Replace most calls to help_list and cmd_show_list
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717 {
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736 }
737
738 /* Functions to initialize a symbol's mangled name. */
739
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
742 {
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749 };
750
751 /* Hash function for the demangled name hash. */
752
753 static hashval_t
754 hash_demangled_name_entry (const void *data)
755 {
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760 }
761
762 /* Equality function for the demangled name hash. */
763
764 static int
765 eq_demangled_name_entry (const void *a, const void *b)
766 {
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773 }
774
775 static void
776 free_demangled_name_entry (void *data)
777 {
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782 }
783
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788 static void
789 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790 {
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809 }
810
811 /* See symtab.h */
812
813 char *
814 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816 {
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844 }
845
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857 void
858 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
859 bool copy_name,
860 objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862 {
863 struct demangled_name_entry **slot;
864
865 if (language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 m_name = linkage_name.data ();
871 else
872 m_name = obstack_strndup (&per_bfd->storage_obstack,
873 linkage_name.data (),
874 linkage_name.length ());
875 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
876
877 return;
878 }
879
880 if (per_bfd->demangled_names_hash == NULL)
881 create_demangled_names_hash (per_bfd);
882
883 struct demangled_name_entry entry (linkage_name);
884 if (!hash.has_value ())
885 hash = hash_demangled_name_entry (&entry);
886 slot = ((struct demangled_name_entry **)
887 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
888 &entry, *hash, INSERT));
889
890 /* The const_cast is safe because the only reason it is already
891 initialized is if we purposefully set it from a background
892 thread to avoid doing the work here. However, it is still
893 allocated from the heap and needs to be freed by us, just
894 like if we called symbol_find_demangled_name here. If this is
895 nullptr, we call symbol_find_demangled_name below, but we put
896 this smart pointer here to be sure that we don't leak this name. */
897 gdb::unique_xmalloc_ptr<char> demangled_name
898 (const_cast<char *> (language_specific.demangled_name));
899
900 /* If this name is not in the hash table, add it. */
901 if (*slot == NULL
902 /* A C version of the symbol may have already snuck into the table.
903 This happens to, e.g., main.init (__go_init_main). Cope. */
904 || (language () == language_go && (*slot)->demangled == nullptr))
905 {
906 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
907 to true if the string might not be nullterminated. We have to make
908 this copy because demangling needs a nullterminated string. */
909 gdb::string_view linkage_name_copy;
910 if (copy_name)
911 {
912 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
913 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
914 alloc_name[linkage_name.length ()] = '\0';
915
916 linkage_name_copy = gdb::string_view (alloc_name,
917 linkage_name.length ());
918 }
919 else
920 linkage_name_copy = linkage_name;
921
922 if (demangled_name.get () == nullptr)
923 demangled_name.reset
924 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
925
926 /* Suppose we have demangled_name==NULL, copy_name==0, and
927 linkage_name_copy==linkage_name. In this case, we already have the
928 mangled name saved, and we don't have a demangled name. So,
929 you might think we could save a little space by not recording
930 this in the hash table at all.
931
932 It turns out that it is actually important to still save such
933 an entry in the hash table, because storing this name gives
934 us better bcache hit rates for partial symbols. */
935 if (!copy_name)
936 {
937 *slot
938 = ((struct demangled_name_entry *)
939 obstack_alloc (&per_bfd->storage_obstack,
940 sizeof (demangled_name_entry)));
941 new (*slot) demangled_name_entry (linkage_name);
942 }
943 else
944 {
945 /* If we must copy the mangled name, put it directly after
946 the struct so we can have a single allocation. */
947 *slot
948 = ((struct demangled_name_entry *)
949 obstack_alloc (&per_bfd->storage_obstack,
950 sizeof (demangled_name_entry)
951 + linkage_name.length () + 1));
952 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
953 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
954 mangled_ptr [linkage_name.length ()] = '\0';
955 new (*slot) demangled_name_entry
956 (gdb::string_view (mangled_ptr, linkage_name.length ()));
957 }
958 (*slot)->demangled = std::move (demangled_name);
959 (*slot)->language = language ();
960 }
961 else if (language () == language_unknown || language () == language_auto)
962 m_language = (*slot)->language;
963
964 m_name = (*slot)->mangled.data ();
965 symbol_set_demangled_name (this, (*slot)->demangled.get (),
966 &per_bfd->storage_obstack);
967 }
968
969 /* See symtab.h. */
970
971 const char *
972 general_symbol_info::natural_name () const
973 {
974 switch (language ())
975 {
976 case language_cplus:
977 case language_d:
978 case language_go:
979 case language_objc:
980 case language_fortran:
981 if (symbol_get_demangled_name (this) != NULL)
982 return symbol_get_demangled_name (this);
983 break;
984 case language_ada:
985 return ada_decode_symbol (this);
986 default:
987 break;
988 }
989 return linkage_name ();
990 }
991
992 /* See symtab.h. */
993
994 const char *
995 general_symbol_info::demangled_name () const
996 {
997 const char *dem_name = NULL;
998
999 switch (language ())
1000 {
1001 case language_cplus:
1002 case language_d:
1003 case language_go:
1004 case language_objc:
1005 case language_fortran:
1006 dem_name = symbol_get_demangled_name (this);
1007 break;
1008 case language_ada:
1009 dem_name = ada_decode_symbol (this);
1010 break;
1011 default:
1012 break;
1013 }
1014 return dem_name;
1015 }
1016
1017 /* See symtab.h. */
1018
1019 const char *
1020 general_symbol_info::search_name () const
1021 {
1022 if (language () == language_ada)
1023 return linkage_name ();
1024 else
1025 return natural_name ();
1026 }
1027
1028 /* See symtab.h. */
1029
1030 bool
1031 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1032 const lookup_name_info &name)
1033 {
1034 symbol_name_matcher_ftype *name_match
1035 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1036 return name_match (gsymbol->search_name (), name, NULL);
1037 }
1038
1039 \f
1040
1041 /* Return true if the two sections are the same, or if they could
1042 plausibly be copies of each other, one in an original object
1043 file and another in a separated debug file. */
1044
1045 bool
1046 matching_obj_sections (struct obj_section *obj_first,
1047 struct obj_section *obj_second)
1048 {
1049 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1050 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1051
1052 /* If they're the same section, then they match. */
1053 if (first == second)
1054 return true;
1055
1056 /* If either is NULL, give up. */
1057 if (first == NULL || second == NULL)
1058 return false;
1059
1060 /* This doesn't apply to absolute symbols. */
1061 if (first->owner == NULL || second->owner == NULL)
1062 return false;
1063
1064 /* If they're in the same object file, they must be different sections. */
1065 if (first->owner == second->owner)
1066 return false;
1067
1068 /* Check whether the two sections are potentially corresponding. They must
1069 have the same size, address, and name. We can't compare section indexes,
1070 which would be more reliable, because some sections may have been
1071 stripped. */
1072 if (bfd_section_size (first) != bfd_section_size (second))
1073 return false;
1074
1075 /* In-memory addresses may start at a different offset, relativize them. */
1076 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1077 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1078 return false;
1079
1080 if (bfd_section_name (first) == NULL
1081 || bfd_section_name (second) == NULL
1082 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1083 return false;
1084
1085 /* Otherwise check that they are in corresponding objfiles. */
1086
1087 struct objfile *obj = NULL;
1088 for (objfile *objfile : current_program_space->objfiles ())
1089 if (objfile->obfd == first->owner)
1090 {
1091 obj = objfile;
1092 break;
1093 }
1094 gdb_assert (obj != NULL);
1095
1096 if (obj->separate_debug_objfile != NULL
1097 && obj->separate_debug_objfile->obfd == second->owner)
1098 return true;
1099 if (obj->separate_debug_objfile_backlink != NULL
1100 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1101 return true;
1102
1103 return false;
1104 }
1105
1106 /* See symtab.h. */
1107
1108 void
1109 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1110 {
1111 struct bound_minimal_symbol msymbol;
1112
1113 /* If we know that this is not a text address, return failure. This is
1114 necessary because we loop based on texthigh and textlow, which do
1115 not include the data ranges. */
1116 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1117 if (msymbol.minsym && msymbol.minsym->data_p ())
1118 return;
1119
1120 for (objfile *objfile : current_program_space->objfiles ())
1121 {
1122 struct compunit_symtab *cust = NULL;
1123
1124 if (objfile->sf)
1125 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1126 pc, section, 0);
1127 if (cust)
1128 return;
1129 }
1130 }
1131 \f
1132 /* Hash function for the symbol cache. */
1133
1134 static unsigned int
1135 hash_symbol_entry (const struct objfile *objfile_context,
1136 const char *name, domain_enum domain)
1137 {
1138 unsigned int hash = (uintptr_t) objfile_context;
1139
1140 if (name != NULL)
1141 hash += htab_hash_string (name);
1142
1143 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1144 to map to the same slot. */
1145 if (domain == STRUCT_DOMAIN)
1146 hash += VAR_DOMAIN * 7;
1147 else
1148 hash += domain * 7;
1149
1150 return hash;
1151 }
1152
1153 /* Equality function for the symbol cache. */
1154
1155 static int
1156 eq_symbol_entry (const struct symbol_cache_slot *slot,
1157 const struct objfile *objfile_context,
1158 const char *name, domain_enum domain)
1159 {
1160 const char *slot_name;
1161 domain_enum slot_domain;
1162
1163 if (slot->state == SYMBOL_SLOT_UNUSED)
1164 return 0;
1165
1166 if (slot->objfile_context != objfile_context)
1167 return 0;
1168
1169 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1170 {
1171 slot_name = slot->value.not_found.name;
1172 slot_domain = slot->value.not_found.domain;
1173 }
1174 else
1175 {
1176 slot_name = slot->value.found.symbol->search_name ();
1177 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1178 }
1179
1180 /* NULL names match. */
1181 if (slot_name == NULL && name == NULL)
1182 {
1183 /* But there's no point in calling symbol_matches_domain in the
1184 SYMBOL_SLOT_FOUND case. */
1185 if (slot_domain != domain)
1186 return 0;
1187 }
1188 else if (slot_name != NULL && name != NULL)
1189 {
1190 /* It's important that we use the same comparison that was done
1191 the first time through. If the slot records a found symbol,
1192 then this means using the symbol name comparison function of
1193 the symbol's language with symbol->search_name (). See
1194 dictionary.c. It also means using symbol_matches_domain for
1195 found symbols. See block.c.
1196
1197 If the slot records a not-found symbol, then require a precise match.
1198 We could still be lax with whitespace like strcmp_iw though. */
1199
1200 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1201 {
1202 if (strcmp (slot_name, name) != 0)
1203 return 0;
1204 if (slot_domain != domain)
1205 return 0;
1206 }
1207 else
1208 {
1209 struct symbol *sym = slot->value.found.symbol;
1210 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1211
1212 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1213 return 0;
1214
1215 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1216 return 0;
1217 }
1218 }
1219 else
1220 {
1221 /* Only one name is NULL. */
1222 return 0;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Given a cache of size SIZE, return the size of the struct (with variable
1229 length array) in bytes. */
1230
1231 static size_t
1232 symbol_cache_byte_size (unsigned int size)
1233 {
1234 return (sizeof (struct block_symbol_cache)
1235 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1236 }
1237
1238 /* Resize CACHE. */
1239
1240 static void
1241 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1242 {
1243 /* If there's no change in size, don't do anything.
1244 All caches have the same size, so we can just compare with the size
1245 of the global symbols cache. */
1246 if ((cache->global_symbols != NULL
1247 && cache->global_symbols->size == new_size)
1248 || (cache->global_symbols == NULL
1249 && new_size == 0))
1250 return;
1251
1252 destroy_block_symbol_cache (cache->global_symbols);
1253 destroy_block_symbol_cache (cache->static_symbols);
1254
1255 if (new_size == 0)
1256 {
1257 cache->global_symbols = NULL;
1258 cache->static_symbols = NULL;
1259 }
1260 else
1261 {
1262 size_t total_size = symbol_cache_byte_size (new_size);
1263
1264 cache->global_symbols
1265 = (struct block_symbol_cache *) xcalloc (1, total_size);
1266 cache->static_symbols
1267 = (struct block_symbol_cache *) xcalloc (1, total_size);
1268 cache->global_symbols->size = new_size;
1269 cache->static_symbols->size = new_size;
1270 }
1271 }
1272
1273 /* Return the symbol cache of PSPACE.
1274 Create one if it doesn't exist yet. */
1275
1276 static struct symbol_cache *
1277 get_symbol_cache (struct program_space *pspace)
1278 {
1279 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1280
1281 if (cache == NULL)
1282 {
1283 cache = symbol_cache_key.emplace (pspace);
1284 resize_symbol_cache (cache, symbol_cache_size);
1285 }
1286
1287 return cache;
1288 }
1289
1290 /* Set the size of the symbol cache in all program spaces. */
1291
1292 static void
1293 set_symbol_cache_size (unsigned int new_size)
1294 {
1295 struct program_space *pspace;
1296
1297 ALL_PSPACES (pspace)
1298 {
1299 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1300
1301 /* The pspace could have been created but not have a cache yet. */
1302 if (cache != NULL)
1303 resize_symbol_cache (cache, new_size);
1304 }
1305 }
1306
1307 /* Called when symbol-cache-size is set. */
1308
1309 static void
1310 set_symbol_cache_size_handler (const char *args, int from_tty,
1311 struct cmd_list_element *c)
1312 {
1313 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1314 {
1315 /* Restore the previous value.
1316 This is the value the "show" command prints. */
1317 new_symbol_cache_size = symbol_cache_size;
1318
1319 error (_("Symbol cache size is too large, max is %u."),
1320 MAX_SYMBOL_CACHE_SIZE);
1321 }
1322 symbol_cache_size = new_symbol_cache_size;
1323
1324 set_symbol_cache_size (symbol_cache_size);
1325 }
1326
1327 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1328 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1329 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1330 failed (and thus this one will too), or NULL if the symbol is not present
1331 in the cache.
1332 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1333 can be used to save the result of a full lookup attempt. */
1334
1335 static struct block_symbol
1336 symbol_cache_lookup (struct symbol_cache *cache,
1337 struct objfile *objfile_context, enum block_enum block,
1338 const char *name, domain_enum domain,
1339 struct block_symbol_cache **bsc_ptr,
1340 struct symbol_cache_slot **slot_ptr)
1341 {
1342 struct block_symbol_cache *bsc;
1343 unsigned int hash;
1344 struct symbol_cache_slot *slot;
1345
1346 if (block == GLOBAL_BLOCK)
1347 bsc = cache->global_symbols;
1348 else
1349 bsc = cache->static_symbols;
1350 if (bsc == NULL)
1351 {
1352 *bsc_ptr = NULL;
1353 *slot_ptr = NULL;
1354 return {};
1355 }
1356
1357 hash = hash_symbol_entry (objfile_context, name, domain);
1358 slot = bsc->symbols + hash % bsc->size;
1359
1360 *bsc_ptr = bsc;
1361 *slot_ptr = slot;
1362
1363 if (eq_symbol_entry (slot, objfile_context, name, domain))
1364 {
1365 if (symbol_lookup_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "%s block symbol cache hit%s for %s, %s\n",
1368 block == GLOBAL_BLOCK ? "Global" : "Static",
1369 slot->state == SYMBOL_SLOT_NOT_FOUND
1370 ? " (not found)" : "",
1371 name, domain_name (domain));
1372 ++bsc->hits;
1373 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1374 return SYMBOL_LOOKUP_FAILED;
1375 return slot->value.found;
1376 }
1377
1378 /* Symbol is not present in the cache. */
1379
1380 if (symbol_lookup_debug)
1381 {
1382 fprintf_unfiltered (gdb_stdlog,
1383 "%s block symbol cache miss for %s, %s\n",
1384 block == GLOBAL_BLOCK ? "Global" : "Static",
1385 name, domain_name (domain));
1386 }
1387 ++bsc->misses;
1388 return {};
1389 }
1390
1391 /* Mark SYMBOL as found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1394 necessarily the objfile the symbol was found in. */
1395
1396 static void
1397 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 struct symbol *symbol,
1401 const struct block *block)
1402 {
1403 if (bsc == NULL)
1404 return;
1405 if (slot->state != SYMBOL_SLOT_UNUSED)
1406 {
1407 ++bsc->collisions;
1408 symbol_cache_clear_slot (slot);
1409 }
1410 slot->state = SYMBOL_SLOT_FOUND;
1411 slot->objfile_context = objfile_context;
1412 slot->value.found.symbol = symbol;
1413 slot->value.found.block = block;
1414 }
1415
1416 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1417 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1418 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1419
1420 static void
1421 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1422 struct symbol_cache_slot *slot,
1423 struct objfile *objfile_context,
1424 const char *name, domain_enum domain)
1425 {
1426 if (bsc == NULL)
1427 return;
1428 if (slot->state != SYMBOL_SLOT_UNUSED)
1429 {
1430 ++bsc->collisions;
1431 symbol_cache_clear_slot (slot);
1432 }
1433 slot->state = SYMBOL_SLOT_NOT_FOUND;
1434 slot->objfile_context = objfile_context;
1435 slot->value.not_found.name = xstrdup (name);
1436 slot->value.not_found.domain = domain;
1437 }
1438
1439 /* Flush the symbol cache of PSPACE. */
1440
1441 static void
1442 symbol_cache_flush (struct program_space *pspace)
1443 {
1444 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1445 int pass;
1446
1447 if (cache == NULL)
1448 return;
1449 if (cache->global_symbols == NULL)
1450 {
1451 gdb_assert (symbol_cache_size == 0);
1452 gdb_assert (cache->static_symbols == NULL);
1453 return;
1454 }
1455
1456 /* If the cache is untouched since the last flush, early exit.
1457 This is important for performance during the startup of a program linked
1458 with 100s (or 1000s) of shared libraries. */
1459 if (cache->global_symbols->misses == 0
1460 && cache->static_symbols->misses == 0)
1461 return;
1462
1463 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1464 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1465
1466 for (pass = 0; pass < 2; ++pass)
1467 {
1468 struct block_symbol_cache *bsc
1469 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1470 unsigned int i;
1471
1472 for (i = 0; i < bsc->size; ++i)
1473 symbol_cache_clear_slot (&bsc->symbols[i]);
1474 }
1475
1476 cache->global_symbols->hits = 0;
1477 cache->global_symbols->misses = 0;
1478 cache->global_symbols->collisions = 0;
1479 cache->static_symbols->hits = 0;
1480 cache->static_symbols->misses = 0;
1481 cache->static_symbols->collisions = 0;
1482 }
1483
1484 /* Dump CACHE. */
1485
1486 static void
1487 symbol_cache_dump (const struct symbol_cache *cache)
1488 {
1489 int pass;
1490
1491 if (cache->global_symbols == NULL)
1492 {
1493 printf_filtered (" <disabled>\n");
1494 return;
1495 }
1496
1497 for (pass = 0; pass < 2; ++pass)
1498 {
1499 const struct block_symbol_cache *bsc
1500 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1501 unsigned int i;
1502
1503 if (pass == 0)
1504 printf_filtered ("Global symbols:\n");
1505 else
1506 printf_filtered ("Static symbols:\n");
1507
1508 for (i = 0; i < bsc->size; ++i)
1509 {
1510 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1511
1512 QUIT;
1513
1514 switch (slot->state)
1515 {
1516 case SYMBOL_SLOT_UNUSED:
1517 break;
1518 case SYMBOL_SLOT_NOT_FOUND:
1519 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1520 host_address_to_string (slot->objfile_context),
1521 slot->value.not_found.name,
1522 domain_name (slot->value.not_found.domain));
1523 break;
1524 case SYMBOL_SLOT_FOUND:
1525 {
1526 struct symbol *found = slot->value.found.symbol;
1527 const struct objfile *context = slot->objfile_context;
1528
1529 printf_filtered (" [%4u] = %s, %s %s\n", i,
1530 host_address_to_string (context),
1531 found->print_name (),
1532 domain_name (SYMBOL_DOMAIN (found)));
1533 break;
1534 }
1535 }
1536 }
1537 }
1538 }
1539
1540 /* The "mt print symbol-cache" command. */
1541
1542 static void
1543 maintenance_print_symbol_cache (const char *args, int from_tty)
1544 {
1545 struct program_space *pspace;
1546
1547 ALL_PSPACES (pspace)
1548 {
1549 struct symbol_cache *cache;
1550
1551 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1552 pspace->num,
1553 pspace->symfile_object_file != NULL
1554 ? objfile_name (pspace->symfile_object_file)
1555 : "(no object file)");
1556
1557 /* If the cache hasn't been created yet, avoid creating one. */
1558 cache = symbol_cache_key.get (pspace);
1559 if (cache == NULL)
1560 printf_filtered (" <empty>\n");
1561 else
1562 symbol_cache_dump (cache);
1563 }
1564 }
1565
1566 /* The "mt flush-symbol-cache" command. */
1567
1568 static void
1569 maintenance_flush_symbol_cache (const char *args, int from_tty)
1570 {
1571 struct program_space *pspace;
1572
1573 ALL_PSPACES (pspace)
1574 {
1575 symbol_cache_flush (pspace);
1576 }
1577 }
1578
1579 /* Print usage statistics of CACHE. */
1580
1581 static void
1582 symbol_cache_stats (struct symbol_cache *cache)
1583 {
1584 int pass;
1585
1586 if (cache->global_symbols == NULL)
1587 {
1588 printf_filtered (" <disabled>\n");
1589 return;
1590 }
1591
1592 for (pass = 0; pass < 2; ++pass)
1593 {
1594 const struct block_symbol_cache *bsc
1595 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1596
1597 QUIT;
1598
1599 if (pass == 0)
1600 printf_filtered ("Global block cache stats:\n");
1601 else
1602 printf_filtered ("Static block cache stats:\n");
1603
1604 printf_filtered (" size: %u\n", bsc->size);
1605 printf_filtered (" hits: %u\n", bsc->hits);
1606 printf_filtered (" misses: %u\n", bsc->misses);
1607 printf_filtered (" collisions: %u\n", bsc->collisions);
1608 }
1609 }
1610
1611 /* The "mt print symbol-cache-statistics" command. */
1612
1613 static void
1614 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1615 {
1616 struct program_space *pspace;
1617
1618 ALL_PSPACES (pspace)
1619 {
1620 struct symbol_cache *cache;
1621
1622 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1623 pspace->num,
1624 pspace->symfile_object_file != NULL
1625 ? objfile_name (pspace->symfile_object_file)
1626 : "(no object file)");
1627
1628 /* If the cache hasn't been created yet, avoid creating one. */
1629 cache = symbol_cache_key.get (pspace);
1630 if (cache == NULL)
1631 printf_filtered (" empty, no stats available\n");
1632 else
1633 symbol_cache_stats (cache);
1634 }
1635 }
1636
1637 /* This module's 'new_objfile' observer. */
1638
1639 static void
1640 symtab_new_objfile_observer (struct objfile *objfile)
1641 {
1642 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1643 symbol_cache_flush (current_program_space);
1644 }
1645
1646 /* This module's 'free_objfile' observer. */
1647
1648 static void
1649 symtab_free_objfile_observer (struct objfile *objfile)
1650 {
1651 symbol_cache_flush (objfile->pspace);
1652 }
1653 \f
1654 /* Debug symbols usually don't have section information. We need to dig that
1655 out of the minimal symbols and stash that in the debug symbol. */
1656
1657 void
1658 fixup_section (struct general_symbol_info *ginfo,
1659 CORE_ADDR addr, struct objfile *objfile)
1660 {
1661 struct minimal_symbol *msym;
1662
1663 /* First, check whether a minimal symbol with the same name exists
1664 and points to the same address. The address check is required
1665 e.g. on PowerPC64, where the minimal symbol for a function will
1666 point to the function descriptor, while the debug symbol will
1667 point to the actual function code. */
1668 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1669 objfile);
1670 if (msym)
1671 ginfo->section = MSYMBOL_SECTION (msym);
1672 else
1673 {
1674 /* Static, function-local variables do appear in the linker
1675 (minimal) symbols, but are frequently given names that won't
1676 be found via lookup_minimal_symbol(). E.g., it has been
1677 observed in frv-uclinux (ELF) executables that a static,
1678 function-local variable named "foo" might appear in the
1679 linker symbols as "foo.6" or "foo.3". Thus, there is no
1680 point in attempting to extend the lookup-by-name mechanism to
1681 handle this case due to the fact that there can be multiple
1682 names.
