Use is_xcoff_format in gas testsuite
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = type->name ();
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 lang->sniff_from_mangled_name (mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (lang->sniff_from_mangled_name (mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 for (struct program_space *pspace : program_spaces)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Mark SYMBOL as found in SLOT.
1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1376 necessarily the objfile the symbol was found in. */
1377
1378 static void
1379 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1380 struct symbol_cache_slot *slot,
1381 struct objfile *objfile_context,
1382 struct symbol *symbol,
1383 const struct block *block)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.found.symbol = symbol;
1395 slot->value.found.block = block;
1396 }
1397
1398 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1401
1402 static void
1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1404 struct symbol_cache_slot *slot,
1405 struct objfile *objfile_context,
1406 const char *name, domain_enum domain)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_NOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.not_found.name = xstrdup (name);
1418 slot->value.not_found.domain = domain;
1419 }
1420
1421 /* Flush the symbol cache of PSPACE. */
1422
1423 static void
1424 symbol_cache_flush (struct program_space *pspace)
1425 {
1426 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 int pass;
1428
1429 if (cache == NULL)
1430 return;
1431 if (cache->global_symbols == NULL)
1432 {
1433 gdb_assert (symbol_cache_size == 0);
1434 gdb_assert (cache->static_symbols == NULL);
1435 return;
1436 }
1437
1438 /* If the cache is untouched since the last flush, early exit.
1439 This is important for performance during the startup of a program linked
1440 with 100s (or 1000s) of shared libraries. */
1441 if (cache->global_symbols->misses == 0
1442 && cache->static_symbols->misses == 0)
1443 return;
1444
1445 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1446 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1447
1448 for (pass = 0; pass < 2; ++pass)
1449 {
1450 struct block_symbol_cache *bsc
1451 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1452 unsigned int i;
1453
1454 for (i = 0; i < bsc->size; ++i)
1455 symbol_cache_clear_slot (&bsc->symbols[i]);
1456 }
1457
1458 cache->global_symbols->hits = 0;
1459 cache->global_symbols->misses = 0;
1460 cache->global_symbols->collisions = 0;
1461 cache->static_symbols->hits = 0;
1462 cache->static_symbols->misses = 0;
1463 cache->static_symbols->collisions = 0;
1464 }
1465
1466 /* Dump CACHE. */
1467
1468 static void
1469 symbol_cache_dump (const struct symbol_cache *cache)
1470 {
1471 int pass;
1472
1473 if (cache->global_symbols == NULL)
1474 {
1475 printf_filtered (" <disabled>\n");
1476 return;
1477 }
1478
1479 for (pass = 0; pass < 2; ++pass)
1480 {
1481 const struct block_symbol_cache *bsc
1482 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 unsigned int i;
1484
1485 if (pass == 0)
1486 printf_filtered ("Global symbols:\n");
1487 else
1488 printf_filtered ("Static symbols:\n");
1489
1490 for (i = 0; i < bsc->size; ++i)
1491 {
1492 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493
1494 QUIT;
1495
1496 switch (slot->state)
1497 {
1498 case SYMBOL_SLOT_UNUSED:
1499 break;
1500 case SYMBOL_SLOT_NOT_FOUND:
1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1502 host_address_to_string (slot->objfile_context),
1503 slot->value.not_found.name,
1504 domain_name (slot->value.not_found.domain));
1505 break;
1506 case SYMBOL_SLOT_FOUND:
1507 {
1508 struct symbol *found = slot->value.found.symbol;
1509 const struct objfile *context = slot->objfile_context;
1510
1511 printf_filtered (" [%4u] = %s, %s %s\n", i,
1512 host_address_to_string (context),
1513 found->print_name (),
1514 domain_name (SYMBOL_DOMAIN (found)));
1515 break;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* The "mt print symbol-cache" command. */
1523
1524 static void
1525 maintenance_print_symbol_cache (const char *args, int from_tty)
1526 {
1527 for (struct program_space *pspace : program_spaces)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache = symbol_cache_key.get (pspace);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 for (struct program_space *pspace : program_spaces)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1645 objfile);
1646 if (msym)
1647 ginfo->section = MSYMBOL_SECTION (msym);
1648 else
1649 {
1650 /* Static, function-local variables do appear in the linker
1651 (minimal) symbols, but are frequently given names that won't
1652 be found via lookup_minimal_symbol(). E.g., it has been
1653 observed in frv-uclinux (ELF) executables that a static,
1654 function-local variable named "foo" might appear in the
1655 linker symbols as "foo.6" or "foo.3". Thus, there is no
1656 point in attempting to extend the lookup-by-name mechanism to
1657 handle this case due to the fact that there can be multiple
1658 names.
1659
1660 So, instead, search the section table when lookup by name has
1661 failed. The ``addr'' and ``endaddr'' fields may have already
1662 been relocated. If so, the relocation offset needs to be
1663 subtracted from these values when performing the comparison.
1664 We unconditionally subtract it, because, when no relocation
1665 has been performed, the value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = objfile->section_offsets[idx];
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (sym, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.c_str ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1834 if (canon != nullptr)
1835 return storage.set_malloc_ptr (std::move (canon));
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->la_name_of_this == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = block_objfile (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->la_name, host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->la_name_of_this,
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 sym->print_name (),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &type->field (i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = (block == nullptr
2016 ? nullptr : block_objfile (block));
2017
2018 fprintf_unfiltered (gdb_stdlog,
2019 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2020 name, host_address_to_string (block),
2021 objfile != NULL
2022 ? objfile_debug_name (objfile) : "NULL",
2023 domain_name (domain), language_str (language));
2024 }
2025
2026 /* Make sure we do something sensible with is_a_field_of_this, since
2027 the callers that set this parameter to some non-null value will
2028 certainly use it later. If we don't set it, the contents of
2029 is_a_field_of_this are undefined. */
2030 if (is_a_field_of_this != NULL)
2031 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2032
2033 /* Search specified block and its superiors. Don't search
2034 STATIC_BLOCK or GLOBAL_BLOCK. */
2035
2036 result = lookup_local_symbol (name, match_type, block, domain, language);
2037 if (result.symbol != NULL)
2038 {
2039 if (symbol_lookup_debug)
2040 {
2041 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2042 host_address_to_string (result.symbol));
2043 }
2044 return result;
2045 }
2046
2047 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2048 check to see if NAME is a field of `this'. */
2049
2050 langdef = language_def (language);
2051
2052 /* Don't do this check if we are searching for a struct. It will
2053 not be found by check_field, but will be found by other
2054 means. */
2055 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2056 {
2057 result = lookup_language_this (langdef, block);
2058
2059 if (result.symbol)
2060 {
2061 struct type *t = result.symbol->type;
2062
2063 /* I'm not really sure that type of this can ever
2064 be typedefed; just be safe. */
2065 t = check_typedef (t);
2066 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2067 t = TYPE_TARGET_TYPE (t);
2068
2069 if (t->code () != TYPE_CODE_STRUCT
2070 && t->code () != TYPE_CODE_UNION)
2071 error (_("Internal error: `%s' is not an aggregate"),
2072 langdef->la_name_of_this);
2073
2074 if (check_field (t, name, is_a_field_of_this))
2075 {
2076 if (symbol_lookup_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "lookup_symbol_aux (...) = NULL\n");
2080 }
2081 return {};
2082 }
2083 }
2084 }
2085
2086 /* Now do whatever is appropriate for LANGUAGE to look
2087 up static and global variables. */
2088
2089 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2090 if (result.symbol != NULL)
2091 {
2092 if (symbol_lookup_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2095 host_address_to_string (result.symbol));
2096 }
2097 return result;
2098 }
2099
2100 /* Now search all static file-level symbols. Not strictly correct,
2101 but more useful than an error. */
2102
2103 result = lookup_static_symbol (name, domain);
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2107 result.symbol != NULL
2108 ? host_address_to_string (result.symbol)
2109 : "NULL");
2110 }
2111 return result;
2112 }
2113
2114 /* Check to see if the symbol is defined in BLOCK or its superiors.
2115 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 static struct block_symbol
2118 lookup_local_symbol (const char *name,
2119 symbol_name_match_type match_type,
2120 const struct block *block,
2121 const domain_enum domain,
2122 enum language language)
2123 {
2124 struct symbol *sym;
2125 const struct block *static_block = block_static_block (block);
2126 const char *scope = block_scope (block);
2127
2128 /* Check if either no block is specified or it's a global block. */
2129
2130 if (static_block == NULL)
2131 return {};
2132
2133 while (block != static_block)
2134 {
2135 sym = lookup_symbol_in_block (name, match_type, block, domain);
2136 if (sym != NULL)
2137 return (struct block_symbol) {sym, block};
2138
2139 if (language == language_cplus || language == language_fortran)
2140 {
2141 struct block_symbol blocksym
2142 = cp_lookup_symbol_imports_or_template (scope, name, block,
2143 domain);
2144
2145 if (blocksym.symbol != NULL)
2146 return blocksym;
2147 }
2148
2149 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2150 break;
2151 block = BLOCK_SUPERBLOCK (block);
2152 }
2153
2154 /* We've reached the end of the function without finding a result. */
2155
2156 return {};
2157 }
2158
2159 /* See symtab.h. */
2160
2161 struct symbol *
2162 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2163 const struct block *block,
2164 const domain_enum domain)
2165 {
2166 struct symbol *sym;
2167
2168 if (symbol_lookup_debug > 1)
2169 {
2170 struct objfile *objfile = (block == nullptr
2171 ? nullptr : block_objfile (block));
2172
2173 fprintf_unfiltered (gdb_stdlog,
2174 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2175 name, host_address_to_string (block),
2176 objfile_debug_name (objfile),
2177 domain_name (domain));
2178 }
2179
2180 sym = block_lookup_symbol (block, name, match_type, domain);
2181 if (sym)
2182 {
2183 if (symbol_lookup_debug > 1)
2184 {
2185 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2186 host_address_to_string (sym));
2187 }
2188 return fixup_symbol_section (sym, NULL);
2189 }
2190
2191 if (symbol_lookup_debug > 1)
2192 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2193 return NULL;
2194 }
2195
2196 /* See symtab.h. */
2197
2198 struct block_symbol
2199 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2200 enum block_enum block_index,
2201 const char *name,
2202 const domain_enum domain)
2203 {
2204 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2205
2206 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2207 {
2208 struct block_symbol result
2209 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2210
2211 if (result.symbol != nullptr)
2212 return result;
2213 }
2214
2215 return {};
2216 }
2217
2218 /* Check to see if the symbol is defined in one of the OBJFILE's
2219 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2220 depending on whether or not we want to search global symbols or
2221 static symbols. */
2222
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2225 enum block_enum block_index, const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 if (symbol_lookup_debug > 1)
2231 {
2232 fprintf_unfiltered (gdb_stdlog,
2233 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2234 objfile_debug_name (objfile),
2235 block_index == GLOBAL_BLOCK
2236 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2237 name, domain_name (domain));
2238 }
2239
2240 struct block_symbol other;
2241 other.symbol = NULL;
2242 for (compunit_symtab *cust : objfile->compunits ())
2243 {
2244 const struct blockvector *bv;
2245 const struct block *block;
2246 struct block_symbol result;
2247
2248 bv = COMPUNIT_BLOCKVECTOR (cust);
2249 block = BLOCKVECTOR_BLOCK (bv, block_index);
2250 result.symbol = block_lookup_symbol_primary (block, name, domain);
2251 result.block = block;
2252 if (result.symbol == NULL)
2253 continue;
2254 if (best_symbol (result.symbol, domain))
2255 {
2256 other = result;
2257 break;
2258 }
2259 if (symbol_matches_domain (result.symbol->language (),
2260 SYMBOL_DOMAIN (result.symbol), domain))
2261 {
2262 struct symbol *better
2263 = better_symbol (other.symbol, result.symbol, domain);
2264 if (better != other.symbol)
2265 {
2266 other.symbol = better;
2267 other.block = block;
2268 }
2269 }
2270 }
2271
2272 if (other.symbol != NULL)
2273 {
2274 if (symbol_lookup_debug > 1)
2275 {
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (other.symbol),
2278 host_address_to_string (other.block));
2279 }
2280 other.symbol = fixup_symbol_section (other.symbol, objfile);
2281 return other;
2282 }
2283
2284 if (symbol_lookup_debug > 1)
2285 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2286 return {};
2287 }
2288
2289 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2290 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2291 and all associated separate debug objfiles.
2292
2293 Normally we only look in OBJFILE, and not any separate debug objfiles
2294 because the outer loop will cause them to be searched too. This case is
2295 different. Here we're called from search_symbols where it will only
2296 call us for the objfile that contains a matching minsym. */
2297
2298 static struct block_symbol
2299 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2300 const char *linkage_name,
2301 domain_enum domain)
2302 {
2303 enum language lang = current_language->la_language;
2304 struct objfile *main_objfile;
2305
2306 demangle_result_storage storage;
2307 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2308
2309 if (objfile->separate_debug_objfile_backlink)
2310 main_objfile = objfile->separate_debug_objfile_backlink;
2311 else
2312 main_objfile = objfile;
2313
2314 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2315 {
2316 struct block_symbol result;
2317
2318 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2319 modified_name, domain);
2320 if (result.symbol == NULL)
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol != NULL)
2324 return result;
2325 }
2326
2327 return {};
2328 }
2329
2330 /* A helper function that throws an exception when a symbol was found
2331 in a psymtab but not in a symtab. */
2332
2333 static void ATTRIBUTE_NORETURN
2334 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2335 struct compunit_symtab *cust)
2336 {
2337 error (_("\
2338 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2339 %s may be an inlined function, or may be a template function\n \
2340 (if a template, try specifying an instantiation: %s<type>)."),
2341 block_index == GLOBAL_BLOCK ? "global" : "static",
2342 name,
2343 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2344 name, name);
2345 }
2346
2347 /* A helper function for various lookup routines that interfaces with
2348 the "quick" symbol table functions. */
2349
2350 static struct block_symbol
2351 lookup_symbol_via_quick_fns (struct objfile *objfile,
2352 enum block_enum block_index, const char *name,
2353 const domain_enum domain)
2354 {
2355 struct compunit_symtab *cust;
2356 const struct blockvector *bv;
2357 const struct block *block;
2358 struct block_symbol result;
2359
2360 if (!objfile->sf)
2361 return {};
2362
2363 if (symbol_lookup_debug > 1)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2367 objfile_debug_name (objfile),
2368 block_index == GLOBAL_BLOCK
2369 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2370 name, domain_name (domain));
2371 }
2372
2373 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2374 if (cust == NULL)
2375 {
2376 if (symbol_lookup_debug > 1)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "lookup_symbol_via_quick_fns (...) = NULL\n");
2380 }
2381 return {};
2382 }
2383
2384 bv = COMPUNIT_BLOCKVECTOR (cust);
2385 block = BLOCKVECTOR_BLOCK (bv, block_index);
2386 result.symbol = block_lookup_symbol (block, name,
2387 symbol_name_match_type::FULL, domain);
2388 if (result.symbol == NULL)
2389 error_in_psymtab_expansion (block_index, name, cust);
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2395 host_address_to_string (result.symbol),
2396 host_address_to_string (block));
2397 }
2398
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 result.block = block;
2401 return result;
2402 }
2403
2404 /* See language.h. */
2405
2406 struct block_symbol
2407 language_defn::lookup_symbol_nonlocal (const char *name,
2408 const struct block *block,
2409 const domain_enum domain) const
2410 {
2411 struct block_symbol result;
2412
2413 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2414 the current objfile. Searching the current objfile first is useful
2415 for both matching user expectations as well as performance. */
2416
2417 result = lookup_symbol_in_static_block (name, block, domain);
2418 if (result.symbol != NULL)
2419 return result;
2420
2421 /* If we didn't find a definition for a builtin type in the static block,
2422 search for it now. This is actually the right thing to do and can be
2423 a massive performance win. E.g., when debugging a program with lots of
2424 shared libraries we could search all of them only to find out the
2425 builtin type isn't defined in any of them. This is common for types
2426 like "void". */
2427 if (domain == VAR_DOMAIN)
2428 {
2429 struct gdbarch *gdbarch;
2430
2431 if (block == NULL)
2432 gdbarch = target_gdbarch ();
2433 else
2434 gdbarch = block_gdbarch (block);
2435 result.symbol = language_lookup_primitive_type_as_symbol (this,
2436 gdbarch, name);
2437 result.block = NULL;
2438 if (result.symbol != NULL)
2439 return result;
2440 }
2441
2442 return lookup_global_symbol (name, block, domain);
2443 }
2444
2445 /* See symtab.h. */
2446
2447 struct block_symbol
2448 lookup_symbol_in_static_block (const char *name,
2449 const struct block *block,
2450 const domain_enum domain)
2451 {
2452 const struct block *static_block = block_static_block (block);
2453 struct symbol *sym;
2454
2455 if (static_block == NULL)
2456 return {};
2457
2458 if (symbol_lookup_debug)
2459 {
2460 struct objfile *objfile = (block == nullptr
2461 ? nullptr : block_objfile (block));
2462
2463 fprintf_unfiltered (gdb_stdlog,
2464 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2465 " %s)\n",
2466 name,
2467 host_address_to_string (block),
2468 objfile_debug_name (objfile),
2469 domain_name (domain));
2470 }
2471
2472 sym = lookup_symbol_in_block (name,
2473 symbol_name_match_type::FULL,
2474 static_block, domain);
2475 if (symbol_lookup_debug)
2476 {
2477 fprintf_unfiltered (gdb_stdlog,
2478 "lookup_symbol_in_static_block (...) = %s\n",
2479 sym != NULL ? host_address_to_string (sym) : "NULL");
2480 }
2481 return (struct block_symbol) {sym, static_block};
2482 }
2483
2484 /* Perform the standard symbol lookup of NAME in OBJFILE:
2485 1) First search expanded symtabs, and if not found
2486 2) Search the "quick" symtabs (partial or .gdb_index).
