (name, "main") == 0)
3797 {
3798 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3799 /* Recalculate the line number (might not be N+1). */
3800 start_sal = find_pc_sect_line (pc, section, 0);
3801 force_skip = 1;
3802 }
3803 }
3804 while (!force_skip && skip--);
3805
3806 /* If we still don't have a valid source line, try to find the first
3807 PC in the lineinfo table that belongs to the same function. This
3808 happens with COFF debug info, which does not seem to have an
3809 entry in lineinfo table for the code after the prologue which has
3810 no direct relation to source. For example, this was found to be
3811 the case with the DJGPP target using "gcc -gcoff" when the
3812 compiler inserted code after the prologue to make sure the stack
3813 is aligned. */
3814 if (!force_skip && sym && start_sal.symtab == NULL)
3815 {
3816 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3817 /* Recalculate the line number. */
3818 start_sal = find_pc_sect_line (pc, section, 0);
3819 }
3820
3821 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3822 forward SAL to the end of the prologue. */
3823 if (sal->pc >= pc)
3824 return;
3825
3826 sal->pc = pc;
3827 sal->section = section;
3828 sal->symtab = start_sal.symtab;
3829 sal->line = start_sal.line;
3830 sal->end = start_sal.end;
3831
3832 /* Check if we are now inside an inlined function. If we can,
3833 use the call site of the function instead. */
3834 b = block_for_pc_sect (sal->pc, sal->section);
3835 function_block = NULL;
3836 while (b != NULL)
3837 {
3838 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3839 function_block = b;
3840 else if (BLOCK_FUNCTION (b) != NULL)
3841 break;
3842 b = BLOCK_SUPERBLOCK (b);
3843 }
3844 if (function_block != NULL
3845 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3846 {
3847 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3848 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3849 }
3850 }
3851
3852 /* Given PC at the function's start address, attempt to find the
3853 prologue end using SAL information. Return zero if the skip fails.
3854
3855 A non-optimized prologue traditionally has one SAL for the function
3856 and a second for the function body. A single line function has
3857 them both pointing at the same line.
3858
3859 An optimized prologue is similar but the prologue may contain
3860 instructions (SALs) from the instruction body. Need to skip those
3861 while not getting into the function body.
3862
3863 The functions end point and an increasing SAL line are used as
3864 indicators of the prologue's endpoint.
3865
3866 This code is based on the function refine_prologue_limit
3867 (found in ia64). */
3868
3869 CORE_ADDR
3870 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3871 {
3872 struct symtab_and_line prologue_sal;
3873 CORE_ADDR start_pc;
3874 CORE_ADDR end_pc;
3875 const struct block *bl;
3876
3877 /* Get an initial range for the function. */
3878 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3879 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3880
3881 prologue_sal = find_pc_line (start_pc, 0);
3882 if (prologue_sal.line != 0)
3883 {
3884 /* For languages other than assembly, treat two consecutive line
3885 entries at the same address as a zero-instruction prologue.
3886 The GNU assembler emits separate line notes for each instruction
3887 in a multi-instruction macro, but compilers generally will not
3888 do this. */
3889 if (prologue_sal.symtab->language != language_asm)
3890 {
3891 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3892 int idx = 0;
3893
3894 /* Skip any earlier lines, and any end-of-sequence marker
3895 from a previous function. */
3896 while (linetable->item[idx].pc != prologue_sal.pc
3897 || linetable->item[idx].line == 0)
3898 idx++;
3899
3900 if (idx+1 < linetable->nitems
3901 && linetable->item[idx+1].line != 0
3902 && linetable->item[idx+1].pc == start_pc)
3903 return start_pc;
3904 }
3905
3906 /* If there is only one sal that covers the entire function,
3907 then it is probably a single line function, like
3908 "foo(){}". */
3909 if (prologue_sal.end >= end_pc)
3910 return 0;
3911
3912 while (prologue_sal.end < end_pc)
3913 {
3914 struct symtab_and_line sal;
3915
3916 sal = find_pc_line (prologue_sal.end, 0);
3917 if (sal.line == 0)
3918 break;
3919 /* Assume that a consecutive SAL for the same (or larger)
3920 line mark the prologue -> body transition. */
3921 if (sal.line >= prologue_sal.line)
3922 break;
3923 /* Likewise if we are in a different symtab altogether
3924 (e.g. within a file included via #include).  */
3925 if (sal.symtab != prologue_sal.symtab)
3926 break;
3927
3928 /* The line number is smaller. Check that it's from the
3929 same function, not something inlined. If it's inlined,
3930 then there is no point comparing the line numbers. */
3931 bl = block_for_pc (prologue_sal.end);
3932 while (bl)
3933 {
3934 if (block_inlined_p (bl))
3935 break;
3936 if (BLOCK_FUNCTION (bl))
3937 {
3938 bl = NULL;
3939 break;
3940 }
3941 bl = BLOCK_SUPERBLOCK (bl);
3942 }
3943 if (bl != NULL)
3944 break;
3945
3946 /* The case in which compiler's optimizer/scheduler has
3947 moved instructions into the prologue. We look ahead in
3948 the function looking for address ranges whose
3949 corresponding line number is less the first one that we
3950 found for the function. This is more conservative then
3951 refine_prologue_limit which scans a large number of SALs
3952 looking for any in the prologue. */
3953 prologue_sal = sal;
3954 }
3955 }
3956
3957 if (prologue_sal.end < end_pc)
3958 /* Return the end of this line, or zero if we could not find a
3959 line. */
3960 return prologue_sal.end;
3961 else
3962 /* Don't return END_PC, which is past the end of the function. */
3963 return prologue_sal.pc;
3964 }
3965
3966 /* See symtab.h. */
3967
3968 symbol *
3969 find_function_alias_target (bound_minimal_symbol msymbol)
3970 {
3971 CORE_ADDR func_addr;
3972 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3973 return NULL;
3974
3975 symbol *sym = find_pc_function (func_addr);
3976 if (sym != NULL
3977 && SYMBOL_CLASS (sym) == LOC_BLOCK
3978 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3979 return sym;
3980
3981 return NULL;
3982 }
3983
3984 \f
3985 /* If P is of the form "operator[ \t]+..." where `...' is
3986 some legitimate operator text, return a pointer to the
3987 beginning of the substring of the operator text.
3988 Otherwise, return "". */
3989
3990 static const char *
3991 operator_chars (const char *p, const char **end)
3992 {
3993 *end = "";
3994 if (!startswith (p, CP_OPERATOR_STR))
3995 return *end;
3996 p += CP_OPERATOR_LEN;
3997
3998 /* Don't get faked out by `operator' being part of a longer
3999 identifier. */
4000 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4001 return *end;
4002
4003 /* Allow some whitespace between `operator' and the operator symbol. */
4004 while (*p == ' ' || *p == '\t')
4005 p++;
4006
4007 /* Recognize 'operator TYPENAME'. */
4008
4009 if (isalpha (*p) || *p == '_' || *p == '$')
4010 {
4011 const char *q = p + 1;
4012
4013 while (isalnum (*q) || *q == '_' || *q == '$')
4014 q++;
4015 *end = q;
4016 return p;
4017 }
4018
4019 while (*p)
4020 switch (*p)
4021 {
4022 case '\\': /* regexp quoting */
4023 if (p[1] == '*')
4024 {
4025 if (p[2] == '=') /* 'operator\*=' */
4026 *end = p + 3;
4027 else /* 'operator\*' */
4028 *end = p + 2;
4029 return p;
4030 }
4031 else if (p[1] == '[')
4032 {
4033 if (p[2] == ']')
4034 error (_("mismatched quoting on brackets, "
4035 "try 'operator\\[\\]'"));
4036 else if (p[2] == '\\' && p[3] == ']')
4037 {
4038 *end = p + 4; /* 'operator\[\]' */
4039 return p;
4040 }
4041 else
4042 error (_("nothing is allowed between '[' and ']'"));
4043 }
4044 else
4045 {
4046 /* Gratuitous quote: skip it and move on. */
4047 p++;
4048 continue;
4049 }
4050 break;
4051 case '!':
4052 case '=':
4053 case '*':
4054 case '/':
4055 case '%':
4056 case '^':
4057 if (p[1] == '=')
4058 *end = p + 2;
4059 else
4060 *end = p + 1;
4061 return p;
4062 case '<':
4063 case '>':
4064 case '+':
4065 case '-':
4066 case '&':
4067 case '|':
4068 if (p[0] == '-' && p[1] == '>')
4069 {
4070 /* Struct pointer member operator 'operator->'. */
4071 if (p[2] == '*')
4072 {
4073 *end = p + 3; /* 'operator->*' */
4074 return p;
4075 }
4076 else if (p[2] == '\\')
4077 {
4078 *end = p + 4; /* Hopefully 'operator->\*' */
4079 return p;
4080 }
4081 else
4082 {
4083 *end = p + 2; /* 'operator->' */
4084 return p;
4085 }
4086 }
4087 if (p[1] == '=' || p[1] == p[0])
4088 *end = p + 2;
4089 else
4090 *end = p + 1;
4091 return p;
4092 case '~':
4093 case ',':
4094 *end = p + 1;
4095 return p;
4096 case '(':
4097 if (p[1] != ')')
4098 error (_("`operator ()' must be specified "
4099 "without whitespace in `()'"));
4100 *end = p + 2;
4101 return p;
4102 case '?':
4103 if (p[1] != ':')
4104 error (_("`operator ?:' must be specified "
4105 "without whitespace in `?:'"));
4106 *end = p + 2;
4107 return p;
4108 case '[':
4109 if (p[1] != ']')
4110 error (_("`operator []' must be specified "
4111 "without whitespace in `[]'"));
4112 *end = p + 2;
4113 return p;
4114 default:
4115 error (_("`operator %s' not supported"), p);
4116 break;
4117 }
4118
4119 *end = "";
4120 return *end;
4121 }
4122 \f
4123
4124 /* What part to match in a file name. */
4125
4126 struct filename_partial_match_opts
4127 {
4128 /* Only match the directory name part. */
4129 bool dirname = false;
4130
4131 /* Only match the basename part. */
4132 bool basename = false;
4133 };
4134
4135 /* Data structure to maintain printing state for output_source_filename. */
4136
4137 struct output_source_filename_data
4138 {
4139 /* Output only filenames matching REGEXP. */
4140 std::string regexp;
4141 gdb::optional<compiled_regex> c_regexp;
4142 /* Possibly only match a part of the filename. */
4143 filename_partial_match_opts partial_match;
4144
4145
4146 /* Cache of what we've seen so far. */
4147 struct filename_seen_cache *filename_seen_cache;
4148
4149 /* Flag of whether we're printing the first one. */
4150 int first;
4151 };
4152
4153 /* Slave routine for sources_info. Force line breaks at ,'s.
