Change the type of copy_names from int to bool
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117 };
118
119 /* Program space key for finding name and language of "main". */
120
121 static const program_space_key<main_info> main_progspace_key;
122
123 /* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130 /* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135 /* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137 #define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141 /* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144 enum symbol_cache_slot_state
145 {
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149 };
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 };
183
184 /* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187 struct block_symbol_cache
188 {
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200 };
201
202 /* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212 struct symbol_cache
213 {
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224 };
225
226 /* Program space key for finding its symbol cache. */
227
228 static const program_space_key<symbol_cache> symbol_cache_key;
229
230 /* When non-zero, print debugging messages related to symtab creation. */
231 unsigned int symtab_create_debug = 0;
232
233 /* When non-zero, print debugging messages related to symbol lookup. */
234 unsigned int symbol_lookup_debug = 0;
235
236 /* The size of the cache is staged here. */
237 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239 /* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244 /* Non-zero if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247 int basenames_may_differ = 0;
248
249 /* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253 const char multiple_symbols_ask[] = "ask";
254 const char multiple_symbols_all[] = "all";
255 const char multiple_symbols_cancel[] = "cancel";
256 static const char *const multiple_symbols_modes[] =
257 {
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262 };
263 static const char *multiple_symbols_mode = multiple_symbols_all;
264
265 /* Read-only accessor to AUTO_SELECT_MODE. */
266
267 const char *
268 multiple_symbols_select_mode (void)
269 {
270 return multiple_symbols_mode;
271 }
272
273 /* Return the name of a domain_enum. */
274
275 const char *
276 domain_name (domain_enum e)
277 {
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288 }
289
290 /* Return the name of a search_domain . */
291
292 const char *
293 search_domain_name (enum search_domain e)
294 {
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303 }
304
305 /* See symtab.h. */
306
307 struct symtab *
308 compunit_primary_filetab (const struct compunit_symtab *cust)
309 {
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314 }
315
316 /* See symtab.h. */
317
318 enum language
319 compunit_language (const struct compunit_symtab *cust)
320 {
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323 /* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326 }
327
328 /* See symtab.h. */
329
330 bool
331 minimal_symbol::data_p () const
332 {
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338 }
339
340 /* See symtab.h. */
341
342 bool
343 minimal_symbol::text_p () const
344 {
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351 }
352
353 /* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358 int
359 compare_filenames_for_search (const char *filename, const char *search_name)
360 {
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return 0;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return 0;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389 }
390
391 /* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396 int
397 compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399 {
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return 0;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423 }
424
425 /* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439 bool
440 iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445 {
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501 void
502 iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504 {
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535 }
536
537 /* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540 struct symtab *
541 lookup_symtab (const char *name)
542 {
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552 }
553
554 \f
555 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560 char *
561 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 {
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639 }
640
641 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644 void
645 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648 {
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664 }
665
666 /* Return the demangled name of GSYMBOL. */
667
668 const char *
669 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 {
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679 }
680
681 \f
682 /* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685 void
686 symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689 {
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709 }
710
711 /* Functions to initialize a symbol's mangled name. */
712
713 /* Objects of this type are stored in the demangled name hash table. */
714 struct demangled_name_entry
715 {
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719 };
720
721 /* Hash function for the demangled name hash. */
722
723 static hashval_t
724 hash_demangled_name_entry (const void *data)
725 {
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730 }
731
732 /* Equality function for the demangled name hash. */
733
734 static int
735 eq_demangled_name_entry (const void *a, const void *b)
736 {
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743 }
744
745 /* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749 static void
750 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 {
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760 }
761
762 /* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768 static char *
769 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771 {
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799 }
800
801 /* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812 void
813 symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, bool copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816 {
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926 }
927
928 /* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931 const char *
932 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 {
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950 }
951
952 /* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955 const char *
956 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 {
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976 }
977
978 /* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983 const char *
984 symbol_search_name (const struct general_symbol_info *gsymbol)
985 {
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990 }
991
992 /* See symtab.h. */
993
994 bool
995 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997 {
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001 }
1002
1003 \f
1004
1005 /* Return 1 if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009 int
1010 matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012 {
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return 1;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return 0;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return 0;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return 0;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1037 return 0;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_get_section_vma (first->owner, first)
1041 - bfd_get_start_address (first->owner)
1042 != bfd_get_section_vma (second->owner, second)
1043 - bfd_get_start_address (second->owner))
1044 return 0;
1045
1046 if (bfd_get_section_name (first->owner, first) == NULL
1047 || bfd_get_section_name (second->owner, second) == NULL
1048 || strcmp (bfd_get_section_name (first->owner, first),
1049 bfd_get_section_name (second->owner, second)) != 0)
1050 return 0;
1051
1052 /* Otherwise check that they are in corresponding objfiles. */
1053
1054 struct objfile *obj = NULL;
1055 for (objfile *objfile : current_program_space->objfiles ())
1056 if (objfile->obfd == first->owner)
1057 {
1058 obj = objfile;
1059 break;
1060 }
1061 gdb_assert (obj != NULL);
1062
1063 if (obj->separate_debug_objfile != NULL
1064 && obj->separate_debug_objfile->obfd == second->owner)
1065 return 1;
1066 if (obj->separate_debug_objfile_backlink != NULL
1067 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1068 return 1;
1069
1070 return 0;
1071 }
1072
1073 /* See symtab.h. */
1074
1075 void
1076 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1077 {
1078 struct bound_minimal_symbol msymbol;
1079
1080 /* If we know that this is not a text address, return failure. This is
1081 necessary because we loop based on texthigh and textlow, which do
1082 not include the data ranges. */
1083 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1084 if (msymbol.minsym && msymbol.minsym->data_p ())
1085 return;
1086
1087 for (objfile *objfile : current_program_space->objfiles ())
1088 {
1089 struct compunit_symtab *cust = NULL;
1090
1091 if (objfile->sf)
1092 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1093 pc, section, 0);
1094 if (cust)
1095 return;
1096 }
1097 }
1098 \f
1099 /* Hash function for the symbol cache. */
1100
1101 static unsigned int
1102 hash_symbol_entry (const struct objfile *objfile_context,
1103 const char *name, domain_enum domain)
1104 {
1105 unsigned int hash = (uintptr_t) objfile_context;
1106
1107 if (name != NULL)
1108 hash += htab_hash_string (name);
1109
1110 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1111 to map to the same slot. */
1112 if (domain == STRUCT_DOMAIN)
1113 hash += VAR_DOMAIN * 7;
1114 else
1115 hash += domain * 7;
1116
1117 return hash;
1118 }
1119
1120 /* Equality function for the symbol cache. */
1121
1122 static int
1123 eq_symbol_entry (const struct symbol_cache_slot *slot,
1124 const struct objfile *objfile_context,
1125 const char *name, domain_enum domain)
1126 {
1127 const char *slot_name;
1128 domain_enum slot_domain;
1129
1130 if (slot->state == SYMBOL_SLOT_UNUSED)
1131 return 0;
1132
1133 if (slot->objfile_context != objfile_context)
1134 return 0;
1135
1136 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1137 {
1138 slot_name = slot->value.not_found.name;
1139 slot_domain = slot->value.not_found.domain;
1140 }
1141 else
1142 {
1143 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1144 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1145 }
1146
1147 /* NULL names match. */
1148 if (slot_name == NULL && name == NULL)
1149 {
1150 /* But there's no point in calling symbol_matches_domain in the
1151 SYMBOL_SLOT_FOUND case. */
1152 if (slot_domain != domain)
1153 return 0;
1154 }
1155 else if (slot_name != NULL && name != NULL)
1156 {
1157 /* It's important that we use the same comparison that was done
1158 the first time through. If the slot records a found symbol,
1159 then this means using the symbol name comparison function of
1160 the symbol's language with SYMBOL_SEARCH_NAME. See
1161 dictionary.c. It also means using symbol_matches_domain for
1162 found symbols. See block.c.
1163
1164 If the slot records a not-found symbol, then require a precise match.
1165 We could still be lax with whitespace like strcmp_iw though. */
1166
1167 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1168 {
1169 if (strcmp (slot_name, name) != 0)
1170 return 0;
1171 if (slot_domain != domain)
1172 return 0;
1173 }
1174 else
1175 {
1176 struct symbol *sym = slot->value.found.symbol;
1177 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1178
1179 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1180 return 0;
1181
1182 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1183 slot_domain, domain))
1184 return 0;
1185 }
1186 }
1187 else
1188 {
1189 /* Only one name is NULL. */
1190 return 0;
1191 }
1192
1193 return 1;
1194 }
1195
1196 /* Given a cache of size SIZE, return the size of the struct (with variable
1197 length array) in bytes. */
1198
1199 static size_t
1200 symbol_cache_byte_size (unsigned int size)
1201 {
1202 return (sizeof (struct block_symbol_cache)
1203 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1204 }
1205
1206 /* Resize CACHE. */
1207
1208 static void
1209 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1210 {
1211 /* If there's no change in size, don't do anything.
1212 All caches have the same size, so we can just compare with the size
1213 of the global symbols cache. */
1214 if ((cache->global_symbols != NULL
1215 && cache->global_symbols->size == new_size)
1216 || (cache->global_symbols == NULL
1217 && new_size == 0))
1218 return;
1219
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1222
1223 if (new_size == 0)
1224 {
1225 cache->global_symbols = NULL;
1226 cache->static_symbols = NULL;
1227 }
1228 else
1229 {
1230 size_t total_size = symbol_cache_byte_size (new_size);
1231
1232 cache->global_symbols
1233 = (struct block_symbol_cache *) xcalloc (1, total_size);
1234 cache->static_symbols
1235 = (struct block_symbol_cache *) xcalloc (1, total_size);
1236 cache->global_symbols->size = new_size;
1237 cache->static_symbols->size = new_size;
1238 }
1239 }
1240
1241 /* Return the symbol cache of PSPACE.
1242 Create one if it doesn't exist yet. */
1243
1244 static struct symbol_cache *
1245 get_symbol_cache (struct program_space *pspace)
1246 {
1247 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1248
1249 if (cache == NULL)
1250 {
1251 cache = symbol_cache_key.emplace (pspace);
1252 resize_symbol_cache (cache, symbol_cache_size);
1253 }
1254
1255 return cache;
1256 }
1257
1258 /* Set the size of the symbol cache in all program spaces. */
1259
1260 static void
1261 set_symbol_cache_size (unsigned int new_size)
1262 {
1263 struct program_space *pspace;
1264
1265 ALL_PSPACES (pspace)
1266 {
1267 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273 }
1274
1275 /* Called when symbol-cache-size is set. */
1276
1277 static void
1278 set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280 {
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293 }
1294
1295 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1301 can be used to save the result of a full lookup attempt. */
1302
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, enum block_enum block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1309 {
1310 struct block_symbol_cache *bsc;
1311 unsigned int hash;
1312 struct symbol_cache_slot *slot;
1313
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1316 else
1317 bsc = cache->static_symbols;
1318 if (bsc == NULL)
1319 {
1320 *bsc_ptr = NULL;
1321 *slot_ptr = NULL;
1322 return {};
1323 }
1324
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1327
1328 *bsc_ptr = bsc;
1329 *slot_ptr = slot;
1330
1331 if (eq_symbol_entry (slot, objfile_context, name, domain))
1332 {
1333 if (symbol_lookup_debug)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "%s block symbol cache hit%s for %s, %s\n",
1336 block == GLOBAL_BLOCK ? "Global" : "Static",
1337 slot->state == SYMBOL_SLOT_NOT_FOUND
1338 ? " (not found)" : "",
1339 name, domain_name (domain));
1340 ++bsc->hits;
1341 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1342 return SYMBOL_LOOKUP_FAILED;
1343 return slot->value.found;
1344 }
1345
1346 /* Symbol is not present in the cache. */
1347
1348 if (symbol_lookup_debug)
1349 {
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1354 }
1355 ++bsc->misses;
1356 return {};
1357 }
1358
1359 /* Clear out SLOT. */
1360
1361 static void
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1363 {
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1367 }
1368
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1373
1374 static void
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1380 {
1381 if (bsc == NULL)
1382 return;
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1384 {
1385 ++bsc->collisions;
1386 symbol_cache_clear_slot (slot);
1387 }
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1392 }
1393
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1397
1398 static void
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1403 {
1404 if (bsc == NULL)
1405 return;
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1407 {
1408 ++bsc->collisions;
1409 symbol_cache_clear_slot (slot);
1410 }
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1415 }
1416
1417 /* Flush the symbol cache of PSPACE. */
1418
1419 static void
1420 symbol_cache_flush (struct program_space *pspace)
1421 {
1422 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1423 int pass;
1424
1425 if (cache == NULL)
1426 return;
1427 if (cache->global_symbols == NULL)
1428 {
1429 gdb_assert (symbol_cache_size == 0);
1430 gdb_assert (cache->static_symbols == NULL);
1431 return;
1432 }
1433
1434 /* If the cache is untouched since the last flush, early exit.
1435 This is important for performance during the startup of a program linked
1436 with 100s (or 1000s) of shared libraries. */
1437 if (cache->global_symbols->misses == 0
1438 && cache->static_symbols->misses == 0)
1439 return;
1440
1441 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1442 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1443
1444 for (pass = 0; pass < 2; ++pass)
1445 {
1446 struct block_symbol_cache *bsc
1447 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1448 unsigned int i;
1449
1450 for (i = 0; i < bsc->size; ++i)
1451 symbol_cache_clear_slot (&bsc->symbols[i]);
1452 }
1453
1454 cache->global_symbols->hits = 0;
1455 cache->global_symbols->misses = 0;
1456 cache->global_symbols->collisions = 0;
1457 cache->static_symbols->hits = 0;
1458 cache->static_symbols->misses = 0;
1459 cache->static_symbols->collisions = 0;
1460 }
1461
1462 /* Dump CACHE. */
1463
1464 static void
1465 symbol_cache_dump (const struct symbol_cache *cache)
1466 {
1467 int pass;
1468
1469 if (cache->global_symbols == NULL)
1470 {
1471 printf_filtered (" <disabled>\n");
1472 return;
1473 }
1474
1475 for (pass = 0; pass < 2; ++pass)
1476 {
1477 const struct block_symbol_cache *bsc
1478 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1479 unsigned int i;
1480
1481 if (pass == 0)
1482 printf_filtered ("Global symbols:\n");
1483 else
1484 printf_filtered ("Static symbols:\n");
1485
1486 for (i = 0; i < bsc->size; ++i)
1487 {
1488 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1489
1490 QUIT;
1491
1492 switch (slot->state)
1493 {
1494 case SYMBOL_SLOT_UNUSED:
1495 break;
1496 case SYMBOL_SLOT_NOT_FOUND:
1497 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1498 host_address_to_string (slot->objfile_context),
1499 slot->value.not_found.name,
1500 domain_name (slot->value.not_found.domain));
1501 break;
1502 case SYMBOL_SLOT_FOUND:
1503 {
1504 struct symbol *found = slot->value.found.symbol;
1505 const struct objfile *context = slot->objfile_context;
1506
1507 printf_filtered (" [%4u] = %s, %s %s\n", i,
1508 host_address_to_string (context),
1509 SYMBOL_PRINT_NAME (found),
1510 domain_name (SYMBOL_DOMAIN (found)));
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 }
1517
1518 /* The "mt print symbol-cache" command. */
1519
1520 static void
1521 maintenance_print_symbol_cache (const char *args, int from_tty)
1522 {
1523 struct program_space *pspace;
1524
1525 ALL_PSPACES (pspace)
1526 {
1527 struct symbol_cache *cache;
1528
1529 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1530 pspace->num,
1531 pspace->symfile_object_file != NULL
1532 ? objfile_name (pspace->symfile_object_file)
1533 : "(no object file)");
1534
1535 /* If the cache hasn't been created yet, avoid creating one. */
1536 cache = symbol_cache_key.get (pspace);
1537 if (cache == NULL)
1538 printf_filtered (" <empty>\n");
1539 else
1540 symbol_cache_dump (cache);
1541 }
1542 }
1543
1544 /* The "mt flush-symbol-cache" command. */
1545
1546 static void
1547 maintenance_flush_symbol_cache (const char *args, int from_tty)
1548 {
1549 struct program_space *pspace;
1550
1551 ALL_PSPACES (pspace)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 struct program_space *pspace;
1595
1596 ALL_PSPACES (pspace)
1597 {
1598 struct symbol_cache *cache;
1599
1600 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1601 pspace->num,
1602 pspace->symfile_object_file != NULL
1603 ? objfile_name (pspace->symfile_object_file)
1604 : "(no object file)");
1605
1606 /* If the cache hasn't been created yet, avoid creating one. */
1607 cache = symbol_cache_key.get (pspace);
1608 if (cache == NULL)
1609 printf_filtered (" empty, no stats available\n");
1610 else
1611 symbol_cache_stats (cache);
1612 }
1613 }
1614
1615 /* This module's 'new_objfile' observer. */
1616
1617 static void
1618 symtab_new_objfile_observer (struct objfile *objfile)
1619 {
1620 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1621 symbol_cache_flush (current_program_space);
1622 }
1623
1624 /* This module's 'free_objfile' observer. */
1625
1626 static void
1627 symtab_free_objfile_observer (struct objfile *objfile)
1628 {
1629 symbol_cache_flush (objfile->pspace);
1630 }
1631 \f
1632 /* Debug symbols usually don't have section information. We need to dig that
1633 out of the minimal symbols and stash that in the debug symbol. */
1634
1635 void
1636 fixup_section (struct general_symbol_info *ginfo,
1637 CORE_ADDR addr, struct objfile *objfile)
1638 {
1639 struct minimal_symbol *msym;
1640
1641 /* First, check whether a minimal symbol with the same name exists
1642 and points to the same address. The address check is required
1643 e.g. on PowerPC64, where the minimal symbol for a function will
1644 point to the function descriptor, while the debug symbol will
1645 point to the actual function code. */
1646 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1647 if (msym)
1648 ginfo->section = MSYMBOL_SECTION (msym);
1649 else
1650 {
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1659 names.
1660
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset (i.e. the
1664 ANOFFSET value) needs to be subtracted from these values when
1665 performing the comparison. We unconditionally subtract it,
1666 because, when no relocation has been performed, the ANOFFSET
1667 value will simply be zero.
1668
1669 The address of the symbol whose section we're fixing up HAS
1670 NOT BEEN adjusted (relocated) yet. It can't have been since
1671 the section isn't yet known and knowing the section is
1672 necessary in order to add the correct relocation value. In
1673 other words, we wouldn't even be in this function (attempting
1674 to compute the section) if it were already known.
1675
1676 Note that it is possible to search the minimal symbols
1677 (subtracting the relocation value if necessary) to find the
1678 matching minimal symbol, but this is overkill and much less
1679 efficient. It is not necessary to find the matching minimal
1680 symbol, only its section.
