Fix misleading indentation error.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observable.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68 #include <algorithm>
69 #include "common/pathstuff.h"
70
71 /* Forward declarations for local functions. */
72
73 static void rbreak_command (const char *, int);
74
75 static int find_line_common (struct linetable *, int, int *, int);
76
77 static struct block_symbol
78 lookup_symbol_aux (const char *name,
79 symbol_name_match_type match_type,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language,
83 struct field_of_this_result *);
84
85 static
86 struct block_symbol lookup_local_symbol (const char *name,
87 symbol_name_match_type match_type,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static struct block_symbol
93 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
94 const char *name, const domain_enum domain);
95
96 /* See symtab.h. */
97 const struct block_symbol null_block_symbol = { NULL, NULL };
98
99 /* Program space key for finding name and language of "main". */
100
101 static const struct program_space_data *main_progspace_key;
102
103 /* Type of the data stored on the program space. */
104
105 struct main_info
106 {
107 /* Name of "main". */
108
109 char *name_of_main;
110
111 /* Language of "main". */
112
113 enum language language_of_main;
114 };
115
116 /* Program space key for finding its symbol cache. */
117
118 static const struct program_space_data *symbol_cache_key;
119
120 /* The default symbol cache size.
121 There is no extra cpu cost for large N (except when flushing the cache,
122 which is rare). The value here is just a first attempt. A better default
123 value may be higher or lower. A prime number can make up for a bad hash
124 computation, so that's why the number is what it is. */
125 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
126
127 /* The maximum symbol cache size.
128 There's no method to the decision of what value to use here, other than
129 there's no point in allowing a user typo to make gdb consume all memory. */
130 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
131
132 /* symbol_cache_lookup returns this if a previous lookup failed to find the
133 symbol in any objfile. */
134 #define SYMBOL_LOOKUP_FAILED \
135 ((struct block_symbol) {(struct symbol *) 1, NULL})
136 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
137
138 /* Recording lookups that don't find the symbol is just as important, if not
139 more so, than recording found symbols. */
140
141 enum symbol_cache_slot_state
142 {
143 SYMBOL_SLOT_UNUSED,
144 SYMBOL_SLOT_NOT_FOUND,
145 SYMBOL_SLOT_FOUND
146 };
147
148 struct symbol_cache_slot
149 {
150 enum symbol_cache_slot_state state;
151
152 /* The objfile that was current when the symbol was looked up.
153 This is only needed for global blocks, but for simplicity's sake
154 we allocate the space for both. If data shows the extra space used
155 for static blocks is a problem, we can split things up then.
156
157 Global blocks need cache lookup to include the objfile context because
158 we need to account for gdbarch_iterate_over_objfiles_in_search_order
159 which can traverse objfiles in, effectively, any order, depending on
160 the current objfile, thus affecting which symbol is found. Normally,
161 only the current objfile is searched first, and then the rest are
162 searched in recorded order; but putting cache lookup inside
163 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
164 Instead we just make the current objfile part of the context of
165 cache lookup. This means we can record the same symbol multiple times,
166 each with a different "current objfile" that was in effect when the
167 lookup was saved in the cache, but cache space is pretty cheap. */
168 const struct objfile *objfile_context;
169
170 union
171 {
172 struct block_symbol found;
173 struct
174 {
175 char *name;
176 domain_enum domain;
177 } not_found;
178 } value;
179 };
180
181 /* Symbols don't specify global vs static block.
182 So keep them in separate caches. */
183
184 struct block_symbol_cache
185 {
186 unsigned int hits;
187 unsigned int misses;
188 unsigned int collisions;
189
190 /* SYMBOLS is a variable length array of this size.
191 One can imagine that in general one cache (global/static) should be a
192 fraction of the size of the other, but there's no data at the moment
193 on which to decide. */
194 unsigned int size;
195
196 struct symbol_cache_slot symbols[1];
197 };
198
199 /* The symbol cache.
200
201 Searching for symbols in the static and global blocks over multiple objfiles
202 again and again can be slow, as can searching very big objfiles. This is a
203 simple cache to improve symbol lookup performance, which is critical to
204 overall gdb performance.
205
206 Symbols are hashed on the name, its domain, and block.
207 They are also hashed on their objfile for objfile-specific lookups. */
208
209 struct symbol_cache
210 {
211 struct block_symbol_cache *global_symbols;
212 struct block_symbol_cache *static_symbols;
213 };
214
215 /* When non-zero, print debugging messages related to symtab creation. */
216 unsigned int symtab_create_debug = 0;
217
218 /* When non-zero, print debugging messages related to symbol lookup. */
219 unsigned int symbol_lookup_debug = 0;
220
221 /* The size of the cache is staged here. */
222 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
223
224 /* The current value of the symbol cache size.
225 This is saved so that if the user enters a value too big we can restore
226 the original value from here. */
227 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
228
229 /* Non-zero if a file may be known by two different basenames.
230 This is the uncommon case, and significantly slows down gdb.
231 Default set to "off" to not slow down the common case. */
232 int basenames_may_differ = 0;
233
234 /* Allow the user to configure the debugger behavior with respect
235 to multiple-choice menus when more than one symbol matches during
236 a symbol lookup. */
237
238 const char multiple_symbols_ask[] = "ask";
239 const char multiple_symbols_all[] = "all";
240 const char multiple_symbols_cancel[] = "cancel";
241 static const char *const multiple_symbols_modes[] =
242 {
243 multiple_symbols_ask,
244 multiple_symbols_all,
245 multiple_symbols_cancel,
246 NULL
247 };
248 static const char *multiple_symbols_mode = multiple_symbols_all;
249
250 /* Read-only accessor to AUTO_SELECT_MODE. */
251
252 const char *
253 multiple_symbols_select_mode (void)
254 {
255 return multiple_symbols_mode;
256 }
257
258 /* Return the name of a domain_enum. */
259
260 const char *
261 domain_name (domain_enum e)
262 {
263 switch (e)
264 {
265 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
266 case VAR_DOMAIN: return "VAR_DOMAIN";
267 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
268 case MODULE_DOMAIN: return "MODULE_DOMAIN";
269 case LABEL_DOMAIN: return "LABEL_DOMAIN";
270 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
271 default: gdb_assert_not_reached ("bad domain_enum");
272 }
273 }
274
275 /* Return the name of a search_domain . */
276
277 const char *
278 search_domain_name (enum search_domain e)
279 {
280 switch (e)
281 {
282 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
283 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
284 case TYPES_DOMAIN: return "TYPES_DOMAIN";
285 case ALL_DOMAIN: return "ALL_DOMAIN";
286 default: gdb_assert_not_reached ("bad search_domain");
287 }
288 }
289
290 /* See symtab.h. */
291
292 struct symtab *
293 compunit_primary_filetab (const struct compunit_symtab *cust)
294 {
295 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
296
297 /* The primary file symtab is the first one in the list. */
298 return COMPUNIT_FILETABS (cust);
299 }
300
301 /* See symtab.h. */
302
303 enum language
304 compunit_language (const struct compunit_symtab *cust)
305 {
306 struct symtab *symtab = compunit_primary_filetab (cust);
307
308 /* The language of the compunit symtab is the language of its primary
309 source file. */
310 return SYMTAB_LANGUAGE (symtab);
311 }
312
313 /* See whether FILENAME matches SEARCH_NAME using the rule that we
314 advertise to the user. (The manual's description of linespecs
315 describes what we advertise). Returns true if they match, false
316 otherwise. */
317
318 int
319 compare_filenames_for_search (const char *filename, const char *search_name)
320 {
321 int len = strlen (filename);
322 size_t search_len = strlen (search_name);
323
324 if (len < search_len)
325 return 0;
326
327 /* The tail of FILENAME must match. */
328 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
329 return 0;
330
331 /* Either the names must completely match, or the character
332 preceding the trailing SEARCH_NAME segment of FILENAME must be a
333 directory separator.
334
335 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
336 cannot match FILENAME "/path//dir/file.c" - as user has requested
337 absolute path. The sama applies for "c:\file.c" possibly
338 incorrectly hypothetically matching "d:\dir\c:\file.c".
339
340 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
341 compatible with SEARCH_NAME "file.c". In such case a compiler had
342 to put the "c:file.c" name into debug info. Such compatibility
343 works only on GDB built for DOS host. */
344 return (len == search_len
345 || (!IS_ABSOLUTE_PATH (search_name)
346 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
347 || (HAS_DRIVE_SPEC (filename)
348 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
349 }
350
351 /* Same as compare_filenames_for_search, but for glob-style patterns.
352 Heads up on the order of the arguments. They match the order of
353 compare_filenames_for_search, but it's the opposite of the order of
354 arguments to gdb_filename_fnmatch. */
355
356 int
357 compare_glob_filenames_for_search (const char *filename,
358 const char *search_name)
359 {
360 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
361 all /s have to be explicitly specified. */
362 int file_path_elements = count_path_elements (filename);
363 int search_path_elements = count_path_elements (search_name);
364
365 if (search_path_elements > file_path_elements)
366 return 0;
367
368 if (IS_ABSOLUTE_PATH (search_name))
369 {
370 return (search_path_elements == file_path_elements
371 && gdb_filename_fnmatch (search_name, filename,
372 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
373 }
374
375 {
376 const char *file_to_compare
377 = strip_leading_path_elements (filename,
378 file_path_elements - search_path_elements);
379
380 return gdb_filename_fnmatch (search_name, file_to_compare,
381 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
382 }
383 }
384
385 /* Check for a symtab of a specific name by searching some symtabs.
386 This is a helper function for callbacks of iterate_over_symtabs.
387
388 If NAME is not absolute, then REAL_PATH is NULL
389 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
390
391 The return value, NAME, REAL_PATH and CALLBACK are identical to the
392 `map_symtabs_matching_filename' method of quick_symbol_functions.
393
394 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
395 Each symtab within the specified compunit symtab is also searched.
396 AFTER_LAST is one past the last compunit symtab to search; NULL means to
397 search until the end of the list. */
398
399 bool
400 iterate_over_some_symtabs (const char *name,
401 const char *real_path,
402 struct compunit_symtab *first,
403 struct compunit_symtab *after_last,
404 gdb::function_view<bool (symtab *)> callback)
405 {
406 struct compunit_symtab *cust;
407 struct symtab *s;
408 const char* base_name = lbasename (name);
409
410 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
411 {
412 ALL_COMPUNIT_FILETABS (cust, s)
413 {
414 if (compare_filenames_for_search (s->filename, name))
415 {
416 if (callback (s))
417 return true;
418 continue;
419 }
420
421 /* Before we invoke realpath, which can get expensive when many
422 files are involved, do a quick comparison of the basenames. */
423 if (! basenames_may_differ
424 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
425 continue;
426
427 if (compare_filenames_for_search (symtab_to_fullname (s), name))
428 {
429 if (callback (s))
430 return true;
431 continue;
432 }
433
434 /* If the user gave us an absolute path, try to find the file in
435 this symtab and use its absolute path. */
436 if (real_path != NULL)
437 {
438 const char *fullname = symtab_to_fullname (s);
439
440 gdb_assert (IS_ABSOLUTE_PATH (real_path));
441 gdb_assert (IS_ABSOLUTE_PATH (name));
442 if (FILENAME_CMP (real_path, fullname) == 0)
443 {
444 if (callback (s))
445 return true;
446 continue;
447 }
448 }
449 }
450 }
451
452 return false;
453 }
454
455 /* Check for a symtab of a specific name; first in symtabs, then in
456 psymtabs. *If* there is no '/' in the name, a match after a '/'
457 in the symtab filename will also work.
458
459 Calls CALLBACK with each symtab that is found. If CALLBACK returns
460 true, the search stops. */
461
462 void
463 iterate_over_symtabs (const char *name,
464 gdb::function_view<bool (symtab *)> callback)
465 {
466 struct objfile *objfile;
467 gdb::unique_xmalloc_ptr<char> real_path;
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
475 }
476
477 ALL_OBJFILES (objfile)
478 {
479 if (iterate_over_some_symtabs (name, real_path.get (),
480 objfile->compunit_symtabs, NULL,
481 callback))
482 return;
483 }
484
485 /* Same search rules as above apply here, but now we look thru the
486 psymtabs. */
487
488 ALL_OBJFILES (objfile)
489 {
490 if (objfile->sf
491 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
492 name,
493 real_path.get (),
494 callback))
495 return;
496 }
497 }
498
499 /* A wrapper for iterate_over_symtabs that returns the first matching
500 symtab, or NULL. */
501
502 struct symtab *
503 lookup_symtab (const char *name)
504 {
505 struct symtab *result = NULL;
506
507 iterate_over_symtabs (name, [&] (symtab *symtab)
508 {
509 result = symtab;
510 return true;
511 });
512
513 return result;
514 }
515
516 \f
517 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
518 full method name, which consist of the class name (from T), the unadorned
519 method name from METHOD_ID, and the signature for the specific overload,
520 specified by SIGNATURE_ID. Note that this function is g++ specific. */
521
522 char *
523 gdb_mangle_name (struct type *type, int method_id, int signature_id)
524 {
525 int mangled_name_len;
526 char *mangled_name;
527 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
528 struct fn_field *method = &f[signature_id];
529 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
530 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
531 const char *newname = type_name_no_tag (type);
532
533 /* Does the form of physname indicate that it is the full mangled name
534 of a constructor (not just the args)? */
535 int is_full_physname_constructor;
536
537 int is_constructor;
538 int is_destructor = is_destructor_name (physname);
539 /* Need a new type prefix. */
540 const char *const_prefix = method->is_const ? "C" : "";
541 const char *volatile_prefix = method->is_volatile ? "V" : "";
542 char buf[20];
543 int len = (newname == NULL ? 0 : strlen (newname));
544
545 /* Nothing to do if physname already contains a fully mangled v3 abi name
546 or an operator name. */
547 if ((physname[0] == '_' && physname[1] == 'Z')
548 || is_operator_name (field_name))
549 return xstrdup (physname);
550
551 is_full_physname_constructor = is_constructor_name (physname);
552
553 is_constructor = is_full_physname_constructor
554 || (newname && strcmp (field_name, newname) == 0);
555
556 if (!is_destructor)
557 is_destructor = (startswith (physname, "__dt"));
558
559 if (is_destructor || is_full_physname_constructor)
560 {
561 mangled_name = (char *) xmalloc (strlen (physname) + 1);
562 strcpy (mangled_name, physname);
563 return mangled_name;
564 }
565
566 if (len == 0)
567 {
568 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
569 }
570 else if (physname[0] == 't' || physname[0] == 'Q')
571 {
572 /* The physname for template and qualified methods already includes
573 the class name. */
574 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
575 newname = NULL;
576 len = 0;
577 }
578 else
579 {
580 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
581 volatile_prefix, len);
582 }
583 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
584 + strlen (buf) + len + strlen (physname) + 1);
585
586 mangled_name = (char *) xmalloc (mangled_name_len);
587 if (is_constructor)
588 mangled_name[0] = '\0';
589 else
590 strcpy (mangled_name, field_name);
591
592 strcat (mangled_name, buf);
593 /* If the class doesn't have a name, i.e. newname NULL, then we just
594 mangle it using 0 for the length of the class. Thus it gets mangled
595 as something starting with `::' rather than `classname::'. */
596 if (newname != NULL)
597 strcat (mangled_name, newname);
598
599 strcat (mangled_name, physname);
600 return (mangled_name);
601 }
602
603 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
604 correctly allocated. */
605
606 void
607 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
608 const char *name,
609 struct obstack *obstack)
610 {
611 if (gsymbol->language == language_ada)
612 {
613 if (name == NULL)
614 {
615 gsymbol->ada_mangled = 0;
616 gsymbol->language_specific.obstack = obstack;
617 }
618 else
619 {
620 gsymbol->ada_mangled = 1;
621 gsymbol->language_specific.demangled_name = name;
622 }
623 }
624 else
625 gsymbol->language_specific.demangled_name = name;
626 }
627
628 /* Return the demangled name of GSYMBOL. */
629
630 const char *
631 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
632 {
633 if (gsymbol->language == language_ada)
634 {
635 if (!gsymbol->ada_mangled)
636 return NULL;
637 /* Fall through. */
638 }
639
640 return gsymbol->language_specific.demangled_name;
641 }
642
643 \f
644 /* Initialize the language dependent portion of a symbol
645 depending upon the language for the symbol. */
646
647 void
648 symbol_set_language (struct general_symbol_info *gsymbol,
649 enum language language,
650 struct obstack *obstack)
651 {
652 gsymbol->language = language;
653 if (gsymbol->language == language_cplus
654 || gsymbol->language == language_d
655 || gsymbol->language == language_go
656 || gsymbol->language == language_objc
657 || gsymbol->language == language_fortran)
658 {
659 symbol_set_demangled_name (gsymbol, NULL, obstack);
660 }
661 else if (gsymbol->language == language_ada)
662 {
663 gdb_assert (gsymbol->ada_mangled == 0);
664 gsymbol->language_specific.obstack = obstack;
665 }
666 else
667 {
668 memset (&gsymbol->language_specific, 0,
669 sizeof (gsymbol->language_specific));
670 }
671 }
672
673 /* Functions to initialize a symbol's mangled name. */
674
675 /* Objects of this type are stored in the demangled name hash table. */
676 struct demangled_name_entry
677 {
678 const char *mangled;
679 char demangled[1];
680 };
681
682 /* Hash function for the demangled name hash. */
683
684 static hashval_t
685 hash_demangled_name_entry (const void *data)
686 {
687 const struct demangled_name_entry *e
688 = (const struct demangled_name_entry *) data;
689
690 return htab_hash_string (e->mangled);
691 }
692
693 /* Equality function for the demangled name hash. */
694
695 static int
696 eq_demangled_name_entry (const void *a, const void *b)
697 {
698 const struct demangled_name_entry *da
699 = (const struct demangled_name_entry *) a;
700 const struct demangled_name_entry *db
701 = (const struct demangled_name_entry *) b;
702
703 return strcmp (da->mangled, db->mangled) == 0;
704 }
705
706 /* Create the hash table used for demangled names. Each hash entry is
707 a pair of strings; one for the mangled name and one for the demangled
708 name. The entry is hashed via just the mangled name. */
709
710 static void
711 create_demangled_names_hash (struct objfile *objfile)
712 {
713 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
714 The hash table code will round this up to the next prime number.
715 Choosing a much larger table size wastes memory, and saves only about
716 1% in symbol reading. */
717
718 objfile->per_bfd->demangled_names_hash = htab_create_alloc
719 (256, hash_demangled_name_entry, eq_demangled_name_entry,
720 NULL, xcalloc, xfree);
721 }
722
723 /* Try to determine the demangled name for a symbol, based on the
724 language of that symbol. If the language is set to language_auto,
725 it will attempt to find any demangling algorithm that works and
726 then set the language appropriately. The returned name is allocated
727 by the demangler and should be xfree'd. */
728
729 static char *
730 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
731 const char *mangled)
732 {
733 char *demangled = NULL;
734 int i;
735
736 if (gsymbol->language == language_unknown)
737 gsymbol->language = language_auto;
738
739 if (gsymbol->language != language_auto)
740 {
741 const struct language_defn *lang = language_def (gsymbol->language);
742
743 language_sniff_from_mangled_name (lang, mangled, &demangled);
744 return demangled;
745 }
746
747 for (i = language_unknown; i < nr_languages; ++i)
748 {
749 enum language l = (enum language) i;
750 const struct language_defn *lang = language_def (l);
751
752 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
753 {
754 gsymbol->language = l;
755 return demangled;
756 }
757 }
758
759 return NULL;
760 }
761
762 /* Set both the mangled and demangled (if any) names for GSYMBOL based
763 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
764 objfile's obstack; but if COPY_NAME is 0 and if NAME is
765 NUL-terminated, then this function assumes that NAME is already
766 correctly saved (either permanently or with a lifetime tied to the
767 objfile), and it will not be copied.
768
769 The hash table corresponding to OBJFILE is used, and the memory
770 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
771 so the pointer can be discarded after calling this function. */
772
773 void
774 symbol_set_names (struct general_symbol_info *gsymbol,
775 const char *linkage_name, int len, int copy_name,
776 struct objfile *objfile)
777 {
778 struct demangled_name_entry **slot;
779 /* A 0-terminated copy of the linkage name. */
780 const char *linkage_name_copy;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name. */
788 if (!copy_name)
789 gsymbol->name = linkage_name;
790 else
791 {
792 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
793 len + 1);
794
795 memcpy (name, linkage_name, len);
796 name[len] = '\0';
797 gsymbol->name = name;
798 }
799 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
800
801 return;
802 }
803
804 if (per_bfd->demangled_names_hash == NULL)
805 create_demangled_names_hash (objfile);
806
807 if (linkage_name[len] != '\0')
808 {
809 char *alloc_name;
810
811 alloc_name = (char *) alloca (len + 1);
812 memcpy (alloc_name, linkage_name, len);
813 alloc_name[len] = '\0';
814
815 linkage_name_copy = alloc_name;
816 }
817 else
818 linkage_name_copy = linkage_name;
819
820 entry.mangled = linkage_name_copy;
821 slot = ((struct demangled_name_entry **)
822 htab_find_slot (per_bfd->demangled_names_hash,
823 &entry, INSERT));
824
825 /* If this name is not in the hash table, add it. */
826 if (*slot == NULL
827 /* A C version of the symbol may have already snuck into the table.
828 This happens to, e.g., main.init (__go_init_main). Cope. */
829 || (gsymbol->language == language_go
830 && (*slot)->demangled[0] == '\0'))
831 {
832 char *demangled_name = symbol_find_demangled_name (gsymbol,
833 linkage_name_copy);
834 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
835
836 /* Suppose we have demangled_name==NULL, copy_name==0, and
837 linkage_name_copy==linkage_name. In this case, we already have the
838 mangled name saved, and we don't have a demangled name. So,
839 you might think we could save a little space by not recording
840 this in the hash table at all.