4154 NAME is the name to print.
4155 DATA contains the state for printing and watching for duplicates. */
4156
4157 static void
4158 output_source_filename (const char *name,
4159 struct output_source_filename_data *data)
4160 {
4161 /* Since a single source file can result in several partial symbol
4162 tables, we need to avoid printing it more than once. Note: if
4163 some of the psymtabs are read in and some are not, it gets
4164 printed both under "Source files for which symbols have been
4165 read" and "Source files for which symbols will be read in on
4166 demand". I consider this a reasonable way to deal with the
4167 situation. I'm not sure whether this can also happen for
4168 symtabs; it doesn't hurt to check. */
4169
4170 /* Was NAME already seen? */
4171 if (data->filename_seen_cache->seen (name))
4172 {
4173 /* Yes; don't print it again. */
4174 return;
4175 }
4176
4177 /* Does it match data->regexp? */
4178 if (data->c_regexp.has_value ())
4179 {
4180 const char *to_match;
4181 std::string dirname;
4182
4183 if (data->partial_match.dirname)
4184 {
4185 dirname = ldirname (name);
4186 to_match = dirname.c_str ();
4187 }
4188 else if (data->partial_match.basename)
4189 to_match = lbasename (name);
4190 else
4191 to_match = name;
4192
4193 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4194 return;
4195 }
4196
4197 /* Print it and reset *FIRST. */
4198 if (! data->first)
4199 printf_filtered (", ");
4200 data->first = 0;
4201
4202 wrap_here ("");
4203 fputs_styled (name, file_name_style.style (), gdb_stdout);
4204 }
4205
4206 /* A callback for map_partial_symbol_filenames. */
4207
4208 static void
4209 output_partial_symbol_filename (const char *filename, const char *fullname,
4210 void *data)
4211 {
4212 output_source_filename (fullname ? fullname : filename,
4213 (struct output_source_filename_data *) data);
4214 }
4215
4216 using isrc_flag_option_def
4217 = gdb::option::flag_option_def<filename_partial_match_opts>;
4218
4219 static const gdb::option::option_def info_sources_option_defs[] = {
4220
4221 isrc_flag_option_def {
4222 "dirname",
4223 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4224 N_("Show only the files having a dirname matching REGEXP."),
4225 },
4226
4227 isrc_flag_option_def {
4228 "basename",
4229 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4230 N_("Show only the files having a basename matching REGEXP."),
4231 },
4232
4233 };
4234
4235 /* Create an option_def_group for the "info sources" options, with
4236 ISRC_OPTS as context. */
4237
4238 static inline gdb::option::option_def_group
4239 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4240 {
4241 return {{info_sources_option_defs}, isrc_opts};
4242 }
4243
4244 /* Prints the header message for the source files that will be printed
4245 with the matching info present in DATA. SYMBOL_MSG is a message
4246 that tells what will or has been done with the symbols of the
4247 matching source files. */
4248
4249 static void
4250 print_info_sources_header (const char *symbol_msg,
4251 const struct output_source_filename_data *data)
4252 {
4253 puts_filtered (symbol_msg);
4254 if (!data->regexp.empty ())
4255 {
4256 if (data->partial_match.dirname)
4257 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4258 data->regexp.c_str ());
4259 else if (data->partial_match.basename)
4260 printf_filtered (_("(basename matching regular expression \"%s\")"),
4261 data->regexp.c_str ());
4262 else
4263 printf_filtered (_("(filename matching regular expression \"%s\")"),
4264 data->regexp.c_str ());
4265 }
4266 puts_filtered ("\n");
4267 }
4268
4269 /* Completer for "info sources". */
4270
4271 static void
4272 info_sources_command_completer (cmd_list_element *ignore,
4273 completion_tracker &tracker,
4274 const char *text, const char *word)
4275 {
4276 const auto group = make_info_sources_options_def_group (nullptr);
4277 if (gdb::option::complete_options
4278 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4279 return;
4280 }
4281
4282 static void
4283 info_sources_command (const char *args, int from_tty)
4284 {
4285 struct output_source_filename_data data;
4286
4287 if (!have_full_symbols () && !have_partial_symbols ())
4288 {
4289 error (_("No symbol table is loaded. Use the \"file\" command."));
4290 }
4291
4292 filename_seen_cache filenames_seen;
4293
4294 auto group = make_info_sources_options_def_group (&data.partial_match);
4295
4296 gdb::option::process_options
4297 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4298
4299 if (args != NULL && *args != '\000')
4300 data.regexp = args;
4301
4302 data.filename_seen_cache = &filenames_seen;
4303 data.first = 1;
4304
4305 if (data.partial_match.dirname && data.partial_match.basename)
4306 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4307 if ((data.partial_match.dirname || data.partial_match.basename)
4308 && data.regexp.empty ())
4309 error (_("Missing REGEXP for 'info sources'."));
4310
4311 if (data.regexp.empty ())
4312 data.c_regexp.reset ();
4313 else
4314 {
4315 int cflags = REG_NOSUB;
4316 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4317 cflags |= REG_ICASE;
4318 #endif
4319 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4320 _("Invalid regexp"));
4321 }
4322
4323 print_info_sources_header
4324 (_("Source files for which symbols have been read in:\n"), &data);
4325
4326 for (objfile *objfile : current_program_space->objfiles ())
4327 {
4328 for (compunit_symtab *cu : objfile->compunits ())
4329 {
4330 for (symtab *s : compunit_filetabs (cu))
4331 {
4332 const char *fullname = symtab_to_fullname (s);
4333
4334 output_source_filename (fullname, &data);
4335 }
4336 }
4337 }
4338 printf_filtered ("\n\n");
4339
4340 print_info_sources_header
4341 (_("Source files for which symbols will be read in on demand:\n"), &data);
4342
4343 filenames_seen.clear ();
4344 data.first = 1;
4345 map_symbol_filenames (output_partial_symbol_filename, &data,
4346 1 /*need_fullname*/);
4347 printf_filtered ("\n");
4348 }
4349
4350 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4351 true compare only lbasename of FILENAMES. */
4352
4353 static bool
4354 file_matches (const char *file, const std::vector<const char *> &filenames,
4355 bool basenames)
4356 {
4357 if (filenames.empty ())
4358 return true;
4359
4360 for (const char *name : filenames)
4361 {
4362 name = (basenames ? lbasename (name) : name);
4363 if (compare_filenames_for_search (file, name))
4364 return true;
4365 }
4366
4367 return false;
4368 }
4369
4370 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4371 sort symbols, not minimal symbols. */
4372
4373 int
4374 symbol_search::compare_search_syms (const symbol_search &sym_a,
4375 const symbol_search &sym_b)
4376 {
4377 int c;
4378
4379 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4380 symbol_symtab (sym_b.symbol)->filename);
4381 if (c != 0)
4382 return c;
4383
4384 if (sym_a.block != sym_b.block)
4385 return sym_a.block - sym_b.block;
4386
4387 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4388 }
4389
4390 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4391 If SYM has no symbol_type or symbol_name, returns false. */
4392
4393 bool
4394 treg_matches_sym_type_name (const compiled_regex &treg,
4395 const struct symbol *sym)
4396 {
4397 struct type *sym_type;
4398 std::string printed_sym_type_name;
4399
4400 if (symbol_lookup_debug > 1)
4401 {
4402 fprintf_unfiltered (gdb_stdlog,
4403 "treg_matches_sym_type_name\n sym %s\n",
4404 sym->natural_name ());
4405 }
4406
4407 sym_type = SYMBOL_TYPE (sym);
4408 if (sym_type == NULL)
4409 return false;
4410
4411 {
4412 scoped_switch_to_sym_language_if_auto l (sym);
4413
4414 printed_sym_type_name = type_to_string (sym_type);
4415 }
4416
4417
4418 if (symbol_lookup_debug > 1)
4419 {
4420 fprintf_unfiltered (gdb_stdlog,
4421 " sym_type_name %s\n",
4422 printed_sym_type_name.c_str ());
4423 }
4424
4425
4426 if (printed_sym_type_name.empty ())
4427 return false;
4428
4429 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4430 }
4431
4432
4433 /* Sort the symbols in RESULT and remove duplicates. */
4434
4435 static void
4436 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4437 {
4438 std::sort (result->begin (), result->end ());
4439 result->erase (std::unique (result->begin (), result->end ()),
4440 result->end ());
4441 }
4442
4443 /* See symtab.h. */
4444
4445 std::vector<symbol_search>
4446 global_symbol_searcher::search () const
4447 {
4448 const struct blockvector *bv;
4449 const struct block *b;
4450 int i = 0;
4451 struct block_iterator iter;
4452 struct symbol *sym;
4453 int found_misc = 0;
4454 static const enum minimal_symbol_type types[]
4455 = {mst_data, mst_text, mst_unknown};
4456 static const enum minimal_symbol_type types2[]
4457 = {mst_bss, mst_file_text, mst_unknown};
4458 static const enum minimal_symbol_type types3[]
4459 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4460 static const enum minimal_symbol_type types4[]
4461 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4462 enum minimal_symbol_type ourtype;
4463 enum minimal_symbol_type ourtype2;
4464 enum minimal_symbol_type ourtype3;
4465 enum minimal_symbol_type ourtype4;
4466 std::vector<symbol_search> result;
4467 gdb::optional<compiled_regex> preg;
4468 gdb::optional<compiled_regex> treg;
4469
4470 gdb_assert (m_kind != ALL_DOMAIN);
4471
4472 ourtype = types[m_kind];
4473 ourtype2 = types2[m_kind];
4474 ourtype3 = types3[m_kind];
4475 ourtype4 = types4[m_kind];
4476
4477 if (m_symbol_name_regexp != NULL)
4478 {
4479 const char *symbol_name_regexp = m_symbol_name_regexp;
4480
4481 /* Make sure spacing is right for C++ operators.
4482 This is just a courtesy to make the matching less sensitive
4483 to how many spaces the user leaves between 'operator'
4484 and <TYPENAME> or <OPERATOR>. */
4485 const char *opend;
4486 const char *opname = operator_chars (symbol_name_regexp, &opend);
4487
4488 if (*opname)
4489 {
4490 int fix = -1; /* -1 means ok; otherwise number of
4491 spaces needed. */
4492
4493 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4494 {
4495 /* There should 1 space between 'operator' and 'TYPENAME'. */
4496 if (opname[-1] != ' ' || opname[-2] == ' ')
4497 fix = 1;
4498 }
4499 else
4500 {
4501 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4502 if (opname[-1] == ' ')
4503 fix = 0;
4504 }
4505 /* If wrong number of spaces, fix it. */
4506 if (fix >= 0)
4507 {
4508 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4509
4510 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4511 symbol_name_regexp = tmp;
4512 }
4513 }
4514
4515 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4516 ? REG_ICASE : 0);
4517 preg.emplace (symbol_name_regexp, cflags,
4518 _("Invalid regexp"));
4519 }
4520
4521 if (m_symbol_type_regexp != NULL)
4522 {
4523 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4524 ? REG_ICASE : 0);
4525 treg.emplace (m_symbol_type_regexp, cflags,
4526 _("Invalid regexp"));
4527 }
4528
4529 /* Search through the partial symtabs *first* for all symbols matching
4530 the m_symbol_name_regexp (in preg). That way we don't have to
4531 reproduce all of the machinery below. */
4532 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4533 {
4534 return file_matches (filename, filenames,
4535 basenames);
4536 },
4537 lookup_name_info::match_any (),
4538 [&] (const char *symname)
4539 {
4540 return (!preg.has_value ()
4541 || preg->exec (symname,
4542 0, NULL, 0) == 0);
4543 },
4544 NULL,
4545 m_kind);
4546
4547 /* Here, we search through the minimal symbol tables for functions
4548 and variables that match, and force their symbols to be read.
4549 This is in particular necessary for demangled variable names,
4550 which are no longer put into the partial symbol tables.
4551 The symbol will then be found during the scan of symtabs below.
4552
4553 For functions, find_pc_symtab should succeed if we have debug info
4554 for the function, for variables we have to call
4555 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4556 has debug info.
4557 If the lookup fails, set found_misc so that we will rescan to print
4558 any matching symbols without debug info.