1683
1684 So, instead, search the section table when lookup by name has
1685 failed. The ``addr'' and ``endaddr'' fields may have already
1686 been relocated. If so, the relocation offset needs to be
1687 subtracted from these values when performing the comparison.
1688 We unconditionally subtract it, because, when no relocation
1689 has been performed, the value will simply be zero.
1690
1691 The address of the symbol whose section we're fixing up HAS
1692 NOT BEEN adjusted (relocated) yet. It can't have been since
1693 the section isn't yet known and knowing the section is
1694 necessary in order to add the correct relocation value. In
1695 other words, we wouldn't even be in this function (attempting
1696 to compute the section) if it were already known.
1697
1698 Note that it is possible to search the minimal symbols
1699 (subtracting the relocation value if necessary) to find the
1700 matching minimal symbol, but this is overkill and much less
1701 efficient. It is not necessary to find the matching minimal
1702 symbol, only its section.
1703
1704 Note that this technique (of doing a section table search)
1705 can fail when unrelocated section addresses overlap. For
1706 this reason, we still attempt a lookup by name prior to doing
1707 a search of the section table. */
1708
1709 struct obj_section *s;
1710 int fallback = -1;
1711
1712 ALL_OBJFILE_OSECTIONS (objfile, s)
1713 {
1714 int idx = s - objfile->sections;
1715 CORE_ADDR offset = objfile->section_offsets[idx];
1716
1717 if (fallback == -1)
1718 fallback = idx;
1719
1720 if (obj_section_addr (s) - offset <= addr
1721 && addr < obj_section_endaddr (s) - offset)
1722 {
1723 ginfo->section = idx;
1724 return;
1725 }
1726 }
1727
1728 /* If we didn't find the section, assume it is in the first
1729 section. If there is no allocated section, then it hardly
1730 matters what we pick, so just pick zero. */
1731 if (fallback == -1)
1732 ginfo->section = 0;
1733 else
1734 ginfo->section = fallback;
1735 }
1736 }
1737
1738 struct symbol *
1739 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1740 {
1741 CORE_ADDR addr;
1742
1743 if (!sym)
1744 return NULL;
1745
1746 if (!SYMBOL_OBJFILE_OWNED (sym))
1747 return sym;
1748
1749 /* We either have an OBJFILE, or we can get at it from the sym's
1750 symtab. Anything else is a bug. */
1751 gdb_assert (objfile || symbol_symtab (sym));
1752
1753 if (objfile == NULL)
1754 objfile = symbol_objfile (sym);
1755
1756 if (SYMBOL_OBJ_SECTION (objfile, sym))
1757 return sym;
1758
1759 /* We should have an objfile by now. */
1760 gdb_assert (objfile);
1761
1762 switch (SYMBOL_CLASS (sym))
1763 {
1764 case LOC_STATIC:
1765 case LOC_LABEL:
1766 addr = SYMBOL_VALUE_ADDRESS (sym);
1767 break;
1768 case LOC_BLOCK:
1769 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1770 break;
1771
1772 default:
1773 /* Nothing else will be listed in the minsyms -- no use looking
1774 it up. */
1775 return sym;
1776 }
1777
1778 fixup_section (sym, addr, objfile);
1779
1780 return sym;
1781 }
1782
1783 /* See symtab.h. */
1784
1785 demangle_for_lookup_info::demangle_for_lookup_info
1786 (const lookup_name_info &lookup_name, language lang)
1787 {
1788 demangle_result_storage storage;
1789
1790 if (lookup_name.ignore_parameters () && lang == language_cplus)
1791 {
1792 gdb::unique_xmalloc_ptr<char> without_params
1793 = cp_remove_params_if_any (lookup_name.c_str (),
1794 lookup_name.completion_mode ());
1795
1796 if (without_params != NULL)
1797 {
1798 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1799 m_demangled_name = demangle_for_lookup (without_params.get (),
1800 lang, storage);
1801 return;
1802 }
1803 }
1804
1805 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1806 m_demangled_name = lookup_name.c_str ();
1807 else
1808 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1809 lang, storage);
1810 }
1811
1812 /* See symtab.h. */
1813
1814 const lookup_name_info &
1815 lookup_name_info::match_any ()
1816 {
1817 /* Lookup any symbol that "" would complete. I.e., this matches all
1818 symbol names. */
1819 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1820 true);
1821
1822 return lookup_name;
1823 }
1824
1825 /* Compute the demangled form of NAME as used by the various symbol
1826 lookup functions. The result can either be the input NAME
1827 directly, or a pointer to a buffer owned by the STORAGE object.
1828
1829 For Ada, this function just returns NAME, unmodified.
1830 Normally, Ada symbol lookups are performed using the encoded name
1831 rather than the demangled name, and so it might seem to make sense
1832 for this function to return an encoded version of NAME.
1833 Unfortunately, we cannot do this, because this function is used in
1834 circumstances where it is not appropriate to try to encode NAME.
1835 For instance, when displaying the frame info, we demangle the name
1836 of each parameter, and then perform a symbol lookup inside our
1837 function using that demangled name. In Ada, certain functions
1838 have internally-generated parameters whose name contain uppercase
1839 characters. Encoding those name would result in those uppercase
1840 characters to become lowercase, and thus cause the symbol lookup
1841 to fail. */
1842
1843 const char *
1844 demangle_for_lookup (const char *name, enum language lang,
1845 demangle_result_storage &storage)
1846 {
1847 /* If we are using C++, D, or Go, demangle the name before doing a
1848 lookup, so we can always binary search. */
1849 if (lang == language_cplus)
1850 {
1851 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854
1855 /* If we were given a non-mangled name, canonicalize it
1856 according to the language (so far only for C++). */
1857 std::string canon = cp_canonicalize_string (name);
1858 if (!canon.empty ())
1859 return storage.swap_string (canon);
1860 }
1861 else if (lang == language_d)
1862 {
1863 char *demangled_name = d_demangle (name, 0);
1864 if (demangled_name != NULL)
1865 return storage.set_malloc_ptr (demangled_name);
1866 }
1867 else if (lang == language_go)
1868 {
1869 char *demangled_name = go_demangle (name, 0);
1870 if (demangled_name != NULL)
1871 return storage.set_malloc_ptr (demangled_name);
1872 }
1873
1874 return name;
1875 }
1876
1877 /* See symtab.h. */
1878
1879 unsigned int
1880 search_name_hash (enum language language, const char *search_name)
1881 {
1882 return language_def (language)->la_search_name_hash (search_name);
1883 }
1884
1885 /* See symtab.h.
1886
1887 This function (or rather its subordinates) have a bunch of loops and
1888 it would seem to be attractive to put in some QUIT's (though I'm not really
1889 sure whether it can run long enough to be really important). But there
1890 are a few calls for which it would appear to be bad news to quit
1891 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1892 that there is C++ code below which can error(), but that probably
1893 doesn't affect these calls since they are looking for a known
1894 variable and thus can probably assume it will never hit the C++
1895 code). */
1896
1897 struct block_symbol
1898 lookup_symbol_in_language (const char *name, const struct block *block,
1899 const domain_enum domain, enum language lang,
1900 struct field_of_this_result *is_a_field_of_this)
1901 {
1902 demangle_result_storage storage;
1903 const char *modified_name = demangle_for_lookup (name, lang, storage);
1904
1905 return lookup_symbol_aux (modified_name,
1906 symbol_name_match_type::FULL,
1907 block, domain, lang,
1908 is_a_field_of_this);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_symbol (const char *name, const struct block *block,
1915 domain_enum domain,
1916 struct field_of_this_result *is_a_field_of_this)
1917 {
1918 return lookup_symbol_in_language (name, block, domain,
1919 current_language->la_language,
1920 is_a_field_of_this);
1921 }
1922
1923 /* See symtab.h. */
1924
1925 struct block_symbol
1926 lookup_symbol_search_name (const char *search_name, const struct block *block,
1927 domain_enum domain)
1928 {
1929 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1930 block, domain, language_asm, NULL);
1931 }
1932
1933 /* See symtab.h. */
1934
1935 struct block_symbol
1936 lookup_language_this (const struct language_defn *lang,
1937 const struct block *block)
1938 {
1939 if (lang->la_name_of_this == NULL || block == NULL)
1940 return {};
1941
1942 if (symbol_lookup_debug > 1)
1943 {
1944 struct objfile *objfile = lookup_objfile_from_block (block);
1945
1946 fprintf_unfiltered (gdb_stdlog,
1947 "lookup_language_this (%s, %s (objfile %s))",
1948 lang->la_name, host_address_to_string (block),
1949 objfile_debug_name (objfile));
1950 }
1951
1952 while (block)
1953 {
1954 struct symbol *sym;
1955
1956 sym = block_lookup_symbol (block, lang->la_name_of_this,
1957 symbol_name_match_type::SEARCH_NAME,
1958 VAR_DOMAIN);
1959 if (sym != NULL)
1960 {
1961 if (symbol_lookup_debug > 1)
1962 {
1963 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1964 sym->print_name (),
1965 host_address_to_string (sym),
1966 host_address_to_string (block));
1967 }
1968 return (struct block_symbol) {sym, block};
1969 }
1970 if (BLOCK_FUNCTION (block))
1971 break;
1972 block = BLOCK_SUPERBLOCK (block);
1973 }
1974
1975 if (symbol_lookup_debug > 1)
1976 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1977 return {};
1978 }
1979
1980 /* Given TYPE, a structure/union,
1981 return 1 if the component named NAME from the ultimate target
1982 structure/union is defined, otherwise, return 0. */
1983
1984 static int
1985 check_field (struct type *type, const char *name,
1986 struct field_of_this_result *is_a_field_of_this)
1987 {
1988 int i;
1989
1990 /* The type may be a stub. */
1991 type = check_typedef (type);
1992
1993 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1994 {
1995 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1996
1997 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1998 {
1999 is_a_field_of_this->type = type;
2000 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2001 return 1;
2002 }
2003 }
2004
2005 /* C++: If it was not found as a data field, then try to return it
2006 as a pointer to a method. */
2007
2008 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2009 {
2010 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2011 {
2012 is_a_field_of_this->type = type;
2013 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2014 return 1;
2015 }
2016 }
2017
2018 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2019 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2020 return 1;
2021
2022 return 0;
2023 }
2024
2025 /* Behave like lookup_symbol except that NAME is the natural name
2026 (e.g., demangled name) of the symbol that we're looking for. */
2027
2028 static struct block_symbol
2029 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2030 const struct block *block,
2031 const domain_enum domain, enum language language,
2032 struct field_of_this_result *is_a_field_of_this)
2033 {
2034 struct block_symbol result;
2035 const struct language_defn *langdef;
2036
2037 if (symbol_lookup_debug)
2038 {
2039 struct objfile *objfile = lookup_objfile_from_block (block);
2040
2041 fprintf_unfiltered (gdb_stdlog,
2042 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2043 name, host_address_to_string (block),
2044 objfile != NULL
2045 ? objfile_debug_name (objfile) : "NULL",
2046 domain_name (domain), language_str (language));
2047 }
2048
2049 /* Make sure we do something sensible with is_a_field_of_this, since
2050 the callers that set this parameter to some non-null value will
2051 certainly use it later. If we don't set it, the contents of
2052 is_a_field_of_this are undefined. */
2053 if (is_a_field_of_this != NULL)
2054 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2055
2056 /* Search specified block and its superiors. Don't search
2057 STATIC_BLOCK or GLOBAL_BLOCK. */
2058
2059 result = lookup_local_symbol (name, match_type, block, domain, language);
2060 if (result.symbol != NULL)
2061 {
2062 if (symbol_lookup_debug)
2063 {
2064 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2065 host_address_to_string (result.symbol));
2066 }
2067 return result;
2068 }
2069
2070 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2071 check to see if NAME is a field of `this'. */
2072
2073 langdef = language_def (language);
2074
2075 /* Don't do this check if we are searching for a struct. It will
2076 not be found by check_field, but will be found by other
2077 means. */
2078 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2079 {
2080 result = lookup_language_this (langdef, block);
2081
2082 if (result.symbol)
2083 {
2084 struct type *t = result.symbol->type;
2085
2086 /* I'm not really sure that type of this can ever
2087 be typedefed; just be safe. */
2088 t = check_typedef (t);
2089 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2090 t = TYPE_TARGET_TYPE (t);
2091
2092 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2093 && TYPE_CODE (t) != TYPE_CODE_UNION)
2094 error (_("Internal error: `%s' is not an aggregate"),
2095 langdef->la_name_of_this);
2096
2097 if (check_field (t, name, is_a_field_of_this))
2098 {
2099 if (symbol_lookup_debug)
2100 {
2101 fprintf_unfiltered (gdb_stdlog,
2102 "lookup_symbol_aux (...) = NULL\n");
2103 }
2104 return {};
2105 }
2106 }
2107 }
2108
2109 /* Now do whatever is appropriate for LANGUAGE to look
2110 up static and global variables. */
2111
2112 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2113 if (result.symbol != NULL)
2114 {
2115 if (symbol_lookup_debug)
2116 {
2117 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2118 host_address_to_string (result.symbol));
2119 }
2120 return result;
2121 }
2122
2123 /* Now search all static file-level symbols. Not strictly correct,
2124 but more useful than an error. */
2125
2126 result = lookup_static_symbol (name, domain);
2127 if (symbol_lookup_debug)
2128 {
2129 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2130 result.symbol != NULL
2131 ? host_address_to_string (result.symbol)
2132 : "NULL");
2133 }
2134 return result;
2135 }
2136
2137 /* Check to see if the symbol is defined in BLOCK or its superiors.
2138 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2139
2140 static struct block_symbol
2141 lookup_local_symbol (const char *name,
2142 symbol_name_match_type match_type,
2143 const struct block *block,
2144 const domain_enum domain,
2145 enum language language)
2146 {
2147 struct symbol *sym;
2148 const struct block *static_block = block_static_block (block);
2149 const char *scope = block_scope (block);
2150
2151 /* Check if either no block is specified or it's a global block. */
2152
2153 if (static_block == NULL)
2154 return {};
2155
2156 while (block != static_block)
2157 {
2158 sym = lookup_symbol_in_block (name, match_type, block, domain);
2159 if (sym != NULL)
2160 return (struct block_symbol) {sym, block};
2161
2162 if (language == language_cplus || language == language_fortran)
2163 {
2164 struct block_symbol blocksym
2165 = cp_lookup_symbol_imports_or_template (scope, name, block,
2166 domain);
2167
2168 if (blocksym.symbol != NULL)
2169 return blocksym;
2170 }
2171
2172 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2173 break;
2174 block = BLOCK_SUPERBLOCK (block);
2175 }
2176
2177 /* We've reached the end of the function without finding a result. */
2178
2179 return {};
2180 }
2181
2182 /* See symtab.h. */
2183
2184 struct objfile *
2185 lookup_objfile_from_block (const struct block *block)
2186 {
2187 if (block == NULL)
2188 return NULL;
2189
2190 block = block_global_block (block);
2191 /* Look through all blockvectors. */
2192 for (objfile *obj : current_program_space->objfiles ())
2193 {
2194 for (compunit_symtab *cust : obj->compunits ())
2195 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2196 GLOBAL_BLOCK))
2197 {
2198 if (obj->separate_debug_objfile_backlink)
2199 obj = obj->separate_debug_objfile_backlink;
2200
2201 return obj;
2202 }
2203 }
2204
2205 return NULL;
2206 }
2207
2208 /* See symtab.h. */
2209
2210 struct symbol *
2211 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2212 const struct block *block,
2213 const domain_enum domain)
2214 {
2215 struct symbol *sym;
2216
2217 if (symbol_lookup_debug > 1)
2218 {
2219 struct objfile *objfile = lookup_objfile_from_block (block);
2220
2221 fprintf_unfiltered (gdb_stdlog,
2222 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2223 name, host_address_to_string (block),
2224 objfile_debug_name (objfile),
2225 domain_name (domain));
2226 }
2227
2228 sym = block_lookup_symbol (block, name, match_type, domain);
2229 if (sym)
2230 {
2231 if (symbol_lookup_debug > 1)
2232 {
2233 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2234 host_address_to_string (sym));
2235 }
2236 return fixup_symbol_section (sym, NULL);
2237 }
2238
2239 if (symbol_lookup_debug > 1)
2240 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2241 return NULL;
2242 }
2243
2244 /* See symtab.h. */
2245
2246 struct block_symbol
2247 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2248 enum block_enum block_index,
2249 const char *name,
2250 const domain_enum domain)
2251 {
2252 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2253
2254 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2255 {
2256 struct block_symbol result
2257 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2258
2259 if (result.symbol != nullptr)
2260 return result;
2261 }
2262
2263 return {};
2264 }
2265
2266 /* Check to see if the symbol is defined in one of the OBJFILE's
2267 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2268 depending on whether or not we want to search global symbols or
2269 static symbols. */
2270
2271 static struct block_symbol
2272 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2273 enum block_enum block_index, const char *name,
2274 const domain_enum domain)
2275 {
2276 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2277
2278 if (symbol_lookup_debug > 1)
2279 {
2280 fprintf_unfiltered (gdb_stdlog,
2281 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2282 objfile_debug_name (objfile),
2283 block_index == GLOBAL_BLOCK
2284 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2285 name, domain_name (domain));
2286 }
2287
2288 for (compunit_symtab *cust : objfile->compunits ())
2289 {
2290 const struct blockvector *bv;
2291 const struct block *block;
2292 struct block_symbol result;
2293
2294 bv = COMPUNIT_BLOCKVECTOR (cust);
2295 block = BLOCKVECTOR_BLOCK (bv, block_index);
2296 result.symbol = block_lookup_symbol_primary (block, name, domain);
2297 result.block = block;
2298 if (result.symbol != NULL)
2299 {
2300 if (symbol_lookup_debug > 1)
2301 {
2302 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2303 host_address_to_string (result.symbol),
2304 host_address_to_string (block));
2305 }
2306 result.symbol = fixup_symbol_section (result.symbol, objfile);
2307 return result;
2308
2309 }
2310 }
2311
2312 if (symbol_lookup_debug > 1)
2313 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2314 return {};
2315 }
2316
2317 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2318 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2319 and all associated separate debug objfiles.