841
842 It turns out that it is actually important to still save such
843 an entry in the hash table, because storing this name gives
844 us better bcache hit rates for partial symbols. */
845 if (!copy_name && linkage_name_copy == linkage_name)
846 {
847 *slot
848 = ((struct demangled_name_entry *)
849 obstack_alloc (&per_bfd->storage_obstack,
850 offsetof (struct demangled_name_entry, demangled)
851 + demangled_len + 1));
852 (*slot)->mangled = linkage_name;
853 }
854 else
855 {
856 char *mangled_ptr;
857
858 /* If we must copy the mangled name, put it directly after
859 the demangled name so we can have a single
860 allocation. */
861 *slot
862 = ((struct demangled_name_entry *)
863 obstack_alloc (&per_bfd->storage_obstack,
864 offsetof (struct demangled_name_entry, demangled)
865 + len + demangled_len + 2));
866 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
867 strcpy (mangled_ptr, linkage_name_copy);
868 (*slot)->mangled = mangled_ptr;
869 }
870
871 if (demangled_name != NULL)
872 {
873 strcpy ((*slot)->demangled, demangled_name);
874 xfree (demangled_name);
875 }
876 else
877 (*slot)->demangled[0] = '\0';
878 }
879
880 gsymbol->name = (*slot)->mangled;
881 if ((*slot)->demangled[0] != '\0')
882 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
883 &per_bfd->storage_obstack);
884 else
885 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
886 }
887
888 /* Return the source code name of a symbol. In languages where
889 demangling is necessary, this is the demangled name. */
890
891 const char *
892 symbol_natural_name (const struct general_symbol_info *gsymbol)
893 {
894 switch (gsymbol->language)
895 {
896 case language_cplus:
897 case language_d:
898 case language_go:
899 case language_objc:
900 case language_fortran:
901 if (symbol_get_demangled_name (gsymbol) != NULL)
902 return symbol_get_demangled_name (gsymbol);
903 break;
904 case language_ada:
905 return ada_decode_symbol (gsymbol);
906 default:
907 break;
908 }
909 return gsymbol->name;
910 }
911
912 /* Return the demangled name for a symbol based on the language for
913 that symbol. If no demangled name exists, return NULL. */
914
915 const char *
916 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 {
918 const char *dem_name = NULL;
919
920 switch (gsymbol->language)
921 {
922 case language_cplus:
923 case language_d:
924 case language_go:
925 case language_objc:
926 case language_fortran:
927 dem_name = symbol_get_demangled_name (gsymbol);
928 break;
929 case language_ada:
930 dem_name = ada_decode_symbol (gsymbol);
931 break;
932 default:
933 break;
934 }
935 return dem_name;
936 }
937
938 /* Return the search name of a symbol---generally the demangled or
939 linkage name of the symbol, depending on how it will be searched for.
940 If there is no distinct demangled name, then returns the same value
941 (same pointer) as SYMBOL_LINKAGE_NAME. */
942
943 const char *
944 symbol_search_name (const struct general_symbol_info *gsymbol)
945 {
946 if (gsymbol->language == language_ada)
947 return gsymbol->name;
948 else
949 return symbol_natural_name (gsymbol);
950 }
951
952 /* See symtab.h. */
953
954 bool
955 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
956 const lookup_name_info &name)
957 {
958 symbol_name_matcher_ftype *name_match
959 = get_symbol_name_matcher (language_def (gsymbol->language), name);
960 return name_match (symbol_search_name (gsymbol), name, NULL);
961 }
962
963 \f
964
965 /* Return 1 if the two sections are the same, or if they could
966 plausibly be copies of each other, one in an original object
967 file and another in a separated debug file. */
968
969 int
970 matching_obj_sections (struct obj_section *obj_first,
971 struct obj_section *obj_second)
972 {
973 asection *first = obj_first? obj_first->the_bfd_section : NULL;
974 asection *second = obj_second? obj_second->the_bfd_section : NULL;
975 struct objfile *obj;
976
977 /* If they're the same section, then they match. */
978 if (first == second)
979 return 1;
980
981 /* If either is NULL, give up. */
982 if (first == NULL || second == NULL)
983 return 0;
984
985 /* This doesn't apply to absolute symbols. */
986 if (first->owner == NULL || second->owner == NULL)
987 return 0;
988
989 /* If they're in the same object file, they must be different sections. */
990 if (first->owner == second->owner)
991 return 0;
992
993 /* Check whether the two sections are potentially corresponding. They must
994 have the same size, address, and name. We can't compare section indexes,
995 which would be more reliable, because some sections may have been
996 stripped. */
997 if (bfd_get_section_size (first) != bfd_get_section_size (second))
998 return 0;
999
1000 /* In-memory addresses may start at a different offset, relativize them. */
1001 if (bfd_get_section_vma (first->owner, first)
1002 - bfd_get_start_address (first->owner)
1003 != bfd_get_section_vma (second->owner, second)
1004 - bfd_get_start_address (second->owner))
1005 return 0;
1006
1007 if (bfd_get_section_name (first->owner, first) == NULL
1008 || bfd_get_section_name (second->owner, second) == NULL
1009 || strcmp (bfd_get_section_name (first->owner, first),
1010 bfd_get_section_name (second->owner, second)) != 0)
1011 return 0;
1012
1013 /* Otherwise check that they are in corresponding objfiles. */
1014
1015 ALL_OBJFILES (obj)
1016 if (obj->obfd == first->owner)
1017 break;
1018 gdb_assert (obj != NULL);
1019
1020 if (obj->separate_debug_objfile != NULL
1021 && obj->separate_debug_objfile->obfd == second->owner)
1022 return 1;
1023 if (obj->separate_debug_objfile_backlink != NULL
1024 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1025 return 1;
1026
1027 return 0;
1028 }
1029
1030 /* See symtab.h. */
1031
1032 void
1033 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1034 {
1035 struct objfile *objfile;
1036 struct bound_minimal_symbol msymbol;
1037
1038 /* If we know that this is not a text address, return failure. This is
1039 necessary because we loop based on texthigh and textlow, which do
1040 not include the data ranges. */
1041 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1042 if (msymbol.minsym
1043 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1048 return;
1049
1050 ALL_OBJFILES (objfile)
1051 {
1052 struct compunit_symtab *cust = NULL;
1053
1054 if (objfile->sf)
1055 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1056 pc, section, 0);
1057 if (cust)
1058 return;
1059 }
1060 }
1061 \f
1062 /* Hash function for the symbol cache. */
1063
1064 static unsigned int
1065 hash_symbol_entry (const struct objfile *objfile_context,
1066 const char *name, domain_enum domain)
1067 {
1068 unsigned int hash = (uintptr_t) objfile_context;
1069
1070 if (name != NULL)
1071 hash += htab_hash_string (name);
1072
1073 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1074 to map to the same slot. */
1075 if (domain == STRUCT_DOMAIN)
1076 hash += VAR_DOMAIN * 7;
1077 else
1078 hash += domain * 7;
1079
1080 return hash;
1081 }
1082
1083 /* Equality function for the symbol cache. */
1084
1085 static int
1086 eq_symbol_entry (const struct symbol_cache_slot *slot,
1087 const struct objfile *objfile_context,
1088 const char *name, domain_enum domain)
1089 {
1090 const char *slot_name;
1091 domain_enum slot_domain;
1092
1093 if (slot->state == SYMBOL_SLOT_UNUSED)
1094 return 0;
1095
1096 if (slot->objfile_context != objfile_context)
1097 return 0;
1098
1099 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1100 {
1101 slot_name = slot->value.not_found.name;
1102 slot_domain = slot->value.not_found.domain;
1103 }
1104 else
1105 {
1106 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1107 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1108 }
1109
1110 /* NULL names match. */
1111 if (slot_name == NULL && name == NULL)
1112 {
1113 /* But there's no point in calling symbol_matches_domain in the
1114 SYMBOL_SLOT_FOUND case. */
1115 if (slot_domain != domain)
1116 return 0;
1117 }
1118 else if (slot_name != NULL && name != NULL)
1119 {
1120 /* It's important that we use the same comparison that was done
1121 the first time through. If the slot records a found symbol,
1122 then this means using the symbol name comparison function of
1123 the symbol's language with SYMBOL_SEARCH_NAME. See
1124 dictionary.c. It also means using symbol_matches_domain for
1125 found symbols. See block.c.
1126
1127 If the slot records a not-found symbol, then require a precise match.
1128 We could still be lax with whitespace like strcmp_iw though. */
1129
1130 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1131 {
1132 if (strcmp (slot_name, name) != 0)
1133 return 0;
1134 if (slot_domain != domain)
1135 return 0;
1136 }
1137 else
1138 {
1139 struct symbol *sym = slot->value.found.symbol;
1140 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1141
1142 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1143 return 0;
1144
1145 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1146 slot_domain, domain))
1147 return 0;
1148 }
1149 }
1150 else
1151 {
1152 /* Only one name is NULL. */
1153 return 0;
1154 }
1155
1156 return 1;
1157 }
1158
1159 /* Given a cache of size SIZE, return the size of the struct (with variable
1160 length array) in bytes. */
1161
1162 static size_t
1163 symbol_cache_byte_size (unsigned int size)
1164 {
1165 return (sizeof (struct block_symbol_cache)
1166 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1167 }
1168
1169 /* Resize CACHE. */
1170
1171 static void
1172 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1173 {
1174 /* If there's no change in size, don't do anything.
1175 All caches have the same size, so we can just compare with the size
1176 of the global symbols cache. */
1177 if ((cache->global_symbols != NULL
1178 && cache->global_symbols->size == new_size)
1179 || (cache->global_symbols == NULL
1180 && new_size == 0))
1181 return;
1182
1183 xfree (cache->global_symbols);
1184 xfree (cache->static_symbols);
1185
1186 if (new_size == 0)
1187 {
1188 cache->global_symbols = NULL;
1189 cache->static_symbols = NULL;
1190 }
1191 else
1192 {
1193 size_t total_size = symbol_cache_byte_size (new_size);
1194
1195 cache->global_symbols
1196 = (struct block_symbol_cache *) xcalloc (1, total_size);
1197 cache->static_symbols
1198 = (struct block_symbol_cache *) xcalloc (1, total_size);
1199 cache->global_symbols->size = new_size;
1200 cache->static_symbols->size = new_size;
1201 }
1202 }
1203
1204 /* Make a symbol cache of size SIZE. */
1205
1206 static struct symbol_cache *
1207 make_symbol_cache (unsigned int size)
1208 {
1209 struct symbol_cache *cache;
1210
1211 cache = XCNEW (struct symbol_cache);
1212 resize_symbol_cache (cache, symbol_cache_size);
1213 return cache;
1214 }
1215
1216 /* Free the space used by CACHE. */
1217
1218 static void
1219 free_symbol_cache (struct symbol_cache *cache)
1220 {
1221 xfree (cache->global_symbols);
1222 xfree (cache->static_symbols);
1223 xfree (cache);
1224 }
1225
1226 /* Return the symbol cache of PSPACE.
1227 Create one if it doesn't exist yet. */
1228
1229 static struct symbol_cache *
1230 get_symbol_cache (struct program_space *pspace)
1231 {
1232 struct symbol_cache *cache
1233 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1234
1235 if (cache == NULL)
1236 {
1237 cache = make_symbol_cache (symbol_cache_size);
1238 set_program_space_data (pspace, symbol_cache_key, cache);
1239 }
1240
1241 return cache;
1242 }
1243
1244 /* Delete the symbol cache of PSPACE.
1245 Called when PSPACE is destroyed. */
1246
1247 static void
1248 symbol_cache_cleanup (struct program_space *pspace, void *data)
1249 {
1250 struct symbol_cache *cache = (struct symbol_cache *) data;
1251
1252 free_symbol_cache (cache);
1253 }
1254
1255 /* Set the size of the symbol cache in all program spaces. */
1256
1257 static void
1258 set_symbol_cache_size (unsigned int new_size)
1259 {
1260 struct program_space *pspace;
1261
1262 ALL_PSPACES (pspace)
1263 {
1264 struct symbol_cache *cache
1265 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1266
1267 /* The pspace could have been created but not have a cache yet. */
1268 if (cache != NULL)
1269 resize_symbol_cache (cache, new_size);
1270 }
1271 }
1272
1273 /* Called when symbol-cache-size is set. */
1274
1275 static void
1276 set_symbol_cache_size_handler (const char *args, int from_tty,
1277 struct cmd_list_element *c)
1278 {
1279 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1280 {
1281 /* Restore the previous value.
1282 This is the value the "show" command prints. */
1283 new_symbol_cache_size = symbol_cache_size;
1284
1285 error (_("Symbol cache size is too large, max is %u."),
1286 MAX_SYMBOL_CACHE_SIZE);
1287 }
1288 symbol_cache_size = new_symbol_cache_size;
1289
1290 set_symbol_cache_size (symbol_cache_size);
1291 }
1292
1293 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1294 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1295 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1296 failed (and thus this one will too), or NULL if the symbol is not present
1297 in the cache.
1298 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1299 set to the cache and slot of the symbol to save the result of a full lookup
1300 attempt. */
1301
1302 static struct block_symbol
1303 symbol_cache_lookup (struct symbol_cache *cache,
1304 struct objfile *objfile_context, int block,
1305 const char *name, domain_enum domain,
1306 struct block_symbol_cache **bsc_ptr,
1307 struct symbol_cache_slot **slot_ptr)
1308 {
1309 struct block_symbol_cache *bsc;
1310 unsigned int hash;
1311 struct symbol_cache_slot *slot;
1312
1313 if (block == GLOBAL_BLOCK)
1314 bsc = cache->global_symbols;
1315 else
1316 bsc = cache->static_symbols;
1317 if (bsc == NULL)
1318 {
1319 *bsc_ptr = NULL;
1320 *slot_ptr = NULL;
1321 return (struct block_symbol) {NULL, NULL};
1322 }
1323
1324 hash = hash_symbol_entry (objfile_context, name, domain);
1325 slot = bsc->symbols + hash % bsc->size;
1326
1327 if (eq_symbol_entry (slot, objfile_context, name, domain))
1328 {
1329 if (symbol_lookup_debug)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "%s block symbol cache hit%s for %s, %s\n",
1332 block == GLOBAL_BLOCK ? "Global" : "Static",
1333 slot->state == SYMBOL_SLOT_NOT_FOUND
1334 ? " (not found)" : "",
1335 name, domain_name (domain));
1336 ++bsc->hits;
1337 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1338 return SYMBOL_LOOKUP_FAILED;
1339 return slot->value.found;
1340 }
1341
1342 /* Symbol is not present in the cache. */
1343
1344 *bsc_ptr = bsc;
1345 *slot_ptr = slot;
1346
1347 if (symbol_lookup_debug)
1348 {
1349 fprintf_unfiltered (gdb_stdlog,
1350 "%s block symbol cache miss for %s, %s\n",
1351 block == GLOBAL_BLOCK ? "Global" : "Static",
1352 name, domain_name (domain));
1353 }
1354 ++bsc->misses;
1355 return (struct block_symbol) {NULL, NULL};
1356 }
1357
1358 /* Clear out SLOT. */
1359
1360 static void
1361 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1362 {
1363 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1364 xfree (slot->value.not_found.name);
1365 slot->state = SYMBOL_SLOT_UNUSED;
1366 }
1367
1368 /* Mark SYMBOL as found in SLOT.
1369 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1370 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1371 necessarily the objfile the symbol was found in. */
1372
1373 static void
1374 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1375 struct symbol_cache_slot *slot,
1376 struct objfile *objfile_context,
1377 struct symbol *symbol,
1378 const struct block *block)
1379 {
1380 if (bsc == NULL)
1381 return;
1382 if (slot->state != SYMBOL_SLOT_UNUSED)
1383 {
1384 ++bsc->collisions;
1385 symbol_cache_clear_slot (slot);
1386 }
1387 slot->state = SYMBOL_SLOT_FOUND;
1388 slot->objfile_context = objfile_context;
1389 slot->value.found.symbol = symbol;
1390 slot->value.found.block = block;
1391 }
1392
1393 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1394 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1395 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1396
1397 static void
1398 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1399 struct symbol_cache_slot *slot,
1400 struct objfile *objfile_context,
1401 const char *name, domain_enum domain)
1402 {
1403 if (bsc == NULL)
1404 return;
1405 if (slot->state != SYMBOL_SLOT_UNUSED)
1406 {
1407 ++bsc->collisions;
1408 symbol_cache_clear_slot (slot);
1409 }
1410 slot->state = SYMBOL_SLOT_NOT_FOUND;
1411 slot->objfile_context = objfile_context;
1412 slot->value.not_found.name = xstrdup (name);
1413 slot->value.not_found.domain = domain;
1414 }
1415
1416 /* Flush the symbol cache of PSPACE. */
1417
1418 static void
1419 symbol_cache_flush (struct program_space *pspace)
1420 {
1421 struct symbol_cache *cache
1422 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1423 int pass;
1424
1425 if (cache == NULL)
1426 return;
1427 if (cache->global_symbols == NULL)
1428 {
1429 gdb_assert (symbol_cache_size == 0);
1430 gdb_assert (cache->static_symbols == NULL);
1431 return;
1432 }
1433
1434 /* If the cache is untouched since the last flush, early exit.
1435 This is important for performance during the startup of a program linked
1436 with 100s (or 1000s) of shared libraries. */
1437 if (cache->global_symbols->misses == 0
1438 && cache->static_symbols->misses == 0)
1439 return;
1440
1441 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1442 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1443
1444 for (pass = 0; pass < 2; ++pass)
1445 {
1446 struct block_symbol_cache *bsc
1447 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1448 unsigned int i;
1449
1450 for (i = 0; i < bsc->size; ++i)
1451 symbol_cache_clear_slot (&bsc->symbols[i]);
1452 }
1453
1454 cache->global_symbols->hits = 0;
1455 cache->global_symbols->misses = 0;
1456 cache->global_symbols->collisions = 0;
1457 cache->static_symbols->hits = 0;
1458 cache->static_symbols->misses = 0;
1459 cache->static_symbols->collisions = 0;
1460 }
1461
1462 /* Dump CACHE. */
1463
1464 static void
1465 symbol_cache_dump (const struct symbol_cache *cache)
1466 {
1467 int pass;
1468
1469 if (cache->global_symbols == NULL)
1470 {
1471 printf_filtered (" <disabled>\n");
1472 return;
1473 }
1474
1475 for (pass = 0; pass < 2; ++pass)
1476 {
1477 const struct block_symbol_cache *bsc
1478 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1479 unsigned int i;
1480
1481 if (pass == 0)
1482 printf_filtered ("Global symbols:\n");
1483 else
1484 printf_filtered ("Static symbols:\n");
1485
1486 for (i = 0; i < bsc->size; ++i)
1487 {
1488 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1489
1490 QUIT;
1491
1492 switch (slot->state)
1493 {
1494 case SYMBOL_SLOT_UNUSED:
1495 break;
1496 case SYMBOL_SLOT_NOT_FOUND:
1497 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1498 host_address_to_string (slot->objfile_context),
1499 slot->value.not_found.name,
1500 domain_name (slot->value.not_found.domain));
1501 break;
1502 case SYMBOL_SLOT_FOUND:
1503 {
1504 struct symbol *found = slot->value.found.symbol;
1505 const struct objfile *context = slot->objfile_context;
1506
1507 printf_filtered (" [%4u] = %s, %s %s\n", i,
1508 host_address_to_string (context),
1509 SYMBOL_PRINT_NAME (found),
1510 domain_name (SYMBOL_DOMAIN (found)));
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 }
1517
1518 /* The "mt print symbol-cache" command. */
1519
1520 static void
1521 maintenance_print_symbol_cache (const char *args, int from_tty)
1522 {
1523 struct program_space *pspace;
1524
1525 ALL_PSPACES (pspace)
1526 {
1527 struct symbol_cache *cache;
1528
1529 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1530 pspace->num,
1531 pspace->symfile_object_file != NULL
1532 ? objfile_name (pspace->symfile_object_file)
1533 : "(no object file)");
1534
1535 /* If the cache hasn't been created yet, avoid creating one. */
1536 cache
1537 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1538 if (cache == NULL)
1539 printf_filtered (" <empty>\n");
1540 else
1541 symbol_cache_dump (cache);
1542 }
1543 }
1544
1545 /* The "mt flush-symbol-cache" command. */
1546
1547 static void
1548 maintenance_flush_symbol_cache (const char *args, int from_tty)
1549 {
1550 struct program_space *pspace;
1551
1552 ALL_PSPACES (pspace)
1553 {
1554 symbol_cache_flush (pspace);
1555 }
1556 }
1557
1558 /* Print usage statistics of CACHE. */
1559
1560 static void
1561 symbol_cache_stats (struct symbol_cache *cache)
1562 {
1563 int pass;
1564
1565 if (cache->global_symbols == NULL)
1566 {
1567 printf_filtered (" <disabled>\n");
1568 return;
1569 }
1570
1571 for (pass = 0; pass < 2; ++pass)
1572 {
1573 const struct block_symbol_cache *bsc
1574 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1575
1576 QUIT;
1577
1578 if (pass == 0)
1579 printf_filtered ("Global block cache stats:\n");
1580 else
1581 printf_filtered ("Static block cache stats:\n");
1582
1583 printf_filtered (" size: %u\n", bsc->size);
1584 printf_filtered (" hits: %u\n", bsc->hits);
1585 printf_filtered (" misses: %u\n", bsc->misses);
1586 printf_filtered (" collisions: %u\n", bsc->collisions);
1587 }
1588 }
1589
1590 /* The "mt print symbol-cache-statistics" command. */
1591
1592 static void
1593 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594 {
1595 struct program_space *pspace;
1596
1597 ALL_PSPACES (pspace)
1598 {
1599 struct symbol_cache *cache;
1600
1601 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1602 pspace->num,
1603 pspace->symfile_object_file != NULL
1604 ? objfile_name (pspace->symfile_object_file)
1605 : "(no object file)");
1606
1607 /* If the cache hasn't been created yet, avoid creating one. */
1608 cache
1609 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1610 if (cache == NULL)
1611 printf_filtered (" empty, no stats available\n");
1612 else
1613 symbol_cache_stats (cache);
1614 }
1615 }
1616
1617 /* This module's 'new_objfile' observer. */
1618
1619 static void
1620 symtab_new_objfile_observer (struct objfile *objfile)
1621 {
1622 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1623 symbol_cache_flush (current_program_space);
1624 }
1625
1626 /* This module's 'free_objfile' observer. */
1627
1628 static void
1629 symtab_free_objfile_observer (struct objfile *objfile)
1630 {
1631 symbol_cache_flush (objfile->pspace);
1632 }
1633 \f
1634 /* Debug symbols usually don't have section information. We need to dig that
1635 out of the minimal symbols and stash that in the debug symbol. */
1636
1637 void
1638 fixup_section (struct general_symbol_info *ginfo,
1639 CORE_ADDR addr, struct objfile *objfile)
1640 {
1641 struct minimal_symbol *msym;
1642
1643 /* First, check whether a minimal symbol with the same name exists
1644 and points to the same address. The address check is required
1645 e.g. on PowerPC64, where the minimal symbol for a function will
1646 point to the function descriptor, while the debug symbol will
1647 point to the actual function code. */
1648 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1649 if (msym)
1650 ginfo->section = MSYMBOL_SECTION (msym);
1651 else
1652 {
1653 /* Static, function-local variables do appear in the linker
1654 (minimal) symbols, but are frequently given names that won't
1655 be found via lookup_minimal_symbol(). E.g., it has been
1656 observed in frv-uclinux (ELF) executables that a static,
1657 function-local variable named "foo" might appear in the
1658 linker symbols as "foo.6" or "foo.3". Thus, there is no
1659 point in attempting to extend the lookup-by-name mechanism to
1660 handle this case due to the fact that there can be multiple
1661 names.
