Change create_demangled_names_hash to take an objfile_per_bfd_storage
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46 #include "typeprint.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observable.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "parser-defs.h"
64 #include "completer.h"
65 #include "progspace-and-thread.h"
66 #include "common/gdb_optional.h"
67 #include "filename-seen-cache.h"
68 #include "arch-utils.h"
69 #include <algorithm>
70 #include "common/pathstuff.h"
71
72 /* Forward declarations for local functions. */
73
74 static void rbreak_command (const char *, int);
75
76 static int find_line_common (struct linetable *, int, int *, int);
77
78 static struct block_symbol
79 lookup_symbol_aux (const char *name,
80 symbol_name_match_type match_type,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *);
85
86 static
87 struct block_symbol lookup_local_symbol (const char *name,
88 symbol_name_match_type match_type,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static struct block_symbol
94 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
95 const char *name, const domain_enum domain);
96
97 /* See symtab.h. */
98 const struct block_symbol null_block_symbol = { NULL, NULL };
99
100 /* Program space key for finding name and language of "main". */
101
102 static const struct program_space_data *main_progspace_key;
103
104 /* Type of the data stored on the program space. */
105
106 struct main_info
107 {
108 /* Name of "main". */
109
110 char *name_of_main;
111
112 /* Language of "main". */
113
114 enum language language_of_main;
115 };
116
117 /* Program space key for finding its symbol cache. */
118
119 static const struct program_space_data *symbol_cache_key;
120
121 /* The default symbol cache size.
122 There is no extra cpu cost for large N (except when flushing the cache,
123 which is rare). The value here is just a first attempt. A better default
124 value may be higher or lower. A prime number can make up for a bad hash
125 computation, so that's why the number is what it is. */
126 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
127
128 /* The maximum symbol cache size.
129 There's no method to the decision of what value to use here, other than
130 there's no point in allowing a user typo to make gdb consume all memory. */
131 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
132
133 /* symbol_cache_lookup returns this if a previous lookup failed to find the
134 symbol in any objfile. */
135 #define SYMBOL_LOOKUP_FAILED \
136 ((struct block_symbol) {(struct symbol *) 1, NULL})
137 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
138
139 /* Recording lookups that don't find the symbol is just as important, if not
140 more so, than recording found symbols. */
141
142 enum symbol_cache_slot_state
143 {
144 SYMBOL_SLOT_UNUSED,
145 SYMBOL_SLOT_NOT_FOUND,
146 SYMBOL_SLOT_FOUND
147 };
148
149 struct symbol_cache_slot
150 {
151 enum symbol_cache_slot_state state;
152
153 /* The objfile that was current when the symbol was looked up.
154 This is only needed for global blocks, but for simplicity's sake
155 we allocate the space for both. If data shows the extra space used
156 for static blocks is a problem, we can split things up then.
157
158 Global blocks need cache lookup to include the objfile context because
159 we need to account for gdbarch_iterate_over_objfiles_in_search_order
160 which can traverse objfiles in, effectively, any order, depending on
161 the current objfile, thus affecting which symbol is found. Normally,
162 only the current objfile is searched first, and then the rest are
163 searched in recorded order; but putting cache lookup inside
164 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
165 Instead we just make the current objfile part of the context of
166 cache lookup. This means we can record the same symbol multiple times,
167 each with a different "current objfile" that was in effect when the
168 lookup was saved in the cache, but cache space is pretty cheap. */
169 const struct objfile *objfile_context;
170
171 union
172 {
173 struct block_symbol found;
174 struct
175 {
176 char *name;
177 domain_enum domain;
178 } not_found;
179 } value;
180 };
181
182 /* Symbols don't specify global vs static block.
183 So keep them in separate caches. */
184
185 struct block_symbol_cache
186 {
187 unsigned int hits;
188 unsigned int misses;
189 unsigned int collisions;
190
191 /* SYMBOLS is a variable length array of this size.
192 One can imagine that in general one cache (global/static) should be a
193 fraction of the size of the other, but there's no data at the moment
194 on which to decide. */
195 unsigned int size;
196
197 struct symbol_cache_slot symbols[1];
198 };
199
200 /* The symbol cache.
201
202 Searching for symbols in the static and global blocks over multiple objfiles
203 again and again can be slow, as can searching very big objfiles. This is a
204 simple cache to improve symbol lookup performance, which is critical to
205 overall gdb performance.
206
207 Symbols are hashed on the name, its domain, and block.
208 They are also hashed on their objfile for objfile-specific lookups. */
209
210 struct symbol_cache
211 {
212 struct block_symbol_cache *global_symbols;
213 struct block_symbol_cache *static_symbols;
214 };
215
216 /* When non-zero, print debugging messages related to symtab creation. */
217 unsigned int symtab_create_debug = 0;
218
219 /* When non-zero, print debugging messages related to symbol lookup. */
220 unsigned int symbol_lookup_debug = 0;
221
222 /* The size of the cache is staged here. */
223 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* The current value of the symbol cache size.
226 This is saved so that if the user enters a value too big we can restore
227 the original value from here. */
228 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
229
230 /* Non-zero if a file may be known by two different basenames.
231 This is the uncommon case, and significantly slows down gdb.
232 Default set to "off" to not slow down the common case. */
233 int basenames_may_differ = 0;
234
235 /* Allow the user to configure the debugger behavior with respect
236 to multiple-choice menus when more than one symbol matches during
237 a symbol lookup. */
238
239 const char multiple_symbols_ask[] = "ask";
240 const char multiple_symbols_all[] = "all";
241 const char multiple_symbols_cancel[] = "cancel";
242 static const char *const multiple_symbols_modes[] =
243 {
244 multiple_symbols_ask,
245 multiple_symbols_all,
246 multiple_symbols_cancel,
247 NULL
248 };
249 static const char *multiple_symbols_mode = multiple_symbols_all;
250
251 /* Read-only accessor to AUTO_SELECT_MODE. */
252
253 const char *
254 multiple_symbols_select_mode (void)
255 {
256 return multiple_symbols_mode;
257 }
258
259 /* Return the name of a domain_enum. */
260
261 const char *
262 domain_name (domain_enum e)
263 {
264 switch (e)
265 {
266 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
267 case VAR_DOMAIN: return "VAR_DOMAIN";
268 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
269 case MODULE_DOMAIN: return "MODULE_DOMAIN";
270 case LABEL_DOMAIN: return "LABEL_DOMAIN";
271 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
272 default: gdb_assert_not_reached ("bad domain_enum");
273 }
274 }
275
276 /* Return the name of a search_domain . */
277
278 const char *
279 search_domain_name (enum search_domain e)
280 {
281 switch (e)
282 {
283 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
284 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
285 case TYPES_DOMAIN: return "TYPES_DOMAIN";
286 case ALL_DOMAIN: return "ALL_DOMAIN";
287 default: gdb_assert_not_reached ("bad search_domain");
288 }
289 }
290
291 /* See symtab.h. */
292
293 struct symtab *
294 compunit_primary_filetab (const struct compunit_symtab *cust)
295 {
296 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
297
298 /* The primary file symtab is the first one in the list. */
299 return COMPUNIT_FILETABS (cust);
300 }
301
302 /* See symtab.h. */
303
304 enum language
305 compunit_language (const struct compunit_symtab *cust)
306 {
307 struct symtab *symtab = compunit_primary_filetab (cust);
308
309 /* The language of the compunit symtab is the language of its primary
310 source file. */
311 return SYMTAB_LANGUAGE (symtab);
312 }
313
314 /* See whether FILENAME matches SEARCH_NAME using the rule that we
315 advertise to the user. (The manual's description of linespecs
316 describes what we advertise). Returns true if they match, false
317 otherwise. */
318
319 int
320 compare_filenames_for_search (const char *filename, const char *search_name)
321 {
322 int len = strlen (filename);
323 size_t search_len = strlen (search_name);
324
325 if (len < search_len)
326 return 0;
327
328 /* The tail of FILENAME must match. */
329 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
330 return 0;
331
332 /* Either the names must completely match, or the character
333 preceding the trailing SEARCH_NAME segment of FILENAME must be a
334 directory separator.
335
336 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
337 cannot match FILENAME "/path//dir/file.c" - as user has requested
338 absolute path. The sama applies for "c:\file.c" possibly
339 incorrectly hypothetically matching "d:\dir\c:\file.c".
340
341 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
342 compatible with SEARCH_NAME "file.c". In such case a compiler had
343 to put the "c:file.c" name into debug info. Such compatibility
344 works only on GDB built for DOS host. */
345 return (len == search_len
346 || (!IS_ABSOLUTE_PATH (search_name)
347 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
348 || (HAS_DRIVE_SPEC (filename)
349 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
350 }
351
352 /* Same as compare_filenames_for_search, but for glob-style patterns.
353 Heads up on the order of the arguments. They match the order of
354 compare_filenames_for_search, but it's the opposite of the order of
355 arguments to gdb_filename_fnmatch. */
356
357 int
358 compare_glob_filenames_for_search (const char *filename,
359 const char *search_name)
360 {
361 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
362 all /s have to be explicitly specified. */
363 int file_path_elements = count_path_elements (filename);
364 int search_path_elements = count_path_elements (search_name);
365
366 if (search_path_elements > file_path_elements)
367 return 0;
368
369 if (IS_ABSOLUTE_PATH (search_name))
370 {
371 return (search_path_elements == file_path_elements
372 && gdb_filename_fnmatch (search_name, filename,
373 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
374 }
375
376 {
377 const char *file_to_compare
378 = strip_leading_path_elements (filename,
379 file_path_elements - search_path_elements);
380
381 return gdb_filename_fnmatch (search_name, file_to_compare,
382 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
383 }
384 }
385
386 /* Check for a symtab of a specific name by searching some symtabs.
387 This is a helper function for callbacks of iterate_over_symtabs.
388
389 If NAME is not absolute, then REAL_PATH is NULL
390 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
391
392 The return value, NAME, REAL_PATH and CALLBACK are identical to the
393 `map_symtabs_matching_filename' method of quick_symbol_functions.
394
395 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
396 Each symtab within the specified compunit symtab is also searched.
397 AFTER_LAST is one past the last compunit symtab to search; NULL means to
398 search until the end of the list. */
399
400 bool
401 iterate_over_some_symtabs (const char *name,
402 const char *real_path,
403 struct compunit_symtab *first,
404 struct compunit_symtab *after_last,
405 gdb::function_view<bool (symtab *)> callback)
406 {
407 struct compunit_symtab *cust;
408 const char* base_name = lbasename (name);
409
410 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
411 {
412 for (symtab *s : compunit_filetabs (cust))
413 {
414 if (compare_filenames_for_search (s->filename, name))
415 {
416 if (callback (s))
417 return true;
418 continue;
419 }
420
421 /* Before we invoke realpath, which can get expensive when many
422 files are involved, do a quick comparison of the basenames. */
423 if (! basenames_may_differ
424 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
425 continue;
426
427 if (compare_filenames_for_search (symtab_to_fullname (s), name))
428 {
429 if (callback (s))
430 return true;
431 continue;
432 }
433
434 /* If the user gave us an absolute path, try to find the file in
435 this symtab and use its absolute path. */
436 if (real_path != NULL)
437 {
438 const char *fullname = symtab_to_fullname (s);
439
440 gdb_assert (IS_ABSOLUTE_PATH (real_path));
441 gdb_assert (IS_ABSOLUTE_PATH (name));
442 if (FILENAME_CMP (real_path, fullname) == 0)
443 {
444 if (callback (s))
445 return true;
446 continue;
447 }
448 }
449 }
450 }
451
452 return false;
453 }
454
455 /* Check for a symtab of a specific name; first in symtabs, then in
456 psymtabs. *If* there is no '/' in the name, a match after a '/'
457 in the symtab filename will also work.
458
459 Calls CALLBACK with each symtab that is found. If CALLBACK returns
460 true, the search stops. */
461
462 void
463 iterate_over_symtabs (const char *name,
464 gdb::function_view<bool (symtab *)> callback)
465 {
466 gdb::unique_xmalloc_ptr<char> real_path;
467
468 /* Here we are interested in canonicalizing an absolute path, not
469 absolutizing a relative path. */
470 if (IS_ABSOLUTE_PATH (name))
471 {
472 real_path = gdb_realpath (name);
473 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
474 }
475
476 for (objfile *objfile : all_objfiles (current_program_space))
477 {
478 if (iterate_over_some_symtabs (name, real_path.get (),
479 objfile->compunit_symtabs, NULL,
480 callback))
481 return;
482 }
483
484 /* Same search rules as above apply here, but now we look thru the
485 psymtabs. */
486
487 for (objfile *objfile : all_objfiles (current_program_space))
488 {
489 if (objfile->sf
490 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
491 name,
492 real_path.get (),
493 callback))
494 return;
495 }
496 }
497
498 /* A wrapper for iterate_over_symtabs that returns the first matching
499 symtab, or NULL. */
500
501 struct symtab *
502 lookup_symtab (const char *name)
503 {
504 struct symtab *result = NULL;
505
506 iterate_over_symtabs (name, [&] (symtab *symtab)
507 {
508 result = symtab;
509 return true;
510 });
511
512 return result;
513 }
514
515 \f
516 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
517 full method name, which consist of the class name (from T), the unadorned
518 method name from METHOD_ID, and the signature for the specific overload,
519 specified by SIGNATURE_ID. Note that this function is g++ specific. */
520
521 char *
522 gdb_mangle_name (struct type *type, int method_id, int signature_id)
523 {
524 int mangled_name_len;
525 char *mangled_name;
526 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
527 struct fn_field *method = &f[signature_id];
528 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
529 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
530 const char *newname = TYPE_NAME (type);
531
532 /* Does the form of physname indicate that it is the full mangled name
533 of a constructor (not just the args)? */
534 int is_full_physname_constructor;
535
536 int is_constructor;
537 int is_destructor = is_destructor_name (physname);
538 /* Need a new type prefix. */
539 const char *const_prefix = method->is_const ? "C" : "";
540 const char *volatile_prefix = method->is_volatile ? "V" : "";
541 char buf[20];
542 int len = (newname == NULL ? 0 : strlen (newname));
543
544 /* Nothing to do if physname already contains a fully mangled v3 abi name
545 or an operator name. */
546 if ((physname[0] == '_' && physname[1] == 'Z')
547 || is_operator_name (field_name))
548 return xstrdup (physname);
549
550 is_full_physname_constructor = is_constructor_name (physname);
551
552 is_constructor = is_full_physname_constructor
553 || (newname && strcmp (field_name, newname) == 0);
554
555 if (!is_destructor)
556 is_destructor = (startswith (physname, "__dt"));
557
558 if (is_destructor || is_full_physname_constructor)
559 {
560 mangled_name = (char *) xmalloc (strlen (physname) + 1);
561 strcpy (mangled_name, physname);
562 return mangled_name;
563 }
564
565 if (len == 0)
566 {
567 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
568 }
569 else if (physname[0] == 't' || physname[0] == 'Q')
570 {
571 /* The physname for template and qualified methods already includes
572 the class name. */
573 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
574 newname = NULL;
575 len = 0;
576 }
577 else
578 {
579 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
580 volatile_prefix, len);
581 }
582 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
583 + strlen (buf) + len + strlen (physname) + 1);
584
585 mangled_name = (char *) xmalloc (mangled_name_len);
586 if (is_constructor)
587 mangled_name[0] = '\0';
588 else
589 strcpy (mangled_name, field_name);
590
591 strcat (mangled_name, buf);
592 /* If the class doesn't have a name, i.e. newname NULL, then we just
593 mangle it using 0 for the length of the class. Thus it gets mangled
594 as something starting with `::' rather than `classname::'. */
595 if (newname != NULL)
596 strcat (mangled_name, newname);
597
598 strcat (mangled_name, physname);
599 return (mangled_name);
600 }
601
602 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
603 correctly allocated. */
604
605 void
606 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
607 const char *name,
608 struct obstack *obstack)
609 {
610 if (gsymbol->language == language_ada)
611 {
612 if (name == NULL)
613 {
614 gsymbol->ada_mangled = 0;
615 gsymbol->language_specific.obstack = obstack;
616 }
617 else
618 {
619 gsymbol->ada_mangled = 1;
620 gsymbol->language_specific.demangled_name = name;
621 }
622 }
623 else
624 gsymbol->language_specific.demangled_name = name;
625 }
626
627 /* Return the demangled name of GSYMBOL. */
628
629 const char *
630 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
631 {
632 if (gsymbol->language == language_ada)
633 {
634 if (!gsymbol->ada_mangled)
635 return NULL;
636 /* Fall through. */
637 }
638
639 return gsymbol->language_specific.demangled_name;
640 }
641
642 \f
643 /* Initialize the language dependent portion of a symbol
644 depending upon the language for the symbol. */
645
646 void
647 symbol_set_language (struct general_symbol_info *gsymbol,
648 enum language language,
649 struct obstack *obstack)
650 {
651 gsymbol->language = language;
652 if (gsymbol->language == language_cplus
653 || gsymbol->language == language_d
654 || gsymbol->language == language_go
655 || gsymbol->language == language_objc
656 || gsymbol->language == language_fortran)
657 {
658 symbol_set_demangled_name (gsymbol, NULL, obstack);
659 }
660 else if (gsymbol->language == language_ada)
661 {
662 gdb_assert (gsymbol->ada_mangled == 0);
663 gsymbol->language_specific.obstack = obstack;
664 }
665 else
666 {
667 memset (&gsymbol->language_specific, 0,
668 sizeof (gsymbol->language_specific));
669 }
670 }
671
672 /* Functions to initialize a symbol's mangled name. */
673
674 /* Objects of this type are stored in the demangled name hash table. */
675 struct demangled_name_entry
676 {
677 const char *mangled;
678 char demangled[1];
679 };
680
681 /* Hash function for the demangled name hash. */
682
683 static hashval_t
684 hash_demangled_name_entry (const void *data)
685 {
686 const struct demangled_name_entry *e
687 = (const struct demangled_name_entry *) data;
688
689 return htab_hash_string (e->mangled);
690 }
691
692 /* Equality function for the demangled name hash. */
693
694 static int
695 eq_demangled_name_entry (const void *a, const void *b)
696 {
697 const struct demangled_name_entry *da
698 = (const struct demangled_name_entry *) a;
699 const struct demangled_name_entry *db
700 = (const struct demangled_name_entry *) b;
701
702 return strcmp (da->mangled, db->mangled) == 0;
703 }
704
705 /* Create the hash table used for demangled names. Each hash entry is
706 a pair of strings; one for the mangled name and one for the demangled
707 name. The entry is hashed via just the mangled name. */
708
709 static void
710 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
711 {
712 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
713 The hash table code will round this up to the next prime number.
714 Choosing a much larger table size wastes memory, and saves only about
715 1% in symbol reading. */
716
717 per_bfd->demangled_names_hash = htab_create_alloc
718 (256, hash_demangled_name_entry, eq_demangled_name_entry,
719 NULL, xcalloc, xfree);
720 }
721
722 /* Try to determine the demangled name for a symbol, based on the
723 language of that symbol. If the language is set to language_auto,
724 it will attempt to find any demangling algorithm that works and
725 then set the language appropriately. The returned name is allocated
726 by the demangler and should be xfree'd. */
727
728 static char *
729 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
730 const char *mangled)
731 {
732 char *demangled = NULL;
733 int i;
734
735 if (gsymbol->language == language_unknown)
736 gsymbol->language = language_auto;
737
738 if (gsymbol->language != language_auto)
739 {
740 const struct language_defn *lang = language_def (gsymbol->language);
741
742 language_sniff_from_mangled_name (lang, mangled, &demangled);
743 return demangled;
744 }
745
746 for (i = language_unknown; i < nr_languages; ++i)
747 {
748 enum language l = (enum language) i;
749 const struct language_defn *lang = language_def (l);
750
751 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
752 {
753 gsymbol->language = l;
754 return demangled;
755 }
756 }
757
758 return NULL;
759 }
760
761 /* Set both the mangled and demangled (if any) names for GSYMBOL based
762 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
763 objfile's obstack; but if COPY_NAME is 0 and if NAME is
764 NUL-terminated, then this function assumes that NAME is already
765 correctly saved (either permanently or with a lifetime tied to the
766 objfile), and it will not be copied.
767
768 The hash table corresponding to OBJFILE is used, and the memory
769 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
770 so the pointer can be discarded after calling this function. */
771
772 void
773 symbol_set_names (struct general_symbol_info *gsymbol,
774 const char *linkage_name, int len, int copy_name,
775 struct objfile *objfile)
776 {
777 struct demangled_name_entry **slot;
778 /* A 0-terminated copy of the linkage name. */
779 const char *linkage_name_copy;
780 struct demangled_name_entry entry;
781 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
782
783 if (gsymbol->language == language_ada)
784 {
785 /* In Ada, we do the symbol lookups using the mangled name, so
786 we can save some space by not storing the demangled name. */
787 if (!copy_name)
788 gsymbol->name = linkage_name;
789 else
790 {
791 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
792 len + 1);
793
794 memcpy (name, linkage_name, len);
795 name[len] = '\0';
796 gsymbol->name = name;
797 }
798 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
799
800 return;
801 }
802
803 if (per_bfd->demangled_names_hash == NULL)
804 create_demangled_names_hash (per_bfd);
805
806 if (linkage_name[len] != '\0')
807 {
808 char *alloc_name;
809
810 alloc_name = (char *) alloca (len + 1);
811 memcpy (alloc_name, linkage_name, len);
812 alloc_name[len] = '\0';
813
814 linkage_name_copy = alloc_name;
815 }
816 else
817 linkage_name_copy = linkage_name;
818
819 /* Set the symbol language. */
820 char *demangled_name_ptr
821 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
822 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
823
824 entry.mangled = linkage_name_copy;
825 slot = ((struct demangled_name_entry **)
826 htab_find_slot (per_bfd->demangled_names_hash,
827 &entry, INSERT));
828
829 /* If this name is not in the hash table, add it. */
830 if (*slot == NULL
831 /* A C version of the symbol may have already snuck into the table.