2487 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2488
2489 static struct block_symbol
2490 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2491 const char *name, const domain_enum domain)
2492 {
2493 struct block_symbol result;
2494
2495 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2496
2497 if (symbol_lookup_debug)
2498 {
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2501 objfile_debug_name (objfile),
2502 block_index == GLOBAL_BLOCK
2503 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2504 name, domain_name (domain));
2505 }
2506
2507 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2508 name, domain);
2509 if (result.symbol != NULL)
2510 {
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_objfile (...) = %s"
2515 " (in symtabs)\n",
2516 host_address_to_string (result.symbol));
2517 }
2518 return result;
2519 }
2520
2521 result = lookup_symbol_via_quick_fns (objfile, block_index,
2522 name, domain);
2523 if (symbol_lookup_debug)
2524 {
2525 fprintf_unfiltered (gdb_stdlog,
2526 "lookup_symbol_in_objfile (...) = %s%s\n",
2527 result.symbol != NULL
2528 ? host_address_to_string (result.symbol)
2529 : "NULL",
2530 result.symbol != NULL ? " (via quick fns)" : "");
2531 }
2532 return result;
2533 }
2534
2535 /* Find the language for partial symbol with NAME. */
2536
2537 static enum language
2538 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2539 {
2540 for (objfile *objfile : current_program_space->objfiles ())
2541 {
2542 if (objfile->sf && objfile->sf->qf
2543 && objfile->sf->qf->lookup_global_symbol_language)
2544 continue;
2545 return language_unknown;
2546 }
2547
2548 for (objfile *objfile : current_program_space->objfiles ())
2549 {
2550 bool symbol_found_p;
2551 enum language lang
2552 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2553 &symbol_found_p);
2554 if (!symbol_found_p)
2555 continue;
2556 return lang;
2557 }
2558
2559 return language_unknown;
2560 }
2561
2562 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2563
2564 struct global_or_static_sym_lookup_data
2565 {
2566 /* The name of the symbol we are searching for. */
2567 const char *name;
2568
2569 /* The domain to use for our search. */
2570 domain_enum domain;
2571
2572 /* The block index in which to search. */
2573 enum block_enum block_index;
2574
2575 /* The field where the callback should store the symbol if found.
2576 It should be initialized to {NULL, NULL} before the search is started. */
2577 struct block_symbol result;
2578 };
2579
2580 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2581 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2582 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2583 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2584
2585 static int
2586 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2587 void *cb_data)
2588 {
2589 struct global_or_static_sym_lookup_data *data =
2590 (struct global_or_static_sym_lookup_data *) cb_data;
2591
2592 gdb_assert (data->result.symbol == NULL
2593 && data->result.block == NULL);
2594
2595 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2596 data->name, data->domain);
2597
2598 /* If we found a match, tell the iterator to stop. Otherwise,
2599 keep going. */
2600 return (data->result.symbol != NULL);
2601 }
2602
2603 /* This function contains the common code of lookup_{global,static}_symbol.
2604 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2605 the objfile to start the lookup in. */
2606
2607 static struct block_symbol
2608 lookup_global_or_static_symbol (const char *name,
2609 enum block_enum block_index,
2610 struct objfile *objfile,
2611 const domain_enum domain)
2612 {
2613 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2614 struct block_symbol result;
2615 struct global_or_static_sym_lookup_data lookup_data;
2616 struct block_symbol_cache *bsc;
2617 struct symbol_cache_slot *slot;
2618
2619 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2620 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2621
2622 /* First see if we can find the symbol in the cache.
2623 This works because we use the current objfile to qualify the lookup. */
2624 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2625 &bsc, &slot);
2626 if (result.symbol != NULL)
2627 {
2628 if (SYMBOL_LOOKUP_FAILED_P (result))
2629 return {};
2630 return result;
2631 }
2632
2633 /* Do a global search (of global blocks, heh). */
2634 if (result.symbol == NULL)
2635 {
2636 memset (&lookup_data, 0, sizeof (lookup_data));
2637 lookup_data.name = name;
2638 lookup_data.block_index = block_index;
2639 lookup_data.domain = domain;
2640 gdbarch_iterate_over_objfiles_in_search_order
2641 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2642 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2643 result = lookup_data.result;
2644 }
2645
2646 if (result.symbol != NULL)
2647 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2648 else
2649 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2650
2651 return result;
2652 }
2653
2654 /* See symtab.h. */
2655
2656 struct block_symbol
2657 lookup_static_symbol (const char *name, const domain_enum domain)
2658 {
2659 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2660 }
2661
2662 /* See symtab.h. */
2663
2664 struct block_symbol
2665 lookup_global_symbol (const char *name,
2666 const struct block *block,
2667 const domain_enum domain)
2668 {
2669 /* If a block was passed in, we want to search the corresponding
2670 global block first. This yields "more expected" behavior, and is
2671 needed to support 'FILENAME'::VARIABLE lookups. */
2672 const struct block *global_block = block_global_block (block);
2673 symbol *sym = NULL;
2674 if (global_block != nullptr)
2675 {
2676 sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != NULL && best_symbol (sym, domain))
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = nullptr;
2684 if (block != nullptr)
2685 {
2686 objfile = block_objfile (block);
2687 if (objfile->separate_debug_objfile_backlink != nullptr)
2688 objfile = objfile->separate_debug_objfile_backlink;
2689 }
2690
2691 block_symbol bs
2692 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 if (better_symbol (sym, bs.symbol, domain) == sym)
2694 return { sym, global_block };
2695 else
2696 return bs;
2697 }
2698
2699 bool
2700 symbol_matches_domain (enum language symbol_language,
2701 domain_enum symbol_domain,
2702 domain_enum domain)
2703 {
2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2705 Similarly, any Ada type declaration implicitly defines a typedef. */
2706 if (symbol_language == language_cplus
2707 || symbol_language == language_d
2708 || symbol_language == language_ada
2709 || symbol_language == language_rust)
2710 {
2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2712 && symbol_domain == STRUCT_DOMAIN)
2713 return true;
2714 }
2715 /* For all other languages, strict match is required. */
2716 return (symbol_domain == domain);
2717 }
2718
2719 /* See symtab.h. */
2720
2721 struct type *
2722 lookup_transparent_type (const char *name)
2723 {
2724 return current_language->lookup_transparent_type (name);
2725 }
2726
2727 /* A helper for basic_lookup_transparent_type that interfaces with the
2728 "quick" symbol table functions. */
2729
2730 static struct type *
2731 basic_lookup_transparent_type_quick (struct objfile *objfile,
2732 enum block_enum block_index,
2733 const char *name)
2734 {
2735 struct compunit_symtab *cust;
2736 const struct blockvector *bv;
2737 const struct block *block;
2738 struct symbol *sym;
2739
2740 if (!objfile->sf)
2741 return NULL;
2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2743 STRUCT_DOMAIN);
2744 if (cust == NULL)
2745 return NULL;
2746
2747 bv = COMPUNIT_BLOCKVECTOR (cust);
2748 block = BLOCKVECTOR_BLOCK (bv, block_index);
2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2750 block_find_non_opaque_type, NULL);
2751 if (sym == NULL)
2752 error_in_psymtab_expansion (block_index, name, cust);
2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2754 return SYMBOL_TYPE (sym);
2755 }
2756
2757 /* Subroutine of basic_lookup_transparent_type to simplify it.
2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760
2761 static struct type *
2762 basic_lookup_transparent_type_1 (struct objfile *objfile,
2763 enum block_enum block_index,
2764 const char *name)
2765 {
2766 const struct blockvector *bv;
2767 const struct block *block;
2768 const struct symbol *sym;
2769
2770 for (compunit_symtab *cust : objfile->compunits ())
2771 {
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym != NULL)
2777 {
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /* The standard implementation of lookup_transparent_type. This code
2787 was modeled on lookup_symbol -- the parts not relevant to looking
2788 up types were just left out. In particular it's assumed here that
2789 types are available in STRUCT_DOMAIN and only in file-static or
2790 global blocks. */
2791
2792 struct type *
2793 basic_lookup_transparent_type (const char *name)
2794 {
2795 struct type *t;
2796
2797 /* Now search all the global symbols. Do the symtab's first, then
2798 check the psymtab's. If a psymtab indicates the existence
2799 of the desired name as a global, then do psymtab-to-symtab
2800 conversion on the fly and return the found symbol. */
2801
2802 for (objfile *objfile : current_program_space->objfiles ())
2803 {
2804 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2805 if (t)
2806 return t;
2807 }
2808
2809 for (objfile *objfile : current_program_space->objfiles ())
2810 {
2811 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2812 if (t)
2813 return t;
2814 }
2815
2816 /* Now search the static file-level symbols.
2817 Not strictly correct, but more useful than an error.
2818 Do the symtab's first, then
2819 check the psymtab's. If a psymtab indicates the existence
2820 of the desired name as a file-level static, then do psymtab-to-symtab
2821 conversion on the fly and return the found symbol. */
2822
2823 for (objfile *objfile : current_program_space->objfiles ())
2824 {
2825 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2826 if (t)
2827 return t;
2828 }
2829
2830 for (objfile *objfile : current_program_space->objfiles ())
2831 {
2832 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2833 if (t)
2834 return t;
2835 }
2836
2837 return (struct type *) 0;
2838 }
2839
2840 /* See symtab.h. */
2841
2842 bool
2843 iterate_over_symbols (const struct block *block,
2844 const lookup_name_info &name,
2845 const domain_enum domain,
2846 gdb::function_view<symbol_found_callback_ftype> callback)
2847 {
2848 struct block_iterator iter;
2849 struct symbol *sym;
2850
2851 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2852 {
2853 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2854 {
2855 struct block_symbol block_sym = {sym, block};
2856
2857 if (!callback (&block_sym))
2858 return false;
2859 }
2860 }
2861 return true;
2862 }
2863
2864 /* See symtab.h. */
2865
2866 bool
2867 iterate_over_symbols_terminated
2868 (const struct block *block,
2869 const lookup_name_info &name,
2870 const domain_enum domain,
2871 gdb::function_view<symbol_found_callback_ftype> callback)
2872 {
2873 if (!iterate_over_symbols (block, name, domain, callback))
2874 return false;
2875 struct block_symbol block_sym = {nullptr, block};
2876 return callback (&block_sym);
2877 }
2878
2879 /* Find the compunit symtab associated with PC and SECTION.
2880 This will read in debug info as necessary. */
2881
2882 struct compunit_symtab *
2883 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2884 {
2885 struct compunit_symtab *best_cust = NULL;
2886 CORE_ADDR distance = 0;
2887 struct bound_minimal_symbol msymbol;
2888
2889 /* If we know that this is not a text address, return failure. This is
2890 necessary because we loop based on the block's high and low code
2891 addresses, which do not include the data ranges, and because
2892 we call find_pc_sect_psymtab which has a similar restriction based
2893 on the partial_symtab's texthigh and textlow. */
2894 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2895 if (msymbol.minsym && msymbol.minsym->data_p ())
2896 return NULL;
2897
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2903
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2909
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2912
2913 for (objfile *obj_file : current_program_space->objfiles ())
2914 {
2915 for (compunit_symtab *cust : obj_file->compunits ())
2916 {
2917 const struct block *b;
2918 const struct blockvector *bv;
2919
2920 bv = COMPUNIT_BLOCKVECTOR (cust);
2921 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2922
2923 if (BLOCK_START (b) <= pc
2924 && BLOCK_END (b) > pc
2925 && (distance == 0
2926 || BLOCK_END (b) - BLOCK_START (b) < distance))
2927 {
2928 /* For an objfile that has its functions reordered,
2929 find_pc_psymtab will find the proper partial symbol table
2930 and we simply return its corresponding symtab. */
2931 /* In order to better support objfiles that contain both
2932 stabs and coff debugging info, we continue on if a psymtab
2933 can't be found. */
2934 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2935 {
2936 struct compunit_symtab *result;
2937
2938 result
2939 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2940 msymbol,
2941 pc,
2942 section,
2943 0);
2944 if (result != NULL)
2945 return result;
2946 }
2947 if (section != 0)
2948 {
2949 struct block_iterator iter;
2950 struct symbol *sym = NULL;
2951
2952 ALL_BLOCK_SYMBOLS (b, iter, sym)
2953 {
2954 fixup_symbol_section (sym, obj_file);
2955 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2956 sym),
2957 section))
2958 break;
2959 }
2960 if (sym == NULL)
2961 continue; /* No symbol in this symtab matches
2962 section. */
2963 }
2964 distance = BLOCK_END (b) - BLOCK_START (b);
2965 best_cust = cust;
2966 }
2967 }
2968 }
2969
2970 if (best_cust != NULL)
2971 return best_cust;
2972
2973 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2974
2975 for (objfile *objf : current_program_space->objfiles ())
2976 {
2977 struct compunit_symtab *result;
2978
2979 if (!objf->sf)
2980 continue;
2981 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2982 msymbol,
2983 pc, section,
2984 1);
2985 if (result != NULL)
2986 return result;
2987 }
2988
2989 return NULL;
2990 }
2991
2992 /* Find the compunit symtab associated with PC.
2993 This will read in debug info as necessary.
2994 Backward compatibility, no section. */
2995
2996 struct compunit_symtab *
2997 find_pc_compunit_symtab (CORE_ADDR pc)
2998 {
2999 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3000 }
3001
3002 /* See symtab.h. */
3003
3004 struct symbol *
3005 find_symbol_at_address (CORE_ADDR address)
3006 {
3007 for (objfile *objfile : current_program_space->objfiles ())
3008 {
3009 if (objfile->sf == NULL
3010 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3011 continue;
3012
3013 struct compunit_symtab *symtab
3014 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3015 if (symtab != NULL)
3016 {
3017 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3018
3019 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3020 {
3021 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3022 struct block_iterator iter;
3023 struct symbol *sym;
3024
3025 ALL_BLOCK_SYMBOLS (b, iter, sym)
3026 {
3027 if (SYMBOL_CLASS (sym) == LOC_STATIC
3028 && SYMBOL_VALUE_ADDRESS (sym) == address)
3029 return sym;
3030 }
3031 }
3032 }
3033 }
3034
3035 return NULL;
3036 }
3037
3038 \f
3039
3040 /* Find the source file and line number for a given PC value and SECTION.
3041 Return a structure containing a symtab pointer, a line number,
3042 and a pc range for the entire source line.
3043 The value's .pc field is NOT the specified pc.
3044 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3045 use the line that ends there. Otherwise, in that case, the line
3046 that begins there is used. */
3047
3048 /* The big complication here is that a line may start in one file, and end just
3049 before the start of another file. This usually occurs when you #include
3050 code in the middle of a subroutine. To properly find the end of a line's PC
3051 range, we must search all symtabs associated with this compilation unit, and
3052 find the one whose first PC is closer than that of the next line in this
3053 symtab. */
3054
3055 struct symtab_and_line
3056 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3057 {
3058 struct compunit_symtab *cust;
3059 struct linetable *l;
3060 int len;
3061 struct linetable_entry *item;
3062 const struct blockvector *bv;
3063 struct bound_minimal_symbol msymbol;
3064
3065 /* Info on best line seen so far, and where it starts, and its file. */
3066
3067 struct linetable_entry *best = NULL;
3068 CORE_ADDR best_end = 0;
3069 struct symtab *best_symtab = 0;
3070
3071 /* Store here the first line number
3072 of a file which contains the line at the smallest pc after PC.
3073 If we don't find a line whose range contains PC,
3074 we will use a line one less than this,
3075 with a range from the start of that file to the first line's pc. */
3076 struct linetable_entry *alt = NULL;
3077
3078 /* Info on best line seen in this file. */
3079
3080 struct linetable_entry *prev;
3081
3082 /* If this pc is not from the current frame,
3083 it is the address of the end of a call instruction.
3084 Quite likely that is the start of the following statement.
3085 But what we want is the statement containing the instruction.
3086 Fudge the pc to make sure we get that. */
3087
3088 /* It's tempting to assume that, if we can't find debugging info for
3089 any function enclosing PC, that we shouldn't search for line
3090 number info, either. However, GAS can emit line number info for
3091 assembly files --- very helpful when debugging hand-written
3092 assembly code. In such a case, we'd have no debug info for the
3093 function, but we would have line info. */
3094
3095 if (notcurrent)
3096 pc -= 1;
3097
3098 /* elz: added this because this function returned the wrong
3099 information if the pc belongs to a stub (import/export)
3100 to call a shlib function. This stub would be anywhere between
3101 two functions in the target, and the line info was erroneously
3102 taken to be the one of the line before the pc. */
3103
3104 /* RT: Further explanation:
3105
3106 * We have stubs (trampolines) inserted between procedures.
3107 *
3108 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3109 * exists in the main image.
3110 *
3111 * In the minimal symbol table, we have a bunch of symbols
3112 * sorted by start address. The stubs are marked as "trampoline",
3113 * the others appear as text. E.g.:
3114 *
3115 * Minimal symbol table for main image
3116 * main: code for main (text symbol)
3117 * shr1: stub (trampoline symbol)
3118 * foo: code for foo (text symbol)
3119 * ...
3120 * Minimal symbol table for "shr1" image:
3121 * ...
3122 * shr1: code for shr1 (text symbol)
3123 * ...
3124 *
3125 * So the code below is trying to detect if we are in the stub
3126 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3127 * and if found, do the symbolization from the real-code address
3128 * rather than the stub address.
3129 *
3130 * Assumptions being made about the minimal symbol table:
3131 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3132 * if we're really in the trampoline.s If we're beyond it (say
3133 * we're in "foo" in the above example), it'll have a closer
3134 * symbol (the "foo" text symbol for example) and will not
3135 * return the trampoline.
3136 * 2. lookup_minimal_symbol_text() will find a real text symbol
3137 * corresponding to the trampoline, and whose address will
3138 * be different than the trampoline address. I put in a sanity
3139 * check for the address being the same, to avoid an
3140 * infinite recursion.
3141 */
3142 msymbol = lookup_minimal_symbol_by_pc (pc);
3143 if (msymbol.minsym != NULL)
3144 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3145 {
3146 struct bound_minimal_symbol mfunsym
3147 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3148 NULL);
3149
3150 if (mfunsym.minsym == NULL)
3151 /* I eliminated this warning since it is coming out
3152 * in the following situation:
3153 * gdb shmain // test program with shared libraries
3154 * (gdb) break shr1 // function in shared lib
3155 * Warning: In stub for ...
3156 * In the above situation, the shared lib is not loaded yet,
3157 * so of course we can't find the real func/line info,
3158 * but the "break" still works, and the warning is annoying.
3159 * So I commented out the warning. RT */
3160 /* warning ("In stub for %s; unable to find real function/line info",
3161 msymbol->linkage_name ()); */
3162 ;
3163 /* fall through */
3164 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3165 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3166 /* Avoid infinite recursion */
3167 /* See above comment about why warning is commented out. */
3168 /* warning ("In stub for %s; unable to find real function/line info",
3169 msymbol->linkage_name ()); */
3170 ;
3171 /* fall through */
3172 else
3173 {
3174 /* Detect an obvious case of infinite recursion. If this
3175 should occur, we'd like to know about it, so error out,
3176 fatally. */
3177 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3178 internal_error (__FILE__, __LINE__,
3179 _("Infinite recursion detected in find_pc_sect_line;"
3180 "please file a bug report"));
3181
3182 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3183 }
3184 }
3185
3186 symtab_and_line val;
3187 val.pspace = current_program_space;
3188
3189 cust = find_pc_sect_compunit_symtab (pc, section);
3190 if (cust == NULL)
3191 {
3192 /* If no symbol information, return previous pc. */
3193 if (notcurrent)
3194 pc++;
3195 val.pc = pc;
3196 return val;
3197 }
3198
3199 bv = COMPUNIT_BLOCKVECTOR (cust);
3200
3201 /* Look at all the symtabs that share this blockvector.