2320
2321 Normally we only look in OBJFILE, and not any separate debug objfiles
2322 because the outer loop will cause them to be searched too. This case is
2323 different. Here we're called from search_symbols where it will only
2324 call us for the objfile that contains a matching minsym. */
2325
2326 static struct block_symbol
2327 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2328 const char *linkage_name,
2329 domain_enum domain)
2330 {
2331 enum language lang = current_language->la_language;
2332 struct objfile *main_objfile;
2333
2334 demangle_result_storage storage;
2335 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2336
2337 if (objfile->separate_debug_objfile_backlink)
2338 main_objfile = objfile->separate_debug_objfile_backlink;
2339 else
2340 main_objfile = objfile;
2341
2342 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2343 {
2344 struct block_symbol result;
2345
2346 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2347 modified_name, domain);
2348 if (result.symbol == NULL)
2349 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2350 modified_name, domain);
2351 if (result.symbol != NULL)
2352 return result;
2353 }
2354
2355 return {};
2356 }
2357
2358 /* A helper function that throws an exception when a symbol was found
2359 in a psymtab but not in a symtab. */
2360
2361 static void ATTRIBUTE_NORETURN
2362 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2363 struct compunit_symtab *cust)
2364 {
2365 error (_("\
2366 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2367 %s may be an inlined function, or may be a template function\n \
2368 (if a template, try specifying an instantiation: %s<type>)."),
2369 block_index == GLOBAL_BLOCK ? "global" : "static",
2370 name,
2371 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2372 name, name);
2373 }
2374
2375 /* A helper function for various lookup routines that interfaces with
2376 the "quick" symbol table functions. */
2377
2378 static struct block_symbol
2379 lookup_symbol_via_quick_fns (struct objfile *objfile,
2380 enum block_enum block_index, const char *name,
2381 const domain_enum domain)
2382 {
2383 struct compunit_symtab *cust;
2384 const struct blockvector *bv;
2385 const struct block *block;
2386 struct block_symbol result;
2387
2388 if (!objfile->sf)
2389 return {};
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2395 objfile_debug_name (objfile),
2396 block_index == GLOBAL_BLOCK
2397 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2398 name, domain_name (domain));
2399 }
2400
2401 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2402 if (cust == NULL)
2403 {
2404 if (symbol_lookup_debug > 1)
2405 {
2406 fprintf_unfiltered (gdb_stdlog,
2407 "lookup_symbol_via_quick_fns (...) = NULL\n");
2408 }
2409 return {};
2410 }
2411
2412 bv = COMPUNIT_BLOCKVECTOR (cust);
2413 block = BLOCKVECTOR_BLOCK (bv, block_index);
2414 result.symbol = block_lookup_symbol (block, name,
2415 symbol_name_match_type::FULL, domain);
2416 if (result.symbol == NULL)
2417 error_in_psymtab_expansion (block_index, name, cust);
2418
2419 if (symbol_lookup_debug > 1)
2420 {
2421 fprintf_unfiltered (gdb_stdlog,
2422 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2423 host_address_to_string (result.symbol),
2424 host_address_to_string (block));
2425 }
2426
2427 result.symbol = fixup_symbol_section (result.symbol, objfile);
2428 result.block = block;
2429 return result;
2430 }
2431
2432 /* See symtab.h. */
2433
2434 struct block_symbol
2435 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2436 const char *name,
2437 const struct block *block,
2438 const domain_enum domain)
2439 {
2440 struct block_symbol result;
2441
2442 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2443 the current objfile. Searching the current objfile first is useful
2444 for both matching user expectations as well as performance. */
2445
2446 result = lookup_symbol_in_static_block (name, block, domain);
2447 if (result.symbol != NULL)
2448 return result;
2449
2450 /* If we didn't find a definition for a builtin type in the static block,
2451 search for it now. This is actually the right thing to do and can be
2452 a massive performance win. E.g., when debugging a program with lots of
2453 shared libraries we could search all of them only to find out the
2454 builtin type isn't defined in any of them. This is common for types
2455 like "void". */
2456 if (domain == VAR_DOMAIN)
2457 {
2458 struct gdbarch *gdbarch;
2459
2460 if (block == NULL)
2461 gdbarch = target_gdbarch ();
2462 else
2463 gdbarch = block_gdbarch (block);
2464 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2465 gdbarch, name);
2466 result.block = NULL;
2467 if (result.symbol != NULL)
2468 return result;
2469 }
2470
2471 return lookup_global_symbol (name, block, domain);
2472 }
2473
2474 /* See symtab.h. */
2475
2476 struct block_symbol
2477 lookup_symbol_in_static_block (const char *name,
2478 const struct block *block,
2479 const domain_enum domain)
2480 {
2481 const struct block *static_block = block_static_block (block);
2482 struct symbol *sym;
2483
2484 if (static_block == NULL)
2485 return {};
2486
2487 if (symbol_lookup_debug)
2488 {
2489 struct objfile *objfile = lookup_objfile_from_block (static_block);
2490
2491 fprintf_unfiltered (gdb_stdlog,
2492 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2493 " %s)\n",
2494 name,
2495 host_address_to_string (block),
2496 objfile_debug_name (objfile),
2497 domain_name (domain));
2498 }
2499
2500 sym = lookup_symbol_in_block (name,
2501 symbol_name_match_type::FULL,
2502 static_block, domain);
2503 if (symbol_lookup_debug)
2504 {
2505 fprintf_unfiltered (gdb_stdlog,
2506 "lookup_symbol_in_static_block (...) = %s\n",
2507 sym != NULL ? host_address_to_string (sym) : "NULL");
2508 }
2509 return (struct block_symbol) {sym, static_block};
2510 }
2511
2512 /* Perform the standard symbol lookup of NAME in OBJFILE:
2513 1) First search expanded symtabs, and if not found
2514 2) Search the "quick" symtabs (partial or .gdb_index).
2515 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2516
2517 static struct block_symbol
2518 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2519 const char *name, const domain_enum domain)
2520 {
2521 struct block_symbol result;
2522
2523 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2524
2525 if (symbol_lookup_debug)
2526 {
2527 fprintf_unfiltered (gdb_stdlog,
2528 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2529 objfile_debug_name (objfile),
2530 block_index == GLOBAL_BLOCK
2531 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2532 name, domain_name (domain));
2533 }
2534
2535 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2536 name, domain);
2537 if (result.symbol != NULL)
2538 {
2539 if (symbol_lookup_debug)
2540 {
2541 fprintf_unfiltered (gdb_stdlog,
2542 "lookup_symbol_in_objfile (...) = %s"
2543 " (in symtabs)\n",
2544 host_address_to_string (result.symbol));
2545 }
2546 return result;
2547 }
2548
2549 result = lookup_symbol_via_quick_fns (objfile, block_index,
2550 name, domain);
2551 if (symbol_lookup_debug)
2552 {
2553 fprintf_unfiltered (gdb_stdlog,
2554 "lookup_symbol_in_objfile (...) = %s%s\n",
2555 result.symbol != NULL
2556 ? host_address_to_string (result.symbol)
2557 : "NULL",
2558 result.symbol != NULL ? " (via quick fns)" : "");
2559 }
2560 return result;
2561 }
2562
2563 /* Find the language for partial symbol with NAME. */
2564
2565 static enum language
2566 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2567 {
2568 for (objfile *objfile : current_program_space->objfiles ())
2569 {
2570 if (objfile->sf && objfile->sf->qf
2571 && objfile->sf->qf->lookup_global_symbol_language)
2572 continue;
2573 return language_unknown;
2574 }
2575
2576 for (objfile *objfile : current_program_space->objfiles ())
2577 {
2578 bool symbol_found_p;
2579 enum language lang
2580 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2581 &symbol_found_p);
2582 if (!symbol_found_p)
2583 continue;
2584 return lang;
2585 }
2586
2587 return language_unknown;
2588 }
2589
2590 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2591
2592 struct global_or_static_sym_lookup_data
2593 {
2594 /* The name of the symbol we are searching for. */
2595 const char *name;
2596
2597 /* The domain to use for our search. */
2598 domain_enum domain;
2599
2600 /* The block index in which to search. */
2601 enum block_enum block_index;
2602
2603 /* The field where the callback should store the symbol if found.
2604 It should be initialized to {NULL, NULL} before the search is started. */
2605 struct block_symbol result;
2606 };
2607
2608 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2609 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2610 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2611 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2612
2613 static int
2614 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2615 void *cb_data)
2616 {
2617 struct global_or_static_sym_lookup_data *data =
2618 (struct global_or_static_sym_lookup_data *) cb_data;
2619
2620 gdb_assert (data->result.symbol == NULL
2621 && data->result.block == NULL);
2622
2623 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2624 data->name, data->domain);
2625
2626 /* If we found a match, tell the iterator to stop. Otherwise,
2627 keep going. */
2628 return (data->result.symbol != NULL);
2629 }
2630
2631 /* This function contains the common code of lookup_{global,static}_symbol.
2632 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2633 the objfile to start the lookup in. */
2634
2635 static struct block_symbol
2636 lookup_global_or_static_symbol (const char *name,
2637 enum block_enum block_index,
2638 struct objfile *objfile,
2639 const domain_enum domain)
2640 {
2641 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2642 struct block_symbol result;
2643 struct global_or_static_sym_lookup_data lookup_data;
2644 struct block_symbol_cache *bsc;
2645 struct symbol_cache_slot *slot;
2646
2647 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2648 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2649
2650 /* First see if we can find the symbol in the cache.
2651 This works because we use the current objfile to qualify the lookup. */
2652 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2653 &bsc, &slot);
2654 if (result.symbol != NULL)
2655 {
2656 if (SYMBOL_LOOKUP_FAILED_P (result))
2657 return {};
2658 return result;
2659 }
2660
2661 /* Do a global search (of global blocks, heh). */
2662 if (result.symbol == NULL)
2663 {
2664 memset (&lookup_data, 0, sizeof (lookup_data));
2665 lookup_data.name = name;
2666 lookup_data.block_index = block_index;
2667 lookup_data.domain = domain;
2668 gdbarch_iterate_over_objfiles_in_search_order
2669 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2670 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2671 result = lookup_data.result;
2672 }
2673
2674 if (result.symbol != NULL)
2675 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2676 else
2677 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2678
2679 return result;
2680 }
2681
2682 /* See symtab.h. */
2683
2684 struct block_symbol
2685 lookup_static_symbol (const char *name, const domain_enum domain)
2686 {
2687 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2688 }
2689
2690 /* See symtab.h. */
2691
2692 struct block_symbol
2693 lookup_global_symbol (const char *name,
2694 const struct block *block,
2695 const domain_enum domain)
2696 {
2697 /* If a block was passed in, we want to search the corresponding
2698 global block first. This yields "more expected" behavior, and is
2699 needed to support 'FILENAME'::VARIABLE lookups. */
2700 const struct block *global_block = block_global_block (block);
2701 if (global_block != nullptr)
2702 {
2703 symbol *sym = lookup_symbol_in_block (name,
2704 symbol_name_match_type::FULL,
2705 global_block, domain);
2706 if (sym != nullptr)
2707 return { sym, global_block };
2708 }
2709
2710 struct objfile *objfile = lookup_objfile_from_block (block);
2711 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2712 }
2713
2714 bool
2715 symbol_matches_domain (enum language symbol_language,
2716 domain_enum symbol_domain,
2717 domain_enum domain)
2718 {
2719 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2720 Similarly, any Ada type declaration implicitly defines a typedef. */
2721 if (symbol_language == language_cplus
2722 || symbol_language == language_d
2723 || symbol_language == language_ada
2724 || symbol_language == language_rust)
2725 {
2726 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2727 && symbol_domain == STRUCT_DOMAIN)
2728 return true;
2729 }
2730 /* For all other languages, strict match is required. */
2731 return (symbol_domain == domain);
2732 }
2733
2734 /* See symtab.h. */
2735
2736 struct type *
2737 lookup_transparent_type (const char *name)
2738 {
2739 return current_language->la_lookup_transparent_type (name);
2740 }
2741
2742 /* A helper for basic_lookup_transparent_type that interfaces with the
2743 "quick" symbol table functions. */
2744
2745 static struct type *
2746 basic_lookup_transparent_type_quick (struct objfile *objfile,
2747 enum block_enum block_index,
2748 const char *name)
2749 {
2750 struct compunit_symtab *cust;
2751 const struct blockvector *bv;
2752 const struct block *block;
2753 struct symbol *sym;
2754
2755 if (!objfile->sf)
2756 return NULL;
2757 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2758 STRUCT_DOMAIN);
2759 if (cust == NULL)
2760 return NULL;
2761
2762 bv = COMPUNIT_BLOCKVECTOR (cust);
2763 block = BLOCKVECTOR_BLOCK (bv, block_index);
2764 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2765 block_find_non_opaque_type, NULL);
2766 if (sym == NULL)
2767 error_in_psymtab_expansion (block_index, name, cust);
2768 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2769 return SYMBOL_TYPE (sym);
2770 }
2771
2772 /* Subroutine of basic_lookup_transparent_type to simplify it.
2773 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2774 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2775
2776 static struct type *
2777 basic_lookup_transparent_type_1 (struct objfile *objfile,
2778 enum block_enum block_index,
2779 const char *name)
2780 {
2781 const struct blockvector *bv;
2782 const struct block *block;
2783 const struct symbol *sym;
2784
2785 for (compunit_symtab *cust : objfile->compunits ())
2786 {
2787 bv = COMPUNIT_BLOCKVECTOR (cust);
2788 block = BLOCKVECTOR_BLOCK (bv, block_index);
2789 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2790 block_find_non_opaque_type, NULL);
2791 if (sym != NULL)
2792 {
2793 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2794 return SYMBOL_TYPE (sym);
2795 }
2796 }
2797
2798 return NULL;
2799 }
2800
2801 /* The standard implementation of lookup_transparent_type. This code
2802 was modeled on lookup_symbol -- the parts not relevant to looking
2803 up types were just left out. In particular it's assumed here that
2804 types are available in STRUCT_DOMAIN and only in file-static or
2805 global blocks. */
2806
2807 struct type *
2808 basic_lookup_transparent_type (const char *name)
2809 {
2810 struct type *t;
2811
2812 /* Now search all the global symbols. Do the symtab's first, then
2813 check the psymtab's. If a psymtab indicates the existence
2814 of the desired name as a global, then do psymtab-to-symtab
2815 conversion on the fly and return the found symbol. */
2816
2817 for (objfile *objfile : current_program_space->objfiles ())
2818 {
2819 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2820 if (t)
2821 return t;
2822 }
2823
2824 for (objfile *objfile : current_program_space->objfiles ())
2825 {
2826 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2827 if (t)
2828 return t;
2829 }
2830
2831 /* Now search the static file-level symbols.
2832 Not strictly correct, but more useful than an error.
2833 Do the symtab's first, then
2834 check the psymtab's. If a psymtab indicates the existence
2835 of the desired name as a file-level static, then do psymtab-to-symtab
2836 conversion on the fly and return the found symbol. */
2837
2838 for (objfile *objfile : current_program_space->objfiles ())
2839 {
2840 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2841 if (t)
2842 return t;
2843 }
2844
2845 for (objfile *objfile : current_program_space->objfiles ())
2846 {
2847 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2848 if (t)
2849 return t;
2850 }
2851
2852 return (struct type *) 0;
2853 }
2854
2855 /* See symtab.h. */
2856
2857 bool
2858 iterate_over_symbols (const struct block *block,
2859 const lookup_name_info &name,
2860 const domain_enum domain,
2861 gdb::function_view<symbol_found_callback_ftype> callback)
2862 {
2863 struct block_iterator iter;
2864 struct symbol *sym;
2865
2866 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2867 {
2868 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2869 {
2870 struct block_symbol block_sym = {sym, block};
2871
2872 if (!callback (&block_sym))
2873 return false;
2874 }
2875 }
2876 return true;
2877 }
2878
2879 /* See symtab.h. */
2880
2881 bool
2882 iterate_over_symbols_terminated
2883 (const struct block *block,
2884 const lookup_name_info &name,
2885 const domain_enum domain,
2886 gdb::function_view<symbol_found_callback_ftype> callback)
2887 {
2888 if (!iterate_over_symbols (block, name, domain, callback))
2889 return false;
2890 struct block_symbol block_sym = {nullptr, block};
2891 return callback (&block_sym);
2892 }
2893
2894 /* Find the compunit symtab associated with PC and SECTION.
2895 This will read in debug info as necessary. */
2896
2897 struct compunit_symtab *
2898 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2899 {
2900 struct compunit_symtab *best_cust = NULL;
2901 CORE_ADDR distance = 0;
2902 struct bound_minimal_symbol msymbol;
2903
2904 /* If we know that this is not a text address, return failure. This is
2905 necessary because we loop based on the block's high and low code
2906 addresses, which do not include the data ranges, and because
2907 we call find_pc_sect_psymtab which has a similar restriction based
2908 on the partial_symtab's texthigh and textlow. */
2909 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2910 if (msymbol.minsym && msymbol.minsym->data_p ())
2911 return NULL;
2912
2913 /* Search all symtabs for the one whose file contains our address, and which
2914 is the smallest of all the ones containing the address. This is designed
2915 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2916 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2917 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2918
2919 This happens for native ecoff format, where code from included files
2920 gets its own symtab. The symtab for the included file should have
2921 been read in already via the dependency mechanism.
2922 It might be swifter to create several symtabs with the same name
2923 like xcoff does (I'm not sure).
2924
2925 It also happens for objfiles that have their functions reordered.
2926 For these, the symtab we are looking for is not necessarily read in. */
2927
2928 for (objfile *obj_file : current_program_space->objfiles ())
2929 {
2930 for (compunit_symtab *cust : obj_file->compunits ())
2931 {
2932 const struct block *b;
2933 const struct blockvector *bv;
2934
2935 bv = COMPUNIT_BLOCKVECTOR (cust);
2936 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2937
2938 if (BLOCK_START (b) <= pc
2939 && BLOCK_END (b) > pc
2940 && (distance == 0
2941 || BLOCK_END (b) - BLOCK_START (b) < distance))
2942 {
2943 /* For an objfile that has its functions reordered,
2944 find_pc_psymtab will find the proper partial symbol table
2945 and we simply return its corresponding symtab. */
2946 /* In order to better support objfiles that contain both
2947 stabs and coff debugging info, we continue on if a psymtab
2948 can't be found. */
2949 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2950 {
2951 struct compunit_symtab *result;
2952
2953 result
2954 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2955 msymbol,
2956 pc,
2957 section,
2958 0);
2959 if (result != NULL)
2960 return result;
2961 }
2962 if (section != 0)
2963 {
2964 struct block_iterator iter;
2965 struct symbol *sym = NULL;
2966
2967 ALL_BLOCK_SYMBOLS (b, iter, sym)
2968 {
2969 fixup_symbol_section (sym, obj_file);
2970 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2971 sym),
2972 section))
2973 break;
2974 }
2975 if (sym == NULL)
2976 continue; /* No symbol in this symtab matches
2977 section. */
2978 }
2979 distance = BLOCK_END (b) - BLOCK_START (b);
2980 best_cust = cust;
2981 }
2982 }
2983 }
2984
2985 if (best_cust != NULL)
2986 return best_cust;
2987
2988 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2989
2990 for (objfile *objf : current_program_space->objfiles ())
2991 {
2992 struct compunit_symtab *result;
2993
2994 if (!objf->sf)
2995 continue;
2996 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2997 msymbol,
2998 pc, section,
2999 1);
3000 if (result != NULL)
3001 return result;
3002 }
3003
3004 return NULL;
3005 }
3006
3007 /* Find the compunit symtab associated with PC.
3008 This will read in debug info as necessary.
3009 Backward compatibility, no section. */
3010
3011 struct compunit_symtab *
3012 find_pc_compunit_symtab (CORE_ADDR pc)
3013 {
3014 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3015 }
3016
3017 /* See symtab.h. */
3018
3019 struct symbol *
3020 find_symbol_at_address (CORE_ADDR address)
3021 {
3022 for (objfile *objfile : current_program_space->objfiles ())
3023 {
3024 if (objfile->sf == NULL
3025 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3026 continue;
3027
3028 struct compunit_symtab *symtab
3029 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3030 if (symtab != NULL)
3031 {
3032 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3033
3034 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3035 {
3036 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3037 struct block_iterator iter;
3038 struct symbol *sym;
3039
3040 ALL_BLOCK_SYMBOLS (b, iter, sym)
3041 {
3042 if (SYMBOL_CLASS (sym) == LOC_STATIC
3043 && SYMBOL_VALUE_ADDRESS (sym) == address)
3044 return sym;
3045 }
3046 }
3047 }
3048 }
3049
3050 return NULL;
3051 }
3052
3053 \f
3054
3055 /* Find the source file and line number for a given PC value and SECTION.
3056 Return a structure containing a symtab pointer, a line number,
3057 and a pc range for the entire source line.
3058 The value's .pc field is NOT the specified pc.
3059 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3060 use the line that ends there. Otherwise, in that case, the line
3061 that begins there is used. */
3062
3063 /* The big complication here is that a line may start in one file, and end just
3064 before the start of another file. This usually occurs when you #include
3065 code in the middle of a subroutine. To properly find the end of a line's PC
3066 range, we must search all symtabs associated with this compilation unit, and
3067 find the one whose first PC is closer than that of the next line in this
3068 symtab. */
3069
3070 struct symtab_and_line
3071 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3072 {
3073 struct compunit_symtab *cust;
3074 struct linetable *l;
3075 int len;
3076 struct linetable_entry *item;
3077 const struct blockvector *bv;
3078 struct bound_minimal_symbol msymbol;
3079
3080 /* Info on best line seen so far, and where it starts, and its file. */
3081
3082 struct linetable_entry *best = NULL;
3083 CORE_ADDR best_end = 0;
3084 struct symtab *best_symtab = 0;
3085
3086 /* Store here the first line number
3087 of a file which contains the line at the smallest pc after PC.
3088 If we don't find a line whose range contains PC,
3089 we will use a line one less than this,
3090 with a range from the start of that file to the first line's pc. */
3091 struct linetable_entry *alt = NULL;
3092
3093 /* Info on best line seen in this file. */
3094
3095 struct linetable_entry *prev;
3096
3097 /* If this pc is not from the current frame,
3098 it is the address of the end of a call instruction.
3099 Quite likely that is the start of the following statement.
3100 But what we want is the statement containing the instruction.
3101 Fudge the pc to make sure we get that. */
3102
3103 /* It's tempting to assume that, if we can't find debugging info for
3104 any function enclosing PC, that we shouldn't search for line
3105 number info, either. However, GAS can emit line number info for
3106 assembly files --- very helpful when debugging hand-written
3107 assembly code. In such a case, we'd have no debug info for the
3108 function, but we would have line info. */
3109
3110 if (notcurrent)
3111 pc -= 1;
3112
3113 /* elz: added this because this function returned the wrong
3114 information if the pc belongs to a stub (import/export)
3115 to call a shlib function. This stub would be anywhere between
3116 two functions in the target, and the line info was erroneously
3117 taken to be the one of the line before the pc. */
3118
3119 /* RT: Further explanation:
3120
3121 * We have stubs (trampolines) inserted between procedures.
3122 *
3123 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3124 * exists in the main image.
3125 *
3126 * In the minimal symbol table, we have a bunch of symbols
3127 * sorted by start address. The stubs are marked as "trampoline",
3128 * the others appear as text. E.g.:
3129 *
3130 * Minimal symbol table for main image
3131 * main: code for main (text symbol)
3132 * shr1: stub (trampoline symbol)
3133 * foo: code for foo (text symbol)
3134 * ...
3135 * Minimal symbol table for "shr1" image:
3136 * ...
3137 * shr1: code for shr1 (text symbol)
3138 * ...
3139 *
3140 * So the code below is trying to detect if we are in the stub
3141 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3142 * and if found, do the symbolization from the real-code address
3143 * rather than the stub address.
3144 *
3145 * Assumptions being made about the minimal symbol table:
3146 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3147 * if we're really in the trampoline.s If we're beyond it (say
3148 * we're in "foo" in the above example), it'll have a closer
3149 * symbol (the "foo" text symbol for example) and will not
3150 * return the trampoline.
3151 * 2. lookup_minimal_symbol_text() will find a real text symbol
3152 * corresponding to the trampoline, and whose address will
3153 * be different than the trampoline address. I put in a sanity
3154 * check for the address being the same, to avoid an
3155 * infinite recursion.
3156 */
3157 msymbol = lookup_minimal_symbol_by_pc (pc);
3158 if (msymbol.minsym != NULL)
3159 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3160 {
3161 struct bound_minimal_symbol mfunsym
3162 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3163 NULL);
3164
3165 if (mfunsym.minsym == NULL)
3166 /* I eliminated this warning since it is coming out
3167 * in the following situation:
3168 * gdb shmain // test program with shared libraries
3169 * (gdb) break shr1 // function in shared lib
3170 * Warning: In stub for ...
3171 * In the above situation, the shared lib is not loaded yet,
3172 * so of course we can't find the real func/line info,
3173 * but the "break" still works, and the warning is annoying.
