Speed up psymbol reading by removing a copy
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 language_sniff_from_mangled_name (lang, mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 struct program_space *pspace;
1280
1281 ALL_PSPACES (pspace)
1282 {
1283 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1284
1285 /* The pspace could have been created but not have a cache yet. */
1286 if (cache != NULL)
1287 resize_symbol_cache (cache, new_size);
1288 }
1289 }
1290
1291 /* Called when symbol-cache-size is set. */
1292
1293 static void
1294 set_symbol_cache_size_handler (const char *args, int from_tty,
1295 struct cmd_list_element *c)
1296 {
1297 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1298 {
1299 /* Restore the previous value.
1300 This is the value the "show" command prints. */
1301 new_symbol_cache_size = symbol_cache_size;
1302
1303 error (_("Symbol cache size is too large, max is %u."),
1304 MAX_SYMBOL_CACHE_SIZE);
1305 }
1306 symbol_cache_size = new_symbol_cache_size;
1307
1308 set_symbol_cache_size (symbol_cache_size);
1309 }
1310
1311 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1312 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1313 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1314 failed (and thus this one will too), or NULL if the symbol is not present
1315 in the cache.
1316 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1317 can be used to save the result of a full lookup attempt. */
1318
1319 static struct block_symbol
1320 symbol_cache_lookup (struct symbol_cache *cache,
1321 struct objfile *objfile_context, enum block_enum block,
1322 const char *name, domain_enum domain,
1323 struct block_symbol_cache **bsc_ptr,
1324 struct symbol_cache_slot **slot_ptr)
1325 {
1326 struct block_symbol_cache *bsc;
1327 unsigned int hash;
1328 struct symbol_cache_slot *slot;
1329
1330 if (block == GLOBAL_BLOCK)
1331 bsc = cache->global_symbols;
1332 else
1333 bsc = cache->static_symbols;
1334 if (bsc == NULL)
1335 {
1336 *bsc_ptr = NULL;
1337 *slot_ptr = NULL;
1338 return {};
1339 }
1340
1341 hash = hash_symbol_entry (objfile_context, name, domain);
1342 slot = bsc->symbols + hash % bsc->size;
1343
1344 *bsc_ptr = bsc;
1345 *slot_ptr = slot;
1346
1347 if (eq_symbol_entry (slot, objfile_context, name, domain))
1348 {
1349 if (symbol_lookup_debug)
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache hit%s for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 slot->state == SYMBOL_SLOT_NOT_FOUND
1354 ? " (not found)" : "",
1355 name, domain_name (domain));
1356 ++bsc->hits;
1357 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1358 return SYMBOL_LOOKUP_FAILED;
1359 return slot->value.found;
1360 }
1361
1362 /* Symbol is not present in the cache. */
1363
1364 if (symbol_lookup_debug)
1365 {
1366 fprintf_unfiltered (gdb_stdlog,
1367 "%s block symbol cache miss for %s, %s\n",
1368 block == GLOBAL_BLOCK ? "Global" : "Static",
1369 name, domain_name (domain));
1370 }
1371 ++bsc->misses;
1372 return {};
1373 }
1374
1375 /* Mark SYMBOL as found in SLOT.
1376 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1377 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1378 necessarily the objfile the symbol was found in. */
1379
1380 static void
1381 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1382 struct symbol_cache_slot *slot,
1383 struct objfile *objfile_context,
1384 struct symbol *symbol,
1385 const struct block *block)
1386 {
1387 if (bsc == NULL)
1388 return;
1389 if (slot->state != SYMBOL_SLOT_UNUSED)
1390 {
1391 ++bsc->collisions;
1392 symbol_cache_clear_slot (slot);
1393 }
1394 slot->state = SYMBOL_SLOT_FOUND;
1395 slot->objfile_context = objfile_context;
1396 slot->value.found.symbol = symbol;
1397 slot->value.found.block = block;
1398 }
1399
1400 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1401 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1402 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1403
1404 static void
1405 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1406 struct symbol_cache_slot *slot,
1407 struct objfile *objfile_context,
1408 const char *name, domain_enum domain)
1409 {
1410 if (bsc == NULL)
1411 return;
1412 if (slot->state != SYMBOL_SLOT_UNUSED)
1413 {
1414 ++bsc->collisions;
1415 symbol_cache_clear_slot (slot);
1416 }
1417 slot->state = SYMBOL_SLOT_NOT_FOUND;
1418 slot->objfile_context = objfile_context;
1419 slot->value.not_found.name = xstrdup (name);
1420 slot->value.not_found.domain = domain;
1421 }
1422
1423 /* Flush the symbol cache of PSPACE. */
1424
1425 static void
1426 symbol_cache_flush (struct program_space *pspace)
1427 {
1428 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1429 int pass;
1430
1431 if (cache == NULL)
1432 return;
1433 if (cache->global_symbols == NULL)
1434 {
1435 gdb_assert (symbol_cache_size == 0);
1436 gdb_assert (cache->static_symbols == NULL);
1437 return;
1438 }
1439
1440 /* If the cache is untouched since the last flush, early exit.
1441 This is important for performance during the startup of a program linked
1442 with 100s (or 1000s) of shared libraries. */
1443 if (cache->global_symbols->misses == 0
1444 && cache->static_symbols->misses == 0)
1445 return;
1446
1447 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1448 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1449
1450 for (pass = 0; pass < 2; ++pass)
1451 {
1452 struct block_symbol_cache *bsc
1453 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1454 unsigned int i;
1455
1456 for (i = 0; i < bsc->size; ++i)
1457 symbol_cache_clear_slot (&bsc->symbols[i]);
1458 }
1459
1460 cache->global_symbols->hits = 0;
1461 cache->global_symbols->misses = 0;
1462 cache->global_symbols->collisions = 0;
1463 cache->static_symbols->hits = 0;
1464 cache->static_symbols->misses = 0;
1465 cache->static_symbols->collisions = 0;
1466 }
1467
1468 /* Dump CACHE. */
1469
1470 static void
1471 symbol_cache_dump (const struct symbol_cache *cache)
1472 {
1473 int pass;
1474
1475 if (cache->global_symbols == NULL)
1476 {
1477 printf_filtered (" <disabled>\n");
1478 return;
1479 }
1480
1481 for (pass = 0; pass < 2; ++pass)
1482 {
1483 const struct block_symbol_cache *bsc
1484 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1485 unsigned int i;
1486
1487 if (pass == 0)
1488 printf_filtered ("Global symbols:\n");
1489 else
1490 printf_filtered ("Static symbols:\n");
1491
1492 for (i = 0; i < bsc->size; ++i)
1493 {
1494 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1495
1496 QUIT;
1497
1498 switch (slot->state)
1499 {
1500 case SYMBOL_SLOT_UNUSED:
1501 break;
1502 case SYMBOL_SLOT_NOT_FOUND:
1503 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1504 host_address_to_string (slot->objfile_context),
1505 slot->value.not_found.name,
1506 domain_name (slot->value.not_found.domain));
1507 break;
1508 case SYMBOL_SLOT_FOUND:
1509 {
1510 struct symbol *found = slot->value.found.symbol;
1511 const struct objfile *context = slot->objfile_context;
1512
1513 printf_filtered (" [%4u] = %s, %s %s\n", i,
1514 host_address_to_string (context),
1515 found->print_name (),
1516 domain_name (SYMBOL_DOMAIN (found)));
1517 break;
1518 }
1519 }
1520 }
1521 }
1522 }
1523
1524 /* The "mt print symbol-cache" command. */
1525
1526 static void
1527 maintenance_print_symbol_cache (const char *args, int from_tty)
1528 {
1529 struct program_space *pspace;
1530
1531 ALL_PSPACES (pspace)
1532 {
1533 struct symbol_cache *cache;
1534
1535 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1536 pspace->num,
1537 pspace->symfile_object_file != NULL
1538 ? objfile_name (pspace->symfile_object_file)
1539 : "(no object file)");
1540
1541 /* If the cache hasn't been created yet, avoid creating one. */
1542 cache = symbol_cache_key.get (pspace);
1543 if (cache == NULL)
1544 printf_filtered (" <empty>\n");
1545 else
1546 symbol_cache_dump (cache);
1547 }
1548 }
1549
1550 /* The "mt flush-symbol-cache" command. */
1551
1552 static void
1553 maintenance_flush_symbol_cache (const char *args, int from_tty)
1554 {
1555 struct program_space *pspace;
1556
1557 ALL_PSPACES (pspace)
1558 {
1559 symbol_cache_flush (pspace);
1560 }
1561 }
1562
1563 /* Print usage statistics of CACHE. */
1564
1565 static void
1566 symbol_cache_stats (struct symbol_cache *cache)
1567 {
1568 int pass;
1569
1570 if (cache->global_symbols == NULL)
1571 {
1572 printf_filtered (" <disabled>\n");
1573 return;
1574 }
1575
1576 for (pass = 0; pass < 2; ++pass)
1577 {
1578 const struct block_symbol_cache *bsc
1579 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1580
1581 QUIT;
1582
1583 if (pass == 0)
1584 printf_filtered ("Global block cache stats:\n");
1585 else
1586 printf_filtered ("Static block cache stats:\n");
1587
1588 printf_filtered (" size: %u\n", bsc->size);
1589 printf_filtered (" hits: %u\n", bsc->hits);
1590 printf_filtered (" misses: %u\n", bsc->misses);
1591 printf_filtered (" collisions: %u\n", bsc->collisions);
1592 }
1593 }
1594
1595 /* The "mt print symbol-cache-statistics" command. */
1596
1597 static void
1598 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1599 {
1600 struct program_space *pspace;
1601
1602 ALL_PSPACES (pspace)
1603 {
1604 struct symbol_cache *cache;
1605
1606 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1607 pspace->num,
1608 pspace->symfile_object_file != NULL
1609 ? objfile_name (pspace->symfile_object_file)
1610 : "(no object file)");
1611
1612 /* If the cache hasn't been created yet, avoid creating one. */
1613 cache = symbol_cache_key.get (pspace);
1614 if (cache == NULL)
1615 printf_filtered (" empty, no stats available\n");
1616 else
1617 symbol_cache_stats (cache);
1618 }
1619 }
1620
1621 /* This module's 'new_objfile' observer. */
1622
1623 static void
1624 symtab_new_objfile_observer (struct objfile *objfile)
1625 {
1626 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1627 symbol_cache_flush (current_program_space);
1628 }
1629
1630 /* This module's 'free_objfile' observer. */
1631
1632 static void
1633 symtab_free_objfile_observer (struct objfile *objfile)
1634 {
1635 symbol_cache_flush (objfile->pspace);
1636 }
1637 \f
1638 /* Debug symbols usually don't have section information. We need to dig that
1639 out of the minimal symbols and stash that in the debug symbol. */
1640
1641 void
1642 fixup_section (struct general_symbol_info *ginfo,
1643 CORE_ADDR addr, struct objfile *objfile)
1644 {
1645 struct minimal_symbol *msym;
1646
1647 /* First, check whether a minimal symbol with the same name exists
1648 and points to the same address. The address check is required
1649 e.g. on PowerPC64, where the minimal symbol for a function will
1650 point to the function descriptor, while the debug symbol will
1651 point to the actual function code. */
1652 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1653 objfile);
1654 if (msym)
1655 ginfo->section = MSYMBOL_SECTION (msym);
1656 else
1657 {
1658 /* Static, function-local variables do appear in the linker
1659 (minimal) symbols, but are frequently given names that won't
1660 be found via lookup_minimal_symbol(). E.g., it has been
1661 observed in frv-uclinux (ELF) executables that a static,
1662 function-local variable named "foo" might appear in the
1663 linker symbols as "foo.6" or "foo.3". Thus, there is no
1664 point in attempting to extend the lookup-by-name mechanism to
1665 handle this case due to the fact that there can be multiple
1666 names.
1667
1668 So, instead, search the section table when lookup by name has
1669 failed. The ``addr'' and ``endaddr'' fields may have already
1670 been relocated. If so, the relocation offset needs to be
1671 subtracted from these values when performing the comparison.
1672 We unconditionally subtract it, because, when no relocation
1673 has been performed, the value will simply be zero.
1674
1675 The address of the symbol whose section we're fixing up HAS
1676 NOT BEEN adjusted (relocated) yet. It can't have been since
1677 the section isn't yet known and knowing the section is
1678 necessary in order to add the correct relocation value. In
1679 other words, we wouldn't even be in this function (attempting
1680 to compute the section) if it were already known.
1681
1682 Note that it is possible to search the minimal symbols
1683 (subtracting the relocation value if necessary) to find the
1684 matching minimal symbol, but this is overkill and much less
1685 efficient. It is not necessary to find the matching minimal
1686 symbol, only its section.
1687
1688 Note that this technique (of doing a section table search)
1689 can fail when unrelocated section addresses overlap. For
1690 this reason, we still attempt a lookup by name prior to doing
1691 a search of the section table. */
1692
1693 struct obj_section *s;
1694 int fallback = -1;
1695
1696 ALL_OBJFILE_OSECTIONS (objfile, s)
1697 {
1698 int idx = s - objfile->sections;
1699 CORE_ADDR offset = objfile->section_offsets[idx];
1700
1701 if (fallback == -1)
1702 fallback = idx;
1703
1704 if (obj_section_addr (s) - offset <= addr
1705 && addr < obj_section_endaddr (s) - offset)
1706 {
1707 ginfo->section = idx;
1708 return;
1709 }
1710 }
1711
1712 /* If we didn't find the section, assume it is in the first
1713 section. If there is no allocated section, then it hardly
1714 matters what we pick, so just pick zero. */
1715 if (fallback == -1)
1716 ginfo->section = 0;
1717 else
1718 ginfo->section = fallback;
1719 }
1720 }
1721
1722 struct symbol *
1723 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1724 {
1725 CORE_ADDR addr;
1726
1727 if (!sym)
1728 return NULL;
1729
1730 if (!SYMBOL_OBJFILE_OWNED (sym))
1731 return sym;
1732
1733 /* We either have an OBJFILE, or we can get at it from the sym's
1734 symtab. Anything else is a bug. */
1735 gdb_assert (objfile || symbol_symtab (sym));
1736
1737 if (objfile == NULL)
1738 objfile = symbol_objfile (sym);
1739
1740 if (SYMBOL_OBJ_SECTION (objfile, sym))
1741 return sym;
1742
1743 /* We should have an objfile by now. */
1744 gdb_assert (objfile);
1745
1746 switch (SYMBOL_CLASS (sym))
1747 {
1748 case LOC_STATIC:
1749 case LOC_LABEL:
1750 addr = SYMBOL_VALUE_ADDRESS (sym);
1751 break;
1752 case LOC_BLOCK:
1753 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1754 break;
1755
1756 default:
1757 /* Nothing else will be listed in the minsyms -- no use looking
1758 it up. */
1759 return sym;
1760 }
1761
1762 fixup_section (sym, addr, objfile);
1763
1764 return sym;
1765 }
1766
1767 /* See symtab.h. */
1768
1769 demangle_for_lookup_info::demangle_for_lookup_info
1770 (const lookup_name_info &lookup_name, language lang)
1771 {
1772 demangle_result_storage storage;
1773
1774 if (lookup_name.ignore_parameters () && lang == language_cplus)
1775 {
1776 gdb::unique_xmalloc_ptr<char> without_params
1777 = cp_remove_params_if_any (lookup_name.c_str (),
1778 lookup_name.completion_mode ());
1779
1780 if (without_params != NULL)
1781 {
1782 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1783 m_demangled_name = demangle_for_lookup (without_params.get (),
1784 lang, storage);
1785 return;
1786 }
1787 }
1788
1789 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1790 m_demangled_name = lookup_name.c_str ();
1791 else
1792 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1793 lang, storage);
1794 }
1795
1796 /* See symtab.h. */
1797
1798 const lookup_name_info &
1799 lookup_name_info::match_any ()
1800 {
1801 /* Lookup any symbol that "" would complete. I.e., this matches all
1802 symbol names. */
1803 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1804 true);
1805
1806 return lookup_name;
1807 }
1808
1809 /* Compute the demangled form of NAME as used by the various symbol
1810 lookup functions. The result can either be the input NAME
1811 directly, or a pointer to a buffer owned by the STORAGE object.
1812
1813 For Ada, this function just returns NAME, unmodified.
1814 Normally, Ada symbol lookups are performed using the encoded name
1815 rather than the demangled name, and so it might seem to make sense
1816 for this function to return an encoded version of NAME.
1817 Unfortunately, we cannot do this, because this function is used in
1818 circumstances where it is not appropriate to try to encode NAME.
1819 For instance, when displaying the frame info, we demangle the name
1820 of each parameter, and then perform a symbol lookup inside our
1821 function using that demangled name. In Ada, certain functions
1822 have internally-generated parameters whose name contain uppercase
1823 characters. Encoding those name would result in those uppercase
1824 characters to become lowercase, and thus cause the symbol lookup
1825 to fail. */
1826
1827 const char *
1828 demangle_for_lookup (const char *name, enum language lang,
1829 demangle_result_storage &storage)
1830 {
1831 /* If we are using C++, D, or Go, demangle the name before doing a
1832 lookup, so we can always binary search. */
1833 if (lang == language_cplus)
1834 {
1835 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1836 if (demangled_name != NULL)
1837 return storage.set_malloc_ptr (demangled_name);
1838
1839 /* If we were given a non-mangled name, canonicalize it
1840 according to the language (so far only for C++). */
1841 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1842 if (canon != nullptr)
1843 return storage.set_malloc_ptr (std::move (canon));
1844 }
1845 else if (lang == language_d)
1846 {
1847 char *demangled_name = d_demangle (name, 0);
1848 if (demangled_name != NULL)
1849 return storage.set_malloc_ptr (demangled_name);
1850 }
1851 else if (lang == language_go)
1852 {
1853 char *demangled_name = go_demangle (name, 0);
1854 if (demangled_name != NULL)
1855 return storage.set_malloc_ptr (demangled_name);
1856 }
1857
1858 return name;
1859 }
1860
1861 /* See symtab.h. */
1862
1863 unsigned int
1864 search_name_hash (enum language language, const char *search_name)
1865 {
1866 return language_def (language)->la_search_name_hash (search_name);
1867 }
1868
1869 /* See symtab.h.