3202 They all have the same apriori range, that we found was right;
3203 but they have different line tables. */
3204
3205 for (symtab *iter_s : compunit_filetabs (cust))
3206 {
3207 /* Find the best line in this symtab. */
3208 l = SYMTAB_LINETABLE (iter_s);
3209 if (!l)
3210 continue;
3211 len = l->nitems;
3212 if (len <= 0)
3213 {
3214 /* I think len can be zero if the symtab lacks line numbers
3215 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3216 I'm not sure which, and maybe it depends on the symbol
3217 reader). */
3218 continue;
3219 }
3220
3221 prev = NULL;
3222 item = l->item; /* Get first line info. */
3223
3224 /* Is this file's first line closer than the first lines of other files?
3225 If so, record this file, and its first line, as best alternate. */
3226 if (item->pc > pc && (!alt || item->pc < alt->pc))
3227 alt = item;
3228
3229 auto pc_compare = [](const CORE_ADDR & comp_pc,
3230 const struct linetable_entry & lhs)->bool
3231 {
3232 return comp_pc < lhs.pc;
3233 };
3234
3235 struct linetable_entry *first = item;
3236 struct linetable_entry *last = item + len;
3237 item = std::upper_bound (first, last, pc, pc_compare);
3238 if (item != first)
3239 prev = item - 1; /* Found a matching item. */
3240
3241 /* At this point, prev points at the line whose start addr is <= pc, and
3242 item points at the next line. If we ran off the end of the linetable
3243 (pc >= start of the last line), then prev == item. If pc < start of
3244 the first line, prev will not be set. */
3245
3246 /* Is this file's best line closer than the best in the other files?
3247 If so, record this file, and its best line, as best so far. Don't
3248 save prev if it represents the end of a function (i.e. line number
3249 0) instead of a real line. */
3250
3251 if (prev && prev->line && (!best || prev->pc > best->pc))
3252 {
3253 best = prev;
3254 best_symtab = iter_s;
3255
3256 /* If during the binary search we land on a non-statement entry,
3257 scan backward through entries at the same address to see if
3258 there is an entry marked as is-statement. In theory this
3259 duplication should have been removed from the line table
3260 during construction, this is just a double check. If the line
3261 table has had the duplication removed then this should be
3262 pretty cheap. */
3263 if (!best->is_stmt)
3264 {
3265 struct linetable_entry *tmp = best;
3266 while (tmp > first && (tmp - 1)->pc == tmp->pc
3267 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3268 --tmp;
3269 if (tmp->is_stmt)
3270 best = tmp;
3271 }
3272
3273 /* Discard BEST_END if it's before the PC of the current BEST. */
3274 if (best_end <= best->pc)
3275 best_end = 0;
3276 }
3277
3278 /* If another line (denoted by ITEM) is in the linetable and its
3279 PC is after BEST's PC, but before the current BEST_END, then
3280 use ITEM's PC as the new best_end. */
3281 if (best && item < last && item->pc > best->pc
3282 && (best_end == 0 || best_end > item->pc))
3283 best_end = item->pc;
3284 }
3285
3286 if (!best_symtab)
3287 {
3288 /* If we didn't find any line number info, just return zeros.
3289 We used to return alt->line - 1 here, but that could be
3290 anywhere; if we don't have line number info for this PC,
3291 don't make some up. */
3292 val.pc = pc;
3293 }
3294 else if (best->line == 0)
3295 {
3296 /* If our best fit is in a range of PC's for which no line
3297 number info is available (line number is zero) then we didn't
3298 find any valid line information. */
3299 val.pc = pc;
3300 }
3301 else
3302 {
3303 val.is_stmt = best->is_stmt;
3304 val.symtab = best_symtab;
3305 val.line = best->line;
3306 val.pc = best->pc;
3307 if (best_end && (!alt || best_end < alt->pc))
3308 val.end = best_end;
3309 else if (alt)
3310 val.end = alt->pc;
3311 else
3312 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3313 }
3314 val.section = section;
3315 return val;
3316 }
3317
3318 /* Backward compatibility (no section). */
3319
3320 struct symtab_and_line
3321 find_pc_line (CORE_ADDR pc, int notcurrent)
3322 {
3323 struct obj_section *section;
3324
3325 section = find_pc_overlay (pc);
3326 if (pc_in_unmapped_range (pc, section))
3327 pc = overlay_mapped_address (pc, section);
3328 return find_pc_sect_line (pc, section, notcurrent);
3329 }
3330
3331 /* See symtab.h. */
3332
3333 struct symtab *
3334 find_pc_line_symtab (CORE_ADDR pc)
3335 {
3336 struct symtab_and_line sal;
3337
3338 /* This always passes zero for NOTCURRENT to find_pc_line.
3339 There are currently no callers that ever pass non-zero. */
3340 sal = find_pc_line (pc, 0);
3341 return sal.symtab;
3342 }
3343 \f
3344 /* Find line number LINE in any symtab whose name is the same as
3345 SYMTAB.
3346
3347 If found, return the symtab that contains the linetable in which it was
3348 found, set *INDEX to the index in the linetable of the best entry
3349 found, and set *EXACT_MATCH to true if the value returned is an
3350 exact match.
3351
3352 If not found, return NULL. */
3353
3354 struct symtab *
3355 find_line_symtab (struct symtab *sym_tab, int line,
3356 int *index, bool *exact_match)
3357 {
3358 int exact = 0; /* Initialized here to avoid a compiler warning. */
3359
3360 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3361 so far seen. */
3362
3363 int best_index;
3364 struct linetable *best_linetable;
3365 struct symtab *best_symtab;
3366
3367 /* First try looking it up in the given symtab. */
3368 best_linetable = SYMTAB_LINETABLE (sym_tab);
3369 best_symtab = sym_tab;
3370 best_index = find_line_common (best_linetable, line, &exact, 0);
3371 if (best_index < 0 || !exact)
3372 {
3373 /* Didn't find an exact match. So we better keep looking for
3374 another symtab with the same name. In the case of xcoff,
3375 multiple csects for one source file (produced by IBM's FORTRAN
3376 compiler) produce multiple symtabs (this is unavoidable
3377 assuming csects can be at arbitrary places in memory and that
3378 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3379
3380 /* BEST is the smallest linenumber > LINE so far seen,
3381 or 0 if none has been seen so far.
3382 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3383 int best;
3384
3385 if (best_index >= 0)
3386 best = best_linetable->item[best_index].line;
3387 else
3388 best = 0;
3389
3390 for (objfile *objfile : current_program_space->objfiles ())
3391 {
3392 if (objfile->sf)
3393 objfile->sf->qf->expand_symtabs_with_fullname
3394 (objfile, symtab_to_fullname (sym_tab));
3395 }
3396
3397 for (objfile *objfile : current_program_space->objfiles ())
3398 {
3399 for (compunit_symtab *cu : objfile->compunits ())
3400 {
3401 for (symtab *s : compunit_filetabs (cu))
3402 {
3403 struct linetable *l;
3404 int ind;
3405
3406 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3407 continue;
3408 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3409 symtab_to_fullname (s)) != 0)
3410 continue;
3411 l = SYMTAB_LINETABLE (s);
3412 ind = find_line_common (l, line, &exact, 0);
3413 if (ind >= 0)
3414 {
3415 if (exact)
3416 {
3417 best_index = ind;
3418 best_linetable = l;
3419 best_symtab = s;
3420 goto done;
3421 }
3422 if (best == 0 || l->item[ind].line < best)
3423 {
3424 best = l->item[ind].line;
3425 best_index = ind;
3426 best_linetable = l;
3427 best_symtab = s;
3428 }
3429 }
3430 }
3431 }
3432 }
3433 }
3434 done:
3435 if (best_index < 0)
3436 return NULL;
3437
3438 if (index)
3439 *index = best_index;
3440 if (exact_match)
3441 *exact_match = (exact != 0);
3442
3443 return best_symtab;
3444 }
3445
3446 /* Given SYMTAB, returns all the PCs function in the symtab that
3447 exactly match LINE. Returns an empty vector if there are no exact
3448 matches, but updates BEST_ITEM in this case. */
3449
3450 std::vector<CORE_ADDR>
3451 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3452 struct linetable_entry **best_item)
3453 {
3454 int start = 0;
3455 std::vector<CORE_ADDR> result;
3456
3457 /* First, collect all the PCs that are at this line. */
3458 while (1)
3459 {
3460 int was_exact;
3461 int idx;
3462
3463 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3464 start);
3465 if (idx < 0)
3466 break;
3467
3468 if (!was_exact)
3469 {
3470 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3471
3472 if (*best_item == NULL
3473 || (item->line < (*best_item)->line && item->is_stmt))
3474 *best_item = item;
3475
3476 break;
3477 }
3478
3479 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3480 start = idx + 1;
3481 }
3482
3483 return result;
3484 }
3485
3486 \f
3487 /* Set the PC value for a given source file and line number and return true.
3488 Returns false for invalid line number (and sets the PC to 0).
3489 The source file is specified with a struct symtab. */
3490
3491 bool
3492 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3493 {
3494 struct linetable *l;
3495 int ind;
3496
3497 *pc = 0;
3498 if (symtab == 0)
3499 return false;
3500
3501 symtab = find_line_symtab (symtab, line, &ind, NULL);
3502 if (symtab != NULL)
3503 {
3504 l = SYMTAB_LINETABLE (symtab);
3505 *pc = l->item[ind].pc;
3506 return true;
3507 }
3508 else
3509 return false;
3510 }
3511
3512 /* Find the range of pc values in a line.
3513 Store the starting pc of the line into *STARTPTR
3514 and the ending pc (start of next line) into *ENDPTR.
3515 Returns true to indicate success.
3516 Returns false if could not find the specified line. */
3517
3518 bool
3519 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3520 CORE_ADDR *endptr)
3521 {
3522 CORE_ADDR startaddr;
3523 struct symtab_and_line found_sal;
3524
3525 startaddr = sal.pc;
3526 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3527 return false;
3528
3529 /* This whole function is based on address. For example, if line 10 has
3530 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3531 "info line *0x123" should say the line goes from 0x100 to 0x200
3532 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3533 This also insures that we never give a range like "starts at 0x134
3534 and ends at 0x12c". */
3535
3536 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3537 if (found_sal.line != sal.line)
3538 {
3539 /* The specified line (sal) has zero bytes. */
3540 *startptr = found_sal.pc;
3541 *endptr = found_sal.pc;
3542 }
3543 else
3544 {
3545 *startptr = found_sal.pc;
3546 *endptr = found_sal.end;
3547 }
3548 return true;
3549 }
3550
3551 /* Given a line table and a line number, return the index into the line
3552 table for the pc of the nearest line whose number is >= the specified one.
3553 Return -1 if none is found. The value is >= 0 if it is an index.
3554 START is the index at which to start searching the line table.
3555
3556 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3557
3558 static int
3559 find_line_common (struct linetable *l, int lineno,
3560 int *exact_match, int start)
3561 {
3562 int i;
3563 int len;
3564
3565 /* BEST is the smallest linenumber > LINENO so far seen,
3566 or 0 if none has been seen so far.
3567 BEST_INDEX identifies the item for it. */
3568
3569 int best_index = -1;
3570 int best = 0;
3571
3572 *exact_match = 0;
3573
3574 if (lineno <= 0)
3575 return -1;
3576 if (l == 0)
3577 return -1;
3578
3579 len = l->nitems;
3580 for (i = start; i < len; i++)
3581 {
3582 struct linetable_entry *item = &(l->item[i]);
3583
3584 /* Ignore non-statements. */
3585 if (!item->is_stmt)
3586 continue;
3587
3588 if (item->line == lineno)
3589 {
3590 /* Return the first (lowest address) entry which matches. */
3591 *exact_match = 1;
3592 return i;
3593 }
3594
3595 if (item->line > lineno && (best == 0 || item->line < best))
3596 {
3597 best = item->line;
3598 best_index = i;
3599 }
3600 }
3601
3602 /* If we got here, we didn't get an exact match. */
3603 return best_index;
3604 }
3605
3606 bool
3607 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3608 {
3609 struct symtab_and_line sal;
3610
3611 sal = find_pc_line (pc, 0);
3612 *startptr = sal.pc;
3613 *endptr = sal.end;
3614 return sal.symtab != 0;
3615 }
3616
3617 /* Helper for find_function_start_sal. Does most of the work, except
3618 setting the sal's symbol. */
3619
3620 static symtab_and_line
3621 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3622 bool funfirstline)
3623 {
3624 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3625
3626 if (funfirstline && sal.symtab != NULL
3627 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3628 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3629 {
3630 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3631
3632 sal.pc = func_addr;
3633 if (gdbarch_skip_entrypoint_p (gdbarch))
3634 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3635 return sal;
3636 }
3637
3638 /* We always should have a line for the function start address.
3639 If we don't, something is odd. Create a plain SAL referring
3640 just the PC and hope that skip_prologue_sal (if requested)
3641 can find a line number for after the prologue. */
3642 if (sal.pc < func_addr)
3643 {
3644 sal = {};
3645 sal.pspace = current_program_space;
3646 sal.pc = func_addr;
3647 sal.section = section;
3648 }
3649
3650 if (funfirstline)
3651 skip_prologue_sal (&sal);
3652
3653 return sal;
3654 }
3655
3656 /* See symtab.h. */
3657
3658 symtab_and_line
3659 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3660 bool funfirstline)
3661 {
3662 symtab_and_line sal
3663 = find_function_start_sal_1 (func_addr, section, funfirstline);
3664
3665 /* find_function_start_sal_1 does a linetable search, so it finds
3666 the symtab and linenumber, but not a symbol. Fill in the
3667 function symbol too. */
3668 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3669
3670 return sal;
3671 }
3672
3673 /* See symtab.h. */
3674
3675 symtab_and_line
3676 find_function_start_sal (symbol *sym, bool funfirstline)
3677 {
3678 fixup_symbol_section (sym, NULL);
3679 symtab_and_line sal
3680 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3681 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3682 funfirstline);
3683 sal.symbol = sym;
3684 return sal;
3685 }
3686
3687
3688 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3689 address for that function that has an entry in SYMTAB's line info
3690 table. If such an entry cannot be found, return FUNC_ADDR
3691 unaltered. */
3692
3693 static CORE_ADDR
3694 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3695 {
3696 CORE_ADDR func_start, func_end;
3697 struct linetable *l;
3698 int i;
3699
3700 /* Give up if this symbol has no lineinfo table. */
3701 l = SYMTAB_LINETABLE (symtab);
3702 if (l == NULL)
3703 return func_addr;
3704
3705 /* Get the range for the function's PC values, or give up if we
3706 cannot, for some reason. */
3707 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3708 return func_addr;
3709
3710 /* Linetable entries are ordered by PC values, see the commentary in
3711 symtab.h where `struct linetable' is defined. Thus, the first
3712 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3713 address we are looking for. */
3714 for (i = 0; i < l->nitems; i++)
3715 {
3716 struct linetable_entry *item = &(l->item[i]);
3717
3718 /* Don't use line numbers of zero, they mark special entries in
3719 the table. See the commentary on symtab.h before the
3720 definition of struct linetable. */
3721 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3722 return item->pc;
3723 }
3724
3725 return func_addr;
3726 }
3727
3728 /* Adjust SAL to the first instruction past the function prologue.
3729 If the PC was explicitly specified, the SAL is not changed.
3730 If the line number was explicitly specified then the SAL can still be
3731 updated, unless the language for SAL is assembler, in which case the SAL
3732 will be left unchanged.