3174 * So I commented out the warning. RT */
3175 /* warning ("In stub for %s; unable to find real function/line info",
3176 msymbol->linkage_name ()); */
3177 ;
3178 /* fall through */
3179 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3180 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3181 /* Avoid infinite recursion */
3182 /* See above comment about why warning is commented out. */
3183 /* warning ("In stub for %s; unable to find real function/line info",
3184 msymbol->linkage_name ()); */
3185 ;
3186 /* fall through */
3187 else
3188 {
3189 /* Detect an obvious case of infinite recursion. If this
3190 should occur, we'd like to know about it, so error out,
3191 fatally. */
3192 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3193 internal_error (__FILE__, __LINE__,
3194 _("Infinite recursion detected in find_pc_sect_line;"
3195 "please file a bug report"));
3196
3197 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3198 }
3199 }
3200
3201 symtab_and_line val;
3202 val.pspace = current_program_space;
3203
3204 cust = find_pc_sect_compunit_symtab (pc, section);
3205 if (cust == NULL)
3206 {
3207 /* If no symbol information, return previous pc. */
3208 if (notcurrent)
3209 pc++;
3210 val.pc = pc;
3211 return val;
3212 }
3213
3214 bv = COMPUNIT_BLOCKVECTOR (cust);
3215
3216 /* Look at all the symtabs that share this blockvector.
3217 They all have the same apriori range, that we found was right;
3218 but they have different line tables. */
3219
3220 for (symtab *iter_s : compunit_filetabs (cust))
3221 {
3222 /* Find the best line in this symtab. */
3223 l = SYMTAB_LINETABLE (iter_s);
3224 if (!l)
3225 continue;
3226 len = l->nitems;
3227 if (len <= 0)
3228 {
3229 /* I think len can be zero if the symtab lacks line numbers
3230 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3231 I'm not sure which, and maybe it depends on the symbol
3232 reader). */
3233 continue;
3234 }
3235
3236 prev = NULL;
3237 item = l->item; /* Get first line info. */
3238
3239 /* Is this file's first line closer than the first lines of other files?
3240 If so, record this file, and its first line, as best alternate. */
3241 if (item->pc > pc && (!alt || item->pc < alt->pc))
3242 alt = item;
3243
3244 auto pc_compare = [](const CORE_ADDR & comp_pc,
3245 const struct linetable_entry & lhs)->bool
3246 {
3247 return comp_pc < lhs.pc;
3248 };
3249
3250 struct linetable_entry *first = item;
3251 struct linetable_entry *last = item + len;
3252 item = std::upper_bound (first, last, pc, pc_compare);
3253 if (item != first)
3254 {
3255 /* Found a matching item. Skip backwards over any end of
3256 sequence markers. */
3257 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3258 /* Nothing. */;
3259 }
3260
3261 /* At this point, prev points at the line whose start addr is <= pc, and
3262 item points at the next line. If we ran off the end of the linetable
3263 (pc >= start of the last line), then prev == item. If pc < start of
3264 the first line, prev will not be set. */
3265
3266 /* Is this file's best line closer than the best in the other files?
3267 If so, record this file, and its best line, as best so far. Don't
3268 save prev if it represents the end of a function (i.e. line number
3269 0) instead of a real line. */
3270
3271 if (prev && prev->line && (!best || prev->pc > best->pc))
3272 {
3273 best = prev;
3274 best_symtab = iter_s;
3275
3276 /* If during the binary search we land on a non-statement entry,
3277 scan backward through entries at the same address to see if
3278 there is an entry marked as is-statement. In theory this
3279 duplication should have been removed from the line table
3280 during construction, this is just a double check. If the line
3281 table has had the duplication removed then this should be
3282 pretty cheap. */
3283 if (!best->is_stmt)
3284 {
3285 struct linetable_entry *tmp = best;
3286 while (tmp > first && (tmp - 1)->pc == tmp->pc
3287 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3288 --tmp;
3289 if (tmp->is_stmt)
3290 best = tmp;
3291 }
3292
3293 /* Discard BEST_END if it's before the PC of the current BEST. */
3294 if (best_end <= best->pc)
3295 best_end = 0;
3296 }
3297
3298 /* If another line (denoted by ITEM) is in the linetable and its
3299 PC is after BEST's PC, but before the current BEST_END, then
3300 use ITEM's PC as the new best_end. */
3301 if (best && item < last && item->pc > best->pc
3302 && (best_end == 0 || best_end > item->pc))
3303 best_end = item->pc;
3304 }
3305
3306 if (!best_symtab)
3307 {
3308 /* If we didn't find any line number info, just return zeros.
3309 We used to return alt->line - 1 here, but that could be
3310 anywhere; if we don't have line number info for this PC,
3311 don't make some up. */
3312 val.pc = pc;
3313 }
3314 else if (best->line == 0)
3315 {
3316 /* If our best fit is in a range of PC's for which no line
3317 number info is available (line number is zero) then we didn't
3318 find any valid line information. */
3319 val.pc = pc;
3320 }
3321 else
3322 {
3323 val.is_stmt = best->is_stmt;
3324 val.symtab = best_symtab;
3325 val.line = best->line;
3326 val.pc = best->pc;
3327 if (best_end && (!alt || best_end < alt->pc))
3328 val.end = best_end;
3329 else if (alt)
3330 val.end = alt->pc;
3331 else
3332 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3333 }
3334 val.section = section;
3335 return val;
3336 }
3337
3338 /* Backward compatibility (no section). */
3339
3340 struct symtab_and_line
3341 find_pc_line (CORE_ADDR pc, int notcurrent)
3342 {
3343 struct obj_section *section;
3344
3345 section = find_pc_overlay (pc);
3346 if (pc_in_unmapped_range (pc, section))
3347 pc = overlay_mapped_address (pc, section);
3348 return find_pc_sect_line (pc, section, notcurrent);
3349 }
3350
3351 /* See symtab.h. */
3352
3353 struct symtab *
3354 find_pc_line_symtab (CORE_ADDR pc)
3355 {
3356 struct symtab_and_line sal;
3357
3358 /* This always passes zero for NOTCURRENT to find_pc_line.
3359 There are currently no callers that ever pass non-zero. */
3360 sal = find_pc_line (pc, 0);
3361 return sal.symtab;
3362 }
3363 \f
3364 /* Find line number LINE in any symtab whose name is the same as
3365 SYMTAB.
3366
3367 If found, return the symtab that contains the linetable in which it was
3368 found, set *INDEX to the index in the linetable of the best entry
3369 found, and set *EXACT_MATCH to true if the value returned is an
3370 exact match.
3371
3372 If not found, return NULL. */
3373
3374 struct symtab *
3375 find_line_symtab (struct symtab *sym_tab, int line,
3376 int *index, bool *exact_match)
3377 {
3378 int exact = 0; /* Initialized here to avoid a compiler warning. */
3379
3380 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3381 so far seen. */
3382
3383 int best_index;
3384 struct linetable *best_linetable;
3385 struct symtab *best_symtab;
3386
3387 /* First try looking it up in the given symtab. */
3388 best_linetable = SYMTAB_LINETABLE (sym_tab);
3389 best_symtab = sym_tab;
3390 best_index = find_line_common (best_linetable, line, &exact, 0);
3391 if (best_index < 0 || !exact)
3392 {
3393 /* Didn't find an exact match. So we better keep looking for
3394 another symtab with the same name. In the case of xcoff,
3395 multiple csects for one source file (produced by IBM's FORTRAN
3396 compiler) produce multiple symtabs (this is unavoidable
3397 assuming csects can be at arbitrary places in memory and that
3398 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3399
3400 /* BEST is the smallest linenumber > LINE so far seen,
3401 or 0 if none has been seen so far.
3402 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3403 int best;
3404
3405 if (best_index >= 0)
3406 best = best_linetable->item[best_index].line;
3407 else
3408 best = 0;
3409
3410 for (objfile *objfile : current_program_space->objfiles ())
3411 {
3412 if (objfile->sf)
3413 objfile->sf->qf->expand_symtabs_with_fullname
3414 (objfile, symtab_to_fullname (sym_tab));
3415 }
3416
3417 for (objfile *objfile : current_program_space->objfiles ())
3418 {
3419 for (compunit_symtab *cu : objfile->compunits ())
3420 {
3421 for (symtab *s : compunit_filetabs (cu))
3422 {
3423 struct linetable *l;
3424 int ind;
3425
3426 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3427 continue;
3428 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3429 symtab_to_fullname (s)) != 0)
3430 continue;
3431 l = SYMTAB_LINETABLE (s);
3432 ind = find_line_common (l, line, &exact, 0);
3433 if (ind >= 0)
3434 {
3435 if (exact)
3436 {
3437 best_index = ind;
3438 best_linetable = l;
3439 best_symtab = s;
3440 goto done;
3441 }
3442 if (best == 0 || l->item[ind].line < best)
3443 {
3444 best = l->item[ind].line;
3445 best_index = ind;
3446 best_linetable = l;
3447 best_symtab = s;
3448 }
3449 }
3450 }
3451 }
3452 }
3453 }
3454 done:
3455 if (best_index < 0)
3456 return NULL;
3457
3458 if (index)
3459 *index = best_index;
3460 if (exact_match)
3461 *exact_match = (exact != 0);
3462
3463 return best_symtab;
3464 }
3465
3466 /* Given SYMTAB, returns all the PCs function in the symtab that
3467 exactly match LINE. Returns an empty vector if there are no exact
3468 matches, but updates BEST_ITEM in this case. */
3469
3470 std::vector<CORE_ADDR>
3471 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3472 struct linetable_entry **best_item)
3473 {
3474 int start = 0;
3475 std::vector<CORE_ADDR> result;
3476
3477 /* First, collect all the PCs that are at this line. */
3478 while (1)
3479 {
3480 int was_exact;
3481 int idx;
3482
3483 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3484 start);
3485 if (idx < 0)
3486 break;
3487
3488 if (!was_exact)
3489 {
3490 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3491
3492 if (*best_item == NULL
3493 || (item->line < (*best_item)->line && item->is_stmt))
3494 *best_item = item;
3495
3496 break;
3497 }
3498
3499 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3500 start = idx + 1;
3501 }
3502
3503 return result;
3504 }
3505
3506 \f
3507 /* Set the PC value for a given source file and line number and return true.
3508 Returns false for invalid line number (and sets the PC to 0).
3509 The source file is specified with a struct symtab. */
3510
3511 bool
3512 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3513 {
3514 struct linetable *l;
3515 int ind;
3516
3517 *pc = 0;
3518 if (symtab == 0)
3519 return false;
3520
3521 symtab = find_line_symtab (symtab, line, &ind, NULL);
3522 if (symtab != NULL)
3523 {
3524 l = SYMTAB_LINETABLE (symtab);
3525 *pc = l->item[ind].pc;
3526 return true;
3527 }
3528 else
3529 return false;
3530 }
3531
3532 /* Find the range of pc values in a line.
3533 Store the starting pc of the line into *STARTPTR
3534 and the ending pc (start of next line) into *ENDPTR.
3535 Returns true to indicate success.
3536 Returns false if could not find the specified line. */
3537
3538 bool
3539 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3540 CORE_ADDR *endptr)
3541 {
3542 CORE_ADDR startaddr;
3543 struct symtab_and_line found_sal;
3544
3545 startaddr = sal.pc;
3546 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3547 return false;
3548
3549 /* This whole function is based on address. For example, if line 10 has
3550 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3551 "info line *0x123" should say the line goes from 0x100 to 0x200
3552 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3553 This also insures that we never give a range like "starts at 0x134
3554 and ends at 0x12c". */
3555
3556 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3557 if (found_sal.line != sal.line)
3558 {
3559 /* The specified line (sal) has zero bytes. */
3560 *startptr = found_sal.pc;
3561 *endptr = found_sal.pc;
3562 }
3563 else
3564 {
3565 *startptr = found_sal.pc;
3566 *endptr = found_sal.end;
3567 }
3568 return true;
3569 }
3570
3571 /* Given a line table and a line number, return the index into the line
3572 table for the pc of the nearest line whose number is >= the specified one.
3573 Return -1 if none is found. The value is >= 0 if it is an index.
3574 START is the index at which to start searching the line table.
3575
3576 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3577
3578 static int
3579 find_line_common (struct linetable *l, int lineno,
3580 int *exact_match, int start)
3581 {
3582 int i;
3583 int len;
3584
3585 /* BEST is the smallest linenumber > LINENO so far seen,
3586 or 0 if none has been seen so far.
3587 BEST_INDEX identifies the item for it. */
3588
3589 int best_index = -1;
3590 int best = 0;
3591
3592 *exact_match = 0;
3593
3594 if (lineno <= 0)
3595 return -1;
3596 if (l == 0)
3597 return -1;
3598
3599 len = l->nitems;
3600 for (i = start; i < len; i++)
3601 {
3602 struct linetable_entry *item = &(l->item[i]);
3603
3604 /* Ignore non-statements. */
3605 if (!item->is_stmt)
3606 continue;
3607
3608 if (item->line == lineno)
3609 {
3610 /* Return the first (lowest address) entry which matches. */
3611 *exact_match = 1;
3612 return i;
3613 }
3614
3615 if (item->line > lineno && (best == 0 || item->line < best))
3616 {
3617 best = item->line;
3618 best_index = i;
3619 }
3620 }
3621
3622 /* If we got here, we didn't get an exact match. */
3623 return best_index;
3624 }
3625
3626 bool
3627 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3628 {
3629 struct symtab_and_line sal;
3630
3631 sal = find_pc_line (pc, 0);
3632 *startptr = sal.pc;
3633 *endptr = sal.end;
3634 return sal.symtab != 0;
3635 }
3636
3637 /* Helper for find_function_start_sal. Does most of the work, except
3638 setting the sal's symbol. */
3639
3640 static symtab_and_line
3641 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3642 bool funfirstline)
3643 {
3644 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3645
3646 if (funfirstline && sal.symtab != NULL
3647 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3648 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3649 {
3650 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3651
3652 sal.pc = func_addr;
3653 if (gdbarch_skip_entrypoint_p (gdbarch))
3654 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3655 return sal;
3656 }
3657
3658 /* We always should have a line for the function start address.
3659 If we don't, something is odd. Create a plain SAL referring
3660 just the PC and hope that skip_prologue_sal (if requested)
3661 can find a line number for after the prologue. */
3662 if (sal.pc < func_addr)
3663 {
3664 sal = {};
3665 sal.pspace = current_program_space;
3666 sal.pc = func_addr;
3667 sal.section = section;
3668 }
3669
3670 if (funfirstline)
3671 skip_prologue_sal (&sal);
3672
3673 return sal;
3674 }
3675
3676 /* See symtab.h. */
3677
3678 symtab_and_line
3679 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3680 bool funfirstline)
3681 {
3682 symtab_and_line sal
3683 = find_function_start_sal_1 (func_addr, section, funfirstline);
3684
3685 /* find_function_start_sal_1 does a linetable search, so it finds
3686 the symtab and linenumber, but not a symbol. Fill in the
3687 function symbol too. */
3688 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3689
3690 return sal;
3691 }
3692
3693 /* See symtab.h. */
3694
3695 symtab_and_line
3696 find_function_start_sal (symbol *sym, bool funfirstline)
3697 {
3698 fixup_symbol_section (sym, NULL);
3699 symtab_and_line sal
3700 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3701 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3702 funfirstline);
3703 sal.symbol = sym;
3704 return sal;
3705 }
3706
3707
3708 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3709 address for that function that has an entry in SYMTAB's line info
3710 table. If such an entry cannot be found, return FUNC_ADDR
3711 unaltered. */
3712
3713 static CORE_ADDR
3714 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3715 {
3716 CORE_ADDR func_start, func_end;
3717 struct linetable *l;
3718 int i;
3719
3720 /* Give up if this symbol has no lineinfo table. */
3721 l = SYMTAB_LINETABLE (symtab);
3722 if (l == NULL)
3723 return func_addr;
3724
3725 /* Get the range for the function's PC values, or give up if we
3726 cannot, for some reason. */
3727 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3728 return func_addr;
3729
3730 /* Linetable entries are ordered by PC values, see the commentary in
3731 symtab.h where `struct linetable' is defined. Thus, the first
3732 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3733 address we are looking for. */
3734 for (i = 0; i < l->nitems; i++)
3735 {
3736 struct linetable_entry *item = &(l->item[i]);
3737
3738 /* Don't use line numbers of zero, they mark special entries in
3739 the table. See the commentary on symtab.h before the
3740 definition of struct linetable. */
3741 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3742 return item->pc;
3743 }
3744
3745 return func_addr;
3746 }
3747
3748 /* Adjust SAL to the first instruction past the function prologue.
3749 If the PC was explicitly specified, the SAL is not changed.
3750 If the line number was explicitly specified then the SAL can still be
3751 updated, unless the language for SAL is assembler, in which case the SAL
3752 will be left unchanged.
3753 If SAL is already past the prologue, then do nothing. */
3754
3755 void
3756 skip_prologue_sal (struct symtab_and_line *sal)
3757 {
3758 struct symbol *sym;
3759 struct symtab_and_line start_sal;
3760 CORE_ADDR pc, saved_pc;
3761 struct obj_section *section;
3762 const char *name;
3763 struct objfile *objfile;
3764 struct gdbarch *gdbarch;
3765 const struct block *b, *function_block;
3766 int force_skip, skip;
3767
3768 /* Do not change the SAL if PC was specified explicitly. */
3769 if (sal->explicit_pc)
3770 return;
3771
3772 /* In assembly code, if the user asks for a specific line then we should
3773 not adjust the SAL. The user already has instruction level
3774 visibility in this case, so selecting a line other than one requested
3775 is likely to be the wrong choice. */
3776 if (sal->symtab != nullptr
3777 && sal->explicit_line
3778 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3779 return;
3780
3781 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3782
3783 switch_to_program_space_and_thread (sal->pspace);
3784
3785 sym = find_pc_sect_function (sal->pc, sal->section);
3786 if (sym != NULL)
3787 {
3788 fixup_symbol_section (sym, NULL);
3789
3790 objfile = symbol_objfile (sym);
3791 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3792 section = SYMBOL_OBJ_SECTION (objfile, sym);
3793 name = sym->linkage_name ();
3794 }
3795 else
3796 {
3797 struct bound_minimal_symbol msymbol
3798 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3799
3800 if (msymbol.minsym == NULL)
3801 return;
3802
3803 objfile = msymbol.objfile;
3804 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3805 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3806 name = msymbol.minsym->linkage_name ();
3807 }
3808
3809 gdbarch = get_objfile_arch (objfile);
3810
3811 /* Process the prologue in two passes. In the first pass try to skip the
3812 prologue (SKIP is true) and verify there is a real need for it (indicated
3813 by FORCE_SKIP). If no such reason was found run a second pass where the
3814 prologue is not skipped (SKIP is false). */
3815
3816 skip = 1;
3817 force_skip = 1;
3818
3819 /* Be conservative - allow direct PC (without skipping prologue) only if we
3820 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3821 have to be set by the caller so we use SYM instead. */
3822 if (sym != NULL
3823 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3824 force_skip = 0;
3825
3826 saved_pc = pc;
3827 do
3828 {
3829 pc = saved_pc;
3830
3831 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3832 so that gdbarch_skip_prologue has something unique to work on. */
3833 if (section_is_overlay (section) && !section_is_mapped (section))
3834 pc = overlay_unmapped_address (pc, section);
3835
3836 /* Skip "first line" of function (which is actually its prologue). */
3837 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3838 if (gdbarch_skip_entrypoint_p (gdbarch))
3839 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3840 if (skip)
3841 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3842
3843 /* For overlays, map pc back into its mapped VMA range. */
3844 pc = overlay_mapped_address (pc, section);
3845
3846 /* Calculate line number. */
3847 start_sal = find_pc_sect_line (pc, section, 0);
3848
3849 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3850 line is still part of the same function. */
3851 if (skip && start_sal.pc != pc
3852 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3853 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3854 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3855 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3856 {
3857 /* First pc of next line */
3858 pc = start_sal.end;
3859 /* Recalculate the line number (might not be N+1). */
3860 start_sal = find_pc_sect_line (pc, section, 0);
3861 }
3862
3863 /* On targets with executable formats that don't have a concept of
3864 constructors (ELF with .init has, PE doesn't), gcc emits a call
3865 to `__main' in `main' between the prologue and before user
3866 code. */
3867 if (gdbarch_skip_main_prologue_p (gdbarch)
3868 && name && strcmp_iw (name, "main") == 0)
3869 {
3870 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3871 /* Recalculate the line number (might not be N+1). */
3872 start_sal = find_pc_sect_line (pc, section, 0);
3873 force_skip = 1;
3874 }
3875 }
3876 while (!force_skip && skip--);
3877
3878 /* If we still don't have a valid source line, try to find the first
3879 PC in the lineinfo table that belongs to the same function. This
3880 happens with COFF debug info, which does not seem to have an
3881 entry in lineinfo table for the code after the prologue which has
3882 no direct relation to source. For example, this was found to be
3883 the case with the DJGPP target using "gcc -gcoff" when the
3884 compiler inserted code after the prologue to make sure the stack
3885 is aligned. */
3886 if (!force_skip && sym && start_sal.symtab == NULL)
3887 {
3888 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3889 /* Recalculate the line number. */
3890 start_sal = find_pc_sect_line (pc, section, 0);
3891 }
3892
3893 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3894 forward SAL to the end of the prologue. */
3895 if (sal->pc >= pc)
3896 return;
3897
3898 sal->pc = pc;
3899 sal->section = section;
3900 sal->symtab = start_sal.symtab;
3901 sal->line = start_sal.line;
3902 sal->end = start_sal.end;
3903
3904 /* Check if we are now inside an inlined function. If we can,
3905 use the call site of the function instead. */
3906 b = block_for_pc_sect (sal->pc, sal->section);
3907 function_block = NULL;
3908 while (b != NULL)
3909 {
3910 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3911 function_block = b;
3912 else if (BLOCK_FUNCTION (b) != NULL)
3913 break;
3914 b = BLOCK_SUPERBLOCK (b);
3915 }
3916 if (function_block != NULL
3917 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3918 {
3919 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3920 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3921 }
3922 }
3923
3924 /* Given PC at the function's start address, attempt to find the
3925 prologue end using SAL information. Return zero if the skip fails.
3926
3927 A non-optimized prologue traditionally has one SAL for the function
3928 and a second for the function body. A single line function has
3929 them both pointing at the same line.
3930
3931 An optimized prologue is similar but the prologue may contain
3932 instructions (SALs) from the instruction body. Need to skip those
3933 while not getting into the function body.
3934
3935 The functions end point and an increasing SAL line are used as
3936 indicators of the prologue's endpoint.