1870
1871 This function (or rather its subordinates) have a bunch of loops and
1872 it would seem to be attractive to put in some QUIT's (though I'm not really
1873 sure whether it can run long enough to be really important). But there
1874 are a few calls for which it would appear to be bad news to quit
1875 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1876 that there is C++ code below which can error(), but that probably
1877 doesn't affect these calls since they are looking for a known
1878 variable and thus can probably assume it will never hit the C++
1879 code). */
1880
1881 struct block_symbol
1882 lookup_symbol_in_language (const char *name, const struct block *block,
1883 const domain_enum domain, enum language lang,
1884 struct field_of_this_result *is_a_field_of_this)
1885 {
1886 demangle_result_storage storage;
1887 const char *modified_name = demangle_for_lookup (name, lang, storage);
1888
1889 return lookup_symbol_aux (modified_name,
1890 symbol_name_match_type::FULL,
1891 block, domain, lang,
1892 is_a_field_of_this);
1893 }
1894
1895 /* See symtab.h. */
1896
1897 struct block_symbol
1898 lookup_symbol (const char *name, const struct block *block,
1899 domain_enum domain,
1900 struct field_of_this_result *is_a_field_of_this)
1901 {
1902 return lookup_symbol_in_language (name, block, domain,
1903 current_language->la_language,
1904 is_a_field_of_this);
1905 }
1906
1907 /* See symtab.h. */
1908
1909 struct block_symbol
1910 lookup_symbol_search_name (const char *search_name, const struct block *block,
1911 domain_enum domain)
1912 {
1913 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1914 block, domain, language_asm, NULL);
1915 }
1916
1917 /* See symtab.h. */
1918
1919 struct block_symbol
1920 lookup_language_this (const struct language_defn *lang,
1921 const struct block *block)
1922 {
1923 if (lang->la_name_of_this == NULL || block == NULL)
1924 return {};
1925
1926 if (symbol_lookup_debug > 1)
1927 {
1928 struct objfile *objfile = lookup_objfile_from_block (block);
1929
1930 fprintf_unfiltered (gdb_stdlog,
1931 "lookup_language_this (%s, %s (objfile %s))",
1932 lang->la_name, host_address_to_string (block),
1933 objfile_debug_name (objfile));
1934 }
1935
1936 while (block)
1937 {
1938 struct symbol *sym;
1939
1940 sym = block_lookup_symbol (block, lang->la_name_of_this,
1941 symbol_name_match_type::SEARCH_NAME,
1942 VAR_DOMAIN);
1943 if (sym != NULL)
1944 {
1945 if (symbol_lookup_debug > 1)
1946 {
1947 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1948 sym->print_name (),
1949 host_address_to_string (sym),
1950 host_address_to_string (block));
1951 }
1952 return (struct block_symbol) {sym, block};
1953 }
1954 if (BLOCK_FUNCTION (block))
1955 break;
1956 block = BLOCK_SUPERBLOCK (block);
1957 }
1958
1959 if (symbol_lookup_debug > 1)
1960 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1961 return {};
1962 }
1963
1964 /* Given TYPE, a structure/union,
1965 return 1 if the component named NAME from the ultimate target
1966 structure/union is defined, otherwise, return 0. */
1967
1968 static int
1969 check_field (struct type *type, const char *name,
1970 struct field_of_this_result *is_a_field_of_this)
1971 {
1972 int i;
1973
1974 /* The type may be a stub. */
1975 type = check_typedef (type);
1976
1977 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1978 {
1979 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1980
1981 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1982 {
1983 is_a_field_of_this->type = type;
1984 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1985 return 1;
1986 }
1987 }
1988
1989 /* C++: If it was not found as a data field, then try to return it
1990 as a pointer to a method. */
1991
1992 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1993 {
1994 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1995 {
1996 is_a_field_of_this->type = type;
1997 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1998 return 1;
1999 }
2000 }
2001
2002 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2003 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2004 return 1;
2005
2006 return 0;
2007 }
2008
2009 /* Behave like lookup_symbol except that NAME is the natural name
2010 (e.g., demangled name) of the symbol that we're looking for. */
2011
2012 static struct block_symbol
2013 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2014 const struct block *block,
2015 const domain_enum domain, enum language language,
2016 struct field_of_this_result *is_a_field_of_this)
2017 {
2018 struct block_symbol result;
2019 const struct language_defn *langdef;
2020
2021 if (symbol_lookup_debug)
2022 {
2023 struct objfile *objfile = lookup_objfile_from_block (block);
2024
2025 fprintf_unfiltered (gdb_stdlog,
2026 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2027 name, host_address_to_string (block),
2028 objfile != NULL
2029 ? objfile_debug_name (objfile) : "NULL",
2030 domain_name (domain), language_str (language));
2031 }
2032
2033 /* Make sure we do something sensible with is_a_field_of_this, since
2034 the callers that set this parameter to some non-null value will
2035 certainly use it later. If we don't set it, the contents of
2036 is_a_field_of_this are undefined. */
2037 if (is_a_field_of_this != NULL)
2038 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2039
2040 /* Search specified block and its superiors. Don't search
2041 STATIC_BLOCK or GLOBAL_BLOCK. */
2042
2043 result = lookup_local_symbol (name, match_type, block, domain, language);
2044 if (result.symbol != NULL)
2045 {
2046 if (symbol_lookup_debug)
2047 {
2048 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2049 host_address_to_string (result.symbol));
2050 }
2051 return result;
2052 }
2053
2054 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2055 check to see if NAME is a field of `this'. */
2056
2057 langdef = language_def (language);
2058
2059 /* Don't do this check if we are searching for a struct. It will
2060 not be found by check_field, but will be found by other
2061 means. */
2062 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2063 {
2064 result = lookup_language_this (langdef, block);
2065
2066 if (result.symbol)
2067 {
2068 struct type *t = result.symbol->type;
2069
2070 /* I'm not really sure that type of this can ever
2071 be typedefed; just be safe. */
2072 t = check_typedef (t);
2073 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2074 t = TYPE_TARGET_TYPE (t);
2075
2076 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2077 && TYPE_CODE (t) != TYPE_CODE_UNION)
2078 error (_("Internal error: `%s' is not an aggregate"),
2079 langdef->la_name_of_this);
2080
2081 if (check_field (t, name, is_a_field_of_this))
2082 {
2083 if (symbol_lookup_debug)
2084 {
2085 fprintf_unfiltered (gdb_stdlog,
2086 "lookup_symbol_aux (...) = NULL\n");
2087 }
2088 return {};
2089 }
2090 }
2091 }
2092
2093 /* Now do whatever is appropriate for LANGUAGE to look
2094 up static and global variables. */
2095
2096 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2097 if (result.symbol != NULL)
2098 {
2099 if (symbol_lookup_debug)
2100 {
2101 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2102 host_address_to_string (result.symbol));
2103 }
2104 return result;
2105 }
2106
2107 /* Now search all static file-level symbols. Not strictly correct,
2108 but more useful than an error. */
2109
2110 result = lookup_static_symbol (name, domain);
2111 if (symbol_lookup_debug)
2112 {
2113 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2114 result.symbol != NULL
2115 ? host_address_to_string (result.symbol)
2116 : "NULL");
2117 }
2118 return result;
2119 }
2120
2121 /* Check to see if the symbol is defined in BLOCK or its superiors.
2122 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2123
2124 static struct block_symbol
2125 lookup_local_symbol (const char *name,
2126 symbol_name_match_type match_type,
2127 const struct block *block,
2128 const domain_enum domain,
2129 enum language language)
2130 {
2131 struct symbol *sym;
2132 const struct block *static_block = block_static_block (block);
2133 const char *scope = block_scope (block);
2134
2135 /* Check if either no block is specified or it's a global block. */
2136
2137 if (static_block == NULL)
2138 return {};
2139
2140 while (block != static_block)
2141 {
2142 sym = lookup_symbol_in_block (name, match_type, block, domain);
2143 if (sym != NULL)
2144 return (struct block_symbol) {sym, block};
2145
2146 if (language == language_cplus || language == language_fortran)
2147 {
2148 struct block_symbol blocksym
2149 = cp_lookup_symbol_imports_or_template (scope, name, block,
2150 domain);
2151
2152 if (blocksym.symbol != NULL)
2153 return blocksym;
2154 }
2155
2156 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2157 break;
2158 block = BLOCK_SUPERBLOCK (block);
2159 }
2160
2161 /* We've reached the end of the function without finding a result. */
2162
2163 return {};
2164 }
2165
2166 /* See symtab.h. */
2167
2168 struct objfile *
2169 lookup_objfile_from_block (const struct block *block)
2170 {
2171 if (block == NULL)
2172 return NULL;
2173
2174 block = block_global_block (block);
2175 /* Look through all blockvectors. */
2176 for (objfile *obj : current_program_space->objfiles ())
2177 {
2178 for (compunit_symtab *cust : obj->compunits ())
2179 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2180 GLOBAL_BLOCK))
2181 {
2182 if (obj->separate_debug_objfile_backlink)
2183 obj = obj->separate_debug_objfile_backlink;
2184
2185 return obj;
2186 }
2187 }
2188
2189 return NULL;
2190 }
2191
2192 /* See symtab.h. */
2193
2194 struct symbol *
2195 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2196 const struct block *block,
2197 const domain_enum domain)
2198 {
2199 struct symbol *sym;
2200
2201 if (symbol_lookup_debug > 1)
2202 {
2203 struct objfile *objfile = lookup_objfile_from_block (block);
2204
2205 fprintf_unfiltered (gdb_stdlog,
2206 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2207 name, host_address_to_string (block),
2208 objfile_debug_name (objfile),
2209 domain_name (domain));
2210 }
2211
2212 sym = block_lookup_symbol (block, name, match_type, domain);
2213 if (sym)
2214 {
2215 if (symbol_lookup_debug > 1)
2216 {
2217 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2218 host_address_to_string (sym));
2219 }
2220 return fixup_symbol_section (sym, NULL);
2221 }
2222
2223 if (symbol_lookup_debug > 1)
2224 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2225 return NULL;
2226 }
2227
2228 /* See symtab.h. */
2229
2230 struct block_symbol
2231 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2232 enum block_enum block_index,
2233 const char *name,
2234 const domain_enum domain)
2235 {
2236 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2237
2238 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2239 {
2240 struct block_symbol result
2241 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2242
2243 if (result.symbol != nullptr)
2244 return result;
2245 }
2246
2247 return {};
2248 }
2249
2250 /* Check to see if the symbol is defined in one of the OBJFILE's
2251 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2252 depending on whether or not we want to search global symbols or
2253 static symbols. */
2254
2255 static struct block_symbol
2256 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2257 enum block_enum block_index, const char *name,
2258 const domain_enum domain)
2259 {
2260 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2261
2262 if (symbol_lookup_debug > 1)
2263 {
2264 fprintf_unfiltered (gdb_stdlog,
2265 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2266 objfile_debug_name (objfile),
2267 block_index == GLOBAL_BLOCK
2268 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2269 name, domain_name (domain));
2270 }
2271
2272 struct block_symbol other;
2273 other.symbol = NULL;
2274 for (compunit_symtab *cust : objfile->compunits ())
2275 {
2276 const struct blockvector *bv;
2277 const struct block *block;
2278 struct block_symbol result;
2279
2280 bv = COMPUNIT_BLOCKVECTOR (cust);
2281 block = BLOCKVECTOR_BLOCK (bv, block_index);
2282 result.symbol = block_lookup_symbol_primary (block, name, domain);
2283 result.block = block;
2284 if (result.symbol == NULL)
2285 continue;
2286 if (best_symbol (result.symbol, domain))
2287 {
2288 other = result;
2289 break;
2290 }
2291 if (symbol_matches_domain (result.symbol->language (),
2292 SYMBOL_DOMAIN (result.symbol), domain))
2293 {
2294 struct symbol *better
2295 = better_symbol (other.symbol, result.symbol, domain);
2296 if (better != other.symbol)
2297 {
2298 other.symbol = better;
2299 other.block = block;
2300 }
2301 }
2302 }
2303
2304 if (other.symbol != NULL)
2305 {
2306 if (symbol_lookup_debug > 1)
2307 {
2308 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2309 host_address_to_string (other.symbol),
2310 host_address_to_string (other.block));
2311 }
2312 other.symbol = fixup_symbol_section (other.symbol, objfile);
2313 return other;
2314 }
2315
2316 if (symbol_lookup_debug > 1)
2317 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2318 return {};
2319 }
2320
2321 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2322 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2323 and all associated separate debug objfiles.
2324
2325 Normally we only look in OBJFILE, and not any separate debug objfiles
2326 because the outer loop will cause them to be searched too. This case is
2327 different. Here we're called from search_symbols where it will only
2328 call us for the objfile that contains a matching minsym. */
2329
2330 static struct block_symbol
2331 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2332 const char *linkage_name,
2333 domain_enum domain)
2334 {
2335 enum language lang = current_language->la_language;
2336 struct objfile *main_objfile;
2337
2338 demangle_result_storage storage;
2339 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2340
2341 if (objfile->separate_debug_objfile_backlink)
2342 main_objfile = objfile->separate_debug_objfile_backlink;
2343 else
2344 main_objfile = objfile;
2345
2346 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2347 {
2348 struct block_symbol result;
2349
2350 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2351 modified_name, domain);
2352 if (result.symbol == NULL)
2353 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2354 modified_name, domain);
2355 if (result.symbol != NULL)
2356 return result;
2357 }
2358
2359 return {};
2360 }
2361
2362 /* A helper function that throws an exception when a symbol was found
2363 in a psymtab but not in a symtab. */
2364
2365 static void ATTRIBUTE_NORETURN
2366 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2367 struct compunit_symtab *cust)
2368 {
2369 error (_("\
2370 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2371 %s may be an inlined function, or may be a template function\n \
2372 (if a template, try specifying an instantiation: %s<type>)."),
2373 block_index == GLOBAL_BLOCK ? "global" : "static",
2374 name,
2375 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2376 name, name);
2377 }
2378
2379 /* A helper function for various lookup routines that interfaces with
2380 the "quick" symbol table functions. */
2381
2382 static struct block_symbol
2383 lookup_symbol_via_quick_fns (struct objfile *objfile,
2384 enum block_enum block_index, const char *name,
2385 const domain_enum domain)
2386 {
2387 struct compunit_symtab *cust;
2388 const struct blockvector *bv;
2389 const struct block *block;
2390 struct block_symbol result;
2391
2392 if (!objfile->sf)
2393 return {};
2394
2395 if (symbol_lookup_debug > 1)
2396 {
2397 fprintf_unfiltered (gdb_stdlog,
2398 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2399 objfile_debug_name (objfile),
2400 block_index == GLOBAL_BLOCK
2401 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2402 name, domain_name (domain));
2403 }
2404
2405 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2406 if (cust == NULL)
2407 {
2408 if (symbol_lookup_debug > 1)
2409 {
2410 fprintf_unfiltered (gdb_stdlog,
2411 "lookup_symbol_via_quick_fns (...) = NULL\n");
2412 }
2413 return {};
2414 }
2415
2416 bv = COMPUNIT_BLOCKVECTOR (cust);
2417 block = BLOCKVECTOR_BLOCK (bv, block_index);
2418 result.symbol = block_lookup_symbol (block, name,
2419 symbol_name_match_type::FULL, domain);
2420 if (result.symbol == NULL)
2421 error_in_psymtab_expansion (block_index, name, cust);
2422
2423 if (symbol_lookup_debug > 1)
2424 {
2425 fprintf_unfiltered (gdb_stdlog,
2426 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2427 host_address_to_string (result.symbol),
2428 host_address_to_string (block));
2429 }
2430
2431 result.symbol = fixup_symbol_section (result.symbol, objfile);
2432 result.block = block;
2433 return result;
2434 }
2435
2436 /* See symtab.h. */
2437
2438 struct block_symbol
2439 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2440 const char *name,
2441 const struct block *block,
2442 const domain_enum domain)
2443 {
2444 struct block_symbol result;
2445
2446 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2447 the current objfile. Searching the current objfile first is useful
2448 for both matching user expectations as well as performance. */
2449
2450 result = lookup_symbol_in_static_block (name, block, domain);
2451 if (result.symbol != NULL)
2452 return result;
2453
2454 /* If we didn't find a definition for a builtin type in the static block,
2455 search for it now. This is actually the right thing to do and can be
2456 a massive performance win. E.g., when debugging a program with lots of
2457 shared libraries we could search all of them only to find out the
2458 builtin type isn't defined in any of them. This is common for types
2459 like "void". */
2460 if (domain == VAR_DOMAIN)
2461 {
2462 struct gdbarch *gdbarch;
2463
2464 if (block == NULL)
2465 gdbarch = target_gdbarch ();
2466 else
2467 gdbarch = block_gdbarch (block);
2468 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2469 gdbarch, name);
2470 result.block = NULL;
2471 if (result.symbol != NULL)
2472 return result;
2473 }
2474
2475 return lookup_global_symbol (name, block, domain);
2476 }
2477
2478 /* See symtab.h. */
2479
2480 struct block_symbol
2481 lookup_symbol_in_static_block (const char *name,
2482 const struct block *block,
2483 const domain_enum domain)
2484 {
2485 const struct block *static_block = block_static_block (block);
2486 struct symbol *sym;
2487
2488 if (static_block == NULL)
2489 return {};
2490
2491 if (symbol_lookup_debug)
2492 {
2493 struct objfile *objfile = lookup_objfile_from_block (static_block);
2494
2495 fprintf_unfiltered (gdb_stdlog,
2496 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2497 " %s)\n",
2498 name,
2499 host_address_to_string (block),
2500 objfile_debug_name (objfile),
2501 domain_name (domain));
2502 }
2503
2504 sym = lookup_symbol_in_block (name,
2505 symbol_name_match_type::FULL,
2506 static_block, domain);
2507 if (symbol_lookup_debug)
2508 {
2509 fprintf_unfiltered (gdb_stdlog,
2510 "lookup_symbol_in_static_block (...) = %s\n",
2511 sym != NULL ? host_address_to_string (sym) : "NULL");
2512 }
2513 return (struct block_symbol) {sym, static_block};
2514 }
2515
2516 /* Perform the standard symbol lookup of NAME in OBJFILE:
2517 1) First search expanded symtabs, and if not found
2518 2) Search the "quick" symtabs (partial or .gdb_index).
2519 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2520
2521 static struct block_symbol
2522 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2523 const char *name, const domain_enum domain)
2524 {
2525 struct block_symbol result;
2526
2527 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2528
2529 if (symbol_lookup_debug)
2530 {
2531 fprintf_unfiltered (gdb_stdlog,
2532 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2533 objfile_debug_name (objfile),
2534 block_index == GLOBAL_BLOCK
2535 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2536 name, domain_name (domain));
2537 }
2538
2539 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2540 name, domain);
2541 if (result.symbol != NULL)
2542 {
2543 if (symbol_lookup_debug)
2544 {
2545 fprintf_unfiltered (gdb_stdlog,
2546 "lookup_symbol_in_objfile (...) = %s"
2547 " (in symtabs)\n",
2548 host_address_to_string (result.symbol));
2549 }
2550 return result;
2551 }
2552
2553 result = lookup_symbol_via_quick_fns (objfile, block_index,
2554 name, domain);
2555 if (symbol_lookup_debug)
2556 {
2557 fprintf_unfiltered (gdb_stdlog,
2558 "lookup_symbol_in_objfile (...) = %s%s\n",
2559 result.symbol != NULL
2560 ? host_address_to_string (result.symbol)
2561 : "NULL",
2562 result.symbol != NULL ? " (via quick fns)" : "");
2563 }
2564 return result;
2565 }
2566
2567 /* Find the language for partial symbol with NAME. */
2568
2569 static enum language
2570 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2571 {
2572 for (objfile *objfile : current_program_space->objfiles ())
2573 {
2574 if (objfile->sf && objfile->sf->qf
2575 && objfile->sf->qf->lookup_global_symbol_language)
2576 continue;
2577 return language_unknown;
2578 }
2579
2580 for (objfile *objfile : current_program_space->objfiles ())
2581 {
2582 bool symbol_found_p;
2583 enum language lang
2584 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2585 &symbol_found_p);
2586 if (!symbol_found_p)
2587 continue;
2588 return lang;
2589 }
2590
2591 return language_unknown;
2592 }
2593
2594 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2595
2596 struct global_or_static_sym_lookup_data
2597 {
2598 /* The name of the symbol we are searching for. */
2599 const char *name;
2600
2601 /* The domain to use for our search. */
2602 domain_enum domain;
2603
2604 /* The block index in which to search. */
2605 enum block_enum block_index;
2606
2607 /* The field where the callback should store the symbol if found.
2608 It should be initialized to {NULL, NULL} before the search is started. */
2609 struct block_symbol result;
2610 };
2611
2612 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2613 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2614 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2615 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2616
2617 static int
2618 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2619 void *cb_data)
2620 {
2621 struct global_or_static_sym_lookup_data *data =
2622 (struct global_or_static_sym_lookup_data *) cb_data;
2623
2624 gdb_assert (data->result.symbol == NULL
2625 && data->result.block == NULL);
2626
2627 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2628 data->name, data->domain);
2629
2630 /* If we found a match, tell the iterator to stop. Otherwise,
2631 keep going. */
2632 return (data->result.symbol != NULL);
2633 }
2634
2635 /* This function contains the common code of lookup_{global,static}_symbol.
2636 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2637 the objfile to start the lookup in. */
2638
2639 static struct block_symbol
2640 lookup_global_or_static_symbol (const char *name,
2641 enum block_enum block_index,
2642 struct objfile *objfile,
2643 const domain_enum domain)
2644 {
2645 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2646 struct block_symbol result;
2647 struct global_or_static_sym_lookup_data lookup_data;
2648 struct block_symbol_cache *bsc;
2649 struct symbol_cache_slot *slot;
2650
2651 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2652 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2653
2654 /* First see if we can find the symbol in the cache.
2655 This works because we use the current objfile to qualify the lookup. */
2656 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2657 &bsc, &slot);
2658 if (result.symbol != NULL)
2659 {
2660 if (SYMBOL_LOOKUP_FAILED_P (result))
2661 return {};
2662 return result;
2663 }
2664
2665 /* Do a global search (of global blocks, heh). */
2666 if (result.symbol == NULL)
2667 {
2668 memset (&lookup_data, 0, sizeof (lookup_data));
2669 lookup_data.name = name;
2670 lookup_data.block_index = block_index;
2671 lookup_data.domain = domain;
2672 gdbarch_iterate_over_objfiles_in_search_order
2673 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2674 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2675 result = lookup_data.result;
2676 }
2677
2678 if (result.symbol != NULL)
2679 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2680 else
2681 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2682
2683 return result;
2684 }
2685
2686 /* See symtab.h. */
2687
2688 struct block_symbol
2689 lookup_static_symbol (const char *name, const domain_enum domain)
2690 {
2691 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2692 }
2693
2694 /* See symtab.h. */
2695
2696 struct block_symbol
2697 lookup_global_symbol (const char *name,
2698 const struct block *block,
2699 const domain_enum domain)
2700 {
2701 /* If a block was passed in, we want to search the corresponding
2702 global block first. This yields "more expected" behavior, and is
2703 needed to support 'FILENAME'::VARIABLE lookups. */
2704 const struct block *global_block = block_global_block (block);
2705 symbol *sym = NULL;
2706 if (global_block != nullptr)
2707 {
2708 sym = lookup_symbol_in_block (name,
2709 symbol_name_match_type::FULL,
2710 global_block, domain);
2711 if (sym != NULL && best_symbol (sym, domain))
2712 return { sym, global_block };
2713 }
2714
2715 struct objfile *objfile = lookup_objfile_from_block (block);
2716 block_symbol bs
2717 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2718 if (better_symbol (sym, bs.symbol, domain) == sym)
2719 return { sym, global_block };
2720 else
2721 return bs;
2722 }
2723
2724 bool
2725 symbol_matches_domain (enum language symbol_language,
2726 domain_enum symbol_domain,
2727 domain_enum domain)
2728 {
2729 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2730 Similarly, any Ada type declaration implicitly defines a typedef. */
2731 if (symbol_language == language_cplus
2732 || symbol_language == language_d
2733 || symbol_language == language_ada
2734 || symbol_language == language_rust)
2735 {
2736 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2737 && symbol_domain == STRUCT_DOMAIN)
2738 return true;
2739 }
2740 /* For all other languages, strict match is required. */
2741 return (symbol_domain == domain);
2742 }
2743
2744 /* See symtab.h. */
2745
2746 struct type *
2747 lookup_transparent_type (const char *name)
2748 {
2749 return current_language->la_lookup_transparent_type (name);
2750 }
2751
2752 /* A helper for basic_lookup_transparent_type that interfaces with the
2753 "quick" symbol table functions. */
2754
2755 static struct type *
2756 basic_lookup_transparent_type_quick (struct objfile *objfile,
2757 enum block_enum block_index,
2758 const char *name)
2759 {
2760 struct compunit_symtab *cust;
2761 const struct blockvector *bv;
2762 const struct block *block;
2763 struct symbol *sym;
2764
2765 if (!objfile->sf)
2766 return NULL;
2767 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2768 STRUCT_DOMAIN);
2769 if (cust == NULL)
2770 return NULL;
2771
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym == NULL)
2777 error_in_psymtab_expansion (block_index, name, cust);
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781
2782 /* Subroutine of basic_lookup_transparent_type to simplify it.