832 This happens to, e.g., main.init (__go_init_main). Cope. */
833 || (gsymbol->language == language_go
834 && (*slot)->demangled[0] == '\0'))
835 {
836 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
837
838 /* Suppose we have demangled_name==NULL, copy_name==0, and
839 linkage_name_copy==linkage_name. In this case, we already have the
840 mangled name saved, and we don't have a demangled name. So,
841 you might think we could save a little space by not recording
842 this in the hash table at all.
843
844 It turns out that it is actually important to still save such
845 an entry in the hash table, because storing this name gives
846 us better bcache hit rates for partial symbols. */
847 if (!copy_name && linkage_name_copy == linkage_name)
848 {
849 *slot
850 = ((struct demangled_name_entry *)
851 obstack_alloc (&per_bfd->storage_obstack,
852 offsetof (struct demangled_name_entry, demangled)
853 + demangled_len + 1));
854 (*slot)->mangled = linkage_name;
855 }
856 else
857 {
858 char *mangled_ptr;
859
860 /* If we must copy the mangled name, put it directly after
861 the demangled name so we can have a single
862 allocation. */
863 *slot
864 = ((struct demangled_name_entry *)
865 obstack_alloc (&per_bfd->storage_obstack,
866 offsetof (struct demangled_name_entry, demangled)
867 + len + demangled_len + 2));
868 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
869 strcpy (mangled_ptr, linkage_name_copy);
870 (*slot)->mangled = mangled_ptr;
871 }
872
873 if (demangled_name != NULL)
874 strcpy ((*slot)->demangled, demangled_name.get());
875 else
876 (*slot)->demangled[0] = '\0';
877 }
878
879 gsymbol->name = (*slot)->mangled;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
883 else
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885 }
886
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
889
890 const char *
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 {
893 switch (gsymbol->language)
894 {
895 case language_cplus:
896 case language_d:
897 case language_go:
898 case language_objc:
899 case language_fortran:
900 if (symbol_get_demangled_name (gsymbol) != NULL)
901 return symbol_get_demangled_name (gsymbol);
902 break;
903 case language_ada:
904 return ada_decode_symbol (gsymbol);
905 default:
906 break;
907 }
908 return gsymbol->name;
909 }
910
911 /* Return the demangled name for a symbol based on the language for
912 that symbol. If no demangled name exists, return NULL. */
913
914 const char *
915 symbol_demangled_name (const struct general_symbol_info *gsymbol)
916 {
917 const char *dem_name = NULL;
918
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_objc:
925 case language_fortran:
926 dem_name = symbol_get_demangled_name (gsymbol);
927 break;
928 case language_ada:
929 dem_name = ada_decode_symbol (gsymbol);
930 break;
931 default:
932 break;
933 }
934 return dem_name;
935 }
936
937 /* Return the search name of a symbol---generally the demangled or
938 linkage name of the symbol, depending on how it will be searched for.
939 If there is no distinct demangled name, then returns the same value
940 (same pointer) as SYMBOL_LINKAGE_NAME. */
941
942 const char *
943 symbol_search_name (const struct general_symbol_info *gsymbol)
944 {
945 if (gsymbol->language == language_ada)
946 return gsymbol->name;
947 else
948 return symbol_natural_name (gsymbol);
949 }
950
951 /* See symtab.h. */
952
953 bool
954 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
955 const lookup_name_info &name)
956 {
957 symbol_name_matcher_ftype *name_match
958 = get_symbol_name_matcher (language_def (gsymbol->language), name);
959 return name_match (symbol_search_name (gsymbol), name, NULL);
960 }
961
962 \f
963
964 /* Return 1 if the two sections are the same, or if they could
965 plausibly be copies of each other, one in an original object
966 file and another in a separated debug file. */
967
968 int
969 matching_obj_sections (struct obj_section *obj_first,
970 struct obj_section *obj_second)
971 {
972 asection *first = obj_first? obj_first->the_bfd_section : NULL;
973 asection *second = obj_second? obj_second->the_bfd_section : NULL;
974 struct objfile *obj;
975
976 /* If they're the same section, then they match. */
977 if (first == second)
978 return 1;
979
980 /* If either is NULL, give up. */
981 if (first == NULL || second == NULL)
982 return 0;
983
984 /* This doesn't apply to absolute symbols. */
985 if (first->owner == NULL || second->owner == NULL)
986 return 0;
987
988 /* If they're in the same object file, they must be different sections. */
989 if (first->owner == second->owner)
990 return 0;
991
992 /* Check whether the two sections are potentially corresponding. They must
993 have the same size, address, and name. We can't compare section indexes,
994 which would be more reliable, because some sections may have been
995 stripped. */
996 if (bfd_get_section_size (first) != bfd_get_section_size (second))
997 return 0;
998
999 /* In-memory addresses may start at a different offset, relativize them. */
1000 if (bfd_get_section_vma (first->owner, first)
1001 - bfd_get_start_address (first->owner)
1002 != bfd_get_section_vma (second->owner, second)
1003 - bfd_get_start_address (second->owner))
1004 return 0;
1005
1006 if (bfd_get_section_name (first->owner, first) == NULL
1007 || bfd_get_section_name (second->owner, second) == NULL
1008 || strcmp (bfd_get_section_name (first->owner, first),
1009 bfd_get_section_name (second->owner, second)) != 0)
1010 return 0;
1011
1012 /* Otherwise check that they are in corresponding objfiles. */
1013
1014 for (objfile *objfile : all_objfiles (current_program_space))
1015 if (objfile->obfd == first->owner)
1016 {
1017 obj = objfile;
1018 break;
1019 }
1020 gdb_assert (obj != NULL);
1021
1022 if (obj->separate_debug_objfile != NULL
1023 && obj->separate_debug_objfile->obfd == second->owner)
1024 return 1;
1025 if (obj->separate_debug_objfile_backlink != NULL
1026 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1027 return 1;
1028
1029 return 0;
1030 }
1031
1032 /* See symtab.h. */
1033
1034 void
1035 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1036 {
1037 struct bound_minimal_symbol msymbol;
1038
1039 /* If we know that this is not a text address, return failure. This is
1040 necessary because we loop based on texthigh and textlow, which do
1041 not include the data ranges. */
1042 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1043 if (msymbol.minsym
1044 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1049 return;
1050
1051 for (objfile *objfile : all_objfiles (current_program_space))
1052 {
1053 struct compunit_symtab *cust = NULL;
1054
1055 if (objfile->sf)
1056 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1057 pc, section, 0);
1058 if (cust)
1059 return;
1060 }
1061 }
1062 \f
1063 /* Hash function for the symbol cache. */
1064
1065 static unsigned int
1066 hash_symbol_entry (const struct objfile *objfile_context,
1067 const char *name, domain_enum domain)
1068 {
1069 unsigned int hash = (uintptr_t) objfile_context;
1070
1071 if (name != NULL)
1072 hash += htab_hash_string (name);
1073
1074 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1075 to map to the same slot. */
1076 if (domain == STRUCT_DOMAIN)
1077 hash += VAR_DOMAIN * 7;
1078 else
1079 hash += domain * 7;
1080
1081 return hash;
1082 }
1083
1084 /* Equality function for the symbol cache. */
1085
1086 static int
1087 eq_symbol_entry (const struct symbol_cache_slot *slot,
1088 const struct objfile *objfile_context,
1089 const char *name, domain_enum domain)
1090 {
1091 const char *slot_name;
1092 domain_enum slot_domain;
1093
1094 if (slot->state == SYMBOL_SLOT_UNUSED)
1095 return 0;
1096
1097 if (slot->objfile_context != objfile_context)
1098 return 0;
1099
1100 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1101 {
1102 slot_name = slot->value.not_found.name;
1103 slot_domain = slot->value.not_found.domain;
1104 }
1105 else
1106 {
1107 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1108 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1109 }
1110
1111 /* NULL names match. */
1112 if (slot_name == NULL && name == NULL)
1113 {
1114 /* But there's no point in calling symbol_matches_domain in the
1115 SYMBOL_SLOT_FOUND case. */
1116 if (slot_domain != domain)
1117 return 0;
1118 }
1119 else if (slot_name != NULL && name != NULL)
1120 {
1121 /* It's important that we use the same comparison that was done
1122 the first time through. If the slot records a found symbol,
1123 then this means using the symbol name comparison function of
1124 the symbol's language with SYMBOL_SEARCH_NAME. See
1125 dictionary.c. It also means using symbol_matches_domain for
1126 found symbols. See block.c.
1127
1128 If the slot records a not-found symbol, then require a precise match.
1129 We could still be lax with whitespace like strcmp_iw though. */
1130
1131 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1132 {
1133 if (strcmp (slot_name, name) != 0)
1134 return 0;
1135 if (slot_domain != domain)
1136 return 0;
1137 }
1138 else
1139 {
1140 struct symbol *sym = slot->value.found.symbol;
1141 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1142
1143 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1144 return 0;
1145
1146 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1147 slot_domain, domain))
1148 return 0;
1149 }
1150 }
1151 else
1152 {
1153 /* Only one name is NULL. */
1154 return 0;
1155 }
1156
1157 return 1;
1158 }
1159
1160 /* Given a cache of size SIZE, return the size of the struct (with variable
1161 length array) in bytes. */
1162
1163 static size_t
1164 symbol_cache_byte_size (unsigned int size)
1165 {
1166 return (sizeof (struct block_symbol_cache)
1167 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1168 }
1169
1170 /* Resize CACHE. */
1171
1172 static void
1173 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1174 {
1175 /* If there's no change in size, don't do anything.
1176 All caches have the same size, so we can just compare with the size
1177 of the global symbols cache. */
1178 if ((cache->global_symbols != NULL
1179 && cache->global_symbols->size == new_size)
1180 || (cache->global_symbols == NULL
1181 && new_size == 0))
1182 return;
1183
1184 xfree (cache->global_symbols);
1185 xfree (cache->static_symbols);
1186
1187 if (new_size == 0)
1188 {
1189 cache->global_symbols = NULL;
1190 cache->static_symbols = NULL;
1191 }
1192 else
1193 {
1194 size_t total_size = symbol_cache_byte_size (new_size);
1195
1196 cache->global_symbols
1197 = (struct block_symbol_cache *) xcalloc (1, total_size);
1198 cache->static_symbols
1199 = (struct block_symbol_cache *) xcalloc (1, total_size);
1200 cache->global_symbols->size = new_size;
1201 cache->static_symbols->size = new_size;
1202 }
1203 }
1204
1205 /* Make a symbol cache of size SIZE. */
1206
1207 static struct symbol_cache *
1208 make_symbol_cache (unsigned int size)
1209 {
1210 struct symbol_cache *cache;
1211
1212 cache = XCNEW (struct symbol_cache);
1213 resize_symbol_cache (cache, symbol_cache_size);
1214 return cache;
1215 }
1216
1217 /* Free the space used by CACHE. */
1218
1219 static void
1220 free_symbol_cache (struct symbol_cache *cache)
1221 {
1222 xfree (cache->global_symbols);
1223 xfree (cache->static_symbols);
1224 xfree (cache);
1225 }
1226
1227 /* Return the symbol cache of PSPACE.
1228 Create one if it doesn't exist yet. */
1229
1230 static struct symbol_cache *
1231 get_symbol_cache (struct program_space *pspace)
1232 {
1233 struct symbol_cache *cache
1234 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1235
1236 if (cache == NULL)
1237 {
1238 cache = make_symbol_cache (symbol_cache_size);
1239 set_program_space_data (pspace, symbol_cache_key, cache);
1240 }
1241
1242 return cache;
1243 }
1244
1245 /* Delete the symbol cache of PSPACE.
1246 Called when PSPACE is destroyed. */
1247
1248 static void
1249 symbol_cache_cleanup (struct program_space *pspace, void *data)
1250 {
1251 struct symbol_cache *cache = (struct symbol_cache *) data;
1252
1253 free_symbol_cache (cache);
1254 }
1255
1256 /* Set the size of the symbol cache in all program spaces. */
1257
1258 static void
1259 set_symbol_cache_size (unsigned int new_size)
1260 {
1261 struct program_space *pspace;
1262
1263 ALL_PSPACES (pspace)
1264 {
1265 struct symbol_cache *cache
1266 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1267
1268 /* The pspace could have been created but not have a cache yet. */
1269 if (cache != NULL)
1270 resize_symbol_cache (cache, new_size);
1271 }
1272 }
1273
1274 /* Called when symbol-cache-size is set. */
1275
1276 static void
1277 set_symbol_cache_size_handler (const char *args, int from_tty,
1278 struct cmd_list_element *c)
1279 {
1280 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1281 {
1282 /* Restore the previous value.
1283 This is the value the "show" command prints. */
1284 new_symbol_cache_size = symbol_cache_size;
1285
1286 error (_("Symbol cache size is too large, max is %u."),
1287 MAX_SYMBOL_CACHE_SIZE);
1288 }
1289 symbol_cache_size = new_symbol_cache_size;
1290
1291 set_symbol_cache_size (symbol_cache_size);
1292 }
1293
1294 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1295 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1296 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1297 failed (and thus this one will too), or NULL if the symbol is not present
1298 in the cache.
1299 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1300 set to the cache and slot of the symbol to save the result of a full lookup
1301 attempt. */
1302
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, int block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1309 {
1310 struct block_symbol_cache *bsc;
1311 unsigned int hash;
1312 struct symbol_cache_slot *slot;
1313
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1316 else
1317 bsc = cache->static_symbols;
1318 if (bsc == NULL)
1319 {
1320 *bsc_ptr = NULL;
1321 *slot_ptr = NULL;
1322 return (struct block_symbol) {NULL, NULL};
1323 }
1324
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1327
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1329 {
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1337 ++bsc->hits;
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1341 }
1342
1343 /* Symbol is not present in the cache. */
1344
1345 *bsc_ptr = bsc;
1346 *slot_ptr = slot;
1347
1348 if (symbol_lookup_debug)
1349 {
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1354 }
1355 ++bsc->misses;
1356 return (struct block_symbol) {NULL, NULL};
1357 }
1358
1359 /* Clear out SLOT. */
1360
1361 static void
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1363 {
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1367 }
1368
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1373
1374 static void
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1380 {
1381 if (bsc == NULL)
1382 return;
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1384 {
1385 ++bsc->collisions;
1386 symbol_cache_clear_slot (slot);
1387 }
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1392 }
1393
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1397
1398 static void
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1403 {
1404 if (bsc == NULL)
1405 return;
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1407 {
1408 ++bsc->collisions;
1409 symbol_cache_clear_slot (slot);
1410 }
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1415 }
1416
1417 /* Flush the symbol cache of PSPACE. */
1418
1419 static void
1420 symbol_cache_flush (struct program_space *pspace)
1421 {
1422 struct symbol_cache *cache
1423 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1424 int pass;
1425
1426 if (cache == NULL)
1427 return;
1428 if (cache->global_symbols == NULL)
1429 {
1430 gdb_assert (symbol_cache_size == 0);
1431 gdb_assert (cache->static_symbols == NULL);
1432 return;
1433 }
1434
1435 /* If the cache is untouched since the last flush, early exit.
1436 This is important for performance during the startup of a program linked
1437 with 100s (or 1000s) of shared libraries. */
1438 if (cache->global_symbols->misses == 0
1439 && cache->static_symbols->misses == 0)
1440 return;
1441
1442 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1443 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1444
1445 for (pass = 0; pass < 2; ++pass)
1446 {
1447 struct block_symbol_cache *bsc
1448 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1449 unsigned int i;
1450
1451 for (i = 0; i < bsc->size; ++i)
1452 symbol_cache_clear_slot (&bsc->symbols[i]);
1453 }
1454
1455 cache->global_symbols->hits = 0;
1456 cache->global_symbols->misses = 0;
1457 cache->global_symbols->collisions = 0;
1458 cache->static_symbols->hits = 0;
1459 cache->static_symbols->misses = 0;
1460 cache->static_symbols->collisions = 0;
1461 }
1462
1463 /* Dump CACHE. */
1464
1465 static void
1466 symbol_cache_dump (const struct symbol_cache *cache)
1467 {
1468 int pass;
1469
1470 if (cache->global_symbols == NULL)
1471 {
1472 printf_filtered (" <disabled>\n");
1473 return;
1474 }
1475
1476 for (pass = 0; pass < 2; ++pass)
1477 {
1478 const struct block_symbol_cache *bsc
1479 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1480 unsigned int i;
1481
1482 if (pass == 0)
1483 printf_filtered ("Global symbols:\n");
1484 else
1485 printf_filtered ("Static symbols:\n");
1486
1487 for (i = 0; i < bsc->size; ++i)
1488 {
1489 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1490
1491 QUIT;
1492
1493 switch (slot->state)
1494 {
1495 case SYMBOL_SLOT_UNUSED:
1496 break;
1497 case SYMBOL_SLOT_NOT_FOUND:
1498 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1499 host_address_to_string (slot->objfile_context),
1500 slot->value.not_found.name,
1501 domain_name (slot->value.not_found.domain));
1502 break;
1503 case SYMBOL_SLOT_FOUND:
1504 {
1505 struct symbol *found = slot->value.found.symbol;
1506 const struct objfile *context = slot->objfile_context;
1507
1508 printf_filtered (" [%4u] = %s, %s %s\n", i,
1509 host_address_to_string (context),
1510 SYMBOL_PRINT_NAME (found),
1511 domain_name (SYMBOL_DOMAIN (found)));
1512 break;
1513 }
1514 }
1515 }
1516 }
1517 }
1518
1519 /* The "mt print symbol-cache" command. */
1520
1521 static void
1522 maintenance_print_symbol_cache (const char *args, int from_tty)
1523 {
1524 struct program_space *pspace;
1525
1526 ALL_PSPACES (pspace)
1527 {
1528 struct symbol_cache *cache;
1529
1530 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1531 pspace->num,
1532 pspace->symfile_object_file != NULL
1533 ? objfile_name (pspace->symfile_object_file)
1534 : "(no object file)");
1535
1536 /* If the cache hasn't been created yet, avoid creating one. */
1537 cache
1538 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 struct program_space *pspace;
1552
1553 ALL_PSPACES (pspace)
1554 {
1555 symbol_cache_flush (pspace);
1556 }
1557 }
1558
1559 /* Print usage statistics of CACHE. */
1560
1561 static void
1562 symbol_cache_stats (struct symbol_cache *cache)
1563 {
1564 int pass;
1565
1566 if (cache->global_symbols == NULL)
1567 {
1568 printf_filtered (" <disabled>\n");
1569 return;
1570 }
1571
1572 for (pass = 0; pass < 2; ++pass)
1573 {
1574 const struct block_symbol_cache *bsc
1575 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1576
1577 QUIT;
1578
1579 if (pass == 0)
1580 printf_filtered ("Global block cache stats:\n");
1581 else
1582 printf_filtered ("Static block cache stats:\n");
1583
1584 printf_filtered (" size: %u\n", bsc->size);
1585 printf_filtered (" hits: %u\n", bsc->hits);
1586 printf_filtered (" misses: %u\n", bsc->misses);
1587 printf_filtered (" collisions: %u\n", bsc->collisions);
1588 }
1589 }
1590
1591 /* The "mt print symbol-cache-statistics" command. */
1592
1593 static void
1594 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1595 {
1596 struct program_space *pspace;
1597
1598 ALL_PSPACES (pspace)
1599 {
1600 struct symbol_cache *cache;
1601
1602 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1603 pspace->num,
1604 pspace->symfile_object_file != NULL
1605 ? objfile_name (pspace->symfile_object_file)
1606 : "(no object file)");
1607
1608 /* If the cache hasn't been created yet, avoid creating one. */
1609 cache
1610 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1611 if (cache == NULL)
1612 printf_filtered (" empty, no stats available\n");
1613 else
1614 symbol_cache_stats (cache);
1615 }
1616 }
1617
1618 /* This module's 'new_objfile' observer. */
1619
1620 static void
1621 symtab_new_objfile_observer (struct objfile *objfile)
1622 {
1623 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1624 symbol_cache_flush (current_program_space);
1625 }
1626
1627 /* This module's 'free_objfile' observer. */
1628
1629 static void
1630 symtab_free_objfile_observer (struct objfile *objfile)
1631 {
1632 symbol_cache_flush (objfile->pspace);
1633 }
1634 \f
1635 /* Debug symbols usually don't have section information. We need to dig that
1636 out of the minimal symbols and stash that in the debug symbol. */
1637
1638 void
1639 fixup_section (struct general_symbol_info *ginfo,
1640 CORE_ADDR addr, struct objfile *objfile)
1641 {
1642 struct minimal_symbol *msym;
1643
1644 /* First, check whether a minimal symbol with the same name exists
1645 and points to the same address. The address check is required
1646 e.g. on PowerPC64, where the minimal symbol for a function will
1647 point to the function descriptor, while the debug symbol will
1648 point to the actual function code. */
1649 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1650 if (msym)
1651 ginfo->section = MSYMBOL_SECTION (msym);
1652 else
1653 {
1654 /* Static, function-local variables do appear in the linker
1655 (minimal) symbols, but are frequently given names that won't
1656 be found via lookup_minimal_symbol(). E.g., it has been
1657 observed in frv-uclinux (ELF) executables that a static,
1658 function-local variable named "foo" might appear in the
1659 linker symbols as "foo.6" or "foo.3". Thus, there is no
1660 point in attempting to extend the lookup-by-name mechanism to
1661 handle this case due to the fact that there can be multiple
1662 names.
1663
1664 So, instead, search the section table when lookup by name has
1665 failed. The ``addr'' and ``endaddr'' fields may have already
1666 been relocated. If so, the relocation offset (i.e. the
1667 ANOFFSET value) needs to be subtracted from these values when
1668 performing the comparison. We unconditionally subtract it,
1669 because, when no relocation has been performed, the ANOFFSET
1670 value will simply be zero.
1671
1672 The address of the symbol whose section we're fixing up HAS
1673 NOT BEEN adjusted (relocated) yet. It can't have been since
1674 the section isn't yet known and knowing the section is
1675 necessary in order to add the correct relocation value. In
1676 other words, we wouldn't even be in this function (attempting
1677 to compute the section) if it were already known.
1678
1679 Note that it is possible to search the minimal symbols
1680 (subtracting the relocation value if necessary) to find the
1681 matching minimal symbol, but this is overkill and much less
1682 efficient. It is not necessary to find the matching minimal
1683 symbol, only its section.
