[gdb/breakpoints] Fix fullname.exp when run from symlink dir
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Symbols don't specify global vs static block.
187 So keep them in separate caches. */
188
189 struct block_symbol_cache
190 {
191 unsigned int hits;
192 unsigned int misses;
193 unsigned int collisions;
194
195 /* SYMBOLS is a variable length array of this size.
196 One can imagine that in general one cache (global/static) should be a
197 fraction of the size of the other, but there's no data at the moment
198 on which to decide. */
199 unsigned int size;
200
201 struct symbol_cache_slot symbols[1];
202 };
203
204 /* The symbol cache.
205
206 Searching for symbols in the static and global blocks over multiple objfiles
207 again and again can be slow, as can searching very big objfiles. This is a
208 simple cache to improve symbol lookup performance, which is critical to
209 overall gdb performance.
210
211 Symbols are hashed on the name, its domain, and block.
212 They are also hashed on their objfile for objfile-specific lookups. */
213
214 struct symbol_cache
215 {
216 symbol_cache () = default;
217
218 ~symbol_cache ()
219 {
220 xfree (global_symbols);
221 xfree (static_symbols);
222 }
223
224 struct block_symbol_cache *global_symbols = nullptr;
225 struct block_symbol_cache *static_symbols = nullptr;
226 };
227
228 /* Program space key for finding its symbol cache. */
229
230 static const program_space_key<symbol_cache> symbol_cache_key;
231
232 /* When non-zero, print debugging messages related to symtab creation. */
233 unsigned int symtab_create_debug = 0;
234
235 /* When non-zero, print debugging messages related to symbol lookup. */
236 unsigned int symbol_lookup_debug = 0;
237
238 /* The size of the cache is staged here. */
239 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
240
241 /* The current value of the symbol cache size.
242 This is saved so that if the user enters a value too big we can restore
243 the original value from here. */
244 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
245
246 /* True if a file may be known by two different basenames.
247 This is the uncommon case, and significantly slows down gdb.
248 Default set to "off" to not slow down the common case. */
249 bool basenames_may_differ = false;
250
251 /* Allow the user to configure the debugger behavior with respect
252 to multiple-choice menus when more than one symbol matches during
253 a symbol lookup. */
254
255 const char multiple_symbols_ask[] = "ask";
256 const char multiple_symbols_all[] = "all";
257 const char multiple_symbols_cancel[] = "cancel";
258 static const char *const multiple_symbols_modes[] =
259 {
260 multiple_symbols_ask,
261 multiple_symbols_all,
262 multiple_symbols_cancel,
263 NULL
264 };
265 static const char *multiple_symbols_mode = multiple_symbols_all;
266
267 /* Read-only accessor to AUTO_SELECT_MODE. */
268
269 const char *
270 multiple_symbols_select_mode (void)
271 {
272 return multiple_symbols_mode;
273 }
274
275 /* Return the name of a domain_enum. */
276
277 const char *
278 domain_name (domain_enum e)
279 {
280 switch (e)
281 {
282 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
283 case VAR_DOMAIN: return "VAR_DOMAIN";
284 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
285 case MODULE_DOMAIN: return "MODULE_DOMAIN";
286 case LABEL_DOMAIN: return "LABEL_DOMAIN";
287 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
288 default: gdb_assert_not_reached ("bad domain_enum");
289 }
290 }
291
292 /* Return the name of a search_domain . */
293
294 const char *
295 search_domain_name (enum search_domain e)
296 {
297 switch (e)
298 {
299 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
300 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
301 case TYPES_DOMAIN: return "TYPES_DOMAIN";
302 case ALL_DOMAIN: return "ALL_DOMAIN";
303 default: gdb_assert_not_reached ("bad search_domain");
304 }
305 }
306
307 /* See symtab.h. */
308
309 struct symtab *
310 compunit_primary_filetab (const struct compunit_symtab *cust)
311 {
312 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
313
314 /* The primary file symtab is the first one in the list. */
315 return COMPUNIT_FILETABS (cust);
316 }
317
318 /* See symtab.h. */
319
320 enum language
321 compunit_language (const struct compunit_symtab *cust)
322 {
323 struct symtab *symtab = compunit_primary_filetab (cust);
324
325 /* The language of the compunit symtab is the language of its primary
326 source file. */
327 return SYMTAB_LANGUAGE (symtab);
328 }
329
330 /* See symtab.h. */
331
332 bool
333 minimal_symbol::data_p () const
334 {
335 return type == mst_data
336 || type == mst_bss
337 || type == mst_abs
338 || type == mst_file_data
339 || type == mst_file_bss;
340 }
341
342 /* See symtab.h. */
343
344 bool
345 minimal_symbol::text_p () const
346 {
347 return type == mst_text
348 || type == mst_text_gnu_ifunc
349 || type == mst_data_gnu_ifunc
350 || type == mst_slot_got_plt
351 || type == mst_solib_trampoline
352 || type == mst_file_text;
353 }
354
355 /* See whether FILENAME matches SEARCH_NAME using the rule that we
356 advertise to the user. (The manual's description of linespecs
357 describes what we advertise). Returns true if they match, false
358 otherwise. */
359
360 bool
361 compare_filenames_for_search (const char *filename, const char *search_name)
362 {
363 int len = strlen (filename);
364 size_t search_len = strlen (search_name);
365
366 if (len < search_len)
367 return false;
368
369 /* The tail of FILENAME must match. */
370 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
371 return false;
372
373 /* Either the names must completely match, or the character
374 preceding the trailing SEARCH_NAME segment of FILENAME must be a
375 directory separator.
376
377 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
378 cannot match FILENAME "/path//dir/file.c" - as user has requested
379 absolute path. The sama applies for "c:\file.c" possibly
380 incorrectly hypothetically matching "d:\dir\c:\file.c".
381
382 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
383 compatible with SEARCH_NAME "file.c". In such case a compiler had
384 to put the "c:file.c" name into debug info. Such compatibility
385 works only on GDB built for DOS host. */
386 return (len == search_len
387 || (!IS_ABSOLUTE_PATH (search_name)
388 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
389 || (HAS_DRIVE_SPEC (filename)
390 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
391 }
392
393 /* Same as compare_filenames_for_search, but for glob-style patterns.
394 Heads up on the order of the arguments. They match the order of
395 compare_filenames_for_search, but it's the opposite of the order of
396 arguments to gdb_filename_fnmatch. */
397
398 bool
399 compare_glob_filenames_for_search (const char *filename,
400 const char *search_name)
401 {
402 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
403 all /s have to be explicitly specified. */
404 int file_path_elements = count_path_elements (filename);
405 int search_path_elements = count_path_elements (search_name);
406
407 if (search_path_elements > file_path_elements)
408 return false;
409
410 if (IS_ABSOLUTE_PATH (search_name))
411 {
412 return (search_path_elements == file_path_elements
413 && gdb_filename_fnmatch (search_name, filename,
414 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
415 }
416
417 {
418 const char *file_to_compare
419 = strip_leading_path_elements (filename,
420 file_path_elements - search_path_elements);
421
422 return gdb_filename_fnmatch (search_name, file_to_compare,
423 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
424 }
425 }
426
427 /* Check for a symtab of a specific name by searching some symtabs.
428 This is a helper function for callbacks of iterate_over_symtabs.
429
430 If NAME is not absolute, then REAL_PATH is NULL
431 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
432
433 The return value, NAME, REAL_PATH and CALLBACK are identical to the
434 `map_symtabs_matching_filename' method of quick_symbol_functions.
435
436 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
437 Each symtab within the specified compunit symtab is also searched.
438 AFTER_LAST is one past the last compunit symtab to search; NULL means to
439 search until the end of the list. */
440
441 bool
442 iterate_over_some_symtabs (const char *name,
443 const char *real_path,
444 struct compunit_symtab *first,
445 struct compunit_symtab *after_last,
446 gdb::function_view<bool (symtab *)> callback)
447 {
448 struct compunit_symtab *cust;
449 const char* base_name = lbasename (name);
450
451 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
452 {
453 for (symtab *s : compunit_filetabs (cust))
454 {
455 if (compare_filenames_for_search (s->filename, name))
456 {
457 if (callback (s))
458 return true;
459 continue;
460 }
461
462 /* Before we invoke realpath, which can get expensive when many
463 files are involved, do a quick comparison of the basenames. */
464 if (! basenames_may_differ
465 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
466 continue;
467
468 if (compare_filenames_for_search (symtab_to_fullname (s), name))
469 {
470 if (callback (s))
471 return true;
472 continue;
473 }
474
475 /* If the user gave us an absolute path, try to find the file in
476 this symtab and use its absolute path. */
477 if (real_path != NULL)
478 {
479 const char *fullname = symtab_to_fullname (s);
480
481 gdb_assert (IS_ABSOLUTE_PATH (real_path));
482 gdb_assert (IS_ABSOLUTE_PATH (name));
483 gdb::unique_xmalloc_ptr<char> fullname_real_path
484 = gdb_realpath (fullname);
485 fullname = fullname_real_path.get ();
486 if (FILENAME_CMP (real_path, fullname) == 0)
487 {
488 if (callback (s))
489 return true;
490 continue;
491 }
492 }
493 }
494 }
495
496 return false;
497 }
498
499 /* Check for a symtab of a specific name; first in symtabs, then in
500 psymtabs. *If* there is no '/' in the name, a match after a '/'
501 in the symtab filename will also work.
502
503 Calls CALLBACK with each symtab that is found. If CALLBACK returns
504 true, the search stops. */
505
506 void
507 iterate_over_symtabs (const char *name,
508 gdb::function_view<bool (symtab *)> callback)
509 {
510 gdb::unique_xmalloc_ptr<char> real_path;
511
512 /* Here we are interested in canonicalizing an absolute path, not
513 absolutizing a relative path. */
514 if (IS_ABSOLUTE_PATH (name))
515 {
516 real_path = gdb_realpath (name);
517 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
518 }
519
520 for (objfile *objfile : current_program_space->objfiles ())
521 {
522 if (iterate_over_some_symtabs (name, real_path.get (),
523 objfile->compunit_symtabs, NULL,
524 callback))
525 return;
526 }
527
528 /* Same search rules as above apply here, but now we look thru the
529 psymtabs. */
530
531 for (objfile *objfile : current_program_space->objfiles ())
532 {
533 if (objfile->sf
534 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
535 name,
536 real_path.get (),
537 callback))
538 return;
539 }
540 }
541
542 /* A wrapper for iterate_over_symtabs that returns the first matching
543 symtab, or NULL. */
544
545 struct symtab *
546 lookup_symtab (const char *name)
547 {
548 struct symtab *result = NULL;
549
550 iterate_over_symtabs (name, [&] (symtab *symtab)
551 {
552 result = symtab;
553 return true;
554 });
555
556 return result;
557 }
558
559 \f
560 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
561 full method name, which consist of the class name (from T), the unadorned
562 method name from METHOD_ID, and the signature for the specific overload,
563 specified by SIGNATURE_ID. Note that this function is g++ specific. */
564
565 char *
566 gdb_mangle_name (struct type *type, int method_id, int signature_id)
567 {
568 int mangled_name_len;
569 char *mangled_name;
570 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
571 struct fn_field *method = &f[signature_id];
572 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
573 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
574 const char *newname = TYPE_NAME (type);
575
576 /* Does the form of physname indicate that it is the full mangled name
577 of a constructor (not just the args)? */
578 int is_full_physname_constructor;
579
580 int is_constructor;
581 int is_destructor = is_destructor_name (physname);
582 /* Need a new type prefix. */
583 const char *const_prefix = method->is_const ? "C" : "";
584 const char *volatile_prefix = method->is_volatile ? "V" : "";
585 char buf[20];
586 int len = (newname == NULL ? 0 : strlen (newname));
587
588 /* Nothing to do if physname already contains a fully mangled v3 abi name
589 or an operator name. */
590 if ((physname[0] == '_' && physname[1] == 'Z')
591 || is_operator_name (field_name))
592 return xstrdup (physname);
593
594 is_full_physname_constructor = is_constructor_name (physname);
595
596 is_constructor = is_full_physname_constructor
597 || (newname && strcmp (field_name, newname) == 0);
598
599 if (!is_destructor)
600 is_destructor = (startswith (physname, "__dt"));
601
602 if (is_destructor || is_full_physname_constructor)
603 {
604 mangled_name = (char *) xmalloc (strlen (physname) + 1);
605 strcpy (mangled_name, physname);
606 return mangled_name;
607 }
608
609 if (len == 0)
610 {
611 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
612 }
613 else if (physname[0] == 't' || physname[0] == 'Q')
614 {
615 /* The physname for template and qualified methods already includes
616 the class name. */
617 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
618 newname = NULL;
619 len = 0;
620 }
621 else
622 {
623 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
624 volatile_prefix, len);
625 }
626 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
627 + strlen (buf) + len + strlen (physname) + 1);
628
629 mangled_name = (char *) xmalloc (mangled_name_len);
630 if (is_constructor)
631 mangled_name[0] = '\0';
632 else
633 strcpy (mangled_name, field_name);
634
635 strcat (mangled_name, buf);
636 /* If the class doesn't have a name, i.e. newname NULL, then we just
637 mangle it using 0 for the length of the class. Thus it gets mangled
638 as something starting with `::' rather than `classname::'. */
639 if (newname != NULL)
640 strcat (mangled_name, newname);
641
642 strcat (mangled_name, physname);
643 return (mangled_name);
644 }
645
646 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
647 correctly allocated. */
648
649 void
650 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
651 const char *name,
652 struct obstack *obstack)
653 {
654 if (gsymbol->language == language_ada)
655 {
656 if (name == NULL)
657 {
658 gsymbol->ada_mangled = 0;
659 gsymbol->language_specific.obstack = obstack;
660 }
661 else
662 {
663 gsymbol->ada_mangled = 1;
664 gsymbol->language_specific.demangled_name = name;
665 }
666 }
667 else
668 gsymbol->language_specific.demangled_name = name;
669 }
670
671 /* Return the demangled name of GSYMBOL. */
672
673 const char *
674 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
675 {
676 if (gsymbol->language == language_ada)
677 {
678 if (!gsymbol->ada_mangled)
679 return NULL;
680 /* Fall through. */
681 }
682
683 return gsymbol->language_specific.demangled_name;
684 }
685
686 \f
687 /* Initialize the language dependent portion of a symbol
688 depending upon the language for the symbol. */
689
690 void
691 symbol_set_language (struct general_symbol_info *gsymbol,
692 enum language language,
693 struct obstack *obstack)
694 {
695 gsymbol->language = language;
696 if (gsymbol->language == language_cplus
697 || gsymbol->language == language_d
698 || gsymbol->language == language_go
699 || gsymbol->language == language_objc
700 || gsymbol->language == language_fortran)
701 {
702 symbol_set_demangled_name (gsymbol, NULL, obstack);
703 }
704 else if (gsymbol->language == language_ada)
705 {
706 gdb_assert (gsymbol->ada_mangled == 0);
707 gsymbol->language_specific.obstack = obstack;
708 }
709 else
710 {
711 memset (&gsymbol->language_specific, 0,
712 sizeof (gsymbol->language_specific));
713 }
714 }
715
716 /* Functions to initialize a symbol's mangled name. */
717
718 /* Objects of this type are stored in the demangled name hash table. */
719 struct demangled_name_entry
720 {
721 demangled_name_entry (gdb::string_view mangled_name)
722 : mangled (mangled_name) {}
723
724 gdb::string_view mangled;
725 enum language language;
726 char demangled[1];
727 };
728
729 /* Hash function for the demangled name hash. */
730
731 static hashval_t
732 hash_demangled_name_entry (const void *data)
733 {
734 const struct demangled_name_entry *e
735 = (const struct demangled_name_entry *) data;
736
737 return fast_hash (e->mangled.data (), e->mangled.length ());
738 }
739
740 /* Equality function for the demangled name hash. */
741
742 static int
743 eq_demangled_name_entry (const void *a, const void *b)
744 {
745 const struct demangled_name_entry *da
746 = (const struct demangled_name_entry *) a;
747 const struct demangled_name_entry *db
748 = (const struct demangled_name_entry *) b;
749
750 return da->mangled == db->mangled;
751 }
752
753 static void
754 free_demangled_name_entry (void *data)
755 {
756 struct demangled_name_entry *e
757 = (struct demangled_name_entry *) data;
758
759 e->~demangled_name_entry();