2783 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2784 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2785
2786 static struct type *
2787 basic_lookup_transparent_type_1 (struct objfile *objfile,
2788 enum block_enum block_index,
2789 const char *name)
2790 {
2791 const struct blockvector *bv;
2792 const struct block *block;
2793 const struct symbol *sym;
2794
2795 for (compunit_symtab *cust : objfile->compunits ())
2796 {
2797 bv = COMPUNIT_BLOCKVECTOR (cust);
2798 block = BLOCKVECTOR_BLOCK (bv, block_index);
2799 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2800 block_find_non_opaque_type, NULL);
2801 if (sym != NULL)
2802 {
2803 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2804 return SYMBOL_TYPE (sym);
2805 }
2806 }
2807
2808 return NULL;
2809 }
2810
2811 /* The standard implementation of lookup_transparent_type. This code
2812 was modeled on lookup_symbol -- the parts not relevant to looking
2813 up types were just left out. In particular it's assumed here that
2814 types are available in STRUCT_DOMAIN and only in file-static or
2815 global blocks. */
2816
2817 struct type *
2818 basic_lookup_transparent_type (const char *name)
2819 {
2820 struct type *t;
2821
2822 /* Now search all the global symbols. Do the symtab's first, then
2823 check the psymtab's. If a psymtab indicates the existence
2824 of the desired name as a global, then do psymtab-to-symtab
2825 conversion on the fly and return the found symbol. */
2826
2827 for (objfile *objfile : current_program_space->objfiles ())
2828 {
2829 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2830 if (t)
2831 return t;
2832 }
2833
2834 for (objfile *objfile : current_program_space->objfiles ())
2835 {
2836 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2837 if (t)
2838 return t;
2839 }
2840
2841 /* Now search the static file-level symbols.
2842 Not strictly correct, but more useful than an error.
2843 Do the symtab's first, then
2844 check the psymtab's. If a psymtab indicates the existence
2845 of the desired name as a file-level static, then do psymtab-to-symtab
2846 conversion on the fly and return the found symbol. */
2847
2848 for (objfile *objfile : current_program_space->objfiles ())
2849 {
2850 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2851 if (t)
2852 return t;
2853 }
2854
2855 for (objfile *objfile : current_program_space->objfiles ())
2856 {
2857 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2858 if (t)
2859 return t;
2860 }
2861
2862 return (struct type *) 0;
2863 }
2864
2865 /* See symtab.h. */
2866
2867 bool
2868 iterate_over_symbols (const struct block *block,
2869 const lookup_name_info &name,
2870 const domain_enum domain,
2871 gdb::function_view<symbol_found_callback_ftype> callback)
2872 {
2873 struct block_iterator iter;
2874 struct symbol *sym;
2875
2876 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2877 {
2878 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2879 {
2880 struct block_symbol block_sym = {sym, block};
2881
2882 if (!callback (&block_sym))
2883 return false;
2884 }
2885 }
2886 return true;
2887 }
2888
2889 /* See symtab.h. */
2890
2891 bool
2892 iterate_over_symbols_terminated
2893 (const struct block *block,
2894 const lookup_name_info &name,
2895 const domain_enum domain,
2896 gdb::function_view<symbol_found_callback_ftype> callback)
2897 {
2898 if (!iterate_over_symbols (block, name, domain, callback))
2899 return false;
2900 struct block_symbol block_sym = {nullptr, block};
2901 return callback (&block_sym);
2902 }
2903
2904 /* Find the compunit symtab associated with PC and SECTION.
2905 This will read in debug info as necessary. */
2906
2907 struct compunit_symtab *
2908 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2909 {
2910 struct compunit_symtab *best_cust = NULL;
2911 CORE_ADDR distance = 0;
2912 struct bound_minimal_symbol msymbol;
2913
2914 /* If we know that this is not a text address, return failure. This is
2915 necessary because we loop based on the block's high and low code
2916 addresses, which do not include the data ranges, and because
2917 we call find_pc_sect_psymtab which has a similar restriction based
2918 on the partial_symtab's texthigh and textlow. */
2919 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2920 if (msymbol.minsym && msymbol.minsym->data_p ())
2921 return NULL;
2922
2923 /* Search all symtabs for the one whose file contains our address, and which
2924 is the smallest of all the ones containing the address. This is designed
2925 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2926 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2927 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2928
2929 This happens for native ecoff format, where code from included files
2930 gets its own symtab. The symtab for the included file should have
2931 been read in already via the dependency mechanism.
2932 It might be swifter to create several symtabs with the same name
2933 like xcoff does (I'm not sure).
2934
2935 It also happens for objfiles that have their functions reordered.
2936 For these, the symtab we are looking for is not necessarily read in. */
2937
2938 for (objfile *obj_file : current_program_space->objfiles ())
2939 {
2940 for (compunit_symtab *cust : obj_file->compunits ())
2941 {
2942 const struct block *b;
2943 const struct blockvector *bv;
2944
2945 bv = COMPUNIT_BLOCKVECTOR (cust);
2946 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2947
2948 if (BLOCK_START (b) <= pc
2949 && BLOCK_END (b) > pc
2950 && (distance == 0
2951 || BLOCK_END (b) - BLOCK_START (b) < distance))
2952 {
2953 /* For an objfile that has its functions reordered,
2954 find_pc_psymtab will find the proper partial symbol table
2955 and we simply return its corresponding symtab. */
2956 /* In order to better support objfiles that contain both
2957 stabs and coff debugging info, we continue on if a psymtab
2958 can't be found. */
2959 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2960 {
2961 struct compunit_symtab *result;
2962
2963 result
2964 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2965 msymbol,
2966 pc,
2967 section,
2968 0);
2969 if (result != NULL)
2970 return result;
2971 }
2972 if (section != 0)
2973 {
2974 struct block_iterator iter;
2975 struct symbol *sym = NULL;
2976
2977 ALL_BLOCK_SYMBOLS (b, iter, sym)
2978 {
2979 fixup_symbol_section (sym, obj_file);
2980 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2981 sym),
2982 section))
2983 break;
2984 }
2985 if (sym == NULL)
2986 continue; /* No symbol in this symtab matches
2987 section. */
2988 }
2989 distance = BLOCK_END (b) - BLOCK_START (b);
2990 best_cust = cust;
2991 }
2992 }
2993 }
2994
2995 if (best_cust != NULL)
2996 return best_cust;
2997
2998 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2999
3000 for (objfile *objf : current_program_space->objfiles ())
3001 {
3002 struct compunit_symtab *result;
3003
3004 if (!objf->sf)
3005 continue;
3006 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3007 msymbol,
3008 pc, section,
3009 1);
3010 if (result != NULL)
3011 return result;
3012 }
3013
3014 return NULL;
3015 }
3016
3017 /* Find the compunit symtab associated with PC.
3018 This will read in debug info as necessary.
3019 Backward compatibility, no section. */
3020
3021 struct compunit_symtab *
3022 find_pc_compunit_symtab (CORE_ADDR pc)
3023 {
3024 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3025 }
3026
3027 /* See symtab.h. */
3028
3029 struct symbol *
3030 find_symbol_at_address (CORE_ADDR address)
3031 {
3032 for (objfile *objfile : current_program_space->objfiles ())
3033 {
3034 if (objfile->sf == NULL
3035 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3036 continue;
3037
3038 struct compunit_symtab *symtab
3039 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3040 if (symtab != NULL)
3041 {
3042 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3043
3044 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3045 {
3046 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3047 struct block_iterator iter;
3048 struct symbol *sym;
3049
3050 ALL_BLOCK_SYMBOLS (b, iter, sym)
3051 {
3052 if (SYMBOL_CLASS (sym) == LOC_STATIC
3053 && SYMBOL_VALUE_ADDRESS (sym) == address)
3054 return sym;
3055 }
3056 }
3057 }
3058 }
3059
3060 return NULL;
3061 }
3062
3063 \f
3064
3065 /* Find the source file and line number for a given PC value and SECTION.
3066 Return a structure containing a symtab pointer, a line number,
3067 and a pc range for the entire source line.
3068 The value's .pc field is NOT the specified pc.
3069 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3070 use the line that ends there. Otherwise, in that case, the line
3071 that begins there is used. */
3072
3073 /* The big complication here is that a line may start in one file, and end just
3074 before the start of another file. This usually occurs when you #include
3075 code in the middle of a subroutine. To properly find the end of a line's PC
3076 range, we must search all symtabs associated with this compilation unit, and
3077 find the one whose first PC is closer than that of the next line in this
3078 symtab. */
3079
3080 struct symtab_and_line
3081 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3082 {
3083 struct compunit_symtab *cust;
3084 struct linetable *l;
3085 int len;
3086 struct linetable_entry *item;
3087 const struct blockvector *bv;
3088 struct bound_minimal_symbol msymbol;
3089
3090 /* Info on best line seen so far, and where it starts, and its file. */
3091
3092 struct linetable_entry *best = NULL;
3093 CORE_ADDR best_end = 0;
3094 struct symtab *best_symtab = 0;
3095
3096 /* Store here the first line number
3097 of a file which contains the line at the smallest pc after PC.
3098 If we don't find a line whose range contains PC,
3099 we will use a line one less than this,
3100 with a range from the start of that file to the first line's pc. */
3101 struct linetable_entry *alt = NULL;
3102
3103 /* Info on best line seen in this file. */
3104
3105 struct linetable_entry *prev;
3106
3107 /* If this pc is not from the current frame,
3108 it is the address of the end of a call instruction.
3109 Quite likely that is the start of the following statement.
3110 But what we want is the statement containing the instruction.
3111 Fudge the pc to make sure we get that. */
3112
3113 /* It's tempting to assume that, if we can't find debugging info for
3114 any function enclosing PC, that we shouldn't search for line
3115 number info, either. However, GAS can emit line number info for
3116 assembly files --- very helpful when debugging hand-written
3117 assembly code. In such a case, we'd have no debug info for the
3118 function, but we would have line info. */
3119
3120 if (notcurrent)
3121 pc -= 1;
3122
3123 /* elz: added this because this function returned the wrong
3124 information if the pc belongs to a stub (import/export)
3125 to call a shlib function. This stub would be anywhere between
3126 two functions in the target, and the line info was erroneously
3127 taken to be the one of the line before the pc. */
3128
3129 /* RT: Further explanation:
3130
3131 * We have stubs (trampolines) inserted between procedures.
3132 *
3133 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3134 * exists in the main image.
3135 *
3136 * In the minimal symbol table, we have a bunch of symbols
3137 * sorted by start address. The stubs are marked as "trampoline",
3138 * the others appear as text. E.g.:
3139 *
3140 * Minimal symbol table for main image
3141 * main: code for main (text symbol)
3142 * shr1: stub (trampoline symbol)
3143 * foo: code for foo (text symbol)
3144 * ...
3145 * Minimal symbol table for "shr1" image:
3146 * ...
3147 * shr1: code for shr1 (text symbol)
3148 * ...
3149 *
3150 * So the code below is trying to detect if we are in the stub
3151 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3152 * and if found, do the symbolization from the real-code address
3153 * rather than the stub address.
3154 *
3155 * Assumptions being made about the minimal symbol table:
3156 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3157 * if we're really in the trampoline.s If we're beyond it (say
3158 * we're in "foo" in the above example), it'll have a closer
3159 * symbol (the "foo" text symbol for example) and will not
3160 * return the trampoline.
3161 * 2. lookup_minimal_symbol_text() will find a real text symbol
3162 * corresponding to the trampoline, and whose address will
3163 * be different than the trampoline address. I put in a sanity
3164 * check for the address being the same, to avoid an
3165 * infinite recursion.
3166 */
3167 msymbol = lookup_minimal_symbol_by_pc (pc);
3168 if (msymbol.minsym != NULL)
3169 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3170 {
3171 struct bound_minimal_symbol mfunsym
3172 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3173 NULL);
3174
3175 if (mfunsym.minsym == NULL)
3176 /* I eliminated this warning since it is coming out
3177 * in the following situation:
3178 * gdb shmain // test program with shared libraries
3179 * (gdb) break shr1 // function in shared lib
3180 * Warning: In stub for ...
3181 * In the above situation, the shared lib is not loaded yet,
3182 * so of course we can't find the real func/line info,
3183 * but the "break" still works, and the warning is annoying.
3184 * So I commented out the warning. RT */
3185 /* warning ("In stub for %s; unable to find real function/line info",
3186 msymbol->linkage_name ()); */
3187 ;
3188 /* fall through */
3189 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3190 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3191 /* Avoid infinite recursion */
3192 /* See above comment about why warning is commented out. */
3193 /* warning ("In stub for %s; unable to find real function/line info",
3194 msymbol->linkage_name ()); */
3195 ;
3196 /* fall through */
3197 else
3198 {
3199 /* Detect an obvious case of infinite recursion. If this
3200 should occur, we'd like to know about it, so error out,
3201 fatally. */
3202 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3203 internal_error (__FILE__, __LINE__,
3204 _("Infinite recursion detected in find_pc_sect_line;"
3205 "please file a bug report"));
3206
3207 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3208 }
3209 }
3210
3211 symtab_and_line val;
3212 val.pspace = current_program_space;
3213
3214 cust = find_pc_sect_compunit_symtab (pc, section);
3215 if (cust == NULL)
3216 {
3217 /* If no symbol information, return previous pc. */
3218 if (notcurrent)
3219 pc++;
3220 val.pc = pc;
3221 return val;
3222 }
3223
3224 bv = COMPUNIT_BLOCKVECTOR (cust);
3225
3226 /* Look at all the symtabs that share this blockvector.
3227 They all have the same apriori range, that we found was right;
3228 but they have different line tables. */
3229
3230 for (symtab *iter_s : compunit_filetabs (cust))
3231 {
3232 /* Find the best line in this symtab. */
3233 l = SYMTAB_LINETABLE (iter_s);
3234 if (!l)
3235 continue;
3236 len = l->nitems;
3237 if (len <= 0)
3238 {
3239 /* I think len can be zero if the symtab lacks line numbers
3240 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3241 I'm not sure which, and maybe it depends on the symbol
3242 reader). */
3243 continue;
3244 }
3245
3246 prev = NULL;
3247 item = l->item; /* Get first line info. */
3248
3249 /* Is this file's first line closer than the first lines of other files?
3250 If so, record this file, and its first line, as best alternate. */
3251 if (item->pc > pc && (!alt || item->pc < alt->pc))
3252 alt = item;
3253
3254 auto pc_compare = [](const CORE_ADDR & comp_pc,
3255 const struct linetable_entry & lhs)->bool
3256 {
3257 return comp_pc < lhs.pc;
3258 };
3259
3260 struct linetable_entry *first = item;
3261 struct linetable_entry *last = item + len;
3262 item = std::upper_bound (first, last, pc, pc_compare);
3263 if (item != first)
3264 {
3265 /* Found a matching item. Skip backwards over any end of
3266 sequence markers. */
3267 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3268 /* Nothing. */;
3269 }
3270
3271 /* At this point, prev points at the line whose start addr is <= pc, and
3272 item points at the next line. If we ran off the end of the linetable
3273 (pc >= start of the last line), then prev == item. If pc < start of
3274 the first line, prev will not be set. */
3275
3276 /* Is this file's best line closer than the best in the other files?
3277 If so, record this file, and its best line, as best so far. Don't
3278 save prev if it represents the end of a function (i.e. line number
3279 0) instead of a real line. */
3280
3281 if (prev && prev->line && (!best || prev->pc > best->pc))
3282 {
3283 best = prev;
3284 best_symtab = iter_s;
3285
3286 /* If during the binary search we land on a non-statement entry,
3287 scan backward through entries at the same address to see if
3288 there is an entry marked as is-statement. In theory this
3289 duplication should have been removed from the line table
3290 during construction, this is just a double check. If the line
3291 table has had the duplication removed then this should be
3292 pretty cheap. */
3293 if (!best->is_stmt)
3294 {
3295 struct linetable_entry *tmp = best;
3296 while (tmp > first && (tmp - 1)->pc == tmp->pc
3297 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3298 --tmp;
3299 if (tmp->is_stmt)
3300 best = tmp;
3301 }
3302
3303 /* Discard BEST_END if it's before the PC of the current BEST. */
3304 if (best_end <= best->pc)
3305 best_end = 0;
3306 }
3307
3308 /* If another line (denoted by ITEM) is in the linetable and its
3309 PC is after BEST's PC, but before the current BEST_END, then
3310 use ITEM's PC as the new best_end. */
3311 if (best && item < last && item->pc > best->pc
3312 && (best_end == 0 || best_end > item->pc))
3313 best_end = item->pc;
3314 }
3315
3316 if (!best_symtab)
3317 {
3318 /* If we didn't find any line number info, just return zeros.
3319 We used to return alt->line - 1 here, but that could be
3320 anywhere; if we don't have line number info for this PC,
3321 don't make some up. */
3322 val.pc = pc;
3323 }
3324 else if (best->line == 0)
3325 {
3326 /* If our best fit is in a range of PC's for which no line
3327 number info is available (line number is zero) then we didn't
3328 find any valid line information. */
3329 val.pc = pc;
3330 }
3331 else
3332 {
3333 val.is_stmt = best->is_stmt;
3334 val.symtab = best_symtab;
3335 val.line = best->line;
3336 val.pc = best->pc;
3337 if (best_end && (!alt || best_end < alt->pc))
3338 val.end = best_end;
3339 else if (alt)
3340 val.end = alt->pc;
3341 else
3342 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3343 }
3344 val.section = section;
3345 return val;
3346 }
3347
3348 /* Backward compatibility (no section). */
3349
3350 struct symtab_and_line
3351 find_pc_line (CORE_ADDR pc, int notcurrent)
3352 {
3353 struct obj_section *section;
3354
3355 section = find_pc_overlay (pc);
3356 if (pc_in_unmapped_range (pc, section))
3357 pc = overlay_mapped_address (pc, section);
3358 return find_pc_sect_line (pc, section, notcurrent);
3359 }
3360
3361 /* See symtab.h. */
3362
3363 struct symtab *
3364 find_pc_line_symtab (CORE_ADDR pc)
3365 {
3366 struct symtab_and_line sal;
3367
3368 /* This always passes zero for NOTCURRENT to find_pc_line.
3369 There are currently no callers that ever pass non-zero. */
3370 sal = find_pc_line (pc, 0);
3371 return sal.symtab;
3372 }
3373 \f
3374 /* Find line number LINE in any symtab whose name is the same as
3375 SYMTAB.
3376
3377 If found, return the symtab that contains the linetable in which it was
3378 found, set *INDEX to the index in the linetable of the best entry
3379 found, and set *EXACT_MATCH to true if the value returned is an
3380 exact match.
3381
3382 If not found, return NULL. */
3383
3384 struct symtab *
3385 find_line_symtab (struct symtab *sym_tab, int line,
3386 int *index, bool *exact_match)
3387 {
3388 int exact = 0; /* Initialized here to avoid a compiler warning. */
3389
3390 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3391 so far seen. */
3392
3393 int best_index;
3394 struct linetable *best_linetable;
3395 struct symtab *best_symtab;
3396
3397 /* First try looking it up in the given symtab. */
3398 best_linetable = SYMTAB_LINETABLE (sym_tab);
3399 best_symtab = sym_tab;
3400 best_index = find_line_common (best_linetable, line, &exact, 0);
3401 if (best_index < 0 || !exact)
3402 {
3403 /* Didn't find an exact match. So we better keep looking for
3404 another symtab with the same name. In the case of xcoff,
3405 multiple csects for one source file (produced by IBM's FORTRAN
3406 compiler) produce multiple symtabs (this is unavoidable
3407 assuming csects can be at arbitrary places in memory and that
3408 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3409
3410 /* BEST is the smallest linenumber > LINE so far seen,
3411 or 0 if none has been seen so far.