1684
1685 Note that this technique (of doing a section table search)
1686 can fail when unrelocated section addresses overlap. For
1687 this reason, we still attempt a lookup by name prior to doing
1688 a search of the section table. */
1689
1690 struct obj_section *s;
1691 int fallback = -1;
1692
1693 ALL_OBJFILE_OSECTIONS (objfile, s)
1694 {
1695 int idx = s - objfile->sections;
1696 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1697
1698 if (fallback == -1)
1699 fallback = idx;
1700
1701 if (obj_section_addr (s) - offset <= addr
1702 && addr < obj_section_endaddr (s) - offset)
1703 {
1704 ginfo->section = idx;
1705 return;
1706 }
1707 }
1708
1709 /* If we didn't find the section, assume it is in the first
1710 section. If there is no allocated section, then it hardly
1711 matters what we pick, so just pick zero. */
1712 if (fallback == -1)
1713 ginfo->section = 0;
1714 else
1715 ginfo->section = fallback;
1716 }
1717 }
1718
1719 struct symbol *
1720 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1721 {
1722 CORE_ADDR addr;
1723
1724 if (!sym)
1725 return NULL;
1726
1727 if (!SYMBOL_OBJFILE_OWNED (sym))
1728 return sym;
1729
1730 /* We either have an OBJFILE, or we can get at it from the sym's
1731 symtab. Anything else is a bug. */
1732 gdb_assert (objfile || symbol_symtab (sym));
1733
1734 if (objfile == NULL)
1735 objfile = symbol_objfile (sym);
1736
1737 if (SYMBOL_OBJ_SECTION (objfile, sym))
1738 return sym;
1739
1740 /* We should have an objfile by now. */
1741 gdb_assert (objfile);
1742
1743 switch (SYMBOL_CLASS (sym))
1744 {
1745 case LOC_STATIC:
1746 case LOC_LABEL:
1747 addr = SYMBOL_VALUE_ADDRESS (sym);
1748 break;
1749 case LOC_BLOCK:
1750 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1751 break;
1752
1753 default:
1754 /* Nothing else will be listed in the minsyms -- no use looking
1755 it up. */
1756 return sym;
1757 }
1758
1759 fixup_section (&sym->ginfo, addr, objfile);
1760
1761 return sym;
1762 }
1763
1764 /* See symtab.h. */
1765
1766 demangle_for_lookup_info::demangle_for_lookup_info
1767 (const lookup_name_info &lookup_name, language lang)
1768 {
1769 demangle_result_storage storage;
1770
1771 if (lookup_name.ignore_parameters () && lang == language_cplus)
1772 {
1773 gdb::unique_xmalloc_ptr<char> without_params
1774 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1775 lookup_name.completion_mode ());
1776
1777 if (without_params != NULL)
1778 {
1779 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1780 m_demangled_name = demangle_for_lookup (without_params.get (),
1781 lang, storage);
1782 return;
1783 }
1784 }
1785
1786 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1787 m_demangled_name = lookup_name.name ();
1788 else
1789 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1790 lang, storage);
1791 }
1792
1793 /* See symtab.h. */
1794
1795 const lookup_name_info &
1796 lookup_name_info::match_any ()
1797 {
1798 /* Lookup any symbol that "" would complete. I.e., this matches all
1799 symbol names. */
1800 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1801 true);
1802
1803 return lookup_name;
1804 }
1805
1806 /* Compute the demangled form of NAME as used by the various symbol
1807 lookup functions. The result can either be the input NAME
1808 directly, or a pointer to a buffer owned by the STORAGE object.
1809
1810 For Ada, this function just returns NAME, unmodified.
1811 Normally, Ada symbol lookups are performed using the encoded name
1812 rather than the demangled name, and so it might seem to make sense
1813 for this function to return an encoded version of NAME.
1814 Unfortunately, we cannot do this, because this function is used in
1815 circumstances where it is not appropriate to try to encode NAME.
1816 For instance, when displaying the frame info, we demangle the name
1817 of each parameter, and then perform a symbol lookup inside our
1818 function using that demangled name. In Ada, certain functions
1819 have internally-generated parameters whose name contain uppercase
1820 characters. Encoding those name would result in those uppercase
1821 characters to become lowercase, and thus cause the symbol lookup
1822 to fail. */
1823
1824 const char *
1825 demangle_for_lookup (const char *name, enum language lang,
1826 demangle_result_storage &storage)
1827 {
1828 /* If we are using C++, D, or Go, demangle the name before doing a
1829 lookup, so we can always binary search. */
1830 if (lang == language_cplus)
1831 {
1832 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1833 if (demangled_name != NULL)
1834 return storage.set_malloc_ptr (demangled_name);
1835
1836 /* If we were given a non-mangled name, canonicalize it
1837 according to the language (so far only for C++). */
1838 std::string canon = cp_canonicalize_string (name);
1839 if (!canon.empty ())
1840 return storage.swap_string (canon);
1841 }
1842 else if (lang == language_d)
1843 {
1844 char *demangled_name = d_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848 else if (lang == language_go)
1849 {
1850 char *demangled_name = go_demangle (name, 0);
1851 if (demangled_name != NULL)
1852 return storage.set_malloc_ptr (demangled_name);
1853 }
1854
1855 return name;
1856 }
1857
1858 /* See symtab.h. */
1859
1860 unsigned int
1861 search_name_hash (enum language language, const char *search_name)
1862 {
1863 return language_def (language)->la_search_name_hash (search_name);
1864 }
1865
1866 /* See symtab.h.
1867
1868 This function (or rather its subordinates) have a bunch of loops and
1869 it would seem to be attractive to put in some QUIT's (though I'm not really
1870 sure whether it can run long enough to be really important). But there
1871 are a few calls for which it would appear to be bad news to quit
1872 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1873 that there is C++ code below which can error(), but that probably
1874 doesn't affect these calls since they are looking for a known
1875 variable and thus can probably assume it will never hit the C++
1876 code). */
1877
1878 struct block_symbol
1879 lookup_symbol_in_language (const char *name, const struct block *block,
1880 const domain_enum domain, enum language lang,
1881 struct field_of_this_result *is_a_field_of_this)
1882 {
1883 demangle_result_storage storage;
1884 const char *modified_name = demangle_for_lookup (name, lang, storage);
1885
1886 return lookup_symbol_aux (modified_name,
1887 symbol_name_match_type::FULL,
1888 block, domain, lang,
1889 is_a_field_of_this);
1890 }
1891
1892 /* See symtab.h. */
1893
1894 struct block_symbol
1895 lookup_symbol (const char *name, const struct block *block,
1896 domain_enum domain,
1897 struct field_of_this_result *is_a_field_of_this)
1898 {
1899 return lookup_symbol_in_language (name, block, domain,
1900 current_language->la_language,
1901 is_a_field_of_this);
1902 }
1903
1904 /* See symtab.h. */
1905
1906 struct block_symbol
1907 lookup_symbol_search_name (const char *search_name, const struct block *block,
1908 domain_enum domain)
1909 {
1910 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1911 block, domain, language_asm, NULL);
1912 }
1913
1914 /* See symtab.h. */
1915
1916 struct block_symbol
1917 lookup_language_this (const struct language_defn *lang,
1918 const struct block *block)
1919 {
1920 if (lang->la_name_of_this == NULL || block == NULL)
1921 return (struct block_symbol) {NULL, NULL};
1922
1923 if (symbol_lookup_debug > 1)
1924 {
1925 struct objfile *objfile = lookup_objfile_from_block (block);
1926
1927 fprintf_unfiltered (gdb_stdlog,
1928 "lookup_language_this (%s, %s (objfile %s))",
1929 lang->la_name, host_address_to_string (block),
1930 objfile_debug_name (objfile));
1931 }
1932
1933 while (block)
1934 {
1935 struct symbol *sym;
1936
1937 sym = block_lookup_symbol (block, lang->la_name_of_this,
1938 symbol_name_match_type::SEARCH_NAME,
1939 VAR_DOMAIN);
1940 if (sym != NULL)
1941 {
1942 if (symbol_lookup_debug > 1)
1943 {
1944 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1945 SYMBOL_PRINT_NAME (sym),
1946 host_address_to_string (sym),
1947 host_address_to_string (block));
1948 }
1949 return (struct block_symbol) {sym, block};
1950 }
1951 if (BLOCK_FUNCTION (block))
1952 break;
1953 block = BLOCK_SUPERBLOCK (block);
1954 }
1955
1956 if (symbol_lookup_debug > 1)
1957 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1958 return (struct block_symbol) {NULL, NULL};
1959 }
1960
1961 /* Given TYPE, a structure/union,
1962 return 1 if the component named NAME from the ultimate target
1963 structure/union is defined, otherwise, return 0. */
1964
1965 static int
1966 check_field (struct type *type, const char *name,
1967 struct field_of_this_result *is_a_field_of_this)
1968 {
1969 int i;
1970
1971 /* The type may be a stub. */
1972 type = check_typedef (type);
1973
1974 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1975 {
1976 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1977
1978 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1979 {
1980 is_a_field_of_this->type = type;
1981 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1982 return 1;
1983 }
1984 }
1985
1986 /* C++: If it was not found as a data field, then try to return it
1987 as a pointer to a method. */
1988
1989 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1990 {
1991 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1992 {
1993 is_a_field_of_this->type = type;
1994 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1995 return 1;
1996 }
1997 }
1998
1999 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2000 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2001 return 1;
2002
2003 return 0;
2004 }
2005
2006 /* Behave like lookup_symbol except that NAME is the natural name
2007 (e.g., demangled name) of the symbol that we're looking for. */
2008
2009 static struct block_symbol
2010 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2011 const struct block *block,
2012 const domain_enum domain, enum language language,
2013 struct field_of_this_result *is_a_field_of_this)
2014 {
2015 struct block_symbol result;
2016 const struct language_defn *langdef;
2017
2018 if (symbol_lookup_debug)
2019 {
2020 struct objfile *objfile = lookup_objfile_from_block (block);
2021
2022 fprintf_unfiltered (gdb_stdlog,
2023 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2024 name, host_address_to_string (block),
2025 objfile != NULL
2026 ? objfile_debug_name (objfile) : "NULL",
2027 domain_name (domain), language_str (language));
2028 }
2029
2030 /* Make sure we do something sensible with is_a_field_of_this, since
2031 the callers that set this parameter to some non-null value will
2032 certainly use it later. If we don't set it, the contents of
2033 is_a_field_of_this are undefined. */
2034 if (is_a_field_of_this != NULL)
2035 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2036
2037 /* Search specified block and its superiors. Don't search
2038 STATIC_BLOCK or GLOBAL_BLOCK. */
2039
2040 result = lookup_local_symbol (name, match_type, block, domain, language);
2041 if (result.symbol != NULL)
2042 {
2043 if (symbol_lookup_debug)
2044 {
2045 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2046 host_address_to_string (result.symbol));
2047 }
2048 return result;
2049 }
2050
2051 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2052 check to see if NAME is a field of `this'. */
2053
2054 langdef = language_def (language);
2055
2056 /* Don't do this check if we are searching for a struct. It will
2057 not be found by check_field, but will be found by other
2058 means. */
2059 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2060 {
2061 result = lookup_language_this (langdef, block);
2062
2063 if (result.symbol)
2064 {
2065 struct type *t = result.symbol->type;
2066
2067 /* I'm not really sure that type of this can ever
2068 be typedefed; just be safe. */
2069 t = check_typedef (t);
2070 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2071 t = TYPE_TARGET_TYPE (t);
2072
2073 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2074 && TYPE_CODE (t) != TYPE_CODE_UNION)
2075 error (_("Internal error: `%s' is not an aggregate"),
2076 langdef->la_name_of_this);
2077
2078 if (check_field (t, name, is_a_field_of_this))
2079 {
2080 if (symbol_lookup_debug)
2081 {
2082 fprintf_unfiltered (gdb_stdlog,
2083 "lookup_symbol_aux (...) = NULL\n");
2084 }
2085 return (struct block_symbol) {NULL, NULL};
2086 }
2087 }
2088 }
2089
2090 /* Now do whatever is appropriate for LANGUAGE to look
2091 up static and global variables. */
2092
2093 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2094 if (result.symbol != NULL)
2095 {
2096 if (symbol_lookup_debug)
2097 {
2098 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2099 host_address_to_string (result.symbol));
2100 }
2101 return result;
2102 }
2103
2104 /* Now search all static file-level symbols. Not strictly correct,
2105 but more useful than an error. */
2106
2107 result = lookup_static_symbol (name, domain);
2108 if (symbol_lookup_debug)
2109 {
2110 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2111 result.symbol != NULL
2112 ? host_address_to_string (result.symbol)
2113 : "NULL");
2114 }
2115 return result;
2116 }
2117
2118 /* Check to see if the symbol is defined in BLOCK or its superiors.
2119 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2120
2121 static struct block_symbol
2122 lookup_local_symbol (const char *name,
2123 symbol_name_match_type match_type,
2124 const struct block *block,
2125 const domain_enum domain,
2126 enum language language)
2127 {
2128 struct symbol *sym;
2129 const struct block *static_block = block_static_block (block);
2130 const char *scope = block_scope (block);
2131
2132 /* Check if either no block is specified or it's a global block. */
2133
2134 if (static_block == NULL)
2135 return (struct block_symbol) {NULL, NULL};
2136
2137 while (block != static_block)
2138 {
2139 sym = lookup_symbol_in_block (name, match_type, block, domain);
2140 if (sym != NULL)
2141 return (struct block_symbol) {sym, block};
2142
2143 if (language == language_cplus || language == language_fortran)
2144 {
2145 struct block_symbol blocksym
2146 = cp_lookup_symbol_imports_or_template (scope, name, block,
2147 domain);
2148
2149 if (blocksym.symbol != NULL)
2150 return blocksym;
2151 }
2152
2153 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2154 break;
2155 block = BLOCK_SUPERBLOCK (block);
2156 }
2157
2158 /* We've reached the end of the function without finding a result. */
2159
2160 return (struct block_symbol) {NULL, NULL};
2161 }
2162
2163 /* See symtab.h. */
2164
2165 struct objfile *
2166 lookup_objfile_from_block (const struct block *block)
2167 {
2168 if (block == NULL)
2169 return NULL;
2170
2171 block = block_global_block (block);
2172 /* Look through all blockvectors. */
2173 for (objfile *obj : all_objfiles (current_program_space))
2174 {
2175 for (compunit_symtab *cust : objfile_compunits (obj))
2176 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2177 GLOBAL_BLOCK))
2178 {
2179 if (obj->separate_debug_objfile_backlink)
2180 obj = obj->separate_debug_objfile_backlink;
2181
2182 return obj;
2183 }
2184 }
2185
2186 return NULL;
2187 }
2188
2189 /* See symtab.h. */
2190
2191 struct symbol *
2192 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2193 const struct block *block,
2194 const domain_enum domain)
2195 {
2196 struct symbol *sym;
2197
2198 if (symbol_lookup_debug > 1)
2199 {
2200 struct objfile *objfile = lookup_objfile_from_block (block);
2201
2202 fprintf_unfiltered (gdb_stdlog,
2203 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2204 name, host_address_to_string (block),
2205 objfile_debug_name (objfile),
2206 domain_name (domain));
2207 }
2208
2209 sym = block_lookup_symbol (block, name, match_type, domain);
2210 if (sym)
2211 {
2212 if (symbol_lookup_debug > 1)
2213 {
2214 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2215 host_address_to_string (sym));
2216 }
2217 return fixup_symbol_section (sym, NULL);
2218 }
2219
2220 if (symbol_lookup_debug > 1)
2221 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2222 return NULL;
2223 }
2224
2225 /* See symtab.h. */
2226
2227 struct block_symbol
2228 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2229 const char *name,
2230 const domain_enum domain)
2231 {
2232 struct objfile *objfile;
2233
2234 for (objfile = main_objfile;
2235 objfile;
2236 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2237 {
2238 struct block_symbol result
2239 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2240
2241 if (result.symbol != NULL)
2242 return result;
2243 }
2244
2245 return (struct block_symbol) {NULL, NULL};
2246 }
2247
2248 /* Check to see if the symbol is defined in one of the OBJFILE's
2249 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2250 depending on whether or not we want to search global symbols or
2251 static symbols. */
2252
2253 static struct block_symbol
2254 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2255 const char *name, const domain_enum domain)
2256 {
2257 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2258
2259 if (symbol_lookup_debug > 1)
2260 {
2261 fprintf_unfiltered (gdb_stdlog,
2262 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2263 objfile_debug_name (objfile),
2264 block_index == GLOBAL_BLOCK
2265 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2266 name, domain_name (domain));
2267 }
2268
2269 for (compunit_symtab *cust : objfile_compunits (objfile))
2270 {
2271 const struct blockvector *bv;
2272 const struct block *block;
2273 struct block_symbol result;
2274
2275 bv = COMPUNIT_BLOCKVECTOR (cust);
2276 block = BLOCKVECTOR_BLOCK (bv, block_index);
2277 result.symbol = block_lookup_symbol_primary (block, name, domain);
2278 result.block = block;
2279 if (result.symbol != NULL)
2280 {
2281 if (symbol_lookup_debug > 1)
2282 {
2283 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2284 host_address_to_string (result.symbol),
2285 host_address_to_string (block));
2286 }
2287 result.symbol = fixup_symbol_section (result.symbol, objfile);
2288 return result;
2289
2290 }
2291 }
2292
2293 if (symbol_lookup_debug > 1)
2294 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2295 return (struct block_symbol) {NULL, NULL};
2296 }
2297
2298 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2299 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2300 and all associated separate debug objfiles.
2301
2302 Normally we only look in OBJFILE, and not any separate debug objfiles
2303 because the outer loop will cause them to be searched too. This case is
2304 different. Here we're called from search_symbols where it will only
2305 call us for the the objfile that contains a matching minsym. */
2306
2307 static struct block_symbol
2308 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2309 const char *linkage_name,
2310 domain_enum domain)
2311 {
2312 enum language lang = current_language->la_language;
2313 struct objfile *main_objfile, *cur_objfile;
2314
2315 demangle_result_storage storage;
2316 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2317
2318 if (objfile->separate_debug_objfile_backlink)
2319 main_objfile = objfile->separate_debug_objfile_backlink;
2320 else
2321 main_objfile = objfile;
2322
2323 for (cur_objfile = main_objfile;
2324 cur_objfile;
2325 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2326 {
2327 struct block_symbol result;
2328
2329 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2330 modified_name, domain);
2331 if (result.symbol == NULL)
2332 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2333 modified_name, domain);
2334 if (result.symbol != NULL)
2335 return result;
2336 }
2337
2338 return (struct block_symbol) {NULL, NULL};
2339 }
2340
2341 /* A helper function that throws an exception when a symbol was found
2342 in a psymtab but not in a symtab. */
2343
2344 static void ATTRIBUTE_NORETURN
2345 error_in_psymtab_expansion (int block_index, const char *name,
2346 struct compunit_symtab *cust)
2347 {
2348 error (_("\
2349 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2350 %s may be an inlined function, or may be a template function\n \
2351 (if a template, try specifying an instantiation: %s<type>)."),
2352 block_index == GLOBAL_BLOCK ? "global" : "static",
2353 name,
2354 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2355 name, name);
2356 }
2357
2358 /* A helper function for various lookup routines that interfaces with
2359 the "quick" symbol table functions. */
2360
2361 static struct block_symbol
2362 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2363 const char *name, const domain_enum domain)
2364 {
2365 struct compunit_symtab *cust;
2366 const struct blockvector *bv;
2367 const struct block *block;
2368 struct block_symbol result;
2369
2370 if (!objfile->sf)
2371 return (struct block_symbol) {NULL, NULL};
2372
2373 if (symbol_lookup_debug > 1)
2374 {
2375 fprintf_unfiltered (gdb_stdlog,
2376 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2377 objfile_debug_name (objfile),
2378 block_index == GLOBAL_BLOCK
2379 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2380 name, domain_name (domain));
2381 }
2382
2383 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2384 if (cust == NULL)
2385 {
2386 if (symbol_lookup_debug > 1)
2387 {
2388 fprintf_unfiltered (gdb_stdlog,
2389 "lookup_symbol_via_quick_fns (...) = NULL\n");
2390 }
2391 return (struct block_symbol) {NULL, NULL};
2392 }
2393
2394 bv = COMPUNIT_BLOCKVECTOR (cust);
2395 block = BLOCKVECTOR_BLOCK (bv, block_index);
2396 result.symbol = block_lookup_symbol (block, name,
2397 symbol_name_match_type::FULL, domain);
2398 if (result.symbol == NULL)
2399 error_in_psymtab_expansion (block_index, name, cust);
2400
2401 if (symbol_lookup_debug > 1)
2402 {
2403 fprintf_unfiltered (gdb_stdlog,
2404 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2405 host_address_to_string (result.symbol),
2406 host_address_to_string (block));
2407 }
2408
2409 result.symbol = fixup_symbol_section (result.symbol, objfile);
2410 result.block = block;
2411 return result;
2412 }
2413
2414 /* See symtab.h. */
2415
2416 struct block_symbol
2417 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2418 const char *name,
2419 const struct block *block,
2420 const domain_enum domain)
2421 {
2422 struct block_symbol result;
2423
2424 /* NOTE: carlton/2003-05-19: The comments below were written when
2425 this (or what turned into this) was part of lookup_symbol_aux;
2426 I'm much less worried about these questions now, since these
2427 decisions have turned out well, but I leave these comments here
2428 for posterity. */
2429
2430 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2431 not it would be appropriate to search the current global block
2432 here as well. (That's what this code used to do before the
2433 is_a_field_of_this check was moved up.) On the one hand, it's
2434 redundant with the lookup in all objfiles search that happens
2435 next. On the other hand, if decode_line_1 is passed an argument
2436 like filename:var, then the user presumably wants 'var' to be
2437 searched for in filename. On the third hand, there shouldn't be
2438 multiple global variables all of which are named 'var', and it's
2439 not like decode_line_1 has ever restricted its search to only
2440 global variables in a single filename. All in all, only
2441 searching the static block here seems best: it's correct and it's
2442 cleanest. */
2443
2444 /* NOTE: carlton/2002-12-05: There's also a possible performance
2445 issue here: if you usually search for global symbols in the
2446 current file, then it would be slightly better to search the
2447 current global block before searching all the symtabs. But there
2448 are other factors that have a much greater effect on performance
2449 than that one, so I don't think we should worry about that for
2450 now. */
2451
2452 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2453 the current objfile. Searching the current objfile first is useful
2454 for both matching user expectations as well as performance. */
2455
2456 result = lookup_symbol_in_static_block (name, block, domain);
2457 if (result.symbol != NULL)
2458 return result;
2459
2460 /* If we didn't find a definition for a builtin type in the static block,
2461 search for it now. This is actually the right thing to do and can be
2462 a massive performance win. E.g., when debugging a program with lots of
2463 shared libraries we could search all of them only to find out the
2464 builtin type isn't defined in any of them. This is common for types
2465 like "void". */
2466 if (domain == VAR_DOMAIN)
2467 {
2468 struct gdbarch *gdbarch;
2469
2470 if (block == NULL)
2471 gdbarch = target_gdbarch ();
2472 else
2473 gdbarch = block_gdbarch (block);
2474 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2475 gdbarch, name);
2476 result.block = NULL;
2477 if (result.symbol != NULL)
2478 return result;
2479 }
2480
2481 return lookup_global_symbol (name, block, domain);
2482 }
2483
2484 /* See symtab.h. */
2485
2486 struct block_symbol
2487 lookup_symbol_in_static_block (const char *name,
2488 const struct block *block,
2489 const domain_enum domain)
2490 {
2491 const struct block *static_block = block_static_block (block);
2492 struct symbol *sym;
2493
2494 if (static_block == NULL)
2495 return (struct block_symbol) {NULL, NULL};
2496
2497 if (symbol_lookup_debug)
2498 {
2499 struct objfile *objfile = lookup_objfile_from_block (static_block);
2500
2501 fprintf_unfiltered (gdb_stdlog,
2502 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2503 " %s)\n",
2504 name,
2505 host_address_to_string (block),
2506 objfile_debug_name (objfile),
2507 domain_name (domain));
2508 }
2509
2510 sym = lookup_symbol_in_block (name,
2511 symbol_name_match_type::FULL,
2512 static_block, domain);
2513 if (symbol_lookup_debug)
2514 {
2515 fprintf_unfiltered (gdb_stdlog,
2516 "lookup_symbol_in_static_block (...) = %s\n",
2517 sym != NULL ? host_address_to_string (sym) : "NULL");
2518 }
2519 return (struct block_symbol) {sym, static_block};
2520 }
2521
2522 /* Perform the standard symbol lookup of NAME in OBJFILE:
2523 1) First search expanded symtabs, and if not found
2524 2) Search the "quick" symtabs (partial or .gdb_index).