760 }
761
762 /* Create the hash table used for demangled names. Each hash entry is
763 a pair of strings; one for the mangled name and one for the demangled
764 name. The entry is hashed via just the mangled name. */
765
766 static void
767 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
768 {
769 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
770 The hash table code will round this up to the next prime number.
771 Choosing a much larger table size wastes memory, and saves only about
772 1% in symbol reading. */
773
774 per_bfd->demangled_names_hash.reset (htab_create_alloc
775 (256, hash_demangled_name_entry, eq_demangled_name_entry,
776 free_demangled_name_entry, xcalloc, xfree));
777 }
778
779 /* Try to determine the demangled name for a symbol, based on the
780 language of that symbol. If the language is set to language_auto,
781 it will attempt to find any demangling algorithm that works and
782 then set the language appropriately. The returned name is allocated
783 by the demangler and should be xfree'd. */
784
785 static char *
786 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
787 const char *mangled)
788 {
789 char *demangled = NULL;
790 int i;
791
792 if (gsymbol->language == language_unknown)
793 gsymbol->language = language_auto;
794
795 if (gsymbol->language != language_auto)
796 {
797 const struct language_defn *lang = language_def (gsymbol->language);
798
799 language_sniff_from_mangled_name (lang, mangled, &demangled);
800 return demangled;
801 }
802
803 for (i = language_unknown; i < nr_languages; ++i)
804 {
805 enum language l = (enum language) i;
806 const struct language_defn *lang = language_def (l);
807
808 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
809 {
810 gsymbol->language = l;
811 return demangled;
812 }
813 }
814
815 return NULL;
816 }
817
818 /* Set both the mangled and demangled (if any) names for GSYMBOL based
819 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
820 objfile's obstack; but if COPY_NAME is 0 and if NAME is
821 NUL-terminated, then this function assumes that NAME is already
822 correctly saved (either permanently or with a lifetime tied to the
823 objfile), and it will not be copied.
824
825 The hash table corresponding to OBJFILE is used, and the memory
826 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
827 so the pointer can be discarded after calling this function. */
828
829 void
830 symbol_set_names (struct general_symbol_info *gsymbol,
831 const char *linkage_name, int len, bool copy_name,
832 struct objfile_per_bfd_storage *per_bfd)
833 {
834 struct demangled_name_entry **slot;
835 /* A 0-terminated copy of the linkage name. */
836 const char *linkage_name_copy;
837
838 if (gsymbol->language == language_ada)
839 {
840 /* In Ada, we do the symbol lookups using the mangled name, so
841 we can save some space by not storing the demangled name. */
842 if (!copy_name)
843 gsymbol->name = linkage_name;
844 else
845 {
846 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
847 len + 1);
848
849 memcpy (name, linkage_name, len);
850 name[len] = '\0';
851 gsymbol->name = name;
852 }
853 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
854
855 return;
856 }
857
858 if (per_bfd->demangled_names_hash == NULL)
859 create_demangled_names_hash (per_bfd);
860
861 if (linkage_name[len] != '\0')
862 {
863 char *alloc_name;
864
865 alloc_name = (char *) alloca (len + 1);
866 memcpy (alloc_name, linkage_name, len);
867 alloc_name[len] = '\0';
868
869 linkage_name_copy = alloc_name;
870 }
871 else
872 linkage_name_copy = linkage_name;
873
874 struct demangled_name_entry entry (gdb::string_view (linkage_name_copy, len));
875 slot = ((struct demangled_name_entry **)
876 htab_find_slot (per_bfd->demangled_names_hash.get (),
877 &entry, INSERT));
878
879 /* If this name is not in the hash table, add it. */
880 if (*slot == NULL
881 /* A C version of the symbol may have already snuck into the table.
882 This happens to, e.g., main.init (__go_init_main). Cope. */
883 || (gsymbol->language == language_go
884 && (*slot)->demangled[0] == '\0'))
885 {
886 char *demangled_name_ptr
887 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
888 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
889 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
890
891 /* Suppose we have demangled_name==NULL, copy_name==0, and
892 linkage_name_copy==linkage_name. In this case, we already have the
893 mangled name saved, and we don't have a demangled name. So,
894 you might think we could save a little space by not recording
895 this in the hash table at all.
896
897 It turns out that it is actually important to still save such
898 an entry in the hash table, because storing this name gives
899 us better bcache hit rates for partial symbols. */
900 if (!copy_name && linkage_name_copy == linkage_name)
901 {
902 *slot
903 = ((struct demangled_name_entry *)
904 obstack_alloc (&per_bfd->storage_obstack,
905 offsetof (struct demangled_name_entry, demangled)
906 + demangled_len + 1));
907 new (*slot) demangled_name_entry
908 (gdb::string_view (linkage_name, len));
909 }
910 else
911 {
912 char *mangled_ptr;
913
914 /* If we must copy the mangled name, put it directly after
915 the demangled name so we can have a single
916 allocation. */
917 *slot
918 = ((struct demangled_name_entry *)
919 obstack_alloc (&per_bfd->storage_obstack,
920 offsetof (struct demangled_name_entry, demangled)
921 + len + demangled_len + 2));
922 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
923 strcpy (mangled_ptr, linkage_name_copy);
924 new (*slot) demangled_name_entry
925 (gdb::string_view (mangled_ptr, len));
926 }
927 (*slot)->language = gsymbol->language;
928
929 if (demangled_name != NULL)
930 strcpy ((*slot)->demangled, demangled_name.get ());
931 else
932 (*slot)->demangled[0] = '\0';
933 }
934 else if (gsymbol->language == language_unknown
935 || gsymbol->language == language_auto)
936 gsymbol->language = (*slot)->language;
937
938 gsymbol->name = (*slot)->mangled.data ();
939 if ((*slot)->demangled[0] != '\0')
940 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
941 &per_bfd->storage_obstack);
942 else
943 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
944 }
945
946 /* Return the source code name of a symbol. In languages where
947 demangling is necessary, this is the demangled name. */
948
949 const char *
950 symbol_natural_name (const struct general_symbol_info *gsymbol)
951 {
952 switch (gsymbol->language)
953 {
954 case language_cplus:
955 case language_d:
956 case language_go:
957 case language_objc:
958 case language_fortran:
959 if (symbol_get_demangled_name (gsymbol) != NULL)
960 return symbol_get_demangled_name (gsymbol);
961 break;
962 case language_ada:
963 return ada_decode_symbol (gsymbol);
964 default:
965 break;
966 }
967 return gsymbol->name;
968 }
969
970 /* Return the demangled name for a symbol based on the language for
971 that symbol. If no demangled name exists, return NULL. */
972
973 const char *
974 symbol_demangled_name (const struct general_symbol_info *gsymbol)
975 {
976 const char *dem_name = NULL;
977
978 switch (gsymbol->language)
979 {
980 case language_cplus:
981 case language_d:
982 case language_go:
983 case language_objc:
984 case language_fortran:
985 dem_name = symbol_get_demangled_name (gsymbol);
986 break;
987 case language_ada:
988 dem_name = ada_decode_symbol (gsymbol);
989 break;
990 default:
991 break;
992 }
993 return dem_name;
994 }
995
996 /* Return the search name of a symbol---generally the demangled or
997 linkage name of the symbol, depending on how it will be searched for.
998 If there is no distinct demangled name, then returns the same value
999 (same pointer) as SYMBOL_LINKAGE_NAME. */
1000
1001 const char *
1002 symbol_search_name (const struct general_symbol_info *gsymbol)
1003 {
1004 if (gsymbol->language == language_ada)
1005 return gsymbol->name;
1006 else
1007 return symbol_natural_name (gsymbol);
1008 }
1009
1010 /* See symtab.h. */
1011
1012 bool
1013 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1014 const lookup_name_info &name)
1015 {
1016 symbol_name_matcher_ftype *name_match
1017 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1018 return name_match (symbol_search_name (gsymbol), name, NULL);
1019 }
1020
1021 \f
1022
1023 /* Return true if the two sections are the same, or if they could
1024 plausibly be copies of each other, one in an original object
1025 file and another in a separated debug file. */
1026
1027 bool
1028 matching_obj_sections (struct obj_section *obj_first,
1029 struct obj_section *obj_second)
1030 {
1031 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1032 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1033
1034 /* If they're the same section, then they match. */
1035 if (first == second)
1036 return true;
1037
1038 /* If either is NULL, give up. */
1039 if (first == NULL || second == NULL)
1040 return false;
1041
1042 /* This doesn't apply to absolute symbols. */
1043 if (first->owner == NULL || second->owner == NULL)
1044 return false;
1045
1046 /* If they're in the same object file, they must be different sections. */
1047 if (first->owner == second->owner)
1048 return false;
1049
1050 /* Check whether the two sections are potentially corresponding. They must
1051 have the same size, address, and name. We can't compare section indexes,
1052 which would be more reliable, because some sections may have been
1053 stripped. */
1054 if (bfd_section_size (first) != bfd_section_size (second))
1055 return false;
1056
1057 /* In-memory addresses may start at a different offset, relativize them. */
1058 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1059 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1060 return false;
1061
1062 if (bfd_section_name (first) == NULL
1063 || bfd_section_name (second) == NULL
1064 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1065 return false;
1066
1067 /* Otherwise check that they are in corresponding objfiles. */
1068
1069 struct objfile *obj = NULL;
1070 for (objfile *objfile : current_program_space->objfiles ())
1071 if (objfile->obfd == first->owner)
1072 {
1073 obj = objfile;
1074 break;
1075 }
1076 gdb_assert (obj != NULL);
1077
1078 if (obj->separate_debug_objfile != NULL
1079 && obj->separate_debug_objfile->obfd == second->owner)
1080 return true;
1081 if (obj->separate_debug_objfile_backlink != NULL
1082 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1083 return true;
1084
1085 return false;
1086 }
1087
1088 /* See symtab.h. */
1089
1090 void
1091 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1092 {
1093 struct bound_minimal_symbol msymbol;
1094
1095 /* If we know that this is not a text address, return failure. This is
1096 necessary because we loop based on texthigh and textlow, which do
1097 not include the data ranges. */
1098 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1099 if (msymbol.minsym && msymbol.minsym->data_p ())
1100 return;
1101
1102 for (objfile *objfile : current_program_space->objfiles ())
1103 {
1104 struct compunit_symtab *cust = NULL;
1105
1106 if (objfile->sf)
1107 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1108 pc, section, 0);
1109 if (cust)
1110 return;
1111 }
1112 }
1113 \f
1114 /* Hash function for the symbol cache. */
1115
1116 static unsigned int
1117 hash_symbol_entry (const struct objfile *objfile_context,
1118 const char *name, domain_enum domain)
1119 {
1120 unsigned int hash = (uintptr_t) objfile_context;
1121
1122 if (name != NULL)
1123 hash += htab_hash_string (name);
1124
1125 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1126 to map to the same slot. */
1127 if (domain == STRUCT_DOMAIN)
1128 hash += VAR_DOMAIN * 7;
1129 else
1130 hash += domain * 7;
1131
1132 return hash;
1133 }
1134
1135 /* Equality function for the symbol cache. */
1136
1137 static int
1138 eq_symbol_entry (const struct symbol_cache_slot *slot,
1139 const struct objfile *objfile_context,
1140 const char *name, domain_enum domain)
1141 {
1142 const char *slot_name;
1143 domain_enum slot_domain;
1144
1145 if (slot->state == SYMBOL_SLOT_UNUSED)
1146 return 0;
1147
1148 if (slot->objfile_context != objfile_context)
1149 return 0;
1150
1151 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1152 {
1153 slot_name = slot->value.not_found.name;
1154 slot_domain = slot->value.not_found.domain;
1155 }
1156 else
1157 {
1158 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1159 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1160 }
1161
1162 /* NULL names match. */
1163 if (slot_name == NULL && name == NULL)
1164 {
1165 /* But there's no point in calling symbol_matches_domain in the
1166 SYMBOL_SLOT_FOUND case. */
1167 if (slot_domain != domain)
1168 return 0;
1169 }
1170 else if (slot_name != NULL && name != NULL)
1171 {
1172 /* It's important that we use the same comparison that was done
1173 the first time through. If the slot records a found symbol,
1174 then this means using the symbol name comparison function of
1175 the symbol's language with SYMBOL_SEARCH_NAME. See
1176 dictionary.c. It also means using symbol_matches_domain for
1177 found symbols. See block.c.
1178
1179 If the slot records a not-found symbol, then require a precise match.
1180 We could still be lax with whitespace like strcmp_iw though. */
1181
1182 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1183 {
1184 if (strcmp (slot_name, name) != 0)
1185 return 0;
1186 if (slot_domain != domain)
1187 return 0;
1188 }
1189 else
1190 {
1191 struct symbol *sym = slot->value.found.symbol;
1192 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1193
1194 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1195 return 0;
1196
1197 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1198 slot_domain, domain))
1199 return 0;
1200 }
1201 }
1202 else
1203 {
1204 /* Only one name is NULL. */
1205 return 0;
1206 }
1207
1208 return 1;
1209 }
1210
1211 /* Given a cache of size SIZE, return the size of the struct (with variable
1212 length array) in bytes. */
1213
1214 static size_t
1215 symbol_cache_byte_size (unsigned int size)
1216 {
1217 return (sizeof (struct block_symbol_cache)
1218 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1219 }
1220
1221 /* Resize CACHE. */
1222
1223 static void
1224 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1225 {
1226 /* If there's no change in size, don't do anything.
1227 All caches have the same size, so we can just compare with the size
1228 of the global symbols cache. */
1229 if ((cache->global_symbols != NULL
1230 && cache->global_symbols->size == new_size)
1231 || (cache->global_symbols == NULL
1232 && new_size == 0))
1233 return;
1234
1235 xfree (cache->global_symbols);
1236 xfree (cache->static_symbols);
1237
1238 if (new_size == 0)
1239 {
1240 cache->global_symbols = NULL;
1241 cache->static_symbols = NULL;
1242 }
1243 else
1244 {
1245 size_t total_size = symbol_cache_byte_size (new_size);
1246
1247 cache->global_symbols
1248 = (struct block_symbol_cache *) xcalloc (1, total_size);
1249 cache->static_symbols
1250 = (struct block_symbol_cache *) xcalloc (1, total_size);
1251 cache->global_symbols->size = new_size;
1252 cache->static_symbols->size = new_size;
1253 }
1254 }
1255
1256 /* Return the symbol cache of PSPACE.
1257 Create one if it doesn't exist yet. */
1258
1259 static struct symbol_cache *
1260 get_symbol_cache (struct program_space *pspace)
1261 {
1262 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1263
1264 if (cache == NULL)
1265 {
1266 cache = symbol_cache_key.emplace (pspace);
1267 resize_symbol_cache (cache, symbol_cache_size);
1268 }
1269
1270 return cache;
1271 }
1272
1273 /* Set the size of the symbol cache in all program spaces. */
1274
1275 static void
1276 set_symbol_cache_size (unsigned int new_size)
1277 {
1278 struct program_space *pspace;
1279
1280 ALL_PSPACES (pspace)
1281 {
1282 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1283
1284 /* The pspace could have been created but not have a cache yet. */
1285 if (cache != NULL)
1286 resize_symbol_cache (cache, new_size);
1287 }
1288 }
1289
1290 /* Called when symbol-cache-size is set. */
1291
1292 static void
1293 set_symbol_cache_size_handler (const char *args, int from_tty,
1294 struct cmd_list_element *c)
1295 {
1296 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1297 {
1298 /* Restore the previous value.