3412 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3413 int best;
3414
3415 if (best_index >= 0)
3416 best = best_linetable->item[best_index].line;
3417 else
3418 best = 0;
3419
3420 for (objfile *objfile : current_program_space->objfiles ())
3421 {
3422 if (objfile->sf)
3423 objfile->sf->qf->expand_symtabs_with_fullname
3424 (objfile, symtab_to_fullname (sym_tab));
3425 }
3426
3427 for (objfile *objfile : current_program_space->objfiles ())
3428 {
3429 for (compunit_symtab *cu : objfile->compunits ())
3430 {
3431 for (symtab *s : compunit_filetabs (cu))
3432 {
3433 struct linetable *l;
3434 int ind;
3435
3436 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3437 continue;
3438 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3439 symtab_to_fullname (s)) != 0)
3440 continue;
3441 l = SYMTAB_LINETABLE (s);
3442 ind = find_line_common (l, line, &exact, 0);
3443 if (ind >= 0)
3444 {
3445 if (exact)
3446 {
3447 best_index = ind;
3448 best_linetable = l;
3449 best_symtab = s;
3450 goto done;
3451 }
3452 if (best == 0 || l->item[ind].line < best)
3453 {
3454 best = l->item[ind].line;
3455 best_index = ind;
3456 best_linetable = l;
3457 best_symtab = s;
3458 }
3459 }
3460 }
3461 }
3462 }
3463 }
3464 done:
3465 if (best_index < 0)
3466 return NULL;
3467
3468 if (index)
3469 *index = best_index;
3470 if (exact_match)
3471 *exact_match = (exact != 0);
3472
3473 return best_symtab;
3474 }
3475
3476 /* Given SYMTAB, returns all the PCs function in the symtab that
3477 exactly match LINE. Returns an empty vector if there are no exact
3478 matches, but updates BEST_ITEM in this case. */
3479
3480 std::vector<CORE_ADDR>
3481 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3482 struct linetable_entry **best_item)
3483 {
3484 int start = 0;
3485 std::vector<CORE_ADDR> result;
3486
3487 /* First, collect all the PCs that are at this line. */
3488 while (1)
3489 {
3490 int was_exact;
3491 int idx;
3492
3493 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3494 start);
3495 if (idx < 0)
3496 break;
3497
3498 if (!was_exact)
3499 {
3500 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3501
3502 if (*best_item == NULL
3503 || (item->line < (*best_item)->line && item->is_stmt))
3504 *best_item = item;
3505
3506 break;
3507 }
3508
3509 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3510 start = idx + 1;
3511 }
3512
3513 return result;
3514 }
3515
3516 \f
3517 /* Set the PC value for a given source file and line number and return true.
3518 Returns false for invalid line number (and sets the PC to 0).
3519 The source file is specified with a struct symtab. */
3520
3521 bool
3522 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3523 {
3524 struct linetable *l;
3525 int ind;
3526
3527 *pc = 0;
3528 if (symtab == 0)
3529 return false;
3530
3531 symtab = find_line_symtab (symtab, line, &ind, NULL);
3532 if (symtab != NULL)
3533 {
3534 l = SYMTAB_LINETABLE (symtab);
3535 *pc = l->item[ind].pc;
3536 return true;
3537 }
3538 else
3539 return false;
3540 }
3541
3542 /* Find the range of pc values in a line.
3543 Store the starting pc of the line into *STARTPTR
3544 and the ending pc (start of next line) into *ENDPTR.
3545 Returns true to indicate success.
3546 Returns false if could not find the specified line. */
3547
3548 bool
3549 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3550 CORE_ADDR *endptr)
3551 {
3552 CORE_ADDR startaddr;
3553 struct symtab_and_line found_sal;
3554
3555 startaddr = sal.pc;
3556 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3557 return false;
3558
3559 /* This whole function is based on address. For example, if line 10 has
3560 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3561 "info line *0x123" should say the line goes from 0x100 to 0x200
3562 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3563 This also insures that we never give a range like "starts at 0x134
3564 and ends at 0x12c". */
3565
3566 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3567 if (found_sal.line != sal.line)
3568 {
3569 /* The specified line (sal) has zero bytes. */
3570 *startptr = found_sal.pc;
3571 *endptr = found_sal.pc;
3572 }
3573 else
3574 {
3575 *startptr = found_sal.pc;
3576 *endptr = found_sal.end;
3577 }
3578 return true;
3579 }
3580
3581 /* Given a line table and a line number, return the index into the line
3582 table for the pc of the nearest line whose number is >= the specified one.
3583 Return -1 if none is found. The value is >= 0 if it is an index.
3584 START is the index at which to start searching the line table.
3585
3586 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3587
3588 static int
3589 find_line_common (struct linetable *l, int lineno,
3590 int *exact_match, int start)
3591 {
3592 int i;
3593 int len;
3594
3595 /* BEST is the smallest linenumber > LINENO so far seen,
3596 or 0 if none has been seen so far.
3597 BEST_INDEX identifies the item for it. */
3598
3599 int best_index = -1;
3600 int best = 0;
3601
3602 *exact_match = 0;
3603
3604 if (lineno <= 0)
3605 return -1;
3606 if (l == 0)
3607 return -1;
3608
3609 len = l->nitems;
3610 for (i = start; i < len; i++)
3611 {
3612 struct linetable_entry *item = &(l->item[i]);
3613
3614 /* Ignore non-statements. */
3615 if (!item->is_stmt)
3616 continue;
3617
3618 if (item->line == lineno)
3619 {
3620 /* Return the first (lowest address) entry which matches. */
3621 *exact_match = 1;
3622 return i;
3623 }
3624
3625 if (item->line > lineno && (best == 0 || item->line < best))
3626 {
3627 best = item->line;
3628 best_index = i;
3629 }
3630 }
3631
3632 /* If we got here, we didn't get an exact match. */
3633 return best_index;
3634 }
3635
3636 bool
3637 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3638 {
3639 struct symtab_and_line sal;
3640
3641 sal = find_pc_line (pc, 0);
3642 *startptr = sal.pc;
3643 *endptr = sal.end;
3644 return sal.symtab != 0;
3645 }
3646
3647 /* Helper for find_function_start_sal. Does most of the work, except
3648 setting the sal's symbol. */
3649
3650 static symtab_and_line
3651 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3652 bool funfirstline)
3653 {
3654 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3655
3656 if (funfirstline && sal.symtab != NULL
3657 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3658 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3659 {
3660 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3661
3662 sal.pc = func_addr;
3663 if (gdbarch_skip_entrypoint_p (gdbarch))
3664 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3665 return sal;
3666 }
3667
3668 /* We always should have a line for the function start address.
3669 If we don't, something is odd. Create a plain SAL referring
3670 just the PC and hope that skip_prologue_sal (if requested)
3671 can find a line number for after the prologue. */
3672 if (sal.pc < func_addr)
3673 {
3674 sal = {};
3675 sal.pspace = current_program_space;
3676 sal.pc = func_addr;
3677 sal.section = section;
3678 }
3679
3680 if (funfirstline)
3681 skip_prologue_sal (&sal);
3682
3683 return sal;
3684 }
3685
3686 /* See symtab.h. */
3687
3688 symtab_and_line
3689 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3690 bool funfirstline)
3691 {
3692 symtab_and_line sal
3693 = find_function_start_sal_1 (func_addr, section, funfirstline);
3694
3695 /* find_function_start_sal_1 does a linetable search, so it finds
3696 the symtab and linenumber, but not a symbol. Fill in the
3697 function symbol too. */
3698 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3699
3700 return sal;
3701 }
3702
3703 /* See symtab.h. */
3704
3705 symtab_and_line
3706 find_function_start_sal (symbol *sym, bool funfirstline)
3707 {
3708 fixup_symbol_section (sym, NULL);
3709 symtab_and_line sal
3710 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3711 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3712 funfirstline);
3713 sal.symbol = sym;
3714 return sal;
3715 }
3716
3717
3718 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3719 address for that function that has an entry in SYMTAB's line info
3720 table. If such an entry cannot be found, return FUNC_ADDR
3721 unaltered. */
3722
3723 static CORE_ADDR
3724 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3725 {
3726 CORE_ADDR func_start, func_end;
3727 struct linetable *l;
3728 int i;
3729
3730 /* Give up if this symbol has no lineinfo table. */
3731 l = SYMTAB_LINETABLE (symtab);
3732 if (l == NULL)
3733 return func_addr;
3734
3735 /* Get the range for the function's PC values, or give up if we
3736 cannot, for some reason. */
3737 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3738 return func_addr;
3739
3740 /* Linetable entries are ordered by PC values, see the commentary in
3741 symtab.h where `struct linetable' is defined. Thus, the first
3742 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3743 address we are looking for. */
3744 for (i = 0; i < l->nitems; i++)
3745 {
3746 struct linetable_entry *item = &(l->item[i]);
3747
3748 /* Don't use line numbers of zero, they mark special entries in
3749 the table. See the commentary on symtab.h before the
3750 definition of struct linetable. */
3751 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3752 return item->pc;
3753 }
3754
3755 return func_addr;
3756 }
3757
3758 /* Adjust SAL to the first instruction past the function prologue.
3759 If the PC was explicitly specified, the SAL is not changed.
3760 If the line number was explicitly specified then the SAL can still be
3761 updated, unless the language for SAL is assembler, in which case the SAL
3762 will be left unchanged.
3763 If SAL is already past the prologue, then do nothing. */
3764
3765 void
3766 skip_prologue_sal (struct symtab_and_line *sal)
3767 {
3768 struct symbol *sym;
3769 struct symtab_and_line start_sal;
3770 CORE_ADDR pc, saved_pc;
3771 struct obj_section *section;
3772 const char *name;
3773 struct objfile *objfile;
3774 struct gdbarch *gdbarch;
3775 const struct block *b, *function_block;
3776 int force_skip, skip;
3777
3778 /* Do not change the SAL if PC was specified explicitly. */
3779 if (sal->explicit_pc)
3780 return;
3781
3782 /* In assembly code, if the user asks for a specific line then we should
3783 not adjust the SAL. The user already has instruction level
3784 visibility in this case, so selecting a line other than one requested
3785 is likely to be the wrong choice. */
3786 if (sal->symtab != nullptr
3787 && sal->explicit_line
3788 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3789 return;
3790
3791 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3792
3793 switch_to_program_space_and_thread (sal->pspace);
3794
3795 sym = find_pc_sect_function (sal->pc, sal->section);
3796 if (sym != NULL)
3797 {
3798 fixup_symbol_section (sym, NULL);
3799
3800 objfile = symbol_objfile (sym);
3801 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3802 section = SYMBOL_OBJ_SECTION (objfile, sym);
3803 name = sym->linkage_name ();
3804 }
3805 else
3806 {
3807 struct bound_minimal_symbol msymbol
3808 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3809
3810 if (msymbol.minsym == NULL)
3811 return;
3812
3813 objfile = msymbol.objfile;
3814 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3815 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3816 name = msymbol.minsym->linkage_name ();
3817 }
3818
3819 gdbarch = objfile->arch ();
3820
3821 /* Process the prologue in two passes. In the first pass try to skip the
3822 prologue (SKIP is true) and verify there is a real need for it (indicated
3823 by FORCE_SKIP). If no such reason was found run a second pass where the
3824 prologue is not skipped (SKIP is false). */
3825
3826 skip = 1;
3827 force_skip = 1;
3828
3829 /* Be conservative - allow direct PC (without skipping prologue) only if we
3830 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3831 have to be set by the caller so we use SYM instead. */
3832 if (sym != NULL
3833 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3834 force_skip = 0;
3835
3836 saved_pc = pc;
3837 do
3838 {
3839 pc = saved_pc;
3840
3841 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3842 so that gdbarch_skip_prologue has something unique to work on. */
3843 if (section_is_overlay (section) && !section_is_mapped (section))
3844 pc = overlay_unmapped_address (pc, section);
3845
3846 /* Skip "first line" of function (which is actually its prologue). */
3847 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3848 if (gdbarch_skip_entrypoint_p (gdbarch))
3849 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3850 if (skip)
3851 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3852
3853 /* For overlays, map pc back into its mapped VMA range. */
3854 pc = overlay_mapped_address (pc, section);
3855
3856 /* Calculate line number. */
3857 start_sal = find_pc_sect_line (pc, section, 0);
3858
3859 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3860 line is still part of the same function. */
3861 if (skip && start_sal.pc != pc
3862 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3863 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3864 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3865 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3866 {
3867 /* First pc of next line */
3868 pc = start_sal.end;
3869 /* Recalculate the line number (might not be N+1). */
3870 start_sal = find_pc_sect_line (pc, section, 0);
3871 }
3872
3873 /* On targets with executable formats that don't have a concept of
3874 constructors (ELF with .init has, PE doesn't), gcc emits a call
3875 to `__main' in `main' between the prologue and before user
3876 code. */
3877 if (gdbarch_skip_main_prologue_p (gdbarch)
3878 && name && strcmp_iw (name, "main") == 0)
3879 {
3880 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3881 /* Recalculate the line number (might not be N+1). */
3882 start_sal = find_pc_sect_line (pc, section, 0);
3883 force_skip = 1;
3884 }
3885 }
3886 while (!force_skip && skip--);
3887
3888 /* If we still don't have a valid source line, try to find the first
3889 PC in the lineinfo table that belongs to the same function. This
3890 happens with COFF debug info, which does not seem to have an
3891 entry in lineinfo table for the code after the prologue which has
3892 no direct relation to source. For example, this was found to be
3893 the case with the DJGPP target using "gcc -gcoff" when the
3894 compiler inserted code after the prologue to make sure the stack
3895 is aligned. */
3896 if (!force_skip && sym && start_sal.symtab == NULL)
3897 {
3898 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3899 /* Recalculate the line number. */
3900 start_sal = find_pc_sect_line (pc, section, 0);
3901 }
3902
3903 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3904 forward SAL to the end of the prologue. */
3905 if (sal->pc >= pc)
3906 return;
3907
3908 sal->pc = pc;
3909 sal->section = section;
3910 sal->symtab = start_sal.symtab;
3911 sal->line = start_sal.line;
3912 sal->end = start_sal.end;
3913
3914 /* Check if we are now inside an inlined function. If we can,
3915 use the call site of the function instead. */
3916 b = block_for_pc_sect (sal->pc, sal->section);
3917 function_block = NULL;
3918 while (b != NULL)
3919 {
3920 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3921 function_block = b;
3922 else if (BLOCK_FUNCTION (b) != NULL)
3923 break;
3924 b = BLOCK_SUPERBLOCK (b);
3925 }
3926 if (function_block != NULL
3927 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3928 {
3929 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3930 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3931 }
3932 }
3933
3934 /* Given PC at the function's start address, attempt to find the
3935 prologue end using SAL information. Return zero if the skip fails.
3936
3937 A non-optimized prologue traditionally has one SAL for the function
3938 and a second for the function body. A single line function has
3939 them both pointing at the same line.
3940
3941 An optimized prologue is similar but the prologue may contain
3942 instructions (SALs) from the instruction body. Need to skip those
3943 while not getting into the function body.
3944
3945 The functions end point and an increasing SAL line are used as
3946 indicators of the prologue's endpoint.
3947
3948 This code is based on the function refine_prologue_limit
3949 (found in ia64). */
3950
3951 CORE_ADDR
3952 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3953 {
3954 struct symtab_and_line prologue_sal;
3955 CORE_ADDR start_pc;
3956 CORE_ADDR end_pc;
3957 const struct block *bl;
3958
3959 /* Get an initial range for the function. */
3960 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3961 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3962
3963 prologue_sal = find_pc_line (start_pc, 0);
3964 if (prologue_sal.line != 0)
3965 {
3966 /* For languages other than assembly, treat two consecutive line
3967 entries at the same address as a zero-instruction prologue.
3968 The GNU assembler emits separate line notes for each instruction
3969 in a multi-instruction macro, but compilers generally will not
3970 do this. */
3971 if (prologue_sal.symtab->language != language_asm)
3972 {
3973 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3974 int idx = 0;
3975
3976 /* Skip any earlier lines, and any end-of-sequence marker
3977 from a previous function. */
3978 while (linetable->item[idx].pc != prologue_sal.pc
3979 || linetable->item[idx].line == 0)
3980 idx++;
3981
3982 if (idx+1 < linetable->nitems
3983 && linetable->item[idx+1].line != 0
3984 && linetable->item[idx+1].pc == start_pc)
3985 return start_pc;
3986 }
3987
3988 /* If there is only one sal that covers the entire function,
3989 then it is probably a single line function, like
3990 "foo(){}". */
3991 if (prologue_sal.end >= end_pc)
3992 return 0;
3993
3994 while (prologue_sal.end < end_pc)
3995 {
3996 struct symtab_and_line sal;
3997
3998 sal = find_pc_line (prologue_sal.end, 0);
3999 if (sal.line == 0)
4000 break;
4001 /* Assume that a consecutive SAL for the same (or larger)
4002 line mark the prologue -> body transition. */
4003 if (sal.line >= prologue_sal.line)
4004 break;
4005 /* Likewise if we are in a different symtab altogether
4006 (e.g. within a file included via #include).  */
4007 if (sal.symtab != prologue_sal.symtab)
4008 break;
4009
4010 /* The line number is smaller. Check that it's from the
4011 same function, not something inlined. If it's inlined,
4012 then there is no point comparing the line numbers. */
4013 bl = block_for_pc (prologue_sal.end);
4014 while (bl)
4015 {
4016 if (block_inlined_p (bl))
4017 break;
4018 if (BLOCK_FUNCTION (bl))
4019 {
4020 bl = NULL;
4021 break;
4022 }
4023 bl = BLOCK_SUPERBLOCK (bl);
4024 }
4025 if (bl != NULL)
4026 break;
4027
4028 /* The case in which compiler's optimizer/scheduler has
4029 moved instructions into the prologue. We look ahead in
4030 the function looking for address ranges whose
4031 corresponding line number is less the first one that we
4032 found for the function. This is more conservative then
4033 refine_prologue_limit which scans a large number of SALs
4034 looking for any in the prologue. */
4035 prologue_sal = sal;
4036 }
4037 }
4038
4039 if (prologue_sal.end < end_pc)
4040 /* Return the end of this line, or zero if we could not find a
4041 line. */
4042 return prologue_sal.end;
4043 else
4044 /* Don't return END_PC, which is past the end of the function. */
4045 return prologue_sal.pc;
4046 }
4047
4048 /* See symtab.h. */
4049
4050 symbol *
4051 find_function_alias_target (bound_minimal_symbol msymbol)
4052 {
4053 CORE_ADDR func_addr;
4054 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4055 return NULL;
4056
4057 symbol *sym = find_pc_function (func_addr);
4058 if (sym != NULL
4059 && SYMBOL_CLASS (sym) == LOC_BLOCK
4060 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4061 return sym;
4062
4063 return NULL;
4064 }
4065
4066 \f
4067 /* If P is of the form "operator[ \t]+..." where `...' is
4068 some legitimate operator text, return a pointer to the
4069 beginning of the substring of the operator text.