1681
1682 Note that this technique (of doing a section table search)
1683 can fail when unrelocated section addresses overlap. For
1684 this reason, we still attempt a lookup by name prior to doing
1685 a search of the section table. */
1686
1687 struct obj_section *s;
1688 int fallback = -1;
1689
1690 ALL_OBJFILE_OSECTIONS (objfile, s)
1691 {
1692 int idx = s - objfile->sections;
1693 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1694
1695 if (fallback == -1)
1696 fallback = idx;
1697
1698 if (obj_section_addr (s) - offset <= addr
1699 && addr < obj_section_endaddr (s) - offset)
1700 {
1701 ginfo->section = idx;
1702 return;
1703 }
1704 }
1705
1706 /* If we didn't find the section, assume it is in the first
1707 section. If there is no allocated section, then it hardly
1708 matters what we pick, so just pick zero. */
1709 if (fallback == -1)
1710 ginfo->section = 0;
1711 else
1712 ginfo->section = fallback;
1713 }
1714 }
1715
1716 struct symbol *
1717 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1718 {
1719 CORE_ADDR addr;
1720
1721 if (!sym)
1722 return NULL;
1723
1724 if (!SYMBOL_OBJFILE_OWNED (sym))
1725 return sym;
1726
1727 /* We either have an OBJFILE, or we can get at it from the sym's
1728 symtab. Anything else is a bug. */
1729 gdb_assert (objfile || symbol_symtab (sym));
1730
1731 if (objfile == NULL)
1732 objfile = symbol_objfile (sym);
1733
1734 if (SYMBOL_OBJ_SECTION (objfile, sym))
1735 return sym;
1736
1737 /* We should have an objfile by now. */
1738 gdb_assert (objfile);
1739
1740 switch (SYMBOL_CLASS (sym))
1741 {
1742 case LOC_STATIC:
1743 case LOC_LABEL:
1744 addr = SYMBOL_VALUE_ADDRESS (sym);
1745 break;
1746 case LOC_BLOCK:
1747 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1748 break;
1749
1750 default:
1751 /* Nothing else will be listed in the minsyms -- no use looking
1752 it up. */
1753 return sym;
1754 }
1755
1756 fixup_section (&sym->ginfo, addr, objfile);
1757
1758 return sym;
1759 }
1760
1761 /* See symtab.h. */
1762
1763 demangle_for_lookup_info::demangle_for_lookup_info
1764 (const lookup_name_info &lookup_name, language lang)
1765 {
1766 demangle_result_storage storage;
1767
1768 if (lookup_name.ignore_parameters () && lang == language_cplus)
1769 {
1770 gdb::unique_xmalloc_ptr<char> without_params
1771 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1772 lookup_name.completion_mode ());
1773
1774 if (without_params != NULL)
1775 {
1776 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1777 m_demangled_name = demangle_for_lookup (without_params.get (),
1778 lang, storage);
1779 return;
1780 }
1781 }
1782
1783 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1784 m_demangled_name = lookup_name.name ();
1785 else
1786 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1787 lang, storage);
1788 }
1789
1790 /* See symtab.h. */
1791
1792 const lookup_name_info &
1793 lookup_name_info::match_any ()
1794 {
1795 /* Lookup any symbol that "" would complete. I.e., this matches all
1796 symbol names. */
1797 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1798 true);
1799
1800 return lookup_name;
1801 }
1802
1803 /* Compute the demangled form of NAME as used by the various symbol
1804 lookup functions. The result can either be the input NAME
1805 directly, or a pointer to a buffer owned by the STORAGE object.
1806
1807 For Ada, this function just returns NAME, unmodified.
1808 Normally, Ada symbol lookups are performed using the encoded name
1809 rather than the demangled name, and so it might seem to make sense
1810 for this function to return an encoded version of NAME.
1811 Unfortunately, we cannot do this, because this function is used in
1812 circumstances where it is not appropriate to try to encode NAME.
1813 For instance, when displaying the frame info, we demangle the name
1814 of each parameter, and then perform a symbol lookup inside our
1815 function using that demangled name. In Ada, certain functions
1816 have internally-generated parameters whose name contain uppercase
1817 characters. Encoding those name would result in those uppercase
1818 characters to become lowercase, and thus cause the symbol lookup
1819 to fail. */
1820
1821 const char *
1822 demangle_for_lookup (const char *name, enum language lang,
1823 demangle_result_storage &storage)
1824 {
1825 /* If we are using C++, D, or Go, demangle the name before doing a
1826 lookup, so we can always binary search. */
1827 if (lang == language_cplus)
1828 {
1829 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1830 if (demangled_name != NULL)
1831 return storage.set_malloc_ptr (demangled_name);
1832
1833 /* If we were given a non-mangled name, canonicalize it
1834 according to the language (so far only for C++). */
1835 std::string canon = cp_canonicalize_string (name);
1836 if (!canon.empty ())
1837 return storage.swap_string (canon);
1838 }
1839 else if (lang == language_d)
1840 {
1841 char *demangled_name = d_demangle (name, 0);
1842 if (demangled_name != NULL)
1843 return storage.set_malloc_ptr (demangled_name);
1844 }
1845 else if (lang == language_go)
1846 {
1847 char *demangled_name = go_demangle (name, 0);
1848 if (demangled_name != NULL)
1849 return storage.set_malloc_ptr (demangled_name);
1850 }
1851
1852 return name;
1853 }
1854
1855 /* See symtab.h. */
1856
1857 unsigned int
1858 search_name_hash (enum language language, const char *search_name)
1859 {
1860 return language_def (language)->la_search_name_hash (search_name);
1861 }
1862
1863 /* See symtab.h.
1864
1865 This function (or rather its subordinates) have a bunch of loops and
1866 it would seem to be attractive to put in some QUIT's (though I'm not really
1867 sure whether it can run long enough to be really important). But there
1868 are a few calls for which it would appear to be bad news to quit
1869 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1870 that there is C++ code below which can error(), but that probably
1871 doesn't affect these calls since they are looking for a known
1872 variable and thus can probably assume it will never hit the C++
1873 code). */
1874
1875 struct block_symbol
1876 lookup_symbol_in_language (const char *name, const struct block *block,
1877 const domain_enum domain, enum language lang,
1878 struct field_of_this_result *is_a_field_of_this)
1879 {
1880 demangle_result_storage storage;
1881 const char *modified_name = demangle_for_lookup (name, lang, storage);
1882
1883 return lookup_symbol_aux (modified_name,
1884 symbol_name_match_type::FULL,
1885 block, domain, lang,
1886 is_a_field_of_this);
1887 }
1888
1889 /* See symtab.h. */
1890
1891 struct block_symbol
1892 lookup_symbol (const char *name, const struct block *block,
1893 domain_enum domain,
1894 struct field_of_this_result *is_a_field_of_this)
1895 {
1896 return lookup_symbol_in_language (name, block, domain,
1897 current_language->la_language,
1898 is_a_field_of_this);
1899 }
1900
1901 /* See symtab.h. */
1902
1903 struct block_symbol
1904 lookup_symbol_search_name (const char *search_name, const struct block *block,
1905 domain_enum domain)
1906 {
1907 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1908 block, domain, language_asm, NULL);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_language_this (const struct language_defn *lang,
1915 const struct block *block)
1916 {
1917 if (lang->la_name_of_this == NULL || block == NULL)
1918 return {};
1919
1920 if (symbol_lookup_debug > 1)
1921 {
1922 struct objfile *objfile = lookup_objfile_from_block (block);
1923
1924 fprintf_unfiltered (gdb_stdlog,
1925 "lookup_language_this (%s, %s (objfile %s))",
1926 lang->la_name, host_address_to_string (block),
1927 objfile_debug_name (objfile));
1928 }
1929
1930 while (block)
1931 {
1932 struct symbol *sym;
1933
1934 sym = block_lookup_symbol (block, lang->la_name_of_this,
1935 symbol_name_match_type::SEARCH_NAME,
1936 VAR_DOMAIN);
1937 if (sym != NULL)
1938 {
1939 if (symbol_lookup_debug > 1)
1940 {
1941 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1942 SYMBOL_PRINT_NAME (sym),
1943 host_address_to_string (sym),
1944 host_address_to_string (block));
1945 }
1946 return (struct block_symbol) {sym, block};
1947 }
1948 if (BLOCK_FUNCTION (block))
1949 break;
1950 block = BLOCK_SUPERBLOCK (block);
1951 }
1952
1953 if (symbol_lookup_debug > 1)
1954 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1955 return {};
1956 }
1957
1958 /* Given TYPE, a structure/union,
1959 return 1 if the component named NAME from the ultimate target
1960 structure/union is defined, otherwise, return 0. */
1961
1962 static int
1963 check_field (struct type *type, const char *name,
1964 struct field_of_this_result *is_a_field_of_this)
1965 {
1966 int i;
1967
1968 /* The type may be a stub. */
1969 type = check_typedef (type);
1970
1971 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1972 {
1973 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1974
1975 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1976 {
1977 is_a_field_of_this->type = type;
1978 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1979 return 1;
1980 }
1981 }
1982
1983 /* C++: If it was not found as a data field, then try to return it
1984 as a pointer to a method. */
1985
1986 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1987 {
1988 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1989 {
1990 is_a_field_of_this->type = type;
1991 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1992 return 1;
1993 }
1994 }
1995
1996 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1997 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1998 return 1;
1999
2000 return 0;
2001 }
2002
2003 /* Behave like lookup_symbol except that NAME is the natural name
2004 (e.g., demangled name) of the symbol that we're looking for. */
2005
2006 static struct block_symbol
2007 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2008 const struct block *block,
2009 const domain_enum domain, enum language language,
2010 struct field_of_this_result *is_a_field_of_this)
2011 {
2012 struct block_symbol result;
2013 const struct language_defn *langdef;
2014
2015 if (symbol_lookup_debug)
2016 {
2017 struct objfile *objfile = lookup_objfile_from_block (block);
2018
2019 fprintf_unfiltered (gdb_stdlog,
2020 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2021 name, host_address_to_string (block),
2022 objfile != NULL
2023 ? objfile_debug_name (objfile) : "NULL",
2024 domain_name (domain), language_str (language));
2025 }
2026
2027 /* Make sure we do something sensible with is_a_field_of_this, since
2028 the callers that set this parameter to some non-null value will
2029 certainly use it later. If we don't set it, the contents of
2030 is_a_field_of_this are undefined. */
2031 if (is_a_field_of_this != NULL)
2032 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2033
2034 /* Search specified block and its superiors. Don't search
2035 STATIC_BLOCK or GLOBAL_BLOCK. */
2036
2037 result = lookup_local_symbol (name, match_type, block, domain, language);
2038 if (result.symbol != NULL)
2039 {
2040 if (symbol_lookup_debug)
2041 {
2042 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2043 host_address_to_string (result.symbol));
2044 }
2045 return result;
2046 }
2047
2048 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2049 check to see if NAME is a field of `this'. */
2050
2051 langdef = language_def (language);
2052
2053 /* Don't do this check if we are searching for a struct. It will
2054 not be found by check_field, but will be found by other
2055 means. */
2056 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2057 {
2058 result = lookup_language_this (langdef, block);
2059
2060 if (result.symbol)
2061 {
2062 struct type *t = result.symbol->type;
2063
2064 /* I'm not really sure that type of this can ever
2065 be typedefed; just be safe. */
2066 t = check_typedef (t);
2067 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2068 t = TYPE_TARGET_TYPE (t);
2069
2070 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2071 && TYPE_CODE (t) != TYPE_CODE_UNION)
2072 error (_("Internal error: `%s' is not an aggregate"),
2073 langdef->la_name_of_this);
2074
2075 if (check_field (t, name, is_a_field_of_this))
2076 {
2077 if (symbol_lookup_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog,
2080 "lookup_symbol_aux (...) = NULL\n");
2081 }
2082 return {};
2083 }
2084 }
2085 }
2086
2087 /* Now do whatever is appropriate for LANGUAGE to look
2088 up static and global variables. */
2089
2090 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2091 if (result.symbol != NULL)
2092 {
2093 if (symbol_lookup_debug)
2094 {
2095 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2096 host_address_to_string (result.symbol));
2097 }
2098 return result;
2099 }
2100
2101 /* Now search all static file-level symbols. Not strictly correct,
2102 but more useful than an error. */
2103
2104 result = lookup_static_symbol (name, domain);
2105 if (symbol_lookup_debug)
2106 {
2107 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2108 result.symbol != NULL
2109 ? host_address_to_string (result.symbol)
2110 : "NULL");
2111 }
2112 return result;
2113 }
2114
2115 /* Check to see if the symbol is defined in BLOCK or its superiors.
2116 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2117
2118 static struct block_symbol
2119 lookup_local_symbol (const char *name,
2120 symbol_name_match_type match_type,
2121 const struct block *block,
2122 const domain_enum domain,
2123 enum language language)
2124 {
2125 struct symbol *sym;
2126 const struct block *static_block = block_static_block (block);
2127 const char *scope = block_scope (block);
2128
2129 /* Check if either no block is specified or it's a global block. */
2130
2131 if (static_block == NULL)
2132 return {};
2133
2134 while (block != static_block)
2135 {
2136 sym = lookup_symbol_in_block (name, match_type, block, domain);
2137 if (sym != NULL)
2138 return (struct block_symbol) {sym, block};
2139
2140 if (language == language_cplus || language == language_fortran)
2141 {
2142 struct block_symbol blocksym
2143 = cp_lookup_symbol_imports_or_template (scope, name, block,
2144 domain);
2145
2146 if (blocksym.symbol != NULL)
2147 return blocksym;
2148 }
2149
2150 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2151 break;
2152 block = BLOCK_SUPERBLOCK (block);
2153 }
2154
2155 /* We've reached the end of the function without finding a result. */
2156
2157 return {};
2158 }
2159
2160 /* See symtab.h. */
2161
2162 struct objfile *
2163 lookup_objfile_from_block (const struct block *block)
2164 {
2165 if (block == NULL)
2166 return NULL;
2167
2168 block = block_global_block (block);
2169 /* Look through all blockvectors. */
2170 for (objfile *obj : current_program_space->objfiles ())
2171 {
2172 for (compunit_symtab *cust : obj->compunits ())
2173 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2174 GLOBAL_BLOCK))
2175 {
2176 if (obj->separate_debug_objfile_backlink)
2177 obj = obj->separate_debug_objfile_backlink;
2178
2179 return obj;
2180 }
2181 }
2182
2183 return NULL;
2184 }
2185
2186 /* See symtab.h. */
2187
2188 struct symbol *
2189 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2190 const struct block *block,
2191 const domain_enum domain)
2192 {
2193 struct symbol *sym;
2194
2195 if (symbol_lookup_debug > 1)
2196 {
2197 struct objfile *objfile = lookup_objfile_from_block (block);
2198
2199 fprintf_unfiltered (gdb_stdlog,
2200 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2201 name, host_address_to_string (block),
2202 objfile_debug_name (objfile),
2203 domain_name (domain));
2204 }
2205
2206 sym = block_lookup_symbol (block, name, match_type, domain);
2207 if (sym)
2208 {
2209 if (symbol_lookup_debug > 1)
2210 {
2211 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2212 host_address_to_string (sym));
2213 }
2214 return fixup_symbol_section (sym, NULL);
2215 }
2216
2217 if (symbol_lookup_debug > 1)
2218 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2219 return NULL;
2220 }
2221
2222 /* See symtab.h. */
2223
2224 struct block_symbol
2225 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2226 enum block_enum block_index,
2227 const char *name,
2228 const domain_enum domain)
2229 {
2230 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2231
2232 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2233 {
2234 struct block_symbol result
2235 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2236
2237 if (result.symbol != nullptr)
2238 return result;
2239 }
2240
2241 return {};
2242 }
2243
2244 /* Check to see if the symbol is defined in one of the OBJFILE's
2245 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2246 depending on whether or not we want to search global symbols or
2247 static symbols. */
2248
2249 static struct block_symbol
2250 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2251 enum block_enum block_index, const char *name,
2252 const domain_enum domain)
2253 {
2254 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2255
2256 if (symbol_lookup_debug > 1)
2257 {
2258 fprintf_unfiltered (gdb_stdlog,
2259 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2260 objfile_debug_name (objfile),
2261 block_index == GLOBAL_BLOCK
2262 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2263 name, domain_name (domain));
2264 }
2265
2266 for (compunit_symtab *cust : objfile->compunits ())
2267 {
2268 const struct blockvector *bv;
2269 const struct block *block;
2270 struct block_symbol result;
2271
2272 bv = COMPUNIT_BLOCKVECTOR (cust);
2273 block = BLOCKVECTOR_BLOCK (bv, block_index);
2274 result.symbol = block_lookup_symbol_primary (block, name, domain);
2275 result.block = block;
2276 if (result.symbol != NULL)
2277 {
2278 if (symbol_lookup_debug > 1)
2279 {
2280 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2281 host_address_to_string (result.symbol),
2282 host_address_to_string (block));
2283 }
2284 result.symbol = fixup_symbol_section (result.symbol, objfile);
2285 return result;
2286
2287 }
2288 }
2289
2290 if (symbol_lookup_debug > 1)
2291 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2292 return {};
2293 }
2294
2295 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2296 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2297 and all associated separate debug objfiles.
2298
2299 Normally we only look in OBJFILE, and not any separate debug objfiles
2300 because the outer loop will cause them to be searched too. This case is
2301 different. Here we're called from search_symbols where it will only
2302 call us for the objfile that contains a matching minsym. */
2303
2304 static struct block_symbol
2305 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2306 const char *linkage_name,
2307 domain_enum domain)
2308 {
2309 enum language lang = current_language->la_language;
2310 struct objfile *main_objfile;
2311
2312 demangle_result_storage storage;
2313 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2314
2315 if (objfile->separate_debug_objfile_backlink)
2316 main_objfile = objfile->separate_debug_objfile_backlink;
2317 else
2318 main_objfile = objfile;
2319
2320 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2321 {
2322 struct block_symbol result;
2323
2324 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2325 modified_name, domain);
2326 if (result.symbol == NULL)
2327 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2328 modified_name, domain);
2329 if (result.symbol != NULL)
2330 return result;
2331 }
2332
2333 return {};
2334 }
2335
2336 /* A helper function that throws an exception when a symbol was found
2337 in a psymtab but not in a symtab. */
2338
2339 static void ATTRIBUTE_NORETURN
2340 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2341 struct compunit_symtab *cust)
2342 {
2343 error (_("\
2344 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2345 %s may be an inlined function, or may be a template function\n \
2346 (if a template, try specifying an instantiation: %s<type>)."),
2347 block_index == GLOBAL_BLOCK ? "global" : "static",
2348 name,
2349 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2350 name, name);
2351 }
2352
2353 /* A helper function for various lookup routines that interfaces with
2354 the "quick" symbol table functions. */
2355
2356 static struct block_symbol
2357 lookup_symbol_via_quick_fns (struct objfile *objfile,
2358 enum block_enum block_index, const char *name,
2359 const domain_enum domain)
2360 {
2361 struct compunit_symtab *cust;
2362 const struct blockvector *bv;
2363 const struct block *block;
2364 struct block_symbol result;
2365
2366 if (!objfile->sf)
2367 return {};
2368
2369 if (symbol_lookup_debug > 1)
2370 {
2371 fprintf_unfiltered (gdb_stdlog,
2372 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2373 objfile_debug_name (objfile),
2374 block_index == GLOBAL_BLOCK
2375 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2376 name, domain_name (domain));
2377 }
2378
2379 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2380 if (cust == NULL)
2381 {
2382 if (symbol_lookup_debug > 1)
2383 {
2384 fprintf_unfiltered (gdb_stdlog,
2385 "lookup_symbol_via_quick_fns (...) = NULL\n");
2386 }
2387 return {};
2388 }
2389
2390 bv = COMPUNIT_BLOCKVECTOR (cust);
2391 block = BLOCKVECTOR_BLOCK (bv, block_index);
2392 result.symbol = block_lookup_symbol (block, name,
2393 symbol_name_match_type::FULL, domain);
2394 if (result.symbol == NULL)
2395 error_in_psymtab_expansion (block_index, name, cust);
2396
2397 if (symbol_lookup_debug > 1)
2398 {
2399 fprintf_unfiltered (gdb_stdlog,
2400 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2401 host_address_to_string (result.symbol),
2402 host_address_to_string (block));
2403 }
2404
2405 result.symbol = fixup_symbol_section (result.symbol, objfile);
2406 result.block = block;
2407 return result;
2408 }
2409
2410 /* See symtab.h. */
2411
2412 struct block_symbol
2413 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2414 const char *name,
2415 const struct block *block,
2416 const domain_enum domain)
2417 {
2418 struct block_symbol result;
2419
2420 /* NOTE: carlton/2003-05-19: The comments below were written when
2421 this (or what turned into this) was part of lookup_symbol_aux;
2422 I'm much less worried about these questions now, since these
2423 decisions have turned out well, but I leave these comments here
2424 for posterity. */
2425
2426 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2427 not it would be appropriate to search the current global block
2428 here as well. (That's what this code used to do before the
2429 is_a_field_of_this check was moved up.) On the one hand, it's
2430 redundant with the lookup in all objfiles search that happens
2431 next. On the other hand, if decode_line_1 is passed an argument
2432 like filename:var, then the user presumably wants 'var' to be
2433 searched for in filename. On the third hand, there shouldn't be
2434 multiple global variables all of which are named 'var', and it's
2435 not like decode_line_1 has ever restricted its search to only
2436 global variables in a single filename. All in all, only
2437 searching the static block here seems best: it's correct and it's
2438 cleanest. */
2439
2440 /* NOTE: carlton/2002-12-05: There's also a possible performance
2441 issue here: if you usually search for global symbols in the
2442 current file, then it would be slightly better to search the
2443 current global block before searching all the symtabs. But there
2444 are other factors that have a much greater effect on performance
2445 than that one, so I don't think we should worry about that for
2446 now. */
2447
2448 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2449 the current objfile. Searching the current objfile first is useful
2450 for both matching user expectations as well as performance. */
2451
2452 result = lookup_symbol_in_static_block (name, block, domain);
2453 if (result.symbol != NULL)
2454 return result;
2455
2456 /* If we didn't find a definition for a builtin type in the static block,
2457 search for it now. This is actually the right thing to do and can be
2458 a massive performance win. E.g., when debugging a program with lots of
2459 shared libraries we could search all of them only to find out the
2460 builtin type isn't defined in any of them. This is common for types
2461 like "void". */
2462 if (domain == VAR_DOMAIN)
2463 {
2464 struct gdbarch *gdbarch;
2465
2466 if (block == NULL)
2467 gdbarch = target_gdbarch ();
2468 else
2469 gdbarch = block_gdbarch (block);
2470 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2471 gdbarch, name);
2472 result.block = NULL;
2473 if (result.symbol != NULL)
2474 return result;
2475 }
2476
2477 return lookup_global_symbol (name, block, domain);
2478 }
2479
2480 /* See symtab.h. */
2481
2482 struct block_symbol
2483 lookup_symbol_in_static_block (const char *name,
2484 const struct block *block,
2485 const domain_enum domain)
2486 {
2487 const struct block *static_block = block_static_block (block);
2488 struct symbol *sym;
2489
2490 if (static_block == NULL)
2491 return {};
2492
2493 if (symbol_lookup_debug)
2494 {
2495 struct objfile *objfile = lookup_objfile_from_block (static_block);
2496
2497 fprintf_unfiltered (gdb_stdlog,
2498 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2499 " %s)\n",
2500 name,
2501 host_address_to_string (block),
2502 objfile_debug_name (objfile),
2503 domain_name (domain));
2504 }
2505
2506 sym = lookup_symbol_in_block (name,
2507 symbol_name_match_type::FULL,
2508 static_block, domain);
2509 if (symbol_lookup_debug)
2510 {
2511 fprintf_unfiltered (gdb_stdlog,
2512 "lookup_symbol_in_static_block (...) = %s\n",
2513 sym != NULL ? host_address_to_string (sym) : "NULL");
2514 }
2515 return (struct block_symbol) {sym, static_block};
2516 }
2517
2518 /* Perform the standard symbol lookup of NAME in OBJFILE:
2519 1) First search expanded symtabs, and if not found
2520 2) Search the "quick" symtabs (partial or .gdb_index).