1299 This is the value the "show" command prints. */
1300 new_symbol_cache_size = symbol_cache_size;
1301
1302 error (_("Symbol cache size is too large, max is %u."),
1303 MAX_SYMBOL_CACHE_SIZE);
1304 }
1305 symbol_cache_size = new_symbol_cache_size;
1306
1307 set_symbol_cache_size (symbol_cache_size);
1308 }
1309
1310 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1311 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1312 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1313 failed (and thus this one will too), or NULL if the symbol is not present
1314 in the cache.
1315 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1316 can be used to save the result of a full lookup attempt. */
1317
1318 static struct block_symbol
1319 symbol_cache_lookup (struct symbol_cache *cache,
1320 struct objfile *objfile_context, enum block_enum block,
1321 const char *name, domain_enum domain,
1322 struct block_symbol_cache **bsc_ptr,
1323 struct symbol_cache_slot **slot_ptr)
1324 {
1325 struct block_symbol_cache *bsc;
1326 unsigned int hash;
1327 struct symbol_cache_slot *slot;
1328
1329 if (block == GLOBAL_BLOCK)
1330 bsc = cache->global_symbols;
1331 else
1332 bsc = cache->static_symbols;
1333 if (bsc == NULL)
1334 {
1335 *bsc_ptr = NULL;
1336 *slot_ptr = NULL;
1337 return {};
1338 }
1339
1340 hash = hash_symbol_entry (objfile_context, name, domain);
1341 slot = bsc->symbols + hash % bsc->size;
1342
1343 *bsc_ptr = bsc;
1344 *slot_ptr = slot;
1345
1346 if (eq_symbol_entry (slot, objfile_context, name, domain))
1347 {
1348 if (symbol_lookup_debug)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "%s block symbol cache hit%s for %s, %s\n",
1351 block == GLOBAL_BLOCK ? "Global" : "Static",
1352 slot->state == SYMBOL_SLOT_NOT_FOUND
1353 ? " (not found)" : "",
1354 name, domain_name (domain));
1355 ++bsc->hits;
1356 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1357 return SYMBOL_LOOKUP_FAILED;
1358 return slot->value.found;
1359 }
1360
1361 /* Symbol is not present in the cache. */
1362
1363 if (symbol_lookup_debug)
1364 {
1365 fprintf_unfiltered (gdb_stdlog,
1366 "%s block symbol cache miss for %s, %s\n",
1367 block == GLOBAL_BLOCK ? "Global" : "Static",
1368 name, domain_name (domain));
1369 }
1370 ++bsc->misses;
1371 return {};
1372 }
1373
1374 /* Clear out SLOT. */
1375
1376 static void
1377 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1378 {
1379 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1380 xfree (slot->value.not_found.name);
1381 slot->state = SYMBOL_SLOT_UNUSED;
1382 }
1383
1384 /* Mark SYMBOL as found in SLOT.
1385 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1386 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1387 necessarily the objfile the symbol was found in. */
1388
1389 static void
1390 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1391 struct symbol_cache_slot *slot,
1392 struct objfile *objfile_context,
1393 struct symbol *symbol,
1394 const struct block *block)
1395 {
1396 if (bsc == NULL)
1397 return;
1398 if (slot->state != SYMBOL_SLOT_UNUSED)
1399 {
1400 ++bsc->collisions;
1401 symbol_cache_clear_slot (slot);
1402 }
1403 slot->state = SYMBOL_SLOT_FOUND;
1404 slot->objfile_context = objfile_context;
1405 slot->value.found.symbol = symbol;
1406 slot->value.found.block = block;
1407 }
1408
1409 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1410 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1411 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1412
1413 static void
1414 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1415 struct symbol_cache_slot *slot,
1416 struct objfile *objfile_context,
1417 const char *name, domain_enum domain)
1418 {
1419 if (bsc == NULL)
1420 return;
1421 if (slot->state != SYMBOL_SLOT_UNUSED)
1422 {
1423 ++bsc->collisions;
1424 symbol_cache_clear_slot (slot);
1425 }
1426 slot->state = SYMBOL_SLOT_NOT_FOUND;
1427 slot->objfile_context = objfile_context;
1428 slot->value.not_found.name = xstrdup (name);
1429 slot->value.not_found.domain = domain;
1430 }
1431
1432 /* Flush the symbol cache of PSPACE. */
1433
1434 static void
1435 symbol_cache_flush (struct program_space *pspace)
1436 {
1437 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1438 int pass;
1439
1440 if (cache == NULL)
1441 return;
1442 if (cache->global_symbols == NULL)
1443 {
1444 gdb_assert (symbol_cache_size == 0);
1445 gdb_assert (cache->static_symbols == NULL);
1446 return;
1447 }
1448
1449 /* If the cache is untouched since the last flush, early exit.
1450 This is important for performance during the startup of a program linked
1451 with 100s (or 1000s) of shared libraries. */
1452 if (cache->global_symbols->misses == 0
1453 && cache->static_symbols->misses == 0)
1454 return;
1455
1456 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1457 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1458
1459 for (pass = 0; pass < 2; ++pass)
1460 {
1461 struct block_symbol_cache *bsc
1462 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1463 unsigned int i;
1464
1465 for (i = 0; i < bsc->size; ++i)
1466 symbol_cache_clear_slot (&bsc->symbols[i]);
1467 }
1468
1469 cache->global_symbols->hits = 0;
1470 cache->global_symbols->misses = 0;
1471 cache->global_symbols->collisions = 0;
1472 cache->static_symbols->hits = 0;
1473 cache->static_symbols->misses = 0;
1474 cache->static_symbols->collisions = 0;
1475 }
1476
1477 /* Dump CACHE. */
1478
1479 static void
1480 symbol_cache_dump (const struct symbol_cache *cache)
1481 {
1482 int pass;
1483
1484 if (cache->global_symbols == NULL)
1485 {
1486 printf_filtered (" <disabled>\n");
1487 return;
1488 }
1489
1490 for (pass = 0; pass < 2; ++pass)
1491 {
1492 const struct block_symbol_cache *bsc
1493 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1494 unsigned int i;
1495
1496 if (pass == 0)
1497 printf_filtered ("Global symbols:\n");
1498 else
1499 printf_filtered ("Static symbols:\n");
1500
1501 for (i = 0; i < bsc->size; ++i)
1502 {
1503 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1504
1505 QUIT;
1506
1507 switch (slot->state)
1508 {
1509 case SYMBOL_SLOT_UNUSED:
1510 break;
1511 case SYMBOL_SLOT_NOT_FOUND:
1512 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1513 host_address_to_string (slot->objfile_context),
1514 slot->value.not_found.name,
1515 domain_name (slot->value.not_found.domain));
1516 break;
1517 case SYMBOL_SLOT_FOUND:
1518 {
1519 struct symbol *found = slot->value.found.symbol;
1520 const struct objfile *context = slot->objfile_context;
1521
1522 printf_filtered (" [%4u] = %s, %s %s\n", i,
1523 host_address_to_string (context),
1524 SYMBOL_PRINT_NAME (found),
1525 domain_name (SYMBOL_DOMAIN (found)));
1526 break;
1527 }
1528 }
1529 }
1530 }
1531 }
1532
1533 /* The "mt print symbol-cache" command. */
1534
1535 static void
1536 maintenance_print_symbol_cache (const char *args, int from_tty)
1537 {
1538 struct program_space *pspace;
1539
1540 ALL_PSPACES (pspace)
1541 {
1542 struct symbol_cache *cache;
1543
1544 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1545 pspace->num,
1546 pspace->symfile_object_file != NULL
1547 ? objfile_name (pspace->symfile_object_file)
1548 : "(no object file)");
1549
1550 /* If the cache hasn't been created yet, avoid creating one. */
1551 cache = symbol_cache_key.get (pspace);
1552 if (cache == NULL)
1553 printf_filtered (" <empty>\n");
1554 else
1555 symbol_cache_dump (cache);
1556 }
1557 }
1558
1559 /* The "mt flush-symbol-cache" command. */
1560
1561 static void
1562 maintenance_flush_symbol_cache (const char *args, int from_tty)
1563 {
1564 struct program_space *pspace;
1565
1566 ALL_PSPACES (pspace)
1567 {
1568 symbol_cache_flush (pspace);
1569 }
1570 }
1571
1572 /* Print usage statistics of CACHE. */
1573
1574 static void
1575 symbol_cache_stats (struct symbol_cache *cache)
1576 {
1577 int pass;
1578
1579 if (cache->global_symbols == NULL)
1580 {
1581 printf_filtered (" <disabled>\n");
1582 return;
1583 }
1584
1585 for (pass = 0; pass < 2; ++pass)
1586 {
1587 const struct block_symbol_cache *bsc
1588 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1589
1590 QUIT;
1591
1592 if (pass == 0)
1593 printf_filtered ("Global block cache stats:\n");
1594 else
1595 printf_filtered ("Static block cache stats:\n");
1596
1597 printf_filtered (" size: %u\n", bsc->size);
1598 printf_filtered (" hits: %u\n", bsc->hits);
1599 printf_filtered (" misses: %u\n", bsc->misses);
1600 printf_filtered (" collisions: %u\n", bsc->collisions);
1601 }
1602 }
1603
1604 /* The "mt print symbol-cache-statistics" command. */
1605
1606 static void
1607 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1608 {
1609 struct program_space *pspace;
1610
1611 ALL_PSPACES (pspace)
1612 {
1613 struct symbol_cache *cache;
1614
1615 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1616 pspace->num,
1617 pspace->symfile_object_file != NULL
1618 ? objfile_name (pspace->symfile_object_file)
1619 : "(no object file)");
1620
1621 /* If the cache hasn't been created yet, avoid creating one. */
1622 cache = symbol_cache_key.get (pspace);
1623 if (cache == NULL)
1624 printf_filtered (" empty, no stats available\n");
1625 else
1626 symbol_cache_stats (cache);
1627 }
1628 }
1629
1630 /* This module's 'new_objfile' observer. */
1631
1632 static void
1633 symtab_new_objfile_observer (struct objfile *objfile)
1634 {
1635 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1636 symbol_cache_flush (current_program_space);
1637 }
1638
1639 /* This module's 'free_objfile' observer. */
1640
1641 static void
1642 symtab_free_objfile_observer (struct objfile *objfile)
1643 {
1644 symbol_cache_flush (objfile->pspace);
1645 }
1646 \f
1647 /* Debug symbols usually don't have section information. We need to dig that
1648 out of the minimal symbols and stash that in the debug symbol. */
1649
1650 void
1651 fixup_section (struct general_symbol_info *ginfo,
1652 CORE_ADDR addr, struct objfile *objfile)
1653 {
1654 struct minimal_symbol *msym;
1655
1656 /* First, check whether a minimal symbol with the same name exists
1657 and points to the same address. The address check is required
1658 e.g. on PowerPC64, where the minimal symbol for a function will
1659 point to the function descriptor, while the debug symbol will
1660 point to the actual function code. */
1661 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1662 if (msym)
1663 ginfo->section = MSYMBOL_SECTION (msym);
1664 else
1665 {
1666 /* Static, function-local variables do appear in the linker
1667 (minimal) symbols, but are frequently given names that won't
1668 be found via lookup_minimal_symbol(). E.g., it has been
1669 observed in frv-uclinux (ELF) executables that a static,
1670 function-local variable named "foo" might appear in the
1671 linker symbols as "foo.6" or "foo.3". Thus, there is no
1672 point in attempting to extend the lookup-by-name mechanism to
1673 handle this case due to the fact that there can be multiple
1674 names.
1675
1676 So, instead, search the section table when lookup by name has
1677 failed. The ``addr'' and ``endaddr'' fields may have already
1678 been relocated. If so, the relocation offset (i.e. the
1679 ANOFFSET value) needs to be subtracted from these values when
1680 performing the comparison. We unconditionally subtract it,
1681 because, when no relocation has been performed, the ANOFFSET
1682 value will simply be zero.
1683
1684 The address of the symbol whose section we're fixing up HAS
1685 NOT BEEN adjusted (relocated) yet. It can't have been since
1686 the section isn't yet known and knowing the section is
1687 necessary in order to add the correct relocation value. In
1688 other words, we wouldn't even be in this function (attempting
1689 to compute the section) if it were already known.
1690
1691 Note that it is possible to search the minimal symbols
1692 (subtracting the relocation value if necessary) to find the
1693 matching minimal symbol, but this is overkill and much less
1694 efficient. It is not necessary to find the matching minimal
1695 symbol, only its section.
1696
1697 Note that this technique (of doing a section table search)
1698 can fail when unrelocated section addresses overlap. For
1699 this reason, we still attempt a lookup by name prior to doing
1700 a search of the section table. */
1701
1702 struct obj_section *s;
1703 int fallback = -1;
1704
1705 ALL_OBJFILE_OSECTIONS (objfile, s)
1706 {
1707 int idx = s - objfile->sections;
1708 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1709
1710 if (fallback == -1)
1711 fallback = idx;
1712
1713 if (obj_section_addr (s) - offset <= addr
1714 && addr < obj_section_endaddr (s) - offset)
1715 {
1716 ginfo->section = idx;
1717 return;
1718 }
1719 }
1720
1721 /* If we didn't find the section, assume it is in the first
1722 section. If there is no allocated section, then it hardly
1723 matters what we pick, so just pick zero. */
1724 if (fallback == -1)
1725 ginfo->section = 0;
1726 else
1727 ginfo->section = fallback;
1728 }
1729 }
1730
1731 struct symbol *
1732 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1733 {
1734 CORE_ADDR addr;
1735
1736 if (!sym)
1737 return NULL;
1738
1739 if (!SYMBOL_OBJFILE_OWNED (sym))
1740 return sym;
1741
1742 /* We either have an OBJFILE, or we can get at it from the sym's
1743 symtab. Anything else is a bug. */
1744 gdb_assert (objfile || symbol_symtab (sym));
1745
1746 if (objfile == NULL)
1747 objfile = symbol_objfile (sym);
1748
1749 if (SYMBOL_OBJ_SECTION (objfile, sym))
1750 return sym;
1751
1752 /* We should have an objfile by now. */
1753 gdb_assert (objfile);
1754
1755 switch (SYMBOL_CLASS (sym))
1756 {
1757 case LOC_STATIC:
1758 case LOC_LABEL:
1759 addr = SYMBOL_VALUE_ADDRESS (sym);
1760 break;
1761 case LOC_BLOCK:
1762 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1763 break;
1764
1765 default:
1766 /* Nothing else will be listed in the minsyms -- no use looking
1767 it up. */
1768 return sym;
1769 }
1770
1771 fixup_section (&sym->ginfo, addr, objfile);
1772
1773 return sym;
1774 }
1775
1776 /* See symtab.h. */
1777
1778 demangle_for_lookup_info::demangle_for_lookup_info
1779 (const lookup_name_info &lookup_name, language lang)
1780 {
1781 demangle_result_storage storage;
1782
1783 if (lookup_name.ignore_parameters () && lang == language_cplus)
1784 {
1785 gdb::unique_xmalloc_ptr<char> without_params
1786 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1787 lookup_name.completion_mode ());
1788
1789 if (without_params != NULL)
1790 {
1791 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1792 m_demangled_name = demangle_for_lookup (without_params.get (),
1793 lang, storage);
1794 return;
1795 }
1796 }
1797
1798 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1799 m_demangled_name = lookup_name.name ();
1800 else
1801 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1802 lang, storage);
1803 }
1804
1805 /* See symtab.h. */
1806
1807 const lookup_name_info &
1808 lookup_name_info::match_any ()
1809 {
1810 /* Lookup any symbol that "" would complete. I.e., this matches all
1811 symbol names. */
1812 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1813 true);
1814
1815 return lookup_name;
1816 }
1817
1818 /* Compute the demangled form of NAME as used by the various symbol
1819 lookup functions. The result can either be the input NAME
1820 directly, or a pointer to a buffer owned by the STORAGE object.