4559 We only search the objfile the msymbol came from, we no longer search
4560 all objfiles. In large programs (1000s of shared libs) searching all
4561 objfiles is not worth the pain. */
4562
4563 if (filenames.empty () && (m_kind == VARIABLES_DOMAIN
4564 || m_kind == FUNCTIONS_DOMAIN))
4565 {
4566 for (objfile *objfile : current_program_space->objfiles ())
4567 {
4568 for (minimal_symbol *msymbol : objfile->msymbols ())
4569 {
4570 QUIT;
4571
4572 if (msymbol->created_by_gdb)
4573 continue;
4574
4575 if (MSYMBOL_TYPE (msymbol) == ourtype
4576 || MSYMBOL_TYPE (msymbol) == ourtype2
4577 || MSYMBOL_TYPE (msymbol) == ourtype3
4578 || MSYMBOL_TYPE (msymbol) == ourtype4)
4579 {
4580 if (!preg.has_value ()
4581 || preg->exec (msymbol->natural_name (), 0,
4582 NULL, 0) == 0)
4583 {
4584 /* Note: An important side-effect of these
4585 lookup functions is to expand the symbol
4586 table if msymbol is found, for the benefit of
4587 the next loop on compunits. */
4588 if (m_kind == FUNCTIONS_DOMAIN
4589 ? (find_pc_compunit_symtab
4590 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4591 == NULL)
4592 : (lookup_symbol_in_objfile_from_linkage_name
4593 (objfile, msymbol->linkage_name (), VAR_DOMAIN)
4594 .symbol == NULL))
4595 found_misc = 1;
4596 }
4597 }
4598 }
4599 }
4600 }
4601
4602 for (objfile *objfile : current_program_space->objfiles ())
4603 {
4604 for (compunit_symtab *cust : objfile->compunits ())
4605 {
4606 bv = COMPUNIT_BLOCKVECTOR (cust);
4607 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4608 {
4609 b = BLOCKVECTOR_BLOCK (bv, i);
4610 ALL_BLOCK_SYMBOLS (b, iter, sym)
4611 {
4612 struct symtab *real_symtab = symbol_symtab (sym);
4613
4614 QUIT;
4615
4616 /* Check first sole REAL_SYMTAB->FILENAME. It does
4617 not need to be a substring of symtab_to_fullname as
4618 it may contain "./" etc. */
4619 if ((file_matches (real_symtab->filename, filenames, false)
4620 || ((basenames_may_differ
4621 || file_matches (lbasename (real_symtab->filename),
4622 filenames, true))
4623 && file_matches (symtab_to_fullname (real_symtab),
4624 filenames, false)))
4625 && ((!preg.has_value ()
4626 || preg->exec (sym->natural_name (), 0,
4627 NULL, 0) == 0)
4628 && ((m_kind == VARIABLES_DOMAIN
4629 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4630 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4631 && SYMBOL_CLASS (sym) != LOC_BLOCK
4632 /* LOC_CONST can be used for more than
4633 just enums, e.g., c++ static const
4634 members. We only want to skip enums
4635 here. */
4636 && !(SYMBOL_CLASS (sym) == LOC_CONST
4637 && (TYPE_CODE (SYMBOL_TYPE (sym))
4638 == TYPE_CODE_ENUM))
4639 && (!treg.has_value ()
4640 || treg_matches_sym_type_name (*treg, sym)))
4641 || (m_kind == FUNCTIONS_DOMAIN
4642 && SYMBOL_CLASS (sym) == LOC_BLOCK
4643 && (!treg.has_value ()
4644 || treg_matches_sym_type_name (*treg,
4645 sym)))
4646 || (m_kind == TYPES_DOMAIN
4647 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4648 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4649 || (m_kind == MODULES_DOMAIN
4650 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4651 && SYMBOL_LINE (sym) != 0))))
4652 {
4653 /* match */
4654 result.emplace_back (i, sym);
4655 }
4656 }
4657 }
4658 }
4659 }
4660
4661 if (!result.empty ())
4662 sort_search_symbols_remove_dups (&result);
4663
4664 /* If there are no debug symbols, then add matching minsyms. But if the
4665 user wants to see symbols matching a type m_symbol_type_regexp, then
4666 never give a minimal symbol, as we assume that a minimal symbol does
4667 not have a type. */
4668
4669 if ((found_misc || (filenames.empty () && m_kind != FUNCTIONS_DOMAIN))
4670 && !m_exclude_minsyms
4671 && !treg.has_value ())
4672 {
4673 for (objfile *objfile : current_program_space->objfiles ())
4674 {
4675 for (minimal_symbol *msymbol : objfile->msymbols ())
4676 {
4677 QUIT;
4678
4679 if (msymbol->created_by_gdb)
4680 continue;
4681
4682 if (MSYMBOL_TYPE (msymbol) == ourtype
4683 || MSYMBOL_TYPE (msymbol) == ourtype2
4684 || MSYMBOL_TYPE (msymbol) == ourtype3
4685 || MSYMBOL_TYPE (msymbol) == ourtype4)
4686 {
4687 if (!preg.has_value ()
4688 || preg->exec (msymbol->natural_name (), 0,
4689 NULL, 0) == 0)
4690 {
4691 /* For functions we can do a quick check of whether the
4692 symbol might be found via find_pc_symtab. */
4693 if (m_kind != FUNCTIONS_DOMAIN
4694 || (find_pc_compunit_symtab
4695 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4696 == NULL))
4697 {
4698 if (lookup_symbol_in_objfile_from_linkage_name
4699 (objfile, msymbol->linkage_name (), VAR_DOMAIN)
4700 .symbol == NULL)
4701 {
4702 /* match */
4703 result.emplace_back (i, msymbol, objfile);
4704 }
4705 }
4706 }
4707 }
4708 }
4709 }
4710 }
4711
4712 return result;
4713 }
4714
4715 /* Helper function for symtab_symbol_info, this function uses
4716 the data returned from search_symbols() to print information
4717 regarding the match to gdb_stdout. If LAST is not NULL,
4718 print file and line number information for the symbol as
4719 well. Skip printing the filename if it matches LAST. */
4720
4721 static void
4722 print_symbol_info (enum search_domain kind,
4723 struct symbol *sym,
4724 int block, const char *last)
4725 {
4726 scoped_switch_to_sym_language_if_auto l (sym);
4727 struct symtab *s = symbol_symtab (sym);
4728
4729 if (last != NULL)
4730 {
4731 const char *s_filename = symtab_to_filename_for_display (s);
4732
4733 if (filename_cmp (last, s_filename) != 0)
4734 {
4735 printf_filtered (_("\nFile %ps:\n"),
4736 styled_string (file_name_style.style (),
4737 s_filename));
4738 }
4739
4740 if (SYMBOL_LINE (sym) != 0)
4741 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4742 else
4743 puts_filtered ("\t");
4744 }
4745
4746 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4747 printf_filtered ("static ");
4748
4749 /* Typedef that is not a C++ class. */
4750 if (kind == TYPES_DOMAIN
4751 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4752 {
4753 /* FIXME: For C (and C++) we end up with a difference in output here
4754 between how a typedef is printed, and non-typedefs are printed.
4755 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4756 appear C-like, while TYPE_PRINT doesn't.
4757
4758 For the struct printing case below, things are worse, we force
4759 printing of the ";" in this function, which is going to be wrong
4760 for languages that don't require a ";" between statements. */
4761 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4762 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4763 else
4764 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4765 printf_filtered ("\n");
4766 }
4767 /* variable, func, or typedef-that-is-c++-class. */
4768 else if (kind < TYPES_DOMAIN
4769 || (kind == TYPES_DOMAIN
4770 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4771 {
4772 type_print (SYMBOL_TYPE (sym),
4773 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4774 ? "" : sym->print_name ()),
4775 gdb_stdout, 0);
4776
4777 printf_filtered (";\n");
4778 }
4779 /* Printing of modules is currently done here, maybe at some future
4780 point we might want a language specific method to print the module
4781 symbol so that we can customise the output more. */
4782 else if (kind == MODULES_DOMAIN)
4783 printf_filtered ("%s\n", sym->print_name ());
4784 }
4785
4786 /* This help function for symtab_symbol_info() prints information
4787 for non-debugging symbols to gdb_stdout. */
4788
4789 static void
4790 print_msymbol_info (struct bound_minimal_symbol msymbol)
4791 {
4792 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4793 char *tmp;
4794
4795 if (gdbarch_addr_bit (gdbarch) <= 32)
4796 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4797 & (CORE_ADDR) 0xffffffff,
4798 8);
4799 else
4800 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4801 16);
4802
4803 ui_file_style sym_style = (msymbol.minsym->text_p ()
4804 ? function_name_style.style ()
4805 : ui_file_style ());
4806
4807 printf_filtered (_("%ps %ps\n"),
4808 styled_string (address_style.style (), tmp),
4809 styled_string (sym_style, msymbol.minsym->print_name ()));
4810 }
4811
4812 /* This is the guts of the commands "info functions", "info types", and
4813 "info variables". It calls search_symbols to find all matches and then
4814 print_[m]symbol_info to print out some useful information about the
4815 matches. */
4816
4817 static void
4818 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4819 const char *regexp, enum search_domain kind,
4820 const char *t_regexp, int from_tty)
4821 {
4822 static const char * const classnames[] =
4823 {"variable", "function", "type", "module"};
4824 const char *last_filename = "";
4825 int first = 1;
4826
4827 gdb_assert (kind != ALL_DOMAIN);
4828
4829 if (regexp != nullptr && *regexp == '\0')
4830 regexp = nullptr;
4831
4832 global_symbol_searcher spec (kind, regexp);
4833 spec.set_symbol_type_regexp (t_regexp);
4834 spec.set_exclude_minsyms (exclude_minsyms);
4835 std::vector<symbol_search> symbols = spec.search ();
4836
4837 if (!quiet)
4838 {
4839 if (regexp != NULL)
4840 {
4841 if (t_regexp != NULL)
4842 printf_filtered
4843 (_("All %ss matching regular expression \"%s\""
4844 " with type matching regular expression \"%s\":\n"),
4845 classnames[kind], regexp, t_regexp);
4846 else
4847 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4848 classnames[kind], regexp);
4849 }
4850 else
4851 {
4852 if (t_regexp != NULL)
4853 printf_filtered
4854 (_("All defined %ss"
4855 " with type matching regular expression \"%s\" :\n"),
4856 classnames[kind], t_regexp);
4857 else
4858 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4859 }
4860 }
4861
4862 for (const symbol_search &p : symbols)
4863 {
4864 QUIT;
4865
4866 if (p.msymbol.minsym != NULL)
4867 {
4868 if (first)
4869 {
4870 if (!quiet)
4871 printf_filtered (_("\nNon-debugging symbols:\n"));
4872 first = 0;
4873 }
4874 print_msymbol_info (p.msymbol);
4875 }
4876 else
4877 {
4878 print_symbol_info (kind,
4879 p.symbol,
4880 p.block,
4881 last_filename);
4882 last_filename
4883 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4884 }
4885 }
4886 }
4887
4888 /* Structure to hold the values of the options used by the 'info variables'
4889 and 'info functions' commands. These correspond to the -q, -t, and -n
4890 options. */
4891
4892 struct info_print_options
4893 {
4894 bool quiet = false;
4895 bool exclude_minsyms = false;
4896 char *type_regexp = nullptr;
4897
4898 ~info_print_options ()
4899 {
4900 xfree (type_regexp);
4901 }
4902 };
4903
4904 /* The options used by the 'info variables' and 'info functions'
4905 commands. */
4906
4907 static const gdb::option::option_def info_print_options_defs[] = {
4908 gdb::option::boolean_option_def<info_print_options> {
4909 "q",
4910 [] (info_print_options *opt) { return &opt->quiet; },
4911 nullptr, /* show_cmd_cb */
4912 nullptr /* set_doc */
4913 },
4914
4915 gdb::option::boolean_option_def<info_print_options> {
4916 "n",
4917 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4918 nullptr, /* show_cmd_cb */
4919 nullptr /* set_doc */
4920 },
4921
4922 gdb::option::string_option_def<info_print_options> {
4923 "t",
4924 [] (info_print_options *opt) { return &opt->type_regexp; },
4925 nullptr, /* show_cmd_cb */