4070 Otherwise, return "". */
4071
4072 static const char *
4073 operator_chars (const char *p, const char **end)
4074 {
4075 *end = "";
4076 if (!startswith (p, CP_OPERATOR_STR))
4077 return *end;
4078 p += CP_OPERATOR_LEN;
4079
4080 /* Don't get faked out by `operator' being part of a longer
4081 identifier. */
4082 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4083 return *end;
4084
4085 /* Allow some whitespace between `operator' and the operator symbol. */
4086 while (*p == ' ' || *p == '\t')
4087 p++;
4088
4089 /* Recognize 'operator TYPENAME'. */
4090
4091 if (isalpha (*p) || *p == '_' || *p == '$')
4092 {
4093 const char *q = p + 1;
4094
4095 while (isalnum (*q) || *q == '_' || *q == '$')
4096 q++;
4097 *end = q;
4098 return p;
4099 }
4100
4101 while (*p)
4102 switch (*p)
4103 {
4104 case '\\': /* regexp quoting */
4105 if (p[1] == '*')
4106 {
4107 if (p[2] == '=') /* 'operator\*=' */
4108 *end = p + 3;
4109 else /* 'operator\*' */
4110 *end = p + 2;
4111 return p;
4112 }
4113 else if (p[1] == '[')
4114 {
4115 if (p[2] == ']')
4116 error (_("mismatched quoting on brackets, "
4117 "try 'operator\\[\\]'"));
4118 else if (p[2] == '\\' && p[3] == ']')
4119 {
4120 *end = p + 4; /* 'operator\[\]' */
4121 return p;
4122 }
4123 else
4124 error (_("nothing is allowed between '[' and ']'"));
4125 }
4126 else
4127 {
4128 /* Gratuitous quote: skip it and move on. */
4129 p++;
4130 continue;
4131 }
4132 break;
4133 case '!':
4134 case '=':
4135 case '*':
4136 case '/':
4137 case '%':
4138 case '^':
4139 if (p[1] == '=')
4140 *end = p + 2;
4141 else
4142 *end = p + 1;
4143 return p;
4144 case '<':
4145 case '>':
4146 case '+':
4147 case '-':
4148 case '&':
4149 case '|':
4150 if (p[0] == '-' && p[1] == '>')
4151 {
4152 /* Struct pointer member operator 'operator->'. */
4153 if (p[2] == '*')
4154 {
4155 *end = p + 3; /* 'operator->*' */
4156 return p;
4157 }
4158 else if (p[2] == '\\')
4159 {
4160 *end = p + 4; /* Hopefully 'operator->\*' */
4161 return p;
4162 }
4163 else
4164 {
4165 *end = p + 2; /* 'operator->' */
4166 return p;
4167 }
4168 }
4169 if (p[1] == '=' || p[1] == p[0])
4170 *end = p + 2;
4171 else
4172 *end = p + 1;
4173 return p;
4174 case '~':
4175 case ',':
4176 *end = p + 1;
4177 return p;
4178 case '(':
4179 if (p[1] != ')')
4180 error (_("`operator ()' must be specified "
4181 "without whitespace in `()'"));
4182 *end = p + 2;
4183 return p;
4184 case '?':
4185 if (p[1] != ':')
4186 error (_("`operator ?:' must be specified "
4187 "without whitespace in `?:'"));
4188 *end = p + 2;
4189 return p;
4190 case '[':
4191 if (p[1] != ']')
4192 error (_("`operator []' must be specified "
4193 "without whitespace in `[]'"));
4194 *end = p + 2;
4195 return p;
4196 default:
4197 error (_("`operator %s' not supported"), p);
4198 break;
4199 }
4200
4201 *end = "";
4202 return *end;
4203 }
4204 \f
4205
4206 /* What part to match in a file name. */
4207
4208 struct filename_partial_match_opts
4209 {
4210 /* Only match the directory name part. */
4211 bool dirname = false;
4212
4213 /* Only match the basename part. */
4214 bool basename = false;
4215 };
4216
4217 /* Data structure to maintain printing state for output_source_filename. */
4218
4219 struct output_source_filename_data
4220 {
4221 /* Output only filenames matching REGEXP. */
4222 std::string regexp;
4223 gdb::optional<compiled_regex> c_regexp;
4224 /* Possibly only match a part of the filename. */
4225 filename_partial_match_opts partial_match;
4226
4227
4228 /* Cache of what we've seen so far. */
4229 struct filename_seen_cache *filename_seen_cache;
4230
4231 /* Flag of whether we're printing the first one. */
4232 int first;
4233 };
4234
4235 /* Slave routine for sources_info. Force line breaks at ,'s.
4236 NAME is the name to print.
4237 DATA contains the state for printing and watching for duplicates. */
4238
4239 static void
4240 output_source_filename (const char *name,
4241 struct output_source_filename_data *data)
4242 {
4243 /* Since a single source file can result in several partial symbol
4244 tables, we need to avoid printing it more than once. Note: if
4245 some of the psymtabs are read in and some are not, it gets
4246 printed both under "Source files for which symbols have been
4247 read" and "Source files for which symbols will be read in on
4248 demand". I consider this a reasonable way to deal with the
4249 situation. I'm not sure whether this can also happen for
4250 symtabs; it doesn't hurt to check. */
4251
4252 /* Was NAME already seen? */
4253 if (data->filename_seen_cache->seen (name))
4254 {
4255 /* Yes; don't print it again. */
4256 return;
4257 }
4258
4259 /* Does it match data->regexp? */
4260 if (data->c_regexp.has_value ())
4261 {
4262 const char *to_match;
4263 std::string dirname;
4264
4265 if (data->partial_match.dirname)
4266 {
4267 dirname = ldirname (name);
4268 to_match = dirname.c_str ();
4269 }
4270 else if (data->partial_match.basename)
4271 to_match = lbasename (name);
4272 else
4273 to_match = name;
4274
4275 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4276 return;
4277 }
4278
4279 /* Print it and reset *FIRST. */
4280 if (! data->first)
4281 printf_filtered (", ");
4282 data->first = 0;
4283
4284 wrap_here ("");
4285 fputs_styled (name, file_name_style.style (), gdb_stdout);
4286 }
4287
4288 /* A callback for map_partial_symbol_filenames. */
4289
4290 static void
4291 output_partial_symbol_filename (const char *filename, const char *fullname,
4292 void *data)
4293 {
4294 output_source_filename (fullname ? fullname : filename,
4295 (struct output_source_filename_data *) data);
4296 }
4297
4298 using isrc_flag_option_def
4299 = gdb::option::flag_option_def<filename_partial_match_opts>;
4300
4301 static const gdb::option::option_def info_sources_option_defs[] = {
4302
4303 isrc_flag_option_def {
4304 "dirname",
4305 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4306 N_("Show only the files having a dirname matching REGEXP."),
4307 },
4308
4309 isrc_flag_option_def {
4310 "basename",
4311 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4312 N_("Show only the files having a basename matching REGEXP."),
4313 },
4314
4315 };
4316
4317 /* Create an option_def_group for the "info sources" options, with
4318 ISRC_OPTS as context. */
4319
4320 static inline gdb::option::option_def_group
4321 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4322 {
4323 return {{info_sources_option_defs}, isrc_opts};
4324 }
4325
4326 /* Prints the header message for the source files that will be printed
4327 with the matching info present in DATA. SYMBOL_MSG is a message
4328 that tells what will or has been done with the symbols of the
4329 matching source files. */
4330
4331 static void
4332 print_info_sources_header (const char *symbol_msg,
4333 const struct output_source_filename_data *data)
4334 {
4335 puts_filtered (symbol_msg);
4336 if (!data->regexp.empty ())
4337 {
4338 if (data->partial_match.dirname)
4339 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4340 data->regexp.c_str ());
4341 else if (data->partial_match.basename)
4342 printf_filtered (_("(basename matching regular expression \"%s\")"),
4343 data->regexp.c_str ());
4344 else
4345 printf_filtered (_("(filename matching regular expression \"%s\")"),
4346 data->regexp.c_str ());
4347 }
4348 puts_filtered ("\n");
4349 }
4350
4351 /* Completer for "info sources". */
4352
4353 static void
4354 info_sources_command_completer (cmd_list_element *ignore,
4355 completion_tracker &tracker,
4356 const char *text, const char *word)
4357 {
4358 const auto group = make_info_sources_options_def_group (nullptr);
4359 if (gdb::option::complete_options
4360 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4361 return;
4362 }
4363
4364 static void
4365 info_sources_command (const char *args, int from_tty)
4366 {
4367 struct output_source_filename_data data;
4368
4369 if (!have_full_symbols () && !have_partial_symbols ())
4370 {
4371 error (_("No symbol table is loaded. Use the \"file\" command."));
4372 }
4373
4374 filename_seen_cache filenames_seen;
4375
4376 auto group = make_info_sources_options_def_group (&data.partial_match);
4377
4378 gdb::option::process_options
4379 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4380
4381 if (args != NULL && *args != '\000')
4382 data.regexp = args;
4383
4384 data.filename_seen_cache = &filenames_seen;
4385 data.first = 1;
4386
4387 if (data.partial_match.dirname && data.partial_match.basename)
4388 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4389 if ((data.partial_match.dirname || data.partial_match.basename)
4390 && data.regexp.empty ())
4391 error (_("Missing REGEXP for 'info sources'."));
4392
4393 if (data.regexp.empty ())
4394 data.c_regexp.reset ();
4395 else
4396 {
4397 int cflags = REG_NOSUB;
4398 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4399 cflags |= REG_ICASE;
4400 #endif
4401 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4402 _("Invalid regexp"));
4403 }
4404
4405 print_info_sources_header
4406 (_("Source files for which symbols have been read in:\n"), &data);
4407
4408 for (objfile *objfile : current_program_space->objfiles ())
4409 {
4410 for (compunit_symtab *cu : objfile->compunits ())
4411 {
4412 for (symtab *s : compunit_filetabs (cu))
4413 {
4414 const char *fullname = symtab_to_fullname (s);
4415
4416 output_source_filename (fullname, &data);
4417 }
4418 }
4419 }
4420 printf_filtered ("\n\n");
4421
4422 print_info_sources_header
4423 (_("Source files for which symbols will be read in on demand:\n"), &data);
4424
4425 filenames_seen.clear ();
4426 data.first = 1;
4427 map_symbol_filenames (output_partial_symbol_filename, &data,
4428 1 /*need_fullname*/);
4429 printf_filtered ("\n");
4430 }
4431
4432 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4433 true compare only lbasename of FILENAMES. */
4434
4435 static bool
4436 file_matches (const char *file, const std::vector<const char *> &filenames,
4437 bool basenames)
4438 {
4439 if (filenames.empty ())
4440 return true;
4441
4442 for (const char *name : filenames)
4443 {
4444 name = (basenames ? lbasename (name) : name);
4445 if (compare_filenames_for_search (file, name))
4446 return true;
4447 }
4448
4449 return false;
4450 }
4451
4452 /* Helper function for std::sort on symbol_search objects. Can only sort
4453 symbols, not minimal symbols. */
4454
4455 int
4456 symbol_search::compare_search_syms (const symbol_search &sym_a,
4457 const symbol_search &sym_b)
4458 {
4459 int c;
4460
4461 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4462 symbol_symtab (sym_b.symbol)->filename);
4463 if (c != 0)
4464 return c;
4465
4466 if (sym_a.block != sym_b.block)
4467 return sym_a.block - sym_b.block;
4468
4469 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4470 }
4471
4472 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4473 If SYM has no symbol_type or symbol_name, returns false. */
4474
4475 bool
4476 treg_matches_sym_type_name (const compiled_regex &treg,
4477 const struct symbol *sym)
4478 {
4479 struct type *sym_type;
4480 std::string printed_sym_type_name;
4481
4482 if (symbol_lookup_debug > 1)
4483 {
4484 fprintf_unfiltered (gdb_stdlog,
4485 "treg_matches_sym_type_name\n sym %s\n",
4486 sym->natural_name ());
4487 }
4488
4489 sym_type = SYMBOL_TYPE (sym);
4490 if (sym_type == NULL)
4491 return false;
4492
4493 {
4494 scoped_switch_to_sym_language_if_auto l (sym);
4495
4496 printed_sym_type_name = type_to_string (sym_type);
4497 }
4498
4499
4500 if (symbol_lookup_debug > 1)
4501 {
4502 fprintf_unfiltered (gdb_stdlog,
4503 " sym_type_name %s\n",
4504 printed_sym_type_name.c_str ());
4505 }
4506
4507
4508 if (printed_sym_type_name.empty ())
4509 return false;
4510
4511 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4512 }
4513
4514 /* See symtab.h. */
4515
4516 bool
4517 global_symbol_searcher::is_suitable_msymbol
4518 (const enum search_domain kind, const minimal_symbol *msymbol)
4519 {
4520 switch (MSYMBOL_TYPE (msymbol))
4521 {
4522 case mst_data:
4523 case mst_bss:
4524 case mst_file_data:
4525 case mst_file_bss:
4526 return kind == VARIABLES_DOMAIN;
4527 case mst_text:
4528 case mst_file_text:
4529 case mst_solib_trampoline:
4530 case mst_text_gnu_ifunc:
4531 return kind == FUNCTIONS_DOMAIN;
4532 default:
4533 return false;
4534 }
4535 }
4536
4537 /* See symtab.h. */
4538
4539 bool
4540 global_symbol_searcher::expand_symtabs
4541 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4542 {
4543 enum search_domain kind = m_kind;
4544 bool found_msymbol = false;
4545
4546 if (objfile->sf)
4547 objfile->sf->qf->expand_symtabs_matching
4548 (objfile,
4549 [&] (const char *filename, bool basenames)
4550 {
4551 return file_matches (filename, filenames, basenames);
4552 },
4553 &lookup_name_info::match_any (),
4554 [&] (const char *symname)
4555 {
4556 return (!preg.has_value ()
4557 || preg->exec (symname, 0, NULL, 0) == 0);
4558 },
4559 NULL,
4560 kind);
4561
4562 /* Here, we search through the minimal symbol tables for functions and
4563 variables that match, and force their symbols to be read. This is in
4564 particular necessary for demangled variable names, which are no longer
4565 put into the partial symbol tables. The symbol will then be found
4566 during the scan of symtabs later.
4567
4568 For functions, find_pc_symtab should succeed if we have debug info for
4569 the function, for variables we have to call
4570 lookup_symbol_in_objfile_from_linkage_name to determine if the
4571 variable has debug info. If the lookup fails, set found_msymbol so
4572 that we will rescan to print any matching symbols without debug info.
4573 We only search the objfile the msymbol came from, we no longer search
4574 all objfiles. In large programs (1000s of shared libs) searching all
4575 objfiles is not worth the pain. */
4576 if (filenames.empty ()
4577 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4578 {
4579 for (minimal_symbol *msymbol : objfile->msymbols ())
4580 {
4581 QUIT;
4582
4583 if (msymbol->created_by_gdb)
4584 continue;
4585
4586 if (is_suitable_msymbol (kind, msymbol))
4587 {
4588 if (!preg.has_value ()
4589 || preg->exec (msymbol->natural_name (), 0,
4590 NULL, 0) == 0)
4591 {
4592 /* An important side-effect of these lookup functions is
4593 to expand the symbol table if msymbol is found, later
4594 in the process we will add matching symbols or
4595 msymbols to the results list, and that requires that
4596 the symbols tables are expanded. */
4597 if (kind == FUNCTIONS_DOMAIN
4598 ? (find_pc_compunit_symtab
4599 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4600 == NULL)
4601 : (lookup_symbol_in_objfile_from_linkage_name
4602 (objfile, msymbol->linkage_name (),
4603 VAR_DOMAIN)
4604 .symbol == NULL))
4605 found_msymbol = true;
4606 }
4607 }
4608 }
4609 }
4610
4611 return found_msymbol;
4612 }
4613
4614 /* See symtab.h. */
4615
4616 bool
4617 global_symbol_searcher::add_matching_symbols
4618 (objfile *objfile,
4619 const gdb::optional<compiled_regex> &preg,
4620 const gdb::optional<compiled_regex> &treg,
4621 std::set<symbol_search> *result_set) const
4622 {
4623 enum search_domain kind = m_kind;
4624
4625 /* Add matching symbols (if not already present). */
4626 for (compunit_symtab *cust : objfile->compunits ())
4627 {
4628 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4629
4630 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4631 {
4632 struct block_iterator iter;
4633 struct symbol *sym;
4634 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4635
4636 ALL_BLOCK_SYMBOLS (b, iter, sym)
4637 {
4638 struct symtab *real_symtab = symbol_symtab (sym);
4639
4640 QUIT;
4641
4642 /* Check first sole REAL_SYMTAB->FILENAME. It does
4643 not need to be a substring of symtab_to_fullname as
4644 it may contain "./" etc. */
4645 if ((file_matches (real_symtab->filename, filenames, false)
4646 || ((basenames_may_differ
4647 || file_matches (lbasename (real_symtab->filename),
4648 filenames, true))
4649 && file_matches (symtab_to_fullname (real_symtab),
4650 filenames, false)))
4651 && ((!preg.has_value ()
4652 || preg->exec (sym->natural_name (), 0,
4653 NULL, 0) == 0)
4654 && ((kind == VARIABLES_DOMAIN
4655 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4656 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4657 && SYMBOL_CLASS (sym) != LOC_BLOCK
4658 /* LOC_CONST can be used for more than
4659 just enums, e.g., c++ static const
4660 members. We only want to skip enums
4661 here. */
4662 && !(SYMBOL_CLASS (sym) == LOC_CONST
4663 && (TYPE_CODE (SYMBOL_TYPE (sym))
4664 == TYPE_CODE_ENUM))
4665 && (!treg.has_value ()
4666 || treg_matches_sym_type_name (*treg, sym)))
4667 || (kind == FUNCTIONS_DOMAIN
4668 && SYMBOL_CLASS (sym) == LOC_BLOCK
4669 && (!treg.has_value ()
4670 || treg_matches_sym_type_name (*treg,
4671 sym)))
4672 || (kind == TYPES_DOMAIN
4673 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4674 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4675 || (kind == MODULES_DOMAIN
4676 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4677 && SYMBOL_LINE (sym) != 0))))
4678 {
4679 if (result_set->size () < m_max_search_results)
4680 {
4681 /* Match, insert if not already in the results. */
4682 symbol_search ss (block, sym);
4683 if (result_set->find (ss) == result_set->end ())
4684 result_set->insert (ss);
4685 }
4686 else
4687 return false;
4688 }
4689 }
4690 }
4691 }
4692
4693 return true;
4694 }
4695
4696 /* See symtab.h. */
4697
4698 bool
4699 global_symbol_searcher::add_matching_msymbols
4700 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4701 std::vector<symbol_search> *results) const
4702 {
4703 enum search_domain kind = m_kind;
4704
4705 for (minimal_symbol *msymbol : objfile->msymbols ())
4706 {
4707 QUIT;
4708
4709 if (msymbol->created_by_gdb)
4710 continue;
4711
4712 if (is_suitable_msymbol (kind, msymbol))
4713 {
4714 if (!preg.has_value ()
4715 || preg->exec (msymbol->natural_name (), 0,
4716 NULL, 0) == 0)
4717 {
4718 /* For functions we can do a quick check of whether the
4719 symbol might be found via find_pc_symtab. */
4720 if (kind != FUNCTIONS_DOMAIN
4721 || (find_pc_compunit_symtab
4722 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4723 == NULL))
4724 {
4725 if (lookup_symbol_in_objfile_from_linkage_name
4726 (objfile, msymbol->linkage_name (),
4727 VAR_DOMAIN).symbol == NULL)
4728 {
4729 /* Matching msymbol, add it to the results list. */
4730 if (results->size () < m_max_search_results)
4731 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4732 else
4733 return false;
4734 }
4735 }
4736 }
4737 }
4738 }
4739
4740 return true;
4741 }
4742
4743 /* See symtab.h. */
4744
4745 std::vector<symbol_search>
4746 global_symbol_searcher::search () const
4747 {
4748 gdb::optional<compiled_regex> preg;
4749 gdb::optional<compiled_regex> treg;
4750
4751 gdb_assert (m_kind != ALL_DOMAIN);
4752
4753 if (m_symbol_name_regexp != NULL)
4754 {
4755 const char *symbol_name_regexp = m_symbol_name_regexp;
4756
4757 /* Make sure spacing is right for C++ operators.
4758 This is just a courtesy to make the matching less sensitive
4759 to how many spaces the user leaves between 'operator'
4760 and <TYPENAME> or <OPERATOR>. */
4761 const char *opend;
4762 const char *opname = operator_chars (symbol_name_regexp, &opend);
4763
4764 if (*opname)
4765 {
4766 int fix = -1; /* -1 means ok; otherwise number of
4767 spaces needed. */
4768
4769 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4770 {
4771 /* There should 1 space between 'operator' and 'TYPENAME'. */
4772 if (opname[-1] != ' ' || opname[-2] == ' ')
4773 fix = 1;
4774 }
4775 else
4776 {
4777 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4778 if (opname[-1] == ' ')
4779 fix = 0;
4780 }
4781 /* If wrong number of spaces, fix it. */
4782 if (fix >= 0)
4783 {
4784 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4785
4786 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4787 symbol_name_regexp = tmp;
4788 }
4789 }
4790
4791 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4792 ? REG_ICASE : 0);
4793 preg.emplace (symbol_name_regexp, cflags,
4794 _("Invalid regexp"));
4795 }
4796
4797 if (m_symbol_type_regexp != NULL)
4798 {
4799 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4800 ? REG_ICASE : 0);
4801 treg.emplace (m_symbol_type_regexp, cflags,
4802 _("Invalid regexp"));
4803 }
4804
4805 bool found_msymbol = false;
4806 std::set<symbol_search> result_set;
4807 for (objfile *objfile : current_program_space->objfiles ())
4808 {
4809 /* Expand symtabs within objfile that possibly contain matching
4810 symbols. */
4811 found_msymbol |= expand_symtabs (objfile, preg);
4812
4813 /* Find matching symbols within OBJFILE and add them in to the
4814 RESULT_SET set. Use a set here so that we can easily detect
4815 duplicates as we go, and can therefore track how many unique
4816 matches we have found so far. */
4817 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4818 break;
4819 }
4820
4821 /* Convert the result set into a sorted result list, as std::set is
4822 defined to be sorted then no explicit call to std::sort is needed. */
4823 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4824
4825 /* If there are no debug symbols, then add matching minsyms. But if the
4826 user wants to see symbols matching a type regexp, then never give a
4827 minimal symbol, as we assume that a minimal symbol does not have a
4828 type. */
4829 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4830 && !m_exclude_minsyms
4831 && !treg.has_value ())
4832 {
4833 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4834 for (objfile *objfile : current_program_space->objfiles ())
4835 if (!add_matching_msymbols (objfile, preg, &result))
4836 break;
4837 }
4838
4839 return result;
4840 }
4841
4842 /* See symtab.h. */
4843
4844 std::string
4845 symbol_to_info_string (struct symbol *sym, int block,
4846 enum search_domain kind)
4847 {
4848 std::string str;
4849
4850 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4851
4852 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4853 str += "static ";
4854
4855 /* Typedef that is not a C++ class. */
4856 if (kind == TYPES_DOMAIN
4857 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4858 {
4859 string_file tmp_stream;
4860
4861 /* FIXME: For C (and C++) we end up with a difference in output here
4862 between how a typedef is printed, and non-typedefs are printed.