1821
1822 For Ada, this function just returns NAME, unmodified.
1823 Normally, Ada symbol lookups are performed using the encoded name
1824 rather than the demangled name, and so it might seem to make sense
1825 for this function to return an encoded version of NAME.
1826 Unfortunately, we cannot do this, because this function is used in
1827 circumstances where it is not appropriate to try to encode NAME.
1828 For instance, when displaying the frame info, we demangle the name
1829 of each parameter, and then perform a symbol lookup inside our
1830 function using that demangled name. In Ada, certain functions
1831 have internally-generated parameters whose name contain uppercase
1832 characters. Encoding those name would result in those uppercase
1833 characters to become lowercase, and thus cause the symbol lookup
1834 to fail. */
1835
1836 const char *
1837 demangle_for_lookup (const char *name, enum language lang,
1838 demangle_result_storage &storage)
1839 {
1840 /* If we are using C++, D, or Go, demangle the name before doing a
1841 lookup, so we can always binary search. */
1842 if (lang == language_cplus)
1843 {
1844 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847
1848 /* If we were given a non-mangled name, canonicalize it
1849 according to the language (so far only for C++). */
1850 std::string canon = cp_canonicalize_string (name);
1851 if (!canon.empty ())
1852 return storage.swap_string (canon);
1853 }
1854 else if (lang == language_d)
1855 {
1856 char *demangled_name = d_demangle (name, 0);
1857 if (demangled_name != NULL)
1858 return storage.set_malloc_ptr (demangled_name);
1859 }
1860 else if (lang == language_go)
1861 {
1862 char *demangled_name = go_demangle (name, 0);
1863 if (demangled_name != NULL)
1864 return storage.set_malloc_ptr (demangled_name);
1865 }
1866
1867 return name;
1868 }
1869
1870 /* See symtab.h. */
1871
1872 unsigned int
1873 search_name_hash (enum language language, const char *search_name)
1874 {
1875 return language_def (language)->la_search_name_hash (search_name);
1876 }
1877
1878 /* See symtab.h.
1879
1880 This function (or rather its subordinates) have a bunch of loops and
1881 it would seem to be attractive to put in some QUIT's (though I'm not really
1882 sure whether it can run long enough to be really important). But there
1883 are a few calls for which it would appear to be bad news to quit
1884 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1885 that there is C++ code below which can error(), but that probably
1886 doesn't affect these calls since they are looking for a known
1887 variable and thus can probably assume it will never hit the C++
1888 code). */
1889
1890 struct block_symbol
1891 lookup_symbol_in_language (const char *name, const struct block *block,
1892 const domain_enum domain, enum language lang,
1893 struct field_of_this_result *is_a_field_of_this)
1894 {
1895 demangle_result_storage storage;
1896 const char *modified_name = demangle_for_lookup (name, lang, storage);
1897
1898 return lookup_symbol_aux (modified_name,
1899 symbol_name_match_type::FULL,
1900 block, domain, lang,
1901 is_a_field_of_this);
1902 }
1903
1904 /* See symtab.h. */
1905
1906 struct block_symbol
1907 lookup_symbol (const char *name, const struct block *block,
1908 domain_enum domain,
1909 struct field_of_this_result *is_a_field_of_this)
1910 {
1911 return lookup_symbol_in_language (name, block, domain,
1912 current_language->la_language,
1913 is_a_field_of_this);
1914 }
1915
1916 /* See symtab.h. */
1917
1918 struct block_symbol
1919 lookup_symbol_search_name (const char *search_name, const struct block *block,
1920 domain_enum domain)
1921 {
1922 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1923 block, domain, language_asm, NULL);
1924 }
1925
1926 /* See symtab.h. */
1927
1928 struct block_symbol
1929 lookup_language_this (const struct language_defn *lang,
1930 const struct block *block)
1931 {
1932 if (lang->la_name_of_this == NULL || block == NULL)
1933 return {};
1934
1935 if (symbol_lookup_debug > 1)
1936 {
1937 struct objfile *objfile = lookup_objfile_from_block (block);
1938
1939 fprintf_unfiltered (gdb_stdlog,
1940 "lookup_language_this (%s, %s (objfile %s))",
1941 lang->la_name, host_address_to_string (block),
1942 objfile_debug_name (objfile));
1943 }
1944
1945 while (block)
1946 {
1947 struct symbol *sym;
1948
1949 sym = block_lookup_symbol (block, lang->la_name_of_this,
1950 symbol_name_match_type::SEARCH_NAME,
1951 VAR_DOMAIN);
1952 if (sym != NULL)
1953 {
1954 if (symbol_lookup_debug > 1)
1955 {
1956 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1957 SYMBOL_PRINT_NAME (sym),
1958 host_address_to_string (sym),
1959 host_address_to_string (block));
1960 }
1961 return (struct block_symbol) {sym, block};
1962 }
1963 if (BLOCK_FUNCTION (block))
1964 break;
1965 block = BLOCK_SUPERBLOCK (block);
1966 }
1967
1968 if (symbol_lookup_debug > 1)
1969 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1970 return {};
1971 }
1972
1973 /* Given TYPE, a structure/union,
1974 return 1 if the component named NAME from the ultimate target
1975 structure/union is defined, otherwise, return 0. */
1976
1977 static int
1978 check_field (struct type *type, const char *name,
1979 struct field_of_this_result *is_a_field_of_this)
1980 {
1981 int i;
1982
1983 /* The type may be a stub. */
1984 type = check_typedef (type);
1985
1986 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1987 {
1988 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1989
1990 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1991 {
1992 is_a_field_of_this->type = type;
1993 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1994 return 1;
1995 }
1996 }
1997
1998 /* C++: If it was not found as a data field, then try to return it
1999 as a pointer to a method. */
2000
2001 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2002 {
2003 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2004 {
2005 is_a_field_of_this->type = type;
2006 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2007 return 1;
2008 }
2009 }
2010
2011 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2012 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2013 return 1;
2014
2015 return 0;
2016 }
2017
2018 /* Behave like lookup_symbol except that NAME is the natural name
2019 (e.g., demangled name) of the symbol that we're looking for. */
2020
2021 static struct block_symbol
2022 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2023 const struct block *block,
2024 const domain_enum domain, enum language language,
2025 struct field_of_this_result *is_a_field_of_this)
2026 {
2027 struct block_symbol result;
2028 const struct language_defn *langdef;
2029
2030 if (symbol_lookup_debug)
2031 {
2032 struct objfile *objfile = lookup_objfile_from_block (block);
2033
2034 fprintf_unfiltered (gdb_stdlog,
2035 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2036 name, host_address_to_string (block),
2037 objfile != NULL
2038 ? objfile_debug_name (objfile) : "NULL",
2039 domain_name (domain), language_str (language));
2040 }
2041
2042 /* Make sure we do something sensible with is_a_field_of_this, since
2043 the callers that set this parameter to some non-null value will
2044 certainly use it later. If we don't set it, the contents of
2045 is_a_field_of_this are undefined. */
2046 if (is_a_field_of_this != NULL)
2047 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2048
2049 /* Search specified block and its superiors. Don't search
2050 STATIC_BLOCK or GLOBAL_BLOCK. */
2051
2052 result = lookup_local_symbol (name, match_type, block, domain, language);
2053 if (result.symbol != NULL)
2054 {
2055 if (symbol_lookup_debug)
2056 {
2057 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2058 host_address_to_string (result.symbol));
2059 }
2060 return result;
2061 }
2062
2063 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2064 check to see if NAME is a field of `this'. */
2065
2066 langdef = language_def (language);
2067
2068 /* Don't do this check if we are searching for a struct. It will
2069 not be found by check_field, but will be found by other
2070 means. */
2071 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2072 {
2073 result = lookup_language_this (langdef, block);
2074
2075 if (result.symbol)
2076 {
2077 struct type *t = result.symbol->type;
2078
2079 /* I'm not really sure that type of this can ever
2080 be typedefed; just be safe. */
2081 t = check_typedef (t);
2082 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2083 t = TYPE_TARGET_TYPE (t);
2084
2085 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2086 && TYPE_CODE (t) != TYPE_CODE_UNION)
2087 error (_("Internal error: `%s' is not an aggregate"),
2088 langdef->la_name_of_this);
2089
2090 if (check_field (t, name, is_a_field_of_this))
2091 {
2092 if (symbol_lookup_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog,
2095 "lookup_symbol_aux (...) = NULL\n");
2096 }
2097 return {};
2098 }
2099 }
2100 }
2101
2102 /* Now do whatever is appropriate for LANGUAGE to look
2103 up static and global variables. */
2104
2105 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2106 if (result.symbol != NULL)
2107 {
2108 if (symbol_lookup_debug)
2109 {
2110 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2111 host_address_to_string (result.symbol));
2112 }
2113 return result;
2114 }
2115
2116 /* Now search all static file-level symbols. Not strictly correct,
2117 but more useful than an error. */
2118
2119 result = lookup_static_symbol (name, domain);
2120 if (symbol_lookup_debug)
2121 {
2122 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2123 result.symbol != NULL
2124 ? host_address_to_string (result.symbol)
2125 : "NULL");
2126 }
2127 return result;
2128 }
2129
2130 /* Check to see if the symbol is defined in BLOCK or its superiors.
2131 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2132
2133 static struct block_symbol
2134 lookup_local_symbol (const char *name,
2135 symbol_name_match_type match_type,
2136 const struct block *block,
2137 const domain_enum domain,
2138 enum language language)
2139 {
2140 struct symbol *sym;
2141 const struct block *static_block = block_static_block (block);
2142 const char *scope = block_scope (block);
2143
2144 /* Check if either no block is specified or it's a global block. */
2145
2146 if (static_block == NULL)
2147 return {};
2148
2149 while (block != static_block)
2150 {
2151 sym = lookup_symbol_in_block (name, match_type, block, domain);
2152 if (sym != NULL)
2153 return (struct block_symbol) {sym, block};
2154
2155 if (language == language_cplus || language == language_fortran)
2156 {
2157 struct block_symbol blocksym
2158 = cp_lookup_symbol_imports_or_template (scope, name, block,
2159 domain);
2160
2161 if (blocksym.symbol != NULL)
2162 return blocksym;
2163 }
2164
2165 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2166 break;
2167 block = BLOCK_SUPERBLOCK (block);
2168 }
2169
2170 /* We've reached the end of the function without finding a result. */
2171
2172 return {};
2173 }
2174
2175 /* See symtab.h. */
2176
2177 struct objfile *
2178 lookup_objfile_from_block (const struct block *block)
2179 {
2180 if (block == NULL)
2181 return NULL;
2182
2183 block = block_global_block (block);
2184 /* Look through all blockvectors. */
2185 for (objfile *obj : current_program_space->objfiles ())
2186 {
2187 for (compunit_symtab *cust : obj->compunits ())
2188 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2189 GLOBAL_BLOCK))
2190 {
2191 if (obj->separate_debug_objfile_backlink)
2192 obj = obj->separate_debug_objfile_backlink;
2193
2194 return obj;
2195 }
2196 }
2197
2198 return NULL;
2199 }
2200
2201 /* See symtab.h. */
2202
2203 struct symbol *
2204 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2205 const struct block *block,
2206 const domain_enum domain)
2207 {
2208 struct symbol *sym;
2209
2210 if (symbol_lookup_debug > 1)
2211 {
2212 struct objfile *objfile = lookup_objfile_from_block (block);
2213
2214 fprintf_unfiltered (gdb_stdlog,
2215 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2216 name, host_address_to_string (block),
2217 objfile_debug_name (objfile),
2218 domain_name (domain));
2219 }
2220
2221 sym = block_lookup_symbol (block, name, match_type, domain);
2222 if (sym)
2223 {
2224 if (symbol_lookup_debug > 1)
2225 {
2226 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2227 host_address_to_string (sym));
2228 }
2229 return fixup_symbol_section (sym, NULL);
2230 }
2231
2232 if (symbol_lookup_debug > 1)
2233 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2234 return NULL;
2235 }
2236
2237 /* See symtab.h. */
2238
2239 struct block_symbol
2240 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2241 enum block_enum block_index,
2242 const char *name,
2243 const domain_enum domain)
2244 {
2245 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2246
2247 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2248 {
2249 struct block_symbol result
2250 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2251
2252 if (result.symbol != nullptr)
2253 return result;
2254 }
2255
2256 return {};
2257 }
2258
2259 /* Check to see if the symbol is defined in one of the OBJFILE's
2260 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2261 depending on whether or not we want to search global symbols or
2262 static symbols. */
2263
2264 static struct block_symbol
2265 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2266 enum block_enum block_index, const char *name,
2267 const domain_enum domain)
2268 {
2269 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2270
2271 if (symbol_lookup_debug > 1)
2272 {
2273 fprintf_unfiltered (gdb_stdlog,
2274 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2275 objfile_debug_name (objfile),
2276 block_index == GLOBAL_BLOCK
2277 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2278 name, domain_name (domain));
2279 }
2280
2281 for (compunit_symtab *cust : objfile->compunits ())
2282 {
2283 const struct blockvector *bv;
2284 const struct block *block;
2285 struct block_symbol result;
2286
2287 bv = COMPUNIT_BLOCKVECTOR (cust);
2288 block = BLOCKVECTOR_BLOCK (bv, block_index);
2289 result.symbol = block_lookup_symbol_primary (block, name, domain);
2290 result.block = block;
2291 if (result.symbol != NULL)
2292 {
2293 if (symbol_lookup_debug > 1)
2294 {
2295 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2296 host_address_to_string (result.symbol),
2297 host_address_to_string (block));
2298 }
2299 result.symbol = fixup_symbol_section (result.symbol, objfile);
2300 return result;
2301
2302 }
2303 }
2304
2305 if (symbol_lookup_debug > 1)
2306 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2307 return {};
2308 }
2309
2310 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2311 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2312 and all associated separate debug objfiles.