3733 If SAL is already past the prologue, then do nothing. */
3734
3735 void
3736 skip_prologue_sal (struct symtab_and_line *sal)
3737 {
3738 struct symbol *sym;
3739 struct symtab_and_line start_sal;
3740 CORE_ADDR pc, saved_pc;
3741 struct obj_section *section;
3742 const char *name;
3743 struct objfile *objfile;
3744 struct gdbarch *gdbarch;
3745 const struct block *b, *function_block;
3746 int force_skip, skip;
3747
3748 /* Do not change the SAL if PC was specified explicitly. */
3749 if (sal->explicit_pc)
3750 return;
3751
3752 /* In assembly code, if the user asks for a specific line then we should
3753 not adjust the SAL. The user already has instruction level
3754 visibility in this case, so selecting a line other than one requested
3755 is likely to be the wrong choice. */
3756 if (sal->symtab != nullptr
3757 && sal->explicit_line
3758 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3759 return;
3760
3761 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3762
3763 switch_to_program_space_and_thread (sal->pspace);
3764
3765 sym = find_pc_sect_function (sal->pc, sal->section);
3766 if (sym != NULL)
3767 {
3768 fixup_symbol_section (sym, NULL);
3769
3770 objfile = symbol_objfile (sym);
3771 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3772 section = SYMBOL_OBJ_SECTION (objfile, sym);
3773 name = sym->linkage_name ();
3774 }
3775 else
3776 {
3777 struct bound_minimal_symbol msymbol
3778 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3779
3780 if (msymbol.minsym == NULL)
3781 return;
3782
3783 objfile = msymbol.objfile;
3784 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3785 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3786 name = msymbol.minsym->linkage_name ();
3787 }
3788
3789 gdbarch = objfile->arch ();
3790
3791 /* Process the prologue in two passes. In the first pass try to skip the
3792 prologue (SKIP is true) and verify there is a real need for it (indicated
3793 by FORCE_SKIP). If no such reason was found run a second pass where the
3794 prologue is not skipped (SKIP is false). */
3795
3796 skip = 1;
3797 force_skip = 1;
3798
3799 /* Be conservative - allow direct PC (without skipping prologue) only if we
3800 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3801 have to be set by the caller so we use SYM instead. */
3802 if (sym != NULL
3803 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3804 force_skip = 0;
3805
3806 saved_pc = pc;
3807 do
3808 {
3809 pc = saved_pc;
3810
3811 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3812 so that gdbarch_skip_prologue has something unique to work on. */
3813 if (section_is_overlay (section) && !section_is_mapped (section))
3814 pc = overlay_unmapped_address (pc, section);
3815
3816 /* Skip "first line" of function (which is actually its prologue). */
3817 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3818 if (gdbarch_skip_entrypoint_p (gdbarch))
3819 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3820 if (skip)
3821 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3822
3823 /* For overlays, map pc back into its mapped VMA range. */
3824 pc = overlay_mapped_address (pc, section);
3825
3826 /* Calculate line number. */
3827 start_sal = find_pc_sect_line (pc, section, 0);
3828
3829 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3830 line is still part of the same function. */
3831 if (skip && start_sal.pc != pc
3832 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3833 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3834 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3835 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3836 {
3837 /* First pc of next line */
3838 pc = start_sal.end;
3839 /* Recalculate the line number (might not be N+1). */
3840 start_sal = find_pc_sect_line (pc, section, 0);
3841 }
3842
3843 /* On targets with executable formats that don't have a concept of
3844 constructors (ELF with .init has, PE doesn't), gcc emits a call
3845 to `__main' in `main' between the prologue and before user
3846 code. */
3847 if (gdbarch_skip_main_prologue_p (gdbarch)
3848 && name && strcmp_iw (name, "main") == 0)
3849 {
3850 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3851 /* Recalculate the line number (might not be N+1). */
3852 start_sal = find_pc_sect_line (pc, section, 0);
3853 force_skip = 1;
3854 }
3855 }
3856 while (!force_skip && skip--);
3857
3858 /* If we still don't have a valid source line, try to find the first
3859 PC in the lineinfo table that belongs to the same function. This
3860 happens with COFF debug info, which does not seem to have an
3861 entry in lineinfo table for the code after the prologue which has
3862 no direct relation to source. For example, this was found to be
3863 the case with the DJGPP target using "gcc -gcoff" when the
3864 compiler inserted code after the prologue to make sure the stack
3865 is aligned. */
3866 if (!force_skip && sym && start_sal.symtab == NULL)
3867 {
3868 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3869 /* Recalculate the line number. */
3870 start_sal = find_pc_sect_line (pc, section, 0);
3871 }
3872
3873 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3874 forward SAL to the end of the prologue. */
3875 if (sal->pc >= pc)
3876 return;
3877
3878 sal->pc = pc;
3879 sal->section = section;
3880 sal->symtab = start_sal.symtab;
3881 sal->line = start_sal.line;
3882 sal->end = start_sal.end;
3883
3884 /* Check if we are now inside an inlined function. If we can,
3885 use the call site of the function instead. */
3886 b = block_for_pc_sect (sal->pc, sal->section);
3887 function_block = NULL;
3888 while (b != NULL)
3889 {
3890 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3891 function_block = b;
3892 else if (BLOCK_FUNCTION (b) != NULL)
3893 break;
3894 b = BLOCK_SUPERBLOCK (b);
3895 }
3896 if (function_block != NULL
3897 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3898 {
3899 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3900 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3901 }
3902 }
3903
3904 /* Given PC at the function's start address, attempt to find the
3905 prologue end using SAL information. Return zero if the skip fails.
3906
3907 A non-optimized prologue traditionally has one SAL for the function
3908 and a second for the function body. A single line function has
3909 them both pointing at the same line.
3910
3911 An optimized prologue is similar but the prologue may contain
3912 instructions (SALs) from the instruction body. Need to skip those
3913 while not getting into the function body.
3914
3915 The functions end point and an increasing SAL line are used as
3916 indicators of the prologue's endpoint.
3917
3918 This code is based on the function refine_prologue_limit
3919 (found in ia64). */
3920
3921 CORE_ADDR
3922 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3923 {
3924 struct symtab_and_line prologue_sal;
3925 CORE_ADDR start_pc;
3926 CORE_ADDR end_pc;
3927 const struct block *bl;
3928
3929 /* Get an initial range for the function. */
3930 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3931 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3932
3933 prologue_sal = find_pc_line (start_pc, 0);
3934 if (prologue_sal.line != 0)
3935 {
3936 /* For languages other than assembly, treat two consecutive line
3937 entries at the same address as a zero-instruction prologue.
3938 The GNU assembler emits separate line notes for each instruction
3939 in a multi-instruction macro, but compilers generally will not
3940 do this. */
3941 if (prologue_sal.symtab->language != language_asm)
3942 {
3943 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3944 int idx = 0;
3945
3946 /* Skip any earlier lines, and any end-of-sequence marker
3947 from a previous function. */
3948 while (linetable->item[idx].pc != prologue_sal.pc
3949 || linetable->item[idx].line == 0)
3950 idx++;
3951
3952 if (idx+1 < linetable->nitems
3953 && linetable->item[idx+1].line != 0
3954 && linetable->item[idx+1].pc == start_pc)
3955 return start_pc;
3956 }
3957
3958 /* If there is only one sal that covers the entire function,
3959 then it is probably a single line function, like
3960 "foo(){}". */
3961 if (prologue_sal.end >= end_pc)
3962 return 0;
3963
3964 while (prologue_sal.end < end_pc)
3965 {
3966 struct symtab_and_line sal;
3967
3968 sal = find_pc_line (prologue_sal.end, 0);
3969 if (sal.line == 0)
3970 break;
3971 /* Assume that a consecutive SAL for the same (or larger)
3972 line mark the prologue -> body transition. */
3973 if (sal.line >= prologue_sal.line)
3974 break;
3975 /* Likewise if we are in a different symtab altogether
3976 (e.g. within a file included via #include).  */
3977 if (sal.symtab != prologue_sal.symtab)
3978 break;
3979
3980 /* The line number is smaller. Check that it's from the
3981 same function, not something inlined. If it's inlined,
3982 then there is no point comparing the line numbers. */
3983 bl = block_for_pc (prologue_sal.end);
3984 while (bl)
3985 {
3986 if (block_inlined_p (bl))
3987 break;
3988 if (BLOCK_FUNCTION (bl))
3989 {
3990 bl = NULL;
3991 break;
3992 }
3993 bl = BLOCK_SUPERBLOCK (bl);
3994 }
3995 if (bl != NULL)
3996 break;
3997
3998 /* The case in which compiler's optimizer/scheduler has
3999 moved instructions into the prologue. We look ahead in
4000 the function looking for address ranges whose
4001 corresponding line number is less the first one that we
4002 found for the function. This is more conservative then
4003 refine_prologue_limit which scans a large number of SALs
4004 looking for any in the prologue. */
4005 prologue_sal = sal;
4006 }
4007 }
4008
4009 if (prologue_sal.end < end_pc)
4010 /* Return the end of this line, or zero if we could not find a
4011 line. */
4012 return prologue_sal.end;
4013 else
4014 /* Don't return END_PC, which is past the end of the function. */
4015 return prologue_sal.pc;
4016 }
4017
4018 /* See symtab.h. */
4019
4020 symbol *
4021 find_function_alias_target (bound_minimal_symbol msymbol)
4022 {
4023 CORE_ADDR func_addr;
4024 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4025 return NULL;
4026
4027 symbol *sym = find_pc_function (func_addr);
4028 if (sym != NULL
4029 && SYMBOL_CLASS (sym) == LOC_BLOCK
4030 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4031 return sym;
4032
4033 return NULL;
4034 }
4035
4036 \f
4037 /* If P is of the form "operator[ \t]+..." where `...' is
4038 some legitimate operator text, return a pointer to the
4039 beginning of the substring of the operator text.
4040 Otherwise, return "". */
4041
4042 static const char *
4043 operator_chars (const char *p, const char **end)
4044 {
4045 *end = "";
4046 if (!startswith (p, CP_OPERATOR_STR))
4047 return *end;
4048 p += CP_OPERATOR_LEN;
4049
4050 /* Don't get faked out by `operator' being part of a longer
4051 identifier. */
4052 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4053 return *end;
4054
4055 /* Allow some whitespace between `operator' and the operator symbol. */
4056 while (*p == ' ' || *p == '\t')
4057 p++;
4058
4059 /* Recognize 'operator TYPENAME'. */
4060
4061 if (isalpha (*p) || *p == '_' || *p == '$')
4062 {
4063 const char *q = p + 1;
4064
4065 while (isalnum (*q) || *q == '_' || *q == '$')
4066 q++;
4067 *end = q;
4068 return p;
4069 }
4070
4071 while (*p)
4072 switch (*p)
4073 {
4074 case '\\': /* regexp quoting */
4075 if (p[1] == '*')
4076 {
4077 if (p[2] == '=') /* 'operator\*=' */
4078 *end = p + 3;
4079 else /* 'operator\*' */
4080 *end = p + 2;
4081 return p;
4082 }
4083 else if (p[1] == '[')
4084 {
4085 if (p[2] == ']')
4086 error (_("mismatched quoting on brackets, "
4087 "try 'operator\\[\\]'"));
4088 else if (p[2] == '\\' && p[3] == ']')
4089 {
4090 *end = p + 4; /* 'operator\[\]' */
4091 return p;
4092 }
4093 else
4094 error (_("nothing is allowed between '[' and ']'"));
4095 }
4096 else
4097 {
4098 /* Gratuitous quote: skip it and move on. */
4099 p++;
4100 continue;
4101 }
4102 break;
4103 case '!':
4104 case '=':
4105 case '*':
4106 case '/':
4107 case '%':
4108 case '^':
4109 if (p[1] == '=')
4110 *end = p + 2;
4111 else
4112 *end = p + 1;
4113 return p;
4114 case '<':
4115 case '>':
4116 case '+':
4117 case '-':
4118 case '&':
4119 case '|':
4120 if (p[0] == '-' && p[1] == '>')
4121 {
4122 /* Struct pointer member operator 'operator->'. */
4123 if (p[2] == '*')
4124 {
4125 *end = p + 3; /* 'operator->*' */
4126 return p;
4127 }
4128 else if (p[2] == '\\')
4129 {
4130 *end = p + 4; /* Hopefully 'operator->\*' */
4131 return p;
4132 }
4133 else
4134 {
4135 *end = p + 2; /* 'operator->' */
4136 return p;
4137 }
4138 }
4139 if (p[1] == '=' || p[1] == p[0])
4140 *end = p + 2;
4141 else
4142 *end = p + 1;
4143 return p;
4144 case '~':
4145 case ',':
4146 *end = p + 1;
4147 return p;
4148 case '(':
4149 if (p[1] != ')')
4150 error (_("`operator ()' must be specified "
4151 "without whitespace in `()'"));
4152 *end = p + 2;
4153 return p;
4154 case '?':
4155 if (p[1] != ':')
4156 error (_("`operator ?:' must be specified "
4157 "without whitespace in `?:'"));
4158 *end = p + 2;
4159 return p;
4160 case '[':
4161 if (p[1] != ']')
4162 error (_("`operator []' must be specified "
4163 "without whitespace in `[]'"));
4164 *end = p + 2;
4165 return p;
4166 default:
4167 error (_("`operator %s' not supported"), p);
4168 break;
4169 }
4170
4171 *end = "";
4172 return *end;
4173 }
4174 \f
4175
4176 /* What part to match in a file name. */
4177
4178 struct filename_partial_match_opts
4179 {
4180 /* Only match the directory name part. */
4181 bool dirname = false;
4182
4183 /* Only match the basename part. */
4184 bool basename = false;
4185 };
4186
4187 /* Data structure to maintain printing state for output_source_filename. */
4188
4189 struct output_source_filename_data
4190 {
4191 /* Output only filenames matching REGEXP. */
4192 std::string regexp;
4193 gdb::optional<compiled_regex> c_regexp;
4194 /* Possibly only match a part of the filename. */
4195 filename_partial_match_opts partial_match;
4196
4197
4198 /* Cache of what we've seen so far. */
4199 struct filename_seen_cache *filename_seen_cache;
4200
4201 /* Flag of whether we're printing the first one. */
4202 int first;
4203 };
4204
4205 /* Slave routine for sources_info. Force line breaks at ,'s.
4206 NAME is the name to print.
4207 DATA contains the state for printing and watching for duplicates. */
4208
4209 static void
4210 output_source_filename (const char *name,
4211 struct output_source_filename_data *data)
4212 {
4213 /* Since a single source file can result in several partial symbol
4214 tables, we need to avoid printing it more than once. Note: if
4215 some of the psymtabs are read in and some are not, it gets
4216 printed both under "Source files for which symbols have been
4217 read" and "Source files for which symbols will be read in on
4218 demand". I consider this a reasonable way to deal with the
4219 situation. I'm not sure whether this can also happen for
4220 symtabs; it doesn't hurt to check. */
4221
4222 /* Was NAME already seen? */
4223 if (data->filename_seen_cache->seen (name))
4224 {
4225 /* Yes; don't print it again. */
4226 return;
4227 }
4228
4229 /* Does it match data->regexp? */
4230 if (data->c_regexp.has_value ())
4231 {
4232 const char *to_match;
4233 std::string dirname;
4234
4235 if (data->partial_match.dirname)
4236 {
4237 dirname = ldirname (name);
4238 to_match = dirname.c_str ();
4239 }
4240 else if (data->partial_match.basename)
4241 to_match = lbasename (name);
4242 else
4243 to_match = name;
4244
4245 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4246 return;
4247 }
4248
4249 /* Print it and reset *FIRST. */
4250 if (! data->first)
4251 printf_filtered (", ");
4252 data->first = 0;
4253
4254 wrap_here ("");
4255 fputs_styled (name, file_name_style.style (), gdb_stdout);
4256 }
4257
4258 /* A callback for map_partial_symbol_filenames. */
4259
4260 static void
4261 output_partial_symbol_filename (const char *filename, const char *fullname,
4262 void *data)
4263 {
4264 output_source_filename (fullname ? fullname : filename,
4265 (struct output_source_filename_data *) data);
4266 }
4267
4268 using isrc_flag_option_def
4269 = gdb::option::flag_option_def<filename_partial_match_opts>;
4270
4271 static const gdb::option::option_def info_sources_option_defs[] = {
4272
4273 isrc_flag_option_def {
4274 "dirname",
4275 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4276 N_("Show only the files having a dirname matching REGEXP."),
4277 },
4278
4279 isrc_flag_option_def {
4280 "basename",
4281 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4282 N_("Show only the files having a basename matching REGEXP."),
4283 },
4284
4285 };
4286
4287 /* Create an option_def_group for the "info sources" options, with
4288 ISRC_OPTS as context. */
4289
4290 static inline gdb::option::option_def_group
4291 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4292 {
4293 return {{info_sources_option_defs}, isrc_opts};
4294 }
4295
4296 /* Prints the header message for the source files that will be printed
4297 with the matching info present in DATA. SYMBOL_MSG is a message
4298 that tells what will or has been done with the symbols of the
4299 matching source files. */
4300
4301 static void
4302 print_info_sources_header (const char *symbol_msg,
4303 const struct output_source_filename_data *data)
4304 {
4305 puts_filtered (symbol_msg);
4306 if (!data->regexp.empty ())
4307 {
4308 if (data->partial_match.dirname)
4309 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4310 data->regexp.c_str ());
4311 else if (data->partial_match.basename)
4312 printf_filtered (_("(basename matching regular expression \"%s\")"),
4313 data->regexp.c_str ());
4314 else
4315 printf_filtered (_("(filename matching regular expression \"%s\")"),
4316 data->regexp.c_str ());
4317 }
4318 puts_filtered ("\n");
4319 }
4320
4321 /* Completer for "info sources". */
4322
4323 static void
4324 info_sources_command_completer (cmd_list_element *ignore,
4325 completion_tracker &tracker,
4326 const char *text, const char *word)
4327 {
4328 const auto group = make_info_sources_options_def_group (nullptr);
4329 if (gdb::option::complete_options
4330 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4331 return;
4332 }
4333
4334 static void
4335 info_sources_command (const char *args, int from_tty)
4336 {
4337 struct output_source_filename_data data;
4338
4339 if (!have_full_symbols () && !have_partial_symbols ())
4340 {
4341 error (_("No symbol table is loaded. Use the \"file\" command."));
4342 }
4343
4344 filename_seen_cache filenames_seen;
4345
4346 auto group = make_info_sources_options_def_group (&data.partial_match);
4347
4348 gdb::option::process_options
4349 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4350
4351 if (args != NULL && *args != '\000')
4352 data.regexp = args;
4353
4354 data.filename_seen_cache = &filenames_seen;
4355 data.first = 1;
4356
4357 if (data.partial_match.dirname && data.partial_match.basename)
4358 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4359 if ((data.partial_match.dirname || data.partial_match.basename)
4360 && data.regexp.empty ())
4361 error (_("Missing REGEXP for 'info sources'."));
4362
4363 if (data.regexp.empty ())
4364 data.c_regexp.reset ();
4365 else
4366 {
4367 int cflags = REG_NOSUB;
4368 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4369 cflags |= REG_ICASE;
4370 #endif
4371 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4372 _("Invalid regexp"));
4373 }
4374
4375 print_info_sources_header
4376 (_("Source files for which symbols have been read in:\n"), &data);
4377
4378 for (objfile *objfile : current_program_space->objfiles ())
4379 {
4380 for (compunit_symtab *cu : objfile->compunits ())
4381 {
4382 for (symtab *s : compunit_filetabs (cu))
4383 {
4384 const char *fullname = symtab_to_fullname (s);
4385
4386 output_source_filename (fullname, &data);
4387 }
4388 }
4389 }
4390 printf_filtered ("\n\n");
4391
4392 print_info_sources_header
4393 (_("Source files for which symbols will be read in on demand:\n"), &data);
4394
4395 filenames_seen.clear ();
4396 data.first = 1;
4397 map_symbol_filenames (output_partial_symbol_filename, &data,
4398 1 /*need_fullname*/);
4399 printf_filtered ("\n");
4400 }
4401
4402 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4403 true compare only lbasename of FILENAMES. */
4404
4405 static bool
4406 file_matches (const char *file, const std::vector<const char *> &filenames,
4407 bool basenames)
4408 {
4409 if (filenames.empty ())
4410 return true;
4411
4412 for (const char *name : filenames)
4413 {
4414 name = (basenames ? lbasename (name) : name);
4415 if (compare_filenames_for_search (file, name))
4416 return true;
4417 }
4418
4419 return false;
4420 }
4421
4422 /* Helper function for std::sort on symbol_search objects. Can only sort
4423 symbols, not minimal symbols. */
4424
4425 int
4426 symbol_search::compare_search_syms (const symbol_search &sym_a,
4427 const symbol_search &sym_b)
4428 {
4429 int c;
4430
4431 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4432 symbol_symtab (sym_b.symbol)->filename);
4433 if (c != 0)
4434 return c;
4435
4436 if (sym_a.block != sym_b.block)
4437 return sym_a.block - sym_b.block;
4438
4439 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4440 }
4441
4442 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4443 If SYM has no symbol_type or symbol_name, returns false. */
4444
4445 bool
4446 treg_matches_sym_type_name (const compiled_regex &treg,
4447 const struct symbol *sym)
4448 {
4449 struct type *sym_type;
4450 std::string printed_sym_type_name;
4451
4452 if (symbol_lookup_debug > 1)
4453 {
4454 fprintf_unfiltered (gdb_stdlog,
4455 "treg_matches_sym_type_name\n sym %s\n",
4456 sym->natural_name ());
4457 }
4458
4459 sym_type = SYMBOL_TYPE (sym);
4460 if (sym_type == NULL)
4461 return false;
4462
4463 {
4464 scoped_switch_to_sym_language_if_auto l (sym);
4465
4466 printed_sym_type_name = type_to_string (sym_type);
4467 }
4468
4469
4470 if (symbol_lookup_debug > 1)
4471 {
4472 fprintf_unfiltered (gdb_stdlog,
4473 " sym_type_name %s\n",
4474 printed_sym_type_name.c_str ());
4475 }
4476
4477
4478 if (printed_sym_type_name.empty ())
4479 return false;
4480
4481 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4482 }
4483
4484 /* See symtab.h. */
4485
4486 bool
4487 global_symbol_searcher::is_suitable_msymbol
4488 (const enum search_domain kind, const minimal_symbol *msymbol)
4489 {
4490 switch (MSYMBOL_TYPE (msymbol))
4491 {
4492 case mst_data:
4493 case mst_bss:
4494 case mst_file_data:
4495 case mst_file_bss:
4496 return kind == VARIABLES_DOMAIN;
4497 case mst_text:
4498 case mst_file_text:
4499 case mst_solib_trampoline:
4500 case mst_text_gnu_ifunc:
4501 return kind == FUNCTIONS_DOMAIN;
4502 default:
4503 return false;
4504 }
4505 }
4506
4507 /* See symtab.h. */
4508
4509 bool
4510 global_symbol_searcher::expand_symtabs
4511 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4512 {
4513 enum search_domain kind = m_kind;
4514 bool found_msymbol = false;
4515
4516 if (objfile->sf)
4517 objfile->sf->qf->expand_symtabs_matching
4518 (objfile,
4519 [&] (const char *filename, bool basenames)
4520 {
4521 return file_matches (filename, filenames, basenames);
4522 },
4523 &lookup_name_info::match_any (),
4524 [&] (const char *symname)
4525 {
4526 return (!preg.has_value ()
4527 || preg->exec (symname, 0, NULL, 0) == 0);
4528 },
4529 NULL,
4530 kind);
4531
4532 /* Here, we search through the minimal symbol tables for functions and
4533 variables that match, and force their symbols to be read. This is in
4534 particular necessary for demangled variable names, which are no longer
4535 put into the partial symbol tables. The symbol will then be found
4536 during the scan of symtabs later.