4926 nullptr /* set_doc */
4927 }
4928 };
4929
4930 /* Returns the option group used by 'info variables' and 'info
4931 functions'. */
4932
4933 static gdb::option::option_def_group
4934 make_info_print_options_def_group (info_print_options *opts)
4935 {
4936 return {{info_print_options_defs}, opts};
4937 }
4938
4939 /* Command completer for 'info variables' and 'info functions'. */
4940
4941 static void
4942 info_print_command_completer (struct cmd_list_element *ignore,
4943 completion_tracker &tracker,
4944 const char *text, const char * /* word */)
4945 {
4946 const auto group
4947 = make_info_print_options_def_group (nullptr);
4948 if (gdb::option::complete_options
4949 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4950 return;
4951
4952 const char *word = advance_to_expression_complete_word_point (tracker, text);
4953 symbol_completer (ignore, tracker, text, word);
4954 }
4955
4956 /* Implement the 'info variables' command. */
4957
4958 static void
4959 info_variables_command (const char *args, int from_tty)
4960 {
4961 info_print_options opts;
4962 auto grp = make_info_print_options_def_group (&opts);
4963 gdb::option::process_options
4964 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4965 if (args != nullptr && *args == '\0')
4966 args = nullptr;
4967
4968 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4969 opts.type_regexp, from_tty);
4970 }
4971
4972 /* Implement the 'info functions' command. */
4973
4974 static void
4975 info_functions_command (const char *args, int from_tty)
4976 {
4977 info_print_options opts;
4978 auto grp = make_info_print_options_def_group (&opts);
4979 gdb::option::process_options
4980 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4981 if (args != nullptr && *args == '\0')
4982 args = nullptr;
4983
4984 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
4985 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
4986 }
4987
4988 /* Holds the -q option for the 'info types' command. */
4989
4990 struct info_types_options
4991 {
4992 bool quiet = false;
4993 };
4994
4995 /* The options used by the 'info types' command. */
4996
4997 static const gdb::option::option_def info_types_options_defs[] = {
4998 gdb::option::boolean_option_def<info_types_options> {
4999 "q",
5000 [] (info_types_options *opt) { return &opt->quiet; },
5001 nullptr, /* show_cmd_cb */
5002 nullptr /* set_doc */
5003 }
5004 };
5005
5006 /* Returns the option group used by 'info types'. */
5007
5008 static gdb::option::option_def_group
5009 make_info_types_options_def_group (info_types_options *opts)
5010 {
5011 return {{info_types_options_defs}, opts};
5012 }
5013
5014 /* Implement the 'info types' command. */
5015
5016 static void
5017 info_types_command (const char *args, int from_tty)
5018 {
5019 info_types_options opts;
5020
5021 auto grp = make_info_types_options_def_group (&opts);
5022 gdb::option::process_options
5023 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5024 if (args != nullptr && *args == '\0')
5025 args = nullptr;
5026 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5027 }
5028
5029 /* Command completer for 'info types' command. */
5030
5031 static void
5032 info_types_command_completer (struct cmd_list_element *ignore,
5033 completion_tracker &tracker,
5034 const char *text, const char * /* word */)
5035 {
5036 const auto group
5037 = make_info_types_options_def_group (nullptr);
5038 if (gdb::option::complete_options
5039 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5040 return;
5041
5042 const char *word = advance_to_expression_complete_word_point (tracker, text);
5043 symbol_completer (ignore, tracker, text, word);
5044 }
5045
5046 /* Implement the 'info modules' command. */
5047
5048 static void
5049 info_modules_command (const char *args, int from_tty)
5050 {
5051 info_types_options opts;
5052
5053 auto grp = make_info_types_options_def_group (&opts);
5054 gdb::option::process_options
5055 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5056 if (args != nullptr && *args == '\0')
5057 args = nullptr;
5058 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5059 from_tty);
5060 }
5061
5062 static void
5063 rbreak_command (const char *regexp, int from_tty)
5064 {
5065 std::string string;
5066 const char *file_name = nullptr;
5067
5068 if (regexp != nullptr)
5069 {
5070 const char *colon = strchr (regexp, ':');
5071
5072 if (colon && *(colon + 1) != ':')
5073 {
5074 int colon_index;
5075 char *local_name;
5076
5077 colon_index = colon - regexp;
5078 local_name = (char *) alloca (colon_index + 1);
5079 memcpy (local_name, regexp, colon_index);
5080 local_name[colon_index--] = 0;
5081 while (isspace (local_name[colon_index]))
5082 local_name[colon_index--] = 0;
5083 file_name = local_name;
5084 regexp = skip_spaces (colon + 1);
5085 }
5086 }
5087
5088 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5089 if (file_name != nullptr)
5090 spec.filenames.push_back (file_name);
5091 std::vector<symbol_search> symbols = spec.search ();
5092
5093 scoped_rbreak_breakpoints finalize;
5094 for (const symbol_search &p : symbols)
5095 {
5096 if (p.msymbol.minsym == NULL)
5097 {
5098 struct symtab *symtab = symbol_symtab (p.symbol);
5099 const char *fullname = symtab_to_fullname (symtab);
5100
5101 string = string_printf ("%s:'%s'", fullname,
5102 p.symbol->linkage_name ());
5103 break_command (&string[0], from_tty);
5104 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5105 }
5106 else
5107 {
5108 string = string_printf ("'%s'",
5109 p.msymbol.minsym->linkage_name ());
5110
5111 break_command (&string[0], from_tty);
5112 printf_filtered ("<function, no debug info> %s;\n",
5113 p.msymbol.minsym->print_name ());
5114 }
5115 }
5116 }
5117 \f
5118
5119 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5120
5121 static int
5122 compare_symbol_name (const char *symbol_name, language symbol_language,
5123 const lookup_name_info &lookup_name,
5124 completion_match_result &match_res)
5125 {
5126 const language_defn *lang = language_def (symbol_language);
5127
5128 symbol_name_matcher_ftype *name_match
5129 = get_symbol_name_matcher (lang, lookup_name);
5130
5131 return name_match (symbol_name, lookup_name, &match_res);
5132 }
5133
5134 /* See symtab.h. */
5135
5136 void
5137 completion_list_add_name (completion_tracker &tracker,
5138 language symbol_language,
5139 const char *symname,
5140 const lookup_name_info &lookup_name,
5141 const char *text, const char *word)
5142 {
5143 completion_match_result &match_res
5144 = tracker.reset_completion_match_result ();
5145
5146 /* Clip symbols that cannot match. */
5147 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5148 return;
5149
5150 /* Refresh SYMNAME from the match string. It's potentially
5151 different depending on language. (E.g., on Ada, the match may be
5152 the encoded symbol name wrapped in "<>"). */
5153 symname = match_res.match.match ();
5154 gdb_assert (symname != NULL);
5155
5156 /* We have a match for a completion, so add SYMNAME to the current list
5157 of matches. Note that the name is moved to freshly malloc'd space. */
5158
5159 {
5160 gdb::unique_xmalloc_ptr<char> completion
5161 = make_completion_match_str (symname, text, word);
5162
5163 /* Here we pass the match-for-lcd object to add_completion. Some
5164 languages match the user text against substrings of symbol
5165 names in some cases. E.g., in C++, "b push_ba" completes to
5166 "std::vector::push_back", "std::string::push_back", etc., and
5167 in this case we want the completion lowest common denominator
5168 to be "push_back" instead of "std::". */
5169 tracker.add_completion (std::move (completion),
5170 &match_res.match_for_lcd, text, word);
5171 }
5172 }
5173
5174 /* completion_list_add_name wrapper for struct symbol. */
5175
5176 static void
5177 completion_list_add_symbol (completion_tracker &tracker,
5178 symbol *sym,
5179 const lookup_name_info &lookup_name,
5180 const char *text, const char *word)
5181 {
5182 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5183 sym->natural_name (),
5184 lookup_name, text, word);
5185 }
5186
5187 /* completion_list_add_name wrapper for struct minimal_symbol. */
5188
5189 static void
5190 completion_list_add_msymbol (completion_tracker &tracker,
5191 minimal_symbol *sym,
5192 const lookup_name_info &lookup_name,
5193 const char *text, const char *word)
5194 {
5195 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5196 sym->natural_name (),
5197 lookup_name, text, word);
5198 }
5199
5200
5201 /* ObjC: In case we are completing on a selector, look as the msymbol
5202 again and feed all the selectors into the mill. */
5203
5204 static void
5205 completion_list_objc_symbol (completion_tracker &tracker,
5206 struct minimal_symbol *msymbol,
5207 const lookup_name_info &lookup_name,
5208 const char *text, const char *word)
5209 {
5210 static char *tmp = NULL;
5211 static unsigned int tmplen = 0;
5212
5213 const char *method, *category, *selector;
5214 char *tmp2 = NULL;
5215
5216 method = msymbol->natural_name ();
5217
5218 /* Is it a method? */
5219 if ((method[0] != '-') && (method[0] != '+'))
5220 return;
5221
5222 if (text[0] == '[')
5223 /* Complete on shortened method method. */
5224 completion_list_add_name (tracker, language_objc,
5225 method + 1,
5226 lookup_name,
5227 text, word);
5228
5229 while ((strlen (method) + 1) >= tmplen)
5230 {
5231 if (tmplen == 0)
5232 tmplen = 1024;
5233 else
5234 tmplen *= 2;
5235 tmp = (char *) xrealloc (tmp, tmplen);
5236 }
5237 selector = strchr (method, ' ');
5238 if (selector != NULL)
5239 selector++;
5240
5241 category = strchr (method, '(');
5242
5243 if ((category != NULL) && (selector != NULL))
5244 {
5245 memcpy (tmp, method, (category - method));
5246 tmp[category - method] = ' ';
5247 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5248 completion_list_add_name (tracker, language_objc, tmp,
5249 lookup_name, text, word);
5250 if (text[0] == '[')
5251 completion_list_add_name (tracker, language_objc, tmp + 1,
5252 lookup_name, text, word);
5253 }
5254
5255 if (selector != NULL)
5256 {
5257 /* Complete on selector only. */
5258 strcpy (tmp, selector);
5259 tmp2 = strchr (tmp, ']');
5260 if (tmp2 != NULL)
5261 *tmp2 = '\0';
5262
5263 completion_list_add_name (tracker, language_objc, tmp,
5264 lookup_name, text, word);
5265 }
5266 }
5267
5268 /* Break the non-quoted text based on the characters which are in
5269 symbols. FIXME: This should probably be language-specific. */
5270
5271 static const char *
5272 language_search_unquoted_string (const char *text, const char *p)
5273 {
5274 for (; p > text; --p)
5275 {
5276 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5277 continue;
5278 else
5279 {
5280 if ((current_language->la_language == language_objc))
5281 {
5282 if (p[-1] == ':') /* Might be part of a method name. */
5283 continue;
5284 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5285 p -= 2; /* Beginning of a method name. */
5286 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5287 { /* Might be part of a method name. */
5288 const char *t = p;
5289
5290 /* Seeing a ' ' or a '(' is not conclusive evidence
5291 that we are in the middle of a method name. However,
5292 finding "-[" or "+[" should be pretty un-ambiguous.