2313
2314 Normally we only look in OBJFILE, and not any separate debug objfiles
2315 because the outer loop will cause them to be searched too. This case is
2316 different. Here we're called from search_symbols where it will only
2317 call us for the objfile that contains a matching minsym. */
2318
2319 static struct block_symbol
2320 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2321 const char *linkage_name,
2322 domain_enum domain)
2323 {
2324 enum language lang = current_language->la_language;
2325 struct objfile *main_objfile;
2326
2327 demangle_result_storage storage;
2328 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2329
2330 if (objfile->separate_debug_objfile_backlink)
2331 main_objfile = objfile->separate_debug_objfile_backlink;
2332 else
2333 main_objfile = objfile;
2334
2335 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2336 {
2337 struct block_symbol result;
2338
2339 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2340 modified_name, domain);
2341 if (result.symbol == NULL)
2342 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2343 modified_name, domain);
2344 if (result.symbol != NULL)
2345 return result;
2346 }
2347
2348 return {};
2349 }
2350
2351 /* A helper function that throws an exception when a symbol was found
2352 in a psymtab but not in a symtab. */
2353
2354 static void ATTRIBUTE_NORETURN
2355 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2356 struct compunit_symtab *cust)
2357 {
2358 error (_("\
2359 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2360 %s may be an inlined function, or may be a template function\n \
2361 (if a template, try specifying an instantiation: %s<type>)."),
2362 block_index == GLOBAL_BLOCK ? "global" : "static",
2363 name,
2364 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2365 name, name);
2366 }
2367
2368 /* A helper function for various lookup routines that interfaces with
2369 the "quick" symbol table functions. */
2370
2371 static struct block_symbol
2372 lookup_symbol_via_quick_fns (struct objfile *objfile,
2373 enum block_enum block_index, const char *name,
2374 const domain_enum domain)
2375 {
2376 struct compunit_symtab *cust;
2377 const struct blockvector *bv;
2378 const struct block *block;
2379 struct block_symbol result;
2380
2381 if (!objfile->sf)
2382 return {};
2383
2384 if (symbol_lookup_debug > 1)
2385 {
2386 fprintf_unfiltered (gdb_stdlog,
2387 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2388 objfile_debug_name (objfile),
2389 block_index == GLOBAL_BLOCK
2390 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2391 name, domain_name (domain));
2392 }
2393
2394 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2395 if (cust == NULL)
2396 {
2397 if (symbol_lookup_debug > 1)
2398 {
2399 fprintf_unfiltered (gdb_stdlog,
2400 "lookup_symbol_via_quick_fns (...) = NULL\n");
2401 }
2402 return {};
2403 }
2404
2405 bv = COMPUNIT_BLOCKVECTOR (cust);
2406 block = BLOCKVECTOR_BLOCK (bv, block_index);
2407 result.symbol = block_lookup_symbol (block, name,
2408 symbol_name_match_type::FULL, domain);
2409 if (result.symbol == NULL)
2410 error_in_psymtab_expansion (block_index, name, cust);
2411
2412 if (symbol_lookup_debug > 1)
2413 {
2414 fprintf_unfiltered (gdb_stdlog,
2415 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2416 host_address_to_string (result.symbol),
2417 host_address_to_string (block));
2418 }
2419
2420 result.symbol = fixup_symbol_section (result.symbol, objfile);
2421 result.block = block;
2422 return result;
2423 }
2424
2425 /* See symtab.h. */
2426
2427 struct block_symbol
2428 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2429 const char *name,
2430 const struct block *block,
2431 const domain_enum domain)
2432 {
2433 struct block_symbol result;
2434
2435 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2436 the current objfile. Searching the current objfile first is useful
2437 for both matching user expectations as well as performance. */
2438
2439 result = lookup_symbol_in_static_block (name, block, domain);
2440 if (result.symbol != NULL)
2441 return result;
2442
2443 /* If we didn't find a definition for a builtin type in the static block,
2444 search for it now. This is actually the right thing to do and can be
2445 a massive performance win. E.g., when debugging a program with lots of
2446 shared libraries we could search all of them only to find out the
2447 builtin type isn't defined in any of them. This is common for types
2448 like "void". */
2449 if (domain == VAR_DOMAIN)
2450 {
2451 struct gdbarch *gdbarch;
2452
2453 if (block == NULL)
2454 gdbarch = target_gdbarch ();
2455 else
2456 gdbarch = block_gdbarch (block);
2457 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2458 gdbarch, name);
2459 result.block = NULL;
2460 if (result.symbol != NULL)
2461 return result;
2462 }
2463
2464 return lookup_global_symbol (name, block, domain);
2465 }
2466
2467 /* See symtab.h. */
2468
2469 struct block_symbol
2470 lookup_symbol_in_static_block (const char *name,
2471 const struct block *block,
2472 const domain_enum domain)
2473 {
2474 const struct block *static_block = block_static_block (block);
2475 struct symbol *sym;
2476
2477 if (static_block == NULL)
2478 return {};
2479
2480 if (symbol_lookup_debug)
2481 {
2482 struct objfile *objfile = lookup_objfile_from_block (static_block);
2483
2484 fprintf_unfiltered (gdb_stdlog,
2485 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2486 " %s)\n",
2487 name,
2488 host_address_to_string (block),
2489 objfile_debug_name (objfile),
2490 domain_name (domain));
2491 }
2492
2493 sym = lookup_symbol_in_block (name,
2494 symbol_name_match_type::FULL,
2495 static_block, domain);
2496 if (symbol_lookup_debug)
2497 {
2498 fprintf_unfiltered (gdb_stdlog,
2499 "lookup_symbol_in_static_block (...) = %s\n",
2500 sym != NULL ? host_address_to_string (sym) : "NULL");
2501 }
2502 return (struct block_symbol) {sym, static_block};
2503 }
2504
2505 /* Perform the standard symbol lookup of NAME in OBJFILE:
2506 1) First search expanded symtabs, and if not found
2507 2) Search the "quick" symtabs (partial or .gdb_index).
2508 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2509
2510 static struct block_symbol
2511 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2512 const char *name, const domain_enum domain)
2513 {
2514 struct block_symbol result;
2515
2516 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2517
2518 if (symbol_lookup_debug)
2519 {
2520 fprintf_unfiltered (gdb_stdlog,
2521 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2522 objfile_debug_name (objfile),
2523 block_index == GLOBAL_BLOCK
2524 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2525 name, domain_name (domain));
2526 }
2527
2528 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2529 name, domain);
2530 if (result.symbol != NULL)
2531 {
2532 if (symbol_lookup_debug)
2533 {
2534 fprintf_unfiltered (gdb_stdlog,
2535 "lookup_symbol_in_objfile (...) = %s"
2536 " (in symtabs)\n",
2537 host_address_to_string (result.symbol));
2538 }
2539 return result;
2540 }
2541
2542 result = lookup_symbol_via_quick_fns (objfile, block_index,
2543 name, domain);
2544 if (symbol_lookup_debug)
2545 {
2546 fprintf_unfiltered (gdb_stdlog,
2547 "lookup_symbol_in_objfile (...) = %s%s\n",
2548 result.symbol != NULL
2549 ? host_address_to_string (result.symbol)
2550 : "NULL",
2551 result.symbol != NULL ? " (via quick fns)" : "");
2552 }
2553 return result;
2554 }
2555
2556 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2557
2558 struct global_or_static_sym_lookup_data
2559 {
2560 /* The name of the symbol we are searching for. */
2561 const char *name;
2562
2563 /* The domain to use for our search. */
2564 domain_enum domain;
2565
2566 /* The block index in which to search. */
2567 enum block_enum block_index;
2568
2569 /* The field where the callback should store the symbol if found.
2570 It should be initialized to {NULL, NULL} before the search is started. */
2571 struct block_symbol result;
2572 };
2573
2574 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2575 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2576 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2577 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2578
2579 static int
2580 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2581 void *cb_data)
2582 {
2583 struct global_or_static_sym_lookup_data *data =
2584 (struct global_or_static_sym_lookup_data *) cb_data;
2585
2586 gdb_assert (data->result.symbol == NULL
2587 && data->result.block == NULL);
2588
2589 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2590 data->name, data->domain);
2591
2592 /* If we found a match, tell the iterator to stop. Otherwise,
2593 keep going. */
2594 return (data->result.symbol != NULL);
2595 }
2596
2597 /* This function contains the common code of lookup_{global,static}_symbol.
2598 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2599 the objfile to start the lookup in. */
2600
2601 static struct block_symbol
2602 lookup_global_or_static_symbol (const char *name,
2603 enum block_enum block_index,
2604 struct objfile *objfile,
2605 const domain_enum domain)
2606 {
2607 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2608 struct block_symbol result;
2609 struct global_or_static_sym_lookup_data lookup_data;
2610 struct block_symbol_cache *bsc;
2611 struct symbol_cache_slot *slot;
2612
2613 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2614 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2615
2616 /* First see if we can find the symbol in the cache.
2617 This works because we use the current objfile to qualify the lookup. */
2618 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2619 &bsc, &slot);
2620 if (result.symbol != NULL)
2621 {
2622 if (SYMBOL_LOOKUP_FAILED_P (result))
2623 return {};
2624 return result;
2625 }
2626
2627 /* Do a global search (of global blocks, heh). */
2628 if (result.symbol == NULL)
2629 {
2630 memset (&lookup_data, 0, sizeof (lookup_data));
2631 lookup_data.name = name;
2632 lookup_data.block_index = block_index;
2633 lookup_data.domain = domain;
2634 gdbarch_iterate_over_objfiles_in_search_order
2635 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2636 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2637 result = lookup_data.result;
2638 }
2639
2640 if (result.symbol != NULL)
2641 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2642 else
2643 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2644
2645 return result;
2646 }
2647
2648 /* See symtab.h. */
2649
2650 struct block_symbol
2651 lookup_static_symbol (const char *name, const domain_enum domain)
2652 {
2653 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2654 }
2655
2656 /* See symtab.h. */
2657
2658 struct block_symbol
2659 lookup_global_symbol (const char *name,
2660 const struct block *block,
2661 const domain_enum domain)
2662 {
2663 /* If a block was passed in, we want to search the corresponding
2664 global block first. This yields "more expected" behavior, and is
2665 needed to support 'FILENAME'::VARIABLE lookups. */
2666 const struct block *global_block = block_global_block (block);
2667 if (global_block != nullptr)
2668 {
2669 symbol *sym = lookup_symbol_in_block (name,
2670 symbol_name_match_type::FULL,
2671 global_block, domain);
2672 if (sym != nullptr)
2673 return { sym, global_block };
2674 }
2675
2676 struct objfile *objfile = lookup_objfile_from_block (block);
2677 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2678 }
2679
2680 bool
2681 symbol_matches_domain (enum language symbol_language,
2682 domain_enum symbol_domain,
2683 domain_enum domain)
2684 {
2685 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2686 Similarly, any Ada type declaration implicitly defines a typedef. */
2687 if (symbol_language == language_cplus
2688 || symbol_language == language_d
2689 || symbol_language == language_ada
2690 || symbol_language == language_rust)
2691 {
2692 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2693 && symbol_domain == STRUCT_DOMAIN)
2694 return true;
2695 }
2696 /* For all other languages, strict match is required. */
2697 return (symbol_domain == domain);
2698 }
2699
2700 /* See symtab.h. */
2701
2702 struct type *
2703 lookup_transparent_type (const char *name)
2704 {
2705 return current_language->la_lookup_transparent_type (name);
2706 }
2707
2708 /* A helper for basic_lookup_transparent_type that interfaces with the
2709 "quick" symbol table functions. */
2710
2711 static struct type *
2712 basic_lookup_transparent_type_quick (struct objfile *objfile,
2713 enum block_enum block_index,
2714 const char *name)
2715 {
2716 struct compunit_symtab *cust;
2717 const struct blockvector *bv;
2718 const struct block *block;
2719 struct symbol *sym;
2720
2721 if (!objfile->sf)
2722 return NULL;
2723 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2724 STRUCT_DOMAIN);
2725 if (cust == NULL)
2726 return NULL;
2727
2728 bv = COMPUNIT_BLOCKVECTOR (cust);
2729 block = BLOCKVECTOR_BLOCK (bv, block_index);
2730 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2731 block_find_non_opaque_type, NULL);
2732 if (sym == NULL)
2733 error_in_psymtab_expansion (block_index, name, cust);
2734 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2735 return SYMBOL_TYPE (sym);
2736 }
2737
2738 /* Subroutine of basic_lookup_transparent_type to simplify it.
2739 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2740 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2741
2742 static struct type *
2743 basic_lookup_transparent_type_1 (struct objfile *objfile,
2744 enum block_enum block_index,
2745 const char *name)
2746 {
2747 const struct blockvector *bv;
2748 const struct block *block;
2749 const struct symbol *sym;
2750
2751 for (compunit_symtab *cust : objfile->compunits ())
2752 {
2753 bv = COMPUNIT_BLOCKVECTOR (cust);
2754 block = BLOCKVECTOR_BLOCK (bv, block_index);
2755 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2756 block_find_non_opaque_type, NULL);
2757 if (sym != NULL)
2758 {
2759 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2760 return SYMBOL_TYPE (sym);
2761 }
2762 }
2763
2764 return NULL;
2765 }
2766
2767 /* The standard implementation of lookup_transparent_type. This code
2768 was modeled on lookup_symbol -- the parts not relevant to looking
2769 up types were just left out. In particular it's assumed here that
2770 types are available in STRUCT_DOMAIN and only in file-static or
2771 global blocks. */
2772
2773 struct type *
2774 basic_lookup_transparent_type (const char *name)
2775 {
2776 struct type *t;
2777
2778 /* Now search all the global symbols. Do the symtab's first, then
2779 check the psymtab's. If a psymtab indicates the existence
2780 of the desired name as a global, then do psymtab-to-symtab
2781 conversion on the fly and return the found symbol. */
2782
2783 for (objfile *objfile : current_program_space->objfiles ())
2784 {
2785 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2786 if (t)
2787 return t;
2788 }
2789
2790 for (objfile *objfile : current_program_space->objfiles ())
2791 {
2792 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2793 if (t)
2794 return t;
2795 }
2796
2797 /* Now search the static file-level symbols.
2798 Not strictly correct, but more useful than an error.
2799 Do the symtab's first, then
2800 check the psymtab's. If a psymtab indicates the existence
2801 of the desired name as a file-level static, then do psymtab-to-symtab
2802 conversion on the fly and return the found symbol. */
2803
2804 for (objfile *objfile : current_program_space->objfiles ())
2805 {
2806 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2807 if (t)
2808 return t;
2809 }
2810
2811 for (objfile *objfile : current_program_space->objfiles ())
2812 {
2813 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2814 if (t)
2815 return t;
2816 }
2817
2818 return (struct type *) 0;
2819 }
2820
2821 /* See symtab.h. */
2822
2823 bool
2824 iterate_over_symbols (const struct block *block,
2825 const lookup_name_info &name,
2826 const domain_enum domain,
2827 gdb::function_view<symbol_found_callback_ftype> callback)
2828 {
2829 struct block_iterator iter;
2830 struct symbol *sym;
2831
2832 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2833 {
2834 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2835 SYMBOL_DOMAIN (sym), domain))
2836 {
2837 struct block_symbol block_sym = {sym, block};
2838
2839 if (!callback (&block_sym))
2840 return false;
2841 }
2842 }
2843 return true;
2844 }
2845
2846 /* See symtab.h. */
2847
2848 bool
2849 iterate_over_symbols_terminated
2850 (const struct block *block,
2851 const lookup_name_info &name,
2852 const domain_enum domain,
2853 gdb::function_view<symbol_found_callback_ftype> callback)
2854 {
2855 if (!iterate_over_symbols (block, name, domain, callback))
2856 return false;
2857 struct block_symbol block_sym = {nullptr, block};
2858 return callback (&block_sym);
2859 }
2860
2861 /* Find the compunit symtab associated with PC and SECTION.
2862 This will read in debug info as necessary. */
2863
2864 struct compunit_symtab *
2865 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2866 {
2867 struct compunit_symtab *best_cust = NULL;
2868 CORE_ADDR distance = 0;
2869 struct bound_minimal_symbol msymbol;
2870
2871 /* If we know that this is not a text address, return failure. This is
2872 necessary because we loop based on the block's high and low code
2873 addresses, which do not include the data ranges, and because
2874 we call find_pc_sect_psymtab which has a similar restriction based
2875 on the partial_symtab's texthigh and textlow. */
2876 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2877 if (msymbol.minsym && msymbol.minsym->data_p ())
2878 return NULL;
2879
2880 /* Search all symtabs for the one whose file contains our address, and which
2881 is the smallest of all the ones containing the address. This is designed
2882 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2883 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2884 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2885
2886 This happens for native ecoff format, where code from included files
2887 gets its own symtab. The symtab for the included file should have
2888 been read in already via the dependency mechanism.
2889 It might be swifter to create several symtabs with the same name
2890 like xcoff does (I'm not sure).