4537
4538 For functions, find_pc_symtab should succeed if we have debug info for
4539 the function, for variables we have to call
4540 lookup_symbol_in_objfile_from_linkage_name to determine if the
4541 variable has debug info. If the lookup fails, set found_msymbol so
4542 that we will rescan to print any matching symbols without debug info.
4543 We only search the objfile the msymbol came from, we no longer search
4544 all objfiles. In large programs (1000s of shared libs) searching all
4545 objfiles is not worth the pain. */
4546 if (filenames.empty ()
4547 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4548 {
4549 for (minimal_symbol *msymbol : objfile->msymbols ())
4550 {
4551 QUIT;
4552
4553 if (msymbol->created_by_gdb)
4554 continue;
4555
4556 if (is_suitable_msymbol (kind, msymbol))
4557 {
4558 if (!preg.has_value ()
4559 || preg->exec (msymbol->natural_name (), 0,
4560 NULL, 0) == 0)
4561 {
4562 /* An important side-effect of these lookup functions is
4563 to expand the symbol table if msymbol is found, later
4564 in the process we will add matching symbols or
4565 msymbols to the results list, and that requires that
4566 the symbols tables are expanded. */
4567 if (kind == FUNCTIONS_DOMAIN
4568 ? (find_pc_compunit_symtab
4569 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4570 == NULL)
4571 : (lookup_symbol_in_objfile_from_linkage_name
4572 (objfile, msymbol->linkage_name (),
4573 VAR_DOMAIN)
4574 .symbol == NULL))
4575 found_msymbol = true;
4576 }
4577 }
4578 }
4579 }
4580
4581 return found_msymbol;
4582 }
4583
4584 /* See symtab.h. */
4585
4586 bool
4587 global_symbol_searcher::add_matching_symbols
4588 (objfile *objfile,
4589 const gdb::optional<compiled_regex> &preg,
4590 const gdb::optional<compiled_regex> &treg,
4591 std::set<symbol_search> *result_set) const
4592 {
4593 enum search_domain kind = m_kind;
4594
4595 /* Add matching symbols (if not already present). */
4596 for (compunit_symtab *cust : objfile->compunits ())
4597 {
4598 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4599
4600 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4601 {
4602 struct block_iterator iter;
4603 struct symbol *sym;
4604 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4605
4606 ALL_BLOCK_SYMBOLS (b, iter, sym)
4607 {
4608 struct symtab *real_symtab = symbol_symtab (sym);
4609
4610 QUIT;
4611
4612 /* Check first sole REAL_SYMTAB->FILENAME. It does
4613 not need to be a substring of symtab_to_fullname as
4614 it may contain "./" etc. */
4615 if ((file_matches (real_symtab->filename, filenames, false)
4616 || ((basenames_may_differ
4617 || file_matches (lbasename (real_symtab->filename),
4618 filenames, true))
4619 && file_matches (symtab_to_fullname (real_symtab),
4620 filenames, false)))
4621 && ((!preg.has_value ()
4622 || preg->exec (sym->natural_name (), 0,
4623 NULL, 0) == 0)
4624 && ((kind == VARIABLES_DOMAIN
4625 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4626 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4627 && SYMBOL_CLASS (sym) != LOC_BLOCK
4628 /* LOC_CONST can be used for more than
4629 just enums, e.g., c++ static const
4630 members. We only want to skip enums
4631 here. */
4632 && !(SYMBOL_CLASS (sym) == LOC_CONST
4633 && (SYMBOL_TYPE (sym)->code ()
4634 == TYPE_CODE_ENUM))
4635 && (!treg.has_value ()
4636 || treg_matches_sym_type_name (*treg, sym)))
4637 || (kind == FUNCTIONS_DOMAIN
4638 && SYMBOL_CLASS (sym) == LOC_BLOCK
4639 && (!treg.has_value ()
4640 || treg_matches_sym_type_name (*treg,
4641 sym)))
4642 || (kind == TYPES_DOMAIN
4643 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4644 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4645 || (kind == MODULES_DOMAIN
4646 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4647 && SYMBOL_LINE (sym) != 0))))
4648 {
4649 if (result_set->size () < m_max_search_results)
4650 {
4651 /* Match, insert if not already in the results. */
4652 symbol_search ss (block, sym);
4653 if (result_set->find (ss) == result_set->end ())
4654 result_set->insert (ss);
4655 }
4656 else
4657 return false;
4658 }
4659 }
4660 }
4661 }
4662
4663 return true;
4664 }
4665
4666 /* See symtab.h. */
4667
4668 bool
4669 global_symbol_searcher::add_matching_msymbols
4670 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4671 std::vector<symbol_search> *results) const
4672 {
4673 enum search_domain kind = m_kind;
4674
4675 for (minimal_symbol *msymbol : objfile->msymbols ())
4676 {
4677 QUIT;
4678
4679 if (msymbol->created_by_gdb)
4680 continue;
4681
4682 if (is_suitable_msymbol (kind, msymbol))
4683 {
4684 if (!preg.has_value ()
4685 || preg->exec (msymbol->natural_name (), 0,
4686 NULL, 0) == 0)
4687 {
4688 /* For functions we can do a quick check of whether the
4689 symbol might be found via find_pc_symtab. */
4690 if (kind != FUNCTIONS_DOMAIN
4691 || (find_pc_compunit_symtab
4692 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4693 == NULL))
4694 {
4695 if (lookup_symbol_in_objfile_from_linkage_name
4696 (objfile, msymbol->linkage_name (),
4697 VAR_DOMAIN).symbol == NULL)
4698 {
4699 /* Matching msymbol, add it to the results list. */
4700 if (results->size () < m_max_search_results)
4701 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4702 else
4703 return false;
4704 }
4705 }
4706 }
4707 }
4708 }
4709
4710 return true;
4711 }
4712
4713 /* See symtab.h. */
4714
4715 std::vector<symbol_search>
4716 global_symbol_searcher::search () const
4717 {
4718 gdb::optional<compiled_regex> preg;
4719 gdb::optional<compiled_regex> treg;
4720
4721 gdb_assert (m_kind != ALL_DOMAIN);
4722
4723 if (m_symbol_name_regexp != NULL)
4724 {
4725 const char *symbol_name_regexp = m_symbol_name_regexp;
4726
4727 /* Make sure spacing is right for C++ operators.
4728 This is just a courtesy to make the matching less sensitive
4729 to how many spaces the user leaves between 'operator'
4730 and <TYPENAME> or <OPERATOR>. */
4731 const char *opend;
4732 const char *opname = operator_chars (symbol_name_regexp, &opend);
4733
4734 if (*opname)
4735 {
4736 int fix = -1; /* -1 means ok; otherwise number of
4737 spaces needed. */
4738
4739 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4740 {
4741 /* There should 1 space between 'operator' and 'TYPENAME'. */
4742 if (opname[-1] != ' ' || opname[-2] == ' ')
4743 fix = 1;
4744 }
4745 else
4746 {
4747 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4748 if (opname[-1] == ' ')
4749 fix = 0;
4750 }
4751 /* If wrong number of spaces, fix it. */
4752 if (fix >= 0)
4753 {
4754 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4755
4756 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4757 symbol_name_regexp = tmp;
4758 }
4759 }
4760
4761 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4762 ? REG_ICASE : 0);
4763 preg.emplace (symbol_name_regexp, cflags,
4764 _("Invalid regexp"));
4765 }
4766
4767 if (m_symbol_type_regexp != NULL)
4768 {
4769 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4770 ? REG_ICASE : 0);
4771 treg.emplace (m_symbol_type_regexp, cflags,
4772 _("Invalid regexp"));
4773 }
4774
4775 bool found_msymbol = false;
4776 std::set<symbol_search> result_set;
4777 for (objfile *objfile : current_program_space->objfiles ())
4778 {
4779 /* Expand symtabs within objfile that possibly contain matching
4780 symbols. */
4781 found_msymbol |= expand_symtabs (objfile, preg);
4782
4783 /* Find matching symbols within OBJFILE and add them in to the
4784 RESULT_SET set. Use a set here so that we can easily detect
4785 duplicates as we go, and can therefore track how many unique
4786 matches we have found so far. */
4787 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4788 break;
4789 }
4790
4791 /* Convert the result set into a sorted result list, as std::set is
4792 defined to be sorted then no explicit call to std::sort is needed. */
4793 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4794
4795 /* If there are no debug symbols, then add matching minsyms. But if the
4796 user wants to see symbols matching a type regexp, then never give a
4797 minimal symbol, as we assume that a minimal symbol does not have a
4798 type. */
4799 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4800 && !m_exclude_minsyms
4801 && !treg.has_value ())
4802 {
4803 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4804 for (objfile *objfile : current_program_space->objfiles ())
4805 if (!add_matching_msymbols (objfile, preg, &result))
4806 break;
4807 }
4808
4809 return result;
4810 }
4811
4812 /* See symtab.h. */
4813
4814 std::string
4815 symbol_to_info_string (struct symbol *sym, int block,
4816 enum search_domain kind)
4817 {
4818 std::string str;
4819
4820 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4821
4822 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4823 str += "static ";
4824
4825 /* Typedef that is not a C++ class. */
4826 if (kind == TYPES_DOMAIN
4827 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4828 {
4829 string_file tmp_stream;
4830
4831 /* FIXME: For C (and C++) we end up with a difference in output here
4832 between how a typedef is printed, and non-typedefs are printed.
4833 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4834 appear C-like, while TYPE_PRINT doesn't.
4835
4836 For the struct printing case below, things are worse, we force
4837 printing of the ";" in this function, which is going to be wrong
4838 for languages that don't require a ";" between statements. */
4839 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4840 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4841 else
4842 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4843 str += tmp_stream.string ();
4844 }
4845 /* variable, func, or typedef-that-is-c++-class. */
4846 else if (kind < TYPES_DOMAIN
4847 || (kind == TYPES_DOMAIN
4848 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4849 {
4850 string_file tmp_stream;
4851
4852 type_print (SYMBOL_TYPE (sym),
4853 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4854 ? "" : sym->print_name ()),
4855 &tmp_stream, 0);
4856
4857 str += tmp_stream.string ();
4858 str += ";";
4859 }
4860 /* Printing of modules is currently done here, maybe at some future
4861 point we might want a language specific method to print the module
4862 symbol so that we can customise the output more. */
4863 else if (kind == MODULES_DOMAIN)
4864 str += sym->print_name ();
4865
4866 return str;
4867 }
4868
4869 /* Helper function for symbol info commands, for example 'info functions',
4870 'info variables', etc. KIND is the kind of symbol we searched for, and
4871 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4872 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4873 print file and line number information for the symbol as well. Skip
4874 printing the filename if it matches LAST. */
4875
4876 static void
4877 print_symbol_info (enum search_domain kind,
4878 struct symbol *sym,
4879 int block, const char *last)
4880 {
4881 scoped_switch_to_sym_language_if_auto l (sym);
4882 struct symtab *s = symbol_symtab (sym);
4883
4884 if (last != NULL)
4885 {
4886 const char *s_filename = symtab_to_filename_for_display (s);
4887
4888 if (filename_cmp (last, s_filename) != 0)
4889 {
4890 printf_filtered (_("\nFile %ps:\n"),
4891 styled_string (file_name_style.style (),
4892 s_filename));
4893 }
4894
4895 if (SYMBOL_LINE (sym) != 0)
4896 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4897 else
4898 puts_filtered ("\t");
4899 }
4900
4901 std::string str = symbol_to_info_string (sym, block, kind);
4902 printf_filtered ("%s\n", str.c_str ());
4903 }
4904
4905 /* This help function for symtab_symbol_info() prints information
4906 for non-debugging symbols to gdb_stdout. */
4907
4908 static void
4909 print_msymbol_info (struct bound_minimal_symbol msymbol)
4910 {
4911 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4912 char *tmp;
4913
4914 if (gdbarch_addr_bit (gdbarch) <= 32)
4915 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4916 & (CORE_ADDR) 0xffffffff,
4917 8);
4918 else
4919 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4920 16);
4921
4922 ui_file_style sym_style = (msymbol.minsym->text_p ()
4923 ? function_name_style.style ()
4924 : ui_file_style ());
4925
4926 printf_filtered (_("%ps %ps\n"),
4927 styled_string (address_style.style (), tmp),
4928 styled_string (sym_style, msymbol.minsym->print_name ()));
4929 }
4930
4931 /* This is the guts of the commands "info functions", "info types", and
4932 "info variables". It calls search_symbols to find all matches and then
4933 print_[m]symbol_info to print out some useful information about the
4934 matches. */
4935
4936 static void
4937 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4938 const char *regexp, enum search_domain kind,
4939 const char *t_regexp, int from_tty)
4940 {
4941 static const char * const classnames[] =
4942 {"variable", "function", "type", "module"};
4943 const char *last_filename = "";
4944 int first = 1;
4945
4946 gdb_assert (kind != ALL_DOMAIN);
4947
4948 if (regexp != nullptr && *regexp == '\0')
4949 regexp = nullptr;
4950
4951 global_symbol_searcher spec (kind, regexp);
4952 spec.set_symbol_type_regexp (t_regexp);
4953 spec.set_exclude_minsyms (exclude_minsyms);
4954 std::vector<symbol_search> symbols = spec.search ();
4955
4956 if (!quiet)
4957 {
4958 if (regexp != NULL)
4959 {
4960 if (t_regexp != NULL)
4961 printf_filtered
4962 (_("All %ss matching regular expression \"%s\""
4963 " with type matching regular expression \"%s\":\n"),
4964 classnames[kind], regexp, t_regexp);
4965 else
4966 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4967 classnames[kind], regexp);
4968 }
4969 else
4970 {
4971 if (t_regexp != NULL)
4972 printf_filtered
4973 (_("All defined %ss"
4974 " with type matching regular expression \"%s\" :\n"),
4975 classnames[kind], t_regexp);
4976 else
4977 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4978 }
4979 }
4980
4981 for (const symbol_search &p : symbols)
4982 {
4983 QUIT;
4984
4985 if (p.msymbol.minsym != NULL)
4986 {
4987 if (first)
4988 {
4989 if (!quiet)
4990 printf_filtered (_("\nNon-debugging symbols:\n"));
4991 first = 0;
4992 }
4993 print_msymbol_info (p.msymbol);
4994 }
4995 else
4996 {
4997 print_symbol_info (kind,
4998 p.symbol,
4999 p.block,
5000 last_filename);
5001 last_filename
5002 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5003 }
5004 }
5005 }
5006
5007 /* Structure to hold the values of the options used by the 'info variables'
5008 and 'info functions' commands. These correspond to the -q, -t, and -n
5009 options. */
5010
5011 struct info_vars_funcs_options
5012 {
5013 bool quiet = false;
5014 bool exclude_minsyms = false;
5015 char *type_regexp = nullptr;
5016
5017 ~info_vars_funcs_options ()
5018 {
5019 xfree (type_regexp);
5020 }
5021 };
5022
5023 /* The options used by the 'info variables' and 'info functions'
5024 commands. */
5025
5026 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5027 gdb::option::boolean_option_def<info_vars_funcs_options> {
5028 "q",
5029 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5030 nullptr, /* show_cmd_cb */
5031 nullptr /* set_doc */
5032 },
5033
5034 gdb::option::boolean_option_def<info_vars_funcs_options> {
5035 "n",
5036 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5037 nullptr, /* show_cmd_cb */
5038 nullptr /* set_doc */
5039 },
5040
5041 gdb::option::string_option_def<info_vars_funcs_options> {
5042 "t",
5043 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5044 },
5045 nullptr, /* show_cmd_cb */
5046 nullptr /* set_doc */
5047 }
5048 };
5049
5050 /* Returns the option group used by 'info variables' and 'info
5051 functions'. */
5052
5053 static gdb::option::option_def_group
5054 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5055 {
5056 return {{info_vars_funcs_options_defs}, opts};
5057 }
5058
5059 /* Command completer for 'info variables' and 'info functions'. */
5060
5061 static void
5062 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5063 completion_tracker &tracker,
5064 const char *text, const char * /* word */)
5065 {
5066 const auto group
5067 = make_info_vars_funcs_options_def_group (nullptr);
5068 if (gdb::option::complete_options
5069 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5070 return;
5071
5072 const char *word = advance_to_expression_complete_word_point (tracker, text);
5073 symbol_completer (ignore, tracker, text, word);
5074 }
5075
5076 /* Implement the 'info variables' command. */
5077
5078 static void
5079 info_variables_command (const char *args, int from_tty)
5080 {
5081 info_vars_funcs_options opts;
5082 auto grp = make_info_vars_funcs_options_def_group (&opts);
5083 gdb::option::process_options
5084 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5085 if (args != nullptr && *args == '\0')
5086 args = nullptr;
5087
5088 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5089 opts.type_regexp, from_tty);
5090 }
5091
5092 /* Implement the 'info functions' command. */
5093
5094 static void
5095 info_functions_command (const char *args, int from_tty)
5096 {
5097 info_vars_funcs_options opts;
5098
5099 auto grp = make_info_vars_funcs_options_def_group (&opts);
5100 gdb::option::process_options
5101 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5102 if (args != nullptr && *args == '\0')
5103 args = nullptr;
5104
5105 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5106 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5107 }
5108
5109 /* Holds the -q option for the 'info types' command. */
5110
5111 struct info_types_options
5112 {
5113 bool quiet = false;
5114 };
5115
5116 /* The options used by the 'info types' command. */
5117
5118 static const gdb::option::option_def info_types_options_defs[] = {
5119 gdb::option::boolean_option_def<info_types_options> {
5120 "q",
5121 [] (info_types_options *opt) { return &opt->quiet; },
5122 nullptr, /* show_cmd_cb */
5123 nullptr /* set_doc */
5124 }
5125 };
5126
5127 /* Returns the option group used by 'info types'. */
5128
5129 static gdb::option::option_def_group
5130 make_info_types_options_def_group (info_types_options *opts)
5131 {
5132 return {{info_types_options_defs}, opts};
5133 }
5134
5135 /* Implement the 'info types' command. */
5136
5137 static void
5138 info_types_command (const char *args, int from_tty)
5139 {
5140 info_types_options opts;
5141
5142 auto grp = make_info_types_options_def_group (&opts);
5143 gdb::option::process_options
5144 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5145 if (args != nullptr && *args == '\0')
5146 args = nullptr;
5147 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5148 }
5149
5150 /* Command completer for 'info types' command. */
5151
5152 static void
5153 info_types_command_completer (struct cmd_list_element *ignore,
5154 completion_tracker &tracker,
5155 const char *text, const char * /* word */)
5156 {
5157 const auto group
5158 = make_info_types_options_def_group (nullptr);
5159 if (gdb::option::complete_options
5160 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5161 return;
5162
5163 const char *word = advance_to_expression_complete_word_point (tracker, text);
5164 symbol_completer (ignore, tracker, text, word);
5165 }
5166
5167 /* Implement the 'info modules' command. */
5168
5169 static void
5170 info_modules_command (const char *args, int from_tty)
5171 {
5172 info_types_options opts;
5173
5174 auto grp = make_info_types_options_def_group (&opts);
5175 gdb::option::process_options
5176 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5177 if (args != nullptr && *args == '\0')
5178 args = nullptr;
5179 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5180 from_tty);
5181 }
5182
5183 static void
5184 rbreak_command (const char *regexp, int from_tty)
5185 {
5186 std::string string;
5187 const char *file_name = nullptr;
5188
5189 if (regexp != nullptr)
5190 {
5191 const char *colon = strchr (regexp, ':');
5192
5193 /* Ignore the colon if it is part of a Windows drive. */
5194 if (HAS_DRIVE_SPEC (regexp)
5195 && (regexp[2] == '/' || regexp[2] == '\\'))