3937
3938 This code is based on the function refine_prologue_limit
3939 (found in ia64). */
3940
3941 CORE_ADDR
3942 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3943 {
3944 struct symtab_and_line prologue_sal;
3945 CORE_ADDR start_pc;
3946 CORE_ADDR end_pc;
3947 const struct block *bl;
3948
3949 /* Get an initial range for the function. */
3950 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3951 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3952
3953 prologue_sal = find_pc_line (start_pc, 0);
3954 if (prologue_sal.line != 0)
3955 {
3956 /* For languages other than assembly, treat two consecutive line
3957 entries at the same address as a zero-instruction prologue.
3958 The GNU assembler emits separate line notes for each instruction
3959 in a multi-instruction macro, but compilers generally will not
3960 do this. */
3961 if (prologue_sal.symtab->language != language_asm)
3962 {
3963 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3964 int idx = 0;
3965
3966 /* Skip any earlier lines, and any end-of-sequence marker
3967 from a previous function. */
3968 while (linetable->item[idx].pc != prologue_sal.pc
3969 || linetable->item[idx].line == 0)
3970 idx++;
3971
3972 if (idx+1 < linetable->nitems
3973 && linetable->item[idx+1].line != 0
3974 && linetable->item[idx+1].pc == start_pc)
3975 return start_pc;
3976 }
3977
3978 /* If there is only one sal that covers the entire function,
3979 then it is probably a single line function, like
3980 "foo(){}". */
3981 if (prologue_sal.end >= end_pc)
3982 return 0;
3983
3984 while (prologue_sal.end < end_pc)
3985 {
3986 struct symtab_and_line sal;
3987
3988 sal = find_pc_line (prologue_sal.end, 0);
3989 if (sal.line == 0)
3990 break;
3991 /* Assume that a consecutive SAL for the same (or larger)
3992 line mark the prologue -> body transition. */
3993 if (sal.line >= prologue_sal.line)
3994 break;
3995 /* Likewise if we are in a different symtab altogether
3996 (e.g. within a file included via #include).  */
3997 if (sal.symtab != prologue_sal.symtab)
3998 break;
3999
4000 /* The line number is smaller. Check that it's from the
4001 same function, not something inlined. If it's inlined,
4002 then there is no point comparing the line numbers. */
4003 bl = block_for_pc (prologue_sal.end);
4004 while (bl)
4005 {
4006 if (block_inlined_p (bl))
4007 break;
4008 if (BLOCK_FUNCTION (bl))
4009 {
4010 bl = NULL;
4011 break;
4012 }
4013 bl = BLOCK_SUPERBLOCK (bl);
4014 }
4015 if (bl != NULL)
4016 break;
4017
4018 /* The case in which compiler's optimizer/scheduler has
4019 moved instructions into the prologue. We look ahead in
4020 the function looking for address ranges whose
4021 corresponding line number is less the first one that we
4022 found for the function. This is more conservative then
4023 refine_prologue_limit which scans a large number of SALs
4024 looking for any in the prologue. */
4025 prologue_sal = sal;
4026 }
4027 }
4028
4029 if (prologue_sal.end < end_pc)
4030 /* Return the end of this line, or zero if we could not find a
4031 line. */
4032 return prologue_sal.end;
4033 else
4034 /* Don't return END_PC, which is past the end of the function. */
4035 return prologue_sal.pc;
4036 }
4037
4038 /* See symtab.h. */
4039
4040 symbol *
4041 find_function_alias_target (bound_minimal_symbol msymbol)
4042 {
4043 CORE_ADDR func_addr;
4044 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4045 return NULL;
4046
4047 symbol *sym = find_pc_function (func_addr);
4048 if (sym != NULL
4049 && SYMBOL_CLASS (sym) == LOC_BLOCK
4050 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4051 return sym;
4052
4053 return NULL;
4054 }
4055
4056 \f
4057 /* If P is of the form "operator[ \t]+..." where `...' is
4058 some legitimate operator text, return a pointer to the
4059 beginning of the substring of the operator text.
4060 Otherwise, return "". */
4061
4062 static const char *
4063 operator_chars (const char *p, const char **end)
4064 {
4065 *end = "";
4066 if (!startswith (p, CP_OPERATOR_STR))
4067 return *end;
4068 p += CP_OPERATOR_LEN;
4069
4070 /* Don't get faked out by `operator' being part of a longer
4071 identifier. */
4072 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4073 return *end;
4074
4075 /* Allow some whitespace between `operator' and the operator symbol. */
4076 while (*p == ' ' || *p == '\t')
4077 p++;
4078
4079 /* Recognize 'operator TYPENAME'. */
4080
4081 if (isalpha (*p) || *p == '_' || *p == '$')
4082 {
4083 const char *q = p + 1;
4084
4085 while (isalnum (*q) || *q == '_' || *q == '$')
4086 q++;
4087 *end = q;
4088 return p;
4089 }
4090
4091 while (*p)
4092 switch (*p)
4093 {
4094 case '\\': /* regexp quoting */
4095 if (p[1] == '*')
4096 {
4097 if (p[2] == '=') /* 'operator\*=' */
4098 *end = p + 3;
4099 else /* 'operator\*' */
4100 *end = p + 2;
4101 return p;
4102 }
4103 else if (p[1] == '[')
4104 {
4105 if (p[2] == ']')
4106 error (_("mismatched quoting on brackets, "
4107 "try 'operator\\[\\]'"));
4108 else if (p[2] == '\\' && p[3] == ']')
4109 {
4110 *end = p + 4; /* 'operator\[\]' */
4111 return p;
4112 }
4113 else
4114 error (_("nothing is allowed between '[' and ']'"));
4115 }
4116 else
4117 {
4118 /* Gratuitous quote: skip it and move on. */
4119 p++;
4120 continue;
4121 }
4122 break;
4123 case '!':
4124 case '=':
4125 case '*':
4126 case '/':
4127 case '%':
4128 case '^':
4129 if (p[1] == '=')
4130 *end = p + 2;
4131 else
4132 *end = p + 1;
4133 return p;
4134 case '<':
4135 case '>':
4136 case '+':
4137 case '-':
4138 case '&':
4139 case '|':
4140 if (p[0] == '-' && p[1] == '>')
4141 {
4142 /* Struct pointer member operator 'operator->'. */
4143 if (p[2] == '*')
4144 {
4145 *end = p + 3; /* 'operator->*' */
4146 return p;
4147 }
4148 else if (p[2] == '\\')
4149 {
4150 *end = p + 4; /* Hopefully 'operator->\*' */
4151 return p;
4152 }
4153 else
4154 {
4155 *end = p + 2; /* 'operator->' */
4156 return p;
4157 }
4158 }
4159 if (p[1] == '=' || p[1] == p[0])
4160 *end = p + 2;
4161 else
4162 *end = p + 1;
4163 return p;
4164 case '~':
4165 case ',':
4166 *end = p + 1;
4167 return p;
4168 case '(':
4169 if (p[1] != ')')
4170 error (_("`operator ()' must be specified "
4171 "without whitespace in `()'"));
4172 *end = p + 2;
4173 return p;
4174 case '?':
4175 if (p[1] != ':')
4176 error (_("`operator ?:' must be specified "
4177 "without whitespace in `?:'"));
4178 *end = p + 2;
4179 return p;
4180 case '[':
4181 if (p[1] != ']')
4182 error (_("`operator []' must be specified "
4183 "without whitespace in `[]'"));
4184 *end = p + 2;
4185 return p;
4186 default:
4187 error (_("`operator %s' not supported"), p);
4188 break;
4189 }
4190
4191 *end = "";
4192 return *end;
4193 }
4194 \f
4195
4196 /* What part to match in a file name. */
4197
4198 struct filename_partial_match_opts
4199 {
4200 /* Only match the directory name part. */
4201 bool dirname = false;
4202
4203 /* Only match the basename part. */
4204 bool basename = false;
4205 };
4206
4207 /* Data structure to maintain printing state for output_source_filename. */
4208
4209 struct output_source_filename_data
4210 {
4211 /* Output only filenames matching REGEXP. */
4212 std::string regexp;
4213 gdb::optional<compiled_regex> c_regexp;
4214 /* Possibly only match a part of the filename. */
4215 filename_partial_match_opts partial_match;
4216
4217
4218 /* Cache of what we've seen so far. */
4219 struct filename_seen_cache *filename_seen_cache;
4220
4221 /* Flag of whether we're printing the first one. */
4222 int first;
4223 };
4224
4225 /* Slave routine for sources_info. Force line breaks at ,'s.
4226 NAME is the name to print.
4227 DATA contains the state for printing and watching for duplicates. */
4228
4229 static void
4230 output_source_filename (const char *name,
4231 struct output_source_filename_data *data)
4232 {
4233 /* Since a single source file can result in several partial symbol
4234 tables, we need to avoid printing it more than once. Note: if
4235 some of the psymtabs are read in and some are not, it gets
4236 printed both under "Source files for which symbols have been
4237 read" and "Source files for which symbols will be read in on
4238 demand". I consider this a reasonable way to deal with the
4239 situation. I'm not sure whether this can also happen for
4240 symtabs; it doesn't hurt to check. */
4241
4242 /* Was NAME already seen? */
4243 if (data->filename_seen_cache->seen (name))
4244 {
4245 /* Yes; don't print it again. */
4246 return;
4247 }
4248
4249 /* Does it match data->regexp? */
4250 if (data->c_regexp.has_value ())
4251 {
4252 const char *to_match;
4253 std::string dirname;
4254
4255 if (data->partial_match.dirname)
4256 {
4257 dirname = ldirname (name);
4258 to_match = dirname.c_str ();
4259 }
4260 else if (data->partial_match.basename)
4261 to_match = lbasename (name);
4262 else
4263 to_match = name;
4264
4265 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4266 return;
4267 }
4268
4269 /* Print it and reset *FIRST. */
4270 if (! data->first)
4271 printf_filtered (", ");
4272 data->first = 0;
4273
4274 wrap_here ("");
4275 fputs_styled (name, file_name_style.style (), gdb_stdout);
4276 }
4277
4278 /* A callback for map_partial_symbol_filenames. */
4279
4280 static void
4281 output_partial_symbol_filename (const char *filename, const char *fullname,
4282 void *data)
4283 {
4284 output_source_filename (fullname ? fullname : filename,
4285 (struct output_source_filename_data *) data);
4286 }
4287
4288 using isrc_flag_option_def
4289 = gdb::option::flag_option_def<filename_partial_match_opts>;
4290
4291 static const gdb::option::option_def info_sources_option_defs[] = {
4292
4293 isrc_flag_option_def {
4294 "dirname",
4295 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4296 N_("Show only the files having a dirname matching REGEXP."),
4297 },
4298
4299 isrc_flag_option_def {
4300 "basename",
4301 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4302 N_("Show only the files having a basename matching REGEXP."),
4303 },
4304
4305 };
4306
4307 /* Create an option_def_group for the "info sources" options, with
4308 ISRC_OPTS as context. */
4309
4310 static inline gdb::option::option_def_group
4311 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4312 {
4313 return {{info_sources_option_defs}, isrc_opts};
4314 }
4315
4316 /* Prints the header message for the source files that will be printed
4317 with the matching info present in DATA. SYMBOL_MSG is a message
4318 that tells what will or has been done with the symbols of the
4319 matching source files. */
4320
4321 static void
4322 print_info_sources_header (const char *symbol_msg,
4323 const struct output_source_filename_data *data)
4324 {
4325 puts_filtered (symbol_msg);
4326 if (!data->regexp.empty ())
4327 {
4328 if (data->partial_match.dirname)
4329 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4330 data->regexp.c_str ());
4331 else if (data->partial_match.basename)
4332 printf_filtered (_("(basename matching regular expression \"%s\")"),
4333 data->regexp.c_str ());
4334 else
4335 printf_filtered (_("(filename matching regular expression \"%s\")"),
4336 data->regexp.c_str ());
4337 }
4338 puts_filtered ("\n");
4339 }
4340
4341 /* Completer for "info sources". */
4342
4343 static void
4344 info_sources_command_completer (cmd_list_element *ignore,
4345 completion_tracker &tracker,
4346 const char *text, const char *word)
4347 {
4348 const auto group = make_info_sources_options_def_group (nullptr);
4349 if (gdb::option::complete_options
4350 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4351 return;
4352 }
4353
4354 static void
4355 info_sources_command (const char *args, int from_tty)
4356 {
4357 struct output_source_filename_data data;
4358
4359 if (!have_full_symbols () && !have_partial_symbols ())
4360 {
4361 error (_("No symbol table is loaded. Use the \"file\" command."));
4362 }
4363
4364 filename_seen_cache filenames_seen;
4365
4366 auto group = make_info_sources_options_def_group (&data.partial_match);
4367
4368 gdb::option::process_options
4369 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4370
4371 if (args != NULL && *args != '\000')
4372 data.regexp = args;
4373
4374 data.filename_seen_cache = &filenames_seen;
4375 data.first = 1;
4376
4377 if (data.partial_match.dirname && data.partial_match.basename)
4378 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4379 if ((data.partial_match.dirname || data.partial_match.basename)
4380 && data.regexp.empty ())
4381 error (_("Missing REGEXP for 'info sources'."));
4382
4383 if (data.regexp.empty ())
4384 data.c_regexp.reset ();
4385 else
4386 {
4387 int cflags = REG_NOSUB;
4388 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4389 cflags |= REG_ICASE;
4390 #endif
4391 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4392 _("Invalid regexp"));
4393 }
4394
4395 print_info_sources_header
4396 (_("Source files for which symbols have been read in:\n"), &data);
4397
4398 for (objfile *objfile : current_program_space->objfiles ())
4399 {
4400 for (compunit_symtab *cu : objfile->compunits ())
4401 {
4402 for (symtab *s : compunit_filetabs (cu))
4403 {
4404 const char *fullname = symtab_to_fullname (s);
4405
4406 output_source_filename (fullname, &data);
4407 }
4408 }
4409 }
4410 printf_filtered ("\n\n");
4411
4412 print_info_sources_header
4413 (_("Source files for which symbols will be read in on demand:\n"), &data);
4414
4415 filenames_seen.clear ();
4416 data.first = 1;
4417 map_symbol_filenames (output_partial_symbol_filename, &data,
4418 1 /*need_fullname*/);
4419 printf_filtered ("\n");
4420 }
4421
4422 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4423 true compare only lbasename of FILENAMES. */
4424
4425 static bool
4426 file_matches (const char *file, const std::vector<const char *> &filenames,
4427 bool basenames)
4428 {
4429 if (filenames.empty ())
4430 return true;
4431
4432 for (const char *name : filenames)
4433 {
4434 name = (basenames ? lbasename (name) : name);
4435 if (compare_filenames_for_search (file, name))
4436 return true;
4437 }
4438
4439 return false;
4440 }
4441
4442 /* Helper function for std::sort on symbol_search objects. Can only sort
4443 symbols, not minimal symbols. */
4444
4445 int
4446 symbol_search::compare_search_syms (const symbol_search &sym_a,
4447 const symbol_search &sym_b)
4448 {
4449 int c;
4450
4451 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4452 symbol_symtab (sym_b.symbol)->filename);
4453 if (c != 0)
4454 return c;
4455
4456 if (sym_a.block != sym_b.block)
4457 return sym_a.block - sym_b.block;
4458
4459 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4460 }
4461
4462 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4463 If SYM has no symbol_type or symbol_name, returns false. */
4464
4465 bool
4466 treg_matches_sym_type_name (const compiled_regex &treg,
4467 const struct symbol *sym)
4468 {
4469 struct type *sym_type;
4470 std::string printed_sym_type_name;
4471
4472 if (symbol_lookup_debug > 1)
4473 {
4474 fprintf_unfiltered (gdb_stdlog,
4475 "treg_matches_sym_type_name\n sym %s\n",
4476 sym->natural_name ());
4477 }
4478
4479 sym_type = SYMBOL_TYPE (sym);
4480 if (sym_type == NULL)
4481 return false;
4482
4483 {
4484 scoped_switch_to_sym_language_if_auto l (sym);
4485
4486 printed_sym_type_name = type_to_string (sym_type);
4487 }
4488
4489
4490 if (symbol_lookup_debug > 1)
4491 {
4492 fprintf_unfiltered (gdb_stdlog,
4493 " sym_type_name %s\n",
4494 printed_sym_type_name.c_str ());
4495 }
4496
4497
4498 if (printed_sym_type_name.empty ())
4499 return false;
4500
4501 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4502 }
4503
4504 /* See symtab.h. */
4505
4506 bool
4507 global_symbol_searcher::is_suitable_msymbol
4508 (const enum search_domain kind, const minimal_symbol *msymbol)
4509 {
4510 switch (MSYMBOL_TYPE (msymbol))
4511 {
4512 case mst_data:
4513 case mst_bss:
4514 case mst_file_data:
4515 case mst_file_bss:
4516 return kind == VARIABLES_DOMAIN;
4517 case mst_text:
4518 case mst_file_text:
4519 case mst_solib_trampoline:
4520 case mst_text_gnu_ifunc:
4521 return kind == FUNCTIONS_DOMAIN;
4522 default:
4523 return false;
4524 }
4525 }
4526
4527 /* See symtab.h. */
4528
4529 bool
4530 global_symbol_searcher::expand_symtabs
4531 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4532 {
4533 enum search_domain kind = m_kind;
4534 bool found_msymbol = false;
4535
4536 if (objfile->sf)
4537 objfile->sf->qf->expand_symtabs_matching
4538 (objfile,
4539 [&] (const char *filename, bool basenames)
4540 {
4541 return file_matches (filename, filenames, basenames);
4542 },
4543 &lookup_name_info::match_any (),
4544 [&] (const char *symname)
4545 {
4546 return (!preg.has_value ()
4547 || preg->exec (symname, 0, NULL, 0) == 0);
4548 },
4549 NULL,
4550 kind);
4551
4552 /* Here, we search through the minimal symbol tables for functions and
4553 variables that match, and force their symbols to be read. This is in
4554 particular necessary for demangled variable names, which are no longer
4555 put into the partial symbol tables. The symbol will then be found
4556 during the scan of symtabs later.
4557
4558 For functions, find_pc_symtab should succeed if we have debug info for
4559 the function, for variables we have to call
4560 lookup_symbol_in_objfile_from_linkage_name to determine if the
4561 variable has debug info. If the lookup fails, set found_msymbol so
4562 that we will rescan to print any matching symbols without debug info.
4563 We only search the objfile the msymbol came from, we no longer search
4564 all objfiles. In large programs (1000s of shared libs) searching all
4565 objfiles is not worth the pain. */
4566 if (filenames.empty ()
4567 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4568 {
4569 for (minimal_symbol *msymbol : objfile->msymbols ())
4570 {
4571 QUIT;
4572
4573 if (msymbol->created_by_gdb)
4574 continue;
4575
4576 if (is_suitable_msymbol (kind, msymbol))
4577 {
4578 if (!preg.has_value ()
4579 || preg->exec (msymbol->natural_name (), 0,
4580 NULL, 0) == 0)
4581 {
4582 /* An important side-effect of these lookup functions is
4583 to expand the symbol table if msymbol is found, later
4584 in the process we will add matching symbols or
4585 msymbols to the results list, and that requires that
4586 the symbols tables are expanded. */
4587 if (kind == FUNCTIONS_DOMAIN
4588 ? (find_pc_compunit_symtab
4589 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4590 == NULL)
4591 : (lookup_symbol_in_objfile_from_linkage_name
4592 (objfile, msymbol->linkage_name (),
4593 VAR_DOMAIN)
4594 .symbol == NULL))
4595 found_msymbol = true;
4596 }
4597 }
4598 }
4599 }
4600
4601 return found_msymbol;
4602 }
4603
4604 /* See symtab.h. */
4605
4606 bool
4607 global_symbol_searcher::add_matching_symbols
4608 (objfile *objfile,
4609 const gdb::optional<compiled_regex> &preg,
4610 const gdb::optional<compiled_regex> &treg,
4611 std::set<symbol_search> *result_set) const
4612 {
4613 enum search_domain kind = m_kind;
4614
4615 /* Add matching symbols (if not already present). */
4616 for (compunit_symtab *cust : objfile->compunits ())
4617 {
4618 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4619
4620 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4621 {
4622 struct block_iterator iter;
4623 struct symbol *sym;
4624 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4625
4626 ALL_BLOCK_SYMBOLS (b, iter, sym)
4627 {
4628 struct symtab *real_symtab = symbol_symtab (sym);
4629
4630 QUIT;
4631
4632 /* Check first sole REAL_SYMTAB->FILENAME. It does
4633 not need to be a substring of symtab_to_fullname as
4634 it may contain "./" etc. */
4635 if ((file_matches (real_symtab->filename, filenames, false)
4636 || ((basenames_may_differ
4637 || file_matches (lbasename (real_symtab->filename),
4638 filenames, true))
4639 && file_matches (symtab_to_fullname (real_symtab),
4640 filenames, false)))
4641 && ((!preg.has_value ()
4642 || preg->exec (sym->natural_name (), 0,
4643 NULL, 0) == 0)
4644 && ((kind == VARIABLES_DOMAIN
4645 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4646 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4647 && SYMBOL_CLASS (sym) != LOC_BLOCK
4648 /* LOC_CONST can be used for more than
4649 just enums, e.g., c++ static const
4650 members. We only want to skip enums
4651 here. */
4652 && !(SYMBOL_CLASS (sym) == LOC_CONST
4653 && (TYPE_CODE (SYMBOL_TYPE (sym))
4654 == TYPE_CODE_ENUM))
4655 && (!treg.has_value ()
4656 || treg_matches_sym_type_name (*treg, sym)))
4657 || (kind == FUNCTIONS_DOMAIN
4658 && SYMBOL_CLASS (sym) == LOC_BLOCK
4659 && (!treg.has_value ()
4660 || treg_matches_sym_type_name (*treg,
4661 sym)))
4662 || (kind == TYPES_DOMAIN
4663 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4664 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4665 || (kind == MODULES_DOMAIN
4666 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4667 && SYMBOL_LINE (sym) != 0))))
4668 {
4669 if (result_set->size () < m_max_search_results)
4670 {
4671 /* Match, insert if not already in the results. */
4672 symbol_search ss (block, sym);
4673 if (result_set->find (ss) == result_set->end ())
4674 result_set->insert (ss);
4675 }
4676 else
4677 return false;
4678 }
4679 }
4680 }
4681 }
4682
4683 return true;
4684 }
4685
4686 /* See symtab.h. */
4687
4688 bool
4689 global_symbol_searcher::add_matching_msymbols
4690 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4691 std::vector<symbol_search> *results) const
4692 {
4693 enum search_domain kind = m_kind;
4694
4695 for (minimal_symbol *msymbol : objfile->msymbols ())
4696 {
4697 QUIT;
4698
4699 if (msymbol->created_by_gdb)
4700 continue;
4701
4702 if (is_suitable_msymbol (kind, msymbol))
4703 {
4704 if (!preg.has_value ()
4705 || preg->exec (msymbol->natural_name (), 0,
4706 NULL, 0) == 0)
4707 {
4708 /* For functions we can do a quick check of whether the
4709 symbol might be found via find_pc_symtab. */
4710 if (kind != FUNCTIONS_DOMAIN
4711 || (find_pc_compunit_symtab
4712 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4713 == NULL))
4714 {
4715 if (lookup_symbol_in_objfile_from_linkage_name
4716 (objfile, msymbol->linkage_name (),
4717 VAR_DOMAIN).symbol == NULL)
4718 {
4719 /* Matching msymbol, add it to the results list. */
4720 if (results->size () < m_max_search_results)
4721 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4722 else
4723 return false;
4724 }
4725 }
4726 }
4727 }
4728 }
4729
4730 return true;
4731 }
4732
4733 /* See symtab.h. */
4734
4735 std::vector<symbol_search>
4736 global_symbol_searcher::search () const
4737 {
4738 gdb::optional<compiled_regex> preg;
4739 gdb::optional<compiled_regex> treg;
4740
4741 gdb_assert (m_kind != ALL_DOMAIN);
4742
4743 if (m_symbol_name_regexp != NULL)
4744 {
4745 const char *symbol_name_regexp = m_symbol_name_regexp;
4746
4747 /* Make sure spacing is right for C++ operators.