2891
2892 It also happens for objfiles that have their functions reordered.
2893 For these, the symtab we are looking for is not necessarily read in. */
2894
2895 for (objfile *obj_file : current_program_space->objfiles ())
2896 {
2897 for (compunit_symtab *cust : obj_file->compunits ())
2898 {
2899 const struct block *b;
2900 const struct blockvector *bv;
2901
2902 bv = COMPUNIT_BLOCKVECTOR (cust);
2903 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2904
2905 if (BLOCK_START (b) <= pc
2906 && BLOCK_END (b) > pc
2907 && (distance == 0
2908 || BLOCK_END (b) - BLOCK_START (b) < distance))
2909 {
2910 /* For an objfile that has its functions reordered,
2911 find_pc_psymtab will find the proper partial symbol table
2912 and we simply return its corresponding symtab. */
2913 /* In order to better support objfiles that contain both
2914 stabs and coff debugging info, we continue on if a psymtab
2915 can't be found. */
2916 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2917 {
2918 struct compunit_symtab *result;
2919
2920 result
2921 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2922 msymbol,
2923 pc,
2924 section,
2925 0);
2926 if (result != NULL)
2927 return result;
2928 }
2929 if (section != 0)
2930 {
2931 struct block_iterator iter;
2932 struct symbol *sym = NULL;
2933
2934 ALL_BLOCK_SYMBOLS (b, iter, sym)
2935 {
2936 fixup_symbol_section (sym, obj_file);
2937 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2938 sym),
2939 section))
2940 break;
2941 }
2942 if (sym == NULL)
2943 continue; /* No symbol in this symtab matches
2944 section. */
2945 }
2946 distance = BLOCK_END (b) - BLOCK_START (b);
2947 best_cust = cust;
2948 }
2949 }
2950 }
2951
2952 if (best_cust != NULL)
2953 return best_cust;
2954
2955 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2956
2957 for (objfile *objf : current_program_space->objfiles ())
2958 {
2959 struct compunit_symtab *result;
2960
2961 if (!objf->sf)
2962 continue;
2963 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2964 msymbol,
2965 pc, section,
2966 1);
2967 if (result != NULL)
2968 return result;
2969 }
2970
2971 return NULL;
2972 }
2973
2974 /* Find the compunit symtab associated with PC.
2975 This will read in debug info as necessary.
2976 Backward compatibility, no section. */
2977
2978 struct compunit_symtab *
2979 find_pc_compunit_symtab (CORE_ADDR pc)
2980 {
2981 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2982 }
2983
2984 /* See symtab.h. */
2985
2986 struct symbol *
2987 find_symbol_at_address (CORE_ADDR address)
2988 {
2989 for (objfile *objfile : current_program_space->objfiles ())
2990 {
2991 if (objfile->sf == NULL
2992 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2993 continue;
2994
2995 struct compunit_symtab *symtab
2996 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2997 if (symtab != NULL)
2998 {
2999 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3000
3001 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3002 {
3003 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3004 struct block_iterator iter;
3005 struct symbol *sym;
3006
3007 ALL_BLOCK_SYMBOLS (b, iter, sym)
3008 {
3009 if (SYMBOL_CLASS (sym) == LOC_STATIC
3010 && SYMBOL_VALUE_ADDRESS (sym) == address)
3011 return sym;
3012 }
3013 }
3014 }
3015 }
3016
3017 return NULL;
3018 }
3019
3020 \f
3021
3022 /* Find the source file and line number for a given PC value and SECTION.
3023 Return a structure containing a symtab pointer, a line number,
3024 and a pc range for the entire source line.
3025 The value's .pc field is NOT the specified pc.
3026 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3027 use the line that ends there. Otherwise, in that case, the line
3028 that begins there is used. */
3029
3030 /* The big complication here is that a line may start in one file, and end just
3031 before the start of another file. This usually occurs when you #include
3032 code in the middle of a subroutine. To properly find the end of a line's PC
3033 range, we must search all symtabs associated with this compilation unit, and
3034 find the one whose first PC is closer than that of the next line in this
3035 symtab. */
3036
3037 struct symtab_and_line
3038 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3039 {
3040 struct compunit_symtab *cust;
3041 struct linetable *l;
3042 int len;
3043 struct linetable_entry *item;
3044 const struct blockvector *bv;
3045 struct bound_minimal_symbol msymbol;
3046
3047 /* Info on best line seen so far, and where it starts, and its file. */
3048
3049 struct linetable_entry *best = NULL;
3050 CORE_ADDR best_end = 0;
3051 struct symtab *best_symtab = 0;
3052
3053 /* Store here the first line number
3054 of a file which contains the line at the smallest pc after PC.
3055 If we don't find a line whose range contains PC,
3056 we will use a line one less than this,
3057 with a range from the start of that file to the first line's pc. */
3058 struct linetable_entry *alt = NULL;
3059
3060 /* Info on best line seen in this file. */
3061
3062 struct linetable_entry *prev;
3063
3064 /* If this pc is not from the current frame,
3065 it is the address of the end of a call instruction.
3066 Quite likely that is the start of the following statement.
3067 But what we want is the statement containing the instruction.
3068 Fudge the pc to make sure we get that. */
3069
3070 /* It's tempting to assume that, if we can't find debugging info for
3071 any function enclosing PC, that we shouldn't search for line
3072 number info, either. However, GAS can emit line number info for
3073 assembly files --- very helpful when debugging hand-written
3074 assembly code. In such a case, we'd have no debug info for the
3075 function, but we would have line info. */
3076
3077 if (notcurrent)
3078 pc -= 1;
3079
3080 /* elz: added this because this function returned the wrong
3081 information if the pc belongs to a stub (import/export)
3082 to call a shlib function. This stub would be anywhere between
3083 two functions in the target, and the line info was erroneously
3084 taken to be the one of the line before the pc. */
3085
3086 /* RT: Further explanation:
3087
3088 * We have stubs (trampolines) inserted between procedures.
3089 *
3090 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3091 * exists in the main image.
3092 *
3093 * In the minimal symbol table, we have a bunch of symbols
3094 * sorted by start address. The stubs are marked as "trampoline",
3095 * the others appear as text. E.g.:
3096 *
3097 * Minimal symbol table for main image
3098 * main: code for main (text symbol)
3099 * shr1: stub (trampoline symbol)
3100 * foo: code for foo (text symbol)
3101 * ...
3102 * Minimal symbol table for "shr1" image:
3103 * ...
3104 * shr1: code for shr1 (text symbol)
3105 * ...
3106 *
3107 * So the code below is trying to detect if we are in the stub
3108 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3109 * and if found, do the symbolization from the real-code address
3110 * rather than the stub address.
3111 *
3112 * Assumptions being made about the minimal symbol table:
3113 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3114 * if we're really in the trampoline.s If we're beyond it (say
3115 * we're in "foo" in the above example), it'll have a closer
3116 * symbol (the "foo" text symbol for example) and will not
3117 * return the trampoline.
3118 * 2. lookup_minimal_symbol_text() will find a real text symbol
3119 * corresponding to the trampoline, and whose address will
3120 * be different than the trampoline address. I put in a sanity
3121 * check for the address being the same, to avoid an
3122 * infinite recursion.
3123 */
3124 msymbol = lookup_minimal_symbol_by_pc (pc);
3125 if (msymbol.minsym != NULL)
3126 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3127 {
3128 struct bound_minimal_symbol mfunsym
3129 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3130 NULL);
3131
3132 if (mfunsym.minsym == NULL)
3133 /* I eliminated this warning since it is coming out
3134 * in the following situation:
3135 * gdb shmain // test program with shared libraries
3136 * (gdb) break shr1 // function in shared lib
3137 * Warning: In stub for ...
3138 * In the above situation, the shared lib is not loaded yet,
3139 * so of course we can't find the real func/line info,
3140 * but the "break" still works, and the warning is annoying.
3141 * So I commented out the warning. RT */
3142 /* warning ("In stub for %s; unable to find real function/line info",
3143 SYMBOL_LINKAGE_NAME (msymbol)); */
3144 ;
3145 /* fall through */
3146 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3147 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3148 /* Avoid infinite recursion */
3149 /* See above comment about why warning is commented out. */
3150 /* warning ("In stub for %s; unable to find real function/line info",
3151 SYMBOL_LINKAGE_NAME (msymbol)); */
3152 ;
3153 /* fall through */
3154 else
3155 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3156 }
3157
3158 symtab_and_line val;
3159 val.pspace = current_program_space;
3160
3161 cust = find_pc_sect_compunit_symtab (pc, section);
3162 if (cust == NULL)
3163 {
3164 /* If no symbol information, return previous pc. */
3165 if (notcurrent)
3166 pc++;
3167 val.pc = pc;
3168 return val;
3169 }
3170
3171 bv = COMPUNIT_BLOCKVECTOR (cust);
3172
3173 /* Look at all the symtabs that share this blockvector.
3174 They all have the same apriori range, that we found was right;
3175 but they have different line tables. */
3176
3177 for (symtab *iter_s : compunit_filetabs (cust))
3178 {
3179 /* Find the best line in this symtab. */
3180 l = SYMTAB_LINETABLE (iter_s);
3181 if (!l)
3182 continue;
3183 len = l->nitems;
3184 if (len <= 0)
3185 {
3186 /* I think len can be zero if the symtab lacks line numbers
3187 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3188 I'm not sure which, and maybe it depends on the symbol
3189 reader). */
3190 continue;
3191 }
3192
3193 prev = NULL;
3194 item = l->item; /* Get first line info. */
3195
3196 /* Is this file's first line closer than the first lines of other files?
3197 If so, record this file, and its first line, as best alternate. */
3198 if (item->pc > pc && (!alt || item->pc < alt->pc))
3199 alt = item;
3200
3201 auto pc_compare = [](const CORE_ADDR & comp_pc,
3202 const struct linetable_entry & lhs)->bool
3203 {
3204 return comp_pc < lhs.pc;
3205 };
3206
3207 struct linetable_entry *first = item;
3208 struct linetable_entry *last = item + len;
3209 item = std::upper_bound (first, last, pc, pc_compare);
3210 if (item != first)
3211 prev = item - 1; /* Found a matching item. */
3212
3213 /* At this point, prev points at the line whose start addr is <= pc, and
3214 item points at the next line. If we ran off the end of the linetable
3215 (pc >= start of the last line), then prev == item. If pc < start of
3216 the first line, prev will not be set. */
3217
3218 /* Is this file's best line closer than the best in the other files?
3219 If so, record this file, and its best line, as best so far. Don't
3220 save prev if it represents the end of a function (i.e. line number
3221 0) instead of a real line. */
3222
3223 if (prev && prev->line && (!best || prev->pc > best->pc))
3224 {
3225 best = prev;
3226 best_symtab = iter_s;
3227
3228 /* Discard BEST_END if it's before the PC of the current BEST. */
3229 if (best_end <= best->pc)
3230 best_end = 0;
3231 }
3232
3233 /* If another line (denoted by ITEM) is in the linetable and its
3234 PC is after BEST's PC, but before the current BEST_END, then
3235 use ITEM's PC as the new best_end. */
3236 if (best && item < last && item->pc > best->pc
3237 && (best_end == 0 || best_end > item->pc))
3238 best_end = item->pc;
3239 }
3240
3241 if (!best_symtab)
3242 {
3243 /* If we didn't find any line number info, just return zeros.
3244 We used to return alt->line - 1 here, but that could be
3245 anywhere; if we don't have line number info for this PC,
3246 don't make some up. */
3247 val.pc = pc;
3248 }
3249 else if (best->line == 0)
3250 {
3251 /* If our best fit is in a range of PC's for which no line
3252 number info is available (line number is zero) then we didn't
3253 find any valid line information. */
3254 val.pc = pc;
3255 }
3256 else
3257 {
3258 val.symtab = best_symtab;
3259 val.line = best->line;
3260 val.pc = best->pc;
3261 if (best_end && (!alt || best_end < alt->pc))
3262 val.end = best_end;
3263 else if (alt)
3264 val.end = alt->pc;
3265 else
3266 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3267 }
3268 val.section = section;
3269 return val;
3270 }
3271
3272 /* Backward compatibility (no section). */
3273
3274 struct symtab_and_line
3275 find_pc_line (CORE_ADDR pc, int notcurrent)
3276 {
3277 struct obj_section *section;
3278
3279 section = find_pc_overlay (pc);
3280 if (pc_in_unmapped_range (pc, section))
3281 pc = overlay_mapped_address (pc, section);
3282 return find_pc_sect_line (pc, section, notcurrent);
3283 }
3284
3285 /* See symtab.h. */
3286
3287 struct symtab *
3288 find_pc_line_symtab (CORE_ADDR pc)
3289 {
3290 struct symtab_and_line sal;
3291
3292 /* This always passes zero for NOTCURRENT to find_pc_line.
3293 There are currently no callers that ever pass non-zero. */
3294 sal = find_pc_line (pc, 0);
3295 return sal.symtab;
3296 }
3297 \f
3298 /* Find line number LINE in any symtab whose name is the same as
3299 SYMTAB.
3300
3301 If found, return the symtab that contains the linetable in which it was
3302 found, set *INDEX to the index in the linetable of the best entry
3303 found, and set *EXACT_MATCH to true if the value returned is an
3304 exact match.
3305
3306 If not found, return NULL. */
3307
3308 struct symtab *
3309 find_line_symtab (struct symtab *sym_tab, int line,
3310 int *index, bool *exact_match)
3311 {
3312 int exact = 0; /* Initialized here to avoid a compiler warning. */
3313
3314 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3315 so far seen. */
3316
3317 int best_index;
3318 struct linetable *best_linetable;
3319 struct symtab *best_symtab;
3320
3321 /* First try looking it up in the given symtab. */
3322 best_linetable = SYMTAB_LINETABLE (sym_tab);
3323 best_symtab = sym_tab;
3324 best_index = find_line_common (best_linetable, line, &exact, 0);
3325 if (best_index < 0 || !exact)
3326 {
3327 /* Didn't find an exact match. So we better keep looking for
3328 another symtab with the same name. In the case of xcoff,
3329 multiple csects for one source file (produced by IBM's FORTRAN
3330 compiler) produce multiple symtabs (this is unavoidable
3331 assuming csects can be at arbitrary places in memory and that
3332 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3333
3334 /* BEST is the smallest linenumber > LINE so far seen,
3335 or 0 if none has been seen so far.
3336 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3337 int best;
3338
3339 if (best_index >= 0)
3340 best = best_linetable->item[best_index].line;
3341 else
3342 best = 0;
3343
3344 for (objfile *objfile : current_program_space->objfiles ())
3345 {
3346 if (objfile->sf)
3347 objfile->sf->qf->expand_symtabs_with_fullname
3348 (objfile, symtab_to_fullname (sym_tab));
3349 }
3350
3351 for (objfile *objfile : current_program_space->objfiles ())
3352 {
3353 for (compunit_symtab *cu : objfile->compunits ())
3354 {
3355 for (symtab *s : compunit_filetabs (cu))
3356 {
3357 struct linetable *l;
3358 int ind;
3359
3360 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3361 continue;
3362 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3363 symtab_to_fullname (s)) != 0)
3364 continue;
3365 l = SYMTAB_LINETABLE (s);
3366 ind = find_line_common (l, line, &exact, 0);
3367 if (ind >= 0)
3368 {
3369 if (exact)
3370 {
3371 best_index = ind;
3372 best_linetable = l;
3373 best_symtab = s;
3374 goto done;
3375 }
3376 if (best == 0 || l->item[ind].line < best)
3377 {
3378 best = l->item[ind].line;
3379 best_index = ind;
3380 best_linetable = l;
3381 best_symtab = s;
3382 }
3383 }
3384 }
3385 }
3386 }
3387 }
3388 done:
3389 if (best_index < 0)
3390 return NULL;
3391
3392 if (index)
3393 *index = best_index;
3394 if (exact_match)
3395 *exact_match = (exact != 0);
3396
3397 return best_symtab;
3398 }
3399
3400 /* Given SYMTAB, returns all the PCs function in the symtab that
3401 exactly match LINE. Returns an empty vector if there are no exact
3402 matches, but updates BEST_ITEM in this case. */
3403
3404 std::vector<CORE_ADDR>
3405 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3406 struct linetable_entry **best_item)
3407 {
3408 int start = 0;
3409 std::vector<CORE_ADDR> result;
3410
3411 /* First, collect all the PCs that are at this line. */
3412 while (1)
3413 {
3414 int was_exact;
3415 int idx;
3416
3417 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3418 start);
3419 if (idx < 0)
3420 break;
3421
3422 if (!was_exact)
3423 {
3424 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3425
3426 if (*best_item == NULL || item->line < (*best_item)->line)
3427 *best_item = item;
3428
3429 break;
3430 }
3431
3432 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3433 start = idx + 1;
3434 }
3435
3436 return result;
3437 }
3438
3439 \f
3440 /* Set the PC value for a given source file and line number and return true.