1662
1663 So, instead, search the section table when lookup by name has
1664 failed. The ``addr'' and ``endaddr'' fields may have already
1665 been relocated. If so, the relocation offset (i.e. the
1666 ANOFFSET value) needs to be subtracted from these values when
1667 performing the comparison. We unconditionally subtract it,
1668 because, when no relocation has been performed, the ANOFFSET
1669 value will simply be zero.
1670
1671 The address of the symbol whose section we're fixing up HAS
1672 NOT BEEN adjusted (relocated) yet. It can't have been since
1673 the section isn't yet known and knowing the section is
1674 necessary in order to add the correct relocation value. In
1675 other words, we wouldn't even be in this function (attempting
1676 to compute the section) if it were already known.
1677
1678 Note that it is possible to search the minimal symbols
1679 (subtracting the relocation value if necessary) to find the
1680 matching minimal symbol, but this is overkill and much less
1681 efficient. It is not necessary to find the matching minimal
1682 symbol, only its section.
1683
1684 Note that this technique (of doing a section table search)
1685 can fail when unrelocated section addresses overlap. For
1686 this reason, we still attempt a lookup by name prior to doing
1687 a search of the section table. */
1688
1689 struct obj_section *s;
1690 int fallback = -1;
1691
1692 ALL_OBJFILE_OSECTIONS (objfile, s)
1693 {
1694 int idx = s - objfile->sections;
1695 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1696
1697 if (fallback == -1)
1698 fallback = idx;
1699
1700 if (obj_section_addr (s) - offset <= addr
1701 && addr < obj_section_endaddr (s) - offset)
1702 {
1703 ginfo->section = idx;
1704 return;
1705 }
1706 }
1707
1708 /* If we didn't find the section, assume it is in the first
1709 section. If there is no allocated section, then it hardly
1710 matters what we pick, so just pick zero. */
1711 if (fallback == -1)
1712 ginfo->section = 0;
1713 else
1714 ginfo->section = fallback;
1715 }
1716 }
1717
1718 struct symbol *
1719 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1720 {
1721 CORE_ADDR addr;
1722
1723 if (!sym)
1724 return NULL;
1725
1726 if (!SYMBOL_OBJFILE_OWNED (sym))
1727 return sym;
1728
1729 /* We either have an OBJFILE, or we can get at it from the sym's
1730 symtab. Anything else is a bug. */
1731 gdb_assert (objfile || symbol_symtab (sym));
1732
1733 if (objfile == NULL)
1734 objfile = symbol_objfile (sym);
1735
1736 if (SYMBOL_OBJ_SECTION (objfile, sym))
1737 return sym;
1738
1739 /* We should have an objfile by now. */
1740 gdb_assert (objfile);
1741
1742 switch (SYMBOL_CLASS (sym))
1743 {
1744 case LOC_STATIC:
1745 case LOC_LABEL:
1746 addr = SYMBOL_VALUE_ADDRESS (sym);
1747 break;
1748 case LOC_BLOCK:
1749 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1750 break;
1751
1752 default:
1753 /* Nothing else will be listed in the minsyms -- no use looking
1754 it up. */
1755 return sym;
1756 }
1757
1758 fixup_section (&sym->ginfo, addr, objfile);
1759
1760 return sym;
1761 }
1762
1763 /* See symtab.h. */
1764
1765 demangle_for_lookup_info::demangle_for_lookup_info
1766 (const lookup_name_info &lookup_name, language lang)
1767 {
1768 demangle_result_storage storage;
1769
1770 if (lookup_name.ignore_parameters () && lang == language_cplus)
1771 {
1772 gdb::unique_xmalloc_ptr<char> without_params
1773 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1774 lookup_name.completion_mode ());
1775
1776 if (without_params != NULL)
1777 {
1778 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1779 m_demangled_name = demangle_for_lookup (without_params.get (),
1780 lang, storage);
1781 return;
1782 }
1783 }
1784
1785 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1786 m_demangled_name = lookup_name.name ();
1787 else
1788 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1789 lang, storage);
1790 }
1791
1792 /* See symtab.h. */
1793
1794 const lookup_name_info &
1795 lookup_name_info::match_any ()
1796 {
1797 /* Lookup any symbol that "" would complete. I.e., this matches all
1798 symbol names. */
1799 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1800 true);
1801
1802 return lookup_name;
1803 }
1804
1805 /* Compute the demangled form of NAME as used by the various symbol
1806 lookup functions. The result can either be the input NAME
1807 directly, or a pointer to a buffer owned by the STORAGE object.
1808
1809 For Ada, this function just returns NAME, unmodified.
1810 Normally, Ada symbol lookups are performed using the encoded name
1811 rather than the demangled name, and so it might seem to make sense
1812 for this function to return an encoded version of NAME.
1813 Unfortunately, we cannot do this, because this function is used in
1814 circumstances where it is not appropriate to try to encode NAME.
1815 For instance, when displaying the frame info, we demangle the name
1816 of each parameter, and then perform a symbol lookup inside our
1817 function using that demangled name. In Ada, certain functions
1818 have internally-generated parameters whose name contain uppercase
1819 characters. Encoding those name would result in those uppercase
1820 characters to become lowercase, and thus cause the symbol lookup
1821 to fail. */
1822
1823 const char *
1824 demangle_for_lookup (const char *name, enum language lang,
1825 demangle_result_storage &storage)
1826 {
1827 /* If we are using C++, D, or Go, demangle the name before doing a
1828 lookup, so we can always binary search. */
1829 if (lang == language_cplus)
1830 {
1831 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1832 if (demangled_name != NULL)
1833 return storage.set_malloc_ptr (demangled_name);
1834
1835 /* If we were given a non-mangled name, canonicalize it
1836 according to the language (so far only for C++). */
1837 std::string canon = cp_canonicalize_string (name);
1838 if (!canon.empty ())
1839 return storage.swap_string (canon);
1840 }
1841 else if (lang == language_d)
1842 {
1843 char *demangled_name = d_demangle (name, 0);
1844 if (demangled_name != NULL)
1845 return storage.set_malloc_ptr (demangled_name);
1846 }
1847 else if (lang == language_go)
1848 {
1849 char *demangled_name = go_demangle (name, 0);
1850 if (demangled_name != NULL)
1851 return storage.set_malloc_ptr (demangled_name);
1852 }
1853
1854 return name;
1855 }
1856
1857 /* See symtab.h. */
1858
1859 unsigned int
1860 search_name_hash (enum language language, const char *search_name)
1861 {
1862 return language_def (language)->la_search_name_hash (search_name);
1863 }
1864
1865 /* See symtab.h.
1866
1867 This function (or rather its subordinates) have a bunch of loops and
1868 it would seem to be attractive to put in some QUIT's (though I'm not really
1869 sure whether it can run long enough to be really important). But there
1870 are a few calls for which it would appear to be bad news to quit
1871 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1872 that there is C++ code below which can error(), but that probably
1873 doesn't affect these calls since they are looking for a known
1874 variable and thus can probably assume it will never hit the C++
1875 code). */
1876
1877 struct block_symbol
1878 lookup_symbol_in_language (const char *name, const struct block *block,
1879 const domain_enum domain, enum language lang,
1880 struct field_of_this_result *is_a_field_of_this)
1881 {
1882 demangle_result_storage storage;
1883 const char *modified_name = demangle_for_lookup (name, lang, storage);
1884
1885 return lookup_symbol_aux (modified_name,
1886 symbol_name_match_type::FULL,
1887 block, domain, lang,
1888 is_a_field_of_this);
1889 }
1890
1891 /* See symtab.h. */
1892
1893 struct block_symbol
1894 lookup_symbol (const char *name, const struct block *block,
1895 domain_enum domain,
1896 struct field_of_this_result *is_a_field_of_this)
1897 {
1898 return lookup_symbol_in_language (name, block, domain,
1899 current_language->la_language,
1900 is_a_field_of_this);
1901 }
1902
1903 /* See symtab.h. */
1904
1905 struct block_symbol
1906 lookup_symbol_search_name (const char *search_name, const struct block *block,
1907 domain_enum domain)
1908 {
1909 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1910 block, domain, language_asm, NULL);
1911 }
1912
1913 /* See symtab.h. */
1914
1915 struct block_symbol
1916 lookup_language_this (const struct language_defn *lang,
1917 const struct block *block)
1918 {
1919 if (lang->la_name_of_this == NULL || block == NULL)
1920 return (struct block_symbol) {NULL, NULL};
1921
1922 if (symbol_lookup_debug > 1)
1923 {
1924 struct objfile *objfile = lookup_objfile_from_block (block);
1925
1926 fprintf_unfiltered (gdb_stdlog,
1927 "lookup_language_this (%s, %s (objfile %s))",
1928 lang->la_name, host_address_to_string (block),
1929 objfile_debug_name (objfile));
1930 }
1931
1932 while (block)
1933 {
1934 struct symbol *sym;
1935
1936 sym = block_lookup_symbol (block, lang->la_name_of_this,
1937 symbol_name_match_type::SEARCH_NAME,
1938 VAR_DOMAIN);
1939 if (sym != NULL)
1940 {
1941 if (symbol_lookup_debug > 1)
1942 {
1943 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1944 SYMBOL_PRINT_NAME (sym),
1945 host_address_to_string (sym),
1946 host_address_to_string (block));
1947 }
1948 return (struct block_symbol) {sym, block};
1949 }
1950 if (BLOCK_FUNCTION (block))
1951 break;
1952 block = BLOCK_SUPERBLOCK (block);
1953 }
1954
1955 if (symbol_lookup_debug > 1)
1956 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1957 return (struct block_symbol) {NULL, NULL};
1958 }
1959
1960 /* Given TYPE, a structure/union,
1961 return 1 if the component named NAME from the ultimate target
1962 structure/union is defined, otherwise, return 0. */
1963
1964 static int
1965 check_field (struct type *type, const char *name,
1966 struct field_of_this_result *is_a_field_of_this)
1967 {
1968 int i;
1969
1970 /* The type may be a stub. */
1971 type = check_typedef (type);
1972
1973 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1974 {
1975 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1976
1977 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1978 {
1979 is_a_field_of_this->type = type;
1980 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1981 return 1;
1982 }
1983 }
1984
1985 /* C++: If it was not found as a data field, then try to return it
1986 as a pointer to a method. */
1987
1988 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1989 {
1990 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1991 {
1992 is_a_field_of_this->type = type;
1993 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1994 return 1;
1995 }
1996 }
1997
1998 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1999 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2000 return 1;
2001
2002 return 0;
2003 }
2004
2005 /* Behave like lookup_symbol except that NAME is the natural name
2006 (e.g., demangled name) of the symbol that we're looking for. */
2007
2008 static struct block_symbol
2009 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2010 const struct block *block,
2011 const domain_enum domain, enum language language,
2012 struct field_of_this_result *is_a_field_of_this)
2013 {
2014 struct block_symbol result;
2015 const struct language_defn *langdef;
2016
2017 if (symbol_lookup_debug)
2018 {
2019 struct objfile *objfile = lookup_objfile_from_block (block);
2020
2021 fprintf_unfiltered (gdb_stdlog,
2022 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2023 name, host_address_to_string (block),
2024 objfile != NULL
2025 ? objfile_debug_name (objfile) : "NULL",
2026 domain_name (domain), language_str (language));
2027 }
2028
2029 /* Make sure we do something sensible with is_a_field_of_this, since
2030 the callers that set this parameter to some non-null value will
2031 certainly use it later. If we don't set it, the contents of
2032 is_a_field_of_this are undefined. */
2033 if (is_a_field_of_this != NULL)
2034 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2035
2036 /* Search specified block and its superiors. Don't search
2037 STATIC_BLOCK or GLOBAL_BLOCK. */
2038
2039 result = lookup_local_symbol (name, match_type, block, domain, language);
2040 if (result.symbol != NULL)
2041 {
2042 if (symbol_lookup_debug)
2043 {
2044 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2045 host_address_to_string (result.symbol));
2046 }
2047 return result;
2048 }
2049
2050 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2051 check to see if NAME is a field of `this'. */
2052
2053 langdef = language_def (language);
2054
2055 /* Don't do this check if we are searching for a struct. It will
2056 not be found by check_field, but will be found by other
2057 means. */
2058 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2059 {
2060 result = lookup_language_this (langdef, block);
2061
2062 if (result.symbol)
2063 {
2064 struct type *t = result.symbol->type;
2065
2066 /* I'm not really sure that type of this can ever
2067 be typedefed; just be safe. */
2068 t = check_typedef (t);
2069 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2070 t = TYPE_TARGET_TYPE (t);
2071
2072 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2073 && TYPE_CODE (t) != TYPE_CODE_UNION)
2074 error (_("Internal error: `%s' is not an aggregate"),
2075 langdef->la_name_of_this);
2076
2077 if (check_field (t, name, is_a_field_of_this))
2078 {
2079 if (symbol_lookup_debug)
2080 {
2081 fprintf_unfiltered (gdb_stdlog,
2082 "lookup_symbol_aux (...) = NULL\n");
2083 }
2084 return (struct block_symbol) {NULL, NULL};
2085 }
2086 }
2087 }
2088
2089 /* Now do whatever is appropriate for LANGUAGE to look
2090 up static and global variables. */
2091
2092 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2093 if (result.symbol != NULL)
2094 {
2095 if (symbol_lookup_debug)
2096 {
2097 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2098 host_address_to_string (result.symbol));
2099 }
2100 return result;
2101 }
2102
2103 /* Now search all static file-level symbols. Not strictly correct,
2104 but more useful than an error. */
2105
2106 result = lookup_static_symbol (name, domain);
2107 if (symbol_lookup_debug)
2108 {
2109 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2110 result.symbol != NULL
2111 ? host_address_to_string (result.symbol)
2112 : "NULL");
2113 }
2114 return result;
2115 }
2116
2117 /* Check to see if the symbol is defined in BLOCK or its superiors.
2118 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2119
2120 static struct block_symbol
2121 lookup_local_symbol (const char *name,
2122 symbol_name_match_type match_type,
2123 const struct block *block,
2124 const domain_enum domain,
2125 enum language language)
2126 {
2127 struct symbol *sym;
2128 const struct block *static_block = block_static_block (block);
2129 const char *scope = block_scope (block);
2130
2131 /* Check if either no block is specified or it's a global block. */
2132
2133 if (static_block == NULL)
2134 return (struct block_symbol) {NULL, NULL};
2135
2136 while (block != static_block)
2137 {
2138 sym = lookup_symbol_in_block (name, match_type, block, domain);
2139 if (sym != NULL)
2140 return (struct block_symbol) {sym, block};
2141
2142 if (language == language_cplus || language == language_fortran)
2143 {
2144 struct block_symbol sym
2145 = cp_lookup_symbol_imports_or_template (scope, name, block,
2146 domain);
2147
2148 if (sym.symbol != NULL)
2149 return sym;
2150 }
2151
2152 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2153 break;
2154 block = BLOCK_SUPERBLOCK (block);
2155 }
2156
2157 /* We've reached the end of the function without finding a result. */
2158
2159 return (struct block_symbol) {NULL, NULL};
2160 }
2161
2162 /* See symtab.h. */
2163
2164 struct objfile *
2165 lookup_objfile_from_block (const struct block *block)
2166 {
2167 struct objfile *obj;
2168 struct compunit_symtab *cust;
2169
2170 if (block == NULL)
2171 return NULL;
2172
2173 block = block_global_block (block);
2174 /* Look through all blockvectors. */
2175 ALL_COMPUNITS (obj, cust)
2176 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2177 GLOBAL_BLOCK))
2178 {
2179 if (obj->separate_debug_objfile_backlink)
2180 obj = obj->separate_debug_objfile_backlink;
2181
2182 return obj;
2183 }
2184
2185 return NULL;
2186 }
2187
2188 /* See symtab.h. */
2189
2190 struct symbol *
2191 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2192 const struct block *block,
2193 const domain_enum domain)
2194 {
2195 struct symbol *sym;
2196
2197 if (symbol_lookup_debug > 1)
2198 {
2199 struct objfile *objfile = lookup_objfile_from_block (block);
2200
2201 fprintf_unfiltered (gdb_stdlog,
2202 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2203 name, host_address_to_string (block),
2204 objfile_debug_name (objfile),
2205 domain_name (domain));
2206 }
2207
2208 sym = block_lookup_symbol (block, name, match_type, domain);
2209 if (sym)
2210 {
2211 if (symbol_lookup_debug > 1)
2212 {
2213 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2214 host_address_to_string (sym));
2215 }
2216 return fixup_symbol_section (sym, NULL);
2217 }
2218
2219 if (symbol_lookup_debug > 1)
2220 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2221 return NULL;
2222 }
2223
2224 /* See symtab.h. */
2225
2226 struct block_symbol
2227 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2228 const char *name,
2229 const domain_enum domain)
2230 {
2231 struct objfile *objfile;
2232
2233 for (objfile = main_objfile;
2234 objfile;
2235 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2236 {
2237 struct block_symbol result
2238 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2239
2240 if (result.symbol != NULL)
2241 return result;
2242 }
2243
2244 return (struct block_symbol) {NULL, NULL};
2245 }
2246
2247 /* Check to see if the symbol is defined in one of the OBJFILE's
2248 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2249 depending on whether or not we want to search global symbols or
2250 static symbols. */
2251
2252 static struct block_symbol
2253 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2254 const char *name, const domain_enum domain)
2255 {
2256 struct compunit_symtab *cust;
2257
2258 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2259
2260 if (symbol_lookup_debug > 1)
2261 {
2262 fprintf_unfiltered (gdb_stdlog,
2263 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2264 objfile_debug_name (objfile),
2265 block_index == GLOBAL_BLOCK
2266 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2267 name, domain_name (domain));
2268 }
2269
2270 ALL_OBJFILE_COMPUNITS (objfile, cust)
2271 {
2272 const struct blockvector *bv;
2273 const struct block *block;
2274 struct block_symbol result;
2275
2276 bv = COMPUNIT_BLOCKVECTOR (cust);
2277 block = BLOCKVECTOR_BLOCK (bv, block_index);
2278 result.symbol = block_lookup_symbol_primary (block, name, domain);
2279 result.block = block;
2280 if (result.symbol != NULL)
2281 {
2282 if (symbol_lookup_debug > 1)
2283 {
2284 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2285 host_address_to_string (result.symbol),
2286 host_address_to_string (block));
2287 }
2288 result.symbol = fixup_symbol_section (result.symbol, objfile);
2289 return result;
2290
2291 }
2292 }
2293
2294 if (symbol_lookup_debug > 1)
2295 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2296 return (struct block_symbol) {NULL, NULL};
2297 }
2298
2299 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2300 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2301 and all associated separate debug objfiles.