5293 Unfortunately we have to find it now to decide. */
5294
5295 while (t > text)
5296 if (isalnum (t[-1]) || t[-1] == '_' ||
5297 t[-1] == ' ' || t[-1] == ':' ||
5298 t[-1] == '(' || t[-1] == ')')
5299 --t;
5300 else
5301 break;
5302
5303 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5304 p = t - 2; /* Method name detected. */
5305 /* Else we leave with p unchanged. */
5306 }
5307 }
5308 break;
5309 }
5310 }
5311 return p;
5312 }
5313
5314 static void
5315 completion_list_add_fields (completion_tracker &tracker,
5316 struct symbol *sym,
5317 const lookup_name_info &lookup_name,
5318 const char *text, const char *word)
5319 {
5320 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5321 {
5322 struct type *t = SYMBOL_TYPE (sym);
5323 enum type_code c = TYPE_CODE (t);
5324 int j;
5325
5326 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5327 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5328 if (TYPE_FIELD_NAME (t, j))
5329 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5330 TYPE_FIELD_NAME (t, j),
5331 lookup_name, text, word);
5332 }
5333 }
5334
5335 /* See symtab.h. */
5336
5337 bool
5338 symbol_is_function_or_method (symbol *sym)
5339 {
5340 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5341 {
5342 case TYPE_CODE_FUNC:
5343 case TYPE_CODE_METHOD:
5344 return true;
5345 default:
5346 return false;
5347 }
5348 }
5349
5350 /* See symtab.h. */
5351
5352 bool
5353 symbol_is_function_or_method (minimal_symbol *msymbol)
5354 {
5355 switch (MSYMBOL_TYPE (msymbol))
5356 {
5357 case mst_text:
5358 case mst_text_gnu_ifunc:
5359 case mst_solib_trampoline:
5360 case mst_file_text:
5361 return true;
5362 default:
5363 return false;
5364 }
5365 }
5366
5367 /* See symtab.h. */
5368
5369 bound_minimal_symbol
5370 find_gnu_ifunc (const symbol *sym)
5371 {
5372 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5373 return {};
5374
5375 lookup_name_info lookup_name (sym->search_name (),
5376 symbol_name_match_type::SEARCH_NAME);
5377 struct objfile *objfile = symbol_objfile (sym);
5378
5379 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5380 minimal_symbol *ifunc = NULL;
5381
5382 iterate_over_minimal_symbols (objfile, lookup_name,
5383 [&] (minimal_symbol *minsym)
5384 {
5385 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5386 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5387 {
5388 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5389 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5390 {
5391 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5392 msym_addr
5393 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5394 msym_addr,
5395 current_top_target ());
5396 }
5397 if (msym_addr == address)
5398 {
5399 ifunc = minsym;
5400 return true;
5401 }
5402 }
5403 return false;
5404 });
5405
5406 if (ifunc != NULL)
5407 return {ifunc, objfile};
5408 return {};
5409 }
5410
5411 /* Add matching symbols from SYMTAB to the current completion list. */
5412
5413 static void
5414 add_symtab_completions (struct compunit_symtab *cust,
5415 completion_tracker &tracker,
5416 complete_symbol_mode mode,
5417 const lookup_name_info &lookup_name,
5418 const char *text, const char *word,
5419 enum type_code code)
5420 {
5421 struct symbol *sym;
5422 const struct block *b;
5423 struct block_iterator iter;
5424 int i;
5425
5426 if (cust == NULL)
5427 return;
5428
5429 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5430 {
5431 QUIT;
5432 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5433 ALL_BLOCK_SYMBOLS (b, iter, sym)
5434 {
5435 if (completion_skip_symbol (mode, sym))
5436 continue;
5437
5438 if (code == TYPE_CODE_UNDEF
5439 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5440 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5441 completion_list_add_symbol (tracker, sym,
5442 lookup_name,
5443 text, word);
5444 }
5445 }
5446 }
5447
5448 void
5449 default_collect_symbol_completion_matches_break_on
5450 (completion_tracker &tracker, complete_symbol_mode mode,
5451 symbol_name_match_type name_match_type,
5452 const char *text, const char *word,
5453 const char *break_on, enum type_code code)
5454 {
5455 /* Problem: All of the symbols have to be copied because readline
5456 frees them. I'm not going to worry about this; hopefully there
5457 won't be that many. */
5458
5459 struct symbol *sym;
5460 const struct block *b;
5461 const struct block *surrounding_static_block, *surrounding_global_block;
5462 struct block_iterator iter;
5463 /* The symbol we are completing on. Points in same buffer as text. */
5464 const char *sym_text;
5465
5466 /* Now look for the symbol we are supposed to complete on. */
5467 if (mode == complete_symbol_mode::LINESPEC)
5468 sym_text = text;
5469 else
5470 {
5471 const char *p;
5472 char quote_found;
5473 const char *quote_pos = NULL;
5474
5475 /* First see if this is a quoted string. */
5476 quote_found = '\0';
5477 for (p = text; *p != '\0'; ++p)
5478 {
5479 if (quote_found != '\0')
5480 {
5481 if (*p == quote_found)
5482 /* Found close quote. */
5483 quote_found = '\0';
5484 else if (*p == '\\' && p[1] == quote_found)
5485 /* A backslash followed by the quote character
5486 doesn't end the string. */
5487 ++p;
5488 }
5489 else if (*p == '\'' || *p == '"')
5490 {
5491 quote_found = *p;
5492 quote_pos = p;
5493 }
5494 }
5495 if (quote_found == '\'')
5496 /* A string within single quotes can be a symbol, so complete on it. */
5497 sym_text = quote_pos + 1;
5498 else if (quote_found == '"')
5499 /* A double-quoted string is never a symbol, nor does it make sense
5500 to complete it any other way. */
5501 {
5502 return;
5503 }
5504 else
5505 {
5506 /* It is not a quoted string. Break it based on the characters
5507 which are in symbols. */
5508 while (p > text)
5509 {
5510 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5511 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5512 --p;
5513 else
5514 break;
5515 }
5516 sym_text = p;
5517 }
5518 }
5519
5520 lookup_name_info lookup_name (sym_text, name_match_type, true);
5521
5522 /* At this point scan through the misc symbol vectors and add each
5523 symbol you find to the list. Eventually we want to ignore
5524 anything that isn't a text symbol (everything else will be
5525 handled by the psymtab code below). */
5526
5527 if (code == TYPE_CODE_UNDEF)
5528 {
5529 for (objfile *objfile : current_program_space->objfiles ())
5530 {
5531 for (minimal_symbol *msymbol : objfile->msymbols ())
5532 {
5533 QUIT;
5534
5535 if (completion_skip_symbol (mode, msymbol))
5536 continue;
5537
5538 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5539 sym_text, word);
5540
5541 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5542 sym_text, word);
5543 }
5544 }
5545 }
5546
5547 /* Add completions for all currently loaded symbol tables. */
5548 for (objfile *objfile : current_program_space->objfiles ())
5549 {
5550 for (compunit_symtab *cust : objfile->compunits ())
5551 add_symtab_completions (cust, tracker, mode, lookup_name,
5552 sym_text, word, code);
5553 }
5554
5555 /* Look through the partial symtabs for all symbols which begin by
5556 matching SYM_TEXT. Expand all CUs that you find to the list. */
5557 expand_symtabs_matching (NULL,
5558 lookup_name,
5559 NULL,
5560 [&] (compunit_symtab *symtab) /* expansion notify */
5561 {
5562 add_symtab_completions (symtab,
5563 tracker, mode, lookup_name,
5564 sym_text, word, code);
5565 },
5566 ALL_DOMAIN);
5567
5568 /* Search upwards from currently selected frame (so that we can
5569 complete on local vars). Also catch fields of types defined in
5570 this places which match our text string. Only complete on types
5571 visible from current context. */
5572
5573 b = get_selected_block (0);
5574 surrounding_static_block = block_static_block (b);
5575 surrounding_global_block = block_global_block (b);
5576 if (surrounding_static_block != NULL)
5577 while (b != surrounding_static_block)
5578 {
5579 QUIT;
5580
5581 ALL_BLOCK_SYMBOLS (b, iter, sym)
5582 {
5583 if (code == TYPE_CODE_UNDEF)
5584 {
5585 completion_list_add_symbol (tracker, sym, lookup_name,
5586 sym_text, word);
5587 completion_list_add_fields (tracker, sym, lookup_name,
5588 sym_text, word);
5589 }
5590 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5591 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5592 completion_list_add_symbol (tracker, sym, lookup_name,
5593 sym_text, word);
5594 }
5595
5596 /* Stop when we encounter an enclosing function. Do not stop for
5597 non-inlined functions - the locals of the enclosing function
5598 are in scope for a nested function. */
5599 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5600 break;
5601 b = BLOCK_SUPERBLOCK (b);
5602 }
5603
5604 /* Add fields from the file's types; symbols will be added below. */
5605
5606 if (code == TYPE_CODE_UNDEF)
5607 {
5608 if (surrounding_static_block != NULL)
5609 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5610 completion_list_add_fields (tracker, sym, lookup_name,
5611 sym_text, word);
5612
5613 if (surrounding_global_block != NULL)
5614 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5615 completion_list_add_fields (tracker, sym, lookup_name,
5616 sym_text, word);
5617 }
5618
5619 /* Skip macros if we are completing a struct tag -- arguable but
5620 usually what is expected. */
5621 if (current_language->la_macro_expansion == macro_expansion_c
5622 && code == TYPE_CODE_UNDEF)
5623 {
5624 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5625
5626 /* This adds a macro's name to the current completion list. */
5627 auto add_macro_name = [&] (const char *macro_name,
5628 const macro_definition *,
5629 macro_source_file *,
5630 int)
5631 {
5632 completion_list_add_name (tracker, language_c, macro_name,
5633 lookup_name, sym_text, word);
5634 };
5635
5636 /* Add any macros visible in the default scope. Note that this
5637 may yield the occasional wrong result, because an expression
5638 might be evaluated in a scope other than the default. For
5639 example, if the user types "break file:line if <TAB>", the
5640 resulting expression will be evaluated at "file:line" -- but
5641 at there does not seem to be a way to detect this at
5642 completion time. */
5643 scope = default_macro_scope ();
5644 if (scope)
5645 macro_for_each_in_scope (scope->file, scope->line,
5646 add_macro_name);
5647
5648 /* User-defined macros are always visible. */
5649 macro_for_each (macro_user_macros, add_macro_name);
5650 }
5651 }
5652
5653 void
5654 default_collect_symbol_completion_matches (completion_tracker &tracker,
5655 complete_symbol_mode mode,
5656 symbol_name_match_type name_match_type,
5657 const char *text, const char *word,
5658 enum type_code code)
5659 {
5660 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5661 name_match_type,
5662 text, word, "",
5663 code);
5664 }
5665
5666 /* Collect all symbols (regardless of class) which begin by matching
5667 TEXT. */
5668
5669 void
5670 collect_symbol_completion_matches (completion_tracker &tracker,
5671 complete_symbol_mode mode,
5672 symbol_name_match_type name_match_type,
5673 const char *text, const char *word)
5674 {
5675 current_language->la_collect_symbol_completion_matches (tracker, mode,
5676 name_match_type,
5677 text, word,
5678 TYPE_CODE_UNDEF);
5679 }
5680
5681 /* Like collect_symbol_completion_matches, but only collect
5682 STRUCT_DOMAIN symbols whose type code is CODE. */
5683
5684 void
5685 collect_symbol_completion_matches_type (completion_tracker &tracker,
5686 const char *text, const char *word,
5687 enum type_code code)
5688 {
5689 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5690 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5691
5692 gdb_assert (code == TYPE_CODE_UNION
5693 || code == TYPE_CODE_STRUCT
5694 || code == TYPE_CODE_ENUM);
5695 current_language->la_collect_symbol_completion_matches (tracker, mode,
5696 name_match_type,
5697 text, word, code);
5698 }
5699
5700 /* Like collect_symbol_completion_matches, but collects a list of
5701 symbols defined in all source files named SRCFILE. */
5702
5703 void
5704 collect_file_symbol_completion_matches (completion_tracker &tracker,
5705 complete_symbol_mode mode,
5706 symbol_name_match_type name_match_type,
5707 const char *text, const char *word,
5708 const char *srcfile)
5709 {
5710 /* The symbol we are completing on. Points in same buffer as text. */
5711 const char *sym_text;
5712
5713 /* Now look for the symbol we are supposed to complete on.