3441 Returns false for invalid line number (and sets the PC to 0).
3442 The source file is specified with a struct symtab. */
3443
3444 bool
3445 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3446 {
3447 struct linetable *l;
3448 int ind;
3449
3450 *pc = 0;
3451 if (symtab == 0)
3452 return false;
3453
3454 symtab = find_line_symtab (symtab, line, &ind, NULL);
3455 if (symtab != NULL)
3456 {
3457 l = SYMTAB_LINETABLE (symtab);
3458 *pc = l->item[ind].pc;
3459 return true;
3460 }
3461 else
3462 return false;
3463 }
3464
3465 /* Find the range of pc values in a line.
3466 Store the starting pc of the line into *STARTPTR
3467 and the ending pc (start of next line) into *ENDPTR.
3468 Returns true to indicate success.
3469 Returns false if could not find the specified line. */
3470
3471 bool
3472 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3473 CORE_ADDR *endptr)
3474 {
3475 CORE_ADDR startaddr;
3476 struct symtab_and_line found_sal;
3477
3478 startaddr = sal.pc;
3479 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3480 return false;
3481
3482 /* This whole function is based on address. For example, if line 10 has
3483 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3484 "info line *0x123" should say the line goes from 0x100 to 0x200
3485 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3486 This also insures that we never give a range like "starts at 0x134
3487 and ends at 0x12c". */
3488
3489 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3490 if (found_sal.line != sal.line)
3491 {
3492 /* The specified line (sal) has zero bytes. */
3493 *startptr = found_sal.pc;
3494 *endptr = found_sal.pc;
3495 }
3496 else
3497 {
3498 *startptr = found_sal.pc;
3499 *endptr = found_sal.end;
3500 }
3501 return true;
3502 }
3503
3504 /* Given a line table and a line number, return the index into the line
3505 table for the pc of the nearest line whose number is >= the specified one.
3506 Return -1 if none is found. The value is >= 0 if it is an index.
3507 START is the index at which to start searching the line table.
3508
3509 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3510
3511 static int
3512 find_line_common (struct linetable *l, int lineno,
3513 int *exact_match, int start)
3514 {
3515 int i;
3516 int len;
3517
3518 /* BEST is the smallest linenumber > LINENO so far seen,
3519 or 0 if none has been seen so far.
3520 BEST_INDEX identifies the item for it. */
3521
3522 int best_index = -1;
3523 int best = 0;
3524
3525 *exact_match = 0;
3526
3527 if (lineno <= 0)
3528 return -1;
3529 if (l == 0)
3530 return -1;
3531
3532 len = l->nitems;
3533 for (i = start; i < len; i++)
3534 {
3535 struct linetable_entry *item = &(l->item[i]);
3536
3537 if (item->line == lineno)
3538 {
3539 /* Return the first (lowest address) entry which matches. */
3540 *exact_match = 1;
3541 return i;
3542 }
3543
3544 if (item->line > lineno && (best == 0 || item->line < best))
3545 {
3546 best = item->line;
3547 best_index = i;
3548 }
3549 }
3550
3551 /* If we got here, we didn't get an exact match. */
3552 return best_index;
3553 }
3554
3555 bool
3556 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3557 {
3558 struct symtab_and_line sal;
3559
3560 sal = find_pc_line (pc, 0);
3561 *startptr = sal.pc;
3562 *endptr = sal.end;
3563 return sal.symtab != 0;
3564 }
3565
3566 /* Helper for find_function_start_sal. Does most of the work, except
3567 setting the sal's symbol. */
3568
3569 static symtab_and_line
3570 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3571 bool funfirstline)
3572 {
3573 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3574
3575 if (funfirstline && sal.symtab != NULL
3576 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3577 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3578 {
3579 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3580
3581 sal.pc = func_addr;
3582 if (gdbarch_skip_entrypoint_p (gdbarch))
3583 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3584 return sal;
3585 }
3586
3587 /* We always should have a line for the function start address.
3588 If we don't, something is odd. Create a plain SAL referring
3589 just the PC and hope that skip_prologue_sal (if requested)
3590 can find a line number for after the prologue. */
3591 if (sal.pc < func_addr)
3592 {
3593 sal = {};
3594 sal.pspace = current_program_space;
3595 sal.pc = func_addr;
3596 sal.section = section;
3597 }
3598
3599 if (funfirstline)
3600 skip_prologue_sal (&sal);
3601
3602 return sal;
3603 }
3604
3605 /* See symtab.h. */
3606
3607 symtab_and_line
3608 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3609 bool funfirstline)
3610 {
3611 symtab_and_line sal
3612 = find_function_start_sal_1 (func_addr, section, funfirstline);
3613
3614 /* find_function_start_sal_1 does a linetable search, so it finds
3615 the symtab and linenumber, but not a symbol. Fill in the
3616 function symbol too. */
3617 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3618
3619 return sal;
3620 }
3621
3622 /* See symtab.h. */
3623
3624 symtab_and_line
3625 find_function_start_sal (symbol *sym, bool funfirstline)
3626 {
3627 fixup_symbol_section (sym, NULL);
3628 symtab_and_line sal
3629 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3630 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3631 funfirstline);
3632 sal.symbol = sym;
3633 return sal;
3634 }
3635
3636
3637 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3638 address for that function that has an entry in SYMTAB's line info
3639 table. If such an entry cannot be found, return FUNC_ADDR
3640 unaltered. */
3641
3642 static CORE_ADDR
3643 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3644 {
3645 CORE_ADDR func_start, func_end;
3646 struct linetable *l;
3647 int i;
3648
3649 /* Give up if this symbol has no lineinfo table. */
3650 l = SYMTAB_LINETABLE (symtab);
3651 if (l == NULL)
3652 return func_addr;
3653
3654 /* Get the range for the function's PC values, or give up if we
3655 cannot, for some reason. */
3656 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3657 return func_addr;
3658
3659 /* Linetable entries are ordered by PC values, see the commentary in
3660 symtab.h where `struct linetable' is defined. Thus, the first
3661 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3662 address we are looking for. */
3663 for (i = 0; i < l->nitems; i++)
3664 {
3665 struct linetable_entry *item = &(l->item[i]);
3666
3667 /* Don't use line numbers of zero, they mark special entries in
3668 the table. See the commentary on symtab.h before the
3669 definition of struct linetable. */
3670 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3671 return item->pc;
3672 }
3673
3674 return func_addr;
3675 }
3676
3677 /* Adjust SAL to the first instruction past the function prologue.
3678 If the PC was explicitly specified, the SAL is not changed.
3679 If the line number was explicitly specified then the SAL can still be
3680 updated, unless the language for SAL is assembler, in which case the SAL
3681 will be left unchanged.
3682 If SAL is already past the prologue, then do nothing. */
3683
3684 void
3685 skip_prologue_sal (struct symtab_and_line *sal)
3686 {
3687 struct symbol *sym;
3688 struct symtab_and_line start_sal;
3689 CORE_ADDR pc, saved_pc;
3690 struct obj_section *section;
3691 const char *name;
3692 struct objfile *objfile;
3693 struct gdbarch *gdbarch;
3694 const struct block *b, *function_block;
3695 int force_skip, skip;
3696
3697 /* Do not change the SAL if PC was specified explicitly. */
3698 if (sal->explicit_pc)
3699 return;
3700
3701 /* In assembly code, if the user asks for a specific line then we should
3702 not adjust the SAL. The user already has instruction level
3703 visibility in this case, so selecting a line other than one requested
3704 is likely to be the wrong choice. */
3705 if (sal->symtab != nullptr
3706 && sal->explicit_line
3707 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3708 return;
3709
3710 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3711
3712 switch_to_program_space_and_thread (sal->pspace);
3713
3714 sym = find_pc_sect_function (sal->pc, sal->section);
3715 if (sym != NULL)
3716 {
3717 fixup_symbol_section (sym, NULL);
3718
3719 objfile = symbol_objfile (sym);
3720 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3721 section = SYMBOL_OBJ_SECTION (objfile, sym);
3722 name = SYMBOL_LINKAGE_NAME (sym);
3723 }
3724 else
3725 {
3726 struct bound_minimal_symbol msymbol
3727 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3728
3729 if (msymbol.minsym == NULL)
3730 return;
3731
3732 objfile = msymbol.objfile;
3733 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3734 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3735 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3736 }
3737
3738 gdbarch = get_objfile_arch (objfile);
3739
3740 /* Process the prologue in two passes. In the first pass try to skip the
3741 prologue (SKIP is true) and verify there is a real need for it (indicated
3742 by FORCE_SKIP). If no such reason was found run a second pass where the
3743 prologue is not skipped (SKIP is false). */
3744
3745 skip = 1;
3746 force_skip = 1;
3747
3748 /* Be conservative - allow direct PC (without skipping prologue) only if we
3749 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3750 have to be set by the caller so we use SYM instead. */
3751 if (sym != NULL
3752 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3753 force_skip = 0;
3754
3755 saved_pc = pc;
3756 do
3757 {
3758 pc = saved_pc;
3759
3760 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3761 so that gdbarch_skip_prologue has something unique to work on. */
3762 if (section_is_overlay (section) && !section_is_mapped (section))
3763 pc = overlay_unmapped_address (pc, section);
3764
3765 /* Skip "first line" of function (which is actually its prologue). */
3766 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3767 if (gdbarch_skip_entrypoint_p (gdbarch))
3768 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3769 if (skip)
3770 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3771
3772 /* For overlays, map pc back into its mapped VMA range. */
3773 pc = overlay_mapped_address (pc, section);
3774
3775 /* Calculate line number. */
3776 start_sal = find_pc_sect_line (pc, section, 0);
3777
3778 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3779 line is still part of the same function. */
3780 if (skip && start_sal.pc != pc
3781 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3782 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3783 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3784 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3785 {
3786 /* First pc of next line */
3787 pc = start_sal.end;
3788 /* Recalculate the line number (might not be N+1). */
3789 start_sal = find_pc_sect_line (pc, section, 0);
3790 }
3791
3792 /* On targets with executable formats that don't have a concept of
3793 constructors (ELF with .init has, PE doesn't), gcc emits a call
3794 to `__main' in `main' between the prologue and before user
3795 code. */
3796 if (gdbarch_skip_main_prologue_p (gdbarch)
3797 && name && strcmp_iw (name, "main") == 0)
3798 {
3799 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3800 /* Recalculate the line number (might not be N+1). */
3801 start_sal = find_pc_sect_line (pc, section, 0);
3802 force_skip = 1;
3803 }
3804 }
3805 while (!force_skip && skip--);
3806
3807 /* If we still don't have a valid source line, try to find the first
3808 PC in the lineinfo table that belongs to the same function. This
3809 happens with COFF debug info, which does not seem to have an
3810 entry in lineinfo table for the code after the prologue which has
3811 no direct relation to source. For example, this was found to be
3812 the case with the DJGPP target using "gcc -gcoff" when the
3813 compiler inserted code after the prologue to make sure the stack
3814 is aligned. */
3815 if (!force_skip && sym && start_sal.symtab == NULL)
3816 {
3817 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3818 /* Recalculate the line number. */
3819 start_sal = find_pc_sect_line (pc, section, 0);
3820 }
3821
3822 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3823 forward SAL to the end of the prologue. */
3824 if (sal->pc >= pc)
3825 return;
3826
3827 sal->pc = pc;
3828 sal->section = section;
3829 sal->symtab = start_sal.symtab;
3830 sal->line = start_sal.line;
3831 sal->end = start_sal.end;
3832
3833 /* Check if we are now inside an inlined function. If we can,
3834 use the call site of the function instead. */
3835 b = block_for_pc_sect (sal->pc, sal->section);
3836 function_block = NULL;
3837 while (b != NULL)
3838 {
3839 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3840 function_block = b;
3841 else if (BLOCK_FUNCTION (b) != NULL)
3842 break;
3843 b = BLOCK_SUPERBLOCK (b);
3844 }
3845 if (function_block != NULL
3846 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3847 {
3848 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3849 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3850 }
3851 }
3852
3853 /* Given PC at the function's start address, attempt to find the
3854 prologue end using SAL information. Return zero if the skip fails.
3855
3856 A non-optimized prologue traditionally has one SAL for the function
3857 and a second for the function body. A single line function has
3858 them both pointing at the same line.
3859
3860 An optimized prologue is similar but the prologue may contain
3861 instructions (SALs) from the instruction body. Need to skip those
3862 while not getting into the function body.
3863
3864 The functions end point and an increasing SAL line are used as
3865 indicators of the prologue's endpoint.
3866
3867 This code is based on the function refine_prologue_limit
3868 (found in ia64). */
3869
3870 CORE_ADDR
3871 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3872 {
3873 struct symtab_and_line prologue_sal;
3874 CORE_ADDR start_pc;
3875 CORE_ADDR end_pc;
3876 const struct block *bl;
3877
3878 /* Get an initial range for the function. */
3879 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3880 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3881
3882 prologue_sal = find_pc_line (start_pc, 0);
3883 if (prologue_sal.line != 0)
3884 {
3885 /* For languages other than assembly, treat two consecutive line
3886 entries at the same address as a zero-instruction prologue.
3887 The GNU assembler emits separate line notes for each instruction
3888 in a multi-instruction macro, but compilers generally will not
3889 do this. */
3890 if (prologue_sal.symtab->language != language_asm)
3891 {
3892 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3893 int idx = 0;
3894
3895 /* Skip any earlier lines, and any end-of-sequence marker
3896 from a previous function. */
3897 while (linetable->item[idx].pc != prologue_sal.pc
3898 || linetable->item[idx].line == 0)
3899 idx++;
3900
3901 if (idx+1 < linetable->nitems
3902 && linetable->item[idx+1].line != 0
3903 && linetable->item[idx+1].pc == start_pc)
3904 return start_pc;
3905 }
3906
3907 /* If there is only one sal that covers the entire function,
3908 then it is probably a single line function, like
3909 "foo(){}". */
3910 if (prologue_sal.end >= end_pc)
3911 return 0;
3912
3913 while (prologue_sal.end < end_pc)
3914 {
3915 struct symtab_and_line sal;
3916
3917 sal = find_pc_line (prologue_sal.end, 0);
3918 if (sal.line == 0)
3919 break;
3920 /* Assume that a consecutive SAL for the same (or larger)
3921 line mark the prologue -> body transition. */
3922 if (sal.line >= prologue_sal.line)
3923 break;
3924 /* Likewise if we are in a different symtab altogether
3925 (e.g. within a file included via #include).  */
3926 if (sal.symtab != prologue_sal.symtab)
3927 break;
3928
3929 /* The line number is smaller. Check that it's from the
3930 same function, not something inlined. If it's inlined,
3931 then there is no point comparing the line numbers. */
3932 bl = block_for_pc (prologue_sal.end);
3933 while (bl)
3934 {
3935 if (block_inlined_p (bl))
3936 break;
3937 if (BLOCK_FUNCTION (bl))
3938 {
3939 bl = NULL;
3940 break;
3941 }
3942 bl = BLOCK_SUPERBLOCK (bl);
3943 }
3944 if (bl != NULL)
3945 break;
3946
3947 /* The case in which compiler's optimizer/scheduler has
3948 moved instructions into the prologue. We look ahead in
3949 the function looking for address ranges whose
3950 corresponding line number is less the first one that we
3951 found for the function. This is more conservative then
3952 refine_prologue_limit which scans a large number of SALs
3953 looking for any in the prologue. */
3954 prologue_sal = sal;
3955 }
3956 }
3957
3958 if (prologue_sal.end < end_pc)
3959 /* Return the end of this line, or zero if we could not find a
3960 line. */
3961 return prologue_sal.end;
3962 else
3963 /* Don't return END_PC, which is past the end of the function. */
3964 return prologue_sal.pc;
3965 }
3966
3967 /* See symtab.h. */
3968
3969 symbol *
3970 find_function_alias_target (bound_minimal_symbol msymbol)
3971 {
3972 CORE_ADDR func_addr;
3973 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3974 return NULL;
3975
3976 symbol *sym = find_pc_function (func_addr);
3977 if (sym != NULL
3978 && SYMBOL_CLASS (sym) == LOC_BLOCK
3979 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3980 return sym;
3981
3982 return NULL;
3983 }
3984
3985 \f
3986 /* If P is of the form "operator[ \t]+..." where `...' is
3987 some legitimate operator text, return a pointer to the
3988 beginning of the substring of the operator text.