4748 This is just a courtesy to make the matching less sensitive
4749 to how many spaces the user leaves between 'operator'
4750 and <TYPENAME> or <OPERATOR>. */
4751 const char *opend;
4752 const char *opname = operator_chars (symbol_name_regexp, &opend);
4753
4754 if (*opname)
4755 {
4756 int fix = -1; /* -1 means ok; otherwise number of
4757 spaces needed. */
4758
4759 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4760 {
4761 /* There should 1 space between 'operator' and 'TYPENAME'. */
4762 if (opname[-1] != ' ' || opname[-2] == ' ')
4763 fix = 1;
4764 }
4765 else
4766 {
4767 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4768 if (opname[-1] == ' ')
4769 fix = 0;
4770 }
4771 /* If wrong number of spaces, fix it. */
4772 if (fix >= 0)
4773 {
4774 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4775
4776 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4777 symbol_name_regexp = tmp;
4778 }
4779 }
4780
4781 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4782 ? REG_ICASE : 0);
4783 preg.emplace (symbol_name_regexp, cflags,
4784 _("Invalid regexp"));
4785 }
4786
4787 if (m_symbol_type_regexp != NULL)
4788 {
4789 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4790 ? REG_ICASE : 0);
4791 treg.emplace (m_symbol_type_regexp, cflags,
4792 _("Invalid regexp"));
4793 }
4794
4795 bool found_msymbol = false;
4796 std::set<symbol_search> result_set;
4797 for (objfile *objfile : current_program_space->objfiles ())
4798 {
4799 /* Expand symtabs within objfile that possibly contain matching
4800 symbols. */
4801 found_msymbol |= expand_symtabs (objfile, preg);
4802
4803 /* Find matching symbols within OBJFILE and add them in to the
4804 RESULT_SET set. Use a set here so that we can easily detect
4805 duplicates as we go, and can therefore track how many unique
4806 matches we have found so far. */
4807 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4808 break;
4809 }
4810
4811 /* Convert the result set into a sorted result list, as std::set is
4812 defined to be sorted then no explicit call to std::sort is needed. */
4813 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4814
4815 /* If there are no debug symbols, then add matching minsyms. But if the
4816 user wants to see symbols matching a type regexp, then never give a
4817 minimal symbol, as we assume that a minimal symbol does not have a
4818 type. */
4819 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4820 && !m_exclude_minsyms
4821 && !treg.has_value ())
4822 {
4823 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4824 for (objfile *objfile : current_program_space->objfiles ())
4825 if (!add_matching_msymbols (objfile, preg, &result))
4826 break;
4827 }
4828
4829 return result;
4830 }
4831
4832 /* See symtab.h. */
4833
4834 std::string
4835 symbol_to_info_string (struct symbol *sym, int block,
4836 enum search_domain kind)
4837 {
4838 std::string str;
4839
4840 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4841
4842 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4843 str += "static ";
4844
4845 /* Typedef that is not a C++ class. */
4846 if (kind == TYPES_DOMAIN
4847 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4848 {
4849 string_file tmp_stream;
4850
4851 /* FIXME: For C (and C++) we end up with a difference in output here
4852 between how a typedef is printed, and non-typedefs are printed.
4853 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4854 appear C-like, while TYPE_PRINT doesn't.
4855
4856 For the struct printing case below, things are worse, we force
4857 printing of the ";" in this function, which is going to be wrong
4858 for languages that don't require a ";" between statements. */
4859 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4860 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4861 else
4862 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4863 str += tmp_stream.string ();
4864 }
4865 /* variable, func, or typedef-that-is-c++-class. */
4866 else if (kind < TYPES_DOMAIN
4867 || (kind == TYPES_DOMAIN
4868 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4869 {
4870 string_file tmp_stream;
4871
4872 type_print (SYMBOL_TYPE (sym),
4873 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4874 ? "" : sym->print_name ()),
4875 &tmp_stream, 0);
4876
4877 str += tmp_stream.string ();
4878 str += ";";
4879 }
4880 /* Printing of modules is currently done here, maybe at some future
4881 point we might want a language specific method to print the module
4882 symbol so that we can customise the output more. */
4883 else if (kind == MODULES_DOMAIN)
4884 str += sym->print_name ();
4885
4886 return str;
4887 }
4888
4889 /* Helper function for symbol info commands, for example 'info functions',
4890 'info variables', etc. KIND is the kind of symbol we searched for, and
4891 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4892 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4893 print file and line number information for the symbol as well. Skip
4894 printing the filename if it matches LAST. */
4895
4896 static void
4897 print_symbol_info (enum search_domain kind,
4898 struct symbol *sym,
4899 int block, const char *last)
4900 {
4901 scoped_switch_to_sym_language_if_auto l (sym);
4902 struct symtab *s = symbol_symtab (sym);
4903
4904 if (last != NULL)
4905 {
4906 const char *s_filename = symtab_to_filename_for_display (s);
4907
4908 if (filename_cmp (last, s_filename) != 0)
4909 {
4910 printf_filtered (_("\nFile %ps:\n"),
4911 styled_string (file_name_style.style (),
4912 s_filename));
4913 }
4914
4915 if (SYMBOL_LINE (sym) != 0)
4916 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4917 else
4918 puts_filtered ("\t");
4919 }
4920
4921 std::string str = symbol_to_info_string (sym, block, kind);
4922 printf_filtered ("%s\n", str.c_str ());
4923 }
4924
4925 /* This help function for symtab_symbol_info() prints information
4926 for non-debugging symbols to gdb_stdout. */
4927
4928 static void
4929 print_msymbol_info (struct bound_minimal_symbol msymbol)
4930 {
4931 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4932 char *tmp;
4933
4934 if (gdbarch_addr_bit (gdbarch) <= 32)
4935 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4936 & (CORE_ADDR) 0xffffffff,
4937 8);
4938 else
4939 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4940 16);
4941
4942 ui_file_style sym_style = (msymbol.minsym->text_p ()
4943 ? function_name_style.style ()
4944 : ui_file_style ());
4945
4946 printf_filtered (_("%ps %ps\n"),
4947 styled_string (address_style.style (), tmp),
4948 styled_string (sym_style, msymbol.minsym->print_name ()));
4949 }
4950
4951 /* This is the guts of the commands "info functions", "info types", and
4952 "info variables". It calls search_symbols to find all matches and then
4953 print_[m]symbol_info to print out some useful information about the
4954 matches. */
4955
4956 static void
4957 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4958 const char *regexp, enum search_domain kind,
4959 const char *t_regexp, int from_tty)
4960 {
4961 static const char * const classnames[] =
4962 {"variable", "function", "type", "module"};
4963 const char *last_filename = "";
4964 int first = 1;
4965
4966 gdb_assert (kind != ALL_DOMAIN);
4967
4968 if (regexp != nullptr && *regexp == '\0')
4969 regexp = nullptr;
4970
4971 global_symbol_searcher spec (kind, regexp);
4972 spec.set_symbol_type_regexp (t_regexp);
4973 spec.set_exclude_minsyms (exclude_minsyms);
4974 std::vector<symbol_search> symbols = spec.search ();
4975
4976 if (!quiet)
4977 {
4978 if (regexp != NULL)
4979 {
4980 if (t_regexp != NULL)
4981 printf_filtered
4982 (_("All %ss matching regular expression \"%s\""
4983 " with type matching regular expression \"%s\":\n"),
4984 classnames[kind], regexp, t_regexp);
4985 else
4986 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4987 classnames[kind], regexp);
4988 }
4989 else
4990 {
4991 if (t_regexp != NULL)
4992 printf_filtered
4993 (_("All defined %ss"
4994 " with type matching regular expression \"%s\" :\n"),
4995 classnames[kind], t_regexp);
4996 else
4997 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4998 }
4999 }
5000
5001 for (const symbol_search &p : symbols)
5002 {
5003 QUIT;
5004
5005 if (p.msymbol.minsym != NULL)
5006 {
5007 if (first)
5008 {
5009 if (!quiet)
5010 printf_filtered (_("\nNon-debugging symbols:\n"));
5011 first = 0;
5012 }
5013 print_msymbol_info (p.msymbol);
5014 }
5015 else
5016 {
5017 print_symbol_info (kind,
5018 p.symbol,
5019 p.block,
5020 last_filename);
5021 last_filename
5022 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5023 }
5024 }
5025 }
5026
5027 /* Structure to hold the values of the options used by the 'info variables'
5028 and 'info functions' commands. These correspond to the -q, -t, and -n
5029 options. */
5030
5031 struct info_vars_funcs_options
5032 {
5033 bool quiet = false;
5034 bool exclude_minsyms = false;
5035 char *type_regexp = nullptr;
5036
5037 ~info_vars_funcs_options ()
5038 {
5039 xfree (type_regexp);
5040 }
5041 };
5042
5043 /* The options used by the 'info variables' and 'info functions'
5044 commands. */
5045
5046 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5047 gdb::option::boolean_option_def<info_vars_funcs_options> {
5048 "q",
5049 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5050 nullptr, /* show_cmd_cb */
5051 nullptr /* set_doc */
5052 },
5053
5054 gdb::option::boolean_option_def<info_vars_funcs_options> {
5055 "n",
5056 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5057 nullptr, /* show_cmd_cb */
5058 nullptr /* set_doc */
5059 },
5060
5061 gdb::option::string_option_def<info_vars_funcs_options> {
5062 "t",
5063 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5064 },
5065 nullptr, /* show_cmd_cb */
5066 nullptr /* set_doc */
5067 }
5068 };
5069
5070 /* Returns the option group used by 'info variables' and 'info
5071 functions'. */
5072
5073 static gdb::option::option_def_group
5074 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5075 {
5076 return {{info_vars_funcs_options_defs}, opts};
5077 }
5078
5079 /* Command completer for 'info variables' and 'info functions'. */
5080
5081 static void
5082 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5083 completion_tracker &tracker,
5084 const char *text, const char * /* word */)
5085 {
5086 const auto group
5087 = make_info_vars_funcs_options_def_group (nullptr);
5088 if (gdb::option::complete_options
5089 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5090 return;
5091
5092 const char *word = advance_to_expression_complete_word_point (tracker, text);
5093 symbol_completer (ignore, tracker, text, word);
5094 }
5095
5096 /* Implement the 'info variables' command. */
5097
5098 static void
5099 info_variables_command (const char *args, int from_tty)
5100 {
5101 info_vars_funcs_options opts;
5102 auto grp = make_info_vars_funcs_options_def_group (&opts);
5103 gdb::option::process_options
5104 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5105 if (args != nullptr && *args == '\0')
5106 args = nullptr;
5107
5108 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5109 opts.type_regexp, from_tty);
5110 }
5111
5112 /* Implement the 'info functions' command. */
5113
5114 static void
5115 info_functions_command (const char *args, int from_tty)
5116 {
5117 info_vars_funcs_options opts;
5118
5119 auto grp = make_info_vars_funcs_options_def_group (&opts);
5120 gdb::option::process_options
5121 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5122 if (args != nullptr && *args == '\0')
5123 args = nullptr;
5124
5125 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5126 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5127 }
5128
5129 /* Holds the -q option for the 'info types' command. */
5130
5131 struct info_types_options
5132 {
5133 bool quiet = false;
5134 };
5135
5136 /* The options used by the 'info types' command. */
5137
5138 static const gdb::option::option_def info_types_options_defs[] = {
5139 gdb::option::boolean_option_def<info_types_options> {
5140 "q",
5141 [] (info_types_options *opt) { return &opt->quiet; },
5142 nullptr, /* show_cmd_cb */
5143 nullptr /* set_doc */
5144 }
5145 };
5146
5147 /* Returns the option group used by 'info types'. */
5148
5149 static gdb::option::option_def_group
5150 make_info_types_options_def_group (info_types_options *opts)
5151 {
5152 return {{info_types_options_defs}, opts};
5153 }
5154
5155 /* Implement the 'info types' command. */
5156
5157 static void
5158 info_types_command (const char *args, int from_tty)
5159 {
5160 info_types_options opts;
5161
5162 auto grp = make_info_types_options_def_group (&opts);
5163 gdb::option::process_options
5164 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5165 if (args != nullptr && *args == '\0')
5166 args = nullptr;
5167 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5168 }
5169
5170 /* Command completer for 'info types' command. */
5171
5172 static void
5173 info_types_command_completer (struct cmd_list_element *ignore,
5174 completion_tracker &tracker,
5175 const char *text, const char * /* word */)
5176 {
5177 const auto group
5178 = make_info_types_options_def_group (nullptr);
5179 if (gdb::option::complete_options
5180 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5181 return;
5182
5183 const char *word = advance_to_expression_complete_word_point (tracker, text);
5184 symbol_completer (ignore, tracker, text, word);
5185 }
5186
5187 /* Implement the 'info modules' command. */
5188
5189 static void
5190 info_modules_command (const char *args, int from_tty)
5191 {
5192 info_types_options opts;
5193
5194 auto grp = make_info_types_options_def_group (&opts);
5195 gdb::option::process_options
5196 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5197 if (args != nullptr && *args == '\0')
5198 args = nullptr;
5199 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5200 from_tty);
5201 }
5202
5203 static void
5204 rbreak_command (const char *regexp, int from_tty)
5205 {
5206 std::string string;
5207 const char *file_name = nullptr;
5208
5209 if (regexp != nullptr)
5210 {
5211 const char *colon = strchr (regexp, ':');
5212
5213 if (colon && *(colon + 1) != ':')
5214 {
5215 int colon_index;
5216 char *local_name;
5217
5218 colon_index = colon - regexp;
5219 local_name = (char *) alloca (colon_index + 1);
5220 memcpy (local_name, regexp, colon_index);
5221 local_name[colon_index--] = 0;
5222 while (isspace (local_name[colon_index]))
5223 local_name[colon_index--] = 0;
5224 file_name = local_name;
5225 regexp = skip_spaces (colon + 1);
5226 }
5227 }
5228
5229 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5230 if (file_name != nullptr)
5231 spec.filenames.push_back (file_name);
5232 std::vector<symbol_search> symbols = spec.search ();
5233
5234 scoped_rbreak_breakpoints finalize;
5235 for (const symbol_search &p : symbols)
5236 {
5237 if (p.msymbol.minsym == NULL)
5238 {
5239 struct symtab *symtab = symbol_symtab (p.symbol);
5240 const char *fullname = symtab_to_fullname (symtab);
5241
5242 string = string_printf ("%s:'%s'", fullname,
5243 p.symbol->linkage_name ());
5244 break_command (&string[0], from_tty);
5245 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5246 }
5247 else
5248 {
5249 string = string_printf ("'%s'",
5250 p.msymbol.minsym->linkage_name ());
5251
5252 break_command (&string[0], from_tty);
5253 printf_filtered ("<function, no debug info> %s;\n",
5254 p.msymbol.minsym->print_name ());
5255 }
5256 }
5257 }
5258 \f
5259
5260 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5261
5262 static int
5263 compare_symbol_name (const char *symbol_name, language symbol_language,
5264 const lookup_name_info &lookup_name,
5265 completion_match_result &match_res)
5266 {
5267 const language_defn *lang = language_def (symbol_language);
5268
5269 symbol_name_matcher_ftype *name_match
5270 = get_symbol_name_matcher (lang, lookup_name);
5271
5272 return name_match (symbol_name, lookup_name, &match_res);
5273 }
5274
5275 /* See symtab.h. */
5276
5277 void
5278 completion_list_add_name (completion_tracker &tracker,
5279 language symbol_language,
5280 const char *symname,
5281 const lookup_name_info &lookup_name,
5282 const char *text, const char *word)
5283 {
5284 completion_match_result &match_res
5285 = tracker.reset_completion_match_result ();
5286
5287 /* Clip symbols that cannot match. */
5288 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5289 return;
5290
5291 /* Refresh SYMNAME from the match string. It's potentially
5292 different depending on language. (E.g., on Ada, the match may be
5293 the encoded symbol name wrapped in "<>"). */
5294 symname = match_res.match.match ();
5295 gdb_assert (symname != NULL);
5296
5297 /* We have a match for a completion, so add SYMNAME to the current list
5298 of matches. Note that the name is moved to freshly malloc'd space. */
5299
5300 {
5301 gdb::unique_xmalloc_ptr<char> completion
5302 = make_completion_match_str (symname, text, word);
5303
5304 /* Here we pass the match-for-lcd object to add_completion. Some
5305 languages match the user text against substrings of symbol
5306 names in some cases. E.g., in C++, "b push_ba" completes to
5307 "std::vector::push_back", "std::string::push_back", etc., and
5308 in this case we want the completion lowest common denominator
5309 to be "push_back" instead of "std::". */
5310 tracker.add_completion (std::move (completion),
5311 &match_res.match_for_lcd, text, word);
5312 }
5313 }
5314
5315 /* completion_list_add_name wrapper for struct symbol. */
5316
5317 static void
5318 completion_list_add_symbol (completion_tracker &tracker,
5319 symbol *sym,
5320 const lookup_name_info &lookup_name,
5321 const char *text, const char *word)
5322 {
5323 completion_list_add_name (tracker, sym->language (),
5324 sym->natural_name (),
5325 lookup_name, text, word);
5326
5327 /* C++ function symbols include the parameters within both the msymbol
5328 name and the symbol name. The problem is that the msymbol name will
5329 describe the parameters in the most basic way, with typedefs stripped
5330 out, while the symbol name will represent the types as they appear in
5331 the program. This means we will see duplicate entries in the
5332 completion tracker. The following converts the symbol name back to
5333 the msymbol name and removes the msymbol name from the completion
5334 tracker. */
5335 if (sym->language () == language_cplus
5336 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5337 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5338 {
5339 /* The call to canonicalize returns the empty string if the input
5340 string is already in canonical form, thanks to this we don't
5341 remove the symbol we just added above. */
5342 std::string str
5343 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5344 if (!str.empty ())
5345 tracker.remove_completion (str.c_str ());
5346 }
5347 }
5348
5349 /* completion_list_add_name wrapper for struct minimal_symbol. */
5350
5351 static void
5352 completion_list_add_msymbol (completion_tracker &tracker,
5353 minimal_symbol *sym,
5354 const lookup_name_info &lookup_name,
5355 const char *text, const char *word)
5356 {
5357 completion_list_add_name (tracker, sym->language (),
5358 sym->natural_name (),
5359 lookup_name, text, word);
5360 }
5361
5362
5363 /* ObjC: In case we are completing on a selector, look as the msymbol
5364 again and feed all the selectors into the mill. */
5365
5366 static void
5367 completion_list_objc_symbol (completion_tracker &tracker,
5368 struct minimal_symbol *msymbol,
5369 const lookup_name_info &lookup_name,
5370 const char *text, const char *word)
5371 {
5372 static char *tmp = NULL;
5373 static unsigned int tmplen = 0;
5374
5375 const char *method, *category, *selector;
5376 char *tmp2 = NULL;
5377
5378 method = msymbol->natural_name ();
5379
5380 /* Is it a method? */
5381 if ((method[0] != '-') && (method[0] != '+'))
5382 return;
5383
5384 if (text[0] == '[')
5385 /* Complete on shortened method method. */
5386 completion_list_add_name (tracker, language_objc,
5387 method + 1,
5388 lookup_name,
5389 text, word);
5390
5391 while ((strlen (method) + 1) >= tmplen)
5392 {
5393 if (tmplen == 0)
5394 tmplen = 1024;
5395 else
5396 tmplen *= 2;
5397 tmp = (char *) xrealloc (tmp, tmplen);
5398 }
5399 selector = strchr (method, ' ');
5400 if (selector != NULL)
5401 selector++;
5402
5403 category = strchr (method, '(');
5404
5405 if ((category != NULL) && (selector != NULL))
5406 {
5407 memcpy (tmp, method, (category - method));
5408 tmp[category - method] = ' ';
5409 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5410 completion_list_add_name (tracker, language_objc, tmp,
5411 lookup_name, text, word);
5412 if (text[0] == '[')
5413 completion_list_add_name (tracker, language_objc, tmp + 1,
5414 lookup_name, text, word);
5415 }
5416
5417 if (selector != NULL)
5418 {
5419 /* Complete on selector only. */
5420 strcpy (tmp, selector);
5421 tmp2 = strchr (tmp, ']');
5422 if (tmp2 != NULL)
5423 *tmp2 = '\0';
5424
5425 completion_list_add_name (tracker, language_objc, tmp,
5426 lookup_name, text, word);
5427 }
5428 }
5429
5430 /* Break the non-quoted text based on the characters which are in
5431 symbols. FIXME: This should probably be language-specific. */
5432
5433 static const char *
5434 language_search_unquoted_string (const char *text, const char *p)
5435 {
5436 for (; p > text; --p)
5437 {
5438 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5439 continue;
5440 else
5441 {
5442 if ((current_language->la_language == language_objc))
5443 {
5444 if (p[-1] == ':') /* Might be part of a method name. */
5445 continue;
5446 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5447 p -= 2; /* Beginning of a method name. */
5448 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5449 { /* Might be part of a method name. */
5450 const char *t = p;
5451
5452 /* Seeing a ' ' or a '(' is not conclusive evidence
5453 that we are in the middle of a method name. However,
5454 finding "-[" or "+[" should be pretty un-ambiguous.