4863 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4864 appear C-like, while TYPE_PRINT doesn't.
4865
4866 For the struct printing case below, things are worse, we force
4867 printing of the ";" in this function, which is going to be wrong
4868 for languages that don't require a ";" between statements. */
4869 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4870 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4871 else
4872 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4873 str += tmp_stream.string ();
4874 }
4875 /* variable, func, or typedef-that-is-c++-class. */
4876 else if (kind < TYPES_DOMAIN
4877 || (kind == TYPES_DOMAIN
4878 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4879 {
4880 string_file tmp_stream;
4881
4882 type_print (SYMBOL_TYPE (sym),
4883 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4884 ? "" : sym->print_name ()),
4885 &tmp_stream, 0);
4886
4887 str += tmp_stream.string ();
4888 str += ";";
4889 }
4890 /* Printing of modules is currently done here, maybe at some future
4891 point we might want a language specific method to print the module
4892 symbol so that we can customise the output more. */
4893 else if (kind == MODULES_DOMAIN)
4894 str += sym->print_name ();
4895
4896 return str;
4897 }
4898
4899 /* Helper function for symbol info commands, for example 'info functions',
4900 'info variables', etc. KIND is the kind of symbol we searched for, and
4901 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4902 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4903 print file and line number information for the symbol as well. Skip
4904 printing the filename if it matches LAST. */
4905
4906 static void
4907 print_symbol_info (enum search_domain kind,
4908 struct symbol *sym,
4909 int block, const char *last)
4910 {
4911 scoped_switch_to_sym_language_if_auto l (sym);
4912 struct symtab *s = symbol_symtab (sym);
4913
4914 if (last != NULL)
4915 {
4916 const char *s_filename = symtab_to_filename_for_display (s);
4917
4918 if (filename_cmp (last, s_filename) != 0)
4919 {
4920 printf_filtered (_("\nFile %ps:\n"),
4921 styled_string (file_name_style.style (),
4922 s_filename));
4923 }
4924
4925 if (SYMBOL_LINE (sym) != 0)
4926 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4927 else
4928 puts_filtered ("\t");
4929 }
4930
4931 std::string str = symbol_to_info_string (sym, block, kind);
4932 printf_filtered ("%s\n", str.c_str ());
4933 }
4934
4935 /* This help function for symtab_symbol_info() prints information
4936 for non-debugging symbols to gdb_stdout. */
4937
4938 static void
4939 print_msymbol_info (struct bound_minimal_symbol msymbol)
4940 {
4941 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4942 char *tmp;
4943
4944 if (gdbarch_addr_bit (gdbarch) <= 32)
4945 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4946 & (CORE_ADDR) 0xffffffff,
4947 8);
4948 else
4949 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4950 16);
4951
4952 ui_file_style sym_style = (msymbol.minsym->text_p ()
4953 ? function_name_style.style ()
4954 : ui_file_style ());
4955
4956 printf_filtered (_("%ps %ps\n"),
4957 styled_string (address_style.style (), tmp),
4958 styled_string (sym_style, msymbol.minsym->print_name ()));
4959 }
4960
4961 /* This is the guts of the commands "info functions", "info types", and
4962 "info variables". It calls search_symbols to find all matches and then
4963 print_[m]symbol_info to print out some useful information about the
4964 matches. */
4965
4966 static void
4967 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4968 const char *regexp, enum search_domain kind,
4969 const char *t_regexp, int from_tty)
4970 {
4971 static const char * const classnames[] =
4972 {"variable", "function", "type", "module"};
4973 const char *last_filename = "";
4974 int first = 1;
4975
4976 gdb_assert (kind != ALL_DOMAIN);
4977
4978 if (regexp != nullptr && *regexp == '\0')
4979 regexp = nullptr;
4980
4981 global_symbol_searcher spec (kind, regexp);
4982 spec.set_symbol_type_regexp (t_regexp);
4983 spec.set_exclude_minsyms (exclude_minsyms);
4984 std::vector<symbol_search> symbols = spec.search ();
4985
4986 if (!quiet)
4987 {
4988 if (regexp != NULL)
4989 {
4990 if (t_regexp != NULL)
4991 printf_filtered
4992 (_("All %ss matching regular expression \"%s\""
4993 " with type matching regular expression \"%s\":\n"),
4994 classnames[kind], regexp, t_regexp);
4995 else
4996 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4997 classnames[kind], regexp);
4998 }
4999 else
5000 {
5001 if (t_regexp != NULL)
5002 printf_filtered
5003 (_("All defined %ss"
5004 " with type matching regular expression \"%s\" :\n"),
5005 classnames[kind], t_regexp);
5006 else
5007 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5008 }
5009 }
5010
5011 for (const symbol_search &p : symbols)
5012 {
5013 QUIT;
5014
5015 if (p.msymbol.minsym != NULL)
5016 {
5017 if (first)
5018 {
5019 if (!quiet)
5020 printf_filtered (_("\nNon-debugging symbols:\n"));
5021 first = 0;
5022 }
5023 print_msymbol_info (p.msymbol);
5024 }
5025 else
5026 {
5027 print_symbol_info (kind,
5028 p.symbol,
5029 p.block,
5030 last_filename);
5031 last_filename
5032 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5033 }
5034 }
5035 }
5036
5037 /* Structure to hold the values of the options used by the 'info variables'
5038 and 'info functions' commands. These correspond to the -q, -t, and -n
5039 options. */
5040
5041 struct info_vars_funcs_options
5042 {
5043 bool quiet = false;
5044 bool exclude_minsyms = false;
5045 char *type_regexp = nullptr;
5046
5047 ~info_vars_funcs_options ()
5048 {
5049 xfree (type_regexp);
5050 }
5051 };
5052
5053 /* The options used by the 'info variables' and 'info functions'
5054 commands. */
5055
5056 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5057 gdb::option::boolean_option_def<info_vars_funcs_options> {
5058 "q",
5059 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5060 nullptr, /* show_cmd_cb */
5061 nullptr /* set_doc */
5062 },
5063
5064 gdb::option::boolean_option_def<info_vars_funcs_options> {
5065 "n",
5066 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5067 nullptr, /* show_cmd_cb */
5068 nullptr /* set_doc */
5069 },
5070
5071 gdb::option::string_option_def<info_vars_funcs_options> {
5072 "t",
5073 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5074 },
5075 nullptr, /* show_cmd_cb */
5076 nullptr /* set_doc */
5077 }
5078 };
5079
5080 /* Returns the option group used by 'info variables' and 'info
5081 functions'. */
5082
5083 static gdb::option::option_def_group
5084 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5085 {
5086 return {{info_vars_funcs_options_defs}, opts};
5087 }
5088
5089 /* Command completer for 'info variables' and 'info functions'. */
5090
5091 static void
5092 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5093 completion_tracker &tracker,
5094 const char *text, const char * /* word */)
5095 {
5096 const auto group
5097 = make_info_vars_funcs_options_def_group (nullptr);
5098 if (gdb::option::complete_options
5099 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5100 return;
5101
5102 const char *word = advance_to_expression_complete_word_point (tracker, text);
5103 symbol_completer (ignore, tracker, text, word);
5104 }
5105
5106 /* Implement the 'info variables' command. */
5107
5108 static void
5109 info_variables_command (const char *args, int from_tty)
5110 {
5111 info_vars_funcs_options opts;
5112 auto grp = make_info_vars_funcs_options_def_group (&opts);
5113 gdb::option::process_options
5114 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5115 if (args != nullptr && *args == '\0')
5116 args = nullptr;
5117
5118 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5119 opts.type_regexp, from_tty);
5120 }
5121
5122 /* Implement the 'info functions' command. */
5123
5124 static void
5125 info_functions_command (const char *args, int from_tty)
5126 {
5127 info_vars_funcs_options opts;
5128
5129 auto grp = make_info_vars_funcs_options_def_group (&opts);
5130 gdb::option::process_options
5131 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5132 if (args != nullptr && *args == '\0')
5133 args = nullptr;
5134
5135 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5136 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5137 }
5138
5139 /* Holds the -q option for the 'info types' command. */
5140
5141 struct info_types_options
5142 {
5143 bool quiet = false;
5144 };
5145
5146 /* The options used by the 'info types' command. */
5147
5148 static const gdb::option::option_def info_types_options_defs[] = {
5149 gdb::option::boolean_option_def<info_types_options> {
5150 "q",
5151 [] (info_types_options *opt) { return &opt->quiet; },
5152 nullptr, /* show_cmd_cb */
5153 nullptr /* set_doc */
5154 }
5155 };
5156
5157 /* Returns the option group used by 'info types'. */
5158
5159 static gdb::option::option_def_group
5160 make_info_types_options_def_group (info_types_options *opts)
5161 {
5162 return {{info_types_options_defs}, opts};
5163 }
5164
5165 /* Implement the 'info types' command. */
5166
5167 static void
5168 info_types_command (const char *args, int from_tty)
5169 {
5170 info_types_options opts;
5171
5172 auto grp = make_info_types_options_def_group (&opts);
5173 gdb::option::process_options
5174 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5175 if (args != nullptr && *args == '\0')
5176 args = nullptr;
5177 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5178 }
5179
5180 /* Command completer for 'info types' command. */
5181
5182 static void
5183 info_types_command_completer (struct cmd_list_element *ignore,
5184 completion_tracker &tracker,
5185 const char *text, const char * /* word */)
5186 {
5187 const auto group
5188 = make_info_types_options_def_group (nullptr);
5189 if (gdb::option::complete_options
5190 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5191 return;
5192
5193 const char *word = advance_to_expression_complete_word_point (tracker, text);
5194 symbol_completer (ignore, tracker, text, word);
5195 }
5196
5197 /* Implement the 'info modules' command. */
5198
5199 static void
5200 info_modules_command (const char *args, int from_tty)
5201 {
5202 info_types_options opts;
5203
5204 auto grp = make_info_types_options_def_group (&opts);
5205 gdb::option::process_options
5206 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5207 if (args != nullptr && *args == '\0')
5208 args = nullptr;
5209 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5210 from_tty);
5211 }
5212
5213 static void
5214 rbreak_command (const char *regexp, int from_tty)
5215 {
5216 std::string string;
5217 const char *file_name = nullptr;
5218
5219 if (regexp != nullptr)
5220 {
5221 const char *colon = strchr (regexp, ':');
5222
5223 if (colon && *(colon + 1) != ':')
5224 {
5225 int colon_index;
5226 char *local_name;
5227
5228 colon_index = colon - regexp;
5229 local_name = (char *) alloca (colon_index + 1);
5230 memcpy (local_name, regexp, colon_index);
5231 local_name[colon_index--] = 0;
5232 while (isspace (local_name[colon_index]))
5233 local_name[colon_index--] = 0;
5234 file_name = local_name;
5235 regexp = skip_spaces (colon + 1);
5236 }
5237 }
5238
5239 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5240 if (file_name != nullptr)
5241 spec.filenames.push_back (file_name);
5242 std::vector<symbol_search> symbols = spec.search ();
5243
5244 scoped_rbreak_breakpoints finalize;
5245 for (const symbol_search &p : symbols)
5246 {
5247 if (p.msymbol.minsym == NULL)
5248 {
5249 struct symtab *symtab = symbol_symtab (p.symbol);
5250 const char *fullname = symtab_to_fullname (symtab);
5251
5252 string = string_printf ("%s:'%s'", fullname,
5253 p.symbol->linkage_name ());
5254 break_command (&string[0], from_tty);
5255 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5256 }
5257 else
5258 {
5259 string = string_printf ("'%s'",
5260 p.msymbol.minsym->linkage_name ());
5261
5262 break_command (&string[0], from_tty);
5263 printf_filtered ("<function, no debug info> %s;\n",
5264 p.msymbol.minsym->print_name ());
5265 }
5266 }
5267 }
5268 \f
5269
5270 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5271
5272 static int
5273 compare_symbol_name (const char *symbol_name, language symbol_language,
5274 const lookup_name_info &lookup_name,
5275 completion_match_result &match_res)
5276 {
5277 const language_defn *lang = language_def (symbol_language);
5278
5279 symbol_name_matcher_ftype *name_match
5280 = get_symbol_name_matcher (lang, lookup_name);
5281
5282 return name_match (symbol_name, lookup_name, &match_res);
5283 }
5284
5285 /* See symtab.h. */
5286
5287 void
5288 completion_list_add_name (completion_tracker &tracker,
5289 language symbol_language,
5290 const char *symname,
5291 const lookup_name_info &lookup_name,
5292 const char *text, const char *word)
5293 {
5294 completion_match_result &match_res
5295 = tracker.reset_completion_match_result ();
5296
5297 /* Clip symbols that cannot match. */
5298 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5299 return;
5300
5301 /* Refresh SYMNAME from the match string. It's potentially
5302 different depending on language. (E.g., on Ada, the match may be
5303 the encoded symbol name wrapped in "<>"). */
5304 symname = match_res.match.match ();
5305 gdb_assert (symname != NULL);
5306
5307 /* We have a match for a completion, so add SYMNAME to the current list
5308 of matches. Note that the name is moved to freshly malloc'd space. */
5309
5310 {
5311 gdb::unique_xmalloc_ptr<char> completion
5312 = make_completion_match_str (symname, text, word);
5313
5314 /* Here we pass the match-for-lcd object to add_completion. Some
5315 languages match the user text against substrings of symbol
5316 names in some cases. E.g., in C++, "b push_ba" completes to
5317 "std::vector::push_back", "std::string::push_back", etc., and
5318 in this case we want the completion lowest common denominator
5319 to be "push_back" instead of "std::". */
5320 tracker.add_completion (std::move (completion),
5321 &match_res.match_for_lcd, text, word);
5322 }
5323 }
5324
5325 /* completion_list_add_name wrapper for struct symbol. */
5326
5327 static void
5328 completion_list_add_symbol (completion_tracker &tracker,
5329 symbol *sym,
5330 const lookup_name_info &lookup_name,
5331 const char *text, const char *word)
5332 {
5333 completion_list_add_name (tracker, sym->language (),
5334 sym->natural_name (),
5335 lookup_name, text, word);
5336
5337 /* C++ function symbols include the parameters within both the msymbol
5338 name and the symbol name. The problem is that the msymbol name will
5339 describe the parameters in the most basic way, with typedefs stripped
5340 out, while the symbol name will represent the types as they appear in
5341 the program. This means we will see duplicate entries in the
5342 completion tracker. The following converts the symbol name back to
5343 the msymbol name and removes the msymbol name from the completion
5344 tracker. */
5345 if (sym->language () == language_cplus
5346 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5347 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5348 {
5349 /* The call to canonicalize returns the empty string if the input
5350 string is already in canonical form, thanks to this we don't
5351 remove the symbol we just added above. */
5352 gdb::unique_xmalloc_ptr<char> str
5353 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5354 if (str != nullptr)
5355 tracker.remove_completion (str.get ());
5356 }
5357 }
5358
5359 /* completion_list_add_name wrapper for struct minimal_symbol. */
5360
5361 static void
5362 completion_list_add_msymbol (completion_tracker &tracker,
5363 minimal_symbol *sym,
5364 const lookup_name_info &lookup_name,
5365 const char *text, const char *word)
5366 {
5367 completion_list_add_name (tracker, sym->language (),
5368 sym->natural_name (),
5369 lookup_name, text, word);
5370 }
5371
5372
5373 /* ObjC: In case we are completing on a selector, look as the msymbol
5374 again and feed all the selectors into the mill. */
5375
5376 static void
5377 completion_list_objc_symbol (completion_tracker &tracker,
5378 struct minimal_symbol *msymbol,
5379 const lookup_name_info &lookup_name,
5380 const char *text, const char *word)
5381 {
5382 static char *tmp = NULL;
5383 static unsigned int tmplen = 0;
5384
5385 const char *method, *category, *selector;
5386 char *tmp2 = NULL;
5387
5388 method = msymbol->natural_name ();
5389
5390 /* Is it a method? */
5391 if ((method[0] != '-') && (method[0] != '+'))
5392 return;
5393
5394 if (text[0] == '[')
5395 /* Complete on shortened method method. */
5396 completion_list_add_name (tracker, language_objc,
5397 method + 1,
5398 lookup_name,
5399 text, word);
5400
5401 while ((strlen (method) + 1) >= tmplen)
5402 {
5403 if (tmplen == 0)
5404 tmplen = 1024;
5405 else
5406 tmplen *= 2;
5407 tmp = (char *) xrealloc (tmp, tmplen);
5408 }
5409 selector = strchr (method, ' ');
5410 if (selector != NULL)
5411 selector++;
5412
5413 category = strchr (method, '(');
5414
5415 if ((category != NULL) && (selector != NULL))
5416 {
5417 memcpy (tmp, method, (category - method));
5418 tmp[category - method] = ' ';
5419 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5420 completion_list_add_name (tracker, language_objc, tmp,
5421 lookup_name, text, word);
5422 if (text[0] == '[')
5423 completion_list_add_name (tracker, language_objc, tmp + 1,
5424 lookup_name, text, word);
5425 }
5426
5427 if (selector != NULL)
5428 {
5429 /* Complete on selector only. */
5430 strcpy (tmp, selector);
5431 tmp2 = strchr (tmp, ']');
5432 if (tmp2 != NULL)
5433 *tmp2 = '\0';
5434
5435 completion_list_add_name (tracker, language_objc, tmp,
5436 lookup_name, text, word);
5437 }
5438 }
5439
5440 /* Break the non-quoted text based on the characters which are in
5441 symbols. FIXME: This should probably be language-specific. */
5442
5443 static const char *
5444 language_search_unquoted_string (const char *text, const char *p)
5445 {
5446 for (; p > text; --p)
5447 {
5448 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5449 continue;
5450 else
5451 {
5452 if ((current_language->la_language == language_objc))
5453 {
5454 if (p[-1] == ':') /* Might be part of a method name. */
5455 continue;
5456 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5457 p -= 2; /* Beginning of a method name. */
5458 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5459 { /* Might be part of a method name. */
5460 const char *t = p;
5461
5462 /* Seeing a ' ' or a '(' is not conclusive evidence
5463 that we are in the middle of a method name. However,
5464 finding "-[" or "+[" should be pretty un-ambiguous.