2521 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2522
2523 static struct block_symbol
2524 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2525 const char *name, const domain_enum domain)
2526 {
2527 struct block_symbol result;
2528
2529 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2530
2531 if (symbol_lookup_debug)
2532 {
2533 fprintf_unfiltered (gdb_stdlog,
2534 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2535 objfile_debug_name (objfile),
2536 block_index == GLOBAL_BLOCK
2537 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2538 name, domain_name (domain));
2539 }
2540
2541 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2542 name, domain);
2543 if (result.symbol != NULL)
2544 {
2545 if (symbol_lookup_debug)
2546 {
2547 fprintf_unfiltered (gdb_stdlog,
2548 "lookup_symbol_in_objfile (...) = %s"
2549 " (in symtabs)\n",
2550 host_address_to_string (result.symbol));
2551 }
2552 return result;
2553 }
2554
2555 result = lookup_symbol_via_quick_fns (objfile, block_index,
2556 name, domain);
2557 if (symbol_lookup_debug)
2558 {
2559 fprintf_unfiltered (gdb_stdlog,
2560 "lookup_symbol_in_objfile (...) = %s%s\n",
2561 result.symbol != NULL
2562 ? host_address_to_string (result.symbol)
2563 : "NULL",
2564 result.symbol != NULL ? " (via quick fns)" : "");
2565 }
2566 return result;
2567 }
2568
2569 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2570
2571 struct global_or_static_sym_lookup_data
2572 {
2573 /* The name of the symbol we are searching for. */
2574 const char *name;
2575
2576 /* The domain to use for our search. */
2577 domain_enum domain;
2578
2579 /* The block index in which to search. */
2580 enum block_enum block_index;
2581
2582 /* The field where the callback should store the symbol if found.
2583 It should be initialized to {NULL, NULL} before the search is started. */
2584 struct block_symbol result;
2585 };
2586
2587 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2588 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2589 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2590 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2591
2592 static int
2593 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2594 void *cb_data)
2595 {
2596 struct global_or_static_sym_lookup_data *data =
2597 (struct global_or_static_sym_lookup_data *) cb_data;
2598
2599 gdb_assert (data->result.symbol == NULL
2600 && data->result.block == NULL);
2601
2602 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2603 data->name, data->domain);
2604
2605 /* If we found a match, tell the iterator to stop. Otherwise,
2606 keep going. */
2607 return (data->result.symbol != NULL);
2608 }
2609
2610 /* This function contains the common code of lookup_{global,static}_symbol.
2611 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2612 the objfile to start the lookup in. */
2613
2614 static struct block_symbol
2615 lookup_global_or_static_symbol (const char *name,
2616 enum block_enum block_index,
2617 struct objfile *objfile,
2618 const domain_enum domain)
2619 {
2620 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2621 struct block_symbol result;
2622 struct global_or_static_sym_lookup_data lookup_data;
2623 struct block_symbol_cache *bsc;
2624 struct symbol_cache_slot *slot;
2625
2626 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2627 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2628
2629 /* First see if we can find the symbol in the cache.
2630 This works because we use the current objfile to qualify the lookup. */
2631 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2632 &bsc, &slot);
2633 if (result.symbol != NULL)
2634 {
2635 if (SYMBOL_LOOKUP_FAILED_P (result))
2636 return {};
2637 return result;
2638 }
2639
2640 /* Call library-specific lookup procedure. */
2641 if (objfile != NULL)
2642 result = solib_global_lookup (objfile, name, domain);
2643
2644 /* If that didn't work go a global search (of global blocks, heh). */
2645 if (result.symbol == NULL)
2646 {
2647 memset (&lookup_data, 0, sizeof (lookup_data));
2648 lookup_data.name = name;
2649 lookup_data.block_index = block_index;
2650 lookup_data.domain = domain;
2651 gdbarch_iterate_over_objfiles_in_search_order
2652 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2653 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2654 result = lookup_data.result;
2655 }
2656
2657 if (result.symbol != NULL)
2658 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2659 else
2660 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2661
2662 return result;
2663 }
2664
2665 /* See symtab.h. */
2666
2667 struct block_symbol
2668 lookup_static_symbol (const char *name, const domain_enum domain)
2669 {
2670 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2671 }
2672
2673 /* See symtab.h. */
2674
2675 struct block_symbol
2676 lookup_global_symbol (const char *name,
2677 const struct block *block,
2678 const domain_enum domain)
2679 {
2680 struct objfile *objfile = lookup_objfile_from_block (block);
2681 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2682 }
2683
2684 int
2685 symbol_matches_domain (enum language symbol_language,
2686 domain_enum symbol_domain,
2687 domain_enum domain)
2688 {
2689 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2690 Similarly, any Ada type declaration implicitly defines a typedef. */
2691 if (symbol_language == language_cplus
2692 || symbol_language == language_d
2693 || symbol_language == language_ada
2694 || symbol_language == language_rust)
2695 {
2696 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2697 && symbol_domain == STRUCT_DOMAIN)
2698 return 1;
2699 }
2700 /* For all other languages, strict match is required. */
2701 return (symbol_domain == domain);
2702 }
2703
2704 /* See symtab.h. */
2705
2706 struct type *
2707 lookup_transparent_type (const char *name)
2708 {
2709 return current_language->la_lookup_transparent_type (name);
2710 }
2711
2712 /* A helper for basic_lookup_transparent_type that interfaces with the
2713 "quick" symbol table functions. */
2714
2715 static struct type *
2716 basic_lookup_transparent_type_quick (struct objfile *objfile,
2717 enum block_enum block_index,
2718 const char *name)
2719 {
2720 struct compunit_symtab *cust;
2721 const struct blockvector *bv;
2722 const struct block *block;
2723 struct symbol *sym;
2724
2725 if (!objfile->sf)
2726 return NULL;
2727 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2728 STRUCT_DOMAIN);
2729 if (cust == NULL)
2730 return NULL;
2731
2732 bv = COMPUNIT_BLOCKVECTOR (cust);
2733 block = BLOCKVECTOR_BLOCK (bv, block_index);
2734 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2735 block_find_non_opaque_type, NULL);
2736 if (sym == NULL)
2737 error_in_psymtab_expansion (block_index, name, cust);
2738 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2739 return SYMBOL_TYPE (sym);
2740 }
2741
2742 /* Subroutine of basic_lookup_transparent_type to simplify it.
2743 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2744 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2745
2746 static struct type *
2747 basic_lookup_transparent_type_1 (struct objfile *objfile,
2748 enum block_enum block_index,
2749 const char *name)
2750 {
2751 const struct blockvector *bv;
2752 const struct block *block;
2753 const struct symbol *sym;
2754
2755 for (compunit_symtab *cust : objfile->compunits ())
2756 {
2757 bv = COMPUNIT_BLOCKVECTOR (cust);
2758 block = BLOCKVECTOR_BLOCK (bv, block_index);
2759 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2760 block_find_non_opaque_type, NULL);
2761 if (sym != NULL)
2762 {
2763 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2764 return SYMBOL_TYPE (sym);
2765 }
2766 }
2767
2768 return NULL;
2769 }
2770
2771 /* The standard implementation of lookup_transparent_type. This code
2772 was modeled on lookup_symbol -- the parts not relevant to looking
2773 up types were just left out. In particular it's assumed here that
2774 types are available in STRUCT_DOMAIN and only in file-static or
2775 global blocks. */
2776
2777 struct type *
2778 basic_lookup_transparent_type (const char *name)
2779 {
2780 struct type *t;
2781
2782 /* Now search all the global symbols. Do the symtab's first, then
2783 check the psymtab's. If a psymtab indicates the existence
2784 of the desired name as a global, then do psymtab-to-symtab
2785 conversion on the fly and return the found symbol. */
2786
2787 for (objfile *objfile : current_program_space->objfiles ())
2788 {
2789 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2790 if (t)
2791 return t;
2792 }
2793
2794 for (objfile *objfile : current_program_space->objfiles ())
2795 {
2796 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2797 if (t)
2798 return t;
2799 }
2800
2801 /* Now search the static file-level symbols.
2802 Not strictly correct, but more useful than an error.
2803 Do the symtab's first, then
2804 check the psymtab's. If a psymtab indicates the existence
2805 of the desired name as a file-level static, then do psymtab-to-symtab
2806 conversion on the fly and return the found symbol. */
2807
2808 for (objfile *objfile : current_program_space->objfiles ())
2809 {
2810 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2811 if (t)
2812 return t;
2813 }
2814
2815 for (objfile *objfile : current_program_space->objfiles ())
2816 {
2817 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2818 if (t)
2819 return t;
2820 }
2821
2822 return (struct type *) 0;
2823 }
2824
2825 /* See symtab.h. */
2826
2827 bool
2828 iterate_over_symbols (const struct block *block,
2829 const lookup_name_info &name,
2830 const domain_enum domain,
2831 gdb::function_view<symbol_found_callback_ftype> callback)
2832 {
2833 struct block_iterator iter;
2834 struct symbol *sym;
2835
2836 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2837 {
2838 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2839 SYMBOL_DOMAIN (sym), domain))
2840 {
2841 struct block_symbol block_sym = {sym, block};
2842
2843 if (!callback (&block_sym))
2844 return false;
2845 }
2846 }
2847 return true;
2848 }
2849
2850 /* See symtab.h. */
2851
2852 bool
2853 iterate_over_symbols_terminated
2854 (const struct block *block,
2855 const lookup_name_info &name,
2856 const domain_enum domain,
2857 gdb::function_view<symbol_found_callback_ftype> callback)
2858 {
2859 if (!iterate_over_symbols (block, name, domain, callback))
2860 return false;
2861 struct block_symbol block_sym = {nullptr, block};
2862 return callback (&block_sym);
2863 }
2864
2865 /* Find the compunit symtab associated with PC and SECTION.
2866 This will read in debug info as necessary. */
2867
2868 struct compunit_symtab *
2869 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2870 {
2871 struct compunit_symtab *best_cust = NULL;
2872 CORE_ADDR distance = 0;
2873 struct bound_minimal_symbol msymbol;
2874
2875 /* If we know that this is not a text address, return failure. This is
2876 necessary because we loop based on the block's high and low code
2877 addresses, which do not include the data ranges, and because
2878 we call find_pc_sect_psymtab which has a similar restriction based
2879 on the partial_symtab's texthigh and textlow. */
2880 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2881 if (msymbol.minsym && msymbol.minsym->data_p ())
2882 return NULL;
2883
2884 /* Search all symtabs for the one whose file contains our address, and which
2885 is the smallest of all the ones containing the address. This is designed
2886 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2887 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2888 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2889
2890 This happens for native ecoff format, where code from included files
2891 gets its own symtab. The symtab for the included file should have
2892 been read in already via the dependency mechanism.
2893 It might be swifter to create several symtabs with the same name
2894 like xcoff does (I'm not sure).
2895
2896 It also happens for objfiles that have their functions reordered.
2897 For these, the symtab we are looking for is not necessarily read in. */
2898
2899 for (objfile *obj_file : current_program_space->objfiles ())
2900 {
2901 for (compunit_symtab *cust : obj_file->compunits ())
2902 {
2903 const struct block *b;
2904 const struct blockvector *bv;
2905
2906 bv = COMPUNIT_BLOCKVECTOR (cust);
2907 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2908
2909 if (BLOCK_START (b) <= pc
2910 && BLOCK_END (b) > pc
2911 && (distance == 0
2912 || BLOCK_END (b) - BLOCK_START (b) < distance))
2913 {
2914 /* For an objfile that has its functions reordered,
2915 find_pc_psymtab will find the proper partial symbol table
2916 and we simply return its corresponding symtab. */
2917 /* In order to better support objfiles that contain both
2918 stabs and coff debugging info, we continue on if a psymtab
2919 can't be found. */
2920 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2921 {
2922 struct compunit_symtab *result;
2923
2924 result
2925 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2926 msymbol,
2927 pc,
2928 section,
2929 0);
2930 if (result != NULL)
2931 return result;
2932 }
2933 if (section != 0)
2934 {
2935 struct block_iterator iter;
2936 struct symbol *sym = NULL;
2937
2938 ALL_BLOCK_SYMBOLS (b, iter, sym)
2939 {
2940 fixup_symbol_section (sym, obj_file);
2941 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2942 sym),
2943 section))
2944 break;
2945 }
2946 if (sym == NULL)
2947 continue; /* No symbol in this symtab matches
2948 section. */
2949 }
2950 distance = BLOCK_END (b) - BLOCK_START (b);
2951 best_cust = cust;
2952 }
2953 }
2954 }
2955
2956 if (best_cust != NULL)
2957 return best_cust;
2958
2959 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2960
2961 for (objfile *objf : current_program_space->objfiles ())
2962 {
2963 struct compunit_symtab *result;
2964
2965 if (!objf->sf)
2966 continue;
2967 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2968 msymbol,
2969 pc, section,
2970 1);
2971 if (result != NULL)
2972 return result;
2973 }
2974
2975 return NULL;
2976 }
2977
2978 /* Find the compunit symtab associated with PC.
2979 This will read in debug info as necessary.
2980 Backward compatibility, no section. */
2981
2982 struct compunit_symtab *
2983 find_pc_compunit_symtab (CORE_ADDR pc)
2984 {
2985 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2986 }
2987
2988 /* See symtab.h. */
2989
2990 struct symbol *
2991 find_symbol_at_address (CORE_ADDR address)
2992 {
2993 for (objfile *objfile : current_program_space->objfiles ())
2994 {
2995 if (objfile->sf == NULL
2996 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2997 continue;
2998
2999 struct compunit_symtab *symtab
3000 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3001 if (symtab != NULL)
3002 {
3003 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3004
3005 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3006 {
3007 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3008 struct block_iterator iter;
3009 struct symbol *sym;
3010
3011 ALL_BLOCK_SYMBOLS (b, iter, sym)
3012 {
3013 if (SYMBOL_CLASS (sym) == LOC_STATIC
3014 && SYMBOL_VALUE_ADDRESS (sym) == address)
3015 return sym;
3016 }
3017 }
3018 }
3019 }
3020
3021 return NULL;
3022 }
3023
3024 \f
3025
3026 /* Find the source file and line number for a given PC value and SECTION.
3027 Return a structure containing a symtab pointer, a line number,
3028 and a pc range for the entire source line.
3029 The value's .pc field is NOT the specified pc.
3030 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3031 use the line that ends there. Otherwise, in that case, the line
3032 that begins there is used. */
3033
3034 /* The big complication here is that a line may start in one file, and end just
3035 before the start of another file. This usually occurs when you #include
3036 code in the middle of a subroutine. To properly find the end of a line's PC
3037 range, we must search all symtabs associated with this compilation unit, and
3038 find the one whose first PC is closer than that of the next line in this
3039 symtab. */
3040
3041 struct symtab_and_line
3042 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3043 {
3044 struct compunit_symtab *cust;
3045 struct linetable *l;
3046 int len;
3047 struct linetable_entry *item;
3048 const struct blockvector *bv;
3049 struct bound_minimal_symbol msymbol;
3050
3051 /* Info on best line seen so far, and where it starts, and its file. */
3052
3053 struct linetable_entry *best = NULL;
3054 CORE_ADDR best_end = 0;
3055 struct symtab *best_symtab = 0;
3056
3057 /* Store here the first line number
3058 of a file which contains the line at the smallest pc after PC.
3059 If we don't find a line whose range contains PC,
3060 we will use a line one less than this,
3061 with a range from the start of that file to the first line's pc. */
3062 struct linetable_entry *alt = NULL;
3063
3064 /* Info on best line seen in this file. */
3065
3066 struct linetable_entry *prev;
3067
3068 /* If this pc is not from the current frame,
3069 it is the address of the end of a call instruction.
3070 Quite likely that is the start of the following statement.
3071 But what we want is the statement containing the instruction.
3072 Fudge the pc to make sure we get that. */
3073
3074 /* It's tempting to assume that, if we can't find debugging info for
3075 any function enclosing PC, that we shouldn't search for line
3076 number info, either. However, GAS can emit line number info for
3077 assembly files --- very helpful when debugging hand-written
3078 assembly code. In such a case, we'd have no debug info for the
3079 function, but we would have line info. */
3080
3081 if (notcurrent)
3082 pc -= 1;
3083
3084 /* elz: added this because this function returned the wrong
3085 information if the pc belongs to a stub (import/export)
3086 to call a shlib function. This stub would be anywhere between
3087 two functions in the target, and the line info was erroneously
3088 taken to be the one of the line before the pc. */
3089
3090 /* RT: Further explanation:
3091
3092 * We have stubs (trampolines) inserted between procedures.
3093 *
3094 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3095 * exists in the main image.