5455 Unfortunately we have to find it now to decide. */
5456
5457 while (t > text)
5458 if (isalnum (t[-1]) || t[-1] == '_' ||
5459 t[-1] == ' ' || t[-1] == ':' ||
5460 t[-1] == '(' || t[-1] == ')')
5461 --t;
5462 else
5463 break;
5464
5465 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5466 p = t - 2; /* Method name detected. */
5467 /* Else we leave with p unchanged. */
5468 }
5469 }
5470 break;
5471 }
5472 }
5473 return p;
5474 }
5475
5476 static void
5477 completion_list_add_fields (completion_tracker &tracker,
5478 struct symbol *sym,
5479 const lookup_name_info &lookup_name,
5480 const char *text, const char *word)
5481 {
5482 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5483 {
5484 struct type *t = SYMBOL_TYPE (sym);
5485 enum type_code c = TYPE_CODE (t);
5486 int j;
5487
5488 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5489 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5490 if (TYPE_FIELD_NAME (t, j))
5491 completion_list_add_name (tracker, sym->language (),
5492 TYPE_FIELD_NAME (t, j),
5493 lookup_name, text, word);
5494 }
5495 }
5496
5497 /* See symtab.h. */
5498
5499 bool
5500 symbol_is_function_or_method (symbol *sym)
5501 {
5502 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5503 {
5504 case TYPE_CODE_FUNC:
5505 case TYPE_CODE_METHOD:
5506 return true;
5507 default:
5508 return false;
5509 }
5510 }
5511
5512 /* See symtab.h. */
5513
5514 bool
5515 symbol_is_function_or_method (minimal_symbol *msymbol)
5516 {
5517 switch (MSYMBOL_TYPE (msymbol))
5518 {
5519 case mst_text:
5520 case mst_text_gnu_ifunc:
5521 case mst_solib_trampoline:
5522 case mst_file_text:
5523 return true;
5524 default:
5525 return false;
5526 }
5527 }
5528
5529 /* See symtab.h. */
5530
5531 bound_minimal_symbol
5532 find_gnu_ifunc (const symbol *sym)
5533 {
5534 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5535 return {};
5536
5537 lookup_name_info lookup_name (sym->search_name (),
5538 symbol_name_match_type::SEARCH_NAME);
5539 struct objfile *objfile = symbol_objfile (sym);
5540
5541 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5542 minimal_symbol *ifunc = NULL;
5543
5544 iterate_over_minimal_symbols (objfile, lookup_name,
5545 [&] (minimal_symbol *minsym)
5546 {
5547 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5548 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5549 {
5550 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5551 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5552 {
5553 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5554 msym_addr
5555 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5556 msym_addr,
5557 current_top_target ());
5558 }
5559 if (msym_addr == address)
5560 {
5561 ifunc = minsym;
5562 return true;
5563 }
5564 }
5565 return false;
5566 });
5567
5568 if (ifunc != NULL)
5569 return {ifunc, objfile};
5570 return {};
5571 }
5572
5573 /* Add matching symbols from SYMTAB to the current completion list. */
5574
5575 static void
5576 add_symtab_completions (struct compunit_symtab *cust,
5577 completion_tracker &tracker,
5578 complete_symbol_mode mode,
5579 const lookup_name_info &lookup_name,
5580 const char *text, const char *word,
5581 enum type_code code)
5582 {
5583 struct symbol *sym;
5584 const struct block *b;
5585 struct block_iterator iter;
5586 int i;
5587
5588 if (cust == NULL)
5589 return;
5590
5591 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5592 {
5593 QUIT;
5594 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5595 ALL_BLOCK_SYMBOLS (b, iter, sym)
5596 {
5597 if (completion_skip_symbol (mode, sym))
5598 continue;
5599
5600 if (code == TYPE_CODE_UNDEF
5601 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5602 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5603 completion_list_add_symbol (tracker, sym,
5604 lookup_name,
5605 text, word);
5606 }
5607 }
5608 }
5609
5610 void
5611 default_collect_symbol_completion_matches_break_on
5612 (completion_tracker &tracker, complete_symbol_mode mode,
5613 symbol_name_match_type name_match_type,
5614 const char *text, const char *word,
5615 const char *break_on, enum type_code code)
5616 {
5617 /* Problem: All of the symbols have to be copied because readline
5618 frees them. I'm not going to worry about this; hopefully there
5619 won't be that many. */
5620
5621 struct symbol *sym;
5622 const struct block *b;
5623 const struct block *surrounding_static_block, *surrounding_global_block;
5624 struct block_iterator iter;
5625 /* The symbol we are completing on. Points in same buffer as text. */
5626 const char *sym_text;
5627
5628 /* Now look for the symbol we are supposed to complete on. */
5629 if (mode == complete_symbol_mode::LINESPEC)
5630 sym_text = text;
5631 else
5632 {
5633 const char *p;
5634 char quote_found;
5635 const char *quote_pos = NULL;
5636
5637 /* First see if this is a quoted string. */
5638 quote_found = '\0';
5639 for (p = text; *p != '\0'; ++p)
5640 {
5641 if (quote_found != '\0')
5642 {
5643 if (*p == quote_found)
5644 /* Found close quote. */
5645 quote_found = '\0';
5646 else if (*p == '\\' && p[1] == quote_found)
5647 /* A backslash followed by the quote character
5648 doesn't end the string. */
5649 ++p;
5650 }
5651 else if (*p == '\'' || *p == '"')
5652 {
5653 quote_found = *p;
5654 quote_pos = p;
5655 }
5656 }
5657 if (quote_found == '\'')
5658 /* A string within single quotes can be a symbol, so complete on it. */
5659 sym_text = quote_pos + 1;
5660 else if (quote_found == '"')
5661 /* A double-quoted string is never a symbol, nor does it make sense
5662 to complete it any other way. */
5663 {
5664 return;
5665 }
5666 else
5667 {
5668 /* It is not a quoted string. Break it based on the characters
5669 which are in symbols. */
5670 while (p > text)
5671 {
5672 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5673 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5674 --p;
5675 else
5676 break;
5677 }
5678 sym_text = p;
5679 }
5680 }
5681
5682 lookup_name_info lookup_name (sym_text, name_match_type, true);
5683
5684 /* At this point scan through the misc symbol vectors and add each
5685 symbol you find to the list. Eventually we want to ignore
5686 anything that isn't a text symbol (everything else will be
5687 handled by the psymtab code below). */
5688
5689 if (code == TYPE_CODE_UNDEF)
5690 {
5691 for (objfile *objfile : current_program_space->objfiles ())
5692 {
5693 for (minimal_symbol *msymbol : objfile->msymbols ())
5694 {
5695 QUIT;
5696
5697 if (completion_skip_symbol (mode, msymbol))
5698 continue;
5699
5700 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5701 sym_text, word);
5702
5703 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5704 sym_text, word);
5705 }
5706 }
5707 }
5708
5709 /* Add completions for all currently loaded symbol tables. */
5710 for (objfile *objfile : current_program_space->objfiles ())
5711 {
5712 for (compunit_symtab *cust : objfile->compunits ())
5713 add_symtab_completions (cust, tracker, mode, lookup_name,
5714 sym_text, word, code);
5715 }
5716
5717 /* Look through the partial symtabs for all symbols which begin by
5718 matching SYM_TEXT. Expand all CUs that you find to the list. */
5719 expand_symtabs_matching (NULL,
5720 lookup_name,
5721 NULL,
5722 [&] (compunit_symtab *symtab) /* expansion notify */
5723 {
5724 add_symtab_completions (symtab,
5725 tracker, mode, lookup_name,
5726 sym_text, word, code);
5727 },
5728 ALL_DOMAIN);
5729
5730 /* Search upwards from currently selected frame (so that we can
5731 complete on local vars). Also catch fields of types defined in
5732 this places which match our text string. Only complete on types
5733 visible from current context. */
5734
5735 b = get_selected_block (0);
5736 surrounding_static_block = block_static_block (b);
5737 surrounding_global_block = block_global_block (b);
5738 if (surrounding_static_block != NULL)
5739 while (b != surrounding_static_block)
5740 {
5741 QUIT;
5742
5743 ALL_BLOCK_SYMBOLS (b, iter, sym)
5744 {
5745 if (code == TYPE_CODE_UNDEF)
5746 {
5747 completion_list_add_symbol (tracker, sym, lookup_name,
5748 sym_text, word);
5749 completion_list_add_fields (tracker, sym, lookup_name,
5750 sym_text, word);
5751 }
5752 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5753 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5754 completion_list_add_symbol (tracker, sym, lookup_name,
5755 sym_text, word);
5756 }
5757
5758 /* Stop when we encounter an enclosing function. Do not stop for
5759 non-inlined functions - the locals of the enclosing function
5760 are in scope for a nested function. */
5761 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5762 break;
5763 b = BLOCK_SUPERBLOCK (b);
5764 }
5765
5766 /* Add fields from the file's types; symbols will be added below. */
5767
5768 if (code == TYPE_CODE_UNDEF)
5769 {
5770 if (surrounding_static_block != NULL)
5771 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5772 completion_list_add_fields (tracker, sym, lookup_name,
5773 sym_text, word);
5774
5775 if (surrounding_global_block != NULL)
5776 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5777 completion_list_add_fields (tracker, sym, lookup_name,
5778 sym_text, word);
5779 }
5780
5781 /* Skip macros if we are completing a struct tag -- arguable but
5782 usually what is expected. */
5783 if (current_language->la_macro_expansion == macro_expansion_c
5784 && code == TYPE_CODE_UNDEF)
5785 {
5786 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5787
5788 /* This adds a macro's name to the current completion list. */
5789 auto add_macro_name = [&] (const char *macro_name,
5790 const macro_definition *,
5791 macro_source_file *,
5792 int)
5793 {
5794 completion_list_add_name (tracker, language_c, macro_name,
5795 lookup_name, sym_text, word);
5796 };
5797
5798 /* Add any macros visible in the default scope. Note that this
5799 may yield the occasional wrong result, because an expression
5800 might be evaluated in a scope other than the default. For
5801 example, if the user types "break file:line if <TAB>", the
5802 resulting expression will be evaluated at "file:line" -- but
5803 at there does not seem to be a way to detect this at
5804 completion time. */
5805 scope = default_macro_scope ();
5806 if (scope)
5807 macro_for_each_in_scope (scope->file, scope->line,
5808 add_macro_name);
5809
5810 /* User-defined macros are always visible. */
5811 macro_for_each (macro_user_macros, add_macro_name);
5812 }
5813 }
5814
5815 void
5816 default_collect_symbol_completion_matches (completion_tracker &tracker,
5817 complete_symbol_mode mode,
5818 symbol_name_match_type name_match_type,
5819 const char *text, const char *word,
5820 enum type_code code)
5821 {
5822 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5823 name_match_type,
5824 text, word, "",
5825 code);
5826 }
5827
5828 /* Collect all symbols (regardless of class) which begin by matching
5829 TEXT. */
5830
5831 void
5832 collect_symbol_completion_matches (completion_tracker &tracker,
5833 complete_symbol_mode mode,
5834 symbol_name_match_type name_match_type,
5835 const char *text, const char *word)
5836 {
5837 current_language->la_collect_symbol_completion_matches (tracker, mode,
5838 name_match_type,
5839 text, word,
5840 TYPE_CODE_UNDEF);
5841 }
5842
5843 /* Like collect_symbol_completion_matches, but only collect
5844 STRUCT_DOMAIN symbols whose type code is CODE. */
5845
5846 void
5847 collect_symbol_completion_matches_type (completion_tracker &tracker,
5848 const char *text, const char *word,
5849 enum type_code code)
5850 {
5851 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5852 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5853
5854 gdb_assert (code == TYPE_CODE_UNION
5855 || code == TYPE_CODE_STRUCT
5856 || code == TYPE_CODE_ENUM);
5857 current_language->la_collect_symbol_completion_matches (tracker, mode,
5858 name_match_type,
5859 text, word, code);
5860 }
5861
5862 /* Like collect_symbol_completion_matches, but collects a list of
5863 symbols defined in all source files named SRCFILE. */
5864
5865 void
5866 collect_file_symbol_completion_matches (completion_tracker &tracker,
5867 complete_symbol_mode mode,
5868 symbol_name_match_type name_match_type,
5869 const char *text, const char *word,
5870 const char *srcfile)
5871 {
5872 /* The symbol we are completing on. Points in same buffer as text. */
5873 const char *sym_text;
5874
5875 /* Now look for the symbol we are supposed to complete on.
5876 FIXME: This should be language-specific. */
5877 if (mode == complete_symbol_mode::LINESPEC)
5878 sym_text = text;
5879 else
5880 {
5881 const char *p;
5882 char quote_found;
5883 const char *quote_pos = NULL;
5884
5885 /* First see if this is a quoted string. */
5886 quote_found = '\0';
5887 for (p = text; *p != '\0'; ++p)
5888 {
5889 if (quote_found != '\0')
5890 {
5891 if (*p == quote_found)
5892 /* Found close quote. */
5893 quote_found = '\0';
5894 else if (*p == '\\' && p[1] == quote_found)
5895 /* A backslash followed by the quote character
5896 doesn't end the string. */
5897 ++p;
5898 }
5899 else if (*p == '\'' || *p == '"')
5900 {
5901 quote_found = *p;
5902 quote_pos = p;
5903 }
5904 }
5905 if (quote_found == '\'')
5906 /* A string within single quotes can be a symbol, so complete on it. */
5907 sym_text = quote_pos + 1;
5908 else if (quote_found == '"')
5909 /* A double-quoted string is never a symbol, nor does it make sense
5910 to complete it any other way. */
5911 {
5912 return;
5913 }
5914 else
5915 {
5916 /* Not a quoted string. */
5917 sym_text = language_search_unquoted_string (text, p);
5918 }
5919 }
5920
5921 lookup_name_info lookup_name (sym_text, name_match_type, true);
5922
5923 /* Go through symtabs for SRCFILE and check the externs and statics
5924 for symbols which match. */
5925 iterate_over_symtabs (srcfile, [&] (symtab *s)
5926 {
5927 add_symtab_completions (SYMTAB_COMPUNIT (s),
5928 tracker, mode, lookup_name,
5929 sym_text, word, TYPE_CODE_UNDEF);
5930 return false;
5931 });
5932 }
5933
5934 /* A helper function for make_source_files_completion_list. It adds
5935 another file name to a list of possible completions, growing the
5936 list as necessary. */
5937
5938 static void
5939 add_filename_to_list (const char *fname, const char *text, const char *word,
5940 completion_list *list)
5941 {
5942 list->emplace_back (make_completion_match_str (fname, text, word));
5943 }
5944
5945 static int
5946 not_interesting_fname (const char *fname)
5947 {
5948 static const char *illegal_aliens[] = {
5949 "_globals_", /* inserted by coff_symtab_read */
5950 NULL
5951 };
5952 int i;
5953
5954 for (i = 0; illegal_aliens[i]; i++)
5955 {
5956 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5957 return 1;
5958 }
5959 return 0;
5960 }
5961
5962 /* An object of this type is passed as the user_data argument to
5963 map_partial_symbol_filenames. */
5964 struct add_partial_filename_data
5965 {
5966 struct filename_seen_cache *filename_seen_cache;
5967 const char *text;
5968 const char *word;
5969 int text_len;
5970 completion_list *list;
5971 };
5972
5973 /* A callback for map_partial_symbol_filenames. */
5974
5975 static void
5976 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5977 void *user_data)
5978 {
5979 struct add_partial_filename_data *data
5980 = (struct add_partial_filename_data *) user_data;
5981
5982 if (not_interesting_fname (filename))
5983 return;
5984 if (!data->filename_seen_cache->seen (filename)
5985 && filename_ncmp (filename, data->text, data->text_len) == 0)
5986 {
5987 /* This file matches for a completion; add it to the
5988 current list of matches. */
5989 add_filename_to_list (filename, data->text, data->word, data->list);
5990 }
5991 else
5992 {
5993 const char *base_name = lbasename (filename);
5994
5995 if (base_name != filename
5996 && !data->filename_seen_cache->seen (base_name)
5997 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5998 add_filename_to_list (base_name, data->text, data->word, data->list);
5999 }
6000 }
6001
6002 /* Return a list of all source files whose names begin with matching
6003 TEXT. The file names are looked up in the symbol tables of this
6004 program. */
6005
6006 completion_list
6007 make_source_files_completion_list (const char *text, const char *word)
6008 {
6009 size_t text_len = strlen (text);
6010 completion_list list;
6011 const char *base_name;
6012 struct add_partial_filename_data datum;
6013
6014 if (!have_full_symbols () && !have_partial_symbols ())
6015 return list;
6016
6017 filename_seen_cache filenames_seen;
6018
6019 for (objfile *objfile : current_program_space->objfiles ())
6020 {
6021 for (compunit_symtab *cu : objfile->compunits ())
6022 {
6023 for (symtab *s : compunit_filetabs (cu))
6024 {
6025 if (not_interesting_fname (s->filename))
6026 continue;
6027 if (!filenames_seen.seen (s->filename)
6028 && filename_ncmp (s->filename, text, text_len) == 0)
6029 {
6030 /* This file matches for a completion; add it to the current
6031 list of matches. */
6032 add_filename_to_list (s->filename, text, word, &list);
6033 }
6034 else
6035 {
6036 /* NOTE: We allow the user to type a base name when the
6037 debug info records leading directories, but not the other
6038 way around. This is what subroutines of breakpoint
6039 command do when they parse file names. */
6040 base_name = lbasename (s->filename);
6041 if (base_name != s->filename
6042 && !filenames_seen.seen (base_name)
6043 && filename_ncmp (base_name, text, text_len) == 0)
6044 add_filename_to_list (base_name, text, word, &list);
6045 }
6046 }
6047 }
6048 }
6049
6050 datum.filename_seen_cache = &filenames_seen;
6051 datum.text = text;
6052 datum.word = word;
6053 datum.text_len = text_len;
6054 datum.list = &list;
6055 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6056 0 /*need_fullname*/);
6057
6058 return list;
6059 }
6060 \f
6061 /* Track MAIN */
6062
6063 /* Return the "main_info" object for the current program space. If
6064 the object has not yet been created, create it and fill in some
6065 default values. */
6066
6067 static struct main_info *
6068 get_main_info (void)
6069 {
6070 struct main_info *info = main_progspace_key.get (current_program_space);
6071
6072 if (info == NULL)
6073 {
6074 /* It may seem strange to store the main name in the progspace
6075 and also in whatever objfile happens to see a main name in
6076 its debug info. The reason for this is mainly historical:
6077 gdb returned "main" as the name even if no function named
6078 "main" was defined the program; and this approach lets us
6079 keep compatibility. */
6080 info = main_progspace_key.emplace (current_program_space);
6081 }
6082
6083 return info;
6084 }
6085
6086 static void
6087 set_main_name (const char *name, enum language lang)
6088 {
6089 struct main_info *info = get_main_info ();
6090
6091 if (info->name_of_main != NULL)
6092 {
6093 xfree (info->name_of_main);
6094 info->name_of_main = NULL;
6095 info->language_of_main = language_unknown;
6096 }
6097 if (name != NULL)
6098 {
6099 info->name_of_main = xstrdup (name);
6100 info->language_of_main = lang;
6101 }
6102 }
6103
6104 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6105 accordingly. */
6106
6107 static void
6108 find_main_name (void)
6109 {
6110 const char *new_main_name;
6111
6112 /* First check the objfiles to see whether a debuginfo reader has
6113 picked up the appropriate main name. Historically the main name
6114 was found in a more or less random way; this approach instead
6115 relies on the order of objfile creation -- which still isn't
6116 guaranteed to get the correct answer, but is just probably more
6117 accurate. */
6118 for (objfile *objfile : current_program_space->objfiles ())
6119 {
6120 if (objfile->per_bfd->name_of_main != NULL)
6121 {
6122 set_main_name (objfile->per_bfd->name_of_main,
6123 objfile->per_bfd->language_of_main);
6124 return;
6125 }
6126 }
6127
6128 /* Try to see if the main procedure is in Ada. */
6129 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6130 be to add a new method in the language vector, and call this
6131 method for each language until one of them returns a non-empty
6132 name. This would allow us to remove this hard-coded call to
6133 an Ada function. It is not clear that this is a better approach
6134 at this point, because all methods need to be written in a way
6135 such that false positives never be returned. For instance, it is
6136 important that a method does not return a wrong name for the main
6137 procedure if the main procedure is actually written in a different
6138 language. It is easy to guaranty this with Ada, since we use a
6139 special symbol generated only when the main in Ada to find the name
6140 of the main procedure. It is difficult however to see how this can
6141 be guarantied for languages such as C, for instance. This suggests
6142 that order of call for these methods becomes important, which means
6143 a more complicated approach. */
6144 new_main_name = ada_main_name ();
6145 if (new_main_name != NULL)
6146 {
6147 set_main_name (new_main_name, language_ada);
6148 return;
6149 }
6150
6151 new_main_name = d_main_name ();
6152 if (new_main_name != NULL)
6153 {
6154 set_main_name (new_main_name, language_d);
6155 return;
6156 }
6157
6158 new_main_name = go_main_name ();
6159 if (new_main_name != NULL)
6160 {
6161 set_main_name (new_main_name, language_go);
6162 return;
6163 }
6164
6165 new_main_name = pascal_main_name ();
6166 if (new_main_name != NULL)
6167 {
6168 set_main_name (new_main_name, language_pascal);
6169 return;
6170 }
6171
6172 /* The languages above didn't identify the name of the main procedure.