5714 FIXME: This should be language-specific. */
5715 if (mode == complete_symbol_mode::LINESPEC)
5716 sym_text = text;
5717 else
5718 {
5719 const char *p;
5720 char quote_found;
5721 const char *quote_pos = NULL;
5722
5723 /* First see if this is a quoted string. */
5724 quote_found = '\0';
5725 for (p = text; *p != '\0'; ++p)
5726 {
5727 if (quote_found != '\0')
5728 {
5729 if (*p == quote_found)
5730 /* Found close quote. */
5731 quote_found = '\0';
5732 else if (*p == '\\' && p[1] == quote_found)
5733 /* A backslash followed by the quote character
5734 doesn't end the string. */
5735 ++p;
5736 }
5737 else if (*p == '\'' || *p == '"')
5738 {
5739 quote_found = *p;
5740 quote_pos = p;
5741 }
5742 }
5743 if (quote_found == '\'')
5744 /* A string within single quotes can be a symbol, so complete on it. */
5745 sym_text = quote_pos + 1;
5746 else if (quote_found == '"')
5747 /* A double-quoted string is never a symbol, nor does it make sense
5748 to complete it any other way. */
5749 {
5750 return;
5751 }
5752 else
5753 {
5754 /* Not a quoted string. */
5755 sym_text = language_search_unquoted_string (text, p);
5756 }
5757 }
5758
5759 lookup_name_info lookup_name (sym_text, name_match_type, true);
5760
5761 /* Go through symtabs for SRCFILE and check the externs and statics
5762 for symbols which match. */
5763 iterate_over_symtabs (srcfile, [&] (symtab *s)
5764 {
5765 add_symtab_completions (SYMTAB_COMPUNIT (s),
5766 tracker, mode, lookup_name,
5767 sym_text, word, TYPE_CODE_UNDEF);
5768 return false;
5769 });
5770 }
5771
5772 /* A helper function for make_source_files_completion_list. It adds
5773 another file name to a list of possible completions, growing the
5774 list as necessary. */
5775
5776 static void
5777 add_filename_to_list (const char *fname, const char *text, const char *word,
5778 completion_list *list)
5779 {
5780 list->emplace_back (make_completion_match_str (fname, text, word));
5781 }
5782
5783 static int
5784 not_interesting_fname (const char *fname)
5785 {
5786 static const char *illegal_aliens[] = {
5787 "_globals_", /* inserted by coff_symtab_read */
5788 NULL
5789 };
5790 int i;
5791
5792 for (i = 0; illegal_aliens[i]; i++)
5793 {
5794 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5795 return 1;
5796 }
5797 return 0;
5798 }
5799
5800 /* An object of this type is passed as the user_data argument to
5801 map_partial_symbol_filenames. */
5802 struct add_partial_filename_data
5803 {
5804 struct filename_seen_cache *filename_seen_cache;
5805 const char *text;
5806 const char *word;
5807 int text_len;
5808 completion_list *list;
5809 };
5810
5811 /* A callback for map_partial_symbol_filenames. */
5812
5813 static void
5814 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5815 void *user_data)
5816 {
5817 struct add_partial_filename_data *data
5818 = (struct add_partial_filename_data *) user_data;
5819
5820 if (not_interesting_fname (filename))
5821 return;
5822 if (!data->filename_seen_cache->seen (filename)
5823 && filename_ncmp (filename, data->text, data->text_len) == 0)
5824 {
5825 /* This file matches for a completion; add it to the
5826 current list of matches. */
5827 add_filename_to_list (filename, data->text, data->word, data->list);
5828 }
5829 else
5830 {
5831 const char *base_name = lbasename (filename);
5832
5833 if (base_name != filename
5834 && !data->filename_seen_cache->seen (base_name)
5835 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5836 add_filename_to_list (base_name, data->text, data->word, data->list);
5837 }
5838 }
5839
5840 /* Return a list of all source files whose names begin with matching
5841 TEXT. The file names are looked up in the symbol tables of this
5842 program. */
5843
5844 completion_list
5845 make_source_files_completion_list (const char *text, const char *word)
5846 {
5847 size_t text_len = strlen (text);
5848 completion_list list;
5849 const char *base_name;
5850 struct add_partial_filename_data datum;
5851
5852 if (!have_full_symbols () && !have_partial_symbols ())
5853 return list;
5854
5855 filename_seen_cache filenames_seen;
5856
5857 for (objfile *objfile : current_program_space->objfiles ())
5858 {
5859 for (compunit_symtab *cu : objfile->compunits ())
5860 {
5861 for (symtab *s : compunit_filetabs (cu))
5862 {
5863 if (not_interesting_fname (s->filename))
5864 continue;
5865 if (!filenames_seen.seen (s->filename)
5866 && filename_ncmp (s->filename, text, text_len) == 0)
5867 {
5868 /* This file matches for a completion; add it to the current
5869 list of matches. */
5870 add_filename_to_list (s->filename, text, word, &list);
5871 }
5872 else
5873 {
5874 /* NOTE: We allow the user to type a base name when the
5875 debug info records leading directories, but not the other
5876 way around. This is what subroutines of breakpoint
5877 command do when they parse file names. */
5878 base_name = lbasename (s->filename);
5879 if (base_name != s->filename
5880 && !filenames_seen.seen (base_name)
5881 && filename_ncmp (base_name, text, text_len) == 0)
5882 add_filename_to_list (base_name, text, word, &list);
5883 }
5884 }
5885 }
5886 }
5887
5888 datum.filename_seen_cache = &filenames_seen;
5889 datum.text = text;
5890 datum.word = word;
5891 datum.text_len = text_len;
5892 datum.list = &list;
5893 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5894 0 /*need_fullname*/);
5895
5896 return list;
5897 }
5898 \f
5899 /* Track MAIN */
5900
5901 /* Return the "main_info" object for the current program space. If
5902 the object has not yet been created, create it and fill in some
5903 default values. */
5904
5905 static struct main_info *
5906 get_main_info (void)
5907 {
5908 struct main_info *info = main_progspace_key.get (current_program_space);
5909
5910 if (info == NULL)
5911 {
5912 /* It may seem strange to store the main name in the progspace
5913 and also in whatever objfile happens to see a main name in
5914 its debug info. The reason for this is mainly historical:
5915 gdb returned "main" as the name even if no function named
5916 "main" was defined the program; and this approach lets us
5917 keep compatibility. */
5918 info = main_progspace_key.emplace (current_program_space);
5919 }
5920
5921 return info;
5922 }
5923
5924 static void
5925 set_main_name (const char *name, enum language lang)
5926 {
5927 struct main_info *info = get_main_info ();
5928
5929 if (info->name_of_main != NULL)
5930 {
5931 xfree (info->name_of_main);
5932 info->name_of_main = NULL;
5933 info->language_of_main = language_unknown;
5934 }
5935 if (name != NULL)
5936 {
5937 info->name_of_main = xstrdup (name);
5938 info->language_of_main = lang;
5939 }
5940 }
5941
5942 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5943 accordingly. */
5944
5945 static void
5946 find_main_name (void)
5947 {
5948 const char *new_main_name;
5949
5950 /* First check the objfiles to see whether a debuginfo reader has
5951 picked up the appropriate main name. Historically the main name
5952 was found in a more or less random way; this approach instead
5953 relies on the order of objfile creation -- which still isn't
5954 guaranteed to get the correct answer, but is just probably more
5955 accurate. */
5956 for (objfile *objfile : current_program_space->objfiles ())
5957 {
5958 if (objfile->per_bfd->name_of_main != NULL)
5959 {
5960 set_main_name (objfile->per_bfd->name_of_main,
5961 objfile->per_bfd->language_of_main);
5962 return;
5963 }
5964 }
5965
5966 /* Try to see if the main procedure is in Ada. */
5967 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5968 be to add a new method in the language vector, and call this
5969 method for each language until one of them returns a non-empty
5970 name. This would allow us to remove this hard-coded call to
5971 an Ada function. It is not clear that this is a better approach
5972 at this point, because all methods need to be written in a way
5973 such that false positives never be returned. For instance, it is
5974 important that a method does not return a wrong name for the main
5975 procedure if the main procedure is actually written in a different
5976 language. It is easy to guaranty this with Ada, since we use a
5977 special symbol generated only when the main in Ada to find the name
5978 of the main procedure. It is difficult however to see how this can
5979 be guarantied for languages such as C, for instance. This suggests
5980 that order of call for these methods becomes important, which means
5981 a more complicated approach. */
5982 new_main_name = ada_main_name ();
5983 if (new_main_name != NULL)
5984 {
5985 set_main_name (new_main_name, language_ada);
5986 return;
5987 }
5988
5989 new_main_name = d_main_name ();
5990 if (new_main_name != NULL)
5991 {
5992 set_main_name (new_main_name, language_d);
5993 return;
5994 }
5995
5996 new_main_name = go_main_name ();
5997 if (new_main_name != NULL)
5998 {
5999 set_main_name (new_main_name, language_go);
6000 return;
6001 }
6002
6003 new_main_name = pascal_main_name ();
6004 if (new_main_name != NULL)
6005 {
6006 set_main_name (new_main_name, language_pascal);
6007 return;
6008 }
6009
6010 /* The languages above didn't identify the name of the main procedure.