3096 *
3097 * In the minimal symbol table, we have a bunch of symbols
3098 * sorted by start address. The stubs are marked as "trampoline",
3099 * the others appear as text. E.g.:
3100 *
3101 * Minimal symbol table for main image
3102 * main: code for main (text symbol)
3103 * shr1: stub (trampoline symbol)
3104 * foo: code for foo (text symbol)
3105 * ...
3106 * Minimal symbol table for "shr1" image:
3107 * ...
3108 * shr1: code for shr1 (text symbol)
3109 * ...
3110 *
3111 * So the code below is trying to detect if we are in the stub
3112 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3113 * and if found, do the symbolization from the real-code address
3114 * rather than the stub address.
3115 *
3116 * Assumptions being made about the minimal symbol table:
3117 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3118 * if we're really in the trampoline.s If we're beyond it (say
3119 * we're in "foo" in the above example), it'll have a closer
3120 * symbol (the "foo" text symbol for example) and will not
3121 * return the trampoline.
3122 * 2. lookup_minimal_symbol_text() will find a real text symbol
3123 * corresponding to the trampoline, and whose address will
3124 * be different than the trampoline address. I put in a sanity
3125 * check for the address being the same, to avoid an
3126 * infinite recursion.
3127 */
3128 msymbol = lookup_minimal_symbol_by_pc (pc);
3129 if (msymbol.minsym != NULL)
3130 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3131 {
3132 struct bound_minimal_symbol mfunsym
3133 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3134 NULL);
3135
3136 if (mfunsym.minsym == NULL)
3137 /* I eliminated this warning since it is coming out
3138 * in the following situation:
3139 * gdb shmain // test program with shared libraries
3140 * (gdb) break shr1 // function in shared lib
3141 * Warning: In stub for ...
3142 * In the above situation, the shared lib is not loaded yet,
3143 * so of course we can't find the real func/line info,
3144 * but the "break" still works, and the warning is annoying.
3145 * So I commented out the warning. RT */
3146 /* warning ("In stub for %s; unable to find real function/line info",
3147 SYMBOL_LINKAGE_NAME (msymbol)); */
3148 ;
3149 /* fall through */
3150 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3151 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3152 /* Avoid infinite recursion */
3153 /* See above comment about why warning is commented out. */
3154 /* warning ("In stub for %s; unable to find real function/line info",
3155 SYMBOL_LINKAGE_NAME (msymbol)); */
3156 ;
3157 /* fall through */
3158 else
3159 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3160 }
3161
3162 symtab_and_line val;
3163 val.pspace = current_program_space;
3164
3165 cust = find_pc_sect_compunit_symtab (pc, section);
3166 if (cust == NULL)
3167 {
3168 /* If no symbol information, return previous pc. */
3169 if (notcurrent)
3170 pc++;
3171 val.pc = pc;
3172 return val;
3173 }
3174
3175 bv = COMPUNIT_BLOCKVECTOR (cust);
3176
3177 /* Look at all the symtabs that share this blockvector.
3178 They all have the same apriori range, that we found was right;
3179 but they have different line tables. */
3180
3181 for (symtab *iter_s : compunit_filetabs (cust))
3182 {
3183 /* Find the best line in this symtab. */
3184 l = SYMTAB_LINETABLE (iter_s);
3185 if (!l)
3186 continue;
3187 len = l->nitems;
3188 if (len <= 0)
3189 {
3190 /* I think len can be zero if the symtab lacks line numbers
3191 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3192 I'm not sure which, and maybe it depends on the symbol
3193 reader). */
3194 continue;
3195 }
3196
3197 prev = NULL;
3198 item = l->item; /* Get first line info. */
3199
3200 /* Is this file's first line closer than the first lines of other files?
3201 If so, record this file, and its first line, as best alternate. */
3202 if (item->pc > pc && (!alt || item->pc < alt->pc))
3203 alt = item;
3204
3205 auto pc_compare = [](const CORE_ADDR & comp_pc,
3206 const struct linetable_entry & lhs)->bool
3207 {
3208 return comp_pc < lhs.pc;
3209 };
3210
3211 struct linetable_entry *first = item;
3212 struct linetable_entry *last = item + len;
3213 item = std::upper_bound (first, last, pc, pc_compare);
3214 if (item != first)
3215 prev = item - 1; /* Found a matching item. */
3216
3217 /* At this point, prev points at the line whose start addr is <= pc, and
3218 item points at the next line. If we ran off the end of the linetable
3219 (pc >= start of the last line), then prev == item. If pc < start of
3220 the first line, prev will not be set. */
3221
3222 /* Is this file's best line closer than the best in the other files?
3223 If so, record this file, and its best line, as best so far. Don't
3224 save prev if it represents the end of a function (i.e. line number
3225 0) instead of a real line. */
3226
3227 if (prev && prev->line && (!best || prev->pc > best->pc))
3228 {
3229 best = prev;
3230 best_symtab = iter_s;
3231
3232 /* Discard BEST_END if it's before the PC of the current BEST. */
3233 if (best_end <= best->pc)
3234 best_end = 0;
3235 }
3236
3237 /* If another line (denoted by ITEM) is in the linetable and its
3238 PC is after BEST's PC, but before the current BEST_END, then
3239 use ITEM's PC as the new best_end. */
3240 if (best && item < last && item->pc > best->pc
3241 && (best_end == 0 || best_end > item->pc))
3242 best_end = item->pc;
3243 }
3244
3245 if (!best_symtab)
3246 {
3247 /* If we didn't find any line number info, just return zeros.
3248 We used to return alt->line - 1 here, but that could be
3249 anywhere; if we don't have line number info for this PC,
3250 don't make some up. */
3251 val.pc = pc;
3252 }
3253 else if (best->line == 0)
3254 {
3255 /* If our best fit is in a range of PC's for which no line
3256 number info is available (line number is zero) then we didn't
3257 find any valid line information. */
3258 val.pc = pc;
3259 }
3260 else
3261 {
3262 val.symtab = best_symtab;
3263 val.line = best->line;
3264 val.pc = best->pc;
3265 if (best_end && (!alt || best_end < alt->pc))
3266 val.end = best_end;
3267 else if (alt)
3268 val.end = alt->pc;
3269 else
3270 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3271 }
3272 val.section = section;
3273 return val;
3274 }
3275
3276 /* Backward compatibility (no section). */
3277
3278 struct symtab_and_line
3279 find_pc_line (CORE_ADDR pc, int notcurrent)
3280 {
3281 struct obj_section *section;
3282
3283 section = find_pc_overlay (pc);
3284 if (pc_in_unmapped_range (pc, section))
3285 pc = overlay_mapped_address (pc, section);
3286 return find_pc_sect_line (pc, section, notcurrent);
3287 }
3288
3289 /* See symtab.h. */
3290
3291 struct symtab *
3292 find_pc_line_symtab (CORE_ADDR pc)
3293 {
3294 struct symtab_and_line sal;
3295
3296 /* This always passes zero for NOTCURRENT to find_pc_line.
3297 There are currently no callers that ever pass non-zero. */
3298 sal = find_pc_line (pc, 0);
3299 return sal.symtab;
3300 }
3301 \f
3302 /* Find line number LINE in any symtab whose name is the same as
3303 SYMTAB.
3304
3305 If found, return the symtab that contains the linetable in which it was
3306 found, set *INDEX to the index in the linetable of the best entry
3307 found, and set *EXACT_MATCH nonzero if the value returned is an
3308 exact match.
3309
3310 If not found, return NULL. */
3311
3312 struct symtab *
3313 find_line_symtab (struct symtab *sym_tab, int line,
3314 int *index, int *exact_match)
3315 {
3316 int exact = 0; /* Initialized here to avoid a compiler warning. */
3317
3318 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3319 so far seen. */
3320
3321 int best_index;
3322 struct linetable *best_linetable;
3323 struct symtab *best_symtab;
3324
3325 /* First try looking it up in the given symtab. */
3326 best_linetable = SYMTAB_LINETABLE (sym_tab);
3327 best_symtab = sym_tab;
3328 best_index = find_line_common (best_linetable, line, &exact, 0);
3329 if (best_index < 0 || !exact)
3330 {
3331 /* Didn't find an exact match. So we better keep looking for
3332 another symtab with the same name. In the case of xcoff,
3333 multiple csects for one source file (produced by IBM's FORTRAN
3334 compiler) produce multiple symtabs (this is unavoidable
3335 assuming csects can be at arbitrary places in memory and that
3336 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3337
3338 /* BEST is the smallest linenumber > LINE so far seen,
3339 or 0 if none has been seen so far.
3340 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3341 int best;
3342
3343 if (best_index >= 0)
3344 best = best_linetable->item[best_index].line;
3345 else
3346 best = 0;
3347
3348 for (objfile *objfile : current_program_space->objfiles ())
3349 {
3350 if (objfile->sf)
3351 objfile->sf->qf->expand_symtabs_with_fullname
3352 (objfile, symtab_to_fullname (sym_tab));
3353 }
3354
3355 for (objfile *objfile : current_program_space->objfiles ())
3356 {
3357 for (compunit_symtab *cu : objfile->compunits ())
3358 {
3359 for (symtab *s : compunit_filetabs (cu))
3360 {
3361 struct linetable *l;
3362 int ind;
3363
3364 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3365 continue;
3366 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3367 symtab_to_fullname (s)) != 0)
3368 continue;
3369 l = SYMTAB_LINETABLE (s);
3370 ind = find_line_common (l, line, &exact, 0);
3371 if (ind >= 0)
3372 {
3373 if (exact)
3374 {
3375 best_index = ind;
3376 best_linetable = l;
3377 best_symtab = s;
3378 goto done;
3379 }
3380 if (best == 0 || l->item[ind].line < best)
3381 {
3382 best = l->item[ind].line;
3383 best_index = ind;
3384 best_linetable = l;
3385 best_symtab = s;
3386 }
3387 }
3388 }
3389 }
3390 }
3391 }
3392 done:
3393 if (best_index < 0)
3394 return NULL;
3395
3396 if (index)
3397 *index = best_index;
3398 if (exact_match)
3399 *exact_match = exact;
3400
3401 return best_symtab;
3402 }
3403
3404 /* Given SYMTAB, returns all the PCs function in the symtab that
3405 exactly match LINE. Returns an empty vector if there are no exact
3406 matches, but updates BEST_ITEM in this case. */
3407
3408 std::vector<CORE_ADDR>
3409 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3410 struct linetable_entry **best_item)
3411 {
3412 int start = 0;
3413 std::vector<CORE_ADDR> result;
3414
3415 /* First, collect all the PCs that are at this line. */
3416 while (1)
3417 {
3418 int was_exact;
3419 int idx;
3420
3421 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3422 start);
3423 if (idx < 0)
3424 break;
3425
3426 if (!was_exact)
3427 {
3428 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3429
3430 if (*best_item == NULL || item->line < (*best_item)->line)
3431 *best_item = item;
3432
3433 break;
3434 }
3435
3436 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3437 start = idx + 1;
3438 }
3439
3440 return result;
3441 }
3442
3443 \f
3444 /* Set the PC value for a given source file and line number and return true.
3445 Returns zero for invalid line number (and sets the PC to 0).
3446 The source file is specified with a struct symtab. */
3447
3448 int
3449 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3450 {
3451 struct linetable *l;
3452 int ind;
3453
3454 *pc = 0;
3455 if (symtab == 0)
3456 return 0;
3457
3458 symtab = find_line_symtab (symtab, line, &ind, NULL);
3459 if (symtab != NULL)
3460 {
3461 l = SYMTAB_LINETABLE (symtab);
3462 *pc = l->item[ind].pc;
3463 return 1;
3464 }
3465 else
3466 return 0;
3467 }
3468
3469 /* Find the range of pc values in a line.
3470 Store the starting pc of the line into *STARTPTR
3471 and the ending pc (start of next line) into *ENDPTR.
3472 Returns 1 to indicate success.
3473 Returns 0 if could not find the specified line. */
3474
3475 int
3476 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3477 CORE_ADDR *endptr)
3478 {
3479 CORE_ADDR startaddr;
3480 struct symtab_and_line found_sal;
3481
3482 startaddr = sal.pc;
3483 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3484 return 0;
3485
3486 /* This whole function is based on address. For example, if line 10 has
3487 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3488 "info line *0x123" should say the line goes from 0x100 to 0x200
3489 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3490 This also insures that we never give a range like "starts at 0x134
3491 and ends at 0x12c". */
3492
3493 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3494 if (found_sal.line != sal.line)
3495 {
3496 /* The specified line (sal) has zero bytes. */
3497 *startptr = found_sal.pc;
3498 *endptr = found_sal.pc;
3499 }
3500 else
3501 {
3502 *startptr = found_sal.pc;
3503 *endptr = found_sal.end;
3504 }
3505 return 1;
3506 }
3507
3508 /* Given a line table and a line number, return the index into the line
3509 table for the pc of the nearest line whose number is >= the specified one.
3510 Return -1 if none is found. The value is >= 0 if it is an index.
3511 START is the index at which to start searching the line table.
3512
3513 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3514
3515 static int
3516 find_line_common (struct linetable *l, int lineno,
3517 int *exact_match, int start)
3518 {
3519 int i;
3520 int len;
3521
3522 /* BEST is the smallest linenumber > LINENO so far seen,
3523 or 0 if none has been seen so far.
3524 BEST_INDEX identifies the item for it. */
3525
3526 int best_index = -1;
3527 int best = 0;
3528
3529 *exact_match = 0;
3530
3531 if (lineno <= 0)
3532 return -1;
3533 if (l == 0)
3534 return -1;
3535
3536 len = l->nitems;
3537 for (i = start; i < len; i++)
3538 {
3539 struct linetable_entry *item = &(l->item[i]);
3540
3541 if (item->line == lineno)
3542 {
3543 /* Return the first (lowest address) entry which matches. */
3544 *exact_match = 1;
3545 return i;
3546 }
3547
3548 if (item->line > lineno && (best == 0 || item->line < best))
3549 {
3550 best = item->line;
3551 best_index = i;
3552 }
3553 }
3554
3555 /* If we got here, we didn't get an exact match. */
3556 return best_index;
3557 }
3558
3559 int
3560 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3561 {
3562 struct symtab_and_line sal;
3563
3564 sal = find_pc_line (pc, 0);
3565 *startptr = sal.pc;
3566 *endptr = sal.end;
3567 return sal.symtab != 0;
3568 }
3569
3570 /* Helper for find_function_start_sal. Does most of the work, except
3571 setting the sal's symbol. */
3572
3573 static symtab_and_line
3574 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3575 bool funfirstline)
3576 {
3577 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3578
3579 if (funfirstline && sal.symtab != NULL
3580 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3581 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3582 {
3583 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3584
3585 sal.pc = func_addr;
3586 if (gdbarch_skip_entrypoint_p (gdbarch))
3587 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3588 return sal;
3589 }
3590
3591 /* We always should have a line for the function start address.
3592 If we don't, something is odd. Create a plain SAL referring
3593 just the PC and hope that skip_prologue_sal (if requested)
3594 can find a line number for after the prologue. */
3595 if (sal.pc < func_addr)
3596 {
3597 sal = {};
3598 sal.pspace = current_program_space;
3599 sal.pc = func_addr;
3600 sal.section = section;
3601 }
3602
3603 if (funfirstline)
3604 skip_prologue_sal (&sal);
3605
3606 return sal;
3607 }
3608
3609 /* See symtab.h. */
3610
3611 symtab_and_line
3612 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3613 bool funfirstline)
3614 {
3615 symtab_and_line sal
3616 = find_function_start_sal_1 (func_addr, section, funfirstline);
3617
3618 /* find_function_start_sal_1 does a linetable search, so it finds
3619 the symtab and linenumber, but not a symbol. Fill in the
3620 function symbol too. */
3621 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3622
3623 return sal;
3624 }
3625
3626 /* See symtab.h. */
3627
3628 symtab_and_line
3629 find_function_start_sal (symbol *sym, bool funfirstline)
3630 {
3631 fixup_symbol_section (sym, NULL);
3632 symtab_and_line sal
3633 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3634 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3635 funfirstline);
3636 sal.symbol = sym;
3637 return sal;
3638 }
3639
3640
3641 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3642 address for that function that has an entry in SYMTAB's line info
3643 table. If such an entry cannot be found, return FUNC_ADDR
3644 unaltered. */
3645
3646 static CORE_ADDR
3647 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3648 {
3649 CORE_ADDR func_start, func_end;
3650 struct linetable *l;
3651 int i;
3652
3653 /* Give up if this symbol has no lineinfo table. */
3654 l = SYMTAB_LINETABLE (symtab);
3655 if (l == NULL)
3656 return func_addr;
3657
3658 /* Get the range for the function's PC values, or give up if we
3659 cannot, for some reason. */
3660 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3661 return func_addr;
3662
3663 /* Linetable entries are ordered by PC values, see the commentary in
3664 symtab.h where `struct linetable' is defined. Thus, the first
3665 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3666 address we are looking for. */
3667 for (i = 0; i < l->nitems; i++)
3668 {
3669 struct linetable_entry *item = &(l->item[i]);
3670
3671 /* Don't use line numbers of zero, they mark special entries in
3672 the table. See the commentary on symtab.h before the
3673 definition of struct linetable. */
3674 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3675 return item->pc;
3676 }
3677
3678 return func_addr;
3679 }
3680
3681 /* Adjust SAL to the first instruction past the function prologue.
3682 If the PC was explicitly specified, the SAL is not changed.
3683 If the line number was explicitly specified then the SAL can still be
3684 updated, unless the language for SAL is assembler, in which case the SAL
3685 will be left unchanged.