6173 Fallback to "main". */
6174
6175 /* Try to find language for main in psymtabs. */
6176 enum language lang
6177 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6178 if (lang != language_unknown)
6179 {
6180 set_main_name ("main", lang);
6181 return;
6182 }
6183
6184 set_main_name ("main", language_unknown);
6185 }
6186
6187 /* See symtab.h. */
6188
6189 const char *
6190 main_name ()
6191 {
6192 struct main_info *info = get_main_info ();
6193
6194 if (info->name_of_main == NULL)
6195 find_main_name ();
6196
6197 return info->name_of_main;
6198 }
6199
6200 /* Return the language of the main function. If it is not known,
6201 return language_unknown. */
6202
6203 enum language
6204 main_language (void)
6205 {
6206 struct main_info *info = get_main_info ();
6207
6208 if (info->name_of_main == NULL)
6209 find_main_name ();
6210
6211 return info->language_of_main;
6212 }
6213
6214 /* Handle ``executable_changed'' events for the symtab module. */
6215
6216 static void
6217 symtab_observer_executable_changed (void)
6218 {
6219 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6220 set_main_name (NULL, language_unknown);
6221 }
6222
6223 /* Return 1 if the supplied producer string matches the ARM RealView
6224 compiler (armcc). */
6225
6226 bool
6227 producer_is_realview (const char *producer)
6228 {
6229 static const char *const arm_idents[] = {
6230 "ARM C Compiler, ADS",
6231 "Thumb C Compiler, ADS",
6232 "ARM C++ Compiler, ADS",
6233 "Thumb C++ Compiler, ADS",
6234 "ARM/Thumb C/C++ Compiler, RVCT",
6235 "ARM C/C++ Compiler, RVCT"
6236 };
6237 int i;
6238
6239 if (producer == NULL)
6240 return false;
6241
6242 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6243 if (startswith (producer, arm_idents[i]))
6244 return true;
6245
6246 return false;
6247 }
6248
6249 \f
6250
6251 /* The next index to hand out in response to a registration request. */
6252
6253 static int next_aclass_value = LOC_FINAL_VALUE;
6254
6255 /* The maximum number of "aclass" registrations we support. This is
6256 constant for convenience. */
6257 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6258
6259 /* The objects representing the various "aclass" values. The elements
6260 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6261 elements are those registered at gdb initialization time. */
6262
6263 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6264
6265 /* The globally visible pointer. This is separate from 'symbol_impl'
6266 so that it can be const. */
6267
6268 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6269
6270 /* Make sure we saved enough room in struct symbol. */
6271
6272 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6273
6274 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6275 is the ops vector associated with this index. This returns the new
6276 index, which should be used as the aclass_index field for symbols
6277 of this type. */
6278
6279 int
6280 register_symbol_computed_impl (enum address_class aclass,
6281 const struct symbol_computed_ops *ops)
6282 {
6283 int result = next_aclass_value++;
6284
6285 gdb_assert (aclass == LOC_COMPUTED);
6286 gdb_assert (result < MAX_SYMBOL_IMPLS);
6287 symbol_impl[result].aclass = aclass;
6288 symbol_impl[result].ops_computed = ops;
6289
6290 /* Sanity check OPS. */
6291 gdb_assert (ops != NULL);
6292 gdb_assert (ops->tracepoint_var_ref != NULL);
6293 gdb_assert (ops->describe_location != NULL);
6294 gdb_assert (ops->get_symbol_read_needs != NULL);
6295 gdb_assert (ops->read_variable != NULL);
6296
6297 return result;
6298 }
6299
6300 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6301 OPS is the ops vector associated with this index. This returns the
6302 new index, which should be used as the aclass_index field for symbols
6303 of this type. */
6304
6305 int
6306 register_symbol_block_impl (enum address_class aclass,
6307 const struct symbol_block_ops *ops)
6308 {
6309 int result = next_aclass_value++;
6310
6311 gdb_assert (aclass == LOC_BLOCK);
6312 gdb_assert (result < MAX_SYMBOL_IMPLS);
6313 symbol_impl[result].aclass = aclass;
6314 symbol_impl[result].ops_block = ops;
6315
6316 /* Sanity check OPS. */
6317 gdb_assert (ops != NULL);
6318 gdb_assert (ops->find_frame_base_location != NULL);
6319
6320 return result;
6321 }
6322
6323 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6324 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6325 this index. This returns the new index, which should be used as
6326 the aclass_index field for symbols of this type. */
6327
6328 int
6329 register_symbol_register_impl (enum address_class aclass,
6330 const struct symbol_register_ops *ops)
6331 {
6332 int result = next_aclass_value++;
6333
6334 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6335 gdb_assert (result < MAX_SYMBOL_IMPLS);
6336 symbol_impl[result].aclass = aclass;
6337 symbol_impl[result].ops_register = ops;
6338
6339 return result;
6340 }
6341
6342 /* Initialize elements of 'symbol_impl' for the constants in enum
6343 address_class. */
6344
6345 static void
6346 initialize_ordinary_address_classes (void)
6347 {
6348 int i;
6349
6350 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6351 symbol_impl[i].aclass = (enum address_class) i;
6352 }
6353
6354 \f
6355
6356 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6357
6358 void
6359 initialize_objfile_symbol (struct symbol *sym)
6360 {
6361 SYMBOL_OBJFILE_OWNED (sym) = 1;
6362 SYMBOL_SECTION (sym) = -1;
6363 }
6364
6365 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6366 obstack. */
6367
6368 struct symbol *
6369 allocate_symbol (struct objfile *objfile)
6370 {
6371 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6372
6373 initialize_objfile_symbol (result);
6374
6375 return result;
6376 }
6377
6378 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6379 obstack. */
6380
6381 struct template_symbol *
6382 allocate_template_symbol (struct objfile *objfile)
6383 {
6384 struct template_symbol *result;
6385
6386 result = new (&objfile->objfile_obstack) template_symbol ();
6387 initialize_objfile_symbol (result);
6388
6389 return result;
6390 }
6391
6392 /* See symtab.h. */
6393
6394 struct objfile *
6395 symbol_objfile (const struct symbol *symbol)
6396 {
6397 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6398 return SYMTAB_OBJFILE (symbol->owner.symtab);
6399 }
6400
6401 /* See symtab.h. */
6402
6403 struct gdbarch *
6404 symbol_arch (const struct symbol *symbol)
6405 {
6406 if (!SYMBOL_OBJFILE_OWNED (symbol))
6407 return symbol->owner.arch;
6408 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6409 }
6410
6411 /* See symtab.h. */
6412
6413 struct symtab *
6414 symbol_symtab (const struct symbol *symbol)
6415 {
6416 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6417 return symbol->owner.symtab;
6418 }
6419
6420 /* See symtab.h. */
6421
6422 void
6423 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6424 {
6425 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6426 symbol->owner.symtab = symtab;
6427 }
6428
6429 /* See symtab.h. */
6430
6431 CORE_ADDR
6432 get_symbol_address (const struct symbol *sym)
6433 {
6434 gdb_assert (sym->maybe_copied);
6435 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6436
6437 const char *linkage_name = sym->linkage_name ();
6438
6439 for (objfile *objfile : current_program_space->objfiles ())
6440 {
6441 if (objfile->separate_debug_objfile_backlink != nullptr)
6442 continue;
6443
6444 bound_minimal_symbol minsym
6445 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6446 if (minsym.minsym != nullptr)
6447 return BMSYMBOL_VALUE_ADDRESS (minsym);
6448 }
6449 return sym->value.address;
6450 }
6451
6452 /* See symtab.h. */
6453
6454 CORE_ADDR
6455 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6456 {
6457 gdb_assert (minsym->maybe_copied);
6458 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6459
6460 const char *linkage_name = minsym->linkage_name ();
6461
6462 for (objfile *objfile : current_program_space->objfiles ())
6463 {
6464 if (objfile->separate_debug_objfile_backlink == nullptr
6465 && (objfile->flags & OBJF_MAINLINE) != 0)
6466 {
6467 bound_minimal_symbol found
6468 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6469 if (found.minsym != nullptr)
6470 return BMSYMBOL_VALUE_ADDRESS (found);
6471 }
6472 }
6473 return minsym->value.address + objf->section_offsets[minsym->section];
6474 }
6475
6476 \f
6477
6478 /* Hold the sub-commands of 'info module'. */
6479
6480 static struct cmd_list_element *info_module_cmdlist = NULL;
6481
6482 /* See symtab.h. */
6483
6484 std::vector<module_symbol_search>
6485 search_module_symbols (const char *module_regexp, const char *regexp,
6486 const char *type_regexp, search_domain kind)
6487 {
6488 std::vector<module_symbol_search> results;
6489
6490 /* Search for all modules matching MODULE_REGEXP. */
6491 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6492 spec1.set_exclude_minsyms (true);
6493 std::vector<symbol_search> modules = spec1.search ();
6494
6495 /* Now search for all symbols of the required KIND matching the required
6496 regular expressions. We figure out which ones are in which modules
6497 below. */
6498 global_symbol_searcher spec2 (kind, regexp);
6499 spec2.set_symbol_type_regexp (type_regexp);
6500 spec2.set_exclude_minsyms (true);
6501 std::vector<symbol_search> symbols = spec2.search ();
6502
6503 /* Now iterate over all MODULES, checking to see which items from
6504 SYMBOLS are in each module. */
6505 for (const symbol_search &p : modules)
6506 {
6507 QUIT;
6508
6509 /* This is a module. */
6510 gdb_assert (p.symbol != nullptr);
6511
6512 std::string prefix = p.symbol->print_name ();
6513 prefix += "::";
6514
6515 for (const symbol_search &q : symbols)
6516 {
6517 if (q.symbol == nullptr)
6518 continue;
6519
6520 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6521 prefix.size ()) != 0)
6522 continue;
6523
6524 results.push_back ({p, q});
6525 }
6526 }
6527
6528 return results;
6529 }
6530
6531 /* Implement the core of both 'info module functions' and 'info module
6532 variables'. */
6533
6534 static void
6535 info_module_subcommand (bool quiet, const char *module_regexp,
6536 const char *regexp, const char *type_regexp,
6537 search_domain kind)
6538 {
6539 /* Print a header line. Don't build the header line bit by bit as this
6540 prevents internationalisation. */
6541 if (!quiet)
6542 {
6543 if (module_regexp == nullptr)
6544 {
6545 if (type_regexp == nullptr)
6546 {
6547 if (regexp == nullptr)
6548 printf_filtered ((kind == VARIABLES_DOMAIN
6549 ? _("All variables in all modules:")
6550 : _("All functions in all modules:")));
6551 else
6552 printf_filtered
6553 ((kind == VARIABLES_DOMAIN
6554 ? _("All variables matching regular expression"
6555 " \"%s\" in all modules:")
6556 : _("All functions matching regular expression"
6557 " \"%s\" in all modules:")),
6558 regexp);
6559 }
6560 else
6561 {
6562 if (regexp == nullptr)
6563 printf_filtered
6564 ((kind == VARIABLES_DOMAIN
6565 ? _("All variables with type matching regular "
6566 "expression \"%s\" in all modules:")
6567 : _("All functions with type matching regular "
6568 "expression \"%s\" in all modules:")),
6569 type_regexp);
6570 else
6571 printf_filtered
6572 ((kind == VARIABLES_DOMAIN
6573 ? _("All variables matching regular expression "
6574 "\"%s\",\n\twith type matching regular "
6575 "expression \"%s\" in all modules:")
6576 : _("All functions matching regular expression "
6577 "\"%s\",\n\twith type matching regular "
6578 "expression \"%s\" in all modules:")),
6579 regexp, type_regexp);
6580 }
6581 }
6582 else
6583 {
6584 if (type_regexp == nullptr)
6585 {
6586 if (regexp == nullptr)
6587 printf_filtered
6588 ((kind == VARIABLES_DOMAIN
6589 ? _("All variables in all modules matching regular "
6590 "expression \"%s\":")
6591 : _("All functions in all modules matching regular "
6592 "expression \"%s\":")),
6593 module_regexp);
6594 else
6595 printf_filtered
6596 ((kind == VARIABLES_DOMAIN
6597 ? _("All variables matching regular expression "
6598 "\"%s\",\n\tin all modules matching regular "
6599 "expression \"%s\":")
6600 : _("All functions matching regular expression "
6601 "\"%s\",\n\tin all modules matching regular "
6602 "expression \"%s\":")),
6603 regexp, module_regexp);
6604 }
6605 else
6606 {
6607 if (regexp == nullptr)
6608 printf_filtered
6609 ((kind == VARIABLES_DOMAIN
6610 ? _("All variables with type matching regular "
6611 "expression \"%s\"\n\tin all modules matching "
6612 "regular expression \"%s\":")
6613 : _("All functions with type matching regular "
6614 "expression \"%s\"\n\tin all modules matching "
6615 "regular expression \"%s\":")),
6616 type_regexp, module_regexp);
6617 else
6618 printf_filtered
6619 ((kind == VARIABLES_DOMAIN
6620 ? _("All variables matching regular expression "
6621 "\"%s\",\n\twith type matching regular expression "
6622 "\"%s\",\n\tin all modules matching regular "
6623 "expression \"%s\":")
6624 : _("All functions matching regular expression "
6625 "\"%s\",\n\twith type matching regular expression "
6626 "\"%s\",\n\tin all modules matching regular "
6627 "expression \"%s\":")),
6628 regexp, type_regexp, module_regexp);
6629 }
6630 }
6631 printf_filtered ("\n");
6632 }
6633
6634 /* Find all symbols of type KIND matching the given regular expressions
6635 along with the symbols for the modules in which those symbols
6636 reside. */
6637 std::vector<module_symbol_search> module_symbols
6638 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6639
6640 std::sort (module_symbols.begin (), module_symbols.end (),
6641 [] (const module_symbol_search &a, const module_symbol_search &b)
6642 {
6643 if (a.first < b.first)
6644 return true;
6645 else if (a.first == b.first)
6646 return a.second < b.second;
6647 else
6648 return false;
6649 });
6650
6651 const char *last_filename = "";
6652 const symbol *last_module_symbol = nullptr;
6653 for (const module_symbol_search &ms : module_symbols)
6654 {
6655 const symbol_search &p = ms.first;
6656 const symbol_search &q = ms.second;
6657
6658 gdb_assert (q.symbol != nullptr);
6659
6660 if (last_module_symbol != p.symbol)
6661 {
6662 printf_filtered ("\n");
6663 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6664 last_module_symbol = p.symbol;
6665 last_filename = "";
6666 }
6667
6668 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6669 last_filename);
6670 last_filename
6671 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6672 }
6673 }
6674
6675 /* Hold the option values for the 'info module .....' sub-commands. */
6676
6677 struct info_modules_var_func_options
6678 {
6679 bool quiet = false;
6680 char *type_regexp = nullptr;
6681 char *module_regexp = nullptr;
6682
6683 ~info_modules_var_func_options ()
6684 {
6685 xfree (type_regexp);
6686 xfree (module_regexp);
6687 }
6688 };
6689
6690 /* The options used by 'info module variables' and 'info module functions'
6691 commands. */
6692
6693 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6694 gdb::option::boolean_option_def<info_modules_var_func_options> {
6695 "q",
6696 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6697 nullptr, /* show_cmd_cb */
6698 nullptr /* set_doc */
6699 },
6700
6701 gdb::option::string_option_def<info_modules_var_func_options> {
6702 "t",
6703 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6704 nullptr, /* show_cmd_cb */
6705 nullptr /* set_doc */
6706 },
6707
6708 gdb::option::string_option_def<info_modules_var_func_options> {
6709 "m",
6710 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6711 nullptr, /* show_cmd_cb */
6712 nullptr /* set_doc */
6713 }
6714 };
6715
6716 /* Return the option group used by the 'info module ...' sub-commands. */
6717
6718 static inline gdb::option::option_def_group
6719 make_info_modules_var_func_options_def_group
6720 (info_modules_var_func_options *opts)
6721 {
6722 return {{info_modules_var_func_options_defs}, opts};
6723 }
6724
6725 /* Implements the 'info module functions' command. */
6726
6727 static void
6728 info_module_functions_command (const char *args, int from_tty)
6729 {
6730 info_modules_var_func_options opts;
6731 auto grp = make_info_modules_var_func_options_def_group (&opts);
6732 gdb::option::process_options
6733 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6734 if (args != nullptr && *args == '\0')
6735 args = nullptr;
6736
6737 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6738 opts.type_regexp, FUNCTIONS_DOMAIN);
6739 }
6740
6741 /* Implements the 'info module variables' command. */
6742
6743 static void
6744 info_module_variables_command (const char *args, int from_tty)
6745 {
6746 info_modules_var_func_options opts;
6747 auto grp = make_info_modules_var_func_options_def_group (&opts);
6748 gdb::option::process_options
6749 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6750 if (args != nullptr && *args == '\0')
6751 args = nullptr;
6752
6753 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6754 opts.type_regexp, VARIABLES_DOMAIN);
6755 }
6756
6757 /* Command completer for 'info module ...' sub-commands. */
6758
6759 static void
6760 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6761 completion_tracker &tracker,
6762 const char *text,
6763 const char * /* word */)
6764 {
6765
6766 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6767 if (gdb::option::complete_options
6768 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6769 return;
6770
6771 const char *word = advance_to_expression_complete_word_point (tracker, text);
6772 symbol_completer (ignore, tracker, text, word);
6773 }
6774
6775 \f
6776
6777 void _initialize_symtab ();
6778 void
6779 _initialize_symtab ()
6780 {
6781 cmd_list_element *c;
6782
6783 initialize_ordinary_address_classes ();
6784
6785 c = add_info ("variables", info_variables_command,
6786 info_print_args_help (_("\
6787 All global and static variable names or those matching REGEXPs.\n\
6788 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6789 Prints the global and static variables.\n"),
6790 _("global and static variables"),
6791 true));
6792 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6793 if (dbx_commands)
6794 {
6795 c = add_com ("whereis", class_info, info_variables_command,
6796 info_print_args_help (_("\
6797 All global and static variable names, or those matching REGEXPs.\n\
6798 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6799 Prints the global and static variables.\n"),
6800 _("global and static variables"),
6801 true));
6802 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6803 }
6804
6805 c = add_info ("functions", info_functions_command,
6806 info_print_args_help (_("\
6807 All function names or those matching REGEXPs.\n\
6808 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6809 Prints the functions.\n"),
6810 _("functions"),
6811 true));
6812 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6813
6814 c = add_info ("types", info_types_command, _("\
6815 All type names, or those matching REGEXP.\n\
6816 Usage: info types [-q] [REGEXP]\n\
6817 Print information about all types matching REGEXP, or all types if no\n\
6818 REGEXP is given. The optional flag -q disables printing of headers."));
6819 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6820
6821 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6822
6823 static std::string info_sources_help
6824 = gdb::option::build_help (_("\
6825 All source files in the program or those matching REGEXP.\n\
6826 Usage: info sources [OPTION]... [REGEXP]\n\
6827 By default, REGEXP is used to match anywhere in the filename.\n\
6828 \n\
6829 Options:\n\
6830 %OPTIONS%"),
6831 info_sources_opts);
6832
6833 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6834 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6835
6836 c = add_info ("modules", info_modules_command,
6837 _("All module names, or those matching REGEXP."));
6838 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6839
6840 add_basic_prefix_cmd ("module", class_info, _("\
6841 Print information about modules."),
6842 &info_module_cmdlist, "info module ",
6843 0, &infolist);
6844
6845 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6846 Display functions arranged by modules.\n\
6847 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6848 Print a summary of all functions within each Fortran module, grouped by\n\
6849 module and file. For each function the line on which the function is\n\
6850 defined is given along with the type signature and name of the function.\n\
6851 \n\
6852 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6853 listed. If MODREGEXP is provided then only functions in modules matching\n\
6854 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6855 type signature matches TYPEREGEXP are listed.\n\
6856 \n\
6857 The -q flag suppresses printing some header information."),
6858 &info_module_cmdlist);
6859 set_cmd_completer_handle_brkchars
6860 (c, info_module_var_func_command_completer);
6861
6862 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6863 Display variables arranged by modules.\n\
6864 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6865 Print a summary of all variables within each Fortran module, grouped by\n\
6866 module and file. For each variable the line on which the variable is\n\
6867 defined is given along with the type and name of the variable.\n\
6868 \n\
6869 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6870 listed. If MODREGEXP is provided then only variables in modules matching\n\
6871 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6872 type matches TYPEREGEXP are listed.\n\
6873 \n\
6874 The -q flag suppresses printing some header information."),
6875 &info_module_cmdlist);
6876 set_cmd_completer_handle_brkchars
6877 (c, info_module_var_func_command_completer);
6878
6879 add_com ("rbreak", class_breakpoint, rbreak_command,
6880 _("Set a breakpoint for all functions matching REGEXP."));
6881
6882 add_setshow_enum_cmd ("multiple-symbols", no_class,
6883 multiple_symbols_modes, &multiple_symbols_mode,
6884 _("\
6885 Set how the debugger handles ambiguities in expressions."), _("\
6886 Show how the debugger handles ambiguities in expressions."), _("\
6887 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6888 NULL, NULL, &setlist, &showlist);
6889
6890 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6891 &basenames_may_differ, _("\
6892 Set whether a source file may have multiple base names."), _("\
6893 Show whether a source file may have multiple base names."), _("\
6894 (A \"base name\" is the name of a file with the directory part removed.\n\
6895 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6896 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6897 before comparing them. Canonicalization is an expensive operation,\n\
6898 but it allows the same file be known by more than one base name.\n\
6899 If not set (the default), all source files are assumed to have just\n\
6900 one base name, and gdb will do file name comparisons more efficiently."),
6901 NULL, NULL,
6902 &setlist, &showlist);
6903
6904 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6905 _("Set debugging of symbol table creation."),
6906 _("Show debugging of symbol table creation."), _("\
6907 When enabled (non-zero), debugging messages are printed when building\n\
6908 symbol tables. A value of 1 (one) normally provides enough information.\n\
6909 A value greater than 1 provides more verbose information."),
6910 NULL,
6911 NULL,
6912 &setdebuglist, &showdebuglist);
6913
6914 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6915 _("\
6916 Set debugging of symbol lookup."), _("\
6917 Show debugging of symbol lookup."), _("\
6918 When enabled (non-zero), symbol lookups are logged."),
6919 NULL, NULL,
6920 &setdebuglist, &showdebuglist);
6921
6922 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6923 &new_symbol_cache_size,
6924 _("Set the size of the symbol cache."),
6925 _("Show the size of the symbol cache."), _("\
6926 The size of the symbol cache.\n\
6927 If zero then the symbol cache is disabled."),
6928 set_symbol_cache_size_handler, NULL,
6929 &maintenance_set_cmdlist,
6930 &maintenance_show_cmdlist);
6931
6932 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6933 _("Dump the symbol cache for each program space."),
6934 &maintenanceprintlist);
6935
6936 add_cmd ("symbol-cache-statistics", class_maintenance,
6937 maintenance_print_symbol_cache_statistics,
6938 _("Print symbol cache statistics for each program space."),
6939 &maintenanceprintlist);
6940
6941 add_cmd ("flush-symbol-cache", class_maintenance,
6942 maintenance_flush_symbol_cache,
6943 _("Flush the symbol cache for each program space."),
6944 &maintenancelist);
6945
6946 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6947 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6948 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6949 }
This page took 0.308935 seconds and 5 git commands to generate.