6011 Fallback to "main". */
6012 set_main_name ("main", language_unknown);
6013 }
6014
6015 /* See symtab.h. */
6016
6017 const char *
6018 main_name ()
6019 {
6020 struct main_info *info = get_main_info ();
6021
6022 if (info->name_of_main == NULL)
6023 find_main_name ();
6024
6025 return info->name_of_main;
6026 }
6027
6028 /* Return the language of the main function. If it is not known,
6029 return language_unknown. */
6030
6031 enum language
6032 main_language (void)
6033 {
6034 struct main_info *info = get_main_info ();
6035
6036 if (info->name_of_main == NULL)
6037 find_main_name ();
6038
6039 return info->language_of_main;
6040 }
6041
6042 /* Handle ``executable_changed'' events for the symtab module. */
6043
6044 static void
6045 symtab_observer_executable_changed (void)
6046 {
6047 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6048 set_main_name (NULL, language_unknown);
6049 }
6050
6051 /* Return 1 if the supplied producer string matches the ARM RealView
6052 compiler (armcc). */
6053
6054 bool
6055 producer_is_realview (const char *producer)
6056 {
6057 static const char *const arm_idents[] = {
6058 "ARM C Compiler, ADS",
6059 "Thumb C Compiler, ADS",
6060 "ARM C++ Compiler, ADS",
6061 "Thumb C++ Compiler, ADS",
6062 "ARM/Thumb C/C++ Compiler, RVCT",
6063 "ARM C/C++ Compiler, RVCT"
6064 };
6065 int i;
6066
6067 if (producer == NULL)
6068 return false;
6069
6070 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6071 if (startswith (producer, arm_idents[i]))
6072 return true;
6073
6074 return false;
6075 }
6076
6077 \f
6078
6079 /* The next index to hand out in response to a registration request. */
6080
6081 static int next_aclass_value = LOC_FINAL_VALUE;
6082
6083 /* The maximum number of "aclass" registrations we support. This is
6084 constant for convenience. */
6085 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6086
6087 /* The objects representing the various "aclass" values. The elements
6088 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6089 elements are those registered at gdb initialization time. */
6090
6091 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6092
6093 /* The globally visible pointer. This is separate from 'symbol_impl'
6094 so that it can be const. */
6095
6096 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6097
6098 /* Make sure we saved enough room in struct symbol. */
6099
6100 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6101
6102 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6103 is the ops vector associated with this index. This returns the new
6104 index, which should be used as the aclass_index field for symbols
6105 of this type. */
6106
6107 int
6108 register_symbol_computed_impl (enum address_class aclass,
6109 const struct symbol_computed_ops *ops)
6110 {
6111 int result = next_aclass_value++;
6112
6113 gdb_assert (aclass == LOC_COMPUTED);
6114 gdb_assert (result < MAX_SYMBOL_IMPLS);
6115 symbol_impl[result].aclass = aclass;
6116 symbol_impl[result].ops_computed = ops;
6117
6118 /* Sanity check OPS. */
6119 gdb_assert (ops != NULL);
6120 gdb_assert (ops->tracepoint_var_ref != NULL);
6121 gdb_assert (ops->describe_location != NULL);
6122 gdb_assert (ops->get_symbol_read_needs != NULL);
6123 gdb_assert (ops->read_variable != NULL);
6124
6125 return result;
6126 }
6127
6128 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6129 OPS is the ops vector associated with this index. This returns the
6130 new index, which should be used as the aclass_index field for symbols
6131 of this type. */
6132
6133 int
6134 register_symbol_block_impl (enum address_class aclass,
6135 const struct symbol_block_ops *ops)
6136 {
6137 int result = next_aclass_value++;
6138
6139 gdb_assert (aclass == LOC_BLOCK);
6140 gdb_assert (result < MAX_SYMBOL_IMPLS);
6141 symbol_impl[result].aclass = aclass;
6142 symbol_impl[result].ops_block = ops;
6143
6144 /* Sanity check OPS. */
6145 gdb_assert (ops != NULL);
6146 gdb_assert (ops->find_frame_base_location != NULL);
6147
6148 return result;
6149 }
6150
6151 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6152 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6153 this index. This returns the new index, which should be used as
6154 the aclass_index field for symbols of this type. */
6155
6156 int
6157 register_symbol_register_impl (enum address_class aclass,
6158 const struct symbol_register_ops *ops)
6159 {
6160 int result = next_aclass_value++;
6161
6162 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6163 gdb_assert (result < MAX_SYMBOL_IMPLS);
6164 symbol_impl[result].aclass = aclass;
6165 symbol_impl[result].ops_register = ops;
6166
6167 return result;
6168 }
6169
6170 /* Initialize elements of 'symbol_impl' for the constants in enum
6171 address_class. */
6172
6173 static void
6174 initialize_ordinary_address_classes (void)
6175 {
6176 int i;
6177
6178 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6179 symbol_impl[i].aclass = (enum address_class) i;
6180 }
6181
6182 \f
6183
6184 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6185
6186 void
6187 initialize_objfile_symbol (struct symbol *sym)
6188 {
6189 SYMBOL_OBJFILE_OWNED (sym) = 1;
6190 SYMBOL_SECTION (sym) = -1;
6191 }
6192
6193 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6194 obstack. */
6195
6196 struct symbol *
6197 allocate_symbol (struct objfile *objfile)
6198 {
6199 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6200
6201 initialize_objfile_symbol (result);
6202
6203 return result;
6204 }
6205
6206 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6207 obstack. */
6208
6209 struct template_symbol *
6210 allocate_template_symbol (struct objfile *objfile)
6211 {
6212 struct template_symbol *result;
6213
6214 result = new (&objfile->objfile_obstack) template_symbol ();
6215 initialize_objfile_symbol (result);
6216
6217 return result;
6218 }
6219
6220 /* See symtab.h. */
6221
6222 struct objfile *
6223 symbol_objfile (const struct symbol *symbol)
6224 {
6225 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6226 return SYMTAB_OBJFILE (symbol->owner.symtab);
6227 }
6228
6229 /* See symtab.h. */
6230
6231 struct gdbarch *
6232 symbol_arch (const struct symbol *symbol)
6233 {
6234 if (!SYMBOL_OBJFILE_OWNED (symbol))
6235 return symbol->owner.arch;
6236 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6237 }
6238
6239 /* See symtab.h. */
6240
6241 struct symtab *
6242 symbol_symtab (const struct symbol *symbol)
6243 {
6244 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6245 return symbol->owner.symtab;
6246 }
6247
6248 /* See symtab.h. */
6249
6250 void
6251 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6252 {
6253 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6254 symbol->owner.symtab = symtab;
6255 }
6256
6257 /* See symtab.h. */
6258
6259 CORE_ADDR
6260 get_symbol_address (const struct symbol *sym)
6261 {
6262 gdb_assert (sym->maybe_copied);
6263 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6264
6265 const char *linkage_name = sym->linkage_name ();
6266
6267 for (objfile *objfile : current_program_space->objfiles ())
6268 {
6269 bound_minimal_symbol minsym
6270 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6271 if (minsym.minsym != nullptr)
6272 return BMSYMBOL_VALUE_ADDRESS (minsym);
6273 }
6274 return sym->value.address;
6275 }
6276
6277 /* See symtab.h. */
6278
6279 CORE_ADDR
6280 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6281 {
6282 gdb_assert (minsym->maybe_copied);
6283 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6284
6285 const char *linkage_name = minsym->linkage_name ();
6286
6287 for (objfile *objfile : current_program_space->objfiles ())
6288 {
6289 if ((objfile->flags & OBJF_MAINLINE) != 0)
6290 {
6291 bound_minimal_symbol found
6292 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6293 if (found.minsym != nullptr)
6294 return BMSYMBOL_VALUE_ADDRESS (found);
6295 }
6296 }
6297 return (minsym->value.address
6298 + ANOFFSET (objf->section_offsets, minsym->section));
6299 }
6300
6301 \f
6302
6303 /* Hold the sub-commands of 'info module'. */
6304
6305 static struct cmd_list_element *info_module_cmdlist = NULL;
6306
6307 /* Implement the 'info module' command, just displays some help text for
6308 the available sub-commands. */
6309
6310 static void
6311 info_module_command (const char *args, int from_tty)
6312 {
6313 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6314 }
6315
6316 /* See symtab.h. */
6317
6318 std::vector<module_symbol_search>
6319 search_module_symbols (const char *module_regexp, const char *regexp,
6320 const char *type_regexp, search_domain kind)
6321 {
6322 std::vector<module_symbol_search> results;
6323
6324 /* Search for all modules matching MODULE_REGEXP. */
6325 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6326 spec1.set_exclude_minsyms (true);
6327 std::vector<symbol_search> modules = spec1.search ();
6328
6329 /* Now search for all symbols of the required KIND matching the required
6330 regular expressions. We figure out which ones are in which modules
6331 below. */
6332 global_symbol_searcher spec2 (kind, regexp);
6333 spec2.set_symbol_type_regexp (type_regexp);
6334 spec2.set_exclude_minsyms (true);
6335 std::vector<symbol_search> symbols = spec2.search ();
6336
6337 /* Now iterate over all MODULES, checking to see which items from
6338 SYMBOLS are in each module. */
6339 for (const symbol_search &p : modules)
6340 {
6341 QUIT;
6342
6343 /* This is a module. */
6344 gdb_assert (p.symbol != nullptr);
6345
6346 std::string prefix = p.symbol->print_name ();
6347 prefix += "::";
6348
6349 for (const symbol_search &q : symbols)
6350 {
6351 if (q.symbol == nullptr)
6352 continue;
6353
6354 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6355 prefix.size ()) != 0)
6356 continue;
6357
6358 results.push_back ({p, q});
6359 }
6360 }
6361
6362 return results;
6363 }
6364
6365 /* Implement the core of both 'info module functions' and 'info module
6366 variables'. */
6367
6368 static void
6369 info_module_subcommand (bool quiet, const char *module_regexp,
6370 const char *regexp, const char *type_regexp,
6371 search_domain kind)
6372 {
6373 /* Print a header line. Don't build the header line bit by bit as this
6374 prevents internationalisation. */
6375 if (!quiet)
6376 {
6377 if (module_regexp == nullptr)
6378 {
6379 if (type_regexp == nullptr)
6380 {
6381 if (regexp == nullptr)
6382 printf_filtered ((kind == VARIABLES_DOMAIN
6383 ? _("All variables in all modules:")
6384 : _("All functions in all modules:")));
6385 else
6386 printf_filtered
6387 ((kind == VARIABLES_DOMAIN
6388 ? _("All variables matching regular expression"
6389 " \"%s\" in all modules:")
6390 : _("All functions matching regular expression"
6391 " \"%s\" in all modules:")),
6392 regexp);
6393 }
6394 else
6395 {
6396 if (regexp == nullptr)
6397 printf_filtered
6398 ((kind == VARIABLES_DOMAIN
6399 ? _("All variables with type matching regular "
6400 "expression \"%s\" in all modules:")
6401 : _("All functions with type matching regular "
6402 "expression \"%s\" in all modules:")),
6403 type_regexp);
6404 else
6405 printf_filtered
6406 ((kind == VARIABLES_DOMAIN
6407 ? _("All variables matching regular expression "
6408 "\"%s\",\n\twith type matching regular "
6409 "expression \"%s\" in all modules:")
6410 : _("All functions matching regular expression "
6411 "\"%s\",\n\twith type matching regular "
6412 "expression \"%s\" in all modules:")),
6413 regexp, type_regexp);
6414 }
6415 }
6416 else
6417 {
6418 if (type_regexp == nullptr)
6419 {
6420 if (regexp == nullptr)
6421 printf_filtered
6422 ((kind == VARIABLES_DOMAIN
6423 ? _("All variables in all modules matching regular "
6424 "expression \"%s\":")
6425 : _("All functions in all modules matching regular "
6426 "expression \"%s\":")),
6427 module_regexp);
6428 else
6429 printf_filtered
6430 ((kind == VARIABLES_DOMAIN
6431 ? _("All variables matching regular expression "
6432 "\"%s\",\n\tin all modules matching regular "
6433 "expression \"%s\":")
6434 : _("All functions matching regular expression "
6435 "\"%s\",\n\tin all modules matching regular "
6436 "expression \"%s\":")),
6437 regexp, module_regexp);
6438 }
6439 else
6440 {
6441 if (regexp == nullptr)
6442 printf_filtered
6443 ((kind == VARIABLES_DOMAIN
6444 ? _("All variables with type matching regular "
6445 "expression \"%s\"\n\tin all modules matching "
6446 "regular expression \"%s\":")