2302
2303 Normally we only look in OBJFILE, and not any separate debug objfiles
2304 because the outer loop will cause them to be searched too. This case is
2305 different. Here we're called from search_symbols where it will only
2306 call us for the the objfile that contains a matching minsym. */
2307
2308 static struct block_symbol
2309 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2310 const char *linkage_name,
2311 domain_enum domain)
2312 {
2313 enum language lang = current_language->la_language;
2314 struct objfile *main_objfile, *cur_objfile;
2315
2316 demangle_result_storage storage;
2317 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2318
2319 if (objfile->separate_debug_objfile_backlink)
2320 main_objfile = objfile->separate_debug_objfile_backlink;
2321 else
2322 main_objfile = objfile;
2323
2324 for (cur_objfile = main_objfile;
2325 cur_objfile;
2326 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2327 {
2328 struct block_symbol result;
2329
2330 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2331 modified_name, domain);
2332 if (result.symbol == NULL)
2333 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2334 modified_name, domain);
2335 if (result.symbol != NULL)
2336 return result;
2337 }
2338
2339 return (struct block_symbol) {NULL, NULL};
2340 }
2341
2342 /* A helper function that throws an exception when a symbol was found
2343 in a psymtab but not in a symtab. */
2344
2345 static void ATTRIBUTE_NORETURN
2346 error_in_psymtab_expansion (int block_index, const char *name,
2347 struct compunit_symtab *cust)
2348 {
2349 error (_("\
2350 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2351 %s may be an inlined function, or may be a template function\n \
2352 (if a template, try specifying an instantiation: %s<type>)."),
2353 block_index == GLOBAL_BLOCK ? "global" : "static",
2354 name,
2355 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2356 name, name);
2357 }
2358
2359 /* A helper function for various lookup routines that interfaces with
2360 the "quick" symbol table functions. */
2361
2362 static struct block_symbol
2363 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2364 const char *name, const domain_enum domain)
2365 {
2366 struct compunit_symtab *cust;
2367 const struct blockvector *bv;
2368 const struct block *block;
2369 struct block_symbol result;
2370
2371 if (!objfile->sf)
2372 return (struct block_symbol) {NULL, NULL};
2373
2374 if (symbol_lookup_debug > 1)
2375 {
2376 fprintf_unfiltered (gdb_stdlog,
2377 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2378 objfile_debug_name (objfile),
2379 block_index == GLOBAL_BLOCK
2380 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2381 name, domain_name (domain));
2382 }
2383
2384 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2385 if (cust == NULL)
2386 {
2387 if (symbol_lookup_debug > 1)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "lookup_symbol_via_quick_fns (...) = NULL\n");
2391 }
2392 return (struct block_symbol) {NULL, NULL};
2393 }
2394
2395 bv = COMPUNIT_BLOCKVECTOR (cust);
2396 block = BLOCKVECTOR_BLOCK (bv, block_index);
2397 result.symbol = block_lookup_symbol (block, name,
2398 symbol_name_match_type::FULL, domain);
2399 if (result.symbol == NULL)
2400 error_in_psymtab_expansion (block_index, name, cust);
2401
2402 if (symbol_lookup_debug > 1)
2403 {
2404 fprintf_unfiltered (gdb_stdlog,
2405 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2406 host_address_to_string (result.symbol),
2407 host_address_to_string (block));
2408 }
2409
2410 result.symbol = fixup_symbol_section (result.symbol, objfile);
2411 result.block = block;
2412 return result;
2413 }
2414
2415 /* See symtab.h. */
2416
2417 struct block_symbol
2418 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2419 const char *name,
2420 const struct block *block,
2421 const domain_enum domain)
2422 {
2423 struct block_symbol result;
2424
2425 /* NOTE: carlton/2003-05-19: The comments below were written when
2426 this (or what turned into this) was part of lookup_symbol_aux;
2427 I'm much less worried about these questions now, since these
2428 decisions have turned out well, but I leave these comments here
2429 for posterity. */
2430
2431 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2432 not it would be appropriate to search the current global block
2433 here as well. (That's what this code used to do before the
2434 is_a_field_of_this check was moved up.) On the one hand, it's
2435 redundant with the lookup in all objfiles search that happens
2436 next. On the other hand, if decode_line_1 is passed an argument
2437 like filename:var, then the user presumably wants 'var' to be
2438 searched for in filename. On the third hand, there shouldn't be
2439 multiple global variables all of which are named 'var', and it's
2440 not like decode_line_1 has ever restricted its search to only
2441 global variables in a single filename. All in all, only
2442 searching the static block here seems best: it's correct and it's
2443 cleanest. */
2444
2445 /* NOTE: carlton/2002-12-05: There's also a possible performance
2446 issue here: if you usually search for global symbols in the
2447 current file, then it would be slightly better to search the
2448 current global block before searching all the symtabs. But there
2449 are other factors that have a much greater effect on performance
2450 than that one, so I don't think we should worry about that for
2451 now. */
2452
2453 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2454 the current objfile. Searching the current objfile first is useful
2455 for both matching user expectations as well as performance. */
2456
2457 result = lookup_symbol_in_static_block (name, block, domain);
2458 if (result.symbol != NULL)
2459 return result;
2460
2461 /* If we didn't find a definition for a builtin type in the static block,
2462 search for it now. This is actually the right thing to do and can be
2463 a massive performance win. E.g., when debugging a program with lots of
2464 shared libraries we could search all of them only to find out the
2465 builtin type isn't defined in any of them. This is common for types
2466 like "void". */
2467 if (domain == VAR_DOMAIN)
2468 {
2469 struct gdbarch *gdbarch;
2470
2471 if (block == NULL)
2472 gdbarch = target_gdbarch ();
2473 else
2474 gdbarch = block_gdbarch (block);
2475 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2476 gdbarch, name);
2477 result.block = NULL;
2478 if (result.symbol != NULL)
2479 return result;
2480 }
2481
2482 return lookup_global_symbol (name, block, domain);
2483 }
2484
2485 /* See symtab.h. */
2486
2487 struct block_symbol
2488 lookup_symbol_in_static_block (const char *name,
2489 const struct block *block,
2490 const domain_enum domain)
2491 {
2492 const struct block *static_block = block_static_block (block);
2493 struct symbol *sym;
2494
2495 if (static_block == NULL)
2496 return (struct block_symbol) {NULL, NULL};
2497
2498 if (symbol_lookup_debug)
2499 {
2500 struct objfile *objfile = lookup_objfile_from_block (static_block);
2501
2502 fprintf_unfiltered (gdb_stdlog,
2503 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2504 " %s)\n",
2505 name,
2506 host_address_to_string (block),
2507 objfile_debug_name (objfile),
2508 domain_name (domain));
2509 }
2510
2511 sym = lookup_symbol_in_block (name,
2512 symbol_name_match_type::FULL,
2513 static_block, domain);
2514 if (symbol_lookup_debug)
2515 {
2516 fprintf_unfiltered (gdb_stdlog,
2517 "lookup_symbol_in_static_block (...) = %s\n",
2518 sym != NULL ? host_address_to_string (sym) : "NULL");
2519 }
2520 return (struct block_symbol) {sym, static_block};
2521 }
2522
2523 /* Perform the standard symbol lookup of NAME in OBJFILE:
2524 1) First search expanded symtabs, and if not found
2525 2) Search the "quick" symtabs (partial or .gdb_index).
2526 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2527
2528 static struct block_symbol
2529 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2530 const char *name, const domain_enum domain)
2531 {
2532 struct block_symbol result;
2533
2534 if (symbol_lookup_debug)
2535 {
2536 fprintf_unfiltered (gdb_stdlog,
2537 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2538 objfile_debug_name (objfile),
2539 block_index == GLOBAL_BLOCK
2540 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2541 name, domain_name (domain));
2542 }
2543
2544 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2545 name, domain);
2546 if (result.symbol != NULL)
2547 {
2548 if (symbol_lookup_debug)
2549 {
2550 fprintf_unfiltered (gdb_stdlog,
2551 "lookup_symbol_in_objfile (...) = %s"
2552 " (in symtabs)\n",
2553 host_address_to_string (result.symbol));
2554 }
2555 return result;
2556 }
2557
2558 result = lookup_symbol_via_quick_fns (objfile, block_index,
2559 name, domain);
2560 if (symbol_lookup_debug)
2561 {
2562 fprintf_unfiltered (gdb_stdlog,
2563 "lookup_symbol_in_objfile (...) = %s%s\n",
2564 result.symbol != NULL
2565 ? host_address_to_string (result.symbol)
2566 : "NULL",
2567 result.symbol != NULL ? " (via quick fns)" : "");
2568 }
2569 return result;
2570 }
2571
2572 /* See symtab.h. */
2573
2574 struct block_symbol
2575 lookup_static_symbol (const char *name, const domain_enum domain)
2576 {
2577 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2578 struct objfile *objfile;
2579 struct block_symbol result;
2580 struct block_symbol_cache *bsc;
2581 struct symbol_cache_slot *slot;
2582
2583 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2584 NULL for OBJFILE_CONTEXT. */
2585 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2586 &bsc, &slot);
2587 if (result.symbol != NULL)
2588 {
2589 if (SYMBOL_LOOKUP_FAILED_P (result))
2590 return (struct block_symbol) {NULL, NULL};
2591 return result;
2592 }
2593
2594 ALL_OBJFILES (objfile)
2595 {
2596 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2597 if (result.symbol != NULL)
2598 {
2599 /* Still pass NULL for OBJFILE_CONTEXT here. */
2600 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2601 result.block);
2602 return result;
2603 }
2604 }
2605
2606 /* Still pass NULL for OBJFILE_CONTEXT here. */
2607 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2608 return (struct block_symbol) {NULL, NULL};
2609 }
2610
2611 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2612
2613 struct global_sym_lookup_data
2614 {
2615 /* The name of the symbol we are searching for. */
2616 const char *name;
2617
2618 /* The domain to use for our search. */
2619 domain_enum domain;
2620
2621 /* The field where the callback should store the symbol if found.
2622 It should be initialized to {NULL, NULL} before the search is started. */
2623 struct block_symbol result;
2624 };
2625
2626 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2627 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2628 OBJFILE. The arguments for the search are passed via CB_DATA,
2629 which in reality is a pointer to struct global_sym_lookup_data. */
2630
2631 static int
2632 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2633 void *cb_data)
2634 {
2635 struct global_sym_lookup_data *data =
2636 (struct global_sym_lookup_data *) cb_data;
2637
2638 gdb_assert (data->result.symbol == NULL
2639 && data->result.block == NULL);
2640
2641 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2642 data->name, data->domain);
2643
2644 /* If we found a match, tell the iterator to stop. Otherwise,
2645 keep going. */
2646 return (data->result.symbol != NULL);
2647 }
2648
2649 /* See symtab.h. */
2650
2651 struct block_symbol
2652 lookup_global_symbol (const char *name,
2653 const struct block *block,
2654 const domain_enum domain)
2655 {
2656 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2657 struct block_symbol result;
2658 struct objfile *objfile;
2659 struct global_sym_lookup_data lookup_data;
2660 struct block_symbol_cache *bsc;
2661 struct symbol_cache_slot *slot;
2662
2663 objfile = lookup_objfile_from_block (block);
2664
2665 /* First see if we can find the symbol in the cache.
2666 This works because we use the current objfile to qualify the lookup. */
2667 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2668 &bsc, &slot);
2669 if (result.symbol != NULL)
2670 {
2671 if (SYMBOL_LOOKUP_FAILED_P (result))
2672 return (struct block_symbol) {NULL, NULL};
2673 return result;
2674 }
2675
2676 /* Call library-specific lookup procedure. */
2677 if (objfile != NULL)
2678 result = solib_global_lookup (objfile, name, domain);
2679
2680 /* If that didn't work go a global search (of global blocks, heh). */
2681 if (result.symbol == NULL)
2682 {
2683 memset (&lookup_data, 0, sizeof (lookup_data));
2684 lookup_data.name = name;
2685 lookup_data.domain = domain;
2686 gdbarch_iterate_over_objfiles_in_search_order
2687 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2688 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2689 result = lookup_data.result;
2690 }
2691
2692 if (result.symbol != NULL)
2693 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2694 else
2695 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2696
2697 return result;
2698 }
2699
2700 int
2701 symbol_matches_domain (enum language symbol_language,
2702 domain_enum symbol_domain,
2703 domain_enum domain)
2704 {
2705 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2706 Similarly, any Ada type declaration implicitly defines a typedef. */
2707 if (symbol_language == language_cplus
2708 || symbol_language == language_d
2709 || symbol_language == language_ada
2710 || symbol_language == language_rust)
2711 {
2712 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2713 && symbol_domain == STRUCT_DOMAIN)
2714 return 1;
2715 }
2716 /* For all other languages, strict match is required. */
2717 return (symbol_domain == domain);
2718 }
2719
2720 /* See symtab.h. */
2721
2722 struct type *
2723 lookup_transparent_type (const char *name)
2724 {
2725 return current_language->la_lookup_transparent_type (name);
2726 }
2727
2728 /* A helper for basic_lookup_transparent_type that interfaces with the
2729 "quick" symbol table functions. */
2730
2731 static struct type *
2732 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2733 const char *name)
2734 {
2735 struct compunit_symtab *cust;
2736 const struct blockvector *bv;
2737 struct block *block;
2738 struct symbol *sym;
2739
2740 if (!objfile->sf)
2741 return NULL;
2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2743 STRUCT_DOMAIN);
2744 if (cust == NULL)
2745 return NULL;
2746
2747 bv = COMPUNIT_BLOCKVECTOR (cust);
2748 block = BLOCKVECTOR_BLOCK (bv, block_index);
2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2750 block_find_non_opaque_type, NULL);
2751 if (sym == NULL)
2752 error_in_psymtab_expansion (block_index, name, cust);
2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2754 return SYMBOL_TYPE (sym);
2755 }
2756
2757 /* Subroutine of basic_lookup_transparent_type to simplify it.
2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760
2761 static struct type *
2762 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2763 const char *name)
2764 {
2765 const struct compunit_symtab *cust;
2766 const struct blockvector *bv;
2767 const struct block *block;
2768 const struct symbol *sym;
2769
2770 ALL_OBJFILE_COMPUNITS (objfile, cust)
2771 {
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym != NULL)
2777 {
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /* The standard implementation of lookup_transparent_type. This code
2787 was modeled on lookup_symbol -- the parts not relevant to looking
2788 up types were just left out. In particular it's assumed here that
2789 types are available in STRUCT_DOMAIN and only in file-static or
2790 global blocks. */
2791
2792 struct type *
2793 basic_lookup_transparent_type (const char *name)
2794 {
2795 struct objfile *objfile;
2796 struct type *t;
2797
2798 /* Now search all the global symbols. Do the symtab's first, then
2799 check the psymtab's. If a psymtab indicates the existence
2800 of the desired name as a global, then do psymtab-to-symtab
2801 conversion on the fly and return the found symbol. */
2802
2803 ALL_OBJFILES (objfile)
2804 {
2805 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2806 if (t)
2807 return t;
2808 }
2809
2810 ALL_OBJFILES (objfile)
2811 {
2812 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2813 if (t)
2814 return t;
2815 }
2816
2817 /* Now search the static file-level symbols.
2818 Not strictly correct, but more useful than an error.
2819 Do the symtab's first, then
2820 check the psymtab's. If a psymtab indicates the existence
2821 of the desired name as a file-level static, then do psymtab-to-symtab
2822 conversion on the fly and return the found symbol. */
2823
2824 ALL_OBJFILES (objfile)
2825 {
2826 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2827 if (t)
2828 return t;
2829 }
2830
2831 ALL_OBJFILES (objfile)
2832 {
2833 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2834 if (t)
2835 return t;
2836 }
2837
2838 return (struct type *) 0;
2839 }
2840
2841 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2842
2843 For each symbol that matches, CALLBACK is called. The symbol is
2844 passed to the callback.
2845
2846 If CALLBACK returns false, the iteration ends. Otherwise, the
2847 search continues. */
2848
2849 void
2850 iterate_over_symbols (const struct block *block,
2851 const lookup_name_info &name,
2852 const domain_enum domain,
2853 gdb::function_view<symbol_found_callback_ftype> callback)
2854 {
2855 struct block_iterator iter;
2856 struct symbol *sym;
2857
2858 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2859 {
2860 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2861 SYMBOL_DOMAIN (sym), domain))
2862 {
2863 if (!callback (sym))
2864 return;
2865 }
2866 }
2867 }
2868
2869 /* Find the compunit symtab associated with PC and SECTION.
2870 This will read in debug info as necessary. */
2871
2872 struct compunit_symtab *
2873 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2874 {
2875 struct compunit_symtab *cust;
2876 struct compunit_symtab *best_cust = NULL;
2877 struct objfile *objfile;
2878 CORE_ADDR distance = 0;
2879 struct bound_minimal_symbol msymbol;
2880
2881 /* If we know that this is not a text address, return failure. This is
2882 necessary because we loop based on the block's high and low code
2883 addresses, which do not include the data ranges, and because
2884 we call find_pc_sect_psymtab which has a similar restriction based
2885 on the partial_symtab's texthigh and textlow. */
2886 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2887 if (msymbol.minsym
2888 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2889 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2890 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2891 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2892 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2893 return NULL;
2894
2895 /* Search all symtabs for the one whose file contains our address, and which
2896 is the smallest of all the ones containing the address. This is designed
2897 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2898 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2899 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2900
2901 This happens for native ecoff format, where code from included files
2902 gets its own symtab. The symtab for the included file should have
2903 been read in already via the dependency mechanism.
2904 It might be swifter to create several symtabs with the same name
2905 like xcoff does (I'm not sure).
2906
2907 It also happens for objfiles that have their functions reordered.
2908 For these, the symtab we are looking for is not necessarily read in. */
2909
2910 ALL_COMPUNITS (objfile, cust)
2911 {
2912 struct block *b;
2913 const struct blockvector *bv;
2914
2915 bv = COMPUNIT_BLOCKVECTOR (cust);
2916 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2917
2918 if (BLOCK_START (b) <= pc
2919 && BLOCK_END (b) > pc
2920 && (distance == 0
2921 || BLOCK_END (b) - BLOCK_START (b) < distance))
2922 {
2923 /* For an objfile that has its functions reordered,
2924 find_pc_psymtab will find the proper partial symbol table
2925 and we simply return its corresponding symtab. */
2926 /* In order to better support objfiles that contain both
2927 stabs and coff debugging info, we continue on if a psymtab
2928 can't be found. */
2929 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2930 {
2931 struct compunit_symtab *result;
2932
2933 result
2934 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2935 msymbol,
2936 pc, section,
2937 0);
2938 if (result != NULL)
2939 return result;
2940 }
2941 if (section != 0)
2942 {
2943 struct block_iterator iter;
2944 struct symbol *sym = NULL;
2945
2946 ALL_BLOCK_SYMBOLS (b, iter, sym)
2947 {
2948 fixup_symbol_section (sym, objfile);
2949 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2950 section))
2951 break;
2952 }
2953 if (sym == NULL)
2954 continue; /* No symbol in this symtab matches
2955 section. */
2956 }
2957 distance = BLOCK_END (b) - BLOCK_START (b);
2958 best_cust = cust;
2959 }
2960 }
2961
2962 if (best_cust != NULL)
2963 return best_cust;
2964
2965 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2966
2967 ALL_OBJFILES (objfile)
2968 {
2969 struct compunit_symtab *result;
2970
2971 if (!objfile->sf)
2972 continue;
2973 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2974 msymbol,
2975 pc, section,
2976 1);
2977 if (result != NULL)
2978 return result;
2979 }
2980
2981 return NULL;
2982 }
2983
2984 /* Find the compunit symtab associated with PC.
2985 This will read in debug info as necessary.
2986 Backward compatibility, no section. */
2987
2988 struct compunit_symtab *
2989 find_pc_compunit_symtab (CORE_ADDR pc)
2990 {
2991 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2992 }
2993
2994 /* See symtab.h. */
2995
2996 struct symbol *
2997 find_symbol_at_address (CORE_ADDR address)
2998 {
2999 struct objfile *objfile;
3000
3001 ALL_OBJFILES (objfile)
3002 {
3003 if (objfile->sf == NULL
3004 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3005 continue;
3006
3007 struct compunit_symtab *symtab
3008 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3009 if (symtab != NULL)
3010 {
3011 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3012
3013 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3014 {
3015 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3016 struct block_iterator iter;
3017 struct symbol *sym;
3018
3019 ALL_BLOCK_SYMBOLS (b, iter, sym)
3020 {
3021 if (SYMBOL_CLASS (sym) == LOC_STATIC
3022 && SYMBOL_VALUE_ADDRESS (sym) == address)
3023 return sym;
3024 }
3025 }
3026 }
3027 }
3028
3029 return NULL;
3030 }
3031
3032 \f
3033
3034 /* Find the source file and line number for a given PC value and SECTION.
3035 Return a structure containing a symtab pointer, a line number,
3036 and a pc range for the entire source line.
3037 The value's .pc field is NOT the specified pc.
3038 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3039 use the line that ends there. Otherwise, in that case, the line
3040 that begins there is used. */
3041
3042 /* The big complication here is that a line may start in one file, and end just
3043 before the start of another file. This usually occurs when you #include
3044 code in the middle of a subroutine. To properly find the end of a line's PC
3045 range, we must search all symtabs associated with this compilation unit, and
3046 find the one whose first PC is closer than that of the next line in this
3047 symtab. */
3048
3049 struct symtab_and_line
3050 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3051 {
3052 struct compunit_symtab *cust;
3053 struct symtab *iter_s;
3054 struct linetable *l;
3055 int len;
3056 int i;
3057 struct linetable_entry *item;
3058 const struct blockvector *bv;
3059 struct bound_minimal_symbol msymbol;
3060
3061 /* Info on best line seen so far, and where it starts, and its file. */
3062
3063 struct linetable_entry *best = NULL;
3064 CORE_ADDR best_end = 0;
3065 struct symtab *best_symtab = 0;
3066
3067 /* Store here the first line number
3068 of a file which contains the line at the smallest pc after PC.