2525 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2526
2527 static struct block_symbol
2528 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2529 const char *name, const domain_enum domain)
2530 {
2531 struct block_symbol result;
2532
2533 if (symbol_lookup_debug)
2534 {
2535 fprintf_unfiltered (gdb_stdlog,
2536 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2537 objfile_debug_name (objfile),
2538 block_index == GLOBAL_BLOCK
2539 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2540 name, domain_name (domain));
2541 }
2542
2543 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2544 name, domain);
2545 if (result.symbol != NULL)
2546 {
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s"
2551 " (in symtabs)\n",
2552 host_address_to_string (result.symbol));
2553 }
2554 return result;
2555 }
2556
2557 result = lookup_symbol_via_quick_fns (objfile, block_index,
2558 name, domain);
2559 if (symbol_lookup_debug)
2560 {
2561 fprintf_unfiltered (gdb_stdlog,
2562 "lookup_symbol_in_objfile (...) = %s%s\n",
2563 result.symbol != NULL
2564 ? host_address_to_string (result.symbol)
2565 : "NULL",
2566 result.symbol != NULL ? " (via quick fns)" : "");
2567 }
2568 return result;
2569 }
2570
2571 /* See symtab.h. */
2572
2573 struct block_symbol
2574 lookup_static_symbol (const char *name, const domain_enum domain)
2575 {
2576 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2577 struct block_symbol result;
2578 struct block_symbol_cache *bsc;
2579 struct symbol_cache_slot *slot;
2580
2581 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2582 NULL for OBJFILE_CONTEXT. */
2583 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2584 &bsc, &slot);
2585 if (result.symbol != NULL)
2586 {
2587 if (SYMBOL_LOOKUP_FAILED_P (result))
2588 return (struct block_symbol) {NULL, NULL};
2589 return result;
2590 }
2591
2592 for (objfile *objfile : all_objfiles (current_program_space))
2593 {
2594 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2595 if (result.symbol != NULL)
2596 {
2597 /* Still pass NULL for OBJFILE_CONTEXT here. */
2598 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2599 result.block);
2600 return result;
2601 }
2602 }
2603
2604 /* Still pass NULL for OBJFILE_CONTEXT here. */
2605 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2606 return (struct block_symbol) {NULL, NULL};
2607 }
2608
2609 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2610
2611 struct global_sym_lookup_data
2612 {
2613 /* The name of the symbol we are searching for. */
2614 const char *name;
2615
2616 /* The domain to use for our search. */
2617 domain_enum domain;
2618
2619 /* The field where the callback should store the symbol if found.
2620 It should be initialized to {NULL, NULL} before the search is started. */
2621 struct block_symbol result;
2622 };
2623
2624 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2625 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2626 OBJFILE. The arguments for the search are passed via CB_DATA,
2627 which in reality is a pointer to struct global_sym_lookup_data. */
2628
2629 static int
2630 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2631 void *cb_data)
2632 {
2633 struct global_sym_lookup_data *data =
2634 (struct global_sym_lookup_data *) cb_data;
2635
2636 gdb_assert (data->result.symbol == NULL
2637 && data->result.block == NULL);
2638
2639 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2640 data->name, data->domain);
2641
2642 /* If we found a match, tell the iterator to stop. Otherwise,
2643 keep going. */
2644 return (data->result.symbol != NULL);
2645 }
2646
2647 /* See symtab.h. */
2648
2649 struct block_symbol
2650 lookup_global_symbol (const char *name,
2651 const struct block *block,
2652 const domain_enum domain)
2653 {
2654 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2655 struct block_symbol result;
2656 struct objfile *objfile;
2657 struct global_sym_lookup_data lookup_data;
2658 struct block_symbol_cache *bsc;
2659 struct symbol_cache_slot *slot;
2660
2661 objfile = lookup_objfile_from_block (block);
2662
2663 /* First see if we can find the symbol in the cache.
2664 This works because we use the current objfile to qualify the lookup. */
2665 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2666 &bsc, &slot);
2667 if (result.symbol != NULL)
2668 {
2669 if (SYMBOL_LOOKUP_FAILED_P (result))
2670 return (struct block_symbol) {NULL, NULL};
2671 return result;
2672 }
2673
2674 /* Call library-specific lookup procedure. */
2675 if (objfile != NULL)
2676 result = solib_global_lookup (objfile, name, domain);
2677
2678 /* If that didn't work go a global search (of global blocks, heh). */
2679 if (result.symbol == NULL)
2680 {
2681 memset (&lookup_data, 0, sizeof (lookup_data));
2682 lookup_data.name = name;
2683 lookup_data.domain = domain;
2684 gdbarch_iterate_over_objfiles_in_search_order
2685 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2686 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2687 result = lookup_data.result;
2688 }
2689
2690 if (result.symbol != NULL)
2691 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2692 else
2693 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2694
2695 return result;
2696 }
2697
2698 int
2699 symbol_matches_domain (enum language symbol_language,
2700 domain_enum symbol_domain,
2701 domain_enum domain)
2702 {
2703 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2704 Similarly, any Ada type declaration implicitly defines a typedef. */
2705 if (symbol_language == language_cplus
2706 || symbol_language == language_d
2707 || symbol_language == language_ada
2708 || symbol_language == language_rust)
2709 {
2710 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2711 && symbol_domain == STRUCT_DOMAIN)
2712 return 1;
2713 }
2714 /* For all other languages, strict match is required. */
2715 return (symbol_domain == domain);
2716 }
2717
2718 /* See symtab.h. */
2719
2720 struct type *
2721 lookup_transparent_type (const char *name)
2722 {
2723 return current_language->la_lookup_transparent_type (name);
2724 }
2725
2726 /* A helper for basic_lookup_transparent_type that interfaces with the
2727 "quick" symbol table functions. */
2728
2729 static struct type *
2730 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2731 const char *name)
2732 {
2733 struct compunit_symtab *cust;
2734 const struct blockvector *bv;
2735 struct block *block;
2736 struct symbol *sym;
2737
2738 if (!objfile->sf)
2739 return NULL;
2740 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2741 STRUCT_DOMAIN);
2742 if (cust == NULL)
2743 return NULL;
2744
2745 bv = COMPUNIT_BLOCKVECTOR (cust);
2746 block = BLOCKVECTOR_BLOCK (bv, block_index);
2747 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2748 block_find_non_opaque_type, NULL);
2749 if (sym == NULL)
2750 error_in_psymtab_expansion (block_index, name, cust);
2751 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2752 return SYMBOL_TYPE (sym);
2753 }
2754
2755 /* Subroutine of basic_lookup_transparent_type to simplify it.
2756 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2757 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2758
2759 static struct type *
2760 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2761 const char *name)
2762 {
2763 const struct blockvector *bv;
2764 const struct block *block;
2765 const struct symbol *sym;
2766
2767 for (compunit_symtab *cust : objfile_compunits (objfile))
2768 {
2769 bv = COMPUNIT_BLOCKVECTOR (cust);
2770 block = BLOCKVECTOR_BLOCK (bv, block_index);
2771 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2772 block_find_non_opaque_type, NULL);
2773 if (sym != NULL)
2774 {
2775 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2776 return SYMBOL_TYPE (sym);
2777 }
2778 }
2779
2780 return NULL;
2781 }
2782
2783 /* The standard implementation of lookup_transparent_type. This code
2784 was modeled on lookup_symbol -- the parts not relevant to looking
2785 up types were just left out. In particular it's assumed here that
2786 types are available in STRUCT_DOMAIN and only in file-static or
2787 global blocks. */
2788
2789 struct type *
2790 basic_lookup_transparent_type (const char *name)
2791 {
2792 struct type *t;
2793
2794 /* Now search all the global symbols. Do the symtab's first, then
2795 check the psymtab's. If a psymtab indicates the existence
2796 of the desired name as a global, then do psymtab-to-symtab
2797 conversion on the fly and return the found symbol. */
2798
2799 for (objfile *objfile : all_objfiles (current_program_space))
2800 {
2801 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2802 if (t)
2803 return t;
2804 }
2805
2806 for (objfile *objfile : all_objfiles (current_program_space))
2807 {
2808 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2809 if (t)
2810 return t;
2811 }
2812
2813 /* Now search the static file-level symbols.
2814 Not strictly correct, but more useful than an error.
2815 Do the symtab's first, then
2816 check the psymtab's. If a psymtab indicates the existence
2817 of the desired name as a file-level static, then do psymtab-to-symtab
2818 conversion on the fly and return the found symbol. */
2819
2820 for (objfile *objfile : all_objfiles (current_program_space))
2821 {
2822 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2823 if (t)
2824 return t;
2825 }
2826
2827 for (objfile *objfile : all_objfiles (current_program_space))
2828 {
2829 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2830 if (t)
2831 return t;
2832 }
2833
2834 return (struct type *) 0;
2835 }
2836
2837 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2838
2839 For each symbol that matches, CALLBACK is called. The symbol is
2840 passed to the callback.
2841
2842 If CALLBACK returns false, the iteration ends. Otherwise, the
2843 search continues. */
2844
2845 void
2846 iterate_over_symbols (const struct block *block,
2847 const lookup_name_info &name,
2848 const domain_enum domain,
2849 gdb::function_view<symbol_found_callback_ftype> callback)
2850 {
2851 struct block_iterator iter;
2852 struct symbol *sym;
2853
2854 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2855 {
2856 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2857 SYMBOL_DOMAIN (sym), domain))
2858 {
2859 struct block_symbol block_sym = {sym, block};
2860
2861 if (!callback (&block_sym))
2862 return;
2863 }
2864 }
2865 }
2866
2867 /* Find the compunit symtab associated with PC and SECTION.
2868 This will read in debug info as necessary. */
2869
2870 struct compunit_symtab *
2871 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2872 {
2873 struct compunit_symtab *best_cust = NULL;
2874 CORE_ADDR distance = 0;
2875 struct bound_minimal_symbol msymbol;
2876
2877 /* If we know that this is not a text address, return failure. This is
2878 necessary because we loop based on the block's high and low code
2879 addresses, which do not include the data ranges, and because
2880 we call find_pc_sect_psymtab which has a similar restriction based
2881 on the partial_symtab's texthigh and textlow. */
2882 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2883 if (msymbol.minsym
2884 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2885 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2886 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2887 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2888 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2889 return NULL;
2890
2891 /* Search all symtabs for the one whose file contains our address, and which
2892 is the smallest of all the ones containing the address. This is designed
2893 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2894 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2895 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2896
2897 This happens for native ecoff format, where code from included files
2898 gets its own symtab. The symtab for the included file should have
2899 been read in already via the dependency mechanism.
2900 It might be swifter to create several symtabs with the same name
2901 like xcoff does (I'm not sure).
2902
2903 It also happens for objfiles that have their functions reordered.
2904 For these, the symtab we are looking for is not necessarily read in. */
2905
2906 for (objfile *obj_file : all_objfiles (current_program_space))
2907 {
2908 for (compunit_symtab *cust : objfile_compunits (obj_file))
2909 {
2910 struct block *b;
2911 const struct blockvector *bv;
2912
2913 bv = COMPUNIT_BLOCKVECTOR (cust);
2914 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2915
2916 if (BLOCK_START (b) <= pc
2917 && BLOCK_END (b) > pc
2918 && (distance == 0
2919 || BLOCK_END (b) - BLOCK_START (b) < distance))
2920 {
2921 /* For an objfile that has its functions reordered,
2922 find_pc_psymtab will find the proper partial symbol table
2923 and we simply return its corresponding symtab. */
2924 /* In order to better support objfiles that contain both
2925 stabs and coff debugging info, we continue on if a psymtab
2926 can't be found. */
2927 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2928 {
2929 struct compunit_symtab *result;
2930
2931 result
2932 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2933 msymbol,
2934 pc,
2935 section,
2936 0);
2937 if (result != NULL)
2938 return result;
2939 }
2940 if (section != 0)
2941 {
2942 struct block_iterator iter;
2943 struct symbol *sym = NULL;
2944
2945 ALL_BLOCK_SYMBOLS (b, iter, sym)
2946 {
2947 fixup_symbol_section (sym, obj_file);
2948 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2949 sym),
2950 section))
2951 break;
2952 }
2953 if (sym == NULL)
2954 continue; /* No symbol in this symtab matches
2955 section. */
2956 }
2957 distance = BLOCK_END (b) - BLOCK_START (b);
2958 best_cust = cust;
2959 }
2960 }
2961 }
2962
2963 if (best_cust != NULL)
2964 return best_cust;
2965
2966 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2967
2968 for (objfile *objf : all_objfiles (current_program_space))
2969 {
2970 struct compunit_symtab *result;
2971
2972 if (!objf->sf)
2973 continue;
2974 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2975 msymbol,
2976 pc, section,
2977 1);
2978 if (result != NULL)
2979 return result;
2980 }
2981
2982 return NULL;
2983 }
2984
2985 /* Find the compunit symtab associated with PC.
2986 This will read in debug info as necessary.
2987 Backward compatibility, no section. */
2988
2989 struct compunit_symtab *
2990 find_pc_compunit_symtab (CORE_ADDR pc)
2991 {
2992 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2993 }
2994
2995 /* See symtab.h. */
2996
2997 struct symbol *
2998 find_symbol_at_address (CORE_ADDR address)
2999 {
3000 for (objfile *objfile : all_objfiles (current_program_space))
3001 {
3002 if (objfile->sf == NULL
3003 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3004 continue;
3005
3006 struct compunit_symtab *symtab
3007 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3008 if (symtab != NULL)
3009 {
3010 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3011
3012 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3013 {
3014 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3015 struct block_iterator iter;
3016 struct symbol *sym;
3017
3018 ALL_BLOCK_SYMBOLS (b, iter, sym)
3019 {
3020 if (SYMBOL_CLASS (sym) == LOC_STATIC
3021 && SYMBOL_VALUE_ADDRESS (sym) == address)
3022 return sym;
3023 }
3024 }
3025 }
3026 }
3027
3028 return NULL;
3029 }
3030
3031 \f
3032
3033 /* Find the source file and line number for a given PC value and SECTION.
3034 Return a structure containing a symtab pointer, a line number,
3035 and a pc range for the entire source line.
3036 The value's .pc field is NOT the specified pc.
3037 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3038 use the line that ends there. Otherwise, in that case, the line
3039 that begins there is used. */
3040
3041 /* The big complication here is that a line may start in one file, and end just
3042 before the start of another file. This usually occurs when you #include
3043 code in the middle of a subroutine. To properly find the end of a line's PC
3044 range, we must search all symtabs associated with this compilation unit, and
3045 find the one whose first PC is closer than that of the next line in this
3046 symtab. */
3047
3048 struct symtab_and_line
3049 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3050 {
3051 struct compunit_symtab *cust;
3052 struct linetable *l;
3053 int len;
3054 struct linetable_entry *item;
3055 const struct blockvector *bv;
3056 struct bound_minimal_symbol msymbol;
3057
3058 /* Info on best line seen so far, and where it starts, and its file. */
3059
3060 struct linetable_entry *best = NULL;
3061 CORE_ADDR best_end = 0;
3062 struct symtab *best_symtab = 0;
3063
3064 /* Store here the first line number
3065 of a file which contains the line at the smallest pc after PC.
3066 If we don't find a line whose range contains PC,
3067 we will use a line one less than this,
3068 with a range from the start of that file to the first line's pc. */
3069 struct linetable_entry *alt = NULL;
3070
3071 /* Info on best line seen in this file. */
3072
3073 struct linetable_entry *prev;
3074
3075 /* If this pc is not from the current frame,
3076 it is the address of the end of a call instruction.
3077 Quite likely that is the start of the following statement.
3078 But what we want is the statement containing the instruction.
3079 Fudge the pc to make sure we get that. */
3080
3081 /* It's tempting to assume that, if we can't find debugging info for
3082 any function enclosing PC, that we shouldn't search for line
3083 number info, either. However, GAS can emit line number info for
3084 assembly files --- very helpful when debugging hand-written
3085 assembly code. In such a case, we'd have no debug info for the
3086 function, but we would have line info. */
3087
3088 if (notcurrent)
3089 pc -= 1;
3090
3091 /* elz: added this because this function returned the wrong
3092 information if the pc belongs to a stub (import/export)
3093 to call a shlib function. This stub would be anywhere between
3094 two functions in the target, and the line info was erroneously
3095 taken to be the one of the line before the pc. */
3096
3097 /* RT: Further explanation:
3098
3099 * We have stubs (trampolines) inserted between procedures.
3100 *
3101 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3102 * exists in the main image.
3103 *
3104 * In the minimal symbol table, we have a bunch of symbols
3105 * sorted by start address. The stubs are marked as "trampoline",
3106 * the others appear as text. E.g.:
3107 *
3108 * Minimal symbol table for main image
3109 * main: code for main (text symbol)
3110 * shr1: stub (trampoline symbol)
3111 * foo: code for foo (text symbol)
3112 * ...
3113 * Minimal symbol table for "shr1" image:
3114 * ...
3115 * shr1: code for shr1 (text symbol)
3116 * ...
3117 *
3118 * So the code below is trying to detect if we are in the stub
3119 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3120 * and if found, do the symbolization from the real-code address
3121 * rather than the stub address.
3122 *
3123 * Assumptions being made about the minimal symbol table:
3124 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3125 * if we're really in the trampoline.s If we're beyond it (say
3126 * we're in "foo" in the above example), it'll have a closer
3127 * symbol (the "foo" text symbol for example) and will not
3128 * return the trampoline.
3129 * 2. lookup_minimal_symbol_text() will find a real text symbol
3130 * corresponding to the trampoline, and whose address will
3131 * be different than the trampoline address. I put in a sanity
3132 * check for the address being the same, to avoid an
3133 * infinite recursion.
3134 */
3135 msymbol = lookup_minimal_symbol_by_pc (pc);
3136 if (msymbol.minsym != NULL)
3137 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3138 {
3139 struct bound_minimal_symbol mfunsym
3140 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3141 NULL);
3142
3143 if (mfunsym.minsym == NULL)
3144 /* I eliminated this warning since it is coming out
3145 * in the following situation:
3146 * gdb shmain // test program with shared libraries
3147 * (gdb) break shr1 // function in shared lib
3148 * Warning: In stub for ...
3149 * In the above situation, the shared lib is not loaded yet,
3150 * so of course we can't find the real func/line info,
3151 * but the "break" still works, and the warning is annoying.
3152 * So I commented out the warning. RT */
3153 /* warning ("In stub for %s; unable to find real function/line info",
3154 SYMBOL_LINKAGE_NAME (msymbol)); */
3155 ;
3156 /* fall through */
3157 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3158 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3159 /* Avoid infinite recursion */
3160 /* See above comment about why warning is commented out. */
3161 /* warning ("In stub for %s; unable to find real function/line info",
3162 SYMBOL_LINKAGE_NAME (msymbol)); */
3163 ;
3164 /* fall through */
3165 else
3166 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3167 }
3168
3169 symtab_and_line val;
3170 val.pspace = current_program_space;
3171
3172 cust = find_pc_sect_compunit_symtab (pc, section);
3173 if (cust == NULL)
3174 {
3175 /* If no symbol information, return previous pc. */
3176 if (notcurrent)
3177 pc++;
3178 val.pc = pc;
3179 return val;
3180 }
3181
3182 bv = COMPUNIT_BLOCKVECTOR (cust);
3183
3184 /* Look at all the symtabs that share this blockvector.