5196 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5197
5198 if (colon && *(colon + 1) != ':')
5199 {
5200 int colon_index;
5201 char *local_name;
5202
5203 colon_index = colon - regexp;
5204 local_name = (char *) alloca (colon_index + 1);
5205 memcpy (local_name, regexp, colon_index);
5206 local_name[colon_index--] = 0;
5207 while (isspace (local_name[colon_index]))
5208 local_name[colon_index--] = 0;
5209 file_name = local_name;
5210 regexp = skip_spaces (colon + 1);
5211 }
5212 }
5213
5214 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5215 if (file_name != nullptr)
5216 spec.filenames.push_back (file_name);
5217 std::vector<symbol_search> symbols = spec.search ();
5218
5219 scoped_rbreak_breakpoints finalize;
5220 for (const symbol_search &p : symbols)
5221 {
5222 if (p.msymbol.minsym == NULL)
5223 {
5224 struct symtab *symtab = symbol_symtab (p.symbol);
5225 const char *fullname = symtab_to_fullname (symtab);
5226
5227 string = string_printf ("%s:'%s'", fullname,
5228 p.symbol->linkage_name ());
5229 break_command (&string[0], from_tty);
5230 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5231 }
5232 else
5233 {
5234 string = string_printf ("'%s'",
5235 p.msymbol.minsym->linkage_name ());
5236
5237 break_command (&string[0], from_tty);
5238 printf_filtered ("<function, no debug info> %s;\n",
5239 p.msymbol.minsym->print_name ());
5240 }
5241 }
5242 }
5243 \f
5244
5245 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5246
5247 static int
5248 compare_symbol_name (const char *symbol_name, language symbol_language,
5249 const lookup_name_info &lookup_name,
5250 completion_match_result &match_res)
5251 {
5252 const language_defn *lang = language_def (symbol_language);
5253
5254 symbol_name_matcher_ftype *name_match
5255 = lang->get_symbol_name_matcher (lookup_name);
5256
5257 return name_match (symbol_name, lookup_name, &match_res);
5258 }
5259
5260 /* See symtab.h. */
5261
5262 bool
5263 completion_list_add_name (completion_tracker &tracker,
5264 language symbol_language,
5265 const char *symname,
5266 const lookup_name_info &lookup_name,
5267 const char *text, const char *word)
5268 {
5269 completion_match_result &match_res
5270 = tracker.reset_completion_match_result ();
5271
5272 /* Clip symbols that cannot match. */
5273 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5274 return false;
5275
5276 /* Refresh SYMNAME from the match string. It's potentially
5277 different depending on language. (E.g., on Ada, the match may be
5278 the encoded symbol name wrapped in "<>"). */
5279 symname = match_res.match.match ();
5280 gdb_assert (symname != NULL);
5281
5282 /* We have a match for a completion, so add SYMNAME to the current list
5283 of matches. Note that the name is moved to freshly malloc'd space. */
5284
5285 {
5286 gdb::unique_xmalloc_ptr<char> completion
5287 = make_completion_match_str (symname, text, word);
5288
5289 /* Here we pass the match-for-lcd object to add_completion. Some
5290 languages match the user text against substrings of symbol
5291 names in some cases. E.g., in C++, "b push_ba" completes to
5292 "std::vector::push_back", "std::string::push_back", etc., and
5293 in this case we want the completion lowest common denominator
5294 to be "push_back" instead of "std::". */
5295 tracker.add_completion (std::move (completion),
5296 &match_res.match_for_lcd, text, word);
5297 }
5298
5299 return true;
5300 }
5301
5302 /* completion_list_add_name wrapper for struct symbol. */
5303
5304 static void
5305 completion_list_add_symbol (completion_tracker &tracker,
5306 symbol *sym,
5307 const lookup_name_info &lookup_name,
5308 const char *text, const char *word)
5309 {
5310 if (!completion_list_add_name (tracker, sym->language (),
5311 sym->natural_name (),
5312 lookup_name, text, word))
5313 return;
5314
5315 /* C++ function symbols include the parameters within both the msymbol
5316 name and the symbol name. The problem is that the msymbol name will
5317 describe the parameters in the most basic way, with typedefs stripped
5318 out, while the symbol name will represent the types as they appear in
5319 the program. This means we will see duplicate entries in the
5320 completion tracker. The following converts the symbol name back to
5321 the msymbol name and removes the msymbol name from the completion
5322 tracker. */
5323 if (sym->language () == language_cplus
5324 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5325 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5326 {
5327 /* The call to canonicalize returns the empty string if the input
5328 string is already in canonical form, thanks to this we don't
5329 remove the symbol we just added above. */
5330 gdb::unique_xmalloc_ptr<char> str
5331 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5332 if (str != nullptr)
5333 tracker.remove_completion (str.get ());
5334 }
5335 }
5336
5337 /* completion_list_add_name wrapper for struct minimal_symbol. */
5338
5339 static void
5340 completion_list_add_msymbol (completion_tracker &tracker,
5341 minimal_symbol *sym,
5342 const lookup_name_info &lookup_name,
5343 const char *text, const char *word)
5344 {
5345 completion_list_add_name (tracker, sym->language (),
5346 sym->natural_name (),
5347 lookup_name, text, word);
5348 }
5349
5350
5351 /* ObjC: In case we are completing on a selector, look as the msymbol
5352 again and feed all the selectors into the mill. */
5353
5354 static void
5355 completion_list_objc_symbol (completion_tracker &tracker,
5356 struct minimal_symbol *msymbol,
5357 const lookup_name_info &lookup_name,
5358 const char *text, const char *word)
5359 {
5360 static char *tmp = NULL;
5361 static unsigned int tmplen = 0;
5362
5363 const char *method, *category, *selector;
5364 char *tmp2 = NULL;
5365
5366 method = msymbol->natural_name ();
5367
5368 /* Is it a method? */
5369 if ((method[0] != '-') && (method[0] != '+'))
5370 return;
5371
5372 if (text[0] == '[')
5373 /* Complete on shortened method method. */
5374 completion_list_add_name (tracker, language_objc,
5375 method + 1,
5376 lookup_name,
5377 text, word);
5378
5379 while ((strlen (method) + 1) >= tmplen)
5380 {
5381 if (tmplen == 0)
5382 tmplen = 1024;
5383 else
5384 tmplen *= 2;
5385 tmp = (char *) xrealloc (tmp, tmplen);
5386 }
5387 selector = strchr (method, ' ');
5388 if (selector != NULL)
5389 selector++;
5390
5391 category = strchr (method, '(');
5392
5393 if ((category != NULL) && (selector != NULL))
5394 {
5395 memcpy (tmp, method, (category - method));
5396 tmp[category - method] = ' ';
5397 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5398 completion_list_add_name (tracker, language_objc, tmp,
5399 lookup_name, text, word);
5400 if (text[0] == '[')
5401 completion_list_add_name (tracker, language_objc, tmp + 1,
5402 lookup_name, text, word);
5403 }
5404
5405 if (selector != NULL)
5406 {
5407 /* Complete on selector only. */
5408 strcpy (tmp, selector);
5409 tmp2 = strchr (tmp, ']');
5410 if (tmp2 != NULL)
5411 *tmp2 = '\0';
5412
5413 completion_list_add_name (tracker, language_objc, tmp,
5414 lookup_name, text, word);
5415 }
5416 }
5417
5418 /* Break the non-quoted text based on the characters which are in
5419 symbols. FIXME: This should probably be language-specific. */
5420
5421 static const char *
5422 language_search_unquoted_string (const char *text, const char *p)
5423 {
5424 for (; p > text; --p)
5425 {
5426 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5427 continue;
5428 else
5429 {
5430 if ((current_language->la_language == language_objc))
5431 {
5432 if (p[-1] == ':') /* Might be part of a method name. */
5433 continue;
5434 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5435 p -= 2; /* Beginning of a method name. */
5436 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5437 { /* Might be part of a method name. */
5438 const char *t = p;
5439
5440 /* Seeing a ' ' or a '(' is not conclusive evidence
5441 that we are in the middle of a method name. However,
5442 finding "-[" or "+[" should be pretty un-ambiguous.
5443 Unfortunately we have to find it now to decide. */
5444
5445 while (t > text)
5446 if (isalnum (t[-1]) || t[-1] == '_' ||
5447 t[-1] == ' ' || t[-1] == ':' ||
5448 t[-1] == '(' || t[-1] == ')')
5449 --t;
5450 else
5451 break;
5452
5453 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5454 p = t - 2; /* Method name detected. */
5455 /* Else we leave with p unchanged. */
5456 }
5457 }
5458 break;
5459 }
5460 }
5461 return p;
5462 }
5463
5464 static void
5465 completion_list_add_fields (completion_tracker &tracker,
5466 struct symbol *sym,
5467 const lookup_name_info &lookup_name,
5468 const char *text, const char *word)
5469 {
5470 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5471 {
5472 struct type *t = SYMBOL_TYPE (sym);
5473 enum type_code c = t->code ();
5474 int j;
5475
5476 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5477 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5478 if (TYPE_FIELD_NAME (t, j))
5479 completion_list_add_name (tracker, sym->language (),
5480 TYPE_FIELD_NAME (t, j),
5481 lookup_name, text, word);
5482 }
5483 }
5484
5485 /* See symtab.h. */
5486
5487 bool
5488 symbol_is_function_or_method (symbol *sym)
5489 {
5490 switch (SYMBOL_TYPE (sym)->code ())
5491 {
5492 case TYPE_CODE_FUNC:
5493 case TYPE_CODE_METHOD:
5494 return true;
5495 default:
5496 return false;
5497 }
5498 }
5499
5500 /* See symtab.h. */
5501
5502 bool
5503 symbol_is_function_or_method (minimal_symbol *msymbol)
5504 {
5505 switch (MSYMBOL_TYPE (msymbol))
5506 {
5507 case mst_text:
5508 case mst_text_gnu_ifunc:
5509 case mst_solib_trampoline:
5510 case mst_file_text:
5511 return true;
5512 default:
5513 return false;
5514 }
5515 }
5516
5517 /* See symtab.h. */
5518
5519 bound_minimal_symbol
5520 find_gnu_ifunc (const symbol *sym)
5521 {
5522 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5523 return {};
5524
5525 lookup_name_info lookup_name (sym->search_name (),
5526 symbol_name_match_type::SEARCH_NAME);
5527 struct objfile *objfile = symbol_objfile (sym);
5528
5529 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5530 minimal_symbol *ifunc = NULL;
5531
5532 iterate_over_minimal_symbols (objfile, lookup_name,
5533 [&] (minimal_symbol *minsym)
5534 {
5535 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5536 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5537 {
5538 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5539 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5540 {
5541 struct gdbarch *gdbarch = objfile->arch ();
5542 msym_addr
5543 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5544 msym_addr,
5545 current_top_target ());
5546 }
5547 if (msym_addr == address)
5548 {
5549 ifunc = minsym;
5550 return true;
5551 }
5552 }
5553 return false;
5554 });
5555
5556 if (ifunc != NULL)
5557 return {ifunc, objfile};
5558 return {};
5559 }
5560
5561 /* Add matching symbols from SYMTAB to the current completion list. */
5562
5563 static void
5564 add_symtab_completions (struct compunit_symtab *cust,
5565 completion_tracker &tracker,
5566 complete_symbol_mode mode,
5567 const lookup_name_info &lookup_name,
5568 const char *text, const char *word,
5569 enum type_code code)
5570 {
5571 struct symbol *sym;
5572 const struct block *b;
5573 struct block_iterator iter;
5574 int i;
5575
5576 if (cust == NULL)
5577 return;
5578
5579 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5580 {
5581 QUIT;
5582 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5583 ALL_BLOCK_SYMBOLS (b, iter, sym)
5584 {
5585 if (completion_skip_symbol (mode, sym))
5586 continue;
5587
5588 if (code == TYPE_CODE_UNDEF
5589 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5590 && SYMBOL_TYPE (sym)->code () == code))
5591 completion_list_add_symbol (tracker, sym,
5592 lookup_name,
5593 text, word);
5594 }
5595 }
5596 }
5597
5598 void
5599 default_collect_symbol_completion_matches_break_on
5600 (completion_tracker &tracker, complete_symbol_mode mode,
5601 symbol_name_match_type name_match_type,
5602 const char *text, const char *word,
5603 const char *break_on, enum type_code code)
5604 {
5605 /* Problem: All of the symbols have to be copied because readline
5606 frees them. I'm not going to worry about this; hopefully there
5607 won't be that many. */
5608
5609 struct symbol *sym;
5610 const struct block *b;
5611 const struct block *surrounding_static_block, *surrounding_global_block;
5612 struct block_iterator iter;
5613 /* The symbol we are completing on. Points in same buffer as text. */
5614 const char *sym_text;
5615
5616 /* Now look for the symbol we are supposed to complete on. */
5617 if (mode == complete_symbol_mode::LINESPEC)
5618 sym_text = text;
5619 else
5620 {
5621 const char *p;
5622 char quote_found;
5623 const char *quote_pos = NULL;
5624
5625 /* First see if this is a quoted string. */
5626 quote_found = '\0';
5627 for (p = text; *p != '\0'; ++p)
5628 {
5629 if (quote_found != '\0')
5630 {
5631 if (*p == quote_found)
5632 /* Found close quote. */
5633 quote_found = '\0';
5634 else if (*p == '\\' && p[1] == quote_found)
5635 /* A backslash followed by the quote character
5636 doesn't end the string. */
5637 ++p;
5638 }
5639 else if (*p == '\'' || *p == '"')
5640 {
5641 quote_found = *p;
5642 quote_pos = p;
5643 }
5644 }
5645 if (quote_found == '\'')
5646 /* A string within single quotes can be a symbol, so complete on it. */
5647 sym_text = quote_pos + 1;
5648 else if (quote_found == '"')
5649 /* A double-quoted string is never a symbol, nor does it make sense
5650 to complete it any other way. */
5651 {
5652 return;
5653 }
5654 else
5655 {
5656 /* It is not a quoted string. Break it based on the characters
5657 which are in symbols. */
5658 while (p > text)
5659 {
5660 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5661 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5662 --p;
5663 else
5664 break;
5665 }
5666 sym_text = p;
5667 }
5668 }
5669
5670 lookup_name_info lookup_name (sym_text, name_match_type, true);
5671
5672 /* At this point scan through the misc symbol vectors and add each
5673 symbol you find to the list. Eventually we want to ignore
5674 anything that isn't a text symbol (everything else will be
5675 handled by the psymtab code below). */
5676
5677 if (code == TYPE_CODE_UNDEF)
5678 {
5679 for (objfile *objfile : current_program_space->objfiles ())
5680 {
5681 for (minimal_symbol *msymbol : objfile->msymbols ())
5682 {
5683 QUIT;
5684
5685 if (completion_skip_symbol (mode, msymbol))
5686 continue;
5687
5688 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5689 sym_text, word);
5690
5691 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5692 sym_text, word);
5693 }
5694 }
5695 }
5696
5697 /* Add completions for all currently loaded symbol tables. */
5698 for (objfile *objfile : current_program_space->objfiles ())
5699 {
5700 for (compunit_symtab *cust : objfile->compunits ())
5701 add_symtab_completions (cust, tracker, mode, lookup_name,
5702 sym_text, word, code);
5703 }
5704
5705 /* Look through the partial symtabs for all symbols which begin by
5706 matching SYM_TEXT. Expand all CUs that you find to the list. */
5707 expand_symtabs_matching (NULL,
5708 lookup_name,
5709 NULL,
5710 [&] (compunit_symtab *symtab) /* expansion notify */
5711 {
5712 add_symtab_completions (symtab,
5713 tracker, mode, lookup_name,
5714 sym_text, word, code);
5715 },
5716 ALL_DOMAIN);
5717
5718 /* Search upwards from currently selected frame (so that we can
5719 complete on local vars). Also catch fields of types defined in
5720 this places which match our text string. Only complete on types
5721 visible from current context. */
5722
5723 b = get_selected_block (0);
5724 surrounding_static_block = block_static_block (b);
5725 surrounding_global_block = block_global_block (b);
5726 if (surrounding_static_block != NULL)
5727 while (b != surrounding_static_block)
5728 {
5729 QUIT;
5730
5731 ALL_BLOCK_SYMBOLS (b, iter, sym)
5732 {
5733 if (code == TYPE_CODE_UNDEF)
5734 {
5735 completion_list_add_symbol (tracker, sym, lookup_name,
5736 sym_text, word);
5737 completion_list_add_fields (tracker, sym, lookup_name,
5738 sym_text, word);
5739 }
5740 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5741 && SYMBOL_TYPE (sym)->code () == code)
5742 completion_list_add_symbol (tracker, sym, lookup_name,
5743 sym_text, word);
5744 }
5745
5746 /* Stop when we encounter an enclosing function. Do not stop for
5747 non-inlined functions - the locals of the enclosing function
5748 are in scope for a nested function. */
5749 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5750 break;
5751 b = BLOCK_SUPERBLOCK (b);
5752 }
5753
5754 /* Add fields from the file's types; symbols will be added below. */
5755
5756 if (code == TYPE_CODE_UNDEF)
5757 {
5758 if (surrounding_static_block != NULL)
5759 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5760 completion_list_add_fields (tracker, sym, lookup_name,
5761 sym_text, word);
5762
5763 if (surrounding_global_block != NULL)
5764 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5765 completion_list_add_fields (tracker, sym, lookup_name,
5766 sym_text, word);
5767 }
5768
5769 /* Skip macros if we are completing a struct tag -- arguable but
5770 usually what is expected. */
5771 if (current_language->la_macro_expansion == macro_expansion_c
5772 && code == TYPE_CODE_UNDEF)
5773 {
5774 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5775
5776 /* This adds a macro's name to the current completion list. */
5777 auto add_macro_name = [&] (const char *macro_name,
5778 const macro_definition *,
5779 macro_source_file *,
5780 int)
5781 {
5782 completion_list_add_name (tracker, language_c, macro_name,
5783 lookup_name, sym_text, word);
5784 };
5785
5786 /* Add any macros visible in the default scope. Note that this
5787 may yield the occasional wrong result, because an expression
5788 might be evaluated in a scope other than the default. For
5789 example, if the user types "break file:line if <TAB>", the
5790 resulting expression will be evaluated at "file:line" -- but
5791 at there does not seem to be a way to detect this at
5792 completion time. */
5793 scope = default_macro_scope ();
5794 if (scope)
5795 macro_for_each_in_scope (scope->file, scope->line,
5796 add_macro_name);
5797
5798 /* User-defined macros are always visible. */
5799 macro_for_each (macro_user_macros, add_macro_name);
5800 }
5801 }
5802
5803 /* Collect all symbols (regardless of class) which begin by matching
5804 TEXT. */
5805
5806 void
5807 collect_symbol_completion_matches (completion_tracker &tracker,
5808 complete_symbol_mode mode,
5809 symbol_name_match_type name_match_type,
5810 const char *text, const char *word)
5811 {
5812 current_language->collect_symbol_completion_matches (tracker, mode,
5813 name_match_type,
5814 text, word,
5815 TYPE_CODE_UNDEF);
5816 }
5817
5818 /* Like collect_symbol_completion_matches, but only collect
5819 STRUCT_DOMAIN symbols whose type code is CODE. */
5820
5821 void
5822 collect_symbol_completion_matches_type (completion_tracker &tracker,
5823 const char *text, const char *word,
5824 enum type_code code)
5825 {
5826 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5827 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5828
5829 gdb_assert (code == TYPE_CODE_UNION
5830 || code == TYPE_CODE_STRUCT
5831 || code == TYPE_CODE_ENUM);
5832 current_language->collect_symbol_completion_matches (tracker, mode,
5833 name_match_type,
5834 text, word, code);
5835 }
5836
5837 /* Like collect_symbol_completion_matches, but collects a list of
5838 symbols defined in all source files named SRCFILE. */
5839
5840 void
5841 collect_file_symbol_completion_matches (completion_tracker &tracker,
5842 complete_symbol_mode mode,
5843 symbol_name_match_type name_match_type,
5844 const char *text, const char *word,
5845 const char *srcfile)
5846 {
5847 /* The symbol we are completing on. Points in same buffer as text. */
5848 const char *sym_text;
5849
5850 /* Now look for the symbol we are supposed to complete on.