3686 If SAL is already past the prologue, then do nothing. */
3687
3688 void
3689 skip_prologue_sal (struct symtab_and_line *sal)
3690 {
3691 struct symbol *sym;
3692 struct symtab_and_line start_sal;
3693 CORE_ADDR pc, saved_pc;
3694 struct obj_section *section;
3695 const char *name;
3696 struct objfile *objfile;
3697 struct gdbarch *gdbarch;
3698 const struct block *b, *function_block;
3699 int force_skip, skip;
3700
3701 /* Do not change the SAL if PC was specified explicitly. */
3702 if (sal->explicit_pc)
3703 return;
3704
3705 /* In assembly code, if the user asks for a specific line then we should
3706 not adjust the SAL. The user already has instruction level
3707 visibility in this case, so selecting a line other than one requested
3708 is likely to be the wrong choice. */
3709 if (sal->symtab != nullptr
3710 && sal->explicit_line
3711 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3712 return;
3713
3714 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3715
3716 switch_to_program_space_and_thread (sal->pspace);
3717
3718 sym = find_pc_sect_function (sal->pc, sal->section);
3719 if (sym != NULL)
3720 {
3721 fixup_symbol_section (sym, NULL);
3722
3723 objfile = symbol_objfile (sym);
3724 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3725 section = SYMBOL_OBJ_SECTION (objfile, sym);
3726 name = SYMBOL_LINKAGE_NAME (sym);
3727 }
3728 else
3729 {
3730 struct bound_minimal_symbol msymbol
3731 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3732
3733 if (msymbol.minsym == NULL)
3734 return;
3735
3736 objfile = msymbol.objfile;
3737 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3738 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3739 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3740 }
3741
3742 gdbarch = get_objfile_arch (objfile);
3743
3744 /* Process the prologue in two passes. In the first pass try to skip the
3745 prologue (SKIP is true) and verify there is a real need for it (indicated
3746 by FORCE_SKIP). If no such reason was found run a second pass where the
3747 prologue is not skipped (SKIP is false). */
3748
3749 skip = 1;
3750 force_skip = 1;
3751
3752 /* Be conservative - allow direct PC (without skipping prologue) only if we
3753 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3754 have to be set by the caller so we use SYM instead. */
3755 if (sym != NULL
3756 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3757 force_skip = 0;
3758
3759 saved_pc = pc;
3760 do
3761 {
3762 pc = saved_pc;
3763
3764 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3765 so that gdbarch_skip_prologue has something unique to work on. */
3766 if (section_is_overlay (section) && !section_is_mapped (section))
3767 pc = overlay_unmapped_address (pc, section);
3768
3769 /* Skip "first line" of function (which is actually its prologue). */
3770 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3771 if (gdbarch_skip_entrypoint_p (gdbarch))
3772 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3773 if (skip)
3774 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3775
3776 /* For overlays, map pc back into its mapped VMA range. */
3777 pc = overlay_mapped_address (pc, section);
3778
3779 /* Calculate line number. */
3780 start_sal = find_pc_sect_line (pc, section, 0);
3781
3782 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3783 line is still part of the same function. */
3784 if (skip && start_sal.pc != pc
3785 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3786 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3787 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3788 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3789 {
3790 /* First pc of next line */
3791 pc = start_sal.end;
3792 /* Recalculate the line number (might not be N+1). */
3793 start_sal = find_pc_sect_line (pc, section, 0);
3794 }
3795
3796 /* On targets with executable formats that don't have a concept of
3797 constructors (ELF with .init has, PE doesn't), gcc emits a call
3798 to `__main' in `main' between the prologue and before user
3799 code. */
3800 if (gdbarch_skip_main_prologue_p (gdbarch)
3801 && name && strcmp_iw (name, "main") == 0)
3802 {
3803 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3804 /* Recalculate the line number (might not be N+1). */
3805 start_sal = find_pc_sect_line (pc, section, 0);
3806 force_skip = 1;
3807 }
3808 }
3809 while (!force_skip && skip--);
3810
3811 /* If we still don't have a valid source line, try to find the first
3812 PC in the lineinfo table that belongs to the same function. This
3813 happens with COFF debug info, which does not seem to have an
3814 entry in lineinfo table for the code after the prologue which has
3815 no direct relation to source. For example, this was found to be
3816 the case with the DJGPP target using "gcc -gcoff" when the
3817 compiler inserted code after the prologue to make sure the stack
3818 is aligned. */
3819 if (!force_skip && sym && start_sal.symtab == NULL)
3820 {
3821 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3822 /* Recalculate the line number. */
3823 start_sal = find_pc_sect_line (pc, section, 0);
3824 }
3825
3826 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3827 forward SAL to the end of the prologue. */
3828 if (sal->pc >= pc)
3829 return;
3830
3831 sal->pc = pc;
3832 sal->section = section;
3833 sal->symtab = start_sal.symtab;
3834 sal->line = start_sal.line;
3835 sal->end = start_sal.end;
3836
3837 /* Check if we are now inside an inlined function. If we can,
3838 use the call site of the function instead. */
3839 b = block_for_pc_sect (sal->pc, sal->section);
3840 function_block = NULL;
3841 while (b != NULL)
3842 {
3843 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3844 function_block = b;
3845 else if (BLOCK_FUNCTION (b) != NULL)
3846 break;
3847 b = BLOCK_SUPERBLOCK (b);
3848 }
3849 if (function_block != NULL
3850 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3851 {
3852 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3853 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3854 }
3855 }
3856
3857 /* Given PC at the function's start address, attempt to find the
3858 prologue end using SAL information. Return zero if the skip fails.
3859
3860 A non-optimized prologue traditionally has one SAL for the function
3861 and a second for the function body. A single line function has
3862 them both pointing at the same line.
3863
3864 An optimized prologue is similar but the prologue may contain
3865 instructions (SALs) from the instruction body. Need to skip those
3866 while not getting into the function body.
3867
3868 The functions end point and an increasing SAL line are used as
3869 indicators of the prologue's endpoint.
3870
3871 This code is based on the function refine_prologue_limit
3872 (found in ia64). */
3873
3874 CORE_ADDR
3875 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3876 {
3877 struct symtab_and_line prologue_sal;
3878 CORE_ADDR start_pc;
3879 CORE_ADDR end_pc;
3880 const struct block *bl;
3881
3882 /* Get an initial range for the function. */
3883 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3884 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3885
3886 prologue_sal = find_pc_line (start_pc, 0);
3887 if (prologue_sal.line != 0)
3888 {
3889 /* For languages other than assembly, treat two consecutive line
3890 entries at the same address as a zero-instruction prologue.
3891 The GNU assembler emits separate line notes for each instruction
3892 in a multi-instruction macro, but compilers generally will not
3893 do this. */
3894 if (prologue_sal.symtab->language != language_asm)
3895 {
3896 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3897 int idx = 0;
3898
3899 /* Skip any earlier lines, and any end-of-sequence marker
3900 from a previous function. */
3901 while (linetable->item[idx].pc != prologue_sal.pc
3902 || linetable->item[idx].line == 0)
3903 idx++;
3904
3905 if (idx+1 < linetable->nitems
3906 && linetable->item[idx+1].line != 0
3907 && linetable->item[idx+1].pc == start_pc)
3908 return start_pc;
3909 }
3910
3911 /* If there is only one sal that covers the entire function,
3912 then it is probably a single line function, like
3913 "foo(){}". */
3914 if (prologue_sal.end >= end_pc)
3915 return 0;
3916
3917 while (prologue_sal.end < end_pc)
3918 {
3919 struct symtab_and_line sal;
3920
3921 sal = find_pc_line (prologue_sal.end, 0);
3922 if (sal.line == 0)
3923 break;
3924 /* Assume that a consecutive SAL for the same (or larger)
3925 line mark the prologue -> body transition. */
3926 if (sal.line >= prologue_sal.line)
3927 break;
3928 /* Likewise if we are in a different symtab altogether
3929 (e.g. within a file included via #include).  */
3930 if (sal.symtab != prologue_sal.symtab)
3931 break;
3932
3933 /* The line number is smaller. Check that it's from the
3934 same function, not something inlined. If it's inlined,
3935 then there is no point comparing the line numbers. */
3936 bl = block_for_pc (prologue_sal.end);
3937 while (bl)
3938 {
3939 if (block_inlined_p (bl))
3940 break;
3941 if (BLOCK_FUNCTION (bl))
3942 {
3943 bl = NULL;
3944 break;
3945 }
3946 bl = BLOCK_SUPERBLOCK (bl);
3947 }
3948 if (bl != NULL)
3949 break;
3950
3951 /* The case in which compiler's optimizer/scheduler has
3952 moved instructions into the prologue. We look ahead in
3953 the function looking for address ranges whose
3954 corresponding line number is less the first one that we
3955 found for the function. This is more conservative then
3956 refine_prologue_limit which scans a large number of SALs
3957 looking for any in the prologue. */
3958 prologue_sal = sal;
3959 }
3960 }
3961
3962 if (prologue_sal.end < end_pc)
3963 /* Return the end of this line, or zero if we could not find a
3964 line. */
3965 return prologue_sal.end;
3966 else
3967 /* Don't return END_PC, which is past the end of the function. */
3968 return prologue_sal.pc;
3969 }
3970
3971 /* See symtab.h. */
3972
3973 symbol *
3974 find_function_alias_target (bound_minimal_symbol msymbol)
3975 {
3976 CORE_ADDR func_addr;
3977 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3978 return NULL;
3979
3980 symbol *sym = find_pc_function (func_addr);
3981 if (sym != NULL
3982 && SYMBOL_CLASS (sym) == LOC_BLOCK
3983 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3984 return sym;
3985
3986 return NULL;
3987 }
3988
3989 \f
3990 /* If P is of the form "operator[ \t]+..." where `...' is
3991 some legitimate operator text, return a pointer to the
3992 beginning of the substring of the operator text.
3993 Otherwise, return "". */
3994
3995 static const char *
3996 operator_chars (const char *p, const char **end)
3997 {
3998 *end = "";
3999 if (!startswith (p, CP_OPERATOR_STR))
4000 return *end;
4001 p += CP_OPERATOR_LEN;
4002
4003 /* Don't get faked out by `operator' being part of a longer
4004 identifier. */
4005 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4006 return *end;
4007
4008 /* Allow some whitespace between `operator' and the operator symbol. */
4009 while (*p == ' ' || *p == '\t')
4010 p++;
4011
4012 /* Recognize 'operator TYPENAME'. */
4013
4014 if (isalpha (*p) || *p == '_' || *p == '$')
4015 {
4016 const char *q = p + 1;
4017
4018 while (isalnum (*q) || *q == '_' || *q == '$')
4019 q++;
4020 *end = q;
4021 return p;
4022 }
4023
4024 while (*p)
4025 switch (*p)
4026 {
4027 case '\\': /* regexp quoting */
4028 if (p[1] == '*')
4029 {
4030 if (p[2] == '=') /* 'operator\*=' */
4031 *end = p + 3;
4032 else /* 'operator\*' */
4033 *end = p + 2;
4034 return p;
4035 }
4036 else if (p[1] == '[')
4037 {
4038 if (p[2] == ']')
4039 error (_("mismatched quoting on brackets, "
4040 "try 'operator\\[\\]'"));
4041 else if (p[2] == '\\' && p[3] == ']')
4042 {
4043 *end = p + 4; /* 'operator\[\]' */
4044 return p;
4045 }
4046 else
4047 error (_("nothing is allowed between '[' and ']'"));
4048 }
4049 else
4050 {
4051 /* Gratuitous qoute: skip it and move on. */
4052 p++;
4053 continue;
4054 }
4055 break;
4056 case '!':
4057 case '=':
4058 case '*':
4059 case '/':
4060 case '%':
4061 case '^':
4062 if (p[1] == '=')
4063 *end = p + 2;
4064 else
4065 *end = p + 1;
4066 return p;
4067 case '<':
4068 case '>':
4069 case '+':
4070 case '-':
4071 case '&':
4072 case '|':
4073 if (p[0] == '-' && p[1] == '>')
4074 {
4075 /* Struct pointer member operator 'operator->'. */
4076 if (p[2] == '*')
4077 {
4078 *end = p + 3; /* 'operator->*' */
4079 return p;
4080 }
4081 else if (p[2] == '\\')
4082 {
4083 *end = p + 4; /* Hopefully 'operator->\*' */
4084 return p;
4085 }
4086 else
4087 {
4088 *end = p + 2; /* 'operator->' */
4089 return p;
4090 }
4091 }
4092 if (p[1] == '=' || p[1] == p[0])
4093 *end = p + 2;
4094 else
4095 *end = p + 1;
4096 return p;
4097 case '~':
4098 case ',':
4099 *end = p + 1;
4100 return p;
4101 case '(':
4102 if (p[1] != ')')
4103 error (_("`operator ()' must be specified "
4104 "without whitespace in `()'"));
4105 *end = p + 2;
4106 return p;
4107 case '?':
4108 if (p[1] != ':')
4109 error (_("`operator ?:' must be specified "
4110 "without whitespace in `?:'"));
4111 *end = p + 2;
4112 return p;
4113 case '[':
4114 if (p[1] != ']')
4115 error (_("`operator []' must be specified "
4116 "without whitespace in `[]'"));
4117 *end = p + 2;
4118 return p;
4119 default:
4120 error (_("`operator %s' not supported"), p);
4121 break;
4122 }
4123
4124 *end = "";
4125 return *end;
4126 }
4127 \f
4128
4129 /* What part to match in a file name. */
4130
4131 struct filename_partial_match_opts
4132 {
4133 /* Only match the directory name part. */
4134 int dirname = false;
4135
4136 /* Only match the basename part. */
4137 int basename = false;
4138 };
4139
4140 /* Data structure to maintain printing state for output_source_filename. */
4141
4142 struct output_source_filename_data
4143 {
4144 /* Output only filenames matching REGEXP. */
4145 std::string regexp;
4146 gdb::optional<compiled_regex> c_regexp;
4147 /* Possibly only match a part of the filename. */
4148 filename_partial_match_opts partial_match;
4149
4150
4151 /* Cache of what we've seen so far. */
4152 struct filename_seen_cache *filename_seen_cache;
4153
4154 /* Flag of whether we're printing the first one. */
4155 int first;
4156 };
4157
4158 /* Slave routine for sources_info. Force line breaks at ,'s.
4159 NAME is the name to print.
4160 DATA contains the state for printing and watching for duplicates. */
4161
4162 static void
4163 output_source_filename (const char *name,
4164 struct output_source_filename_data *data)
4165 {
4166 /* Since a single source file can result in several partial symbol
4167 tables, we need to avoid printing it more than once. Note: if
4168 some of the psymtabs are read in and some are not, it gets
4169 printed both under "Source files for which symbols have been
4170 read" and "Source files for which symbols will be read in on
4171 demand". I consider this a reasonable way to deal with the
4172 situation. I'm not sure whether this can also happen for
4173 symtabs; it doesn't hurt to check. */
4174
4175 /* Was NAME already seen? */
4176 if (data->filename_seen_cache->seen (name))
4177 {
4178 /* Yes; don't print it again. */
4179 return;
4180 }
4181
4182 /* Does it match data->regexp? */
4183 if (data->c_regexp.has_value ())
4184 {
4185 const char *to_match;
4186 std::string dirname;
4187
4188 if (data->partial_match.dirname)
4189 {
4190 dirname = ldirname (name);
4191 to_match = dirname.c_str ();
4192 }
4193 else if (data->partial_match.basename)
4194 to_match = lbasename (name);
4195 else
4196 to_match = name;
4197
4198 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4199 return;
4200 }
4201
4202 /* Print it and reset *FIRST. */
4203 if (! data->first)
4204 printf_filtered (", ");
4205 data->first = 0;
4206
4207 wrap_here ("");
4208 fputs_styled (name, file_name_style.style (), gdb_stdout);
4209 }
4210
4211 /* A callback for map_partial_symbol_filenames. */
4212
4213 static void
4214 output_partial_symbol_filename (const char *filename, const char *fullname,
4215 void *data)
4216 {
4217 output_source_filename (fullname ? fullname : filename,
4218 (struct output_source_filename_data *) data);
4219 }
4220
4221 using isrc_flag_option_def
4222 = gdb::option::flag_option_def<filename_partial_match_opts>;
4223
4224 static const gdb::option::option_def info_sources_option_defs[] = {
4225
4226 isrc_flag_option_def {
4227 "dirname",
4228 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4229 N_("Show only the files having a dirname matching REGEXP."),
4230 },
4231
4232 isrc_flag_option_def {
4233 "basename",
4234 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4235 N_("Show only the files having a basename matching REGEXP."),
4236 },
4237
4238 };
4239
4240 /* Create an option_def_group for the "info sources" options, with
4241 ISRC_OPTS as context. */
4242
4243 static inline gdb::option::option_def_group
4244 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4245 {
4246 return {{info_sources_option_defs}, isrc_opts};
4247 }
4248
4249 /* Prints the header message for the source files that will be printed
4250 with the matching info present in DATA. SYMBOL_MSG is a message
4251 that tells what will or has been done with the symbols of the
4252 matching source files. */
4253
4254 static void
4255 print_info_sources_header (const char *symbol_msg,
4256 const struct output_source_filename_data *data)
4257 {
4258 puts_filtered (symbol_msg);
4259 if (!data->regexp.empty ())
4260 {
4261 if (data->partial_match.dirname)
4262 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4263 data->regexp.c_str ());
4264 else if (data->partial_match.basename)
4265 printf_filtered (_("(basename matching regular expression \"%s\")"),
4266 data->regexp.c_str ());
4267 else
4268 printf_filtered (_("(filename matching regular expression \"%s\")"),
4269 data->regexp.c_str ());
4270 }
4271 puts_filtered ("\n");
4272 }
4273
4274 /* Completer for "info sources". */
4275
4276 static void
4277 info_sources_command_completer (cmd_list_element *ignore,
4278 completion_tracker &tracker,
4279 const char *text, const char *word)
4280 {
4281 const auto group = make_info_sources_options_def_group (nullptr);
4282 if (gdb::option::complete_options
4283 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4284 return;
4285 }
4286
4287 static void
4288 info_sources_command (const char *args, int from_tty)
4289 {
4290 struct output_source_filename_data data;
4291
4292 if (!have_full_symbols () && !have_partial_symbols ())
4293 {
4294 error (_("No symbol table is loaded. Use the \"file\" command."));
4295 }
4296
4297 filename_seen_cache filenames_seen;
4298
4299 auto group = make_info_sources_options_def_group (&data.partial_match);
4300
4301 gdb::option::process_options
4302 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4303
4304 if (args != NULL && *args != '\000')
4305 data.regexp = args;
4306
4307 data.filename_seen_cache = &filenames_seen;
4308 data.first = 1;
4309
4310 if (data.partial_match.dirname && data.partial_match.basename)
4311 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4312 if ((data.partial_match.dirname || data.partial_match.basename)
4313 && data.regexp.empty ())
4314 error (_("Missing REGEXP for 'info sources'."));
4315
4316 if (data.regexp.empty ())
4317 data.c_regexp.reset ();
4318 else
4319 {
4320 int cflags = REG_NOSUB;
4321 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4322 cflags |= REG_ICASE;
4323 #endif
4324 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4325 _("Invalid regexp"));
4326 }
4327
4328 print_info_sources_header
4329 (_("Source files for which symbols have been read in:\n"), &data);
4330
4331 for (objfile *objfile : current_program_space->objfiles ())
4332 {
4333 for (compunit_symtab *cu : objfile->compunits ())
4334 {
4335 for (symtab *s : compunit_filetabs (cu))
4336 {
4337 const char *fullname = symtab_to_fullname (s);
4338
4339 output_source_filename (fullname, &data);
4340 }
4341 }
4342 }
4343 printf_filtered ("\n\n");
4344
4345 print_info_sources_header
4346 (_("Source files for which symbols will be read in on demand:\n"), &data);
4347
4348 filenames_seen.clear ();
4349 data.first = 1;
4350 map_symbol_filenames (output_partial_symbol_filename, &data,
4351 1 /*need_fullname*/);
4352 printf_filtered ("\n");
4353 }
4354
4355 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4356 non-zero compare only lbasename of FILES. */
4357
4358 static int
4359 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4360 {
4361 int i;
4362
4363 if (file != NULL && nfiles != 0)
4364 {
4365 for (i = 0; i < nfiles; i++)
4366 {
4367 if (compare_filenames_for_search (file, (basenames
4368 ? lbasename (files[i])
4369 : files[i])))
4370 return 1;
4371 }
4372 }
4373 else if (nfiles == 0)
4374 return 1;
4375 return 0;
4376 }
4377
4378 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4379 sort symbols, not minimal symbols. */
4380
4381 int
4382 symbol_search::compare_search_syms (const symbol_search &sym_a,
4383 const symbol_search &sym_b)
4384 {
4385 int c;
4386
4387 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4388 symbol_symtab (sym_b.symbol)->filename);
4389 if (c != 0)
4390 return c;
4391
4392 if (sym_a.block != sym_b.block)
4393 return sym_a.block - sym_b.block;
4394
4395 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4396 SYMBOL_PRINT_NAME (sym_b.symbol));
4397 }
4398
4399 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4400 If SYM has no symbol_type or symbol_name, returns false. */
4401
4402 bool
4403 treg_matches_sym_type_name (const compiled_regex &treg,
4404 const struct symbol *sym)
4405 {
4406 struct type *sym_type;
4407 std::string printed_sym_type_name;
4408
4409 if (symbol_lookup_debug > 1)
4410 {
4411 fprintf_unfiltered (gdb_stdlog,
4412 "treg_matches_sym_type_name\n sym %s\n",
4413 SYMBOL_NATURAL_NAME (sym));
4414 }
4415
4416 sym_type = SYMBOL_TYPE (sym);
4417 if (sym_type == NULL)
4418 return false;
4419
4420 {
4421 scoped_switch_to_sym_language_if_auto l (sym);
4422
4423 printed_sym_type_name = type_to_string (sym_type);
4424 }
4425
4426
4427 if (symbol_lookup_debug > 1)
4428 {
4429 fprintf_unfiltered (gdb_stdlog,
4430 " sym_type_name %s\n",
4431 printed_sym_type_name.c_str ());
4432 }
4433
4434
4435 if (printed_sym_type_name.empty ())
4436 return false;
4437
4438 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4439 }
4440
4441
4442 /* Sort the symbols in RESULT and remove duplicates. */
4443
4444 static void
4445 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4446 {
4447 std::sort (result->begin (), result->end ());
4448 result->erase (std::unique (result->begin (), result->end ()),
4449 result->end ());
4450 }
4451
4452 /* Search the symbol table for matches to the regular expression REGEXP,
4453 returning the results.