5465 Unfortunately we have to find it now to decide. */
5466
5467 while (t > text)
5468 if (isalnum (t[-1]) || t[-1] == '_' ||
5469 t[-1] == ' ' || t[-1] == ':' ||
5470 t[-1] == '(' || t[-1] == ')')
5471 --t;
5472 else
5473 break;
5474
5475 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5476 p = t - 2; /* Method name detected. */
5477 /* Else we leave with p unchanged. */
5478 }
5479 }
5480 break;
5481 }
5482 }
5483 return p;
5484 }
5485
5486 static void
5487 completion_list_add_fields (completion_tracker &tracker,
5488 struct symbol *sym,
5489 const lookup_name_info &lookup_name,
5490 const char *text, const char *word)
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5493 {
5494 struct type *t = SYMBOL_TYPE (sym);
5495 enum type_code c = TYPE_CODE (t);
5496 int j;
5497
5498 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5499 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5500 if (TYPE_FIELD_NAME (t, j))
5501 completion_list_add_name (tracker, sym->language (),
5502 TYPE_FIELD_NAME (t, j),
5503 lookup_name, text, word);
5504 }
5505 }
5506
5507 /* See symtab.h. */
5508
5509 bool
5510 symbol_is_function_or_method (symbol *sym)
5511 {
5512 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5513 {
5514 case TYPE_CODE_FUNC:
5515 case TYPE_CODE_METHOD:
5516 return true;
5517 default:
5518 return false;
5519 }
5520 }
5521
5522 /* See symtab.h. */
5523
5524 bool
5525 symbol_is_function_or_method (minimal_symbol *msymbol)
5526 {
5527 switch (MSYMBOL_TYPE (msymbol))
5528 {
5529 case mst_text:
5530 case mst_text_gnu_ifunc:
5531 case mst_solib_trampoline:
5532 case mst_file_text:
5533 return true;
5534 default:
5535 return false;
5536 }
5537 }
5538
5539 /* See symtab.h. */
5540
5541 bound_minimal_symbol
5542 find_gnu_ifunc (const symbol *sym)
5543 {
5544 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5545 return {};
5546
5547 lookup_name_info lookup_name (sym->search_name (),
5548 symbol_name_match_type::SEARCH_NAME);
5549 struct objfile *objfile = symbol_objfile (sym);
5550
5551 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5552 minimal_symbol *ifunc = NULL;
5553
5554 iterate_over_minimal_symbols (objfile, lookup_name,
5555 [&] (minimal_symbol *minsym)
5556 {
5557 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5558 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5559 {
5560 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5561 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5562 {
5563 struct gdbarch *gdbarch = objfile->arch ();
5564 msym_addr
5565 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5566 msym_addr,
5567 current_top_target ());
5568 }
5569 if (msym_addr == address)
5570 {
5571 ifunc = minsym;
5572 return true;
5573 }
5574 }
5575 return false;
5576 });
5577
5578 if (ifunc != NULL)
5579 return {ifunc, objfile};
5580 return {};
5581 }
5582
5583 /* Add matching symbols from SYMTAB to the current completion list. */
5584
5585 static void
5586 add_symtab_completions (struct compunit_symtab *cust,
5587 completion_tracker &tracker,
5588 complete_symbol_mode mode,
5589 const lookup_name_info &lookup_name,
5590 const char *text, const char *word,
5591 enum type_code code)
5592 {
5593 struct symbol *sym;
5594 const struct block *b;
5595 struct block_iterator iter;
5596 int i;
5597
5598 if (cust == NULL)
5599 return;
5600
5601 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5602 {
5603 QUIT;
5604 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5605 ALL_BLOCK_SYMBOLS (b, iter, sym)
5606 {
5607 if (completion_skip_symbol (mode, sym))
5608 continue;
5609
5610 if (code == TYPE_CODE_UNDEF
5611 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5612 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5613 completion_list_add_symbol (tracker, sym,
5614 lookup_name,
5615 text, word);
5616 }
5617 }
5618 }
5619
5620 void
5621 default_collect_symbol_completion_matches_break_on
5622 (completion_tracker &tracker, complete_symbol_mode mode,
5623 symbol_name_match_type name_match_type,
5624 const char *text, const char *word,
5625 const char *break_on, enum type_code code)
5626 {
5627 /* Problem: All of the symbols have to be copied because readline
5628 frees them. I'm not going to worry about this; hopefully there
5629 won't be that many. */
5630
5631 struct symbol *sym;
5632 const struct block *b;
5633 const struct block *surrounding_static_block, *surrounding_global_block;
5634 struct block_iterator iter;
5635 /* The symbol we are completing on. Points in same buffer as text. */
5636 const char *sym_text;
5637
5638 /* Now look for the symbol we are supposed to complete on. */
5639 if (mode == complete_symbol_mode::LINESPEC)
5640 sym_text = text;
5641 else
5642 {
5643 const char *p;
5644 char quote_found;
5645 const char *quote_pos = NULL;
5646
5647 /* First see if this is a quoted string. */
5648 quote_found = '\0';
5649 for (p = text; *p != '\0'; ++p)
5650 {
5651 if (quote_found != '\0')
5652 {
5653 if (*p == quote_found)
5654 /* Found close quote. */
5655 quote_found = '\0';
5656 else if (*p == '\\' && p[1] == quote_found)
5657 /* A backslash followed by the quote character
5658 doesn't end the string. */
5659 ++p;
5660 }
5661 else if (*p == '\'' || *p == '"')
5662 {
5663 quote_found = *p;
5664 quote_pos = p;
5665 }
5666 }
5667 if (quote_found == '\'')
5668 /* A string within single quotes can be a symbol, so complete on it. */
5669 sym_text = quote_pos + 1;
5670 else if (quote_found == '"')
5671 /* A double-quoted string is never a symbol, nor does it make sense
5672 to complete it any other way. */
5673 {
5674 return;
5675 }
5676 else
5677 {
5678 /* It is not a quoted string. Break it based on the characters
5679 which are in symbols. */
5680 while (p > text)
5681 {
5682 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5683 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5684 --p;
5685 else
5686 break;
5687 }
5688 sym_text = p;
5689 }
5690 }
5691
5692 lookup_name_info lookup_name (sym_text, name_match_type, true);
5693
5694 /* At this point scan through the misc symbol vectors and add each
5695 symbol you find to the list. Eventually we want to ignore
5696 anything that isn't a text symbol (everything else will be
5697 handled by the psymtab code below). */
5698
5699 if (code == TYPE_CODE_UNDEF)
5700 {
5701 for (objfile *objfile : current_program_space->objfiles ())
5702 {
5703 for (minimal_symbol *msymbol : objfile->msymbols ())
5704 {
5705 QUIT;
5706
5707 if (completion_skip_symbol (mode, msymbol))
5708 continue;
5709
5710 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5711 sym_text, word);
5712
5713 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5714 sym_text, word);
5715 }
5716 }
5717 }
5718
5719 /* Add completions for all currently loaded symbol tables. */
5720 for (objfile *objfile : current_program_space->objfiles ())
5721 {
5722 for (compunit_symtab *cust : objfile->compunits ())
5723 add_symtab_completions (cust, tracker, mode, lookup_name,
5724 sym_text, word, code);
5725 }
5726
5727 /* Look through the partial symtabs for all symbols which begin by
5728 matching SYM_TEXT. Expand all CUs that you find to the list. */
5729 expand_symtabs_matching (NULL,
5730 lookup_name,
5731 NULL,
5732 [&] (compunit_symtab *symtab) /* expansion notify */
5733 {
5734 add_symtab_completions (symtab,
5735 tracker, mode, lookup_name,
5736 sym_text, word, code);
5737 },
5738 ALL_DOMAIN);
5739
5740 /* Search upwards from currently selected frame (so that we can
5741 complete on local vars). Also catch fields of types defined in
5742 this places which match our text string. Only complete on types
5743 visible from current context. */
5744
5745 b = get_selected_block (0);
5746 surrounding_static_block = block_static_block (b);
5747 surrounding_global_block = block_global_block (b);
5748 if (surrounding_static_block != NULL)
5749 while (b != surrounding_static_block)
5750 {
5751 QUIT;
5752
5753 ALL_BLOCK_SYMBOLS (b, iter, sym)
5754 {
5755 if (code == TYPE_CODE_UNDEF)
5756 {
5757 completion_list_add_symbol (tracker, sym, lookup_name,
5758 sym_text, word);
5759 completion_list_add_fields (tracker, sym, lookup_name,
5760 sym_text, word);
5761 }
5762 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5763 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5764 completion_list_add_symbol (tracker, sym, lookup_name,
5765 sym_text, word);
5766 }
5767
5768 /* Stop when we encounter an enclosing function. Do not stop for
5769 non-inlined functions - the locals of the enclosing function
5770 are in scope for a nested function. */
5771 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5772 break;
5773 b = BLOCK_SUPERBLOCK (b);
5774 }
5775
5776 /* Add fields from the file's types; symbols will be added below. */
5777
5778 if (code == TYPE_CODE_UNDEF)
5779 {
5780 if (surrounding_static_block != NULL)
5781 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5782 completion_list_add_fields (tracker, sym, lookup_name,
5783 sym_text, word);
5784
5785 if (surrounding_global_block != NULL)
5786 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5787 completion_list_add_fields (tracker, sym, lookup_name,
5788 sym_text, word);
5789 }
5790
5791 /* Skip macros if we are completing a struct tag -- arguable but
5792 usually what is expected. */
5793 if (current_language->la_macro_expansion == macro_expansion_c
5794 && code == TYPE_CODE_UNDEF)
5795 {
5796 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5797
5798 /* This adds a macro's name to the current completion list. */
5799 auto add_macro_name = [&] (const char *macro_name,
5800 const macro_definition *,
5801 macro_source_file *,
5802 int)
5803 {
5804 completion_list_add_name (tracker, language_c, macro_name,
5805 lookup_name, sym_text, word);
5806 };
5807
5808 /* Add any macros visible in the default scope. Note that this
5809 may yield the occasional wrong result, because an expression
5810 might be evaluated in a scope other than the default. For
5811 example, if the user types "break file:line if <TAB>", the
5812 resulting expression will be evaluated at "file:line" -- but
5813 at there does not seem to be a way to detect this at
5814 completion time. */
5815 scope = default_macro_scope ();
5816 if (scope)
5817 macro_for_each_in_scope (scope->file, scope->line,
5818 add_macro_name);
5819
5820 /* User-defined macros are always visible. */
5821 macro_for_each (macro_user_macros, add_macro_name);
5822 }
5823 }
5824
5825 void
5826 default_collect_symbol_completion_matches (completion_tracker &tracker,
5827 complete_symbol_mode mode,
5828 symbol_name_match_type name_match_type,
5829 const char *text, const char *word,
5830 enum type_code code)
5831 {
5832 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5833 name_match_type,
5834 text, word, "",
5835 code);
5836 }
5837
5838 /* Collect all symbols (regardless of class) which begin by matching
5839 TEXT. */
5840
5841 void
5842 collect_symbol_completion_matches (completion_tracker &tracker,
5843 complete_symbol_mode mode,
5844 symbol_name_match_type name_match_type,
5845 const char *text, const char *word)
5846 {
5847 current_language->la_collect_symbol_completion_matches (tracker, mode,
5848 name_match_type,
5849 text, word,
5850 TYPE_CODE_UNDEF);
5851 }
5852
5853 /* Like collect_symbol_completion_matches, but only collect
5854 STRUCT_DOMAIN symbols whose type code is CODE. */
5855
5856 void
5857 collect_symbol_completion_matches_type (completion_tracker &tracker,
5858 const char *text, const char *word,
5859 enum type_code code)
5860 {
5861 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5862 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5863
5864 gdb_assert (code == TYPE_CODE_UNION
5865 || code == TYPE_CODE_STRUCT
5866 || code == TYPE_CODE_ENUM);
5867 current_language->la_collect_symbol_completion_matches (tracker, mode,
5868 name_match_type,
5869 text, word, code);
5870 }
5871
5872 /* Like collect_symbol_completion_matches, but collects a list of
5873 symbols defined in all source files named SRCFILE. */
5874
5875 void
5876 collect_file_symbol_completion_matches (completion_tracker &tracker,
5877 complete_symbol_mode mode,
5878 symbol_name_match_type name_match_type,
5879 const char *text, const char *word,
5880 const char *srcfile)
5881 {
5882 /* The symbol we are completing on. Points in same buffer as text. */
5883 const char *sym_text;
5884
5885 /* Now look for the symbol we are supposed to complete on.
5886 FIXME: This should be language-specific. */
5887 if (mode == complete_symbol_mode::LINESPEC)
5888 sym_text = text;
5889 else
5890 {
5891 const char *p;
5892 char quote_found;
5893 const char *quote_pos = NULL;
5894
5895 /* First see if this is a quoted string. */
5896 quote_found = '\0';
5897 for (p = text; *p != '\0'; ++p)
5898 {
5899 if (quote_found != '\0')
5900 {
5901 if (*p == quote_found)
5902 /* Found close quote. */
5903 quote_found = '\0';
5904 else if (*p == '\\' && p[1] == quote_found)
5905 /* A backslash followed by the quote character
5906 doesn't end the string. */
5907 ++p;
5908 }
5909 else if (*p == '\'' || *p == '"')
5910 {
5911 quote_found = *p;
5912 quote_pos = p;
5913 }
5914 }
5915 if (quote_found == '\'')
5916 /* A string within single quotes can be a symbol, so complete on it. */
5917 sym_text = quote_pos + 1;
5918 else if (quote_found == '"')
5919 /* A double-quoted string is never a symbol, nor does it make sense
5920 to complete it any other way. */
5921 {
5922 return;
5923 }
5924 else
5925 {
5926 /* Not a quoted string. */
5927 sym_text = language_search_unquoted_string (text, p);
5928 }
5929 }
5930
5931 lookup_name_info lookup_name (sym_text, name_match_type, true);
5932
5933 /* Go through symtabs for SRCFILE and check the externs and statics
5934 for symbols which match. */
5935 iterate_over_symtabs (srcfile, [&] (symtab *s)
5936 {
5937 add_symtab_completions (SYMTAB_COMPUNIT (s),
5938 tracker, mode, lookup_name,
5939 sym_text, word, TYPE_CODE_UNDEF);
5940 return false;
5941 });
5942 }
5943
5944 /* A helper function for make_source_files_completion_list. It adds
5945 another file name to a list of possible completions, growing the
5946 list as necessary. */
5947
5948 static void
5949 add_filename_to_list (const char *fname, const char *text, const char *word,
5950 completion_list *list)
5951 {
5952 list->emplace_back (make_completion_match_str (fname, text, word));
5953 }
5954
5955 static int
5956 not_interesting_fname (const char *fname)
5957 {
5958 static const char *illegal_aliens[] = {
5959 "_globals_", /* inserted by coff_symtab_read */
5960 NULL
5961 };
5962 int i;
5963
5964 for (i = 0; illegal_aliens[i]; i++)
5965 {
5966 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5967 return 1;
5968 }
5969 return 0;
5970 }
5971
5972 /* An object of this type is passed as the user_data argument to
5973 map_partial_symbol_filenames. */
5974 struct add_partial_filename_data
5975 {
5976 struct filename_seen_cache *filename_seen_cache;
5977 const char *text;
5978 const char *word;
5979 int text_len;
5980 completion_list *list;
5981 };
5982
5983 /* A callback for map_partial_symbol_filenames. */
5984
5985 static void
5986 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5987 void *user_data)
5988 {
5989 struct add_partial_filename_data *data
5990 = (struct add_partial_filename_data *) user_data;
5991
5992 if (not_interesting_fname (filename))
5993 return;
5994 if (!data->filename_seen_cache->seen (filename)
5995 && filename_ncmp (filename, data->text, data->text_len) == 0)
5996 {
5997 /* This file matches for a completion; add it to the
5998 current list of matches. */
5999 add_filename_to_list (filename, data->text, data->word, data->list);
6000 }
6001 else
6002 {
6003 const char *base_name = lbasename (filename);
6004
6005 if (base_name != filename
6006 && !data->filename_seen_cache->seen (base_name)
6007 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6008 add_filename_to_list (base_name, data->text, data->word, data->list);
6009 }
6010 }
6011
6012 /* Return a list of all source files whose names begin with matching
6013 TEXT. The file names are looked up in the symbol tables of this
6014 program. */
6015
6016 completion_list
6017 make_source_files_completion_list (const char *text, const char *word)
6018 {
6019 size_t text_len = strlen (text);
6020 completion_list list;
6021 const char *base_name;
6022 struct add_partial_filename_data datum;
6023
6024 if (!have_full_symbols () && !have_partial_symbols ())
6025 return list;
6026
6027 filename_seen_cache filenames_seen;
6028
6029 for (objfile *objfile : current_program_space->objfiles ())
6030 {
6031 for (compunit_symtab *cu : objfile->compunits ())
6032 {
6033 for (symtab *s : compunit_filetabs (cu))
6034 {
6035 if (not_interesting_fname (s->filename))
6036 continue;
6037 if (!filenames_seen.seen (s->filename)
6038 && filename_ncmp (s->filename, text, text_len) == 0)
6039 {
6040 /* This file matches for a completion; add it to the current
6041 list of matches. */
6042 add_filename_to_list (s->filename, text, word, &list);
6043 }
6044 else
6045 {
6046 /* NOTE: We allow the user to type a base name when the
6047 debug info records leading directories, but not the other
6048 way around. This is what subroutines of breakpoint
6049 command do when they parse file names. */
6050 base_name = lbasename (s->filename);
6051 if (base_name != s->filename
6052 && !filenames_seen.seen (base_name)
6053 && filename_ncmp (base_name, text, text_len) == 0)
6054 add_filename_to_list (base_name, text, word, &list);
6055 }
6056 }
6057 }
6058 }
6059
6060 datum.filename_seen_cache = &filenames_seen;
6061 datum.text = text;
6062 datum.word = word;
6063 datum.text_len = text_len;
6064 datum.list = &list;
6065 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6066 0 /*need_fullname*/);
6067
6068 return list;
6069 }
6070 \f
6071 /* Track MAIN */
6072
6073 /* Return the "main_info" object for the current program space. If
6074 the object has not yet been created, create it and fill in some
6075 default values. */
6076
6077 static struct main_info *
6078 get_main_info (void)
6079 {
6080 struct main_info *info = main_progspace_key.get (current_program_space);
6081
6082 if (info == NULL)
6083 {
6084 /* It may seem strange to store the main name in the progspace
6085 and also in whatever objfile happens to see a main name in
6086 its debug info. The reason for this is mainly historical:
6087 gdb returned "main" as the name even if no function named
6088 "main" was defined the program; and this approach lets us
6089 keep compatibility. */
6090 info = main_progspace_key.emplace (current_program_space);
6091 }
6092
6093 return info;
6094 }
6095
6096 static void
6097 set_main_name (const char *name, enum language lang)
6098 {
6099 struct main_info *info = get_main_info ();
6100
6101 if (info->name_of_main != NULL)
6102 {
6103 xfree (info->name_of_main);
6104 info->name_of_main = NULL;
6105 info->language_of_main = language_unknown;
6106 }
6107 if (name != NULL)
6108 {
6109 info->name_of_main = xstrdup (name);
6110 info->language_of_main = lang;
6111 }
6112 }
6113
6114 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6115 accordingly. */
6116
6117 static void
6118 find_main_name (void)
6119 {
6120 const char *new_main_name;
6121
6122 /* First check the objfiles to see whether a debuginfo reader has
6123 picked up the appropriate main name. Historically the main name
6124 was found in a more or less random way; this approach instead
6125 relies on the order of objfile creation -- which still isn't
6126 guaranteed to get the correct answer, but is just probably more
6127 accurate. */
6128 for (objfile *objfile : current_program_space->objfiles ())
6129 {
6130 if (objfile->per_bfd->name_of_main != NULL)
6131 {
6132 set_main_name (objfile->per_bfd->name_of_main,
6133 objfile->per_bfd->language_of_main);
6134 return;
6135 }
6136 }
6137
6138 /* Try to see if the main procedure is in Ada. */
6139 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6140 be to add a new method in the language vector, and call this
6141 method for each language until one of them returns a non-empty
6142 name. This would allow us to remove this hard-coded call to
6143 an Ada function. It is not clear that this is a better approach
6144 at this point, because all methods need to be written in a way
6145 such that false positives never be returned. For instance, it is
6146 important that a method does not return a wrong name for the main
6147 procedure if the main procedure is actually written in a different
6148 language. It is easy to guaranty this with Ada, since we use a
6149 special symbol generated only when the main in Ada to find the name
6150 of the main procedure. It is difficult however to see how this can
6151 be guarantied for languages such as C, for instance. This suggests
6152 that order of call for these methods becomes important, which means
6153 a more complicated approach. */
6154 new_main_name = ada_main_name ();
6155 if (new_main_name != NULL)
6156 {
6157 set_main_name (new_main_name, language_ada);
6158 return;
6159 }
6160
6161 new_main_name = d_main_name ();
6162 if (new_main_name != NULL)
6163 {
6164 set_main_name (new_main_name, language_d);
6165 return;
6166 }
6167
6168 new_main_name = go_main_name ();
6169 if (new_main_name != NULL)
6170 {
6171 set_main_name (new_main_name, language_go);
6172 return;
6173 }
6174
6175 new_main_name = pascal_main_name ();
6176 if (new_main_name != NULL)
6177 {
6178 set_main_name (new_main_name, language_pascal);
6179 return;
6180 }
6181
6182 /* The languages above didn't identify the name of the main procedure.