3069 If we don't find a line whose range contains PC,
3070 we will use a line one less than this,
3071 with a range from the start of that file to the first line's pc. */
3072 struct linetable_entry *alt = NULL;
3073
3074 /* Info on best line seen in this file. */
3075
3076 struct linetable_entry *prev;
3077
3078 /* If this pc is not from the current frame,
3079 it is the address of the end of a call instruction.
3080 Quite likely that is the start of the following statement.
3081 But what we want is the statement containing the instruction.
3082 Fudge the pc to make sure we get that. */
3083
3084 /* It's tempting to assume that, if we can't find debugging info for
3085 any function enclosing PC, that we shouldn't search for line
3086 number info, either. However, GAS can emit line number info for
3087 assembly files --- very helpful when debugging hand-written
3088 assembly code. In such a case, we'd have no debug info for the
3089 function, but we would have line info. */
3090
3091 if (notcurrent)
3092 pc -= 1;
3093
3094 /* elz: added this because this function returned the wrong
3095 information if the pc belongs to a stub (import/export)
3096 to call a shlib function. This stub would be anywhere between
3097 two functions in the target, and the line info was erroneously
3098 taken to be the one of the line before the pc. */
3099
3100 /* RT: Further explanation:
3101
3102 * We have stubs (trampolines) inserted between procedures.
3103 *
3104 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3105 * exists in the main image.
3106 *
3107 * In the minimal symbol table, we have a bunch of symbols
3108 * sorted by start address. The stubs are marked as "trampoline",
3109 * the others appear as text. E.g.:
3110 *
3111 * Minimal symbol table for main image
3112 * main: code for main (text symbol)
3113 * shr1: stub (trampoline symbol)
3114 * foo: code for foo (text symbol)
3115 * ...
3116 * Minimal symbol table for "shr1" image:
3117 * ...
3118 * shr1: code for shr1 (text symbol)
3119 * ...
3120 *
3121 * So the code below is trying to detect if we are in the stub
3122 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3123 * and if found, do the symbolization from the real-code address
3124 * rather than the stub address.
3125 *
3126 * Assumptions being made about the minimal symbol table:
3127 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3128 * if we're really in the trampoline.s If we're beyond it (say
3129 * we're in "foo" in the above example), it'll have a closer
3130 * symbol (the "foo" text symbol for example) and will not
3131 * return the trampoline.
3132 * 2. lookup_minimal_symbol_text() will find a real text symbol
3133 * corresponding to the trampoline, and whose address will
3134 * be different than the trampoline address. I put in a sanity
3135 * check for the address being the same, to avoid an
3136 * infinite recursion.
3137 */
3138 msymbol = lookup_minimal_symbol_by_pc (pc);
3139 if (msymbol.minsym != NULL)
3140 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3141 {
3142 struct bound_minimal_symbol mfunsym
3143 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3144 NULL);
3145
3146 if (mfunsym.minsym == NULL)
3147 /* I eliminated this warning since it is coming out
3148 * in the following situation:
3149 * gdb shmain // test program with shared libraries
3150 * (gdb) break shr1 // function in shared lib
3151 * Warning: In stub for ...
3152 * In the above situation, the shared lib is not loaded yet,
3153 * so of course we can't find the real func/line info,
3154 * but the "break" still works, and the warning is annoying.
3155 * So I commented out the warning. RT */
3156 /* warning ("In stub for %s; unable to find real function/line info",
3157 SYMBOL_LINKAGE_NAME (msymbol)); */
3158 ;
3159 /* fall through */
3160 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3161 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3162 /* Avoid infinite recursion */
3163 /* See above comment about why warning is commented out. */
3164 /* warning ("In stub for %s; unable to find real function/line info",
3165 SYMBOL_LINKAGE_NAME (msymbol)); */
3166 ;
3167 /* fall through */
3168 else
3169 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3170 }
3171
3172 symtab_and_line val;
3173 val.pspace = current_program_space;
3174
3175 cust = find_pc_sect_compunit_symtab (pc, section);
3176 if (cust == NULL)
3177 {
3178 /* If no symbol information, return previous pc. */
3179 if (notcurrent)
3180 pc++;
3181 val.pc = pc;
3182 return val;
3183 }
3184
3185 bv = COMPUNIT_BLOCKVECTOR (cust);
3186
3187 /* Look at all the symtabs that share this blockvector.
3188 They all have the same apriori range, that we found was right;
3189 but they have different line tables. */
3190
3191 ALL_COMPUNIT_FILETABS (cust, iter_s)
3192 {
3193 /* Find the best line in this symtab. */
3194 l = SYMTAB_LINETABLE (iter_s);
3195 if (!l)
3196 continue;
3197 len = l->nitems;
3198 if (len <= 0)
3199 {
3200 /* I think len can be zero if the symtab lacks line numbers
3201 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3202 I'm not sure which, and maybe it depends on the symbol
3203 reader). */
3204 continue;
3205 }
3206
3207 prev = NULL;
3208 item = l->item; /* Get first line info. */
3209
3210 /* Is this file's first line closer than the first lines of other files?
3211 If so, record this file, and its first line, as best alternate. */
3212 if (item->pc > pc && (!alt || item->pc < alt->pc))
3213 alt = item;
3214
3215 auto pc_compare = [](const CORE_ADDR & pc,
3216 const struct linetable_entry & lhs)->bool
3217 {
3218 return pc < lhs.pc;
3219 };
3220
3221 struct linetable_entry *first = item;
3222 struct linetable_entry *last = item + len;
3223 item = std::upper_bound (first, last, pc, pc_compare);
3224 if (item != first)
3225 prev = item - 1; /* Found a matching item. */
3226
3227 /* At this point, prev points at the line whose start addr is <= pc, and
3228 item points at the next line. If we ran off the end of the linetable
3229 (pc >= start of the last line), then prev == item. If pc < start of
3230 the first line, prev will not be set. */
3231
3232 /* Is this file's best line closer than the best in the other files?
3233 If so, record this file, and its best line, as best so far. Don't
3234 save prev if it represents the end of a function (i.e. line number
3235 0) instead of a real line. */
3236
3237 if (prev && prev->line && (!best || prev->pc > best->pc))
3238 {
3239 best = prev;
3240 best_symtab = iter_s;
3241
3242 /* Discard BEST_END if it's before the PC of the current BEST. */
3243 if (best_end <= best->pc)
3244 best_end = 0;
3245 }
3246
3247 /* If another line (denoted by ITEM) is in the linetable and its
3248 PC is after BEST's PC, but before the current BEST_END, then
3249 use ITEM's PC as the new best_end. */
3250 if (best && item < last && item->pc > best->pc
3251 && (best_end == 0 || best_end > item->pc))
3252 best_end = item->pc;
3253 }
3254
3255 if (!best_symtab)
3256 {
3257 /* If we didn't find any line number info, just return zeros.
3258 We used to return alt->line - 1 here, but that could be
3259 anywhere; if we don't have line number info for this PC,
3260 don't make some up. */
3261 val.pc = pc;
3262 }
3263 else if (best->line == 0)
3264 {
3265 /* If our best fit is in a range of PC's for which no line
3266 number info is available (line number is zero) then we didn't
3267 find any valid line information. */
3268 val.pc = pc;
3269 }
3270 else
3271 {
3272 val.symtab = best_symtab;
3273 val.line = best->line;
3274 val.pc = best->pc;
3275 if (best_end && (!alt || best_end < alt->pc))
3276 val.end = best_end;
3277 else if (alt)
3278 val.end = alt->pc;
3279 else
3280 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3281 }
3282 val.section = section;
3283 return val;
3284 }
3285
3286 /* Backward compatibility (no section). */
3287
3288 struct symtab_and_line
3289 find_pc_line (CORE_ADDR pc, int notcurrent)
3290 {
3291 struct obj_section *section;
3292
3293 section = find_pc_overlay (pc);
3294 if (pc_in_unmapped_range (pc, section))
3295 pc = overlay_mapped_address (pc, section);
3296 return find_pc_sect_line (pc, section, notcurrent);
3297 }
3298
3299 /* See symtab.h. */
3300
3301 struct symtab *
3302 find_pc_line_symtab (CORE_ADDR pc)
3303 {
3304 struct symtab_and_line sal;
3305
3306 /* This always passes zero for NOTCURRENT to find_pc_line.
3307 There are currently no callers that ever pass non-zero. */
3308 sal = find_pc_line (pc, 0);
3309 return sal.symtab;
3310 }
3311 \f
3312 /* Find line number LINE in any symtab whose name is the same as
3313 SYMTAB.
3314
3315 If found, return the symtab that contains the linetable in which it was
3316 found, set *INDEX to the index in the linetable of the best entry
3317 found, and set *EXACT_MATCH nonzero if the value returned is an
3318 exact match.
3319
3320 If not found, return NULL. */
3321
3322 struct symtab *
3323 find_line_symtab (struct symtab *symtab, int line,
3324 int *index, int *exact_match)
3325 {
3326 int exact = 0; /* Initialized here to avoid a compiler warning. */
3327
3328 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3329 so far seen. */
3330
3331 int best_index;
3332 struct linetable *best_linetable;
3333 struct symtab *best_symtab;
3334
3335 /* First try looking it up in the given symtab. */
3336 best_linetable = SYMTAB_LINETABLE (symtab);
3337 best_symtab = symtab;
3338 best_index = find_line_common (best_linetable, line, &exact, 0);
3339 if (best_index < 0 || !exact)
3340 {
3341 /* Didn't find an exact match. So we better keep looking for
3342 another symtab with the same name. In the case of xcoff,
3343 multiple csects for one source file (produced by IBM's FORTRAN
3344 compiler) produce multiple symtabs (this is unavoidable
3345 assuming csects can be at arbitrary places in memory and that
3346 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3347
3348 /* BEST is the smallest linenumber > LINE so far seen,
3349 or 0 if none has been seen so far.
3350 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3351 int best;
3352
3353 struct objfile *objfile;
3354 struct compunit_symtab *cu;
3355 struct symtab *s;
3356
3357 if (best_index >= 0)
3358 best = best_linetable->item[best_index].line;
3359 else
3360 best = 0;
3361
3362 ALL_OBJFILES (objfile)
3363 {
3364 if (objfile->sf)
3365 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3366 symtab_to_fullname (symtab));
3367 }
3368
3369 ALL_FILETABS (objfile, cu, s)
3370 {
3371 struct linetable *l;
3372 int ind;
3373
3374 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3375 continue;
3376 if (FILENAME_CMP (symtab_to_fullname (symtab),
3377 symtab_to_fullname (s)) != 0)
3378 continue;
3379 l = SYMTAB_LINETABLE (s);
3380 ind = find_line_common (l, line, &exact, 0);
3381 if (ind >= 0)
3382 {
3383 if (exact)
3384 {
3385 best_index = ind;
3386 best_linetable = l;
3387 best_symtab = s;
3388 goto done;
3389 }
3390 if (best == 0 || l->item[ind].line < best)
3391 {
3392 best = l->item[ind].line;
3393 best_index = ind;
3394 best_linetable = l;
3395 best_symtab = s;
3396 }
3397 }
3398 }
3399 }
3400 done:
3401 if (best_index < 0)
3402 return NULL;
3403
3404 if (index)
3405 *index = best_index;
3406 if (exact_match)
3407 *exact_match = exact;
3408
3409 return best_symtab;
3410 }
3411
3412 /* Given SYMTAB, returns all the PCs function in the symtab that
3413 exactly match LINE. Returns an empty vector if there are no exact
3414 matches, but updates BEST_ITEM in this case. */
3415
3416 std::vector<CORE_ADDR>
3417 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3418 struct linetable_entry **best_item)
3419 {
3420 int start = 0;
3421 std::vector<CORE_ADDR> result;
3422
3423 /* First, collect all the PCs that are at this line. */
3424 while (1)
3425 {
3426 int was_exact;
3427 int idx;
3428
3429 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3430 start);
3431 if (idx < 0)
3432 break;
3433
3434 if (!was_exact)
3435 {
3436 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3437
3438 if (*best_item == NULL || item->line < (*best_item)->line)
3439 *best_item = item;
3440
3441 break;
3442 }
3443
3444 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3445 start = idx + 1;
3446 }
3447
3448 return result;
3449 }
3450
3451 \f
3452 /* Set the PC value for a given source file and line number and return true.
3453 Returns zero for invalid line number (and sets the PC to 0).
3454 The source file is specified with a struct symtab. */
3455
3456 int
3457 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3458 {
3459 struct linetable *l;
3460 int ind;
3461
3462 *pc = 0;
3463 if (symtab == 0)
3464 return 0;
3465
3466 symtab = find_line_symtab (symtab, line, &ind, NULL);
3467 if (symtab != NULL)
3468 {
3469 l = SYMTAB_LINETABLE (symtab);
3470 *pc = l->item[ind].pc;
3471 return 1;
3472 }
3473 else
3474 return 0;
3475 }
3476
3477 /* Find the range of pc values in a line.
3478 Store the starting pc of the line into *STARTPTR
3479 and the ending pc (start of next line) into *ENDPTR.
3480 Returns 1 to indicate success.
3481 Returns 0 if could not find the specified line. */
3482
3483 int
3484 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3485 CORE_ADDR *endptr)
3486 {
3487 CORE_ADDR startaddr;
3488 struct symtab_and_line found_sal;
3489
3490 startaddr = sal.pc;
3491 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3492 return 0;
3493
3494 /* This whole function is based on address. For example, if line 10 has
3495 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3496 "info line *0x123" should say the line goes from 0x100 to 0x200
3497 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3498 This also insures that we never give a range like "starts at 0x134
3499 and ends at 0x12c". */
3500
3501 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3502 if (found_sal.line != sal.line)
3503 {
3504 /* The specified line (sal) has zero bytes. */
3505 *startptr = found_sal.pc;
3506 *endptr = found_sal.pc;
3507 }
3508 else
3509 {
3510 *startptr = found_sal.pc;
3511 *endptr = found_sal.end;
3512 }
3513 return 1;
3514 }
3515
3516 /* Given a line table and a line number, return the index into the line
3517 table for the pc of the nearest line whose number is >= the specified one.
3518 Return -1 if none is found. The value is >= 0 if it is an index.
3519 START is the index at which to start searching the line table.
3520
3521 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3522
3523 static int
3524 find_line_common (struct linetable *l, int lineno,
3525 int *exact_match, int start)
3526 {
3527 int i;
3528 int len;
3529
3530 /* BEST is the smallest linenumber > LINENO so far seen,
3531 or 0 if none has been seen so far.
3532 BEST_INDEX identifies the item for it. */
3533
3534 int best_index = -1;
3535 int best = 0;
3536
3537 *exact_match = 0;
3538
3539 if (lineno <= 0)
3540 return -1;
3541 if (l == 0)
3542 return -1;
3543
3544 len = l->nitems;
3545 for (i = start; i < len; i++)
3546 {
3547 struct linetable_entry *item = &(l->item[i]);
3548
3549 if (item->line == lineno)
3550 {
3551 /* Return the first (lowest address) entry which matches. */
3552 *exact_match = 1;
3553 return i;
3554 }
3555
3556 if (item->line > lineno && (best == 0 || item->line < best))
3557 {
3558 best = item->line;
3559 best_index = i;
3560 }
3561 }
3562
3563 /* If we got here, we didn't get an exact match. */
3564 return best_index;
3565 }
3566
3567 int
3568 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3569 {
3570 struct symtab_and_line sal;
3571
3572 sal = find_pc_line (pc, 0);
3573 *startptr = sal.pc;
3574 *endptr = sal.end;
3575 return sal.symtab != 0;
3576 }
3577
3578 /* Given a function symbol SYM, find the symtab and line for the start
3579 of the function.
3580 If the argument FUNFIRSTLINE is nonzero, we want the first line
3581 of real code inside the function.
3582 This function should return SALs matching those from minsym_found,
3583 otherwise false multiple-locations breakpoints could be placed. */
3584
3585 struct symtab_and_line
3586 find_function_start_sal (struct symbol *sym, int funfirstline)
3587 {
3588 fixup_symbol_section (sym, NULL);
3589
3590 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3591 symtab_and_line sal
3592 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3593 sal.symbol = sym;
3594
3595 if (funfirstline && sal.symtab != NULL
3596 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3597 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3598 {
3599 struct gdbarch *gdbarch = symbol_arch (sym);
3600
3601 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3602 if (gdbarch_skip_entrypoint_p (gdbarch))
3603 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3604 return sal;
3605 }
3606
3607 /* We always should have a line for the function start address.
3608 If we don't, something is odd. Create a plain SAL refering
3609 just the PC and hope that skip_prologue_sal (if requested)
3610 can find a line number for after the prologue. */
3611 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3612 {
3613 sal = {};
3614 sal.pspace = current_program_space;
3615 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3616 sal.section = section;
3617 sal.symbol = sym;
3618 }
3619
3620 if (funfirstline)
3621 skip_prologue_sal (&sal);
3622
3623 return sal;
3624 }
3625
3626 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3627 address for that function that has an entry in SYMTAB's line info
3628 table. If such an entry cannot be found, return FUNC_ADDR
3629 unaltered. */
3630
3631 static CORE_ADDR
3632 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3633 {
3634 CORE_ADDR func_start, func_end;
3635 struct linetable *l;
3636 int i;
3637
3638 /* Give up if this symbol has no lineinfo table. */
3639 l = SYMTAB_LINETABLE (symtab);
3640 if (l == NULL)
3641 return func_addr;
3642
3643 /* Get the range for the function's PC values, or give up if we
3644 cannot, for some reason. */
3645 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3646 return func_addr;
3647
3648 /* Linetable entries are ordered by PC values, see the commentary in
3649 symtab.h where `struct linetable' is defined. Thus, the first
3650 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3651 address we are looking for. */
3652 for (i = 0; i < l->nitems; i++)
3653 {
3654 struct linetable_entry *item = &(l->item[i]);
3655
3656 /* Don't use line numbers of zero, they mark special entries in
3657 the table. See the commentary on symtab.h before the
3658 definition of struct linetable. */
3659 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3660 return item->pc;
3661 }
3662
3663 return func_addr;
3664 }
3665
3666 /* Adjust SAL to the first instruction past the function prologue.
3667 If the PC was explicitly specified, the SAL is not changed.
3668 If the line number was explicitly specified, at most the SAL's PC
3669 is updated. If SAL is already past the prologue, then do nothing. */
3670
3671 void
3672 skip_prologue_sal (struct symtab_and_line *sal)
3673 {
3674 struct symbol *sym;
3675 struct symtab_and_line start_sal;
3676 CORE_ADDR pc, saved_pc;
3677 struct obj_section *section;
3678 const char *name;
3679 struct objfile *objfile;
3680 struct gdbarch *gdbarch;
3681 const struct block *b, *function_block;
3682 int force_skip, skip;
3683
3684 /* Do not change the SAL if PC was specified explicitly. */
3685 if (sal->explicit_pc)
3686 return;
3687
3688 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3689
3690 switch_to_program_space_and_thread (sal->pspace);
3691
3692 sym = find_pc_sect_function (sal->pc, sal->section);
3693 if (sym != NULL)
3694 {
3695 fixup_symbol_section (sym, NULL);
3696
3697 objfile = symbol_objfile (sym);
3698 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3699 section = SYMBOL_OBJ_SECTION (objfile, sym);
3700 name = SYMBOL_LINKAGE_NAME (sym);
3701 }
3702 else
3703 {
3704 struct bound_minimal_symbol msymbol
3705 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3706
3707 if (msymbol.minsym == NULL)
3708 return;
3709
3710 objfile = msymbol.objfile;
3711 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3712 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3713 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3714 }
3715
3716 gdbarch = get_objfile_arch (objfile);
3717
3718 /* Process the prologue in two passes. In the first pass try to skip the
3719 prologue (SKIP is true) and verify there is a real need for it (indicated
3720 by FORCE_SKIP). If no such reason was found run a second pass where the
3721 prologue is not skipped (SKIP is false). */
3722
3723 skip = 1;
3724 force_skip = 1;
3725
3726 /* Be conservative - allow direct PC (without skipping prologue) only if we
3727 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3728 have to be set by the caller so we use SYM instead. */
3729 if (sym != NULL
3730 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3731 force_skip = 0;
3732
3733 saved_pc = pc;
3734 do
3735 {
3736 pc = saved_pc;
3737
3738 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3739 so that gdbarch_skip_prologue has something unique to work on. */
3740 if (section_is_overlay (section) && !section_is_mapped (section))
3741 pc = overlay_unmapped_address (pc, section);
3742
3743 /* Skip "first line" of function (which is actually its prologue). */
3744 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3745 if (gdbarch_skip_entrypoint_p (gdbarch))
3746 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3747 if (skip)
3748 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3749
3750 /* For overlays, map pc back into its mapped VMA range. */
3751 pc = overlay_mapped_address (pc, section);
3752
3753 /* Calculate line number. */
3754 start_sal = find_pc_sect_line (pc, section, 0);
3755
3756 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3757 line is still part of the same function. */
3758 if (skip && start_sal.pc != pc
3759 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3760 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3761 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3762 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3763 {
3764 /* First pc of next line */
3765 pc = start_sal.end;
3766 /* Recalculate the line number (might not be N+1). */
3767 start_sal = find_pc_sect_line (pc, section, 0);
3768 }
3769
3770 /* On targets with executable formats that don't have a concept of
3771 constructors (ELF with .init has, PE doesn't), gcc emits a call
3772 to `__main' in `main' between the prologue and before user
3773 code. */
3774 if (gdbarch_skip_main_prologue_p (gdbarch)
3775 && name && strcmp_iw (name, "main") == 0)
3776 {
3777 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3778 /* Recalculate the line number (might not be N+1). */
3779 start_sal = find_pc_sect_line (pc, section, 0);
3780 force_skip = 1;
3781 }
3782 }
3783 while (!force_skip && skip--);
3784
3785 /* If we still don't have a valid source line, try to find the first
3786 PC in the lineinfo table that belongs to the same function. This
3787 happens with COFF debug info, which does not seem to have an
3788 entry in lineinfo table for the code after the prologue which has
3789 no direct relation to source. For example, this was found to be
3790 the case with the DJGPP target using "gcc -gcoff" when the
3791 compiler inserted code after the prologue to make sure the stack
3792 is aligned. */
3793 if (!force_skip && sym && start_sal.symtab == NULL)
3794 {
3795 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3796 /* Recalculate the line number. */
3797 start_sal = find_pc_sect_line (pc, section, 0);
3798 }
3799
3800 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3801 forward SAL to the end of the prologue. */
3802 if (sal->pc >= pc)
3803 return;
3804
3805 sal->pc = pc;
3806 sal->section = section;
3807
3808 /* Unless the explicit_line flag was set, update the SAL line
3809 and symtab to correspond to the modified PC location. */
3810 if (sal->explicit_line)
3811 return;
3812
3813 sal->symtab = start_sal.symtab;
3814 sal->line = start_sal.line;
3815 sal->end = start_sal.end;
3816
3817 /* Check if we are now inside an inlined function. If we can,
3818 use the call site of the function instead. */
3819 b = block_for_pc_sect (sal->pc, sal->section);
3820 function_block = NULL;
3821 while (b != NULL)
3822 {
3823 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3824 function_block = b;
3825 else if (BLOCK_FUNCTION (b) != NULL)
3826 break;
3827 b = BLOCK_SUPERBLOCK (b);
3828 }
3829 if (function_block != NULL
3830 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3831 {
3832 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3833 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3834 }
3835 }
3836
3837 /* Given PC at the function's start address, attempt to find the
3838 prologue end using SAL information. Return zero if the skip fails.