4454
4455 Only symbols of KIND are searched:
4456 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4457 and constants (enums).
4458 if T_REGEXP is not NULL, only returns var that have
4459 a type matching regular expression T_REGEXP.
4460 FUNCTIONS_DOMAIN - search all functions
4461 TYPES_DOMAIN - search all type names
4462 ALL_DOMAIN - an internal error for this function
4463
4464 Within each file the results are sorted locally; each symtab's global and
4465 static blocks are separately alphabetized.
4466 Duplicate entries are removed.
4467
4468 When EXCLUDE_MINSYMS is false then matching minsyms are also returned,
4469 otherwise they are excluded. */
4470
4471 std::vector<symbol_search>
4472 search_symbols (const char *regexp, enum search_domain kind,
4473 const char *t_regexp,
4474 int nfiles, const char *files[],
4475 bool exclude_minsyms)
4476 {
4477 const struct blockvector *bv;
4478 const struct block *b;
4479 int i = 0;
4480 struct block_iterator iter;
4481 struct symbol *sym;
4482 int found_misc = 0;
4483 static const enum minimal_symbol_type types[]
4484 = {mst_data, mst_text, mst_unknown};
4485 static const enum minimal_symbol_type types2[]
4486 = {mst_bss, mst_file_text, mst_unknown};
4487 static const enum minimal_symbol_type types3[]
4488 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4489 static const enum minimal_symbol_type types4[]
4490 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4491 enum minimal_symbol_type ourtype;
4492 enum minimal_symbol_type ourtype2;
4493 enum minimal_symbol_type ourtype3;
4494 enum minimal_symbol_type ourtype4;
4495 std::vector<symbol_search> result;
4496 gdb::optional<compiled_regex> preg;
4497 gdb::optional<compiled_regex> treg;
4498
4499 gdb_assert (kind <= TYPES_DOMAIN);
4500
4501 ourtype = types[kind];
4502 ourtype2 = types2[kind];
4503 ourtype3 = types3[kind];
4504 ourtype4 = types4[kind];
4505
4506 if (regexp != NULL)
4507 {
4508 /* Make sure spacing is right for C++ operators.
4509 This is just a courtesy to make the matching less sensitive
4510 to how many spaces the user leaves between 'operator'
4511 and <TYPENAME> or <OPERATOR>. */
4512 const char *opend;
4513 const char *opname = operator_chars (regexp, &opend);
4514
4515 if (*opname)
4516 {
4517 int fix = -1; /* -1 means ok; otherwise number of
4518 spaces needed. */
4519
4520 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4521 {
4522 /* There should 1 space between 'operator' and 'TYPENAME'. */
4523 if (opname[-1] != ' ' || opname[-2] == ' ')
4524 fix = 1;
4525 }
4526 else
4527 {
4528 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4529 if (opname[-1] == ' ')
4530 fix = 0;
4531 }
4532 /* If wrong number of spaces, fix it. */
4533 if (fix >= 0)
4534 {
4535 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4536
4537 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4538 regexp = tmp;
4539 }
4540 }
4541
4542 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4543 ? REG_ICASE : 0);
4544 preg.emplace (regexp, cflags, _("Invalid regexp"));
4545 }
4546
4547 if (t_regexp != NULL)
4548 {
4549 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4550 ? REG_ICASE : 0);
4551 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4552 }
4553
4554 /* Search through the partial symtabs *first* for all symbols
4555 matching the regexp. That way we don't have to reproduce all of
4556 the machinery below. */
4557 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4558 {
4559 return file_matches (filename, files, nfiles,
4560 basenames);
4561 },
4562 lookup_name_info::match_any (),
4563 [&] (const char *symname)
4564 {
4565 return (!preg.has_value ()
4566 || preg->exec (symname,
4567 0, NULL, 0) == 0);
4568 },
4569 NULL,
4570 kind);
4571
4572 /* Here, we search through the minimal symbol tables for functions
4573 and variables that match, and force their symbols to be read.
4574 This is in particular necessary for demangled variable names,
4575 which are no longer put into the partial symbol tables.
4576 The symbol will then be found during the scan of symtabs below.
4577
4578 For functions, find_pc_symtab should succeed if we have debug info
4579 for the function, for variables we have to call
4580 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4581 has debug info.
4582 If the lookup fails, set found_misc so that we will rescan to print
4583 any matching symbols without debug info.
4584 We only search the objfile the msymbol came from, we no longer search
4585 all objfiles. In large programs (1000s of shared libs) searching all
4586 objfiles is not worth the pain. */
4587
4588 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4589 {
4590 for (objfile *objfile : current_program_space->objfiles ())
4591 {
4592 for (minimal_symbol *msymbol : objfile->msymbols ())
4593 {
4594 QUIT;
4595
4596 if (msymbol->created_by_gdb)
4597 continue;
4598
4599 if (MSYMBOL_TYPE (msymbol) == ourtype
4600 || MSYMBOL_TYPE (msymbol) == ourtype2
4601 || MSYMBOL_TYPE (msymbol) == ourtype3
4602 || MSYMBOL_TYPE (msymbol) == ourtype4)
4603 {
4604 if (!preg.has_value ()
4605 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4606 NULL, 0) == 0)
4607 {
4608 /* Note: An important side-effect of these
4609 lookup functions is to expand the symbol
4610 table if msymbol is found, for the benefit of
4611 the next loop on compunits. */
4612 if (kind == FUNCTIONS_DOMAIN
4613 ? (find_pc_compunit_symtab
4614 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4615 == NULL)
4616 : (lookup_symbol_in_objfile_from_linkage_name
4617 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4618 VAR_DOMAIN)
4619 .symbol == NULL))
4620 found_misc = 1;
4621 }
4622 }
4623 }
4624 }
4625 }
4626
4627 for (objfile *objfile : current_program_space->objfiles ())
4628 {
4629 for (compunit_symtab *cust : objfile->compunits ())
4630 {
4631 bv = COMPUNIT_BLOCKVECTOR (cust);
4632 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4633 {
4634 b = BLOCKVECTOR_BLOCK (bv, i);
4635 ALL_BLOCK_SYMBOLS (b, iter, sym)
4636 {
4637 struct symtab *real_symtab = symbol_symtab (sym);
4638
4639 QUIT;
4640
4641 /* Check first sole REAL_SYMTAB->FILENAME. It does
4642 not need to be a substring of symtab_to_fullname as
4643 it may contain "./" etc. */
4644 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4645 || ((basenames_may_differ
4646 || file_matches (lbasename (real_symtab->filename),
4647 files, nfiles, 1))
4648 && file_matches (symtab_to_fullname (real_symtab),
4649 files, nfiles, 0)))
4650 && ((!preg.has_value ()
4651 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4652 NULL, 0) == 0)
4653 && ((kind == VARIABLES_DOMAIN
4654 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4655 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4656 && SYMBOL_CLASS (sym) != LOC_BLOCK
4657 /* LOC_CONST can be used for more than
4658 just enums, e.g., c++ static const
4659 members. We only want to skip enums
4660 here. */
4661 && !(SYMBOL_CLASS (sym) == LOC_CONST
4662 && (TYPE_CODE (SYMBOL_TYPE (sym))
4663 == TYPE_CODE_ENUM))
4664 && (!treg.has_value ()
4665 || treg_matches_sym_type_name (*treg, sym)))
4666 || (kind == FUNCTIONS_DOMAIN
4667 && SYMBOL_CLASS (sym) == LOC_BLOCK
4668 && (!treg.has_value ()
4669 || treg_matches_sym_type_name (*treg,
4670 sym)))
4671 || (kind == TYPES_DOMAIN
4672 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4673 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN))))
4674 {
4675 /* match */
4676 result.emplace_back (i, sym);
4677 }
4678 }
4679 }
4680 }
4681 }
4682
4683 if (!result.empty ())
4684 sort_search_symbols_remove_dups (&result);
4685
4686 /* If there are no eyes, avoid all contact. I mean, if there are
4687 no debug symbols, then add matching minsyms. But if the user wants
4688 to see symbols matching a type regexp, then never give a minimal symbol,
4689 as we assume that a minimal symbol does not have a type. */
4690
4691 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4692 && !exclude_minsyms
4693 && !treg.has_value ())
4694 {
4695 for (objfile *objfile : current_program_space->objfiles ())
4696 {
4697 for (minimal_symbol *msymbol : objfile->msymbols ())
4698 {
4699 QUIT;
4700
4701 if (msymbol->created_by_gdb)
4702 continue;
4703
4704 if (MSYMBOL_TYPE (msymbol) == ourtype
4705 || MSYMBOL_TYPE (msymbol) == ourtype2
4706 || MSYMBOL_TYPE (msymbol) == ourtype3
4707 || MSYMBOL_TYPE (msymbol) == ourtype4)
4708 {
4709 if (!preg.has_value ()
4710 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4711 NULL, 0) == 0)
4712 {
4713 /* For functions we can do a quick check of whether the
4714 symbol might be found via find_pc_symtab. */
4715 if (kind != FUNCTIONS_DOMAIN
4716 || (find_pc_compunit_symtab
4717 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4718 == NULL))
4719 {
4720 if (lookup_symbol_in_objfile_from_linkage_name
4721 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4722 VAR_DOMAIN)
4723 .symbol == NULL)
4724 {
4725 /* match */
4726 result.emplace_back (i, msymbol, objfile);
4727 }
4728 }
4729 }
4730 }
4731 }
4732 }
4733 }
4734
4735 return result;
4736 }
4737
4738 /* Helper function for symtab_symbol_info, this function uses
4739 the data returned from search_symbols() to print information
4740 regarding the match to gdb_stdout. If LAST is not NULL,
4741 print file and line number information for the symbol as
4742 well. Skip printing the filename if it matches LAST. */
4743
4744 static void
4745 print_symbol_info (enum search_domain kind,
4746 struct symbol *sym,
4747 int block, const char *last)
4748 {
4749 scoped_switch_to_sym_language_if_auto l (sym);
4750 struct symtab *s = symbol_symtab (sym);
4751
4752 if (last != NULL)
4753 {
4754 const char *s_filename = symtab_to_filename_for_display (s);
4755
4756 if (filename_cmp (last, s_filename) != 0)
4757 {
4758 fputs_filtered ("\nFile ", gdb_stdout);
4759 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4760 fputs_filtered (":\n", gdb_stdout);
4761 }
4762
4763 if (SYMBOL_LINE (sym) != 0)
4764 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4765 else
4766 puts_filtered ("\t");
4767 }
4768
4769 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4770 printf_filtered ("static ");
4771
4772 /* Typedef that is not a C++ class. */
4773 if (kind == TYPES_DOMAIN
4774 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4775 {
4776 /* FIXME: For C (and C++) we end up with a difference in output here
4777 between how a typedef is printed, and non-typedefs are printed.
4778 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4779 appear C-like, while TYPE_PRINT doesn't.
4780
4781 For the struct printing case below, things are worse, we force
4782 printing of the ";" in this function, which is going to be wrong
4783 for languages that don't require a ";" between statements. */
4784 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4785 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4786 else
4787 {
4788 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4789 printf_filtered ("\n");
4790 }
4791 }
4792 /* variable, func, or typedef-that-is-c++-class. */
4793 else if (kind < TYPES_DOMAIN
4794 || (kind == TYPES_DOMAIN
4795 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4796 {
4797 type_print (SYMBOL_TYPE (sym),
4798 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4799 ? "" : SYMBOL_PRINT_NAME (sym)),
4800 gdb_stdout, 0);
4801
4802 printf_filtered (";\n");
4803 }
4804 }
4805
4806 /* This help function for symtab_symbol_info() prints information
4807 for non-debugging symbols to gdb_stdout. */
4808
4809 static void
4810 print_msymbol_info (struct bound_minimal_symbol msymbol)
4811 {
4812 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4813 char *tmp;
4814
4815 if (gdbarch_addr_bit (gdbarch) <= 32)
4816 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4817 & (CORE_ADDR) 0xffffffff,
4818 8);
4819 else
4820 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4821 16);
4822 fputs_styled (tmp, address_style.style (), gdb_stdout);
4823 fputs_filtered (" ", gdb_stdout);
4824 if (msymbol.minsym->text_p ())
4825 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4826 function_name_style.style (),
4827 gdb_stdout);
4828 else
4829 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4830 fputs_filtered ("\n", gdb_stdout);
4831 }
4832
4833 /* This is the guts of the commands "info functions", "info types", and
4834 "info variables". It calls search_symbols to find all matches and then
4835 print_[m]symbol_info to print out some useful information about the
4836 matches. */
4837
4838 static void
4839 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4840 const char *regexp, enum search_domain kind,
4841 const char *t_regexp, int from_tty)
4842 {
4843 static const char * const classnames[] =
4844 {"variable", "function", "type"};
4845 const char *last_filename = "";
4846 int first = 1;
4847
4848 gdb_assert (kind <= TYPES_DOMAIN);
4849
4850 if (regexp != nullptr && *regexp == '\0')
4851 regexp = nullptr;
4852
4853 /* Must make sure that if we're interrupted, symbols gets freed. */
4854 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4855 t_regexp, 0, NULL,
4856 exclude_minsyms);
4857
4858 if (!quiet)
4859 {
4860 if (regexp != NULL)
4861 {
4862 if (t_regexp != NULL)
4863 printf_filtered
4864 (_("All %ss matching regular expression \"%s\""
4865 " with type matching regular expression \"%s\":\n"),
4866 classnames[kind], regexp, t_regexp);
4867 else
4868 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4869 classnames[kind], regexp);
4870 }
4871 else
4872 {
4873 if (t_regexp != NULL)
4874 printf_filtered
4875 (_("All defined %ss"
4876 " with type matching regular expression \"%s\" :\n"),
4877 classnames[kind], t_regexp);
4878 else
4879 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4880 }
4881 }
4882
4883 for (const symbol_search &p : symbols)
4884 {
4885 QUIT;
4886
4887 if (p.msymbol.minsym != NULL)
4888 {
4889 if (first)
4890 {
4891 if (!quiet)
4892 printf_filtered (_("\nNon-debugging symbols:\n"));
4893 first = 0;
4894 }
4895 print_msymbol_info (p.msymbol);
4896 }
4897 else
4898 {
4899 print_symbol_info (kind,
4900 p.symbol,
4901 p.block,
4902 last_filename);
4903 last_filename
4904 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4905 }
4906 }
4907 }
4908
4909 /* Structure to hold the values of the options used by the 'info variables'
4910 and 'info functions' commands. These correspond to the -q, -t, and -n
4911 options. */
4912
4913 struct info_print_options
4914 {
4915 int quiet = false;
4916 int exclude_minsyms = false;
4917 char *type_regexp = nullptr;
4918
4919 ~info_print_options ()
4920 {
4921 xfree (type_regexp);
4922 }
4923 };
4924
4925 /* The options used by the 'info variables' and 'info functions'
4926 commands. */
4927
4928 static const gdb::option::option_def info_print_options_defs[] = {
4929 gdb::option::boolean_option_def<info_print_options> {
4930 "q",
4931 [] (info_print_options *opt) { return &opt->quiet; },
4932 nullptr, /* show_cmd_cb */
4933 nullptr /* set_doc */
4934 },
4935
4936 gdb::option::boolean_option_def<info_print_options> {
4937 "n",
4938 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4939 nullptr, /* show_cmd_cb */
4940 nullptr /* set_doc */
4941 },
4942
4943 gdb::option::string_option_def<info_print_options> {
4944 "t",
4945 [] (info_print_options *opt) { return &opt->type_regexp; },
4946 nullptr, /* show_cmd_cb */
4947 nullptr /* set_doc */
4948 }
4949 };
4950
4951 /* Returns the option group used by 'info variables' and 'info
4952 functions'. */
4953
4954 static gdb::option::option_def_group
4955 make_info_print_options_def_group (info_print_options *opts)
4956 {
4957 return {{info_print_options_defs}, opts};
4958 }
4959
4960 /* Command completer for 'info variables' and 'info functions'. */
4961
4962 static void
4963 info_print_command_completer (struct cmd_list_element *ignore,
4964 completion_tracker &tracker,
4965 const char *text, const char * /* word */)
4966 {
4967 const auto group
4968 = make_info_print_options_def_group (nullptr);
4969 if (gdb::option::complete_options
4970 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4971 return;
4972
4973 const char *word = advance_to_expression_complete_word_point (tracker, text);
4974 symbol_completer (ignore, tracker, text, word);
4975 }
4976
4977 /* Implement the 'info variables' command. */
4978
4979 static void
4980 info_variables_command (const char *args, int from_tty)
4981 {
4982 info_print_options opts;
4983 auto grp = make_info_print_options_def_group (&opts);
4984 gdb::option::process_options
4985 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4986 if (args != nullptr && *args == '\0')
4987 args = nullptr;
4988
4989 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4990 opts.type_regexp, from_tty);
4991 }
4992
4993 /* Implement the 'info functions' command. */
4994
4995 static void
4996 info_functions_command (const char *args, int from_tty)
4997 {
4998 info_print_options opts;
4999 auto grp = make_info_print_options_def_group (&opts);
5000 gdb::option::process_options
5001 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5002 if (args != nullptr && *args == '\0')
5003 args = nullptr;
5004
5005 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5006 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5007 }
5008
5009 /* Holds the -q option for the 'info types' command. */
5010
5011 struct info_types_options
5012 {
5013 int quiet = false;
5014 };
5015
5016 /* The options used by the 'info types' command. */
5017
5018 static const gdb::option::option_def info_types_options_defs[] = {
5019 gdb::option::boolean_option_def<info_types_options> {
5020 "q",
5021 [] (info_types_options *opt) { return &opt->quiet; },
5022 nullptr, /* show_cmd_cb */
5023 nullptr /* set_doc */
5024 }
5025 };
5026
5027 /* Returns the option group used by 'info types'. */
5028
5029 static gdb::option::option_def_group
5030 make_info_types_options_def_group (info_types_options *opts)
5031 {
5032 return {{info_types_options_defs}, opts};
5033 }
5034
5035 /* Implement the 'info types' command. */
5036
5037 static void
5038 info_types_command (const char *args, int from_tty)
5039 {
5040 info_types_options opts;
5041
5042 auto grp = make_info_types_options_def_group (&opts);
5043 gdb::option::process_options
5044 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5045 if (args != nullptr && *args == '\0')
5046 args = nullptr;
5047 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5048 }
5049
5050 /* Command completer for 'info types' command. */
5051
5052 static void
5053 info_types_command_completer (struct cmd_list_element *ignore,
5054 completion_tracker &tracker,
5055 const char *text, const char * /* word */)
5056 {
5057 const auto group
5058 = make_info_types_options_def_group (nullptr);
5059 if (gdb::option::complete_options
5060 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5061 return;
5062
5063 const char *word = advance_to_expression_complete_word_point (tracker, text);
5064 symbol_completer (ignore, tracker, text, word);
5065 }
5066
5067 /* Breakpoint all functions matching regular expression. */
5068
5069 void
5070 rbreak_command_wrapper (char *regexp, int from_tty)
5071 {
5072 rbreak_command (regexp, from_tty);
5073 }
5074
5075 static void
5076 rbreak_command (const char *regexp, int from_tty)
5077 {
5078 std::string string;
5079 const char **files = NULL;
5080 const char *file_name;
5081 int nfiles = 0;
5082
5083 if (regexp)