5851 FIXME: This should be language-specific. */
5852 if (mode == complete_symbol_mode::LINESPEC)
5853 sym_text = text;
5854 else
5855 {
5856 const char *p;
5857 char quote_found;
5858 const char *quote_pos = NULL;
5859
5860 /* First see if this is a quoted string. */
5861 quote_found = '\0';
5862 for (p = text; *p != '\0'; ++p)
5863 {
5864 if (quote_found != '\0')
5865 {
5866 if (*p == quote_found)
5867 /* Found close quote. */
5868 quote_found = '\0';
5869 else if (*p == '\\' && p[1] == quote_found)
5870 /* A backslash followed by the quote character
5871 doesn't end the string. */
5872 ++p;
5873 }
5874 else if (*p == '\'' || *p == '"')
5875 {
5876 quote_found = *p;
5877 quote_pos = p;
5878 }
5879 }
5880 if (quote_found == '\'')
5881 /* A string within single quotes can be a symbol, so complete on it. */
5882 sym_text = quote_pos + 1;
5883 else if (quote_found == '"')
5884 /* A double-quoted string is never a symbol, nor does it make sense
5885 to complete it any other way. */
5886 {
5887 return;
5888 }
5889 else
5890 {
5891 /* Not a quoted string. */
5892 sym_text = language_search_unquoted_string (text, p);
5893 }
5894 }
5895
5896 lookup_name_info lookup_name (sym_text, name_match_type, true);
5897
5898 /* Go through symtabs for SRCFILE and check the externs and statics
5899 for symbols which match. */
5900 iterate_over_symtabs (srcfile, [&] (symtab *s)
5901 {
5902 add_symtab_completions (SYMTAB_COMPUNIT (s),
5903 tracker, mode, lookup_name,
5904 sym_text, word, TYPE_CODE_UNDEF);
5905 return false;
5906 });
5907 }
5908
5909 /* A helper function for make_source_files_completion_list. It adds
5910 another file name to a list of possible completions, growing the
5911 list as necessary. */
5912
5913 static void
5914 add_filename_to_list (const char *fname, const char *text, const char *word,
5915 completion_list *list)
5916 {
5917 list->emplace_back (make_completion_match_str (fname, text, word));
5918 }
5919
5920 static int
5921 not_interesting_fname (const char *fname)
5922 {
5923 static const char *illegal_aliens[] = {
5924 "_globals_", /* inserted by coff_symtab_read */
5925 NULL
5926 };
5927 int i;
5928
5929 for (i = 0; illegal_aliens[i]; i++)
5930 {
5931 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5932 return 1;
5933 }
5934 return 0;
5935 }
5936
5937 /* An object of this type is passed as the user_data argument to
5938 map_partial_symbol_filenames. */
5939 struct add_partial_filename_data
5940 {
5941 struct filename_seen_cache *filename_seen_cache;
5942 const char *text;
5943 const char *word;
5944 int text_len;
5945 completion_list *list;
5946 };
5947
5948 /* A callback for map_partial_symbol_filenames. */
5949
5950 static void
5951 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5952 void *user_data)
5953 {
5954 struct add_partial_filename_data *data
5955 = (struct add_partial_filename_data *) user_data;
5956
5957 if (not_interesting_fname (filename))
5958 return;
5959 if (!data->filename_seen_cache->seen (filename)
5960 && filename_ncmp (filename, data->text, data->text_len) == 0)
5961 {
5962 /* This file matches for a completion; add it to the
5963 current list of matches. */
5964 add_filename_to_list (filename, data->text, data->word, data->list);
5965 }
5966 else
5967 {
5968 const char *base_name = lbasename (filename);
5969
5970 if (base_name != filename
5971 && !data->filename_seen_cache->seen (base_name)
5972 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5973 add_filename_to_list (base_name, data->text, data->word, data->list);
5974 }
5975 }
5976
5977 /* Return a list of all source files whose names begin with matching
5978 TEXT. The file names are looked up in the symbol tables of this
5979 program. */
5980
5981 completion_list
5982 make_source_files_completion_list (const char *text, const char *word)
5983 {
5984 size_t text_len = strlen (text);
5985 completion_list list;
5986 const char *base_name;
5987 struct add_partial_filename_data datum;
5988
5989 if (!have_full_symbols () && !have_partial_symbols ())
5990 return list;
5991
5992 filename_seen_cache filenames_seen;
5993
5994 for (objfile *objfile : current_program_space->objfiles ())
5995 {
5996 for (compunit_symtab *cu : objfile->compunits ())
5997 {
5998 for (symtab *s : compunit_filetabs (cu))
5999 {
6000 if (not_interesting_fname (s->filename))
6001 continue;
6002 if (!filenames_seen.seen (s->filename)
6003 && filename_ncmp (s->filename, text, text_len) == 0)
6004 {
6005 /* This file matches for a completion; add it to the current
6006 list of matches. */
6007 add_filename_to_list (s->filename, text, word, &list);
6008 }
6009 else
6010 {
6011 /* NOTE: We allow the user to type a base name when the
6012 debug info records leading directories, but not the other
6013 way around. This is what subroutines of breakpoint
6014 command do when they parse file names. */
6015 base_name = lbasename (s->filename);
6016 if (base_name != s->filename
6017 && !filenames_seen.seen (base_name)
6018 && filename_ncmp (base_name, text, text_len) == 0)
6019 add_filename_to_list (base_name, text, word, &list);
6020 }
6021 }
6022 }
6023 }
6024
6025 datum.filename_seen_cache = &filenames_seen;
6026 datum.text = text;
6027 datum.word = word;
6028 datum.text_len = text_len;
6029 datum.list = &list;
6030 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6031 0 /*need_fullname*/);
6032
6033 return list;
6034 }
6035 \f
6036 /* Track MAIN */
6037
6038 /* Return the "main_info" object for the current program space. If
6039 the object has not yet been created, create it and fill in some
6040 default values. */
6041
6042 static struct main_info *
6043 get_main_info (void)
6044 {
6045 struct main_info *info = main_progspace_key.get (current_program_space);
6046
6047 if (info == NULL)
6048 {
6049 /* It may seem strange to store the main name in the progspace
6050 and also in whatever objfile happens to see a main name in
6051 its debug info. The reason for this is mainly historical:
6052 gdb returned "main" as the name even if no function named
6053 "main" was defined the program; and this approach lets us
6054 keep compatibility. */
6055 info = main_progspace_key.emplace (current_program_space);
6056 }
6057
6058 return info;
6059 }
6060
6061 static void
6062 set_main_name (const char *name, enum language lang)
6063 {
6064 struct main_info *info = get_main_info ();
6065
6066 if (info->name_of_main != NULL)
6067 {
6068 xfree (info->name_of_main);
6069 info->name_of_main = NULL;
6070 info->language_of_main = language_unknown;
6071 }
6072 if (name != NULL)
6073 {
6074 info->name_of_main = xstrdup (name);
6075 info->language_of_main = lang;
6076 }
6077 }
6078
6079 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6080 accordingly. */
6081
6082 static void
6083 find_main_name (void)
6084 {
6085 const char *new_main_name;
6086
6087 /* First check the objfiles to see whether a debuginfo reader has
6088 picked up the appropriate main name. Historically the main name
6089 was found in a more or less random way; this approach instead
6090 relies on the order of objfile creation -- which still isn't
6091 guaranteed to get the correct answer, but is just probably more
6092 accurate. */
6093 for (objfile *objfile : current_program_space->objfiles ())
6094 {
6095 if (objfile->per_bfd->name_of_main != NULL)
6096 {
6097 set_main_name (objfile->per_bfd->name_of_main,
6098 objfile->per_bfd->language_of_main);
6099 return;
6100 }
6101 }
6102
6103 /* Try to see if the main procedure is in Ada. */
6104 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6105 be to add a new method in the language vector, and call this
6106 method for each language until one of them returns a non-empty
6107 name. This would allow us to remove this hard-coded call to
6108 an Ada function. It is not clear that this is a better approach
6109 at this point, because all methods need to be written in a way
6110 such that false positives never be returned. For instance, it is
6111 important that a method does not return a wrong name for the main
6112 procedure if the main procedure is actually written in a different
6113 language. It is easy to guaranty this with Ada, since we use a
6114 special symbol generated only when the main in Ada to find the name
6115 of the main procedure. It is difficult however to see how this can
6116 be guarantied for languages such as C, for instance. This suggests
6117 that order of call for these methods becomes important, which means
6118 a more complicated approach. */
6119 new_main_name = ada_main_name ();
6120 if (new_main_name != NULL)
6121 {
6122 set_main_name (new_main_name, language_ada);
6123 return;
6124 }
6125
6126 new_main_name = d_main_name ();
6127 if (new_main_name != NULL)
6128 {
6129 set_main_name (new_main_name, language_d);
6130 return;
6131 }
6132
6133 new_main_name = go_main_name ();
6134 if (new_main_name != NULL)
6135 {
6136 set_main_name (new_main_name, language_go);
6137 return;
6138 }
6139
6140 new_main_name = pascal_main_name ();
6141 if (new_main_name != NULL)
6142 {
6143 set_main_name (new_main_name, language_pascal);
6144 return;
6145 }
6146
6147 /* The languages above didn't identify the name of the main procedure.