3185 They all have the same apriori range, that we found was right;
3186 but they have different line tables. */
3187
3188 for (symtab *iter_s : compunit_filetabs (cust))
3189 {
3190 /* Find the best line in this symtab. */
3191 l = SYMTAB_LINETABLE (iter_s);
3192 if (!l)
3193 continue;
3194 len = l->nitems;
3195 if (len <= 0)
3196 {
3197 /* I think len can be zero if the symtab lacks line numbers
3198 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3199 I'm not sure which, and maybe it depends on the symbol
3200 reader). */
3201 continue;
3202 }
3203
3204 prev = NULL;
3205 item = l->item; /* Get first line info. */
3206
3207 /* Is this file's first line closer than the first lines of other files?
3208 If so, record this file, and its first line, as best alternate. */
3209 if (item->pc > pc && (!alt || item->pc < alt->pc))
3210 alt = item;
3211
3212 auto pc_compare = [](const CORE_ADDR & comp_pc,
3213 const struct linetable_entry & lhs)->bool
3214 {
3215 return comp_pc < lhs.pc;
3216 };
3217
3218 struct linetable_entry *first = item;
3219 struct linetable_entry *last = item + len;
3220 item = std::upper_bound (first, last, pc, pc_compare);
3221 if (item != first)
3222 prev = item - 1; /* Found a matching item. */
3223
3224 /* At this point, prev points at the line whose start addr is <= pc, and
3225 item points at the next line. If we ran off the end of the linetable
3226 (pc >= start of the last line), then prev == item. If pc < start of
3227 the first line, prev will not be set. */
3228
3229 /* Is this file's best line closer than the best in the other files?
3230 If so, record this file, and its best line, as best so far. Don't
3231 save prev if it represents the end of a function (i.e. line number
3232 0) instead of a real line. */
3233
3234 if (prev && prev->line && (!best || prev->pc > best->pc))
3235 {
3236 best = prev;
3237 best_symtab = iter_s;
3238
3239 /* Discard BEST_END if it's before the PC of the current BEST. */
3240 if (best_end <= best->pc)
3241 best_end = 0;
3242 }
3243
3244 /* If another line (denoted by ITEM) is in the linetable and its
3245 PC is after BEST's PC, but before the current BEST_END, then
3246 use ITEM's PC as the new best_end. */
3247 if (best && item < last && item->pc > best->pc
3248 && (best_end == 0 || best_end > item->pc))
3249 best_end = item->pc;
3250 }
3251
3252 if (!best_symtab)
3253 {
3254 /* If we didn't find any line number info, just return zeros.
3255 We used to return alt->line - 1 here, but that could be
3256 anywhere; if we don't have line number info for this PC,
3257 don't make some up. */
3258 val.pc = pc;
3259 }
3260 else if (best->line == 0)
3261 {
3262 /* If our best fit is in a range of PC's for which no line
3263 number info is available (line number is zero) then we didn't
3264 find any valid line information. */
3265 val.pc = pc;
3266 }
3267 else
3268 {
3269 val.symtab = best_symtab;
3270 val.line = best->line;
3271 val.pc = best->pc;
3272 if (best_end && (!alt || best_end < alt->pc))
3273 val.end = best_end;
3274 else if (alt)
3275 val.end = alt->pc;
3276 else
3277 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3278 }
3279 val.section = section;
3280 return val;
3281 }
3282
3283 /* Backward compatibility (no section). */
3284
3285 struct symtab_and_line
3286 find_pc_line (CORE_ADDR pc, int notcurrent)
3287 {
3288 struct obj_section *section;
3289
3290 section = find_pc_overlay (pc);
3291 if (pc_in_unmapped_range (pc, section))
3292 pc = overlay_mapped_address (pc, section);
3293 return find_pc_sect_line (pc, section, notcurrent);
3294 }
3295
3296 /* See symtab.h. */
3297
3298 struct symtab *
3299 find_pc_line_symtab (CORE_ADDR pc)
3300 {
3301 struct symtab_and_line sal;
3302
3303 /* This always passes zero for NOTCURRENT to find_pc_line.
3304 There are currently no callers that ever pass non-zero. */
3305 sal = find_pc_line (pc, 0);
3306 return sal.symtab;
3307 }
3308 \f
3309 /* Find line number LINE in any symtab whose name is the same as
3310 SYMTAB.
3311
3312 If found, return the symtab that contains the linetable in which it was
3313 found, set *INDEX to the index in the linetable of the best entry
3314 found, and set *EXACT_MATCH nonzero if the value returned is an
3315 exact match.
3316
3317 If not found, return NULL. */
3318
3319 struct symtab *
3320 find_line_symtab (struct symtab *sym_tab, int line,
3321 int *index, int *exact_match)
3322 {
3323 int exact = 0; /* Initialized here to avoid a compiler warning. */
3324
3325 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3326 so far seen. */
3327
3328 int best_index;
3329 struct linetable *best_linetable;
3330 struct symtab *best_symtab;
3331
3332 /* First try looking it up in the given symtab. */
3333 best_linetable = SYMTAB_LINETABLE (sym_tab);
3334 best_symtab = sym_tab;
3335 best_index = find_line_common (best_linetable, line, &exact, 0);
3336 if (best_index < 0 || !exact)
3337 {
3338 /* Didn't find an exact match. So we better keep looking for
3339 another symtab with the same name. In the case of xcoff,
3340 multiple csects for one source file (produced by IBM's FORTRAN
3341 compiler) produce multiple symtabs (this is unavoidable
3342 assuming csects can be at arbitrary places in memory and that
3343 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3344
3345 /* BEST is the smallest linenumber > LINE so far seen,
3346 or 0 if none has been seen so far.
3347 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3348 int best;
3349
3350 if (best_index >= 0)
3351 best = best_linetable->item[best_index].line;
3352 else
3353 best = 0;
3354
3355 for (objfile *objfile : all_objfiles (current_program_space))
3356 {
3357 if (objfile->sf)
3358 objfile->sf->qf->expand_symtabs_with_fullname
3359 (objfile, symtab_to_fullname (sym_tab));
3360 }
3361
3362 for (objfile *objfile : all_objfiles (current_program_space))
3363 {
3364 for (compunit_symtab *cu : objfile_compunits (objfile))
3365 {
3366 for (symtab *s : compunit_filetabs (cu))
3367 {
3368 struct linetable *l;
3369 int ind;
3370
3371 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3372 continue;
3373 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3374 symtab_to_fullname (s)) != 0)
3375 continue;
3376 l = SYMTAB_LINETABLE (s);
3377 ind = find_line_common (l, line, &exact, 0);
3378 if (ind >= 0)
3379 {
3380 if (exact)
3381 {
3382 best_index = ind;
3383 best_linetable = l;
3384 best_symtab = s;
3385 goto done;
3386 }
3387 if (best == 0 || l->item[ind].line < best)
3388 {
3389 best = l->item[ind].line;
3390 best_index = ind;
3391 best_linetable = l;
3392 best_symtab = s;
3393 }
3394 }
3395 }
3396 }
3397 }
3398 }
3399 done:
3400 if (best_index < 0)
3401 return NULL;
3402
3403 if (index)
3404 *index = best_index;
3405 if (exact_match)
3406 *exact_match = exact;
3407
3408 return best_symtab;
3409 }
3410
3411 /* Given SYMTAB, returns all the PCs function in the symtab that
3412 exactly match LINE. Returns an empty vector if there are no exact
3413 matches, but updates BEST_ITEM in this case. */
3414
3415 std::vector<CORE_ADDR>
3416 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3417 struct linetable_entry **best_item)
3418 {
3419 int start = 0;
3420 std::vector<CORE_ADDR> result;
3421
3422 /* First, collect all the PCs that are at this line. */
3423 while (1)
3424 {
3425 int was_exact;
3426 int idx;
3427
3428 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3429 start);
3430 if (idx < 0)
3431 break;
3432
3433 if (!was_exact)
3434 {
3435 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3436
3437 if (*best_item == NULL || item->line < (*best_item)->line)
3438 *best_item = item;
3439
3440 break;
3441 }
3442
3443 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3444 start = idx + 1;
3445 }
3446
3447 return result;
3448 }
3449
3450 \f
3451 /* Set the PC value for a given source file and line number and return true.
3452 Returns zero for invalid line number (and sets the PC to 0).
3453 The source file is specified with a struct symtab. */
3454
3455 int
3456 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3457 {
3458 struct linetable *l;
3459 int ind;
3460
3461 *pc = 0;
3462 if (symtab == 0)
3463 return 0;
3464
3465 symtab = find_line_symtab (symtab, line, &ind, NULL);
3466 if (symtab != NULL)
3467 {
3468 l = SYMTAB_LINETABLE (symtab);
3469 *pc = l->item[ind].pc;
3470 return 1;
3471 }
3472 else
3473 return 0;
3474 }
3475
3476 /* Find the range of pc values in a line.
3477 Store the starting pc of the line into *STARTPTR
3478 and the ending pc (start of next line) into *ENDPTR.
3479 Returns 1 to indicate success.
3480 Returns 0 if could not find the specified line. */
3481
3482 int
3483 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3484 CORE_ADDR *endptr)
3485 {
3486 CORE_ADDR startaddr;
3487 struct symtab_and_line found_sal;
3488
3489 startaddr = sal.pc;
3490 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3491 return 0;
3492
3493 /* This whole function is based on address. For example, if line 10 has
3494 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3495 "info line *0x123" should say the line goes from 0x100 to 0x200
3496 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3497 This also insures that we never give a range like "starts at 0x134
3498 and ends at 0x12c". */
3499
3500 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3501 if (found_sal.line != sal.line)
3502 {
3503 /* The specified line (sal) has zero bytes. */
3504 *startptr = found_sal.pc;
3505 *endptr = found_sal.pc;
3506 }
3507 else
3508 {
3509 *startptr = found_sal.pc;
3510 *endptr = found_sal.end;
3511 }
3512 return 1;
3513 }
3514
3515 /* Given a line table and a line number, return the index into the line
3516 table for the pc of the nearest line whose number is >= the specified one.
3517 Return -1 if none is found. The value is >= 0 if it is an index.
3518 START is the index at which to start searching the line table.
3519
3520 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3521
3522 static int
3523 find_line_common (struct linetable *l, int lineno,
3524 int *exact_match, int start)
3525 {
3526 int i;
3527 int len;
3528
3529 /* BEST is the smallest linenumber > LINENO so far seen,
3530 or 0 if none has been seen so far.
3531 BEST_INDEX identifies the item for it. */
3532
3533 int best_index = -1;
3534 int best = 0;
3535
3536 *exact_match = 0;
3537
3538 if (lineno <= 0)
3539 return -1;
3540 if (l == 0)
3541 return -1;
3542
3543 len = l->nitems;
3544 for (i = start; i < len; i++)
3545 {
3546 struct linetable_entry *item = &(l->item[i]);
3547
3548 if (item->line == lineno)
3549 {
3550 /* Return the first (lowest address) entry which matches. */
3551 *exact_match = 1;
3552 return i;
3553 }
3554
3555 if (item->line > lineno && (best == 0 || item->line < best))
3556 {
3557 best = item->line;
3558 best_index = i;
3559 }
3560 }
3561
3562 /* If we got here, we didn't get an exact match. */
3563 return best_index;
3564 }
3565
3566 int
3567 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3568 {
3569 struct symtab_and_line sal;
3570
3571 sal = find_pc_line (pc, 0);
3572 *startptr = sal.pc;
3573 *endptr = sal.end;
3574 return sal.symtab != 0;
3575 }
3576
3577 /* Helper for find_function_start_sal. Does most of the work, except
3578 setting the sal's symbol. */
3579
3580 static symtab_and_line
3581 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3582 bool funfirstline)
3583 {
3584 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3585
3586 if (funfirstline && sal.symtab != NULL
3587 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3588 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3589 {
3590 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3591
3592 sal.pc = func_addr;
3593 if (gdbarch_skip_entrypoint_p (gdbarch))
3594 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3595 return sal;
3596 }
3597
3598 /* We always should have a line for the function start address.
3599 If we don't, something is odd. Create a plain SAL referring
3600 just the PC and hope that skip_prologue_sal (if requested)
3601 can find a line number for after the prologue. */
3602 if (sal.pc < func_addr)
3603 {
3604 sal = {};
3605 sal.pspace = current_program_space;
3606 sal.pc = func_addr;
3607 sal.section = section;
3608 }
3609
3610 if (funfirstline)
3611 skip_prologue_sal (&sal);
3612
3613 return sal;
3614 }
3615
3616 /* See symtab.h. */
3617
3618 symtab_and_line
3619 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3620 bool funfirstline)
3621 {
3622 symtab_and_line sal
3623 = find_function_start_sal_1 (func_addr, section, funfirstline);
3624
3625 /* find_function_start_sal_1 does a linetable search, so it finds
3626 the symtab and linenumber, but not a symbol. Fill in the
3627 function symbol too. */
3628 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3629
3630 return sal;
3631 }
3632
3633 /* See symtab.h. */
3634
3635 symtab_and_line
3636 find_function_start_sal (symbol *sym, bool funfirstline)
3637 {
3638 fixup_symbol_section (sym, NULL);
3639 symtab_and_line sal
3640 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3641 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3642 funfirstline);
3643 sal.symbol = sym;
3644 return sal;
3645 }
3646
3647
3648 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3649 address for that function that has an entry in SYMTAB's line info
3650 table. If such an entry cannot be found, return FUNC_ADDR
3651 unaltered. */
3652
3653 static CORE_ADDR
3654 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3655 {
3656 CORE_ADDR func_start, func_end;
3657 struct linetable *l;
3658 int i;
3659
3660 /* Give up if this symbol has no lineinfo table. */
3661 l = SYMTAB_LINETABLE (symtab);
3662 if (l == NULL)
3663 return func_addr;
3664
3665 /* Get the range for the function's PC values, or give up if we
3666 cannot, for some reason. */
3667 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3668 return func_addr;
3669
3670 /* Linetable entries are ordered by PC values, see the commentary in
3671 symtab.h where `struct linetable' is defined. Thus, the first
3672 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3673 address we are looking for. */
3674 for (i = 0; i < l->nitems; i++)
3675 {
3676 struct linetable_entry *item = &(l->item[i]);
3677
3678 /* Don't use line numbers of zero, they mark special entries in
3679 the table. See the commentary on symtab.h before the
3680 definition of struct linetable. */
3681 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3682 return item->pc;
3683 }
3684
3685 return func_addr;
3686 }
3687
3688 /* Adjust SAL to the first instruction past the function prologue.
3689 If the PC was explicitly specified, the SAL is not changed.
3690 If the line number was explicitly specified, at most the SAL's PC
3691 is updated. If SAL is already past the prologue, then do nothing. */
3692
3693 void
3694 skip_prologue_sal (struct symtab_and_line *sal)
3695 {
3696 struct symbol *sym;
3697 struct symtab_and_line start_sal;
3698 CORE_ADDR pc, saved_pc;
3699 struct obj_section *section;
3700 const char *name;
3701 struct objfile *objfile;
3702 struct gdbarch *gdbarch;
3703 const struct block *b, *function_block;
3704 int force_skip, skip;
3705
3706 /* Do not change the SAL if PC was specified explicitly. */
3707 if (sal->explicit_pc)
3708 return;
3709
3710 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3711
3712 switch_to_program_space_and_thread (sal->pspace);
3713
3714 sym = find_pc_sect_function (sal->pc, sal->section);
3715 if (sym != NULL)
3716 {
3717 fixup_symbol_section (sym, NULL);
3718
3719 objfile = symbol_objfile (sym);
3720 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3721 section = SYMBOL_OBJ_SECTION (objfile, sym);
3722 name = SYMBOL_LINKAGE_NAME (sym);
3723 }
3724 else
3725 {
3726 struct bound_minimal_symbol msymbol
3727 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3728
3729 if (msymbol.minsym == NULL)
3730 return;
3731
3732 objfile = msymbol.objfile;
3733 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3734 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3735 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3736 }
3737
3738 gdbarch = get_objfile_arch (objfile);
3739
3740 /* Process the prologue in two passes. In the first pass try to skip the
3741 prologue (SKIP is true) and verify there is a real need for it (indicated
3742 by FORCE_SKIP). If no such reason was found run a second pass where the
3743 prologue is not skipped (SKIP is false). */
3744
3745 skip = 1;
3746 force_skip = 1;
3747
3748 /* Be conservative - allow direct PC (without skipping prologue) only if we
3749 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3750 have to be set by the caller so we use SYM instead. */
3751 if (sym != NULL
3752 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3753 force_skip = 0;
3754
3755 saved_pc = pc;
3756 do
3757 {
3758 pc = saved_pc;
3759
3760 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3761 so that gdbarch_skip_prologue has something unique to work on. */
3762 if (section_is_overlay (section) && !section_is_mapped (section))
3763 pc = overlay_unmapped_address (pc, section);
3764
3765 /* Skip "first line" of function (which is actually its prologue). */
3766 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3767 if (gdbarch_skip_entrypoint_p (gdbarch))
3768 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3769 if (skip)
3770 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3771
3772 /* For overlays, map pc back into its mapped VMA range. */
3773 pc = overlay_mapped_address (pc, section);
3774
3775 /* Calculate line number. */
3776 start_sal = find_pc_sect_line (pc, section, 0);
3777
3778 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3779 line is still part of the same function. */
3780 if (skip && start_sal.pc != pc
3781 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3782 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3783 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3784 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3785 {
3786 /* First pc of next line */
3787 pc = start_sal.end;
3788 /* Recalculate the line number (might not be N+1). */
3789 start_sal = find_pc_sect_line (pc, section, 0);
3790 }
3791
3792 /* On targets with executable formats that don't have a concept of
3793 constructors (ELF with .init has, PE doesn't), gcc emits a call
3794 to `__main' in `main' between the prologue and before user
3795 code. */
3796 if (gdbarch_skip_main_prologue_p (gdbarch)
3797 && name && strcmp_iw (name, "main") == 0)
3798 {
3799 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3800 /* Recalculate the line number (might not be N+1). */
3801 start_sal = find_pc_sect_line (pc, section, 0);
3802 force_skip = 1;
3803 }
3804 }
3805 while (!force_skip && skip--);
3806
3807 /* If we still don't have a valid source line, try to find the first
3808 PC in the lineinfo table that belongs to the same function. This
3809 happens with COFF debug info, which does not seem to have an
3810 entry in lineinfo table for the code after the prologue which has
3811 no direct relation to source. For example, this was found to be
3812 the case with the DJGPP target using "gcc -gcoff" when the
3813 compiler inserted code after the prologue to make sure the stack
3814 is aligned. */
3815 if (!force_skip && sym && start_sal.symtab == NULL)
3816 {
3817 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3818 /* Recalculate the line number. */
3819 start_sal = find_pc_sect_line (pc, section, 0);
3820 }
3821
3822 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3823 forward SAL to the end of the prologue. */
3824 if (sal->pc >= pc)
3825 return;
3826
3827 sal->pc = pc;
3828 sal->section = section;
3829
3830 /* Unless the explicit_line flag was set, update the SAL line
3831 and symtab to correspond to the modified PC location. */
3832 if (sal->explicit_line)
3833 return;
3834
3835 sal->symtab = start_sal.symtab;
3836 sal->line = start_sal.line;
3837 sal->end = start_sal.end;
3838
3839 /* Check if we are now inside an inlined function. If we can,
3840 use the call site of the function instead. */
3841 b = block_for_pc_sect (sal->pc, sal->section);
3842 function_block = NULL;
3843 while (b != NULL)
3844 {
3845 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3846 function_block = b;
3847 else if (BLOCK_FUNCTION (b) != NULL)
3848 break;
3849 b = BLOCK_SUPERBLOCK (b);
3850 }
3851 if (function_block != NULL
3852 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3853 {
3854 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3855 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3856 }
3857 }
3858
3859 /* Given PC at the function's start address, attempt to find the
3860 prologue end using SAL information. Return zero if the skip fails.
3861
3862 A non-optimized prologue traditionally has one SAL for the function
3863 and a second for the function body. A single line function has
3864 them both pointing at the same line.
3865
3866 An optimized prologue is similar but the prologue may contain
3867 instructions (SALs) from the instruction body. Need to skip those
3868 while not getting into the function body.
3869
3870 The functions end point and an increasing SAL line are used as
3871 indicators of the prologue's endpoint.
3872
3873 This code is based on the function refine_prologue_limit
3874 (found in ia64). */
3875
3876 CORE_ADDR
3877 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3878 {
3879 struct symtab_and_line prologue_sal;
3880 CORE_ADDR start_pc;
3881 CORE_ADDR end_pc;
3882 const struct block *bl;
3883
3884 /* Get an initial range for the function. */
3885 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3886 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3887
3888 prologue_sal = find_pc_line (start_pc, 0);
3889 if (prologue_sal.line != 0)
3890 {
3891 /* For languages other than assembly, treat two consecutive line
3892 entries at the same address as a zero-instruction prologue.