5084 {
5085 const char *colon = strchr (regexp, ':');
5086
5087 if (colon && *(colon + 1) != ':')
5088 {
5089 int colon_index;
5090 char *local_name;
5091
5092 colon_index = colon - regexp;
5093 local_name = (char *) alloca (colon_index + 1);
5094 memcpy (local_name, regexp, colon_index);
5095 local_name[colon_index--] = 0;
5096 while (isspace (local_name[colon_index]))
5097 local_name[colon_index--] = 0;
5098 file_name = local_name;
5099 files = &file_name;
5100 nfiles = 1;
5101 regexp = skip_spaces (colon + 1);
5102 }
5103 }
5104
5105 std::vector<symbol_search> symbols = search_symbols (regexp,
5106 FUNCTIONS_DOMAIN,
5107 NULL,
5108 nfiles, files,
5109 false);
5110
5111 scoped_rbreak_breakpoints finalize;
5112 for (const symbol_search &p : symbols)
5113 {
5114 if (p.msymbol.minsym == NULL)
5115 {
5116 struct symtab *symtab = symbol_symtab (p.symbol);
5117 const char *fullname = symtab_to_fullname (symtab);
5118
5119 string = string_printf ("%s:'%s'", fullname,
5120 SYMBOL_LINKAGE_NAME (p.symbol));
5121 break_command (&string[0], from_tty);
5122 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5123 }
5124 else
5125 {
5126 string = string_printf ("'%s'",
5127 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5128
5129 break_command (&string[0], from_tty);
5130 printf_filtered ("<function, no debug info> %s;\n",
5131 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5132 }
5133 }
5134 }
5135 \f
5136
5137 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5138
5139 static int
5140 compare_symbol_name (const char *symbol_name, language symbol_language,
5141 const lookup_name_info &lookup_name,
5142 completion_match_result &match_res)
5143 {
5144 const language_defn *lang = language_def (symbol_language);
5145
5146 symbol_name_matcher_ftype *name_match
5147 = get_symbol_name_matcher (lang, lookup_name);
5148
5149 return name_match (symbol_name, lookup_name, &match_res);
5150 }
5151
5152 /* See symtab.h. */
5153
5154 void
5155 completion_list_add_name (completion_tracker &tracker,
5156 language symbol_language,
5157 const char *symname,
5158 const lookup_name_info &lookup_name,
5159 const char *text, const char *word)
5160 {
5161 completion_match_result &match_res
5162 = tracker.reset_completion_match_result ();
5163
5164 /* Clip symbols that cannot match. */
5165 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5166 return;
5167
5168 /* Refresh SYMNAME from the match string. It's potentially
5169 different depending on language. (E.g., on Ada, the match may be
5170 the encoded symbol name wrapped in "<>"). */
5171 symname = match_res.match.match ();
5172 gdb_assert (symname != NULL);
5173
5174 /* We have a match for a completion, so add SYMNAME to the current list
5175 of matches. Note that the name is moved to freshly malloc'd space. */
5176
5177 {
5178 gdb::unique_xmalloc_ptr<char> completion
5179 = make_completion_match_str (symname, text, word);
5180
5181 /* Here we pass the match-for-lcd object to add_completion. Some
5182 languages match the user text against substrings of symbol
5183 names in some cases. E.g., in C++, "b push_ba" completes to
5184 "std::vector::push_back", "std::string::push_back", etc., and
5185 in this case we want the completion lowest common denominator
5186 to be "push_back" instead of "std::". */
5187 tracker.add_completion (std::move (completion),
5188 &match_res.match_for_lcd, text, word);
5189 }
5190 }
5191
5192 /* completion_list_add_name wrapper for struct symbol. */
5193
5194 static void
5195 completion_list_add_symbol (completion_tracker &tracker,
5196 symbol *sym,
5197 const lookup_name_info &lookup_name,
5198 const char *text, const char *word)
5199 {
5200 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5201 SYMBOL_NATURAL_NAME (sym),
5202 lookup_name, text, word);
5203 }
5204
5205 /* completion_list_add_name wrapper for struct minimal_symbol. */
5206
5207 static void
5208 completion_list_add_msymbol (completion_tracker &tracker,
5209 minimal_symbol *sym,
5210 const lookup_name_info &lookup_name,
5211 const char *text, const char *word)
5212 {
5213 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5214 MSYMBOL_NATURAL_NAME (sym),
5215 lookup_name, text, word);
5216 }
5217
5218
5219 /* ObjC: In case we are completing on a selector, look as the msymbol
5220 again and feed all the selectors into the mill. */
5221
5222 static void
5223 completion_list_objc_symbol (completion_tracker &tracker,
5224 struct minimal_symbol *msymbol,
5225 const lookup_name_info &lookup_name,
5226 const char *text, const char *word)
5227 {
5228 static char *tmp = NULL;
5229 static unsigned int tmplen = 0;
5230
5231 const char *method, *category, *selector;
5232 char *tmp2 = NULL;
5233
5234 method = MSYMBOL_NATURAL_NAME (msymbol);
5235
5236 /* Is it a method? */
5237 if ((method[0] != '-') && (method[0] != '+'))
5238 return;
5239
5240 if (text[0] == '[')
5241 /* Complete on shortened method method. */
5242 completion_list_add_name (tracker, language_objc,
5243 method + 1,
5244 lookup_name,
5245 text, word);
5246
5247 while ((strlen (method) + 1) >= tmplen)
5248 {
5249 if (tmplen == 0)
5250 tmplen = 1024;
5251 else
5252 tmplen *= 2;
5253 tmp = (char *) xrealloc (tmp, tmplen);
5254 }
5255 selector = strchr (method, ' ');
5256 if (selector != NULL)
5257 selector++;
5258
5259 category = strchr (method, '(');
5260
5261 if ((category != NULL) && (selector != NULL))
5262 {
5263 memcpy (tmp, method, (category - method));
5264 tmp[category - method] = ' ';
5265 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5266 completion_list_add_name (tracker, language_objc, tmp,
5267 lookup_name, text, word);
5268 if (text[0] == '[')
5269 completion_list_add_name (tracker, language_objc, tmp + 1,
5270 lookup_name, text, word);
5271 }
5272
5273 if (selector != NULL)
5274 {
5275 /* Complete on selector only. */
5276 strcpy (tmp, selector);
5277 tmp2 = strchr (tmp, ']');
5278 if (tmp2 != NULL)
5279 *tmp2 = '\0';
5280
5281 completion_list_add_name (tracker, language_objc, tmp,
5282 lookup_name, text, word);
5283 }
5284 }
5285
5286 /* Break the non-quoted text based on the characters which are in
5287 symbols. FIXME: This should probably be language-specific. */
5288
5289 static const char *
5290 language_search_unquoted_string (const char *text, const char *p)
5291 {
5292 for (; p > text; --p)
5293 {
5294 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5295 continue;
5296 else
5297 {
5298 if ((current_language->la_language == language_objc))
5299 {
5300 if (p[-1] == ':') /* Might be part of a method name. */
5301 continue;
5302 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5303 p -= 2; /* Beginning of a method name. */
5304 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5305 { /* Might be part of a method name. */
5306 const char *t = p;
5307
5308 /* Seeing a ' ' or a '(' is not conclusive evidence
5309 that we are in the middle of a method name. However,
5310 finding "-[" or "+[" should be pretty un-ambiguous.
5311 Unfortunately we have to find it now to decide. */
5312
5313 while (t > text)
5314 if (isalnum (t[-1]) || t[-1] == '_' ||
5315 t[-1] == ' ' || t[-1] == ':' ||
5316 t[-1] == '(' || t[-1] == ')')
5317 --t;
5318 else
5319 break;
5320
5321 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5322 p = t - 2; /* Method name detected. */
5323 /* Else we leave with p unchanged. */
5324 }
5325 }
5326 break;
5327 }
5328 }
5329 return p;
5330 }
5331
5332 static void
5333 completion_list_add_fields (completion_tracker &tracker,
5334 struct symbol *sym,
5335 const lookup_name_info &lookup_name,
5336 const char *text, const char *word)
5337 {
5338 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5339 {
5340 struct type *t = SYMBOL_TYPE (sym);
5341 enum type_code c = TYPE_CODE (t);
5342 int j;
5343
5344 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5345 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5346 if (TYPE_FIELD_NAME (t, j))
5347 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5348 TYPE_FIELD_NAME (t, j),
5349 lookup_name, text, word);
5350 }
5351 }
5352
5353 /* See symtab.h. */
5354
5355 bool
5356 symbol_is_function_or_method (symbol *sym)
5357 {
5358 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5359 {
5360 case TYPE_CODE_FUNC:
5361 case TYPE_CODE_METHOD:
5362 return true;
5363 default:
5364 return false;
5365 }
5366 }
5367
5368 /* See symtab.h. */
5369
5370 bool
5371 symbol_is_function_or_method (minimal_symbol *msymbol)
5372 {
5373 switch (MSYMBOL_TYPE (msymbol))
5374 {
5375 case mst_text:
5376 case mst_text_gnu_ifunc:
5377 case mst_solib_trampoline:
5378 case mst_file_text:
5379 return true;
5380 default:
5381 return false;
5382 }
5383 }
5384
5385 /* See symtab.h. */
5386
5387 bound_minimal_symbol
5388 find_gnu_ifunc (const symbol *sym)
5389 {
5390 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5391 return {};
5392
5393 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5394 symbol_name_match_type::SEARCH_NAME);
5395 struct objfile *objfile = symbol_objfile (sym);
5396
5397 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5398 minimal_symbol *ifunc = NULL;
5399
5400 iterate_over_minimal_symbols (objfile, lookup_name,
5401 [&] (minimal_symbol *minsym)
5402 {
5403 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5404 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5405 {
5406 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5407 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5408 {
5409 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5410 msym_addr
5411 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5412 msym_addr,
5413 current_top_target ());
5414 }
5415 if (msym_addr == address)
5416 {
5417 ifunc = minsym;
5418 return true;
5419 }
5420 }
5421 return false;
5422 });
5423
5424 if (ifunc != NULL)
5425 return {ifunc, objfile};
5426 return {};
5427 }
5428
5429 /* Add matching symbols from SYMTAB to the current completion list. */
5430
5431 static void
5432 add_symtab_completions (struct compunit_symtab *cust,
5433 completion_tracker &tracker,
5434 complete_symbol_mode mode,
5435 const lookup_name_info &lookup_name,
5436 const char *text, const char *word,
5437 enum type_code code)
5438 {
5439 struct symbol *sym;
5440 const struct block *b;
5441 struct block_iterator iter;
5442 int i;
5443
5444 if (cust == NULL)
5445 return;
5446
5447 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5448 {
5449 QUIT;
5450 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5451 ALL_BLOCK_SYMBOLS (b, iter, sym)
5452 {
5453 if (completion_skip_symbol (mode, sym))
5454 continue;
5455
5456 if (code == TYPE_CODE_UNDEF
5457 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5458 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5459 completion_list_add_symbol (tracker, sym,
5460 lookup_name,
5461 text, word);
5462 }
5463 }
5464 }
5465
5466 void
5467 default_collect_symbol_completion_matches_break_on
5468 (completion_tracker &tracker, complete_symbol_mode mode,
5469 symbol_name_match_type name_match_type,
5470 const char *text, const char *word,
5471 const char *break_on, enum type_code code)
5472 {
5473 /* Problem: All of the symbols have to be copied because readline
5474 frees them. I'm not going to worry about this; hopefully there
5475 won't be that many. */
5476
5477 struct symbol *sym;
5478 const struct block *b;
5479 const struct block *surrounding_static_block, *surrounding_global_block;
5480 struct block_iterator iter;
5481 /* The symbol we are completing on. Points in same buffer as text. */
5482 const char *sym_text;
5483
5484 /* Now look for the symbol we are supposed to complete on. */
5485 if (mode == complete_symbol_mode::LINESPEC)
5486 sym_text = text;
5487 else
5488 {
5489 const char *p;
5490 char quote_found;
5491 const char *quote_pos = NULL;
5492
5493 /* First see if this is a quoted string. */
5494 quote_found = '\0';
5495 for (p = text; *p != '\0'; ++p)
5496 {
5497 if (quote_found != '\0')
5498 {
5499 if (*p == quote_found)
5500 /* Found close quote. */
5501 quote_found = '\0';
5502 else if (*p == '\\' && p[1] == quote_found)
5503 /* A backslash followed by the quote character
5504 doesn't end the string. */
5505 ++p;
5506 }
5507 else if (*p == '\'' || *p == '"')
5508 {
5509 quote_found = *p;
5510 quote_pos = p;
5511 }
5512 }
5513 if (quote_found == '\'')
5514 /* A string within single quotes can be a symbol, so complete on it. */
5515 sym_text = quote_pos + 1;
5516 else if (quote_found == '"')
5517 /* A double-quoted string is never a symbol, nor does it make sense
5518 to complete it any other way. */
5519 {
5520 return;
5521 }
5522 else
5523 {
5524 /* It is not a quoted string. Break it based on the characters
5525 which are in symbols. */
5526 while (p > text)
5527 {
5528 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5529 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5530 --p;
5531 else
5532 break;
5533 }
5534 sym_text = p;
5535 }
5536 }
5537
5538 lookup_name_info lookup_name (sym_text, name_match_type, true);
5539
5540 /* At this point scan through the misc symbol vectors and add each
5541 symbol you find to the list. Eventually we want to ignore
5542 anything that isn't a text symbol (everything else will be
5543 handled by the psymtab code below). */
5544
5545 if (code == TYPE_CODE_UNDEF)
5546 {
5547 for (objfile *objfile : current_program_space->objfiles ())
5548 {
5549 for (minimal_symbol *msymbol : objfile->msymbols ())
5550 {
5551 QUIT;
5552
5553 if (completion_skip_symbol (mode, msymbol))
5554 continue;
5555
5556 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5557 sym_text, word);
5558
5559 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5560 sym_text, word);
5561 }
5562 }
5563 }
5564
5565 /* Add completions for all currently loaded symbol tables. */
5566 for (objfile *objfile : current_program_space->objfiles ())
5567 {
5568 for (compunit_symtab *cust : objfile->compunits ())
5569 add_symtab_completions (cust, tracker, mode, lookup_name,
5570 sym_text, word, code);
5571 }
5572
5573 /* Look through the partial symtabs for all symbols which begin by
5574 matching SYM_TEXT. Expand all CUs that you find to the list. */
5575 expand_symtabs_matching (NULL,
5576 lookup_name,
5577 NULL,
5578 [&] (compunit_symtab *symtab) /* expansion notify */
5579 {
5580 add_symtab_completions (symtab,
5581 tracker, mode, lookup_name,
5582 sym_text, word, code);
5583 },
5584 ALL_DOMAIN);
5585
5586 /* Search upwards from currently selected frame (so that we can
5587 complete on local vars). Also catch fields of types defined in
5588 this places which match our text string. Only complete on types
5589 visible from current context. */
5590
5591 b = get_selected_block (0);
5592 surrounding_static_block = block_static_block (b);
5593 surrounding_global_block = block_global_block (b);
5594 if (surrounding_static_block != NULL)
5595 while (b != surrounding_static_block)
5596 {
5597 QUIT;
5598
5599 ALL_BLOCK_SYMBOLS (b, iter, sym)
5600 {
5601 if (code == TYPE_CODE_UNDEF)
5602 {
5603 completion_list_add_symbol (tracker, sym, lookup_name,
5604 sym_text, word);
5605 completion_list_add_fields (tracker, sym, lookup_name,
5606 sym_text, word);
5607 }
5608 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5609 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5610 completion_list_add_symbol (tracker, sym, lookup_name,
5611 sym_text, word);
5612 }
5613
5614 /* Stop when we encounter an enclosing function. Do not stop for
5615 non-inlined functions - the locals of the enclosing function
5616 are in scope for a nested function. */
5617 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5618 break;
5619 b = BLOCK_SUPERBLOCK (b);
5620 }
5621
5622 /* Add fields from the file's types; symbols will be added below. */
5623
5624 if (code == TYPE_CODE_UNDEF)
5625 {
5626 if (surrounding_static_block != NULL)
5627 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5628 completion_list_add_fields (tracker, sym, lookup_name,
5629 sym_text, word);
5630
5631 if (surrounding_global_block != NULL)
5632 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5633 completion_list_add_fields (tracker, sym, lookup_name,
5634 sym_text, word);
5635 }
5636
5637 /* Skip macros if we are completing a struct tag -- arguable but
5638 usually what is expected. */
5639 if (current_language->la_macro_expansion == macro_expansion_c
5640 && code == TYPE_CODE_UNDEF)
5641 {
5642 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5643
5644 /* This adds a macro's name to the current completion list. */
5645 auto add_macro_name = [&] (const char *macro_name,
5646 const macro_definition *,
5647 macro_source_file *,
5648 int)
5649 {
5650 completion_list_add_name (tracker, language_c, macro_name,
5651 lookup_name, sym_text, word);
5652 };
5653
5654 /* Add any macros visible in the default scope. Note that this
5655 may yield the occasional wrong result, because an expression
5656 might be evaluated in a scope other than the default. For
5657 example, if the user types "break file:line if <TAB>", the
5658 resulting expression will be evaluated at "file:line" -- but
5659 at there does not seem to be a way to detect this at
5660 completion time. */
5661 scope = default_macro_scope ();
5662 if (scope)
5663 macro_for_each_in_scope (scope->file, scope->line,
5664 add_macro_name);
5665
5666 /* User-defined macros are always visible. */
5667 macro_for_each (macro_user_macros, add_macro_name);
5668 }
5669 }
5670
5671 void
5672 default_collect_symbol_completion_matches (completion_tracker &tracker,
5673 complete_symbol_mode mode,
5674 symbol_name_match_type name_match_type,
5675 const char *text, const char *word,
5676 enum type_code code)
5677 {
5678 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5679 name_match_type,
5680 text, word, "",
5681 code);
5682 }
5683
5684 /* Collect all symbols (regardless of class) which begin by matching
5685 TEXT. */
5686
5687 void
5688 collect_symbol_completion_matches (completion_tracker &tracker,
5689 complete_symbol_mode mode,
5690 symbol_name_match_type name_match_type,
5691 const char *text, const char *word)
5692 {
5693 current_language->la_collect_symbol_completion_matches (tracker, mode,
5694 name_match_type,
5695 text, word,
5696 TYPE_CODE_UNDEF);
5697 }
5698
5699 /* Like collect_symbol_completion_matches, but only collect
5700 STRUCT_DOMAIN symbols whose type code is CODE. */
5701
5702 void
5703 collect_symbol_completion_matches_type (completion_tracker &tracker,
5704 const char *text, const char *word,
5705 enum type_code code)
5706 {
5707 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5708 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5709
5710 gdb_assert (code == TYPE_CODE_UNION
5711 || code == TYPE_CODE_STRUCT
5712 || code == TYPE_CODE_ENUM);
5713 current_language->la_collect_symbol_completion_matches (tracker, mode,
5714 name_match_type,
5715 text, word, code);
5716 }
5717
5718 /* Like collect_symbol_completion_matches, but collects a list of
5719 symbols defined in all source files named SRCFILE. */
5720
5721 void
5722 collect_file_symbol_completion_matches (completion_tracker &tracker,
5723 complete_symbol_mode mode,
5724 symbol_name_match_type name_match_type,
5725 const char *text, const char *word,
5726 const char *srcfile)
5727 {
5728 /* The symbol we are completing on. Points in same buffer as text. */
5729 const char *sym_text;
5730
5731 /* Now look for the symbol we are supposed to complete on.