6148 Fallback to "main". */
6149
6150 /* Try to find language for main in psymtabs. */
6151 enum language lang
6152 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6153 if (lang != language_unknown)
6154 {
6155 set_main_name ("main", lang);
6156 return;
6157 }
6158
6159 set_main_name ("main", language_unknown);
6160 }
6161
6162 /* See symtab.h. */
6163
6164 const char *
6165 main_name ()
6166 {
6167 struct main_info *info = get_main_info ();
6168
6169 if (info->name_of_main == NULL)
6170 find_main_name ();
6171
6172 return info->name_of_main;
6173 }
6174
6175 /* Return the language of the main function. If it is not known,
6176 return language_unknown. */
6177
6178 enum language
6179 main_language (void)
6180 {
6181 struct main_info *info = get_main_info ();
6182
6183 if (info->name_of_main == NULL)
6184 find_main_name ();
6185
6186 return info->language_of_main;
6187 }
6188
6189 /* Handle ``executable_changed'' events for the symtab module. */
6190
6191 static void
6192 symtab_observer_executable_changed (void)
6193 {
6194 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6195 set_main_name (NULL, language_unknown);
6196 }
6197
6198 /* Return 1 if the supplied producer string matches the ARM RealView
6199 compiler (armcc). */
6200
6201 bool
6202 producer_is_realview (const char *producer)
6203 {
6204 static const char *const arm_idents[] = {
6205 "ARM C Compiler, ADS",
6206 "Thumb C Compiler, ADS",
6207 "ARM C++ Compiler, ADS",
6208 "Thumb C++ Compiler, ADS",
6209 "ARM/Thumb C/C++ Compiler, RVCT",
6210 "ARM C/C++ Compiler, RVCT"
6211 };
6212 int i;
6213
6214 if (producer == NULL)
6215 return false;
6216
6217 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6218 if (startswith (producer, arm_idents[i]))
6219 return true;
6220
6221 return false;
6222 }
6223
6224 \f
6225
6226 /* The next index to hand out in response to a registration request. */
6227
6228 static int next_aclass_value = LOC_FINAL_VALUE;
6229
6230 /* The maximum number of "aclass" registrations we support. This is
6231 constant for convenience. */
6232 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6233
6234 /* The objects representing the various "aclass" values. The elements
6235 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6236 elements are those registered at gdb initialization time. */
6237
6238 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6239
6240 /* The globally visible pointer. This is separate from 'symbol_impl'
6241 so that it can be const. */
6242
6243 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6244
6245 /* Make sure we saved enough room in struct symbol. */
6246
6247 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6248
6249 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6250 is the ops vector associated with this index. This returns the new
6251 index, which should be used as the aclass_index field for symbols
6252 of this type. */
6253
6254 int
6255 register_symbol_computed_impl (enum address_class aclass,
6256 const struct symbol_computed_ops *ops)
6257 {
6258 int result = next_aclass_value++;
6259
6260 gdb_assert (aclass == LOC_COMPUTED);
6261 gdb_assert (result < MAX_SYMBOL_IMPLS);
6262 symbol_impl[result].aclass = aclass;
6263 symbol_impl[result].ops_computed = ops;
6264
6265 /* Sanity check OPS. */
6266 gdb_assert (ops != NULL);
6267 gdb_assert (ops->tracepoint_var_ref != NULL);
6268 gdb_assert (ops->describe_location != NULL);
6269 gdb_assert (ops->get_symbol_read_needs != NULL);
6270 gdb_assert (ops->read_variable != NULL);
6271
6272 return result;
6273 }
6274
6275 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6276 OPS is the ops vector associated with this index. This returns the
6277 new index, which should be used as the aclass_index field for symbols
6278 of this type. */
6279
6280 int
6281 register_symbol_block_impl (enum address_class aclass,
6282 const struct symbol_block_ops *ops)
6283 {
6284 int result = next_aclass_value++;
6285
6286 gdb_assert (aclass == LOC_BLOCK);
6287 gdb_assert (result < MAX_SYMBOL_IMPLS);
6288 symbol_impl[result].aclass = aclass;
6289 symbol_impl[result].ops_block = ops;
6290
6291 /* Sanity check OPS. */
6292 gdb_assert (ops != NULL);
6293 gdb_assert (ops->find_frame_base_location != NULL);
6294
6295 return result;
6296 }
6297
6298 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6299 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6300 this index. This returns the new index, which should be used as
6301 the aclass_index field for symbols of this type. */
6302
6303 int
6304 register_symbol_register_impl (enum address_class aclass,
6305 const struct symbol_register_ops *ops)
6306 {
6307 int result = next_aclass_value++;
6308
6309 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6310 gdb_assert (result < MAX_SYMBOL_IMPLS);
6311 symbol_impl[result].aclass = aclass;
6312 symbol_impl[result].ops_register = ops;
6313
6314 return result;
6315 }
6316
6317 /* Initialize elements of 'symbol_impl' for the constants in enum
6318 address_class. */
6319
6320 static void
6321 initialize_ordinary_address_classes (void)
6322 {
6323 int i;
6324
6325 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6326 symbol_impl[i].aclass = (enum address_class) i;
6327 }
6328
6329 \f
6330
6331 /* See symtab.h. */
6332
6333 struct objfile *
6334 symbol_objfile (const struct symbol *symbol)
6335 {
6336 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6337 return SYMTAB_OBJFILE (symbol->owner.symtab);
6338 }
6339
6340 /* See symtab.h. */
6341
6342 struct gdbarch *
6343 symbol_arch (const struct symbol *symbol)
6344 {
6345 if (!SYMBOL_OBJFILE_OWNED (symbol))
6346 return symbol->owner.arch;
6347 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6348 }
6349
6350 /* See symtab.h. */
6351
6352 struct symtab *
6353 symbol_symtab (const struct symbol *symbol)
6354 {
6355 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6356 return symbol->owner.symtab;
6357 }
6358
6359 /* See symtab.h. */
6360
6361 void
6362 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6363 {
6364 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6365 symbol->owner.symtab = symtab;
6366 }
6367
6368 /* See symtab.h. */
6369
6370 CORE_ADDR
6371 get_symbol_address (const struct symbol *sym)
6372 {
6373 gdb_assert (sym->maybe_copied);
6374 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6375
6376 const char *linkage_name = sym->linkage_name ();
6377
6378 for (objfile *objfile : current_program_space->objfiles ())
6379 {
6380 if (objfile->separate_debug_objfile_backlink != nullptr)
6381 continue;
6382
6383 bound_minimal_symbol minsym
6384 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6385 if (minsym.minsym != nullptr)
6386 return BMSYMBOL_VALUE_ADDRESS (minsym);
6387 }
6388 return sym->value.address;
6389 }
6390
6391 /* See symtab.h. */
6392
6393 CORE_ADDR
6394 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6395 {
6396 gdb_assert (minsym->maybe_copied);
6397 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6398
6399 const char *linkage_name = minsym->linkage_name ();
6400
6401 for (objfile *objfile : current_program_space->objfiles ())
6402 {
6403 if (objfile->separate_debug_objfile_backlink == nullptr
6404 && (objfile->flags & OBJF_MAINLINE) != 0)
6405 {
6406 bound_minimal_symbol found
6407 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6408 if (found.minsym != nullptr)
6409 return BMSYMBOL_VALUE_ADDRESS (found);
6410 }
6411 }
6412 return minsym->value.address + objf->section_offsets[minsym->section];
6413 }
6414
6415 \f
6416
6417 /* Hold the sub-commands of 'info module'. */
6418
6419 static struct cmd_list_element *info_module_cmdlist = NULL;
6420
6421 /* See symtab.h. */
6422
6423 std::vector<module_symbol_search>
6424 search_module_symbols (const char *module_regexp, const char *regexp,
6425 const char *type_regexp, search_domain kind)
6426 {
6427 std::vector<module_symbol_search> results;
6428
6429 /* Search for all modules matching MODULE_REGEXP. */
6430 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6431 spec1.set_exclude_minsyms (true);
6432 std::vector<symbol_search> modules = spec1.search ();
6433
6434 /* Now search for all symbols of the required KIND matching the required
6435 regular expressions. We figure out which ones are in which modules
6436 below. */
6437 global_symbol_searcher spec2 (kind, regexp);
6438 spec2.set_symbol_type_regexp (type_regexp);
6439 spec2.set_exclude_minsyms (true);
6440 std::vector<symbol_search> symbols = spec2.search ();
6441
6442 /* Now iterate over all MODULES, checking to see which items from
6443 SYMBOLS are in each module. */
6444 for (const symbol_search &p : modules)
6445 {
6446 QUIT;
6447
6448 /* This is a module. */
6449 gdb_assert (p.symbol != nullptr);
6450
6451 std::string prefix = p.symbol->print_name ();
6452 prefix += "::";
6453
6454 for (const symbol_search &q : symbols)
6455 {
6456 if (q.symbol == nullptr)
6457 continue;
6458
6459 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6460 prefix.size ()) != 0)
6461 continue;
6462
6463 results.push_back ({p, q});
6464 }
6465 }
6466
6467 return results;
6468 }
6469
6470 /* Implement the core of both 'info module functions' and 'info module
6471 variables'. */
6472
6473 static void
6474 info_module_subcommand (bool quiet, const char *module_regexp,
6475 const char *regexp, const char *type_regexp,
6476 search_domain kind)
6477 {
6478 /* Print a header line. Don't build the header line bit by bit as this
6479 prevents internationalisation. */
6480 if (!quiet)
6481 {
6482 if (module_regexp == nullptr)
6483 {
6484 if (type_regexp == nullptr)
6485 {
6486 if (regexp == nullptr)
6487 printf_filtered ((kind == VARIABLES_DOMAIN
6488 ? _("All variables in all modules:")
6489 : _("All functions in all modules:")));
6490 else
6491 printf_filtered
6492 ((kind == VARIABLES_DOMAIN
6493 ? _("All variables matching regular expression"
6494 " \"%s\" in all modules:")
6495 : _("All functions matching regular expression"
6496 " \"%s\" in all modules:")),
6497 regexp);
6498 }
6499 else
6500 {
6501 if (regexp == nullptr)
6502 printf_filtered
6503 ((kind == VARIABLES_DOMAIN
6504 ? _("All variables with type matching regular "
6505 "expression \"%s\" in all modules:")
6506 : _("All functions with type matching regular "
6507 "expression \"%s\" in all modules:")),
6508 type_regexp);
6509 else
6510 printf_filtered
6511 ((kind == VARIABLES_DOMAIN
6512 ? _("All variables matching regular expression "
6513 "\"%s\",\n\twith type matching regular "
6514 "expression \"%s\" in all modules:")
6515 : _("All functions matching regular expression "
6516 "\"%s\",\n\twith type matching regular "
6517 "expression \"%s\" in all modules:")),
6518 regexp, type_regexp);
6519 }
6520 }
6521 else
6522 {
6523 if (type_regexp == nullptr)
6524 {
6525 if (regexp == nullptr)
6526 printf_filtered
6527 ((kind == VARIABLES_DOMAIN
6528 ? _("All variables in all modules matching regular "
6529 "expression \"%s\":")
6530 : _("All functions in all modules matching regular "
6531 "expression \"%s\":")),
6532 module_regexp);
6533 else
6534 printf_filtered
6535 ((kind == VARIABLES_DOMAIN
6536 ? _("All variables matching regular expression "
6537 "\"%s\",\n\tin all modules matching regular "
6538 "expression \"%s\":")
6539 : _("All functions matching regular expression "
6540 "\"%s\",\n\tin all modules matching regular "
6541 "expression \"%s\":")),
6542 regexp, module_regexp);
6543 }
6544 else
6545 {
6546 if (regexp == nullptr)
6547 printf_filtered
6548 ((kind == VARIABLES_DOMAIN
6549 ? _("All variables with type matching regular "
6550 "expression \"%s\"\n\tin all modules matching "
6551 "regular expression \"%s\":")
6552 : _("All functions with type matching regular "
6553 "expression \"%s\"\n\tin all modules matching "
6554 "regular expression \"%s\":")),
6555 type_regexp, module_regexp);
6556 else
6557 printf_filtered
6558 ((kind == VARIABLES_DOMAIN
6559 ? _("All variables matching regular expression "
6560 "\"%s\",\n\twith type matching regular expression "
6561 "\"%s\",\n\tin all modules matching regular "
6562 "expression \"%s\":")
6563 : _("All functions matching regular expression "
6564 "\"%s\",\n\twith type matching regular expression "
6565 "\"%s\",\n\tin all modules matching regular "
6566 "expression \"%s\":")),
6567 regexp, type_regexp, module_regexp);
6568 }
6569 }
6570 printf_filtered ("\n");
6571 }
6572
6573 /* Find all symbols of type KIND matching the given regular expressions
6574 along with the symbols for the modules in which those symbols
6575 reside. */
6576 std::vector<module_symbol_search> module_symbols
6577 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6578
6579 std::sort (module_symbols.begin (), module_symbols.end (),
6580 [] (const module_symbol_search &a, const module_symbol_search &b)
6581 {
6582 if (a.first < b.first)
6583 return true;
6584 else if (a.first == b.first)
6585 return a.second < b.second;
6586 else
6587 return false;
6588 });
6589
6590 const char *last_filename = "";
6591 const symbol *last_module_symbol = nullptr;
6592 for (const module_symbol_search &ms : module_symbols)
6593 {
6594 const symbol_search &p = ms.first;
6595 const symbol_search &q = ms.second;
6596
6597 gdb_assert (q.symbol != nullptr);
6598
6599 if (last_module_symbol != p.symbol)
6600 {
6601 printf_filtered ("\n");
6602 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6603 last_module_symbol = p.symbol;
6604 last_filename = "";
6605 }
6606
6607 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6608 last_filename);
6609 last_filename
6610 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6611 }
6612 }
6613
6614 /* Hold the option values for the 'info module .....' sub-commands. */
6615
6616 struct info_modules_var_func_options
6617 {
6618 bool quiet = false;
6619 char *type_regexp = nullptr;
6620 char *module_regexp = nullptr;
6621
6622 ~info_modules_var_func_options ()
6623 {
6624 xfree (type_regexp);
6625 xfree (module_regexp);
6626 }
6627 };
6628
6629 /* The options used by 'info module variables' and 'info module functions'
6630 commands. */
6631
6632 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6633 gdb::option::boolean_option_def<info_modules_var_func_options> {
6634 "q",
6635 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6636 nullptr, /* show_cmd_cb */
6637 nullptr /* set_doc */
6638 },
6639
6640 gdb::option::string_option_def<info_modules_var_func_options> {
6641 "t",
6642 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6643 nullptr, /* show_cmd_cb */
6644 nullptr /* set_doc */
6645 },
6646
6647 gdb::option::string_option_def<info_modules_var_func_options> {
6648 "m",
6649 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6650 nullptr, /* show_cmd_cb */
6651 nullptr /* set_doc */
6652 }
6653 };
6654
6655 /* Return the option group used by the 'info module ...' sub-commands. */
6656
6657 static inline gdb::option::option_def_group
6658 make_info_modules_var_func_options_def_group
6659 (info_modules_var_func_options *opts)
6660 {
6661 return {{info_modules_var_func_options_defs}, opts};
6662 }
6663
6664 /* Implements the 'info module functions' command. */
6665
6666 static void
6667 info_module_functions_command (const char *args, int from_tty)
6668 {
6669 info_modules_var_func_options opts;
6670 auto grp = make_info_modules_var_func_options_def_group (&opts);
6671 gdb::option::process_options
6672 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6673 if (args != nullptr && *args == '\0')
6674 args = nullptr;
6675
6676 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6677 opts.type_regexp, FUNCTIONS_DOMAIN);
6678 }
6679
6680 /* Implements the 'info module variables' command. */
6681
6682 static void
6683 info_module_variables_command (const char *args, int from_tty)
6684 {
6685 info_modules_var_func_options opts;
6686 auto grp = make_info_modules_var_func_options_def_group (&opts);
6687 gdb::option::process_options
6688 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6689 if (args != nullptr && *args == '\0')
6690 args = nullptr;
6691
6692 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6693 opts.type_regexp, VARIABLES_DOMAIN);
6694 }
6695
6696 /* Command completer for 'info module ...' sub-commands. */
6697
6698 static void
6699 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6700 completion_tracker &tracker,
6701 const char *text,
6702 const char * /* word */)
6703 {
6704
6705 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6706 if (gdb::option::complete_options
6707 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6708 return;
6709
6710 const char *word = advance_to_expression_complete_word_point (tracker, text);
6711 symbol_completer (ignore, tracker, text, word);
6712 }
6713
6714 \f
6715
6716 void _initialize_symtab ();
6717 void
6718 _initialize_symtab ()
6719 {
6720 cmd_list_element *c;
6721
6722 initialize_ordinary_address_classes ();
6723
6724 c = add_info ("variables", info_variables_command,
6725 info_print_args_help (_("\
6726 All global and static variable names or those matching REGEXPs.\n\
6727 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6728 Prints the global and static variables.\n"),
6729 _("global and static variables"),
6730 true));
6731 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6732 if (dbx_commands)
6733 {
6734 c = add_com ("whereis", class_info, info_variables_command,
6735 info_print_args_help (_("\
6736 All global and static variable names, or those matching REGEXPs.\n\
6737 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6738 Prints the global and static variables.\n"),
6739 _("global and static variables"),
6740 true));
6741 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6742 }
6743
6744 c = add_info ("functions", info_functions_command,
6745 info_print_args_help (_("\
6746 All function names or those matching REGEXPs.\n\
6747 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6748 Prints the functions.\n"),
6749 _("functions"),
6750 true));
6751 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6752
6753 c = add_info ("types", info_types_command, _("\
6754 All type names, or those matching REGEXP.\n\
6755 Usage: info types [-q] [REGEXP]\n\
6756 Print information about all types matching REGEXP, or all types if no\n\
6757 REGEXP is given. The optional flag -q disables printing of headers."));
6758 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6759
6760 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6761
6762 static std::string info_sources_help
6763 = gdb::option::build_help (_("\
6764 All source files in the program or those matching REGEXP.\n\
6765 Usage: info sources [OPTION]... [REGEXP]\n\
6766 By default, REGEXP is used to match anywhere in the filename.\n\
6767 \n\
6768 Options:\n\
6769 %OPTIONS%"),
6770 info_sources_opts);
6771
6772 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6773 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6774
6775 c = add_info ("modules", info_modules_command,
6776 _("All module names, or those matching REGEXP."));
6777 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6778
6779 add_basic_prefix_cmd ("module", class_info, _("\
6780 Print information about modules."),
6781 &info_module_cmdlist, "info module ",
6782 0, &infolist);
6783
6784 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6785 Display functions arranged by modules.\n\
6786 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6787 Print a summary of all functions within each Fortran module, grouped by\n\
6788 module and file. For each function the line on which the function is\n\
6789 defined is given along with the type signature and name of the function.\n\
6790 \n\
6791 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6792 listed. If MODREGEXP is provided then only functions in modules matching\n\
6793 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6794 type signature matches TYPEREGEXP are listed.\n\
6795 \n\
6796 The -q flag suppresses printing some header information."),
6797 &info_module_cmdlist);
6798 set_cmd_completer_handle_brkchars
6799 (c, info_module_var_func_command_completer);
6800
6801 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6802 Display variables arranged by modules.\n\
6803 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6804 Print a summary of all variables within each Fortran module, grouped by\n\
6805 module and file. For each variable the line on which the variable is\n\
6806 defined is given along with the type and name of the variable.\n\
6807 \n\
6808 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6809 listed. If MODREGEXP is provided then only variables in modules matching\n\
6810 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6811 type matches TYPEREGEXP are listed.\n\
6812 \n\
6813 The -q flag suppresses printing some header information."),
6814 &info_module_cmdlist);
6815 set_cmd_completer_handle_brkchars
6816 (c, info_module_var_func_command_completer);
6817
6818 add_com ("rbreak", class_breakpoint, rbreak_command,
6819 _("Set a breakpoint for all functions matching REGEXP."));
6820
6821 add_setshow_enum_cmd ("multiple-symbols", no_class,
6822 multiple_symbols_modes, &multiple_symbols_mode,
6823 _("\
6824 Set how the debugger handles ambiguities in expressions."), _("\
6825 Show how the debugger handles ambiguities in expressions."), _("\
6826 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6827 NULL, NULL, &setlist, &showlist);
6828
6829 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6830 &basenames_may_differ, _("\
6831 Set whether a source file may have multiple base names."), _("\
6832 Show whether a source file may have multiple base names."), _("\
6833 (A \"base name\" is the name of a file with the directory part removed.\n\
6834 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6835 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6836 before comparing them. Canonicalization is an expensive operation,\n\
6837 but it allows the same file be known by more than one base name.\n\
6838 If not set (the default), all source files are assumed to have just\n\
6839 one base name, and gdb will do file name comparisons more efficiently."),
6840 NULL, NULL,
6841 &setlist, &showlist);
6842
6843 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6844 _("Set debugging of symbol table creation."),
6845 _("Show debugging of symbol table creation."), _("\
6846 When enabled (non-zero), debugging messages are printed when building\n\
6847 symbol tables. A value of 1 (one) normally provides enough information.\n\
6848 A value greater than 1 provides more verbose information."),
6849 NULL,
6850 NULL,
6851 &setdebuglist, &showdebuglist);
6852
6853 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6854 _("\
6855 Set debugging of symbol lookup."), _("\
6856 Show debugging of symbol lookup."), _("\
6857 When enabled (non-zero), symbol lookups are logged."),
6858 NULL, NULL,
6859 &setdebuglist, &showdebuglist);
6860
6861 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6862 &new_symbol_cache_size,
6863 _("Set the size of the symbol cache."),
6864 _("Show the size of the symbol cache."), _("\
6865 The size of the symbol cache.\n\
6866 If zero then the symbol cache is disabled."),
6867 set_symbol_cache_size_handler, NULL,
6868 &maintenance_set_cmdlist,
6869 &maintenance_show_cmdlist);
6870
6871 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6872 _("Dump the symbol cache for each program space."),
6873 &maintenanceprintlist);
6874
6875 add_cmd ("symbol-cache-statistics", class_maintenance,
6876 maintenance_print_symbol_cache_statistics,
6877 _("Print symbol cache statistics for each program space."),
6878 &maintenanceprintlist);
6879
6880 add_cmd ("flush-symbol-cache", class_maintenance,
6881 maintenance_flush_symbol_cache,
6882 _("Flush the symbol cache for each program space."),
6883 &maintenancelist);
6884
6885 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6886 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6887 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6888 }
This page took 0.180454 seconds and 4 git commands to generate.