3839
3840 A non-optimized prologue traditionally has one SAL for the function
3841 and a second for the function body. A single line function has
3842 them both pointing at the same line.
3843
3844 An optimized prologue is similar but the prologue may contain
3845 instructions (SALs) from the instruction body. Need to skip those
3846 while not getting into the function body.
3847
3848 The functions end point and an increasing SAL line are used as
3849 indicators of the prologue's endpoint.
3850
3851 This code is based on the function refine_prologue_limit
3852 (found in ia64). */
3853
3854 CORE_ADDR
3855 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3856 {
3857 struct symtab_and_line prologue_sal;
3858 CORE_ADDR start_pc;
3859 CORE_ADDR end_pc;
3860 const struct block *bl;
3861
3862 /* Get an initial range for the function. */
3863 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3864 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3865
3866 prologue_sal = find_pc_line (start_pc, 0);
3867 if (prologue_sal.line != 0)
3868 {
3869 /* For languages other than assembly, treat two consecutive line
3870 entries at the same address as a zero-instruction prologue.
3871 The GNU assembler emits separate line notes for each instruction
3872 in a multi-instruction macro, but compilers generally will not
3873 do this. */
3874 if (prologue_sal.symtab->language != language_asm)
3875 {
3876 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3877 int idx = 0;
3878
3879 /* Skip any earlier lines, and any end-of-sequence marker
3880 from a previous function. */
3881 while (linetable->item[idx].pc != prologue_sal.pc
3882 || linetable->item[idx].line == 0)
3883 idx++;
3884
3885 if (idx+1 < linetable->nitems
3886 && linetable->item[idx+1].line != 0
3887 && linetable->item[idx+1].pc == start_pc)
3888 return start_pc;
3889 }
3890
3891 /* If there is only one sal that covers the entire function,
3892 then it is probably a single line function, like
3893 "foo(){}". */
3894 if (prologue_sal.end >= end_pc)
3895 return 0;
3896
3897 while (prologue_sal.end < end_pc)
3898 {
3899 struct symtab_and_line sal;
3900
3901 sal = find_pc_line (prologue_sal.end, 0);
3902 if (sal.line == 0)
3903 break;
3904 /* Assume that a consecutive SAL for the same (or larger)
3905 line mark the prologue -> body transition. */
3906 if (sal.line >= prologue_sal.line)
3907 break;
3908 /* Likewise if we are in a different symtab altogether
3909 (e.g. within a file included via #include).  */
3910 if (sal.symtab != prologue_sal.symtab)
3911 break;
3912
3913 /* The line number is smaller. Check that it's from the
3914 same function, not something inlined. If it's inlined,
3915 then there is no point comparing the line numbers. */
3916 bl = block_for_pc (prologue_sal.end);
3917 while (bl)
3918 {
3919 if (block_inlined_p (bl))
3920 break;
3921 if (BLOCK_FUNCTION (bl))
3922 {
3923 bl = NULL;
3924 break;
3925 }
3926 bl = BLOCK_SUPERBLOCK (bl);
3927 }
3928 if (bl != NULL)
3929 break;
3930
3931 /* The case in which compiler's optimizer/scheduler has
3932 moved instructions into the prologue. We look ahead in
3933 the function looking for address ranges whose
3934 corresponding line number is less the first one that we
3935 found for the function. This is more conservative then
3936 refine_prologue_limit which scans a large number of SALs
3937 looking for any in the prologue. */
3938 prologue_sal = sal;
3939 }
3940 }
3941
3942 if (prologue_sal.end < end_pc)
3943 /* Return the end of this line, or zero if we could not find a
3944 line. */
3945 return prologue_sal.end;
3946 else
3947 /* Don't return END_PC, which is past the end of the function. */
3948 return prologue_sal.pc;
3949 }
3950
3951 /* See symtab.h. */
3952
3953 symbol *
3954 find_function_alias_target (bound_minimal_symbol msymbol)
3955 {
3956 CORE_ADDR func_addr;
3957 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3958 return NULL;
3959
3960 symbol *sym = find_pc_function (func_addr);
3961 if (sym != NULL
3962 && SYMBOL_CLASS (sym) == LOC_BLOCK
3963 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3964 return sym;
3965
3966 return NULL;
3967 }
3968
3969 \f
3970 /* If P is of the form "operator[ \t]+..." where `...' is
3971 some legitimate operator text, return a pointer to the
3972 beginning of the substring of the operator text.
3973 Otherwise, return "". */
3974
3975 static const char *
3976 operator_chars (const char *p, const char **end)
3977 {
3978 *end = "";
3979 if (!startswith (p, CP_OPERATOR_STR))
3980 return *end;
3981 p += CP_OPERATOR_LEN;
3982
3983 /* Don't get faked out by `operator' being part of a longer
3984 identifier. */
3985 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3986 return *end;
3987
3988 /* Allow some whitespace between `operator' and the operator symbol. */
3989 while (*p == ' ' || *p == '\t')
3990 p++;
3991
3992 /* Recognize 'operator TYPENAME'. */
3993
3994 if (isalpha (*p) || *p == '_' || *p == '$')
3995 {
3996 const char *q = p + 1;
3997
3998 while (isalnum (*q) || *q == '_' || *q == '$')
3999 q++;
4000 *end = q;
4001 return p;
4002 }
4003
4004 while (*p)
4005 switch (*p)
4006 {
4007 case '\\': /* regexp quoting */
4008 if (p[1] == '*')
4009 {
4010 if (p[2] == '=') /* 'operator\*=' */
4011 *end = p + 3;
4012 else /* 'operator\*' */
4013 *end = p + 2;
4014 return p;
4015 }
4016 else if (p[1] == '[')
4017 {
4018 if (p[2] == ']')
4019 error (_("mismatched quoting on brackets, "
4020 "try 'operator\\[\\]'"));
4021 else if (p[2] == '\\' && p[3] == ']')
4022 {
4023 *end = p + 4; /* 'operator\[\]' */
4024 return p;
4025 }
4026 else
4027 error (_("nothing is allowed between '[' and ']'"));
4028 }
4029 else
4030 {
4031 /* Gratuitous qoute: skip it and move on. */
4032 p++;
4033 continue;
4034 }
4035 break;
4036 case '!':
4037 case '=':
4038 case '*':
4039 case '/':
4040 case '%':
4041 case '^':
4042 if (p[1] == '=')
4043 *end = p + 2;
4044 else
4045 *end = p + 1;
4046 return p;
4047 case '<':
4048 case '>':
4049 case '+':
4050 case '-':
4051 case '&':
4052 case '|':
4053 if (p[0] == '-' && p[1] == '>')
4054 {
4055 /* Struct pointer member operator 'operator->'. */
4056 if (p[2] == '*')
4057 {
4058 *end = p + 3; /* 'operator->*' */
4059 return p;
4060 }
4061 else if (p[2] == '\\')
4062 {
4063 *end = p + 4; /* Hopefully 'operator->\*' */
4064 return p;
4065 }
4066 else
4067 {
4068 *end = p + 2; /* 'operator->' */
4069 return p;
4070 }
4071 }
4072 if (p[1] == '=' || p[1] == p[0])
4073 *end = p + 2;
4074 else
4075 *end = p + 1;
4076 return p;
4077 case '~':
4078 case ',':
4079 *end = p + 1;
4080 return p;
4081 case '(':
4082 if (p[1] != ')')
4083 error (_("`operator ()' must be specified "
4084 "without whitespace in `()'"));
4085 *end = p + 2;
4086 return p;
4087 case '?':
4088 if (p[1] != ':')
4089 error (_("`operator ?:' must be specified "
4090 "without whitespace in `?:'"));
4091 *end = p + 2;
4092 return p;
4093 case '[':
4094 if (p[1] != ']')
4095 error (_("`operator []' must be specified "
4096 "without whitespace in `[]'"));
4097 *end = p + 2;
4098 return p;
4099 default:
4100 error (_("`operator %s' not supported"), p);
4101 break;
4102 }
4103
4104 *end = "";
4105 return *end;
4106 }
4107 \f
4108
4109 /* Data structure to maintain printing state for output_source_filename. */
4110
4111 struct output_source_filename_data
4112 {
4113 /* Cache of what we've seen so far. */
4114 struct filename_seen_cache *filename_seen_cache;
4115
4116 /* Flag of whether we're printing the first one. */
4117 int first;
4118 };
4119
4120 /* Slave routine for sources_info. Force line breaks at ,'s.
4121 NAME is the name to print.
4122 DATA contains the state for printing and watching for duplicates. */
4123
4124 static void
4125 output_source_filename (const char *name,
4126 struct output_source_filename_data *data)
4127 {
4128 /* Since a single source file can result in several partial symbol
4129 tables, we need to avoid printing it more than once. Note: if
4130 some of the psymtabs are read in and some are not, it gets
4131 printed both under "Source files for which symbols have been
4132 read" and "Source files for which symbols will be read in on
4133 demand". I consider this a reasonable way to deal with the
4134 situation. I'm not sure whether this can also happen for
4135 symtabs; it doesn't hurt to check. */
4136
4137 /* Was NAME already seen? */
4138 if (data->filename_seen_cache->seen (name))
4139 {
4140 /* Yes; don't print it again. */
4141 return;
4142 }
4143
4144 /* No; print it and reset *FIRST. */
4145 if (! data->first)
4146 printf_filtered (", ");
4147 data->first = 0;
4148
4149 wrap_here ("");
4150 fputs_filtered (name, gdb_stdout);
4151 }
4152
4153 /* A callback for map_partial_symbol_filenames. */
4154
4155 static void
4156 output_partial_symbol_filename (const char *filename, const char *fullname,
4157 void *data)
4158 {
4159 output_source_filename (fullname ? fullname : filename,
4160 (struct output_source_filename_data *) data);
4161 }
4162
4163 static void
4164 info_sources_command (const char *ignore, int from_tty)
4165 {
4166 struct compunit_symtab *cu;
4167 struct symtab *s;
4168 struct objfile *objfile;
4169 struct output_source_filename_data data;
4170
4171 if (!have_full_symbols () && !have_partial_symbols ())
4172 {
4173 error (_("No symbol table is loaded. Use the \"file\" command."));
4174 }
4175
4176 filename_seen_cache filenames_seen;
4177
4178 data.filename_seen_cache = &filenames_seen;
4179
4180 printf_filtered ("Source files for which symbols have been read in:\n\n");
4181
4182 data.first = 1;
4183 ALL_FILETABS (objfile, cu, s)
4184 {
4185 const char *fullname = symtab_to_fullname (s);
4186
4187 output_source_filename (fullname, &data);
4188 }
4189 printf_filtered ("\n\n");
4190
4191 printf_filtered ("Source files for which symbols "
4192 "will be read in on demand:\n\n");
4193
4194 filenames_seen.clear ();
4195 data.first = 1;
4196 map_symbol_filenames (output_partial_symbol_filename, &data,
4197 1 /*need_fullname*/);
4198 printf_filtered ("\n");
4199 }
4200
4201 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4202 non-zero compare only lbasename of FILES. */
4203
4204 static int
4205 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4206 {
4207 int i;
4208
4209 if (file != NULL && nfiles != 0)
4210 {
4211 for (i = 0; i < nfiles; i++)
4212 {
4213 if (compare_filenames_for_search (file, (basenames
4214 ? lbasename (files[i])
4215 : files[i])))
4216 return 1;
4217 }
4218 }
4219 else if (nfiles == 0)
4220 return 1;
4221 return 0;
4222 }
4223
4224 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4225 sort symbols, not minimal symbols. */
4226
4227 int
4228 symbol_search::compare_search_syms (const symbol_search &sym_a,
4229 const symbol_search &sym_b)
4230 {
4231 int c;
4232
4233 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4234 symbol_symtab (sym_b.symbol)->filename);
4235 if (c != 0)
4236 return c;
4237
4238 if (sym_a.block != sym_b.block)
4239 return sym_a.block - sym_b.block;
4240
4241 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4242 SYMBOL_PRINT_NAME (sym_b.symbol));
4243 }
4244
4245 /* Sort the symbols in RESULT and remove duplicates. */
4246
4247 static void
4248 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4249 {
4250 std::sort (result->begin (), result->end ());
4251 result->erase (std::unique (result->begin (), result->end ()),
4252 result->end ());
4253 }
4254
4255 /* Search the symbol table for matches to the regular expression REGEXP,
4256 returning the results.
4257
4258 Only symbols of KIND are searched:
4259 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4260 and constants (enums)
4261 FUNCTIONS_DOMAIN - search all functions
4262 TYPES_DOMAIN - search all type names
4263 ALL_DOMAIN - an internal error for this function
4264
4265 Within each file the results are sorted locally; each symtab's global and
4266 static blocks are separately alphabetized.
4267 Duplicate entries are removed. */
4268
4269 std::vector<symbol_search>
4270 search_symbols (const char *regexp, enum search_domain kind,
4271 int nfiles, const char *files[])
4272 {
4273 struct compunit_symtab *cust;
4274 const struct blockvector *bv;
4275 struct block *b;
4276 int i = 0;
4277 struct block_iterator iter;
4278 struct symbol *sym;
4279 struct objfile *objfile;
4280 struct minimal_symbol *msymbol;
4281 int found_misc = 0;
4282 static const enum minimal_symbol_type types[]
4283 = {mst_data, mst_text, mst_abs};
4284 static const enum minimal_symbol_type types2[]
4285 = {mst_bss, mst_file_text, mst_abs};
4286 static const enum minimal_symbol_type types3[]
4287 = {mst_file_data, mst_solib_trampoline, mst_abs};
4288 static const enum minimal_symbol_type types4[]
4289 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4290 enum minimal_symbol_type ourtype;
4291 enum minimal_symbol_type ourtype2;
4292 enum minimal_symbol_type ourtype3;
4293 enum minimal_symbol_type ourtype4;
4294 std::vector<symbol_search> result;
4295 gdb::optional<compiled_regex> preg;
4296
4297 gdb_assert (kind <= TYPES_DOMAIN);
4298
4299 ourtype = types[kind];
4300 ourtype2 = types2[kind];
4301 ourtype3 = types3[kind];
4302 ourtype4 = types4[kind];
4303
4304 if (regexp != NULL)
4305 {
4306 /* Make sure spacing is right for C++ operators.
4307 This is just a courtesy to make the matching less sensitive
4308 to how many spaces the user leaves between 'operator'
4309 and <TYPENAME> or <OPERATOR>. */
4310 const char *opend;
4311 const char *opname = operator_chars (regexp, &opend);
4312
4313 if (*opname)
4314 {
4315 int fix = -1; /* -1 means ok; otherwise number of
4316 spaces needed. */
4317
4318 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4319 {
4320 /* There should 1 space between 'operator' and 'TYPENAME'. */
4321 if (opname[-1] != ' ' || opname[-2] == ' ')
4322 fix = 1;
4323 }
4324 else
4325 {
4326 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4327 if (opname[-1] == ' ')
4328 fix = 0;
4329 }
4330 /* If wrong number of spaces, fix it. */
4331 if (fix >= 0)
4332 {
4333 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4334
4335 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4336 regexp = tmp;
4337 }
4338 }
4339
4340 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4341 ? REG_ICASE : 0);
4342 preg.emplace (regexp, cflags, _("Invalid regexp"));
4343 }
4344
4345 /* Search through the partial symtabs *first* for all symbols
4346 matching the regexp. That way we don't have to reproduce all of
4347 the machinery below. */
4348 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4349 {
4350 return file_matches (filename, files, nfiles,
4351 basenames);
4352 },
4353 lookup_name_info::match_any (),
4354 [&] (const char *symname)
4355 {
4356 return (!preg || preg->exec (symname,
4357 0, NULL, 0) == 0);
4358 },
4359 NULL,
4360 kind);
4361
4362 /* Here, we search through the minimal symbol tables for functions
4363 and variables that match, and force their symbols to be read.
4364 This is in particular necessary for demangled variable names,
4365 which are no longer put into the partial symbol tables.
4366 The symbol will then be found during the scan of symtabs below.
4367
4368 For functions, find_pc_symtab should succeed if we have debug info
4369 for the function, for variables we have to call
4370 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4371 has debug info.
4372 If the lookup fails, set found_misc so that we will rescan to print
4373 any matching symbols without debug info.
4374 We only search the objfile the msymbol came from, we no longer search
4375 all objfiles. In large programs (1000s of shared libs) searching all
4376 objfiles is not worth the pain. */
4377
4378 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4379 {
4380 ALL_MSYMBOLS (objfile, msymbol)
4381 {
4382 QUIT;
4383
4384 if (msymbol->created_by_gdb)
4385 continue;
4386
4387 if (MSYMBOL_TYPE (msymbol) == ourtype
4388 || MSYMBOL_TYPE (msymbol) == ourtype2
4389 || MSYMBOL_TYPE (msymbol) == ourtype3
4390 || MSYMBOL_TYPE (msymbol) == ourtype4)
4391 {
4392 if (!preg
4393 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4394 NULL, 0) == 0)
4395 {
4396 /* Note: An important side-effect of these lookup functions
4397 is to expand the symbol table if msymbol is found, for the
4398 benefit of the next loop on ALL_COMPUNITS. */
4399 if (kind == FUNCTIONS_DOMAIN
4400 ? (find_pc_compunit_symtab
4401 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4402 : (lookup_symbol_in_objfile_from_linkage_name
4403 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4404 .symbol == NULL))
4405 found_misc = 1;
4406 }
4407 }
4408 }
4409 }
4410
4411 ALL_COMPUNITS (objfile, cust)
4412 {
4413 bv = COMPUNIT_BLOCKVECTOR (cust);
4414 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4415 {
4416 b = BLOCKVECTOR_BLOCK (bv, i);
4417 ALL_BLOCK_SYMBOLS (b, iter, sym)
4418 {
4419 struct symtab *real_symtab = symbol_symtab (sym);
4420
4421 QUIT;
4422
4423 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4424 a substring of symtab_to_fullname as it may contain "./" etc. */
4425 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4426 || ((basenames_may_differ
4427 || file_matches (lbasename (real_symtab->filename),
4428 files, nfiles, 1))
4429 && file_matches (symtab_to_fullname (real_symtab),
4430 files, nfiles, 0)))
4431 && ((!preg
4432 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4433 NULL, 0) == 0)
4434 && ((kind == VARIABLES_DOMAIN
4435 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4436 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4437 && SYMBOL_CLASS (sym) != LOC_BLOCK
4438 /* LOC_CONST can be used for more than just enums,
4439 e.g., c++ static const members.