3893 The GNU assembler emits separate line notes for each instruction
3894 in a multi-instruction macro, but compilers generally will not
3895 do this. */
3896 if (prologue_sal.symtab->language != language_asm)
3897 {
3898 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3899 int idx = 0;
3900
3901 /* Skip any earlier lines, and any end-of-sequence marker
3902 from a previous function. */
3903 while (linetable->item[idx].pc != prologue_sal.pc
3904 || linetable->item[idx].line == 0)
3905 idx++;
3906
3907 if (idx+1 < linetable->nitems
3908 && linetable->item[idx+1].line != 0
3909 && linetable->item[idx+1].pc == start_pc)
3910 return start_pc;
3911 }
3912
3913 /* If there is only one sal that covers the entire function,
3914 then it is probably a single line function, like
3915 "foo(){}". */
3916 if (prologue_sal.end >= end_pc)
3917 return 0;
3918
3919 while (prologue_sal.end < end_pc)
3920 {
3921 struct symtab_and_line sal;
3922
3923 sal = find_pc_line (prologue_sal.end, 0);
3924 if (sal.line == 0)
3925 break;
3926 /* Assume that a consecutive SAL for the same (or larger)
3927 line mark the prologue -> body transition. */
3928 if (sal.line >= prologue_sal.line)
3929 break;
3930 /* Likewise if we are in a different symtab altogether
3931 (e.g. within a file included via #include).  */
3932 if (sal.symtab != prologue_sal.symtab)
3933 break;
3934
3935 /* The line number is smaller. Check that it's from the
3936 same function, not something inlined. If it's inlined,
3937 then there is no point comparing the line numbers. */
3938 bl = block_for_pc (prologue_sal.end);
3939 while (bl)
3940 {
3941 if (block_inlined_p (bl))
3942 break;
3943 if (BLOCK_FUNCTION (bl))
3944 {
3945 bl = NULL;
3946 break;
3947 }
3948 bl = BLOCK_SUPERBLOCK (bl);
3949 }
3950 if (bl != NULL)
3951 break;
3952
3953 /* The case in which compiler's optimizer/scheduler has
3954 moved instructions into the prologue. We look ahead in
3955 the function looking for address ranges whose
3956 corresponding line number is less the first one that we
3957 found for the function. This is more conservative then
3958 refine_prologue_limit which scans a large number of SALs
3959 looking for any in the prologue. */
3960 prologue_sal = sal;
3961 }
3962 }
3963
3964 if (prologue_sal.end < end_pc)
3965 /* Return the end of this line, or zero if we could not find a
3966 line. */
3967 return prologue_sal.end;
3968 else
3969 /* Don't return END_PC, which is past the end of the function. */
3970 return prologue_sal.pc;
3971 }
3972
3973 /* See symtab.h. */
3974
3975 symbol *
3976 find_function_alias_target (bound_minimal_symbol msymbol)
3977 {
3978 CORE_ADDR func_addr;
3979 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3980 return NULL;
3981
3982 symbol *sym = find_pc_function (func_addr);
3983 if (sym != NULL
3984 && SYMBOL_CLASS (sym) == LOC_BLOCK
3985 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3986 return sym;
3987
3988 return NULL;
3989 }
3990
3991 \f
3992 /* If P is of the form "operator[ \t]+..." where `...' is
3993 some legitimate operator text, return a pointer to the
3994 beginning of the substring of the operator text.
3995 Otherwise, return "". */
3996
3997 static const char *
3998 operator_chars (const char *p, const char **end)
3999 {
4000 *end = "";
4001 if (!startswith (p, CP_OPERATOR_STR))
4002 return *end;
4003 p += CP_OPERATOR_LEN;
4004
4005 /* Don't get faked out by `operator' being part of a longer
4006 identifier. */
4007 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4008 return *end;
4009
4010 /* Allow some whitespace between `operator' and the operator symbol. */
4011 while (*p == ' ' || *p == '\t')
4012 p++;
4013
4014 /* Recognize 'operator TYPENAME'. */
4015
4016 if (isalpha (*p) || *p == '_' || *p == '$')
4017 {
4018 const char *q = p + 1;
4019
4020 while (isalnum (*q) || *q == '_' || *q == '$')
4021 q++;
4022 *end = q;
4023 return p;
4024 }
4025
4026 while (*p)
4027 switch (*p)
4028 {
4029 case '\\': /* regexp quoting */
4030 if (p[1] == '*')
4031 {
4032 if (p[2] == '=') /* 'operator\*=' */
4033 *end = p + 3;
4034 else /* 'operator\*' */
4035 *end = p + 2;
4036 return p;
4037 }
4038 else if (p[1] == '[')
4039 {
4040 if (p[2] == ']')
4041 error (_("mismatched quoting on brackets, "
4042 "try 'operator\\[\\]'"));
4043 else if (p[2] == '\\' && p[3] == ']')
4044 {
4045 *end = p + 4; /* 'operator\[\]' */
4046 return p;
4047 }
4048 else
4049 error (_("nothing is allowed between '[' and ']'"));
4050 }
4051 else
4052 {
4053 /* Gratuitous qoute: skip it and move on. */
4054 p++;
4055 continue;
4056 }
4057 break;
4058 case '!':
4059 case '=':
4060 case '*':
4061 case '/':
4062 case '%':
4063 case '^':
4064 if (p[1] == '=')
4065 *end = p + 2;
4066 else
4067 *end = p + 1;
4068 return p;
4069 case '<':
4070 case '>':
4071 case '+':
4072 case '-':
4073 case '&':
4074 case '|':
4075 if (p[0] == '-' && p[1] == '>')
4076 {
4077 /* Struct pointer member operator 'operator->'. */
4078 if (p[2] == '*')
4079 {
4080 *end = p + 3; /* 'operator->*' */
4081 return p;
4082 }
4083 else if (p[2] == '\\')
4084 {
4085 *end = p + 4; /* Hopefully 'operator->\*' */
4086 return p;
4087 }
4088 else
4089 {
4090 *end = p + 2; /* 'operator->' */
4091 return p;
4092 }
4093 }
4094 if (p[1] == '=' || p[1] == p[0])
4095 *end = p + 2;
4096 else
4097 *end = p + 1;
4098 return p;
4099 case '~':
4100 case ',':
4101 *end = p + 1;
4102 return p;
4103 case '(':
4104 if (p[1] != ')')
4105 error (_("`operator ()' must be specified "
4106 "without whitespace in `()'"));
4107 *end = p + 2;
4108 return p;
4109 case '?':
4110 if (p[1] != ':')
4111 error (_("`operator ?:' must be specified "
4112 "without whitespace in `?:'"));
4113 *end = p + 2;
4114 return p;
4115 case '[':
4116 if (p[1] != ']')
4117 error (_("`operator []' must be specified "
4118 "without whitespace in `[]'"));
4119 *end = p + 2;
4120 return p;
4121 default:
4122 error (_("`operator %s' not supported"), p);
4123 break;
4124 }
4125
4126 *end = "";
4127 return *end;
4128 }
4129 \f
4130
4131 /* Data structure to maintain printing state for output_source_filename. */
4132
4133 struct output_source_filename_data
4134 {
4135 /* Cache of what we've seen so far. */
4136 struct filename_seen_cache *filename_seen_cache;
4137
4138 /* Flag of whether we're printing the first one. */
4139 int first;
4140 };
4141
4142 /* Slave routine for sources_info. Force line breaks at ,'s.
4143 NAME is the name to print.
4144 DATA contains the state for printing and watching for duplicates. */
4145
4146 static void
4147 output_source_filename (const char *name,
4148 struct output_source_filename_data *data)
4149 {
4150 /* Since a single source file can result in several partial symbol
4151 tables, we need to avoid printing it more than once. Note: if
4152 some of the psymtabs are read in and some are not, it gets
4153 printed both under "Source files for which symbols have been
4154 read" and "Source files for which symbols will be read in on
4155 demand". I consider this a reasonable way to deal with the
4156 situation. I'm not sure whether this can also happen for
4157 symtabs; it doesn't hurt to check. */
4158
4159 /* Was NAME already seen? */
4160 if (data->filename_seen_cache->seen (name))
4161 {
4162 /* Yes; don't print it again. */
4163 return;
4164 }
4165
4166 /* No; print it and reset *FIRST. */
4167 if (! data->first)
4168 printf_filtered (", ");
4169 data->first = 0;
4170
4171 wrap_here ("");
4172 fputs_filtered (name, gdb_stdout);
4173 }
4174
4175 /* A callback for map_partial_symbol_filenames. */
4176
4177 static void
4178 output_partial_symbol_filename (const char *filename, const char *fullname,
4179 void *data)
4180 {
4181 output_source_filename (fullname ? fullname : filename,
4182 (struct output_source_filename_data *) data);
4183 }
4184
4185 static void
4186 info_sources_command (const char *ignore, int from_tty)
4187 {
4188 struct output_source_filename_data data;
4189
4190 if (!have_full_symbols () && !have_partial_symbols ())
4191 {
4192 error (_("No symbol table is loaded. Use the \"file\" command."));
4193 }
4194
4195 filename_seen_cache filenames_seen;
4196
4197 data.filename_seen_cache = &filenames_seen;
4198
4199 printf_filtered ("Source files for which symbols have been read in:\n\n");
4200
4201 data.first = 1;
4202 for (objfile *objfile : all_objfiles (current_program_space))
4203 {
4204 for (compunit_symtab *cu : objfile_compunits (objfile))
4205 {
4206 for (symtab *s : compunit_filetabs (cu))
4207 {
4208 const char *fullname = symtab_to_fullname (s);
4209
4210 output_source_filename (fullname, &data);
4211 }
4212 }
4213 }
4214 printf_filtered ("\n\n");
4215
4216 printf_filtered ("Source files for which symbols "
4217 "will be read in on demand:\n\n");
4218
4219 filenames_seen.clear ();
4220 data.first = 1;
4221 map_symbol_filenames (output_partial_symbol_filename, &data,
4222 1 /*need_fullname*/);
4223 printf_filtered ("\n");
4224 }
4225
4226 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4227 non-zero compare only lbasename of FILES. */
4228
4229 static int
4230 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4231 {
4232 int i;
4233
4234 if (file != NULL && nfiles != 0)
4235 {
4236 for (i = 0; i < nfiles; i++)
4237 {
4238 if (compare_filenames_for_search (file, (basenames
4239 ? lbasename (files[i])
4240 : files[i])))
4241 return 1;
4242 }
4243 }
4244 else if (nfiles == 0)
4245 return 1;
4246 return 0;
4247 }
4248
4249 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4250 sort symbols, not minimal symbols. */
4251
4252 int
4253 symbol_search::compare_search_syms (const symbol_search &sym_a,
4254 const symbol_search &sym_b)
4255 {
4256 int c;
4257
4258 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4259 symbol_symtab (sym_b.symbol)->filename);
4260 if (c != 0)
4261 return c;
4262
4263 if (sym_a.block != sym_b.block)
4264 return sym_a.block - sym_b.block;
4265
4266 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4267 SYMBOL_PRINT_NAME (sym_b.symbol));
4268 }
4269
4270 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4271 If SYM has no symbol_type or symbol_name, returns false. */
4272
4273 bool
4274 treg_matches_sym_type_name (const compiled_regex &treg,
4275 const struct symbol *sym)
4276 {
4277 struct type *sym_type;
4278 std::string printed_sym_type_name;
4279
4280 if (symbol_lookup_debug > 1)
4281 {
4282 fprintf_unfiltered (gdb_stdlog,
4283 "treg_matches_sym_type_name\n sym %s\n",
4284 SYMBOL_NATURAL_NAME (sym));
4285 }
4286
4287 sym_type = SYMBOL_TYPE (sym);
4288 if (sym_type == NULL)
4289 return false;
4290
4291 {
4292 scoped_switch_to_sym_language_if_auto l (sym);
4293
4294 printed_sym_type_name = type_to_string (sym_type);
4295 }
4296
4297
4298 if (symbol_lookup_debug > 1)
4299 {
4300 fprintf_unfiltered (gdb_stdlog,
4301 " sym_type_name %s\n",
4302 printed_sym_type_name.c_str ());
4303 }
4304
4305
4306 if (printed_sym_type_name.empty ())
4307 return false;
4308
4309 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4310 }
4311
4312
4313 /* Sort the symbols in RESULT and remove duplicates. */
4314
4315 static void
4316 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4317 {
4318 std::sort (result->begin (), result->end ());
4319 result->erase (std::unique (result->begin (), result->end ()),
4320 result->end ());
4321 }
4322
4323 /* Search the symbol table for matches to the regular expression REGEXP,
4324 returning the results.
4325
4326 Only symbols of KIND are searched:
4327 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4328 and constants (enums).
4329 if T_REGEXP is not NULL, only returns var that have
4330 a type matching regular expression T_REGEXP.
4331 FUNCTIONS_DOMAIN - search all functions
4332 TYPES_DOMAIN - search all type names
4333 ALL_DOMAIN - an internal error for this function
4334
4335 Within each file the results are sorted locally; each symtab's global and
4336 static blocks are separately alphabetized.
4337 Duplicate entries are removed. */
4338
4339 std::vector<symbol_search>
4340 search_symbols (const char *regexp, enum search_domain kind,
4341 const char *t_regexp,
4342 int nfiles, const char *files[])
4343 {
4344 const struct blockvector *bv;
4345 struct block *b;
4346 int i = 0;
4347 struct block_iterator iter;
4348 struct symbol *sym;
4349 int found_misc = 0;
4350 static const enum minimal_symbol_type types[]
4351 = {mst_data, mst_text, mst_abs};
4352 static const enum minimal_symbol_type types2[]
4353 = {mst_bss, mst_file_text, mst_abs};
4354 static const enum minimal_symbol_type types3[]
4355 = {mst_file_data, mst_solib_trampoline, mst_abs};
4356 static const enum minimal_symbol_type types4[]
4357 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4358 enum minimal_symbol_type ourtype;
4359 enum minimal_symbol_type ourtype2;
4360 enum minimal_symbol_type ourtype3;
4361 enum minimal_symbol_type ourtype4;
4362 std::vector<symbol_search> result;
4363 gdb::optional<compiled_regex> preg;
4364 gdb::optional<compiled_regex> treg;
4365
4366 gdb_assert (kind <= TYPES_DOMAIN);
4367
4368 ourtype = types[kind];
4369 ourtype2 = types2[kind];
4370 ourtype3 = types3[kind];
4371 ourtype4 = types4[kind];
4372
4373 if (regexp != NULL)
4374 {
4375 /* Make sure spacing is right for C++ operators.
4376 This is just a courtesy to make the matching less sensitive
4377 to how many spaces the user leaves between 'operator'
4378 and <TYPENAME> or <OPERATOR>. */
4379 const char *opend;
4380 const char *opname = operator_chars (regexp, &opend);
4381
4382 if (*opname)
4383 {
4384 int fix = -1; /* -1 means ok; otherwise number of
4385 spaces needed. */
4386
4387 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4388 {
4389 /* There should 1 space between 'operator' and 'TYPENAME'. */
4390 if (opname[-1] != ' ' || opname[-2] == ' ')
4391 fix = 1;
4392 }
4393 else
4394 {
4395 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4396 if (opname[-1] == ' ')
4397 fix = 0;
4398 }
4399 /* If wrong number of spaces, fix it. */
4400 if (fix >= 0)
4401 {
4402 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4403
4404 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4405 regexp = tmp;
4406 }
4407 }
4408
4409 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4410 ? REG_ICASE : 0);
4411 preg.emplace (regexp, cflags, _("Invalid regexp"));
4412 }
4413
4414 if (t_regexp != NULL)
4415 {
4416 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4417 ? REG_ICASE : 0);
4418 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4419 }
4420
4421 /* Search through the partial symtabs *first* for all symbols
4422 matching the regexp. That way we don't have to reproduce all of
4423 the machinery below. */
4424 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4425 {
4426 return file_matches (filename, files, nfiles,
4427 basenames);
4428 },
4429 lookup_name_info::match_any (),
4430 [&] (const char *symname)
4431 {
4432 return (!preg.has_value ()
4433 || preg->exec (symname,
4434 0, NULL, 0) == 0);
4435 },
4436 NULL,
4437 kind);
4438
4439 /* Here, we search through the minimal symbol tables for functions
4440 and variables that match, and force their symbols to be read.
4441 This is in particular necessary for demangled variable names,
4442 which are no longer put into the partial symbol tables.
4443 The symbol will then be found during the scan of symtabs below.
4444
4445 For functions, find_pc_symtab should succeed if we have debug info
4446 for the function, for variables we have to call
4447 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4448 has debug info.
4449 If the lookup fails, set found_misc so that we will rescan to print
4450 any matching symbols without debug info.
4451 We only search the objfile the msymbol came from, we no longer search
4452 all objfiles. In large programs (1000s of shared libs) searching all
4453 objfiles is not worth the pain. */
4454
4455 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4456 {
4457 for (objfile *objfile : all_objfiles (current_program_space))
4458 {
4459 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4460 {
4461 QUIT;
4462
4463 if (msymbol->created_by_gdb)
4464 continue;
4465
4466 if (MSYMBOL_TYPE (msymbol) == ourtype
4467 || MSYMBOL_TYPE (msymbol) == ourtype2
4468 || MSYMBOL_TYPE (msymbol) == ourtype3
4469 || MSYMBOL_TYPE (msymbol) == ourtype4)
4470 {
4471 if (!preg.has_value ()
4472 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4473 NULL, 0) == 0)
4474 {
4475 /* Note: An important side-effect of these
4476 lookup functions is to expand the symbol
4477 table if msymbol is found, for the benefit of
4478 the next loop on compunits. */
4479 if (kind == FUNCTIONS_DOMAIN
4480 ? (find_pc_compunit_symtab
4481 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4482 == NULL)
4483 : (lookup_symbol_in_objfile_from_linkage_name
4484 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4485 VAR_DOMAIN)
4486 .symbol == NULL))
4487 found_misc = 1;
4488 }
4489 }
4490 }
4491 }
4492 }
4493
4494 for (objfile *objfile : all_objfiles (current_program_space))
4495 {
4496 for (compunit_symtab *cust : objfile_compunits (objfile))
4497 {
4498 bv = COMPUNIT_BLOCKVECTOR (cust);
4499 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4500 {
4501 b = BLOCKVECTOR_BLOCK (bv, i);
4502 ALL_BLOCK_SYMBOLS (b, iter, sym)
4503 {
4504 struct symtab *real_symtab = symbol_symtab (sym);
4505
4506 QUIT;
4507
4508 /* Check first sole REAL_SYMTAB->FILENAME. It does
4509 not need to be a substring of symtab_to_fullname as
4510 it may contain "./" etc. */
4511 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4512 || ((basenames_may_differ
4513 || file_matches (lbasename (real_symtab->filename),
4514 files, nfiles, 1))
4515 && file_matches (symtab_to_fullname (real_symtab),
4516 files, nfiles, 0)))
4517 && ((!preg.has_value ()
4518 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4519 NULL, 0) == 0)
4520 && ((kind == VARIABLES_DOMAIN
4521 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4522 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4523 && SYMBOL_CLASS (sym) != LOC_BLOCK
4524 /* LOC_CONST can be used for more than
4525 just enums, e.g., c++ static const
4526 members. We only want to skip enums
4527 here. */
4528 && !(SYMBOL_CLASS (sym) == LOC_CONST
4529 && (TYPE_CODE (SYMBOL_TYPE (sym))
4530 == TYPE_CODE_ENUM))
4531 && (!treg.has_value ()
4532 || treg_matches_sym_type_name (*treg, sym)))
4533 || (kind == FUNCTIONS_DOMAIN
4534 && SYMBOL_CLASS (sym) == LOC_BLOCK
4535 && (!treg.has_value ()
4536 || treg_matches_sym_type_name (*treg,
4537 sym)))
4538 || (kind == TYPES_DOMAIN
4539 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4540 {
4541 /* match */
4542 result.emplace_back (i, sym);
4543 }
4544 }
4545 }
4546 }
4547 }
4548
4549 if (!result.empty ())
4550 sort_search_symbols_remove_dups (&result);
4551
4552 /* If there are no eyes, avoid all contact. I mean, if there are
4553 no debug symbols, then add matching minsyms. But if the user wants
4554 to see symbols matching a type regexp, then never give a minimal symbol,
4555 as we assume that a minimal symbol does not have a type. */
4556
4557 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4558 && !treg.has_value ())
4559 {
4560 for (objfile *objfile : all_objfiles (current_program_space))
4561 {
4562 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4563 {
4564 QUIT;
4565
4566 if (msymbol->created_by_gdb)
4567 continue;
4568
4569 if (MSYMBOL_TYPE (msymbol) == ourtype
4570 || MSYMBOL_TYPE (msymbol) == ourtype2
4571 || MSYMBOL_TYPE (msymbol) == ourtype3
4572 || MSYMBOL_TYPE (msymbol) == ourtype4)
4573 {
4574 if (!preg.has_value ()
4575 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4576 NULL, 0) == 0)
4577 {
4578 /* For functions we can do a quick check of whether the
4579 symbol might be found via find_pc_symtab. */
4580 if (kind != FUNCTIONS_DOMAIN
4581 || (find_pc_compunit_symtab
4582 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4583 == NULL))
4584 {
4585 if (lookup_symbol_in_objfile_from_linkage_name
4586 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4587 VAR_DOMAIN)
4588 .symbol == NULL)
4589 {
4590 /* match */
4591 result.emplace_back (i, msymbol, objfile);
4592 }
4593 }
4594 }
4595 }
4596 }
4597 }
4598 }
4599
4600 return result;
4601 }
4602
4603 /* Helper function for symtab_symbol_info, this function uses
4604 the data returned from search_symbols() to print information
4605 regarding the match to gdb_stdout. If LAST is not NULL,
4606 print file and line number information for the symbol as
4607 well. Skip printing the filename if it matches LAST. */
4608
4609 static void
4610 print_symbol_info (enum search_domain kind,
4611 struct symbol *sym,
4612 int block, const char *last)
4613 {
4614 scoped_switch_to_sym_language_if_auto l (sym);
4615 struct symtab *s = symbol_symtab (sym);
4616
4617 if (last != NULL)
4618 {
4619 const char *s_filename = symtab_to_filename_for_display (s);
4620
4621 if (filename_cmp (last, s_filename) != 0)
4622 {
4623 fputs_filtered ("\nFile ", gdb_stdout);
4624 fputs_filtered (s_filename, gdb_stdout);
4625 fputs_filtered (":\n", gdb_stdout);
4626 }
4627
4628 if (SYMBOL_LINE (sym) != 0)
4629 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4630 else
4631 puts_filtered ("\t");
4632 }
4633
4634 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4635 printf_filtered ("static ");
4636
4637 /* Typedef that is not a C++ class. */
4638 if (kind == TYPES_DOMAIN
4639 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4640 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4641 /* variable, func, or typedef-that-is-c++-class. */
4642 else if (kind < TYPES_DOMAIN
4643 || (kind == TYPES_DOMAIN
4644 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4645 {
4646 type_print (SYMBOL_TYPE (sym),
4647 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4648 ? "" : SYMBOL_PRINT_NAME (sym)),
4649 gdb_stdout, 0);
4650
4651 printf_filtered (";\n");
4652 }
4653 }
4654
4655 /* This help function for symtab_symbol_info() prints information
4656 for non-debugging symbols to gdb_stdout. */
4657
4658 static void
4659 print_msymbol_info (struct bound_minimal_symbol msymbol)
4660 {
4661 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4662 char *tmp;
4663
4664 if (gdbarch_addr_bit (gdbarch) <= 32)
4665 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4666 & (CORE_ADDR) 0xffffffff,
4667 8);
4668 else
4669 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4670 16);
4671 printf_filtered ("%s %s\n",
4672 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4673 }
4674
4675 /* This is the guts of the commands "info functions", "info types", and
4676 "info variables". It calls search_symbols to find all matches and then
4677 print_[m]symbol_info to print out some useful information about the