6183 Fallback to "main". */
6184
6185 /* Try to find language for main in psymtabs. */
6186 enum language lang
6187 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6188 if (lang != language_unknown)
6189 {
6190 set_main_name ("main", lang);
6191 return;
6192 }
6193
6194 set_main_name ("main", language_unknown);
6195 }
6196
6197 /* See symtab.h. */
6198
6199 const char *
6200 main_name ()
6201 {
6202 struct main_info *info = get_main_info ();
6203
6204 if (info->name_of_main == NULL)
6205 find_main_name ();
6206
6207 return info->name_of_main;
6208 }
6209
6210 /* Return the language of the main function. If it is not known,
6211 return language_unknown. */
6212
6213 enum language
6214 main_language (void)
6215 {
6216 struct main_info *info = get_main_info ();
6217
6218 if (info->name_of_main == NULL)
6219 find_main_name ();
6220
6221 return info->language_of_main;
6222 }
6223
6224 /* Handle ``executable_changed'' events for the symtab module. */
6225
6226 static void
6227 symtab_observer_executable_changed (void)
6228 {
6229 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6230 set_main_name (NULL, language_unknown);
6231 }
6232
6233 /* Return 1 if the supplied producer string matches the ARM RealView
6234 compiler (armcc). */
6235
6236 bool
6237 producer_is_realview (const char *producer)
6238 {
6239 static const char *const arm_idents[] = {
6240 "ARM C Compiler, ADS",
6241 "Thumb C Compiler, ADS",
6242 "ARM C++ Compiler, ADS",
6243 "Thumb C++ Compiler, ADS",
6244 "ARM/Thumb C/C++ Compiler, RVCT",
6245 "ARM C/C++ Compiler, RVCT"
6246 };
6247 int i;
6248
6249 if (producer == NULL)
6250 return false;
6251
6252 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6253 if (startswith (producer, arm_idents[i]))
6254 return true;
6255
6256 return false;
6257 }
6258
6259 \f
6260
6261 /* The next index to hand out in response to a registration request. */
6262
6263 static int next_aclass_value = LOC_FINAL_VALUE;
6264
6265 /* The maximum number of "aclass" registrations we support. This is
6266 constant for convenience. */
6267 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6268
6269 /* The objects representing the various "aclass" values. The elements
6270 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6271 elements are those registered at gdb initialization time. */
6272
6273 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6274
6275 /* The globally visible pointer. This is separate from 'symbol_impl'
6276 so that it can be const. */
6277
6278 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6279
6280 /* Make sure we saved enough room in struct symbol. */
6281
6282 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6283
6284 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6285 is the ops vector associated with this index. This returns the new
6286 index, which should be used as the aclass_index field for symbols
6287 of this type. */
6288
6289 int
6290 register_symbol_computed_impl (enum address_class aclass,
6291 const struct symbol_computed_ops *ops)
6292 {
6293 int result = next_aclass_value++;
6294
6295 gdb_assert (aclass == LOC_COMPUTED);
6296 gdb_assert (result < MAX_SYMBOL_IMPLS);
6297 symbol_impl[result].aclass = aclass;
6298 symbol_impl[result].ops_computed = ops;
6299
6300 /* Sanity check OPS. */
6301 gdb_assert (ops != NULL);
6302 gdb_assert (ops->tracepoint_var_ref != NULL);
6303 gdb_assert (ops->describe_location != NULL);
6304 gdb_assert (ops->get_symbol_read_needs != NULL);
6305 gdb_assert (ops->read_variable != NULL);
6306
6307 return result;
6308 }
6309
6310 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6311 OPS is the ops vector associated with this index. This returns the
6312 new index, which should be used as the aclass_index field for symbols
6313 of this type. */
6314
6315 int
6316 register_symbol_block_impl (enum address_class aclass,
6317 const struct symbol_block_ops *ops)
6318 {
6319 int result = next_aclass_value++;
6320
6321 gdb_assert (aclass == LOC_BLOCK);
6322 gdb_assert (result < MAX_SYMBOL_IMPLS);
6323 symbol_impl[result].aclass = aclass;
6324 symbol_impl[result].ops_block = ops;
6325
6326 /* Sanity check OPS. */
6327 gdb_assert (ops != NULL);
6328 gdb_assert (ops->find_frame_base_location != NULL);
6329
6330 return result;
6331 }
6332
6333 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6334 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6335 this index. This returns the new index, which should be used as
6336 the aclass_index field for symbols of this type. */
6337
6338 int
6339 register_symbol_register_impl (enum address_class aclass,
6340 const struct symbol_register_ops *ops)
6341 {
6342 int result = next_aclass_value++;
6343
6344 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6345 gdb_assert (result < MAX_SYMBOL_IMPLS);
6346 symbol_impl[result].aclass = aclass;
6347 symbol_impl[result].ops_register = ops;
6348
6349 return result;
6350 }
6351
6352 /* Initialize elements of 'symbol_impl' for the constants in enum
6353 address_class. */
6354
6355 static void
6356 initialize_ordinary_address_classes (void)
6357 {
6358 int i;
6359
6360 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6361 symbol_impl[i].aclass = (enum address_class) i;
6362 }
6363
6364 \f
6365
6366 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6367
6368 void
6369 initialize_objfile_symbol (struct symbol *sym)
6370 {
6371 SYMBOL_OBJFILE_OWNED (sym) = 1;
6372 SYMBOL_SECTION (sym) = -1;
6373 }
6374
6375 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6376 obstack. */
6377
6378 struct symbol *
6379 allocate_symbol (struct objfile *objfile)
6380 {
6381 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6382
6383 initialize_objfile_symbol (result);
6384
6385 return result;
6386 }
6387
6388 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6389 obstack. */
6390
6391 struct template_symbol *
6392 allocate_template_symbol (struct objfile *objfile)
6393 {
6394 struct template_symbol *result;
6395
6396 result = new (&objfile->objfile_obstack) template_symbol ();
6397 initialize_objfile_symbol (result);
6398
6399 return result;
6400 }
6401
6402 /* See symtab.h. */
6403
6404 struct objfile *
6405 symbol_objfile (const struct symbol *symbol)
6406 {
6407 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6408 return SYMTAB_OBJFILE (symbol->owner.symtab);
6409 }
6410
6411 /* See symtab.h. */
6412
6413 struct gdbarch *
6414 symbol_arch (const struct symbol *symbol)
6415 {
6416 if (!SYMBOL_OBJFILE_OWNED (symbol))
6417 return symbol->owner.arch;
6418 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6419 }
6420
6421 /* See symtab.h. */
6422
6423 struct symtab *
6424 symbol_symtab (const struct symbol *symbol)
6425 {
6426 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6427 return symbol->owner.symtab;
6428 }
6429
6430 /* See symtab.h. */
6431
6432 void
6433 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6434 {
6435 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6436 symbol->owner.symtab = symtab;
6437 }
6438
6439 /* See symtab.h. */
6440
6441 CORE_ADDR
6442 get_symbol_address (const struct symbol *sym)
6443 {
6444 gdb_assert (sym->maybe_copied);
6445 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6446
6447 const char *linkage_name = sym->linkage_name ();
6448
6449 for (objfile *objfile : current_program_space->objfiles ())
6450 {
6451 if (objfile->separate_debug_objfile_backlink != nullptr)
6452 continue;
6453
6454 bound_minimal_symbol minsym
6455 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6456 if (minsym.minsym != nullptr)
6457 return BMSYMBOL_VALUE_ADDRESS (minsym);
6458 }
6459 return sym->value.address;
6460 }
6461
6462 /* See symtab.h. */
6463
6464 CORE_ADDR
6465 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6466 {
6467 gdb_assert (minsym->maybe_copied);
6468 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6469
6470 const char *linkage_name = minsym->linkage_name ();
6471
6472 for (objfile *objfile : current_program_space->objfiles ())
6473 {
6474 if (objfile->separate_debug_objfile_backlink == nullptr
6475 && (objfile->flags & OBJF_MAINLINE) != 0)
6476 {
6477 bound_minimal_symbol found
6478 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6479 if (found.minsym != nullptr)
6480 return BMSYMBOL_VALUE_ADDRESS (found);
6481 }
6482 }
6483 return minsym->value.address + objf->section_offsets[minsym->section];
6484 }
6485
6486 \f
6487
6488 /* Hold the sub-commands of 'info module'. */
6489
6490 static struct cmd_list_element *info_module_cmdlist = NULL;
6491
6492 /* See symtab.h. */
6493
6494 std::vector<module_symbol_search>
6495 search_module_symbols (const char *module_regexp, const char *regexp,
6496 const char *type_regexp, search_domain kind)
6497 {
6498 std::vector<module_symbol_search> results;
6499
6500 /* Search for all modules matching MODULE_REGEXP. */
6501 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6502 spec1.set_exclude_minsyms (true);
6503 std::vector<symbol_search> modules = spec1.search ();
6504
6505 /* Now search for all symbols of the required KIND matching the required
6506 regular expressions. We figure out which ones are in which modules
6507 below. */
6508 global_symbol_searcher spec2 (kind, regexp);
6509 spec2.set_symbol_type_regexp (type_regexp);
6510 spec2.set_exclude_minsyms (true);
6511 std::vector<symbol_search> symbols = spec2.search ();
6512
6513 /* Now iterate over all MODULES, checking to see which items from
6514 SYMBOLS are in each module. */
6515 for (const symbol_search &p : modules)
6516 {
6517 QUIT;
6518
6519 /* This is a module. */
6520 gdb_assert (p.symbol != nullptr);
6521
6522 std::string prefix = p.symbol->print_name ();
6523 prefix += "::";
6524
6525 for (const symbol_search &q : symbols)
6526 {
6527 if (q.symbol == nullptr)
6528 continue;
6529
6530 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6531 prefix.size ()) != 0)
6532 continue;
6533
6534 results.push_back ({p, q});
6535 }
6536 }
6537
6538 return results;
6539 }
6540
6541 /* Implement the core of both 'info module functions' and 'info module
6542 variables'. */
6543
6544 static void
6545 info_module_subcommand (bool quiet, const char *module_regexp,
6546 const char *regexp, const char *type_regexp,
6547 search_domain kind)
6548 {
6549 /* Print a header line. Don't build the header line bit by bit as this
6550 prevents internationalisation. */
6551 if (!quiet)
6552 {
6553 if (module_regexp == nullptr)
6554 {
6555 if (type_regexp == nullptr)
6556 {
6557 if (regexp == nullptr)
6558 printf_filtered ((kind == VARIABLES_DOMAIN
6559 ? _("All variables in all modules:")
6560 : _("All functions in all modules:")));
6561 else
6562 printf_filtered
6563 ((kind == VARIABLES_DOMAIN
6564 ? _("All variables matching regular expression"
6565 " \"%s\" in all modules:")
6566 : _("All functions matching regular expression"
6567 " \"%s\" in all modules:")),
6568 regexp);
6569 }
6570 else
6571 {
6572 if (regexp == nullptr)
6573 printf_filtered
6574 ((kind == VARIABLES_DOMAIN
6575 ? _("All variables with type matching regular "
6576 "expression \"%s\" in all modules:")
6577 : _("All functions with type matching regular "
6578 "expression \"%s\" in all modules:")),
6579 type_regexp);
6580 else
6581 printf_filtered
6582 ((kind == VARIABLES_DOMAIN
6583 ? _("All variables matching regular expression "
6584 "\"%s\",\n\twith type matching regular "
6585 "expression \"%s\" in all modules:")
6586 : _("All functions matching regular expression "
6587 "\"%s\",\n\twith type matching regular "
6588 "expression \"%s\" in all modules:")),
6589 regexp, type_regexp);
6590 }
6591 }
6592 else
6593 {
6594 if (type_regexp == nullptr)
6595 {
6596 if (regexp == nullptr)
6597 printf_filtered
6598 ((kind == VARIABLES_DOMAIN
6599 ? _("All variables in all modules matching regular "
6600 "expression \"%s\":")
6601 : _("All functions in all modules matching regular "
6602 "expression \"%s\":")),
6603 module_regexp);
6604 else
6605 printf_filtered
6606 ((kind == VARIABLES_DOMAIN
6607 ? _("All variables matching regular expression "
6608 "\"%s\",\n\tin all modules matching regular "
6609 "expression \"%s\":")
6610 : _("All functions matching regular expression "
6611 "\"%s\",\n\tin all modules matching regular "
6612 "expression \"%s\":")),
6613 regexp, module_regexp);
6614 }
6615 else
6616 {
6617 if (regexp == nullptr)
6618 printf_filtered
6619 ((kind == VARIABLES_DOMAIN
6620 ? _("All variables with type matching regular "
6621 "expression \"%s\"\n\tin all modules matching "
6622 "regular expression \"%s\":")
6623 : _("All functions with type matching regular "
6624 "expression \"%s\"\n\tin all modules matching "
6625 "regular expression \"%s\":")),
6626 type_regexp, module_regexp);
6627 else
6628 printf_filtered
6629 ((kind == VARIABLES_DOMAIN
6630 ? _("All variables matching regular expression "
6631 "\"%s\",\n\twith type matching regular expression "
6632 "\"%s\",\n\tin all modules matching regular "
6633 "expression \"%s\":")
6634 : _("All functions matching regular expression "
6635 "\"%s\",\n\twith type matching regular expression "
6636 "\"%s\",\n\tin all modules matching regular "
6637 "expression \"%s\":")),
6638 regexp, type_regexp, module_regexp);
6639 }
6640 }
6641 printf_filtered ("\n");
6642 }
6643
6644 /* Find all symbols of type KIND matching the given regular expressions
6645 along with the symbols for the modules in which those symbols
6646 reside. */
6647 std::vector<module_symbol_search> module_symbols
6648 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6649
6650 std::sort (module_symbols.begin (), module_symbols.end (),
6651 [] (const module_symbol_search &a, const module_symbol_search &b)
6652 {
6653 if (a.first < b.first)
6654 return true;
6655 else if (a.first == b.first)
6656 return a.second < b.second;
6657 else
6658 return false;
6659 });
6660
6661 const char *last_filename = "";
6662 const symbol *last_module_symbol = nullptr;
6663 for (const module_symbol_search &ms : module_symbols)
6664 {
6665 const symbol_search &p = ms.first;
6666 const symbol_search &q = ms.second;
6667
6668 gdb_assert (q.symbol != nullptr);
6669
6670 if (last_module_symbol != p.symbol)
6671 {
6672 printf_filtered ("\n");
6673 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6674 last_module_symbol = p.symbol;
6675 last_filename = "";
6676 }
6677
6678 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6679 last_filename);
6680 last_filename
6681 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6682 }
6683 }
6684
6685 /* Hold the option values for the 'info module .....' sub-commands. */
6686
6687 struct info_modules_var_func_options
6688 {
6689 bool quiet = false;
6690 char *type_regexp = nullptr;
6691 char *module_regexp = nullptr;
6692
6693 ~info_modules_var_func_options ()
6694 {
6695 xfree (type_regexp);
6696 xfree (module_regexp);
6697 }
6698 };
6699
6700 /* The options used by 'info module variables' and 'info module functions'
6701 commands. */
6702
6703 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6704 gdb::option::boolean_option_def<info_modules_var_func_options> {
6705 "q",
6706 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6707 nullptr, /* show_cmd_cb */
6708 nullptr /* set_doc */
6709 },
6710
6711 gdb::option::string_option_def<info_modules_var_func_options> {
6712 "t",
6713 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6714 nullptr, /* show_cmd_cb */
6715 nullptr /* set_doc */
6716 },
6717
6718 gdb::option::string_option_def<info_modules_var_func_options> {
6719 "m",
6720 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6721 nullptr, /* show_cmd_cb */
6722 nullptr /* set_doc */
6723 }
6724 };
6725
6726 /* Return the option group used by the 'info module ...' sub-commands. */
6727
6728 static inline gdb::option::option_def_group
6729 make_info_modules_var_func_options_def_group
6730 (info_modules_var_func_options *opts)
6731 {
6732 return {{info_modules_var_func_options_defs}, opts};
6733 }
6734
6735 /* Implements the 'info module functions' command. */
6736
6737 static void
6738 info_module_functions_command (const char *args, int from_tty)
6739 {
6740 info_modules_var_func_options opts;
6741 auto grp = make_info_modules_var_func_options_def_group (&opts);
6742 gdb::option::process_options
6743 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6744 if (args != nullptr && *args == '\0')
6745 args = nullptr;
6746
6747 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6748 opts.type_regexp, FUNCTIONS_DOMAIN);
6749 }
6750
6751 /* Implements the 'info module variables' command. */
6752
6753 static void
6754 info_module_variables_command (const char *args, int from_tty)
6755 {
6756 info_modules_var_func_options opts;
6757 auto grp = make_info_modules_var_func_options_def_group (&opts);
6758 gdb::option::process_options
6759 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6760 if (args != nullptr && *args == '\0')
6761 args = nullptr;
6762
6763 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6764 opts.type_regexp, VARIABLES_DOMAIN);
6765 }
6766
6767 /* Command completer for 'info module ...' sub-commands. */
6768
6769 static void
6770 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6771 completion_tracker &tracker,
6772 const char *text,
6773 const char * /* word */)
6774 {
6775
6776 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6777 if (gdb::option::complete_options
6778 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6779 return;
6780
6781 const char *word = advance_to_expression_complete_word_point (tracker, text);
6782 symbol_completer (ignore, tracker, text, word);
6783 }
6784
6785 \f
6786
6787 void _initialize_symtab ();
6788 void
6789 _initialize_symtab ()
6790 {
6791 cmd_list_element *c;
6792
6793 initialize_ordinary_address_classes ();
6794
6795 c = add_info ("variables", info_variables_command,
6796 info_print_args_help (_("\
6797 All global and static variable names or those matching REGEXPs.\n\
6798 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6799 Prints the global and static variables.\n"),
6800 _("global and static variables"),
6801 true));
6802 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6803 if (dbx_commands)
6804 {
6805 c = add_com ("whereis", class_info, info_variables_command,
6806 info_print_args_help (_("\
6807 All global and static variable names, or those matching REGEXPs.\n\
6808 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6809 Prints the global and static variables.\n"),
6810 _("global and static variables"),
6811 true));
6812 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6813 }
6814
6815 c = add_info ("functions", info_functions_command,
6816 info_print_args_help (_("\
6817 All function names or those matching REGEXPs.\n\
6818 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6819 Prints the functions.\n"),
6820 _("functions"),
6821 true));
6822 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6823
6824 c = add_info ("types", info_types_command, _("\
6825 All type names, or those matching REGEXP.\n\
6826 Usage: info types [-q] [REGEXP]\n\
6827 Print information about all types matching REGEXP, or all types if no\n\
6828 REGEXP is given. The optional flag -q disables printing of headers."));
6829 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6830
6831 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6832
6833 static std::string info_sources_help
6834 = gdb::option::build_help (_("\
6835 All source files in the program or those matching REGEXP.\n\
6836 Usage: info sources [OPTION]... [REGEXP]\n\
6837 By default, REGEXP is used to match anywhere in the filename.\n\
6838 \n\
6839 Options:\n\
6840 %OPTIONS%"),
6841 info_sources_opts);
6842
6843 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6844 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6845
6846 c = add_info ("modules", info_modules_command,
6847 _("All module names, or those matching REGEXP."));
6848 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6849
6850 add_basic_prefix_cmd ("module", class_info, _("\
6851 Print information about modules."),
6852 &info_module_cmdlist, "info module ",
6853 0, &infolist);
6854
6855 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6856 Display functions arranged by modules.\n\
6857 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6858 Print a summary of all functions within each Fortran module, grouped by\n\
6859 module and file. For each function the line on which the function is\n\
6860 defined is given along with the type signature and name of the function.\n\
6861 \n\
6862 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6863 listed. If MODREGEXP is provided then only functions in modules matching\n\
6864 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6865 type signature matches TYPEREGEXP are listed.\n\
6866 \n\
6867 The -q flag suppresses printing some header information."),
6868 &info_module_cmdlist);
6869 set_cmd_completer_handle_brkchars
6870 (c, info_module_var_func_command_completer);
6871
6872 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6873 Display variables arranged by modules.\n\
6874 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6875 Print a summary of all variables within each Fortran module, grouped by\n\
6876 module and file. For each variable the line on which the variable is\n\
6877 defined is given along with the type and name of the variable.\n\
6878 \n\
6879 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6880 listed. If MODREGEXP is provided then only variables in modules matching\n\
6881 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6882 type matches TYPEREGEXP are listed.\n\
6883 \n\
6884 The -q flag suppresses printing some header information."),
6885 &info_module_cmdlist);
6886 set_cmd_completer_handle_brkchars
6887 (c, info_module_var_func_command_completer);
6888
6889 add_com ("rbreak", class_breakpoint, rbreak_command,
6890 _("Set a breakpoint for all functions matching REGEXP."));
6891
6892 add_setshow_enum_cmd ("multiple-symbols", no_class,
6893 multiple_symbols_modes, &multiple_symbols_mode,
6894 _("\
6895 Set how the debugger handles ambiguities in expressions."), _("\
6896 Show how the debugger handles ambiguities in expressions."), _("\
6897 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6898 NULL, NULL, &setlist, &showlist);
6899
6900 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6901 &basenames_may_differ, _("\
6902 Set whether a source file may have multiple base names."), _("\
6903 Show whether a source file may have multiple base names."), _("\
6904 (A \"base name\" is the name of a file with the directory part removed.\n\
6905 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6906 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6907 before comparing them. Canonicalization is an expensive operation,\n\
6908 but it allows the same file be known by more than one base name.\n\
6909 If not set (the default), all source files are assumed to have just\n\
6910 one base name, and gdb will do file name comparisons more efficiently."),
6911 NULL, NULL,
6912 &setlist, &showlist);
6913
6914 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6915 _("Set debugging of symbol table creation."),
6916 _("Show debugging of symbol table creation."), _("\
6917 When enabled (non-zero), debugging messages are printed when building\n\
6918 symbol tables. A value of 1 (one) normally provides enough information.\n\
6919 A value greater than 1 provides more verbose information."),
6920 NULL,
6921 NULL,
6922 &setdebuglist, &showdebuglist);
6923
6924 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6925 _("\
6926 Set debugging of symbol lookup."), _("\
6927 Show debugging of symbol lookup."), _("\
6928 When enabled (non-zero), symbol lookups are logged."),
6929 NULL, NULL,
6930 &setdebuglist, &showdebuglist);
6931
6932 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6933 &new_symbol_cache_size,
6934 _("Set the size of the symbol cache."),
6935 _("Show the size of the symbol cache."), _("\
6936 The size of the symbol cache.\n\
6937 If zero then the symbol cache is disabled."),
6938 set_symbol_cache_size_handler, NULL,
6939 &maintenance_set_cmdlist,
6940 &maintenance_show_cmdlist);
6941
6942 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6943 _("Dump the symbol cache for each program space."),
6944 &maintenanceprintlist);
6945
6946 add_cmd ("symbol-cache-statistics", class_maintenance,
6947 maintenance_print_symbol_cache_statistics,
6948 _("Print symbol cache statistics for each program space."),
6949 &maintenanceprintlist);
6950
6951 add_cmd ("flush-symbol-cache", class_maintenance,
6952 maintenance_flush_symbol_cache,
6953 _("Flush the symbol cache for each program space."),
6954 &maintenancelist);
6955
6956 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6957 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6958 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6959 }
This page took 0.31671 seconds and 5 git commands to generate.