6447 : _("All functions with type matching regular "
6448 "expression \"%s\"\n\tin all modules matching "
6449 "regular expression \"%s\":")),
6450 type_regexp, module_regexp);
6451 else
6452 printf_filtered
6453 ((kind == VARIABLES_DOMAIN
6454 ? _("All variables matching regular expression "
6455 "\"%s\",\n\twith type matching regular expression "
6456 "\"%s\",\n\tin all modules matching regular "
6457 "expression \"%s\":")
6458 : _("All functions matching regular expression "
6459 "\"%s\",\n\twith type matching regular expression "
6460 "\"%s\",\n\tin all modules matching regular "
6461 "expression \"%s\":")),
6462 regexp, type_regexp, module_regexp);
6463 }
6464 }
6465 printf_filtered ("\n");
6466 }
6467
6468 /* Find all symbols of type KIND matching the given regular expressions
6469 along with the symbols for the modules in which those symbols
6470 reside. */
6471 std::vector<module_symbol_search> module_symbols
6472 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6473
6474 std::sort (module_symbols.begin (), module_symbols.end (),
6475 [] (const module_symbol_search &a, const module_symbol_search &b)
6476 {
6477 if (a.first < b.first)
6478 return true;
6479 else if (a.first == b.first)
6480 return a.second < b.second;
6481 else
6482 return false;
6483 });
6484
6485 const char *last_filename = "";
6486 const symbol *last_module_symbol = nullptr;
6487 for (const module_symbol_search &ms : module_symbols)
6488 {
6489 const symbol_search &p = ms.first;
6490 const symbol_search &q = ms.second;
6491
6492 gdb_assert (q.symbol != nullptr);
6493
6494 if (last_module_symbol != p.symbol)
6495 {
6496 printf_filtered ("\n");
6497 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6498 last_module_symbol = p.symbol;
6499 last_filename = "";
6500 }
6501
6502 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6503 last_filename);
6504 last_filename
6505 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6506 }
6507 }
6508
6509 /* Hold the option values for the 'info module .....' sub-commands. */
6510
6511 struct info_modules_var_func_options
6512 {
6513 bool quiet = false;
6514 char *type_regexp = nullptr;
6515 char *module_regexp = nullptr;
6516
6517 ~info_modules_var_func_options ()
6518 {
6519 xfree (type_regexp);
6520 xfree (module_regexp);
6521 }
6522 };
6523
6524 /* The options used by 'info module variables' and 'info module functions'
6525 commands. */
6526
6527 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6528 gdb::option::boolean_option_def<info_modules_var_func_options> {
6529 "q",
6530 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6531 nullptr, /* show_cmd_cb */
6532 nullptr /* set_doc */
6533 },
6534
6535 gdb::option::string_option_def<info_modules_var_func_options> {
6536 "t",
6537 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6538 nullptr, /* show_cmd_cb */
6539 nullptr /* set_doc */
6540 },
6541
6542 gdb::option::string_option_def<info_modules_var_func_options> {
6543 "m",
6544 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6545 nullptr, /* show_cmd_cb */
6546 nullptr /* set_doc */
6547 }
6548 };
6549
6550 /* Return the option group used by the 'info module ...' sub-commands. */
6551
6552 static inline gdb::option::option_def_group
6553 make_info_modules_var_func_options_def_group
6554 (info_modules_var_func_options *opts)
6555 {
6556 return {{info_modules_var_func_options_defs}, opts};
6557 }
6558
6559 /* Implements the 'info module functions' command. */
6560
6561 static void
6562 info_module_functions_command (const char *args, int from_tty)
6563 {
6564 info_modules_var_func_options opts;
6565 auto grp = make_info_modules_var_func_options_def_group (&opts);
6566 gdb::option::process_options
6567 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6568 if (args != nullptr && *args == '\0')
6569 args = nullptr;
6570
6571 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6572 opts.type_regexp, FUNCTIONS_DOMAIN);
6573 }
6574
6575 /* Implements the 'info module variables' command. */
6576
6577 static void
6578 info_module_variables_command (const char *args, int from_tty)
6579 {
6580 info_modules_var_func_options opts;
6581 auto grp = make_info_modules_var_func_options_def_group (&opts);
6582 gdb::option::process_options
6583 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6584 if (args != nullptr && *args == '\0')
6585 args = nullptr;
6586
6587 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6588 opts.type_regexp, VARIABLES_DOMAIN);
6589 }
6590
6591 /* Command completer for 'info module ...' sub-commands. */
6592
6593 static void
6594 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6595 completion_tracker &tracker,
6596 const char *text,
6597 const char * /* word */)
6598 {
6599
6600 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6601 if (gdb::option::complete_options
6602 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6603 return;
6604
6605 const char *word = advance_to_expression_complete_word_point (tracker, text);
6606 symbol_completer (ignore, tracker, text, word);
6607 }
6608
6609 \f
6610
6611 void
6612 _initialize_symtab (void)
6613 {
6614 cmd_list_element *c;
6615
6616 initialize_ordinary_address_classes ();
6617
6618 c = add_info ("variables", info_variables_command,
6619 info_print_args_help (_("\
6620 All global and static variable names or those matching REGEXPs.\n\
6621 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6622 Prints the global and static variables.\n"),
6623 _("global and static variables"),
6624 true));
6625 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6626 if (dbx_commands)
6627 {
6628 c = add_com ("whereis", class_info, info_variables_command,
6629 info_print_args_help (_("\
6630 All global and static variable names, or those matching REGEXPs.\n\
6631 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6632 Prints the global and static variables.\n"),
6633 _("global and static variables"),
6634 true));
6635 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6636 }
6637
6638 c = add_info ("functions", info_functions_command,
6639 info_print_args_help (_("\
6640 All function names or those matching REGEXPs.\n\
6641 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6642 Prints the functions.\n"),
6643 _("functions"),
6644 true));
6645 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6646
6647 c = add_info ("types", info_types_command, _("\
6648 All type names, or those matching REGEXP.\n\
6649 Usage: info types [-q] [REGEXP]\n\
6650 Print information about all types matching REGEXP, or all types if no\n\
6651 REGEXP is given. The optional flag -q disables printing of headers."));
6652 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6653
6654 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6655
6656 static std::string info_sources_help
6657 = gdb::option::build_help (_("\
6658 All source files in the program or those matching REGEXP.\n\
6659 Usage: info sources [OPTION]... [REGEXP]\n\
6660 By default, REGEXP is used to match anywhere in the filename.\n\
6661 \n\
6662 Options:\n\
6663 %OPTIONS%"),
6664 info_sources_opts);
6665
6666 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6667 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6668
6669 c = add_info ("modules", info_modules_command,
6670 _("All module names, or those matching REGEXP."));
6671 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6672
6673 add_prefix_cmd ("module", class_info, info_module_command, _("\
6674 Print information about modules."),
6675 &info_module_cmdlist, "info module ",
6676 0, &infolist);
6677
6678 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6679 Display functions arranged by modules.\n\
6680 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6681 Print a summary of all functions within each Fortran module, grouped by\n\
6682 module and file. For each function the line on which the function is\n\
6683 defined is given along with the type signature and name of the function.\n\
6684 \n\
6685 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6686 listed. If MODREGEXP is provided then only functions in modules matching\n\
6687 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6688 type signature matches TYPEREGEXP are listed.\n\
6689 \n\
6690 The -q flag suppresses printing some header information."),
6691 &info_module_cmdlist);
6692 set_cmd_completer_handle_brkchars
6693 (c, info_module_var_func_command_completer);
6694
6695 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6696 Display variables arranged by modules.\n\
6697 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6698 Print a summary of all variables within each Fortran module, grouped by\n\
6699 module and file. For each variable the line on which the variable is\n\
6700 defined is given along with the type and name of the variable.\n\
6701 \n\
6702 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6703 listed. If MODREGEXP is provided then only variables in modules matching\n\
6704 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6705 type matches TYPEREGEXP are listed.\n\
6706 \n\
6707 The -q flag suppresses printing some header information."),
6708 &info_module_cmdlist);
6709 set_cmd_completer_handle_brkchars
6710 (c, info_module_var_func_command_completer);
6711
6712 add_com ("rbreak", class_breakpoint, rbreak_command,
6713 _("Set a breakpoint for all functions matching REGEXP."));
6714
6715 add_setshow_enum_cmd ("multiple-symbols", no_class,
6716 multiple_symbols_modes, &multiple_symbols_mode,
6717 _("\
6718 Set how the debugger handles ambiguities in expressions."), _("\
6719 Show how the debugger handles ambiguities in expressions."), _("\
6720 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6721 NULL, NULL, &setlist, &showlist);
6722
6723 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6724 &basenames_may_differ, _("\
6725 Set whether a source file may have multiple base names."), _("\
6726 Show whether a source file may have multiple base names."), _("\
6727 (A \"base name\" is the name of a file with the directory part removed.\n\
6728 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6729 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6730 before comparing them. Canonicalization is an expensive operation,\n\
6731 but it allows the same file be known by more than one base name.\n\
6732 If not set (the default), all source files are assumed to have just\n\
6733 one base name, and gdb will do file name comparisons more efficiently."),
6734 NULL, NULL,
6735 &setlist, &showlist);
6736
6737 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6738 _("Set debugging of symbol table creation."),
6739 _("Show debugging of symbol table creation."), _("\
6740 When enabled (non-zero), debugging messages are printed when building\n\
6741 symbol tables. A value of 1 (one) normally provides enough information.\n\
6742 A value greater than 1 provides more verbose information."),
6743 NULL,
6744 NULL,
6745 &setdebuglist, &showdebuglist);
6746
6747 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6748 _("\
6749 Set debugging of symbol lookup."), _("\
6750 Show debugging of symbol lookup."), _("\
6751 When enabled (non-zero), symbol lookups are logged."),
6752 NULL, NULL,
6753 &setdebuglist, &showdebuglist);
6754
6755 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6756 &new_symbol_cache_size,
6757 _("Set the size of the symbol cache."),
6758 _("Show the size of the symbol cache."), _("\
6759 The size of the symbol cache.\n\
6760 If zero then the symbol cache is disabled."),
6761 set_symbol_cache_size_handler, NULL,
6762 &maintenance_set_cmdlist,
6763 &maintenance_show_cmdlist);
6764
6765 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6766 _("Dump the symbol cache for each program space."),
6767 &maintenanceprintlist);
6768
6769 add_cmd ("symbol-cache-statistics", class_maintenance,
6770 maintenance_print_symbol_cache_statistics,
6771 _("Print symbol cache statistics for each program space."),
6772 &maintenanceprintlist);
6773
6774 add_cmd ("flush-symbol-cache", class_maintenance,
6775 maintenance_flush_symbol_cache,
6776 _("Flush the symbol cache for each program space."),
6777 &maintenancelist);
6778
6779 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6780 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6781 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6782 }
This page took 0.230325 seconds and 3 git commands to generate.