4678 matches. */
4679
4680 static void
4681 symtab_symbol_info (bool quiet,
4682 const char *regexp, enum search_domain kind,
4683 const char *t_regexp, int from_tty)
4684 {
4685 static const char * const classnames[] =
4686 {"variable", "function", "type"};
4687 const char *last_filename = "";
4688 int first = 1;
4689
4690 gdb_assert (kind <= TYPES_DOMAIN);
4691
4692 /* Must make sure that if we're interrupted, symbols gets freed. */
4693 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4694 t_regexp, 0, NULL);
4695
4696 if (!quiet)
4697 {
4698 if (regexp != NULL)
4699 {
4700 if (t_regexp != NULL)
4701 printf_filtered
4702 (_("All %ss matching regular expression \"%s\""
4703 " with type matching regulation expression \"%s\":\n"),
4704 classnames[kind], regexp, t_regexp);
4705 else
4706 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4707 classnames[kind], regexp);
4708 }
4709 else
4710 {
4711 if (t_regexp != NULL)
4712 printf_filtered
4713 (_("All defined %ss"
4714 " with type matching regulation expression \"%s\" :\n"),
4715 classnames[kind], t_regexp);
4716 else
4717 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4718 }
4719 }
4720
4721 for (const symbol_search &p : symbols)
4722 {
4723 QUIT;
4724
4725 if (p.msymbol.minsym != NULL)
4726 {
4727 if (first)
4728 {
4729 if (!quiet)
4730 printf_filtered (_("\nNon-debugging symbols:\n"));
4731 first = 0;
4732 }
4733 print_msymbol_info (p.msymbol);
4734 }
4735 else
4736 {
4737 print_symbol_info (kind,
4738 p.symbol,
4739 p.block,
4740 last_filename);
4741 last_filename
4742 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4743 }
4744 }
4745 }
4746
4747 static void
4748 info_variables_command (const char *args, int from_tty)
4749 {
4750 std::string regexp;
4751 std::string t_regexp;
4752 bool quiet = false;
4753
4754 while (args != NULL
4755 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4756 ;
4757
4758 if (args != NULL)
4759 report_unrecognized_option_error ("info variables", args);
4760
4761 symtab_symbol_info (quiet,
4762 regexp.empty () ? NULL : regexp.c_str (),
4763 VARIABLES_DOMAIN,
4764 t_regexp.empty () ? NULL : t_regexp.c_str (),
4765 from_tty);
4766 }
4767
4768
4769 static void
4770 info_functions_command (const char *args, int from_tty)
4771 {
4772 std::string regexp;
4773 std::string t_regexp;
4774 bool quiet = false;
4775
4776 while (args != NULL
4777 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4778 ;
4779
4780 if (args != NULL)
4781 report_unrecognized_option_error ("info functions", args);
4782
4783 symtab_symbol_info (quiet,
4784 regexp.empty () ? NULL : regexp.c_str (),
4785 FUNCTIONS_DOMAIN,
4786 t_regexp.empty () ? NULL : t_regexp.c_str (),
4787 from_tty);
4788 }
4789
4790
4791 static void
4792 info_types_command (const char *regexp, int from_tty)
4793 {
4794 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4795 }
4796
4797 /* Breakpoint all functions matching regular expression. */
4798
4799 void
4800 rbreak_command_wrapper (char *regexp, int from_tty)
4801 {
4802 rbreak_command (regexp, from_tty);
4803 }
4804
4805 static void
4806 rbreak_command (const char *regexp, int from_tty)
4807 {
4808 std::string string;
4809 const char **files = NULL;
4810 const char *file_name;
4811 int nfiles = 0;
4812
4813 if (regexp)
4814 {
4815 const char *colon = strchr (regexp, ':');
4816
4817 if (colon && *(colon + 1) != ':')
4818 {
4819 int colon_index;
4820 char *local_name;
4821
4822 colon_index = colon - regexp;
4823 local_name = (char *) alloca (colon_index + 1);
4824 memcpy (local_name, regexp, colon_index);
4825 local_name[colon_index--] = 0;
4826 while (isspace (local_name[colon_index]))
4827 local_name[colon_index--] = 0;
4828 file_name = local_name;
4829 files = &file_name;
4830 nfiles = 1;
4831 regexp = skip_spaces (colon + 1);
4832 }
4833 }
4834
4835 std::vector<symbol_search> symbols = search_symbols (regexp,
4836 FUNCTIONS_DOMAIN,
4837 NULL,
4838 nfiles, files);
4839
4840 scoped_rbreak_breakpoints finalize;
4841 for (const symbol_search &p : symbols)
4842 {
4843 if (p.msymbol.minsym == NULL)
4844 {
4845 struct symtab *symtab = symbol_symtab (p.symbol);
4846 const char *fullname = symtab_to_fullname (symtab);
4847
4848 string = string_printf ("%s:'%s'", fullname,
4849 SYMBOL_LINKAGE_NAME (p.symbol));
4850 break_command (&string[0], from_tty);
4851 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4852 }
4853 else
4854 {
4855 string = string_printf ("'%s'",
4856 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4857
4858 break_command (&string[0], from_tty);
4859 printf_filtered ("<function, no debug info> %s;\n",
4860 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4861 }
4862 }
4863 }
4864 \f
4865
4866 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4867
4868 static int
4869 compare_symbol_name (const char *symbol_name, language symbol_language,
4870 const lookup_name_info &lookup_name,
4871 completion_match_result &match_res)
4872 {
4873 const language_defn *lang = language_def (symbol_language);
4874
4875 symbol_name_matcher_ftype *name_match
4876 = get_symbol_name_matcher (lang, lookup_name);
4877
4878 return name_match (symbol_name, lookup_name, &match_res);
4879 }
4880
4881 /* See symtab.h. */
4882
4883 void
4884 completion_list_add_name (completion_tracker &tracker,
4885 language symbol_language,
4886 const char *symname,
4887 const lookup_name_info &lookup_name,
4888 const char *text, const char *word)
4889 {
4890 completion_match_result &match_res
4891 = tracker.reset_completion_match_result ();
4892
4893 /* Clip symbols that cannot match. */
4894 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4895 return;
4896
4897 /* Refresh SYMNAME from the match string. It's potentially
4898 different depending on language. (E.g., on Ada, the match may be
4899 the encoded symbol name wrapped in "<>"). */
4900 symname = match_res.match.match ();
4901 gdb_assert (symname != NULL);
4902
4903 /* We have a match for a completion, so add SYMNAME to the current list
4904 of matches. Note that the name is moved to freshly malloc'd space. */
4905
4906 {
4907 gdb::unique_xmalloc_ptr<char> completion
4908 = make_completion_match_str (symname, text, word);
4909
4910 /* Here we pass the match-for-lcd object to add_completion. Some
4911 languages match the user text against substrings of symbol
4912 names in some cases. E.g., in C++, "b push_ba" completes to
4913 "std::vector::push_back", "std::string::push_back", etc., and
4914 in this case we want the completion lowest common denominator
4915 to be "push_back" instead of "std::". */
4916 tracker.add_completion (std::move (completion),
4917 &match_res.match_for_lcd, text, word);
4918 }
4919 }
4920
4921 /* completion_list_add_name wrapper for struct symbol. */
4922
4923 static void
4924 completion_list_add_symbol (completion_tracker &tracker,
4925 symbol *sym,
4926 const lookup_name_info &lookup_name,
4927 const char *text, const char *word)
4928 {
4929 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4930 SYMBOL_NATURAL_NAME (sym),
4931 lookup_name, text, word);
4932 }
4933
4934 /* completion_list_add_name wrapper for struct minimal_symbol. */
4935
4936 static void
4937 completion_list_add_msymbol (completion_tracker &tracker,
4938 minimal_symbol *sym,
4939 const lookup_name_info &lookup_name,
4940 const char *text, const char *word)
4941 {
4942 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4943 MSYMBOL_NATURAL_NAME (sym),
4944 lookup_name, text, word);
4945 }
4946
4947
4948 /* ObjC: In case we are completing on a selector, look as the msymbol
4949 again and feed all the selectors into the mill. */
4950
4951 static void
4952 completion_list_objc_symbol (completion_tracker &tracker,
4953 struct minimal_symbol *msymbol,
4954 const lookup_name_info &lookup_name,
4955 const char *text, const char *word)
4956 {
4957 static char *tmp = NULL;
4958 static unsigned int tmplen = 0;
4959
4960 const char *method, *category, *selector;
4961 char *tmp2 = NULL;
4962
4963 method = MSYMBOL_NATURAL_NAME (msymbol);
4964
4965 /* Is it a method? */
4966 if ((method[0] != '-') && (method[0] != '+'))
4967 return;
4968
4969 if (text[0] == '[')
4970 /* Complete on shortened method method. */
4971 completion_list_add_name (tracker, language_objc,
4972 method + 1,
4973 lookup_name,
4974 text, word);
4975
4976 while ((strlen (method) + 1) >= tmplen)
4977 {
4978 if (tmplen == 0)
4979 tmplen = 1024;
4980 else
4981 tmplen *= 2;
4982 tmp = (char *) xrealloc (tmp, tmplen);
4983 }
4984 selector = strchr (method, ' ');
4985 if (selector != NULL)
4986 selector++;
4987
4988 category = strchr (method, '(');
4989
4990 if ((category != NULL) && (selector != NULL))
4991 {
4992 memcpy (tmp, method, (category - method));
4993 tmp[category - method] = ' ';
4994 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4995 completion_list_add_name (tracker, language_objc, tmp,
4996 lookup_name, text, word);
4997 if (text[0] == '[')
4998 completion_list_add_name (tracker, language_objc, tmp + 1,
4999 lookup_name, text, word);
5000 }
5001
5002 if (selector != NULL)
5003 {
5004 /* Complete on selector only. */
5005 strcpy (tmp, selector);
5006 tmp2 = strchr (tmp, ']');
5007 if (tmp2 != NULL)
5008 *tmp2 = '\0';
5009
5010 completion_list_add_name (tracker, language_objc, tmp,
5011 lookup_name, text, word);
5012 }
5013 }
5014
5015 /* Break the non-quoted text based on the characters which are in
5016 symbols. FIXME: This should probably be language-specific. */
5017
5018 static const char *
5019 language_search_unquoted_string (const char *text, const char *p)
5020 {
5021 for (; p > text; --p)
5022 {
5023 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5024 continue;
5025 else
5026 {
5027 if ((current_language->la_language == language_objc))
5028 {
5029 if (p[-1] == ':') /* Might be part of a method name. */
5030 continue;
5031 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5032 p -= 2; /* Beginning of a method name. */
5033 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5034 { /* Might be part of a method name. */
5035 const char *t = p;
5036
5037 /* Seeing a ' ' or a '(' is not conclusive evidence
5038 that we are in the middle of a method name. However,
5039 finding "-[" or "+[" should be pretty un-ambiguous.
5040 Unfortunately we have to find it now to decide. */
5041
5042 while (t > text)
5043 if (isalnum (t[-1]) || t[-1] == '_' ||
5044 t[-1] == ' ' || t[-1] == ':' ||
5045 t[-1] == '(' || t[-1] == ')')
5046 --t;
5047 else
5048 break;
5049
5050 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5051 p = t - 2; /* Method name detected. */
5052 /* Else we leave with p unchanged. */
5053 }
5054 }
5055 break;
5056 }
5057 }
5058 return p;
5059 }
5060
5061 static void
5062 completion_list_add_fields (completion_tracker &tracker,
5063 struct symbol *sym,
5064 const lookup_name_info &lookup_name,
5065 const char *text, const char *word)
5066 {
5067 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5068 {
5069 struct type *t = SYMBOL_TYPE (sym);
5070 enum type_code c = TYPE_CODE (t);
5071 int j;
5072
5073 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5074 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5075 if (TYPE_FIELD_NAME (t, j))
5076 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5077 TYPE_FIELD_NAME (t, j),
5078 lookup_name, text, word);
5079 }
5080 }
5081
5082 /* See symtab.h. */
5083
5084 bool
5085 symbol_is_function_or_method (symbol *sym)
5086 {
5087 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5088 {
5089 case TYPE_CODE_FUNC:
5090 case TYPE_CODE_METHOD:
5091 return true;
5092 default:
5093 return false;
5094 }
5095 }
5096
5097 /* See symtab.h. */
5098
5099 bool
5100 symbol_is_function_or_method (minimal_symbol *msymbol)
5101 {
5102 switch (MSYMBOL_TYPE (msymbol))
5103 {
5104 case mst_text:
5105 case mst_text_gnu_ifunc:
5106 case mst_solib_trampoline:
5107 case mst_file_text:
5108 return true;
5109 default:
5110 return false;
5111 }
5112 }
5113
5114 /* See symtab.h. */
5115
5116 bound_minimal_symbol
5117 find_gnu_ifunc (const symbol *sym)
5118 {
5119 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5120 return {};
5121
5122 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5123 symbol_name_match_type::SEARCH_NAME);
5124 struct objfile *objfile = symbol_objfile (sym);
5125
5126 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5127 minimal_symbol *ifunc = NULL;
5128
5129 iterate_over_minimal_symbols (objfile, lookup_name,
5130 [&] (minimal_symbol *minsym)
5131 {
5132 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5133 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5134 {
5135 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5136 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5137 {
5138 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5139 msym_addr
5140 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5141 msym_addr,
5142 current_top_target ());
5143 }
5144 if (msym_addr == address)
5145 {
5146 ifunc = minsym;
5147 return true;
5148 }
5149 }
5150 return false;
5151 });
5152
5153 if (ifunc != NULL)
5154 return {ifunc, objfile};
5155 return {};
5156 }
5157
5158 /* Add matching symbols from SYMTAB to the current completion list. */
5159
5160 static void
5161 add_symtab_completions (struct compunit_symtab *cust,
5162 completion_tracker &tracker,
5163 complete_symbol_mode mode,
5164 const lookup_name_info &lookup_name,
5165 const char *text, const char *word,
5166 enum type_code code)
5167 {
5168 struct symbol *sym;
5169 const struct block *b;
5170 struct block_iterator iter;
5171 int i;
5172
5173 if (cust == NULL)
5174 return;
5175
5176 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5177 {
5178 QUIT;
5179 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5180 ALL_BLOCK_SYMBOLS (b, iter, sym)
5181 {
5182 if (completion_skip_symbol (mode, sym))
5183 continue;
5184
5185 if (code == TYPE_CODE_UNDEF
5186 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5187 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5188 completion_list_add_symbol (tracker, sym,
5189 lookup_name,
5190 text, word);
5191 }
5192 }
5193 }
5194
5195 void
5196 default_collect_symbol_completion_matches_break_on
5197 (completion_tracker &tracker, complete_symbol_mode mode,
5198 symbol_name_match_type name_match_type,
5199 const char *text, const char *word,
5200 const char *break_on, enum type_code code)
5201 {
5202 /* Problem: All of the symbols have to be copied because readline
5203 frees them. I'm not going to worry about this; hopefully there
5204 won't be that many. */
5205
5206 struct symbol *sym;
5207 const struct block *b;
5208 const struct block *surrounding_static_block, *surrounding_global_block;
5209 struct block_iterator iter;
5210 /* The symbol we are completing on. Points in same buffer as text. */
5211 const char *sym_text;
5212
5213 /* Now look for the symbol we are supposed to complete on. */
5214 if (mode == complete_symbol_mode::LINESPEC)
5215 sym_text = text;
5216 else
5217 {
5218 const char *p;
5219 char quote_found;
5220 const char *quote_pos = NULL;
5221
5222 /* First see if this is a quoted string. */
5223 quote_found = '\0';
5224 for (p = text; *p != '\0'; ++p)
5225 {
5226 if (quote_found != '\0')
5227 {
5228 if (*p == quote_found)
5229 /* Found close quote. */
5230 quote_found = '\0';
5231 else if (*p == '\\' && p[1] == quote_found)
5232 /* A backslash followed by the quote character
5233 doesn't end the string. */
5234 ++p;
5235 }
5236 else if (*p == '\'' || *p == '"')
5237 {
5238 quote_found = *p;
5239 quote_pos = p;
5240 }
5241 }
5242 if (quote_found == '\'')
5243 /* A string within single quotes can be a symbol, so complete on it. */
5244 sym_text = quote_pos + 1;
5245 else if (quote_found == '"')
5246 /* A double-quoted string is never a symbol, nor does it make sense
5247 to complete it any other way. */
5248 {
5249 return;
5250 }
5251 else
5252 {
5253 /* It is not a quoted string. Break it based on the characters
5254 which are in symbols. */
5255 while (p > text)
5256 {
5257 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5258 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5259 --p;
5260 else
5261 break;
5262 }
5263 sym_text = p;
5264 }
5265 }
5266
5267 lookup_name_info lookup_name (sym_text, name_match_type, true);
5268
5269 /* At this point scan through the misc symbol vectors and add each
5270 symbol you find to the list. Eventually we want to ignore
5271 anything that isn't a text symbol (everything else will be
5272 handled by the psymtab code below). */
5273
5274 if (code == TYPE_CODE_UNDEF)
5275 {
5276 for (objfile *objfile : all_objfiles (current_program_space))
5277 {
5278 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
5279 {
5280 QUIT;
5281
5282 if (completion_skip_symbol (mode, msymbol))
5283 continue;
5284
5285 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5286 sym_text, word);
5287
5288 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5289 sym_text, word);
5290 }
5291 }
5292 }
5293
5294 /* Add completions for all currently loaded symbol tables. */
5295 for (objfile *objfile : all_objfiles (current_program_space))
5296 {
5297 for (compunit_symtab *cust : objfile_compunits (objfile))
5298 add_symtab_completions (cust, tracker, mode, lookup_name,
5299 sym_text, word, code);
5300 }
5301
5302 /* Look through the partial symtabs for all symbols which begin by
5303 matching SYM_TEXT. Expand all CUs that you find to the list. */
5304 expand_symtabs_matching (NULL,
5305 lookup_name,
5306 NULL,
5307 [&] (compunit_symtab *symtab) /* expansion notify */
5308 {
5309 add_symtab_completions (symtab,
5310 tracker, mode, lookup_name,
5311 sym_text, word, code);
5312 },
5313 ALL_DOMAIN);
5314
5315 /* Search upwards from currently selected frame (so that we can
5316 complete on local vars). Also catch fields of types defined in
5317 this places which match our text string. Only complete on types
5318 visible from current context. */
5319
5320 b = get_selected_block (0);
5321 surrounding_static_block = block_static_block (b);
5322 surrounding_global_block = block_global_block (b);
5323 if (surrounding_static_block != NULL)
5324 while (b != surrounding_static_block)
5325 {
5326 QUIT;
5327
5328 ALL_BLOCK_SYMBOLS (b, iter, sym)
5329 {
5330 if (code == TYPE_CODE_UNDEF)
5331 {
5332 completion_list_add_symbol (tracker, sym, lookup_name,
5333 sym_text, word);
5334 completion_list_add_fields (tracker, sym, lookup_name,
5335 sym_text, word);
5336 }
5337 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5338 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5339 completion_list_add_symbol (tracker, sym, lookup_name,
5340 sym_text, word);
5341 }
5342
5343 /* Stop when we encounter an enclosing function. Do not stop for
5344 non-inlined functions - the locals of the enclosing function
5345 are in scope for a nested function. */
5346 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5347 break;
5348 b = BLOCK_SUPERBLOCK (b);
5349 }
5350
5351 /* Add fields from the file's types; symbols will be added below. */
5352
5353 if (code == TYPE_CODE_UNDEF)
5354 {
5355 if (surrounding_static_block != NULL)
5356 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5357 completion_list_add_fields (tracker, sym, lookup_name,
5358 sym_text, word);
5359
5360 if (surrounding_global_block != NULL)
5361 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5362 completion_list_add_fields (tracker, sym, lookup_name,
5363 sym_text, word);
5364 }
5365
5366 /* Skip macros if we are completing a struct tag -- arguable but
5367 usually what is expected. */
5368 if (current_language->la_macro_expansion == macro_expansion_c
5369 && code == TYPE_CODE_UNDEF)
5370 {
5371 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5372
5373 /* This adds a macro's name to the current completion list. */
5374 auto add_macro_name = [&] (const char *macro_name,
5375 const macro_definition *,
5376 macro_source_file *,
5377 int)
5378 {
5379 completion_list_add_name (tracker, language_c, macro_name,
5380 lookup_name, sym_text, word);
5381 };
5382
5383 /* Add any macros visible in the default scope. Note that this
5384 may yield the occasional wrong result, because an expression
5385 might be evaluated in a scope other than the default. For
5386 example, if the user types "break file:line if <TAB>", the
5387 resulting expression will be evaluated at "file:line" -- but
5388 at there does not seem to be a way to detect this at
5389 completion time. */
5390 scope = default_macro_scope ();
5391 if (scope)
5392 macro_for_each_in_scope (scope->file, scope->line,
5393 add_macro_name);
5394
5395 /* User-defined macros are always visible. */
5396 macro_for_each (macro_user_macros, add_macro_name);
5397 }
5398 }
5399
5400 void
5401 default_collect_symbol_completion_matches (completion_tracker &tracker,
5402 complete_symbol_mode mode,
5403 symbol_name_match_type name_match_type,
5404 const char *text, const char *word,
5405 enum type_code code)
5406 {
5407 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5408 name_match_type,
5409 text, word, "",
5410 code);
5411 }
5412
5413 /* Collect all symbols (regardless of class) which begin by matching
5414 TEXT. */
5415
5416 void
5417 collect_symbol_completion_matches (completion_tracker &tracker,
5418 complete_symbol_mode mode,
5419 symbol_name_match_type name_match_type,
5420 const char *text, const char *word)
5421 {
5422 current_language->la_collect_symbol_completion_matches (tracker, mode,
5423 name_match_type,
5424 text, word,
5425 TYPE_CODE_UNDEF);
5426 }
5427
5428 /* Like collect_symbol_completion_matches, but only collect
5429 STRUCT_DOMAIN symbols whose type code is CODE. */
5430
5431 void
5432 collect_symbol_completion_matches_type (completion_tracker &tracker,
5433 const char *text, const char *word,
5434 enum type_code code)
5435 {
5436 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5437 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5438
5439 gdb_assert (code == TYPE_CODE_UNION
5440 || code == TYPE_CODE_STRUCT
5441 || code == TYPE_CODE_ENUM);
5442 current_language->la_collect_symbol_completion_matches (tracker, mode,
5443 name_match_type,
5444 text, word, code);
5445 }
5446
5447 /* Like collect_symbol_completion_matches, but collects a list of
5448 symbols defined in all source files named SRCFILE. */
5449
5450 void
5451 collect_file_symbol_completion_matches (completion_tracker &tracker,
5452 complete_symbol_mode mode,
5453 symbol_name_match_type name_match_type,
5454 const char *text, const char *word,
5455 const char *srcfile)
5456 {
5457 /* The symbol we are completing on. Points in same buffer as text. */
5458 const char *sym_text;
5459
5460 /* Now look for the symbol we are supposed to complete on.