4440 We only want to skip enums here. */
4441 && !(SYMBOL_CLASS (sym) == LOC_CONST
4442 && (TYPE_CODE (SYMBOL_TYPE (sym))
4443 == TYPE_CODE_ENUM)))
4444 || (kind == FUNCTIONS_DOMAIN
4445 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4446 || (kind == TYPES_DOMAIN
4447 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4448 {
4449 /* match */
4450 result.emplace_back (i, sym);
4451 }
4452 }
4453 }
4454 }
4455
4456 if (!result.empty ())
4457 sort_search_symbols_remove_dups (&result);
4458
4459 /* If there are no eyes, avoid all contact. I mean, if there are
4460 no debug symbols, then add matching minsyms. */
4461
4462 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4463 {
4464 ALL_MSYMBOLS (objfile, msymbol)
4465 {
4466 QUIT;
4467
4468 if (msymbol->created_by_gdb)
4469 continue;
4470
4471 if (MSYMBOL_TYPE (msymbol) == ourtype
4472 || MSYMBOL_TYPE (msymbol) == ourtype2
4473 || MSYMBOL_TYPE (msymbol) == ourtype3
4474 || MSYMBOL_TYPE (msymbol) == ourtype4)
4475 {
4476 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4477 NULL, 0) == 0)
4478 {
4479 /* For functions we can do a quick check of whether the
4480 symbol might be found via find_pc_symtab. */
4481 if (kind != FUNCTIONS_DOMAIN
4482 || (find_pc_compunit_symtab
4483 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4484 {
4485 if (lookup_symbol_in_objfile_from_linkage_name
4486 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4487 .symbol == NULL)
4488 {
4489 /* match */
4490 result.emplace_back (i, msymbol, objfile);
4491 }
4492 }
4493 }
4494 }
4495 }
4496 }
4497
4498 return result;
4499 }
4500
4501 /* Helper function for symtab_symbol_info, this function uses
4502 the data returned from search_symbols() to print information
4503 regarding the match to gdb_stdout. */
4504
4505 static void
4506 print_symbol_info (enum search_domain kind,
4507 struct symbol *sym,
4508 int block, const char *last)
4509 {
4510 struct symtab *s = symbol_symtab (sym);
4511 const char *s_filename = symtab_to_filename_for_display (s);
4512
4513 if (last == NULL || filename_cmp (last, s_filename) != 0)
4514 {
4515 fputs_filtered ("\nFile ", gdb_stdout);
4516 fputs_filtered (s_filename, gdb_stdout);
4517 fputs_filtered (":\n", gdb_stdout);
4518 }
4519
4520 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4521 printf_filtered ("static ");
4522
4523 /* Typedef that is not a C++ class. */
4524 if (kind == TYPES_DOMAIN
4525 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4526 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4527 /* variable, func, or typedef-that-is-c++-class. */
4528 else if (kind < TYPES_DOMAIN
4529 || (kind == TYPES_DOMAIN
4530 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4531 {
4532 type_print (SYMBOL_TYPE (sym),
4533 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4534 ? "" : SYMBOL_PRINT_NAME (sym)),
4535 gdb_stdout, 0);
4536
4537 printf_filtered (";\n");
4538 }
4539 }
4540
4541 /* This help function for symtab_symbol_info() prints information
4542 for non-debugging symbols to gdb_stdout. */
4543
4544 static void
4545 print_msymbol_info (struct bound_minimal_symbol msymbol)
4546 {
4547 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4548 char *tmp;
4549
4550 if (gdbarch_addr_bit (gdbarch) <= 32)
4551 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4552 & (CORE_ADDR) 0xffffffff,
4553 8);
4554 else
4555 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4556 16);
4557 printf_filtered ("%s %s\n",
4558 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4559 }
4560
4561 /* This is the guts of the commands "info functions", "info types", and
4562 "info variables". It calls search_symbols to find all matches and then
4563 print_[m]symbol_info to print out some useful information about the
4564 matches. */
4565
4566 static void
4567 symtab_symbol_info (const char *regexp, enum search_domain kind, int from_tty)
4568 {
4569 static const char * const classnames[] =
4570 {"variable", "function", "type"};
4571 const char *last_filename = NULL;
4572 int first = 1;
4573
4574 gdb_assert (kind <= TYPES_DOMAIN);
4575
4576 /* Must make sure that if we're interrupted, symbols gets freed. */
4577 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 0, NULL);
4578
4579 if (regexp != NULL)
4580 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4581 classnames[kind], regexp);
4582 else
4583 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4584
4585 for (const symbol_search &p : symbols)
4586 {
4587 QUIT;
4588
4589 if (p.msymbol.minsym != NULL)
4590 {
4591 if (first)
4592 {
4593 printf_filtered (_("\nNon-debugging symbols:\n"));
4594 first = 0;
4595 }
4596 print_msymbol_info (p.msymbol);
4597 }
4598 else
4599 {
4600 print_symbol_info (kind,
4601 p.symbol,
4602 p.block,
4603 last_filename);
4604 last_filename
4605 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4606 }
4607 }
4608 }
4609
4610 static void
4611 info_variables_command (const char *regexp, int from_tty)
4612 {
4613 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4614 }
4615
4616 static void
4617 info_functions_command (const char *regexp, int from_tty)
4618 {
4619 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4620 }
4621
4622
4623 static void
4624 info_types_command (const char *regexp, int from_tty)
4625 {
4626 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4627 }
4628
4629 /* Breakpoint all functions matching regular expression. */
4630
4631 void
4632 rbreak_command_wrapper (char *regexp, int from_tty)
4633 {
4634 rbreak_command (regexp, from_tty);
4635 }
4636
4637 static void
4638 rbreak_command (const char *regexp, int from_tty)
4639 {
4640 std::string string;
4641 const char **files = NULL;
4642 const char *file_name;
4643 int nfiles = 0;
4644
4645 if (regexp)
4646 {
4647 const char *colon = strchr (regexp, ':');
4648
4649 if (colon && *(colon + 1) != ':')
4650 {
4651 int colon_index;
4652 char *local_name;
4653
4654 colon_index = colon - regexp;
4655 local_name = (char *) alloca (colon_index + 1);
4656 memcpy (local_name, regexp, colon_index);
4657 local_name[colon_index--] = 0;
4658 while (isspace (local_name[colon_index]))
4659 local_name[colon_index--] = 0;
4660 file_name = local_name;
4661 files = &file_name;
4662 nfiles = 1;
4663 regexp = skip_spaces (colon + 1);
4664 }
4665 }
4666
4667 std::vector<symbol_search> symbols = search_symbols (regexp,
4668 FUNCTIONS_DOMAIN,
4669 nfiles, files);
4670
4671 scoped_rbreak_breakpoints finalize;
4672 for (const symbol_search &p : symbols)
4673 {
4674 if (p.msymbol.minsym == NULL)
4675 {
4676 struct symtab *symtab = symbol_symtab (p.symbol);
4677 const char *fullname = symtab_to_fullname (symtab);
4678
4679 string = string_printf ("%s:'%s'", fullname,
4680 SYMBOL_LINKAGE_NAME (p.symbol));
4681 break_command (&string[0], from_tty);
4682 print_symbol_info (FUNCTIONS_DOMAIN,
4683 p.symbol,
4684 p.block,
4685 symtab_to_filename_for_display (symtab));
4686 }
4687 else
4688 {
4689 string = string_printf ("'%s'",
4690 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4691
4692 break_command (&string[0], from_tty);
4693 printf_filtered ("<function, no debug info> %s;\n",
4694 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4695 }
4696 }
4697 }
4698 \f
4699
4700 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4701
4702 static int
4703 compare_symbol_name (const char *symbol_name, language symbol_language,
4704 const lookup_name_info &lookup_name,
4705 completion_match_result &match_res)
4706 {
4707 const language_defn *lang = language_def (symbol_language);
4708
4709 symbol_name_matcher_ftype *name_match
4710 = get_symbol_name_matcher (lang, lookup_name);
4711
4712 return name_match (symbol_name, lookup_name, &match_res);
4713 }
4714
4715 /* See symtab.h. */
4716
4717 void
4718 completion_list_add_name (completion_tracker &tracker,
4719 language symbol_language,
4720 const char *symname,
4721 const lookup_name_info &lookup_name,
4722 const char *text, const char *word)
4723 {
4724 completion_match_result &match_res
4725 = tracker.reset_completion_match_result ();
4726
4727 /* Clip symbols that cannot match. */
4728 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4729 return;
4730
4731 /* Refresh SYMNAME from the match string. It's potentially
4732 different depending on language. (E.g., on Ada, the match may be
4733 the encoded symbol name wrapped in "<>"). */
4734 symname = match_res.match.match ();
4735 gdb_assert (symname != NULL);
4736
4737 /* We have a match for a completion, so add SYMNAME to the current list
4738 of matches. Note that the name is moved to freshly malloc'd space. */
4739
4740 {
4741 gdb::unique_xmalloc_ptr<char> completion
4742 = make_completion_match_str (symname, text, word);
4743
4744 /* Here we pass the match-for-lcd object to add_completion. Some
4745 languages match the user text against substrings of symbol
4746 names in some cases. E.g., in C++, "b push_ba" completes to
4747 "std::vector::push_back", "std::string::push_back", etc., and
4748 in this case we want the completion lowest common denominator
4749 to be "push_back" instead of "std::". */
4750 tracker.add_completion (std::move (completion),
4751 &match_res.match_for_lcd, text, word);
4752 }
4753 }
4754
4755 /* completion_list_add_name wrapper for struct symbol. */
4756
4757 static void
4758 completion_list_add_symbol (completion_tracker &tracker,
4759 symbol *sym,
4760 const lookup_name_info &lookup_name,
4761 const char *text, const char *word)
4762 {
4763 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4764 SYMBOL_NATURAL_NAME (sym),
4765 lookup_name, text, word);
4766 }
4767
4768 /* completion_list_add_name wrapper for struct minimal_symbol. */
4769
4770 static void
4771 completion_list_add_msymbol (completion_tracker &tracker,
4772 minimal_symbol *sym,
4773 const lookup_name_info &lookup_name,
4774 const char *text, const char *word)
4775 {
4776 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4777 MSYMBOL_NATURAL_NAME (sym),
4778 lookup_name, text, word);
4779 }
4780
4781
4782 /* ObjC: In case we are completing on a selector, look as the msymbol
4783 again and feed all the selectors into the mill. */
4784
4785 static void
4786 completion_list_objc_symbol (completion_tracker &tracker,
4787 struct minimal_symbol *msymbol,
4788 const lookup_name_info &lookup_name,
4789 const char *text, const char *word)
4790 {
4791 static char *tmp = NULL;
4792 static unsigned int tmplen = 0;
4793
4794 const char *method, *category, *selector;
4795 char *tmp2 = NULL;
4796
4797 method = MSYMBOL_NATURAL_NAME (msymbol);
4798
4799 /* Is it a method? */
4800 if ((method[0] != '-') && (method[0] != '+'))
4801 return;
4802
4803 if (text[0] == '[')
4804 /* Complete on shortened method method. */
4805 completion_list_add_name (tracker, language_objc,
4806 method + 1,
4807 lookup_name,
4808 text, word);
4809
4810 while ((strlen (method) + 1) >= tmplen)
4811 {
4812 if (tmplen == 0)
4813 tmplen = 1024;
4814 else
4815 tmplen *= 2;
4816 tmp = (char *) xrealloc (tmp, tmplen);
4817 }
4818 selector = strchr (method, ' ');
4819 if (selector != NULL)
4820 selector++;
4821
4822 category = strchr (method, '(');
4823
4824 if ((category != NULL) && (selector != NULL))
4825 {
4826 memcpy (tmp, method, (category - method));
4827 tmp[category - method] = ' ';
4828 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4829 completion_list_add_name (tracker, language_objc, tmp,
4830 lookup_name, text, word);
4831 if (text[0] == '[')
4832 completion_list_add_name (tracker, language_objc, tmp + 1,
4833 lookup_name, text, word);
4834 }
4835
4836 if (selector != NULL)
4837 {
4838 /* Complete on selector only. */
4839 strcpy (tmp, selector);
4840 tmp2 = strchr (tmp, ']');
4841 if (tmp2 != NULL)
4842 *tmp2 = '\0';
4843
4844 completion_list_add_name (tracker, language_objc, tmp,
4845 lookup_name, text, word);
4846 }
4847 }
4848
4849 /* Break the non-quoted text based on the characters which are in
4850 symbols. FIXME: This should probably be language-specific. */
4851
4852 static const char *
4853 language_search_unquoted_string (const char *text, const char *p)
4854 {
4855 for (; p > text; --p)
4856 {
4857 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4858 continue;
4859 else
4860 {
4861 if ((current_language->la_language == language_objc))
4862 {
4863 if (p[-1] == ':') /* Might be part of a method name. */
4864 continue;
4865 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4866 p -= 2; /* Beginning of a method name. */
4867 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4868 { /* Might be part of a method name. */
4869 const char *t = p;
4870
4871 /* Seeing a ' ' or a '(' is not conclusive evidence
4872 that we are in the middle of a method name. However,
4873 finding "-[" or "+[" should be pretty un-ambiguous.
4874 Unfortunately we have to find it now to decide. */
4875
4876 while (t > text)
4877 if (isalnum (t[-1]) || t[-1] == '_' ||
4878 t[-1] == ' ' || t[-1] == ':' ||
4879 t[-1] == '(' || t[-1] == ')')
4880 --t;
4881 else
4882 break;
4883
4884 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4885 p = t - 2; /* Method name detected. */
4886 /* Else we leave with p unchanged. */
4887 }
4888 }
4889 break;
4890 }
4891 }
4892 return p;
4893 }
4894
4895 static void
4896 completion_list_add_fields (completion_tracker &tracker,
4897 struct symbol *sym,
4898 const lookup_name_info &lookup_name,
4899 const char *text, const char *word)
4900 {
4901 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4902 {
4903 struct type *t = SYMBOL_TYPE (sym);
4904 enum type_code c = TYPE_CODE (t);
4905 int j;
4906
4907 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4908 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4909 if (TYPE_FIELD_NAME (t, j))
4910 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4911 TYPE_FIELD_NAME (t, j),
4912 lookup_name, text, word);
4913 }
4914 }
4915
4916 /* See symtab.h. */
4917
4918 bool
4919 symbol_is_function_or_method (symbol *sym)
4920 {
4921 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
4922 {
4923 case TYPE_CODE_FUNC:
4924 case TYPE_CODE_METHOD:
4925 return true;
4926 default:
4927 return false;
4928 }
4929 }
4930
4931 /* See symtab.h. */
4932
4933 bool
4934 symbol_is_function_or_method (minimal_symbol *msymbol)
4935 {
4936 switch (MSYMBOL_TYPE (msymbol))
4937 {
4938 case mst_text:
4939 case mst_text_gnu_ifunc:
4940 case mst_solib_trampoline:
4941 case mst_file_text:
4942 return true;
4943 default:
4944 return false;
4945 }
4946 }
4947
4948 /* Add matching symbols from SYMTAB to the current completion list. */
4949
4950 static void
4951 add_symtab_completions (struct compunit_symtab *cust,
4952 completion_tracker &tracker,
4953 complete_symbol_mode mode,
4954 const lookup_name_info &lookup_name,
4955 const char *text, const char *word,
4956 enum type_code code)
4957 {
4958 struct symbol *sym;
4959 const struct block *b;
4960 struct block_iterator iter;
4961 int i;
4962
4963 if (cust == NULL)
4964 return;
4965
4966 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4967 {
4968 QUIT;
4969 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4970 ALL_BLOCK_SYMBOLS (b, iter, sym)
4971 {
4972 if (completion_skip_symbol (mode, sym))
4973 continue;
4974
4975 if (code == TYPE_CODE_UNDEF
4976 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4977 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4978 completion_list_add_symbol (tracker, sym,
4979 lookup_name,
4980 text, word);
4981 }
4982 }
4983 }
4984
4985 void
4986 default_collect_symbol_completion_matches_break_on
4987 (completion_tracker &tracker, complete_symbol_mode mode,
4988 symbol_name_match_type name_match_type,
4989 const char *text, const char *word,
4990 const char *break_on, enum type_code code)
4991 {
4992 /* Problem: All of the symbols have to be copied because readline
4993 frees them. I'm not going to worry about this; hopefully there
4994 won't be that many. */
4995
4996 struct symbol *sym;
4997 struct compunit_symtab *cust;
4998 struct minimal_symbol *msymbol;
4999 struct objfile *objfile;
5000 const struct block *b;
5001 const struct block *surrounding_static_block, *surrounding_global_block;
5002 struct block_iterator iter;
5003 /* The symbol we are completing on. Points in same buffer as text. */
5004 const char *sym_text;
5005
5006 /* Now look for the symbol we are supposed to complete on. */
5007 if (mode == complete_symbol_mode::LINESPEC)
5008 sym_text = text;
5009 else
5010 {
5011 const char *p;
5012 char quote_found;
5013 const char *quote_pos = NULL;
5014
5015 /* First see if this is a quoted string. */
5016 quote_found = '\0';
5017 for (p = text; *p != '\0'; ++p)
5018 {
5019 if (quote_found != '\0')
5020 {
5021 if (*p == quote_found)
5022 /* Found close quote. */
5023 quote_found = '\0';
5024 else if (*p == '\\' && p[1] == quote_found)
5025 /* A backslash followed by the quote character
5026 doesn't end the string. */
5027 ++p;
5028 }
5029 else if (*p == '\'' || *p == '"')
5030 {
5031 quote_found = *p;
5032 quote_pos = p;
5033 }
5034 }
5035 if (quote_found == '\'')
5036 /* A string within single quotes can be a symbol, so complete on it. */
5037 sym_text = quote_pos + 1;
5038 else if (quote_found == '"')
5039 /* A double-quoted string is never a symbol, nor does it make sense
5040 to complete it any other way. */
5041 {
5042 return;
5043 }
5044 else
5045 {
5046 /* It is not a quoted string. Break it based on the characters
5047 which are in symbols. */
5048 while (p > text)
5049 {
5050 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5051 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5052 --p;
5053 else
5054 break;
5055 }
5056 sym_text = p;
5057 }
5058 }
5059
5060 lookup_name_info lookup_name (sym_text, name_match_type, true);
5061
5062 /* At this point scan through the misc symbol vectors and add each
5063 symbol you find to the list. Eventually we want to ignore
5064 anything that isn't a text symbol (everything else will be
5065 handled by the psymtab code below). */
5066
5067 if (code == TYPE_CODE_UNDEF)
5068 {
5069 ALL_MSYMBOLS (objfile, msymbol)
5070 {
5071 QUIT;
5072
5073 if (completion_skip_symbol (mode, msymbol))
5074 continue;
5075
5076 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5077 sym_text, word);
5078
5079 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5080 sym_text, word);
5081 }
5082 }
5083
5084 /* Add completions for all currently loaded symbol tables. */
5085 ALL_COMPUNITS (objfile, cust)
5086 add_symtab_completions (cust, tracker, mode, lookup_name,
5087 sym_text, word, code);
5088
5089 /* Look through the partial symtabs for all symbols which begin by
5090 matching SYM_TEXT. Expand all CUs that you find to the list. */
5091 expand_symtabs_matching (NULL,
5092 lookup_name,
5093 NULL,
5094 [&] (compunit_symtab *symtab) /* expansion notify */
5095 {
5096 add_symtab_completions (symtab,
5097 tracker, mode, lookup_name,
5098 sym_text, word, code);
5099 },
5100 ALL_DOMAIN);
5101
5102 /* Search upwards from currently selected frame (so that we can
5103 complete on local vars). Also catch fields of types defined in
5104 this places which match our text string. Only complete on types
5105 visible from current context. */
5106
5107 b = get_selected_block (0);
5108 surrounding_static_block = block_static_block (b);
5109 surrounding_global_block = block_global_block (b);
5110 if (surrounding_static_block != NULL)
5111 while (b != surrounding_static_block)
5112 {
5113 QUIT;
5114
5115 ALL_BLOCK_SYMBOLS (b, iter, sym)
5116 {
5117 if (code == TYPE_CODE_UNDEF)
5118 {
5119 completion_list_add_symbol (tracker, sym, lookup_name,
5120 sym_text, word);
5121 completion_list_add_fields (tracker, sym, lookup_name,
5122 sym_text, word);
5123 }
5124 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5125 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5126 completion_list_add_symbol (tracker, sym, lookup_name,
5127 sym_text, word);
5128 }
5129
5130 /* Stop when we encounter an enclosing function. Do not stop for
5131 non-inlined functions - the locals of the enclosing function
5132 are in scope for a nested function. */
5133 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5134 break;
5135 b = BLOCK_SUPERBLOCK (b);
5136 }
5137
5138 /* Add fields from the file's types; symbols will be added below. */
5139
5140 if (code == TYPE_CODE_UNDEF)
5141 {
5142 if (surrounding_static_block != NULL)
5143 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5144 completion_list_add_fields (tracker, sym, lookup_name,
5145 sym_text, word);
5146
5147 if (surrounding_global_block != NULL)
5148 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5149 completion_list_add_fields (tracker, sym, lookup_name,
5150 sym_text, word);
5151 }
5152
5153 /* Skip macros if we are completing a struct tag -- arguable but
5154 usually what is expected. */
5155 if (current_language->la_macro_expansion == macro_expansion_c
5156 && code == TYPE_CODE_UNDEF)
5157 {
5158 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5159
5160 /* This adds a macro's name to the current completion list. */
5161 auto add_macro_name = [&] (const char *macro_name,
5162 const macro_definition *,
5163 macro_source_file *,
5164 int)
5165 {
5166 completion_list_add_name (tracker, language_c, macro_name,
5167 lookup_name, sym_text, word);
5168 };
5169
5170 /* Add any macros visible in the default scope. Note that this
5171 may yield the occasional wrong result, because an expression
5172 might be evaluated in a scope other than the default. For
5173 example, if the user types "break file:line if <TAB>", the
5174 resulting expression will be evaluated at "file:line" -- but
5175 at there does not seem to be a way to detect this at
5176 completion time. */
5177 scope = default_macro_scope ();
5178 if (scope)
5179 macro_for_each_in_scope (scope->file, scope->line,
5180 add_macro_name);
5181
5182 /* User-defined macros are always visible. */
5183 macro_for_each (macro_user_macros, add_macro_name);
5184 }
5185 }
5186
5187 void
5188 default_collect_symbol_completion_matches (completion_tracker &tracker,
5189 complete_symbol_mode mode,
5190 symbol_name_match_type name_match_type,
5191 const char *text, const char *word,
5192 enum type_code code)
5193 {
5194 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5195 name_match_type,
5196 text, word, "",
5197 code);
5198 }
5199
5200 /* Collect all symbols (regardless of class) which begin by matching
5201 TEXT. */
5202
5203 void
5204 collect_symbol_completion_matches (completion_tracker &tracker,
5205 complete_symbol_mode mode,
5206 symbol_name_match_type name_match_type,
5207 const char *text, const char *word)
5208 {
5209 current_language->la_collect_symbol_completion_matches (tracker, mode,
5210 name_match_type,
5211 text, word,
5212 TYPE_CODE_UNDEF);
5213 }
5214
5215 /* Like collect_symbol_completion_matches, but only collect
5216 STRUCT_DOMAIN symbols whose type code is CODE. */
5217
5218 void
5219 collect_symbol_completion_matches_type (completion_tracker &tracker,
5220 const char *text, const char *word,
5221 enum type_code code)
5222 {
5223 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5224 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5225
5226 gdb_assert (code == TYPE_CODE_UNION
5227 || code == TYPE_CODE_STRUCT
5228 || code == TYPE_CODE_ENUM);
5229 current_language->la_collect_symbol_completion_matches (tracker, mode,
5230 name_match_type,
5231 text, word, code);
5232 }
5233
5234 /* Like collect_symbol_completion_matches, but collects a list of
5235 symbols defined in all source files named SRCFILE. */
5236
5237 void
5238 collect_file_symbol_completion_matches (completion_tracker &tracker,
5239 complete_symbol_mode mode,
5240 symbol_name_match_type name_match_type,
5241 const char *text, const char *word,
5242 const char *srcfile)
5243 {
5244 /* The symbol we are completing on. Points in same buffer as text. */
5245 const char *sym_text;
5246
5247 /* Now look for the symbol we are supposed to complete on.