5732 FIXME: This should be language-specific. */
5733 if (mode == complete_symbol_mode::LINESPEC)
5734 sym_text = text;
5735 else
5736 {
5737 const char *p;
5738 char quote_found;
5739 const char *quote_pos = NULL;
5740
5741 /* First see if this is a quoted string. */
5742 quote_found = '\0';
5743 for (p = text; *p != '\0'; ++p)
5744 {
5745 if (quote_found != '\0')
5746 {
5747 if (*p == quote_found)
5748 /* Found close quote. */
5749 quote_found = '\0';
5750 else if (*p == '\\' && p[1] == quote_found)
5751 /* A backslash followed by the quote character
5752 doesn't end the string. */
5753 ++p;
5754 }
5755 else if (*p == '\'' || *p == '"')
5756 {
5757 quote_found = *p;
5758 quote_pos = p;
5759 }
5760 }
5761 if (quote_found == '\'')
5762 /* A string within single quotes can be a symbol, so complete on it. */
5763 sym_text = quote_pos + 1;
5764 else if (quote_found == '"')
5765 /* A double-quoted string is never a symbol, nor does it make sense
5766 to complete it any other way. */
5767 {
5768 return;
5769 }
5770 else
5771 {
5772 /* Not a quoted string. */
5773 sym_text = language_search_unquoted_string (text, p);
5774 }
5775 }
5776
5777 lookup_name_info lookup_name (sym_text, name_match_type, true);
5778
5779 /* Go through symtabs for SRCFILE and check the externs and statics
5780 for symbols which match. */
5781 iterate_over_symtabs (srcfile, [&] (symtab *s)
5782 {
5783 add_symtab_completions (SYMTAB_COMPUNIT (s),
5784 tracker, mode, lookup_name,
5785 sym_text, word, TYPE_CODE_UNDEF);
5786 return false;
5787 });
5788 }
5789
5790 /* A helper function for make_source_files_completion_list. It adds
5791 another file name to a list of possible completions, growing the
5792 list as necessary. */
5793
5794 static void
5795 add_filename_to_list (const char *fname, const char *text, const char *word,
5796 completion_list *list)
5797 {
5798 list->emplace_back (make_completion_match_str (fname, text, word));
5799 }
5800
5801 static int
5802 not_interesting_fname (const char *fname)
5803 {
5804 static const char *illegal_aliens[] = {
5805 "_globals_", /* inserted by coff_symtab_read */
5806 NULL
5807 };
5808 int i;
5809
5810 for (i = 0; illegal_aliens[i]; i++)
5811 {
5812 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5813 return 1;
5814 }
5815 return 0;
5816 }
5817
5818 /* An object of this type is passed as the user_data argument to
5819 map_partial_symbol_filenames. */
5820 struct add_partial_filename_data
5821 {
5822 struct filename_seen_cache *filename_seen_cache;
5823 const char *text;
5824 const char *word;
5825 int text_len;
5826 completion_list *list;
5827 };
5828
5829 /* A callback for map_partial_symbol_filenames. */
5830
5831 static void
5832 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5833 void *user_data)
5834 {
5835 struct add_partial_filename_data *data
5836 = (struct add_partial_filename_data *) user_data;
5837
5838 if (not_interesting_fname (filename))
5839 return;
5840 if (!data->filename_seen_cache->seen (filename)
5841 && filename_ncmp (filename, data->text, data->text_len) == 0)
5842 {
5843 /* This file matches for a completion; add it to the
5844 current list of matches. */
5845 add_filename_to_list (filename, data->text, data->word, data->list);
5846 }
5847 else
5848 {
5849 const char *base_name = lbasename (filename);
5850
5851 if (base_name != filename
5852 && !data->filename_seen_cache->seen (base_name)
5853 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5854 add_filename_to_list (base_name, data->text, data->word, data->list);
5855 }
5856 }
5857
5858 /* Return a list of all source files whose names begin with matching
5859 TEXT. The file names are looked up in the symbol tables of this
5860 program. */
5861
5862 completion_list
5863 make_source_files_completion_list (const char *text, const char *word)
5864 {
5865 size_t text_len = strlen (text);
5866 completion_list list;
5867 const char *base_name;
5868 struct add_partial_filename_data datum;
5869
5870 if (!have_full_symbols () && !have_partial_symbols ())
5871 return list;
5872
5873 filename_seen_cache filenames_seen;
5874
5875 for (objfile *objfile : current_program_space->objfiles ())
5876 {
5877 for (compunit_symtab *cu : objfile->compunits ())
5878 {
5879 for (symtab *s : compunit_filetabs (cu))
5880 {
5881 if (not_interesting_fname (s->filename))
5882 continue;
5883 if (!filenames_seen.seen (s->filename)
5884 && filename_ncmp (s->filename, text, text_len) == 0)
5885 {
5886 /* This file matches for a completion; add it to the current
5887 list of matches. */
5888 add_filename_to_list (s->filename, text, word, &list);
5889 }
5890 else
5891 {
5892 /* NOTE: We allow the user to type a base name when the
5893 debug info records leading directories, but not the other
5894 way around. This is what subroutines of breakpoint
5895 command do when they parse file names. */
5896 base_name = lbasename (s->filename);
5897 if (base_name != s->filename
5898 && !filenames_seen.seen (base_name)
5899 && filename_ncmp (base_name, text, text_len) == 0)
5900 add_filename_to_list (base_name, text, word, &list);
5901 }
5902 }
5903 }
5904 }
5905
5906 datum.filename_seen_cache = &filenames_seen;
5907 datum.text = text;
5908 datum.word = word;
5909 datum.text_len = text_len;
5910 datum.list = &list;
5911 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5912 0 /*need_fullname*/);
5913
5914 return list;
5915 }
5916 \f
5917 /* Track MAIN */
5918
5919 /* Return the "main_info" object for the current program space. If
5920 the object has not yet been created, create it and fill in some
5921 default values. */
5922
5923 static struct main_info *
5924 get_main_info (void)
5925 {
5926 struct main_info *info = main_progspace_key.get (current_program_space);
5927
5928 if (info == NULL)
5929 {
5930 /* It may seem strange to store the main name in the progspace
5931 and also in whatever objfile happens to see a main name in
5932 its debug info. The reason for this is mainly historical:
5933 gdb returned "main" as the name even if no function named
5934 "main" was defined the program; and this approach lets us
5935 keep compatibility. */
5936 info = main_progspace_key.emplace (current_program_space);
5937 }
5938
5939 return info;
5940 }
5941
5942 static void
5943 set_main_name (const char *name, enum language lang)
5944 {
5945 struct main_info *info = get_main_info ();
5946
5947 if (info->name_of_main != NULL)
5948 {
5949 xfree (info->name_of_main);
5950 info->name_of_main = NULL;
5951 info->language_of_main = language_unknown;
5952 }
5953 if (name != NULL)
5954 {
5955 info->name_of_main = xstrdup (name);
5956 info->language_of_main = lang;
5957 }
5958 }
5959
5960 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5961 accordingly. */
5962
5963 static void
5964 find_main_name (void)
5965 {
5966 const char *new_main_name;
5967
5968 /* First check the objfiles to see whether a debuginfo reader has
5969 picked up the appropriate main name. Historically the main name
5970 was found in a more or less random way; this approach instead
5971 relies on the order of objfile creation -- which still isn't
5972 guaranteed to get the correct answer, but is just probably more
5973 accurate. */
5974 for (objfile *objfile : current_program_space->objfiles ())
5975 {
5976 if (objfile->per_bfd->name_of_main != NULL)
5977 {
5978 set_main_name (objfile->per_bfd->name_of_main,
5979 objfile->per_bfd->language_of_main);
5980 return;
5981 }
5982 }
5983
5984 /* Try to see if the main procedure is in Ada. */
5985 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5986 be to add a new method in the language vector, and call this
5987 method for each language until one of them returns a non-empty
5988 name. This would allow us to remove this hard-coded call to
5989 an Ada function. It is not clear that this is a better approach
5990 at this point, because all methods need to be written in a way
5991 such that false positives never be returned. For instance, it is
5992 important that a method does not return a wrong name for the main
5993 procedure if the main procedure is actually written in a different
5994 language. It is easy to guaranty this with Ada, since we use a
5995 special symbol generated only when the main in Ada to find the name
5996 of the main procedure. It is difficult however to see how this can
5997 be guarantied for languages such as C, for instance. This suggests
5998 that order of call for these methods becomes important, which means
5999 a more complicated approach. */
6000 new_main_name = ada_main_name ();
6001 if (new_main_name != NULL)
6002 {
6003 set_main_name (new_main_name, language_ada);
6004 return;
6005 }
6006
6007 new_main_name = d_main_name ();
6008 if (new_main_name != NULL)
6009 {
6010 set_main_name (new_main_name, language_d);
6011 return;
6012 }
6013
6014 new_main_name = go_main_name ();
6015 if (new_main_name != NULL)
6016 {
6017 set_main_name (new_main_name, language_go);
6018 return;
6019 }
6020
6021 new_main_name = pascal_main_name ();
6022 if (new_main_name != NULL)
6023 {
6024 set_main_name (new_main_name, language_pascal);
6025 return;
6026 }
6027
6028 /* The languages above didn't identify the name of the main procedure.
6029 Fallback to "main". */
6030 set_main_name ("main", language_unknown);
6031 }
6032
6033 /* See symtab.h. */
6034
6035 const char *
6036 main_name ()
6037 {
6038 struct main_info *info = get_main_info ();
6039
6040 if (info->name_of_main == NULL)
6041 find_main_name ();
6042
6043 return info->name_of_main;
6044 }
6045
6046 /* Return the language of the main function. If it is not known,
6047 return language_unknown. */
6048
6049 enum language
6050 main_language (void)
6051 {
6052 struct main_info *info = get_main_info ();
6053
6054 if (info->name_of_main == NULL)
6055 find_main_name ();
6056
6057 return info->language_of_main;
6058 }
6059
6060 /* Handle ``executable_changed'' events for the symtab module. */
6061
6062 static void
6063 symtab_observer_executable_changed (void)
6064 {
6065 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6066 set_main_name (NULL, language_unknown);
6067 }
6068
6069 /* Return 1 if the supplied producer string matches the ARM RealView
6070 compiler (armcc). */
6071
6072 int
6073 producer_is_realview (const char *producer)
6074 {
6075 static const char *const arm_idents[] = {
6076 "ARM C Compiler, ADS",
6077 "Thumb C Compiler, ADS",
6078 "ARM C++ Compiler, ADS",
6079 "Thumb C++ Compiler, ADS",
6080 "ARM/Thumb C/C++ Compiler, RVCT",
6081 "ARM C/C++ Compiler, RVCT"
6082 };
6083 int i;
6084
6085 if (producer == NULL)
6086 return 0;
6087
6088 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6089 if (startswith (producer, arm_idents[i]))
6090 return 1;
6091
6092 return 0;
6093 }
6094
6095 \f
6096
6097 /* The next index to hand out in response to a registration request. */
6098
6099 static int next_aclass_value = LOC_FINAL_VALUE;
6100
6101 /* The maximum number of "aclass" registrations we support. This is
6102 constant for convenience. */
6103 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6104
6105 /* The objects representing the various "aclass" values. The elements
6106 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6107 elements are those registered at gdb initialization time. */
6108
6109 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6110
6111 /* The globally visible pointer. This is separate from 'symbol_impl'
6112 so that it can be const. */
6113
6114 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6115
6116 /* Make sure we saved enough room in struct symbol. */
6117
6118 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6119
6120 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6121 is the ops vector associated with this index. This returns the new
6122 index, which should be used as the aclass_index field for symbols
6123 of this type. */
6124
6125 int
6126 register_symbol_computed_impl (enum address_class aclass,
6127 const struct symbol_computed_ops *ops)
6128 {
6129 int result = next_aclass_value++;
6130
6131 gdb_assert (aclass == LOC_COMPUTED);
6132 gdb_assert (result < MAX_SYMBOL_IMPLS);
6133 symbol_impl[result].aclass = aclass;
6134 symbol_impl[result].ops_computed = ops;
6135
6136 /* Sanity check OPS. */
6137 gdb_assert (ops != NULL);
6138 gdb_assert (ops->tracepoint_var_ref != NULL);
6139 gdb_assert (ops->describe_location != NULL);
6140 gdb_assert (ops->get_symbol_read_needs != NULL);
6141 gdb_assert (ops->read_variable != NULL);
6142
6143 return result;
6144 }
6145
6146 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6147 OPS is the ops vector associated with this index. This returns the
6148 new index, which should be used as the aclass_index field for symbols
6149 of this type. */
6150
6151 int
6152 register_symbol_block_impl (enum address_class aclass,
6153 const struct symbol_block_ops *ops)
6154 {
6155 int result = next_aclass_value++;
6156
6157 gdb_assert (aclass == LOC_BLOCK);
6158 gdb_assert (result < MAX_SYMBOL_IMPLS);
6159 symbol_impl[result].aclass = aclass;
6160 symbol_impl[result].ops_block = ops;
6161
6162 /* Sanity check OPS. */
6163 gdb_assert (ops != NULL);
6164 gdb_assert (ops->find_frame_base_location != NULL);
6165
6166 return result;
6167 }
6168
6169 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6170 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6171 this index. This returns the new index, which should be used as
6172 the aclass_index field for symbols of this type. */
6173
6174 int
6175 register_symbol_register_impl (enum address_class aclass,
6176 const struct symbol_register_ops *ops)
6177 {
6178 int result = next_aclass_value++;
6179
6180 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6181 gdb_assert (result < MAX_SYMBOL_IMPLS);
6182 symbol_impl[result].aclass = aclass;
6183 symbol_impl[result].ops_register = ops;
6184
6185 return result;
6186 }
6187
6188 /* Initialize elements of 'symbol_impl' for the constants in enum
6189 address_class. */
6190
6191 static void
6192 initialize_ordinary_address_classes (void)
6193 {
6194 int i;
6195
6196 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6197 symbol_impl[i].aclass = (enum address_class) i;
6198 }
6199
6200 \f
6201
6202 /* Helper function to initialize the fields of an objfile-owned symbol.
6203 It assumed that *SYM is already all zeroes. */
6204
6205 static void
6206 initialize_objfile_symbol_1 (struct symbol *sym)
6207 {
6208 SYMBOL_OBJFILE_OWNED (sym) = 1;
6209 SYMBOL_SECTION (sym) = -1;
6210 }
6211
6212 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6213
6214 void
6215 initialize_objfile_symbol (struct symbol *sym)
6216 {
6217 memset (sym, 0, sizeof (*sym));
6218 initialize_objfile_symbol_1 (sym);
6219 }
6220
6221 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6222 obstack. */
6223
6224 struct symbol *
6225 allocate_symbol (struct objfile *objfile)
6226 {
6227 struct symbol *result;
6228
6229 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6230 initialize_objfile_symbol_1 (result);
6231
6232 return result;
6233 }
6234
6235 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6236 obstack. */
6237
6238 struct template_symbol *
6239 allocate_template_symbol (struct objfile *objfile)
6240 {
6241 struct template_symbol *result;
6242
6243 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6244 initialize_objfile_symbol_1 (result);
6245
6246 return result;
6247 }
6248
6249 /* See symtab.h. */
6250
6251 struct objfile *
6252 symbol_objfile (const struct symbol *symbol)
6253 {
6254 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6255 return SYMTAB_OBJFILE (symbol->owner.symtab);
6256 }
6257
6258 /* See symtab.h. */
6259
6260 struct gdbarch *
6261 symbol_arch (const struct symbol *symbol)
6262 {
6263 if (!SYMBOL_OBJFILE_OWNED (symbol))
6264 return symbol->owner.arch;
6265 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6266 }
6267
6268 /* See symtab.h. */
6269
6270 struct symtab *
6271 symbol_symtab (const struct symbol *symbol)
6272 {
6273 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6274 return symbol->owner.symtab;
6275 }
6276
6277 /* See symtab.h. */
6278
6279 void
6280 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6281 {
6282 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6283 symbol->owner.symtab = symtab;
6284 }
6285
6286 \f
6287
6288 void
6289 _initialize_symtab (void)
6290 {
6291 cmd_list_element *c;
6292
6293 initialize_ordinary_address_classes ();
6294
6295 c = add_info ("variables", info_variables_command,
6296 info_print_args_help (_("\
6297 All global and static variable names or those matching REGEXPs.\n\
6298 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6299 Prints the global and static variables.\n"),
6300 _("global and static variables"),
6301 true));
6302 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6303 if (dbx_commands)
6304 {
6305 c = add_com ("whereis", class_info, info_variables_command,
6306 info_print_args_help (_("\
6307 All global and static variable names, or those matching REGEXPs.\n\
6308 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6309 Prints the global and static variables.\n"),
6310 _("global and static variables"),
6311 true));
6312 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6313 }
6314
6315 c = add_info ("functions", info_functions_command,
6316 info_print_args_help (_("\
6317 All function names or those matching REGEXPs.\n\
6318 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6319 Prints the functions.\n"),
6320 _("functions"),
6321 true));
6322 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6323
6324 c = add_info ("types", info_types_command, _("\
6325 All type names, or those matching REGEXP.\n\
6326 Usage: info types [-q] [REGEXP]\n\
6327 Print information about all types matching REGEXP, or all types if no\n\
6328 REGEXP is given. The optional flag -q disables printing of headers."));
6329 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6330
6331 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6332
6333 static std::string info_sources_help
6334 = gdb::option::build_help (_("\
6335 All source files in the program or those matching REGEXP.\n\
6336 Usage: info sources [OPTION]... [REGEXP]\n\
6337 By default, REGEXP is used to match anywhere in the filename.\n\
6338 \n\
6339 Options:\n\
6340 %OPTIONS%"),
6341 info_sources_opts);
6342
6343 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6344 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6345
6346 add_com ("rbreak", class_breakpoint, rbreak_command,
6347 _("Set a breakpoint for all functions matching REGEXP."));
6348
6349 add_setshow_enum_cmd ("multiple-symbols", no_class,
6350 multiple_symbols_modes, &multiple_symbols_mode,
6351 _("\
6352 Set how the debugger handles ambiguities in expressions."), _("\
6353 Show how the debugger handles ambiguities in expressions."), _("\
6354 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6355 NULL, NULL, &setlist, &showlist);
6356
6357 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6358 &basenames_may_differ, _("\
6359 Set whether a source file may have multiple base names."), _("\
6360 Show whether a source file may have multiple base names."), _("\
6361 (A \"base name\" is the name of a file with the directory part removed.\n\
6362 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6363 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6364 before comparing them. Canonicalization is an expensive operation,\n\
6365 but it allows the same file be known by more than one base name.\n\
6366 If not set (the default), all source files are assumed to have just\n\
6367 one base name, and gdb will do file name comparisons more efficiently."),
6368 NULL, NULL,
6369 &setlist, &showlist);
6370
6371 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6372 _("Set debugging of symbol table creation."),
6373 _("Show debugging of symbol table creation."), _("\
6374 When enabled (non-zero), debugging messages are printed when building\n\
6375 symbol tables. A value of 1 (one) normally provides enough information.\n\
6376 A value greater than 1 provides more verbose information."),
6377 NULL,
6378 NULL,
6379 &setdebuglist, &showdebuglist);
6380
6381 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6382 _("\
6383 Set debugging of symbol lookup."), _("\
6384 Show debugging of symbol lookup."), _("\
6385 When enabled (non-zero), symbol lookups are logged."),
6386 NULL, NULL,
6387 &setdebuglist, &showdebuglist);
6388
6389 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6390 &new_symbol_cache_size,
6391 _("Set the size of the symbol cache."),
6392 _("Show the size of the symbol cache."), _("\
6393 The size of the symbol cache.\n\
6394 If zero then the symbol cache is disabled."),
6395 set_symbol_cache_size_handler, NULL,
6396 &maintenance_set_cmdlist,
6397 &maintenance_show_cmdlist);
6398
6399 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6400 _("Dump the symbol cache for each program space."),
6401 &maintenanceprintlist);
6402
6403 add_cmd ("symbol-cache-statistics", class_maintenance,
6404 maintenance_print_symbol_cache_statistics,
6405 _("Print symbol cache statistics for each program space."),
6406 &maintenanceprintlist);
6407
6408 add_cmd ("flush-symbol-cache", class_maintenance,
6409 maintenance_flush_symbol_cache,
6410 _("Flush the symbol cache for each program space."),
6411 &maintenancelist);
6412
6413 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6414 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6415 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6416 }
This page took 0.265261 seconds and 5 git commands to generate.