5461 FIXME: This should be language-specific. */
5462 if (mode == complete_symbol_mode::LINESPEC)
5463 sym_text = text;
5464 else
5465 {
5466 const char *p;
5467 char quote_found;
5468 const char *quote_pos = NULL;
5469
5470 /* First see if this is a quoted string. */
5471 quote_found = '\0';
5472 for (p = text; *p != '\0'; ++p)
5473 {
5474 if (quote_found != '\0')
5475 {
5476 if (*p == quote_found)
5477 /* Found close quote. */
5478 quote_found = '\0';
5479 else if (*p == '\\' && p[1] == quote_found)
5480 /* A backslash followed by the quote character
5481 doesn't end the string. */
5482 ++p;
5483 }
5484 else if (*p == '\'' || *p == '"')
5485 {
5486 quote_found = *p;
5487 quote_pos = p;
5488 }
5489 }
5490 if (quote_found == '\'')
5491 /* A string within single quotes can be a symbol, so complete on it. */
5492 sym_text = quote_pos + 1;
5493 else if (quote_found == '"')
5494 /* A double-quoted string is never a symbol, nor does it make sense
5495 to complete it any other way. */
5496 {
5497 return;
5498 }
5499 else
5500 {
5501 /* Not a quoted string. */
5502 sym_text = language_search_unquoted_string (text, p);
5503 }
5504 }
5505
5506 lookup_name_info lookup_name (sym_text, name_match_type, true);
5507
5508 /* Go through symtabs for SRCFILE and check the externs and statics
5509 for symbols which match. */
5510 iterate_over_symtabs (srcfile, [&] (symtab *s)
5511 {
5512 add_symtab_completions (SYMTAB_COMPUNIT (s),
5513 tracker, mode, lookup_name,
5514 sym_text, word, TYPE_CODE_UNDEF);
5515 return false;
5516 });
5517 }
5518
5519 /* A helper function for make_source_files_completion_list. It adds
5520 another file name to a list of possible completions, growing the
5521 list as necessary. */
5522
5523 static void
5524 add_filename_to_list (const char *fname, const char *text, const char *word,
5525 completion_list *list)
5526 {
5527 list->emplace_back (make_completion_match_str (fname, text, word));
5528 }
5529
5530 static int
5531 not_interesting_fname (const char *fname)
5532 {
5533 static const char *illegal_aliens[] = {
5534 "_globals_", /* inserted by coff_symtab_read */
5535 NULL
5536 };
5537 int i;
5538
5539 for (i = 0; illegal_aliens[i]; i++)
5540 {
5541 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5542 return 1;
5543 }
5544 return 0;
5545 }
5546
5547 /* An object of this type is passed as the user_data argument to
5548 map_partial_symbol_filenames. */
5549 struct add_partial_filename_data
5550 {
5551 struct filename_seen_cache *filename_seen_cache;
5552 const char *text;
5553 const char *word;
5554 int text_len;
5555 completion_list *list;
5556 };
5557
5558 /* A callback for map_partial_symbol_filenames. */
5559
5560 static void
5561 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5562 void *user_data)
5563 {
5564 struct add_partial_filename_data *data
5565 = (struct add_partial_filename_data *) user_data;
5566
5567 if (not_interesting_fname (filename))
5568 return;
5569 if (!data->filename_seen_cache->seen (filename)
5570 && filename_ncmp (filename, data->text, data->text_len) == 0)
5571 {
5572 /* This file matches for a completion; add it to the
5573 current list of matches. */
5574 add_filename_to_list (filename, data->text, data->word, data->list);
5575 }
5576 else
5577 {
5578 const char *base_name = lbasename (filename);
5579
5580 if (base_name != filename
5581 && !data->filename_seen_cache->seen (base_name)
5582 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5583 add_filename_to_list (base_name, data->text, data->word, data->list);
5584 }
5585 }
5586
5587 /* Return a list of all source files whose names begin with matching
5588 TEXT. The file names are looked up in the symbol tables of this
5589 program. */
5590
5591 completion_list
5592 make_source_files_completion_list (const char *text, const char *word)
5593 {
5594 size_t text_len = strlen (text);
5595 completion_list list;
5596 const char *base_name;
5597 struct add_partial_filename_data datum;
5598
5599 if (!have_full_symbols () && !have_partial_symbols ())
5600 return list;
5601
5602 filename_seen_cache filenames_seen;
5603
5604 for (objfile *objfile : all_objfiles (current_program_space))
5605 {
5606 for (compunit_symtab *cu : objfile_compunits (objfile))
5607 {
5608 for (symtab *s : compunit_filetabs (cu))
5609 {
5610 if (not_interesting_fname (s->filename))
5611 continue;
5612 if (!filenames_seen.seen (s->filename)
5613 && filename_ncmp (s->filename, text, text_len) == 0)
5614 {
5615 /* This file matches for a completion; add it to the current
5616 list of matches. */
5617 add_filename_to_list (s->filename, text, word, &list);
5618 }
5619 else
5620 {
5621 /* NOTE: We allow the user to type a base name when the
5622 debug info records leading directories, but not the other
5623 way around. This is what subroutines of breakpoint
5624 command do when they parse file names. */
5625 base_name = lbasename (s->filename);
5626 if (base_name != s->filename
5627 && !filenames_seen.seen (base_name)
5628 && filename_ncmp (base_name, text, text_len) == 0)
5629 add_filename_to_list (base_name, text, word, &list);
5630 }
5631 }
5632 }
5633 }
5634
5635 datum.filename_seen_cache = &filenames_seen;
5636 datum.text = text;
5637 datum.word = word;
5638 datum.text_len = text_len;
5639 datum.list = &list;
5640 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5641 0 /*need_fullname*/);
5642
5643 return list;
5644 }
5645 \f
5646 /* Track MAIN */
5647
5648 /* Return the "main_info" object for the current program space. If
5649 the object has not yet been created, create it and fill in some
5650 default values. */
5651
5652 static struct main_info *
5653 get_main_info (void)
5654 {
5655 struct main_info *info
5656 = (struct main_info *) program_space_data (current_program_space,
5657 main_progspace_key);
5658
5659 if (info == NULL)
5660 {
5661 /* It may seem strange to store the main name in the progspace
5662 and also in whatever objfile happens to see a main name in
5663 its debug info. The reason for this is mainly historical:
5664 gdb returned "main" as the name even if no function named
5665 "main" was defined the program; and this approach lets us
5666 keep compatibility. */
5667 info = XCNEW (struct main_info);
5668 info->language_of_main = language_unknown;
5669 set_program_space_data (current_program_space, main_progspace_key,
5670 info);
5671 }
5672
5673 return info;
5674 }
5675
5676 /* A cleanup to destroy a struct main_info when a progspace is
5677 destroyed. */
5678
5679 static void
5680 main_info_cleanup (struct program_space *pspace, void *data)
5681 {
5682 struct main_info *info = (struct main_info *) data;
5683
5684 if (info != NULL)
5685 xfree (info->name_of_main);
5686 xfree (info);
5687 }
5688
5689 static void
5690 set_main_name (const char *name, enum language lang)
5691 {
5692 struct main_info *info = get_main_info ();
5693
5694 if (info->name_of_main != NULL)
5695 {
5696 xfree (info->name_of_main);
5697 info->name_of_main = NULL;
5698 info->language_of_main = language_unknown;
5699 }
5700 if (name != NULL)
5701 {
5702 info->name_of_main = xstrdup (name);
5703 info->language_of_main = lang;
5704 }
5705 }
5706
5707 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5708 accordingly. */
5709
5710 static void
5711 find_main_name (void)
5712 {
5713 const char *new_main_name;
5714
5715 /* First check the objfiles to see whether a debuginfo reader has
5716 picked up the appropriate main name. Historically the main name
5717 was found in a more or less random way; this approach instead
5718 relies on the order of objfile creation -- which still isn't
5719 guaranteed to get the correct answer, but is just probably more
5720 accurate. */
5721 for (objfile *objfile : all_objfiles (current_program_space))
5722 {
5723 if (objfile->per_bfd->name_of_main != NULL)
5724 {
5725 set_main_name (objfile->per_bfd->name_of_main,
5726 objfile->per_bfd->language_of_main);
5727 return;
5728 }
5729 }
5730
5731 /* Try to see if the main procedure is in Ada. */
5732 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5733 be to add a new method in the language vector, and call this
5734 method for each language until one of them returns a non-empty
5735 name. This would allow us to remove this hard-coded call to
5736 an Ada function. It is not clear that this is a better approach
5737 at this point, because all methods need to be written in a way
5738 such that false positives never be returned. For instance, it is
5739 important that a method does not return a wrong name for the main
5740 procedure if the main procedure is actually written in a different
5741 language. It is easy to guaranty this with Ada, since we use a
5742 special symbol generated only when the main in Ada to find the name
5743 of the main procedure. It is difficult however to see how this can
5744 be guarantied for languages such as C, for instance. This suggests
5745 that order of call for these methods becomes important, which means
5746 a more complicated approach. */
5747 new_main_name = ada_main_name ();
5748 if (new_main_name != NULL)
5749 {
5750 set_main_name (new_main_name, language_ada);
5751 return;
5752 }
5753
5754 new_main_name = d_main_name ();
5755 if (new_main_name != NULL)
5756 {
5757 set_main_name (new_main_name, language_d);
5758 return;
5759 }
5760
5761 new_main_name = go_main_name ();
5762 if (new_main_name != NULL)
5763 {
5764 set_main_name (new_main_name, language_go);
5765 return;
5766 }
5767
5768 new_main_name = pascal_main_name ();
5769 if (new_main_name != NULL)
5770 {
5771 set_main_name (new_main_name, language_pascal);
5772 return;
5773 }
5774
5775 /* The languages above didn't identify the name of the main procedure.
5776 Fallback to "main". */
5777 set_main_name ("main", language_unknown);
5778 }
5779
5780 char *
5781 main_name (void)
5782 {
5783 struct main_info *info = get_main_info ();
5784
5785 if (info->name_of_main == NULL)
5786 find_main_name ();
5787
5788 return info->name_of_main;
5789 }
5790
5791 /* Return the language of the main function. If it is not known,
5792 return language_unknown. */
5793
5794 enum language
5795 main_language (void)
5796 {
5797 struct main_info *info = get_main_info ();
5798
5799 if (info->name_of_main == NULL)
5800 find_main_name ();
5801
5802 return info->language_of_main;
5803 }
5804
5805 /* Handle ``executable_changed'' events for the symtab module. */
5806
5807 static void
5808 symtab_observer_executable_changed (void)
5809 {
5810 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5811 set_main_name (NULL, language_unknown);
5812 }
5813
5814 /* Return 1 if the supplied producer string matches the ARM RealView
5815 compiler (armcc). */
5816
5817 int
5818 producer_is_realview (const char *producer)
5819 {
5820 static const char *const arm_idents[] = {
5821 "ARM C Compiler, ADS",
5822 "Thumb C Compiler, ADS",
5823 "ARM C++ Compiler, ADS",
5824 "Thumb C++ Compiler, ADS",
5825 "ARM/Thumb C/C++ Compiler, RVCT",
5826 "ARM C/C++ Compiler, RVCT"
5827 };
5828 int i;
5829
5830 if (producer == NULL)
5831 return 0;
5832
5833 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5834 if (startswith (producer, arm_idents[i]))
5835 return 1;
5836
5837 return 0;
5838 }
5839
5840 \f
5841
5842 /* The next index to hand out in response to a registration request. */
5843
5844 static int next_aclass_value = LOC_FINAL_VALUE;
5845
5846 /* The maximum number of "aclass" registrations we support. This is
5847 constant for convenience. */
5848 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5849
5850 /* The objects representing the various "aclass" values. The elements
5851 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5852 elements are those registered at gdb initialization time. */
5853
5854 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5855
5856 /* The globally visible pointer. This is separate from 'symbol_impl'
5857 so that it can be const. */
5858
5859 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5860
5861 /* Make sure we saved enough room in struct symbol. */
5862
5863 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5864
5865 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5866 is the ops vector associated with this index. This returns the new
5867 index, which should be used as the aclass_index field for symbols
5868 of this type. */
5869
5870 int
5871 register_symbol_computed_impl (enum address_class aclass,
5872 const struct symbol_computed_ops *ops)
5873 {
5874 int result = next_aclass_value++;
5875
5876 gdb_assert (aclass == LOC_COMPUTED);
5877 gdb_assert (result < MAX_SYMBOL_IMPLS);
5878 symbol_impl[result].aclass = aclass;
5879 symbol_impl[result].ops_computed = ops;
5880
5881 /* Sanity check OPS. */
5882 gdb_assert (ops != NULL);
5883 gdb_assert (ops->tracepoint_var_ref != NULL);
5884 gdb_assert (ops->describe_location != NULL);
5885 gdb_assert (ops->get_symbol_read_needs != NULL);
5886 gdb_assert (ops->read_variable != NULL);
5887
5888 return result;
5889 }
5890
5891 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5892 OPS is the ops vector associated with this index. This returns the
5893 new index, which should be used as the aclass_index field for symbols
5894 of this type. */
5895
5896 int
5897 register_symbol_block_impl (enum address_class aclass,
5898 const struct symbol_block_ops *ops)
5899 {
5900 int result = next_aclass_value++;
5901
5902 gdb_assert (aclass == LOC_BLOCK);
5903 gdb_assert (result < MAX_SYMBOL_IMPLS);
5904 symbol_impl[result].aclass = aclass;
5905 symbol_impl[result].ops_block = ops;
5906
5907 /* Sanity check OPS. */
5908 gdb_assert (ops != NULL);
5909 gdb_assert (ops->find_frame_base_location != NULL);
5910
5911 return result;
5912 }
5913
5914 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5915 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5916 this index. This returns the new index, which should be used as
5917 the aclass_index field for symbols of this type. */
5918
5919 int
5920 register_symbol_register_impl (enum address_class aclass,
5921 const struct symbol_register_ops *ops)
5922 {
5923 int result = next_aclass_value++;
5924
5925 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5926 gdb_assert (result < MAX_SYMBOL_IMPLS);
5927 symbol_impl[result].aclass = aclass;
5928 symbol_impl[result].ops_register = ops;
5929
5930 return result;
5931 }
5932
5933 /* Initialize elements of 'symbol_impl' for the constants in enum
5934 address_class. */
5935
5936 static void
5937 initialize_ordinary_address_classes (void)
5938 {
5939 int i;
5940
5941 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5942 symbol_impl[i].aclass = (enum address_class) i;
5943 }
5944
5945 \f
5946
5947 /* Helper function to initialize the fields of an objfile-owned symbol.
5948 It assumed that *SYM is already all zeroes. */
5949
5950 static void
5951 initialize_objfile_symbol_1 (struct symbol *sym)
5952 {
5953 SYMBOL_OBJFILE_OWNED (sym) = 1;
5954 SYMBOL_SECTION (sym) = -1;
5955 }
5956
5957 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5958
5959 void
5960 initialize_objfile_symbol (struct symbol *sym)
5961 {
5962 memset (sym, 0, sizeof (*sym));
5963 initialize_objfile_symbol_1 (sym);
5964 }
5965
5966 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5967 obstack. */
5968
5969 struct symbol *
5970 allocate_symbol (struct objfile *objfile)
5971 {
5972 struct symbol *result;
5973
5974 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5975 initialize_objfile_symbol_1 (result);
5976
5977 return result;
5978 }
5979
5980 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5981 obstack. */
5982
5983 struct template_symbol *
5984 allocate_template_symbol (struct objfile *objfile)
5985 {
5986 struct template_symbol *result;
5987
5988 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5989 initialize_objfile_symbol_1 (result);
5990
5991 return result;
5992 }
5993
5994 /* See symtab.h. */
5995
5996 struct objfile *
5997 symbol_objfile (const struct symbol *symbol)
5998 {
5999 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6000 return SYMTAB_OBJFILE (symbol->owner.symtab);
6001 }
6002
6003 /* See symtab.h. */
6004
6005 struct gdbarch *
6006 symbol_arch (const struct symbol *symbol)
6007 {
6008 if (!SYMBOL_OBJFILE_OWNED (symbol))
6009 return symbol->owner.arch;
6010 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6011 }
6012
6013 /* See symtab.h. */
6014
6015 struct symtab *
6016 symbol_symtab (const struct symbol *symbol)
6017 {
6018 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6019 return symbol->owner.symtab;
6020 }
6021
6022 /* See symtab.h. */
6023
6024 void
6025 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6026 {
6027 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6028 symbol->owner.symtab = symtab;
6029 }
6030
6031 \f
6032
6033 void
6034 _initialize_symtab (void)
6035 {
6036 initialize_ordinary_address_classes ();
6037
6038 main_progspace_key
6039 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6040
6041 symbol_cache_key
6042 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6043
6044 add_info ("variables", info_variables_command,
6045 info_print_args_help (_("\
6046 All global and static variable names or those matching REGEXPs.\n\
6047 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6048 Prints the global and static variables.\n"),
6049 _("global and static variables")));
6050 if (dbx_commands)
6051 add_com ("whereis", class_info, info_variables_command,
6052 info_print_args_help (_("\
6053 All global and static variable names, or those matching REGEXPs.\n\
6054 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6055 Prints the global and static variables.\n"),
6056 _("global and static variables")));
6057
6058 add_info ("functions", info_functions_command,
6059 info_print_args_help (_("\
6060 All function names or those matching REGEXPs.\n\
6061 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6062 Prints the functions.\n"),
6063 _("functions")));
6064
6065 /* FIXME: This command has at least the following problems:
6066 1. It prints builtin types (in a very strange and confusing fashion).
6067 2. It doesn't print right, e.g. with
6068 typedef struct foo *FOO
6069 type_print prints "FOO" when we want to make it (in this situation)
6070 print "struct foo *".
6071 I also think "ptype" or "whatis" is more likely to be useful (but if
6072 there is much disagreement "info types" can be fixed). */
6073 add_info ("types", info_types_command,
6074 _("All type names, or those matching REGEXP."));
6075
6076 add_info ("sources", info_sources_command,
6077 _("Source files in the program."));
6078
6079 add_com ("rbreak", class_breakpoint, rbreak_command,
6080 _("Set a breakpoint for all functions matching REGEXP."));
6081
6082 add_setshow_enum_cmd ("multiple-symbols", no_class,
6083 multiple_symbols_modes, &multiple_symbols_mode,
6084 _("\
6085 Set the debugger behavior when more than one symbol are possible matches\n\
6086 in an expression."), _("\
6087 Show how the debugger handles ambiguities in expressions."), _("\
6088 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6089 NULL, NULL, &setlist, &showlist);
6090
6091 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6092 &basenames_may_differ, _("\
6093 Set whether a source file may have multiple base names."), _("\
6094 Show whether a source file may have multiple base names."), _("\
6095 (A \"base name\" is the name of a file with the directory part removed.\n\
6096 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6097 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6098 before comparing them. Canonicalization is an expensive operation,\n\
6099 but it allows the same file be known by more than one base name.\n\
6100 If not set (the default), all source files are assumed to have just\n\
6101 one base name, and gdb will do file name comparisons more efficiently."),
6102 NULL, NULL,
6103 &setlist, &showlist);
6104
6105 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6106 _("Set debugging of symbol table creation."),
6107 _("Show debugging of symbol table creation."), _("\
6108 When enabled (non-zero), debugging messages are printed when building\n\
6109 symbol tables. A value of 1 (one) normally provides enough information.\n\
6110 A value greater than 1 provides more verbose information."),
6111 NULL,
6112 NULL,
6113 &setdebuglist, &showdebuglist);
6114
6115 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6116 _("\
6117 Set debugging of symbol lookup."), _("\
6118 Show debugging of symbol lookup."), _("\
6119 When enabled (non-zero), symbol lookups are logged."),
6120 NULL, NULL,
6121 &setdebuglist, &showdebuglist);
6122
6123 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6124 &new_symbol_cache_size,
6125 _("Set the size of the symbol cache."),
6126 _("Show the size of the symbol cache."), _("\
6127 The size of the symbol cache.\n\
6128 If zero then the symbol cache is disabled."),
6129 set_symbol_cache_size_handler, NULL,
6130 &maintenance_set_cmdlist,
6131 &maintenance_show_cmdlist);
6132
6133 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6134 _("Dump the symbol cache for each program space."),
6135 &maintenanceprintlist);
6136
6137 add_cmd ("symbol-cache-statistics", class_maintenance,
6138 maintenance_print_symbol_cache_statistics,
6139 _("Print symbol cache statistics for each program space."),
6140 &maintenanceprintlist);
6141
6142 add_cmd ("flush-symbol-cache", class_maintenance,
6143 maintenance_flush_symbol_cache,
6144 _("Flush the symbol cache for each program space."),
6145 &maintenancelist);
6146
6147 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6148 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6149 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6150 }
This page took 0.260426 seconds and 5 git commands to generate.