5248 FIXME: This should be language-specific. */
5249 if (mode == complete_symbol_mode::LINESPEC)
5250 sym_text = text;
5251 else
5252 {
5253 const char *p;
5254 char quote_found;
5255 const char *quote_pos = NULL;
5256
5257 /* First see if this is a quoted string. */
5258 quote_found = '\0';
5259 for (p = text; *p != '\0'; ++p)
5260 {
5261 if (quote_found != '\0')
5262 {
5263 if (*p == quote_found)
5264 /* Found close quote. */
5265 quote_found = '\0';
5266 else if (*p == '\\' && p[1] == quote_found)
5267 /* A backslash followed by the quote character
5268 doesn't end the string. */
5269 ++p;
5270 }
5271 else if (*p == '\'' || *p == '"')
5272 {
5273 quote_found = *p;
5274 quote_pos = p;
5275 }
5276 }
5277 if (quote_found == '\'')
5278 /* A string within single quotes can be a symbol, so complete on it. */
5279 sym_text = quote_pos + 1;
5280 else if (quote_found == '"')
5281 /* A double-quoted string is never a symbol, nor does it make sense
5282 to complete it any other way. */
5283 {
5284 return;
5285 }
5286 else
5287 {
5288 /* Not a quoted string. */
5289 sym_text = language_search_unquoted_string (text, p);
5290 }
5291 }
5292
5293 lookup_name_info lookup_name (sym_text, name_match_type, true);
5294
5295 /* Go through symtabs for SRCFILE and check the externs and statics
5296 for symbols which match. */
5297 iterate_over_symtabs (srcfile, [&] (symtab *s)
5298 {
5299 add_symtab_completions (SYMTAB_COMPUNIT (s),
5300 tracker, mode, lookup_name,
5301 sym_text, word, TYPE_CODE_UNDEF);
5302 return false;
5303 });
5304 }
5305
5306 /* A helper function for make_source_files_completion_list. It adds
5307 another file name to a list of possible completions, growing the
5308 list as necessary. */
5309
5310 static void
5311 add_filename_to_list (const char *fname, const char *text, const char *word,
5312 completion_list *list)
5313 {
5314 list->emplace_back (make_completion_match_str (fname, text, word));
5315 }
5316
5317 static int
5318 not_interesting_fname (const char *fname)
5319 {
5320 static const char *illegal_aliens[] = {
5321 "_globals_", /* inserted by coff_symtab_read */
5322 NULL
5323 };
5324 int i;
5325
5326 for (i = 0; illegal_aliens[i]; i++)
5327 {
5328 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5329 return 1;
5330 }
5331 return 0;
5332 }
5333
5334 /* An object of this type is passed as the user_data argument to
5335 map_partial_symbol_filenames. */
5336 struct add_partial_filename_data
5337 {
5338 struct filename_seen_cache *filename_seen_cache;
5339 const char *text;
5340 const char *word;
5341 int text_len;
5342 completion_list *list;
5343 };
5344
5345 /* A callback for map_partial_symbol_filenames. */
5346
5347 static void
5348 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5349 void *user_data)
5350 {
5351 struct add_partial_filename_data *data
5352 = (struct add_partial_filename_data *) user_data;
5353
5354 if (not_interesting_fname (filename))
5355 return;
5356 if (!data->filename_seen_cache->seen (filename)
5357 && filename_ncmp (filename, data->text, data->text_len) == 0)
5358 {
5359 /* This file matches for a completion; add it to the
5360 current list of matches. */
5361 add_filename_to_list (filename, data->text, data->word, data->list);
5362 }
5363 else
5364 {
5365 const char *base_name = lbasename (filename);
5366
5367 if (base_name != filename
5368 && !data->filename_seen_cache->seen (base_name)
5369 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5370 add_filename_to_list (base_name, data->text, data->word, data->list);
5371 }
5372 }
5373
5374 /* Return a list of all source files whose names begin with matching
5375 TEXT. The file names are looked up in the symbol tables of this
5376 program. */
5377
5378 completion_list
5379 make_source_files_completion_list (const char *text, const char *word)
5380 {
5381 struct compunit_symtab *cu;
5382 struct symtab *s;
5383 struct objfile *objfile;
5384 size_t text_len = strlen (text);
5385 completion_list list;
5386 const char *base_name;
5387 struct add_partial_filename_data datum;
5388
5389 if (!have_full_symbols () && !have_partial_symbols ())
5390 return list;
5391
5392 filename_seen_cache filenames_seen;
5393
5394 ALL_FILETABS (objfile, cu, s)
5395 {
5396 if (not_interesting_fname (s->filename))
5397 continue;
5398 if (!filenames_seen.seen (s->filename)
5399 && filename_ncmp (s->filename, text, text_len) == 0)
5400 {
5401 /* This file matches for a completion; add it to the current
5402 list of matches. */
5403 add_filename_to_list (s->filename, text, word, &list);
5404 }
5405 else
5406 {
5407 /* NOTE: We allow the user to type a base name when the
5408 debug info records leading directories, but not the other
5409 way around. This is what subroutines of breakpoint
5410 command do when they parse file names. */
5411 base_name = lbasename (s->filename);
5412 if (base_name != s->filename
5413 && !filenames_seen.seen (base_name)
5414 && filename_ncmp (base_name, text, text_len) == 0)
5415 add_filename_to_list (base_name, text, word, &list);
5416 }
5417 }
5418
5419 datum.filename_seen_cache = &filenames_seen;
5420 datum.text = text;
5421 datum.word = word;
5422 datum.text_len = text_len;
5423 datum.list = &list;
5424 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5425 0 /*need_fullname*/);
5426
5427 return list;
5428 }
5429 \f
5430 /* Track MAIN */
5431
5432 /* Return the "main_info" object for the current program space. If
5433 the object has not yet been created, create it and fill in some
5434 default values. */
5435
5436 static struct main_info *
5437 get_main_info (void)
5438 {
5439 struct main_info *info
5440 = (struct main_info *) program_space_data (current_program_space,
5441 main_progspace_key);
5442
5443 if (info == NULL)
5444 {
5445 /* It may seem strange to store the main name in the progspace
5446 and also in whatever objfile happens to see a main name in
5447 its debug info. The reason for this is mainly historical:
5448 gdb returned "main" as the name even if no function named
5449 "main" was defined the program; and this approach lets us
5450 keep compatibility. */
5451 info = XCNEW (struct main_info);
5452 info->language_of_main = language_unknown;
5453 set_program_space_data (current_program_space, main_progspace_key,
5454 info);
5455 }
5456
5457 return info;
5458 }
5459
5460 /* A cleanup to destroy a struct main_info when a progspace is
5461 destroyed. */
5462
5463 static void
5464 main_info_cleanup (struct program_space *pspace, void *data)
5465 {
5466 struct main_info *info = (struct main_info *) data;
5467
5468 if (info != NULL)
5469 xfree (info->name_of_main);
5470 xfree (info);
5471 }
5472
5473 static void
5474 set_main_name (const char *name, enum language lang)
5475 {
5476 struct main_info *info = get_main_info ();
5477
5478 if (info->name_of_main != NULL)
5479 {
5480 xfree (info->name_of_main);
5481 info->name_of_main = NULL;
5482 info->language_of_main = language_unknown;
5483 }
5484 if (name != NULL)
5485 {
5486 info->name_of_main = xstrdup (name);
5487 info->language_of_main = lang;
5488 }
5489 }
5490
5491 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5492 accordingly. */
5493
5494 static void
5495 find_main_name (void)
5496 {
5497 const char *new_main_name;
5498 struct objfile *objfile;
5499
5500 /* First check the objfiles to see whether a debuginfo reader has
5501 picked up the appropriate main name. Historically the main name
5502 was found in a more or less random way; this approach instead
5503 relies on the order of objfile creation -- which still isn't
5504 guaranteed to get the correct answer, but is just probably more
5505 accurate. */
5506 ALL_OBJFILES (objfile)
5507 {
5508 if (objfile->per_bfd->name_of_main != NULL)
5509 {
5510 set_main_name (objfile->per_bfd->name_of_main,
5511 objfile->per_bfd->language_of_main);
5512 return;
5513 }
5514 }
5515
5516 /* Try to see if the main procedure is in Ada. */
5517 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5518 be to add a new method in the language vector, and call this
5519 method for each language until one of them returns a non-empty
5520 name. This would allow us to remove this hard-coded call to
5521 an Ada function. It is not clear that this is a better approach
5522 at this point, because all methods need to be written in a way
5523 such that false positives never be returned. For instance, it is
5524 important that a method does not return a wrong name for the main
5525 procedure if the main procedure is actually written in a different
5526 language. It is easy to guaranty this with Ada, since we use a
5527 special symbol generated only when the main in Ada to find the name
5528 of the main procedure. It is difficult however to see how this can
5529 be guarantied for languages such as C, for instance. This suggests
5530 that order of call for these methods becomes important, which means
5531 a more complicated approach. */
5532 new_main_name = ada_main_name ();
5533 if (new_main_name != NULL)
5534 {
5535 set_main_name (new_main_name, language_ada);
5536 return;
5537 }
5538
5539 new_main_name = d_main_name ();
5540 if (new_main_name != NULL)
5541 {
5542 set_main_name (new_main_name, language_d);
5543 return;
5544 }
5545
5546 new_main_name = go_main_name ();
5547 if (new_main_name != NULL)
5548 {
5549 set_main_name (new_main_name, language_go);
5550 return;
5551 }
5552
5553 new_main_name = pascal_main_name ();
5554 if (new_main_name != NULL)
5555 {
5556 set_main_name (new_main_name, language_pascal);
5557 return;
5558 }
5559
5560 /* The languages above didn't identify the name of the main procedure.
5561 Fallback to "main". */
5562 set_main_name ("main", language_unknown);
5563 }
5564
5565 char *
5566 main_name (void)
5567 {
5568 struct main_info *info = get_main_info ();
5569
5570 if (info->name_of_main == NULL)
5571 find_main_name ();
5572
5573 return info->name_of_main;
5574 }
5575
5576 /* Return the language of the main function. If it is not known,
5577 return language_unknown. */
5578
5579 enum language
5580 main_language (void)
5581 {
5582 struct main_info *info = get_main_info ();
5583
5584 if (info->name_of_main == NULL)
5585 find_main_name ();
5586
5587 return info->language_of_main;
5588 }
5589
5590 /* Handle ``executable_changed'' events for the symtab module. */
5591
5592 static void
5593 symtab_observer_executable_changed (void)
5594 {
5595 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5596 set_main_name (NULL, language_unknown);
5597 }
5598
5599 /* Return 1 if the supplied producer string matches the ARM RealView
5600 compiler (armcc). */
5601
5602 int
5603 producer_is_realview (const char *producer)
5604 {
5605 static const char *const arm_idents[] = {
5606 "ARM C Compiler, ADS",
5607 "Thumb C Compiler, ADS",
5608 "ARM C++ Compiler, ADS",
5609 "Thumb C++ Compiler, ADS",
5610 "ARM/Thumb C/C++ Compiler, RVCT",
5611 "ARM C/C++ Compiler, RVCT"
5612 };
5613 int i;
5614
5615 if (producer == NULL)
5616 return 0;
5617
5618 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5619 if (startswith (producer, arm_idents[i]))
5620 return 1;
5621
5622 return 0;
5623 }
5624
5625 \f
5626
5627 /* The next index to hand out in response to a registration request. */
5628
5629 static int next_aclass_value = LOC_FINAL_VALUE;
5630
5631 /* The maximum number of "aclass" registrations we support. This is
5632 constant for convenience. */
5633 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5634
5635 /* The objects representing the various "aclass" values. The elements
5636 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5637 elements are those registered at gdb initialization time. */
5638
5639 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5640
5641 /* The globally visible pointer. This is separate from 'symbol_impl'
5642 so that it can be const. */
5643
5644 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5645
5646 /* Make sure we saved enough room in struct symbol. */
5647
5648 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5649
5650 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5651 is the ops vector associated with this index. This returns the new
5652 index, which should be used as the aclass_index field for symbols
5653 of this type. */
5654
5655 int
5656 register_symbol_computed_impl (enum address_class aclass,
5657 const struct symbol_computed_ops *ops)
5658 {
5659 int result = next_aclass_value++;
5660
5661 gdb_assert (aclass == LOC_COMPUTED);
5662 gdb_assert (result < MAX_SYMBOL_IMPLS);
5663 symbol_impl[result].aclass = aclass;
5664 symbol_impl[result].ops_computed = ops;
5665
5666 /* Sanity check OPS. */
5667 gdb_assert (ops != NULL);
5668 gdb_assert (ops->tracepoint_var_ref != NULL);
5669 gdb_assert (ops->describe_location != NULL);
5670 gdb_assert (ops->get_symbol_read_needs != NULL);
5671 gdb_assert (ops->read_variable != NULL);
5672
5673 return result;
5674 }
5675
5676 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5677 OPS is the ops vector associated with this index. This returns the
5678 new index, which should be used as the aclass_index field for symbols
5679 of this type. */
5680
5681 int
5682 register_symbol_block_impl (enum address_class aclass,
5683 const struct symbol_block_ops *ops)
5684 {
5685 int result = next_aclass_value++;
5686
5687 gdb_assert (aclass == LOC_BLOCK);
5688 gdb_assert (result < MAX_SYMBOL_IMPLS);
5689 symbol_impl[result].aclass = aclass;
5690 symbol_impl[result].ops_block = ops;
5691
5692 /* Sanity check OPS. */
5693 gdb_assert (ops != NULL);
5694 gdb_assert (ops->find_frame_base_location != NULL);
5695
5696 return result;
5697 }
5698
5699 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5700 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5701 this index. This returns the new index, which should be used as
5702 the aclass_index field for symbols of this type. */
5703
5704 int
5705 register_symbol_register_impl (enum address_class aclass,
5706 const struct symbol_register_ops *ops)
5707 {
5708 int result = next_aclass_value++;
5709
5710 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5711 gdb_assert (result < MAX_SYMBOL_IMPLS);
5712 symbol_impl[result].aclass = aclass;
5713 symbol_impl[result].ops_register = ops;
5714
5715 return result;
5716 }
5717
5718 /* Initialize elements of 'symbol_impl' for the constants in enum
5719 address_class. */
5720
5721 static void
5722 initialize_ordinary_address_classes (void)
5723 {
5724 int i;
5725
5726 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5727 symbol_impl[i].aclass = (enum address_class) i;
5728 }
5729
5730 \f
5731
5732 /* Helper function to initialize the fields of an objfile-owned symbol.
5733 It assumed that *SYM is already all zeroes. */
5734
5735 static void
5736 initialize_objfile_symbol_1 (struct symbol *sym)
5737 {
5738 SYMBOL_OBJFILE_OWNED (sym) = 1;
5739 SYMBOL_SECTION (sym) = -1;
5740 }
5741
5742 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5743
5744 void
5745 initialize_objfile_symbol (struct symbol *sym)
5746 {
5747 memset (sym, 0, sizeof (*sym));
5748 initialize_objfile_symbol_1 (sym);
5749 }
5750
5751 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5752 obstack. */
5753
5754 struct symbol *
5755 allocate_symbol (struct objfile *objfile)
5756 {
5757 struct symbol *result;
5758
5759 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5760 initialize_objfile_symbol_1 (result);
5761
5762 return result;
5763 }
5764
5765 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5766 obstack. */
5767
5768 struct template_symbol *
5769 allocate_template_symbol (struct objfile *objfile)
5770 {
5771 struct template_symbol *result;
5772
5773 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5774 initialize_objfile_symbol_1 (result);
5775
5776 return result;
5777 }
5778
5779 /* See symtab.h. */
5780
5781 struct objfile *
5782 symbol_objfile (const struct symbol *symbol)
5783 {
5784 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5785 return SYMTAB_OBJFILE (symbol->owner.symtab);
5786 }
5787
5788 /* See symtab.h. */
5789
5790 struct gdbarch *
5791 symbol_arch (const struct symbol *symbol)
5792 {
5793 if (!SYMBOL_OBJFILE_OWNED (symbol))
5794 return symbol->owner.arch;
5795 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5796 }
5797
5798 /* See symtab.h. */
5799
5800 struct symtab *
5801 symbol_symtab (const struct symbol *symbol)
5802 {
5803 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5804 return symbol->owner.symtab;
5805 }
5806
5807 /* See symtab.h. */
5808
5809 void
5810 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5811 {
5812 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5813 symbol->owner.symtab = symtab;
5814 }
5815
5816 \f
5817
5818 void
5819 _initialize_symtab (void)
5820 {
5821 initialize_ordinary_address_classes ();
5822
5823 main_progspace_key
5824 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5825
5826 symbol_cache_key
5827 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5828
5829 add_info ("variables", info_variables_command, _("\
5830 All global and static variable names, or those matching REGEXP."));
5831 if (dbx_commands)
5832 add_com ("whereis", class_info, info_variables_command, _("\
5833 All global and static variable names, or those matching REGEXP."));
5834
5835 add_info ("functions", info_functions_command,
5836 _("All function names, or those matching REGEXP."));
5837
5838 /* FIXME: This command has at least the following problems:
5839 1. It prints builtin types (in a very strange and confusing fashion).
5840 2. It doesn't print right, e.g. with
5841 typedef struct foo *FOO
5842 type_print prints "FOO" when we want to make it (in this situation)
5843 print "struct foo *".
5844 I also think "ptype" or "whatis" is more likely to be useful (but if
5845 there is much disagreement "info types" can be fixed). */
5846 add_info ("types", info_types_command,
5847 _("All type names, or those matching REGEXP."));
5848
5849 add_info ("sources", info_sources_command,
5850 _("Source files in the program."));
5851
5852 add_com ("rbreak", class_breakpoint, rbreak_command,
5853 _("Set a breakpoint for all functions matching REGEXP."));
5854
5855 add_setshow_enum_cmd ("multiple-symbols", no_class,
5856 multiple_symbols_modes, &multiple_symbols_mode,
5857 _("\
5858 Set the debugger behavior when more than one symbol are possible matches\n\
5859 in an expression."), _("\
5860 Show how the debugger handles ambiguities in expressions."), _("\
5861 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5862 NULL, NULL, &setlist, &showlist);
5863
5864 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5865 &basenames_may_differ, _("\
5866 Set whether a source file may have multiple base names."), _("\
5867 Show whether a source file may have multiple base names."), _("\
5868 (A \"base name\" is the name of a file with the directory part removed.\n\
5869 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5870 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5871 before comparing them. Canonicalization is an expensive operation,\n\
5872 but it allows the same file be known by more than one base name.\n\
5873 If not set (the default), all source files are assumed to have just\n\
5874 one base name, and gdb will do file name comparisons more efficiently."),
5875 NULL, NULL,
5876 &setlist, &showlist);
5877
5878 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5879 _("Set debugging of symbol table creation."),
5880 _("Show debugging of symbol table creation."), _("\
5881 When enabled (non-zero), debugging messages are printed when building\n\
5882 symbol tables. A value of 1 (one) normally provides enough information.\n\
5883 A value greater than 1 provides more verbose information."),
5884 NULL,
5885 NULL,
5886 &setdebuglist, &showdebuglist);
5887
5888 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5889 _("\
5890 Set debugging of symbol lookup."), _("\
5891 Show debugging of symbol lookup."), _("\
5892 When enabled (non-zero), symbol lookups are logged."),
5893 NULL, NULL,
5894 &setdebuglist, &showdebuglist);
5895
5896 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5897 &new_symbol_cache_size,
5898 _("Set the size of the symbol cache."),
5899 _("Show the size of the symbol cache."), _("\
5900 The size of the symbol cache.\n\
5901 If zero then the symbol cache is disabled."),
5902 set_symbol_cache_size_handler, NULL,
5903 &maintenance_set_cmdlist,
5904 &maintenance_show_cmdlist);
5905
5906 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5907 _("Dump the symbol cache for each program space."),
5908 &maintenanceprintlist);
5909
5910 add_cmd ("symbol-cache-statistics", class_maintenance,
5911 maintenance_print_symbol_cache_statistics,
5912 _("Print symbol cache statistics for each program space."),
5913 &maintenanceprintlist);
5914
5915 add_cmd ("flush-symbol-cache", class_maintenance,
5916 maintenance_flush_symbol_cache,
5917 _("Flush the symbol cache for each program space."),
5918 &maintenancelist);
5919
5920 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
5921 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
5922 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
5923 }
This page took 0.217395 seconds and 5 git commands to generate.