3989 Otherwise, return "". */
3990
3991 static const char *
3992 operator_chars (const char *p, const char **end)
3993 {
3994 *end = "";
3995 if (!startswith (p, CP_OPERATOR_STR))
3996 return *end;
3997 p += CP_OPERATOR_LEN;
3998
3999 /* Don't get faked out by `operator' being part of a longer
4000 identifier. */
4001 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4002 return *end;
4003
4004 /* Allow some whitespace between `operator' and the operator symbol. */
4005 while (*p == ' ' || *p == '\t')
4006 p++;
4007
4008 /* Recognize 'operator TYPENAME'. */
4009
4010 if (isalpha (*p) || *p == '_' || *p == '$')
4011 {
4012 const char *q = p + 1;
4013
4014 while (isalnum (*q) || *q == '_' || *q == '$')
4015 q++;
4016 *end = q;
4017 return p;
4018 }
4019
4020 while (*p)
4021 switch (*p)
4022 {
4023 case '\\': /* regexp quoting */
4024 if (p[1] == '*')
4025 {
4026 if (p[2] == '=') /* 'operator\*=' */
4027 *end = p + 3;
4028 else /* 'operator\*' */
4029 *end = p + 2;
4030 return p;
4031 }
4032 else if (p[1] == '[')
4033 {
4034 if (p[2] == ']')
4035 error (_("mismatched quoting on brackets, "
4036 "try 'operator\\[\\]'"));
4037 else if (p[2] == '\\' && p[3] == ']')
4038 {
4039 *end = p + 4; /* 'operator\[\]' */
4040 return p;
4041 }
4042 else
4043 error (_("nothing is allowed between '[' and ']'"));
4044 }
4045 else
4046 {
4047 /* Gratuitous quote: skip it and move on. */
4048 p++;
4049 continue;
4050 }
4051 break;
4052 case '!':
4053 case '=':
4054 case '*':
4055 case '/':
4056 case '%':
4057 case '^':
4058 if (p[1] == '=')
4059 *end = p + 2;
4060 else
4061 *end = p + 1;
4062 return p;
4063 case '<':
4064 case '>':
4065 case '+':
4066 case '-':
4067 case '&':
4068 case '|':
4069 if (p[0] == '-' && p[1] == '>')
4070 {
4071 /* Struct pointer member operator 'operator->'. */
4072 if (p[2] == '*')
4073 {
4074 *end = p + 3; /* 'operator->*' */
4075 return p;
4076 }
4077 else if (p[2] == '\\')
4078 {
4079 *end = p + 4; /* Hopefully 'operator->\*' */
4080 return p;
4081 }
4082 else
4083 {
4084 *end = p + 2; /* 'operator->' */
4085 return p;
4086 }
4087 }
4088 if (p[1] == '=' || p[1] == p[0])
4089 *end = p + 2;
4090 else
4091 *end = p + 1;
4092 return p;
4093 case '~':
4094 case ',':
4095 *end = p + 1;
4096 return p;
4097 case '(':
4098 if (p[1] != ')')
4099 error (_("`operator ()' must be specified "
4100 "without whitespace in `()'"));
4101 *end = p + 2;
4102 return p;
4103 case '?':
4104 if (p[1] != ':')
4105 error (_("`operator ?:' must be specified "
4106 "without whitespace in `?:'"));
4107 *end = p + 2;
4108 return p;
4109 case '[':
4110 if (p[1] != ']')
4111 error (_("`operator []' must be specified "
4112 "without whitespace in `[]'"));
4113 *end = p + 2;
4114 return p;
4115 default:
4116 error (_("`operator %s' not supported"), p);
4117 break;
4118 }
4119
4120 *end = "";
4121 return *end;
4122 }
4123 \f
4124
4125 /* What part to match in a file name. */
4126
4127 struct filename_partial_match_opts
4128 {
4129 /* Only match the directory name part. */
4130 bool dirname = false;
4131
4132 /* Only match the basename part. */
4133 bool basename = false;
4134 };
4135
4136 /* Data structure to maintain printing state for output_source_filename. */
4137
4138 struct output_source_filename_data
4139 {
4140 /* Output only filenames matching REGEXP. */
4141 std::string regexp;
4142 gdb::optional<compiled_regex> c_regexp;
4143 /* Possibly only match a part of the filename. */
4144 filename_partial_match_opts partial_match;
4145
4146
4147 /* Cache of what we've seen so far. */
4148 struct filename_seen_cache *filename_seen_cache;
4149
4150 /* Flag of whether we're printing the first one. */
4151 int first;
4152 };
4153
4154 /* Slave routine for sources_info. Force line breaks at ,'s.
4155 NAME is the name to print.
4156 DATA contains the state for printing and watching for duplicates. */
4157
4158 static void
4159 output_source_filename (const char *name,
4160 struct output_source_filename_data *data)
4161 {
4162 /* Since a single source file can result in several partial symbol
4163 tables, we need to avoid printing it more than once. Note: if
4164 some of the psymtabs are read in and some are not, it gets
4165 printed both under "Source files for which symbols have been
4166 read" and "Source files for which symbols will be read in on
4167 demand". I consider this a reasonable way to deal with the
4168 situation. I'm not sure whether this can also happen for
4169 symtabs; it doesn't hurt to check. */
4170
4171 /* Was NAME already seen? */
4172 if (data->filename_seen_cache->seen (name))
4173 {
4174 /* Yes; don't print it again. */
4175 return;
4176 }
4177
4178 /* Does it match data->regexp? */
4179 if (data->c_regexp.has_value ())
4180 {
4181 const char *to_match;
4182 std::string dirname;
4183
4184 if (data->partial_match.dirname)
4185 {
4186 dirname = ldirname (name);
4187 to_match = dirname.c_str ();
4188 }
4189 else if (data->partial_match.basename)
4190 to_match = lbasename (name);
4191 else
4192 to_match = name;
4193
4194 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4195 return;
4196 }
4197
4198 /* Print it and reset *FIRST. */
4199 if (! data->first)
4200 printf_filtered (", ");
4201 data->first = 0;
4202
4203 wrap_here ("");
4204 fputs_styled (name, file_name_style.style (), gdb_stdout);
4205 }
4206
4207 /* A callback for map_partial_symbol_filenames. */
4208
4209 static void
4210 output_partial_symbol_filename (const char *filename, const char *fullname,
4211 void *data)
4212 {
4213 output_source_filename (fullname ? fullname : filename,
4214 (struct output_source_filename_data *) data);
4215 }
4216
4217 using isrc_flag_option_def
4218 = gdb::option::flag_option_def<filename_partial_match_opts>;
4219
4220 static const gdb::option::option_def info_sources_option_defs[] = {
4221
4222 isrc_flag_option_def {
4223 "dirname",
4224 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4225 N_("Show only the files having a dirname matching REGEXP."),
4226 },
4227
4228 isrc_flag_option_def {
4229 "basename",
4230 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4231 N_("Show only the files having a basename matching REGEXP."),
4232 },
4233
4234 };
4235
4236 /* Create an option_def_group for the "info sources" options, with
4237 ISRC_OPTS as context. */
4238
4239 static inline gdb::option::option_def_group
4240 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4241 {
4242 return {{info_sources_option_defs}, isrc_opts};
4243 }
4244
4245 /* Prints the header message for the source files that will be printed
4246 with the matching info present in DATA. SYMBOL_MSG is a message
4247 that tells what will or has been done with the symbols of the
4248 matching source files. */
4249
4250 static void
4251 print_info_sources_header (const char *symbol_msg,
4252 const struct output_source_filename_data *data)
4253 {
4254 puts_filtered (symbol_msg);
4255 if (!data->regexp.empty ())
4256 {
4257 if (data->partial_match.dirname)
4258 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4259 data->regexp.c_str ());
4260 else if (data->partial_match.basename)
4261 printf_filtered (_("(basename matching regular expression \"%s\")"),
4262 data->regexp.c_str ());
4263 else
4264 printf_filtered (_("(filename matching regular expression \"%s\")"),
4265 data->regexp.c_str ());
4266 }
4267 puts_filtered ("\n");
4268 }
4269
4270 /* Completer for "info sources". */
4271
4272 static void
4273 info_sources_command_completer (cmd_list_element *ignore,
4274 completion_tracker &tracker,
4275 const char *text, const char *word)
4276 {
4277 const auto group = make_info_sources_options_def_group (nullptr);
4278 if (gdb::option::complete_options
4279 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4280 return;
4281 }
4282
4283 static void
4284 info_sources_command (const char *args, int from_tty)
4285 {
4286 struct output_source_filename_data data;
4287
4288 if (!have_full_symbols () && !have_partial_symbols ())
4289 {
4290 error (_("No symbol table is loaded. Use the \"file\" command."));
4291 }
4292
4293 filename_seen_cache filenames_seen;
4294
4295 auto group = make_info_sources_options_def_group (&data.partial_match);
4296
4297 gdb::option::process_options
4298 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4299
4300 if (args != NULL && *args != '\000')
4301 data.regexp = args;
4302
4303 data.filename_seen_cache = &filenames_seen;
4304 data.first = 1;
4305
4306 if (data.partial_match.dirname && data.partial_match.basename)
4307 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4308 if ((data.partial_match.dirname || data.partial_match.basename)
4309 && data.regexp.empty ())
4310 error (_("Missing REGEXP for 'info sources'."));
4311
4312 if (data.regexp.empty ())
4313 data.c_regexp.reset ();
4314 else
4315 {
4316 int cflags = REG_NOSUB;
4317 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4318 cflags |= REG_ICASE;
4319 #endif
4320 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4321 _("Invalid regexp"));
4322 }
4323
4324 print_info_sources_header
4325 (_("Source files for which symbols have been read in:\n"), &data);
4326
4327 for (objfile *objfile : current_program_space->objfiles ())
4328 {
4329 for (compunit_symtab *cu : objfile->compunits ())
4330 {
4331 for (symtab *s : compunit_filetabs (cu))
4332 {
4333 const char *fullname = symtab_to_fullname (s);
4334
4335 output_source_filename (fullname, &data);
4336 }
4337 }
4338 }
4339 printf_filtered ("\n\n");
4340
4341 print_info_sources_header
4342 (_("Source files for which symbols will be read in on demand:\n"), &data);
4343
4344 filenames_seen.clear ();
4345 data.first = 1;
4346 map_symbol_filenames (output_partial_symbol_filename, &data,
4347 1 /*need_fullname*/);
4348 printf_filtered ("\n");
4349 }
4350
4351 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4352 non-zero compare only lbasename of FILES. */
4353
4354 static int
4355 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4356 {
4357 int i;
4358
4359 if (file != NULL && nfiles != 0)
4360 {
4361 for (i = 0; i < nfiles; i++)
4362 {
4363 if (compare_filenames_for_search (file, (basenames
4364 ? lbasename (files[i])
4365 : files[i])))
4366 return 1;
4367 }
4368 }
4369 else if (nfiles == 0)
4370 return 1;
4371 return 0;
4372 }
4373
4374 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4375 sort symbols, not minimal symbols. */
4376
4377 int
4378 symbol_search::compare_search_syms (const symbol_search &sym_a,
4379 const symbol_search &sym_b)
4380 {
4381 int c;
4382
4383 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4384 symbol_symtab (sym_b.symbol)->filename);
4385 if (c != 0)
4386 return c;
4387
4388 if (sym_a.block != sym_b.block)
4389 return sym_a.block - sym_b.block;
4390
4391 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4392 SYMBOL_PRINT_NAME (sym_b.symbol));
4393 }
4394
4395 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4396 If SYM has no symbol_type or symbol_name, returns false. */
4397
4398 bool
4399 treg_matches_sym_type_name (const compiled_regex &treg,
4400 const struct symbol *sym)
4401 {
4402 struct type *sym_type;
4403 std::string printed_sym_type_name;
4404
4405 if (symbol_lookup_debug > 1)
4406 {
4407 fprintf_unfiltered (gdb_stdlog,
4408 "treg_matches_sym_type_name\n sym %s\n",
4409 SYMBOL_NATURAL_NAME (sym));
4410 }
4411
4412 sym_type = SYMBOL_TYPE (sym);
4413 if (sym_type == NULL)
4414 return false;
4415
4416 {
4417 scoped_switch_to_sym_language_if_auto l (sym);
4418
4419 printed_sym_type_name = type_to_string (sym_type);
4420 }
4421
4422
4423 if (symbol_lookup_debug > 1)
4424 {
4425 fprintf_unfiltered (gdb_stdlog,
4426 " sym_type_name %s\n",
4427 printed_sym_type_name.c_str ());
4428 }
4429
4430
4431 if (printed_sym_type_name.empty ())
4432 return false;
4433
4434 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4435 }
4436
4437
4438 /* Sort the symbols in RESULT and remove duplicates. */
4439
4440 static void
4441 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4442 {
4443 std::sort (result->begin (), result->end ());
4444 result->erase (std::unique (result->begin (), result->end ()),
4445 result->end ());
4446 }
4447
4448 /* Search the symbol table for matches to the regular expression REGEXP,
4449 returning the results.
4450
4451 Only symbols of KIND are searched:
4452 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4453 and constants (enums).
4454 if T_REGEXP is not NULL, only returns var that have
4455 a type matching regular expression T_REGEXP.
4456 FUNCTIONS_DOMAIN - search all functions
4457 TYPES_DOMAIN - search all type names
4458 ALL_DOMAIN - an internal error for this function
4459
4460 Within each file the results are sorted locally; each symtab's global and
4461 static blocks are separately alphabetized.
4462 Duplicate entries are removed.
4463
4464 When EXCLUDE_MINSYMS is false then matching minsyms are also returned,
4465 otherwise they are excluded. */
4466
4467 std::vector<symbol_search>
4468 search_symbols (const char *regexp, enum search_domain kind,
4469 const char *t_regexp,
4470 int nfiles, const char *files[],
4471 bool exclude_minsyms)
4472 {
4473 const struct blockvector *bv;
4474 const struct block *b;
4475 int i = 0;
4476 struct block_iterator iter;
4477 struct symbol *sym;
4478 int found_misc = 0;
4479 static const enum minimal_symbol_type types[]
4480 = {mst_data, mst_text, mst_unknown};
4481 static const enum minimal_symbol_type types2[]
4482 = {mst_bss, mst_file_text, mst_unknown};
4483 static const enum minimal_symbol_type types3[]
4484 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4485 static const enum minimal_symbol_type types4[]
4486 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4487 enum minimal_symbol_type ourtype;
4488 enum minimal_symbol_type ourtype2;
4489 enum minimal_symbol_type ourtype3;
4490 enum minimal_symbol_type ourtype4;
4491 std::vector<symbol_search> result;
4492 gdb::optional<compiled_regex> preg;
4493 gdb::optional<compiled_regex> treg;
4494
4495 gdb_assert (kind <= TYPES_DOMAIN);
4496
4497 ourtype = types[kind];
4498 ourtype2 = types2[kind];
4499 ourtype3 = types3[kind];
4500 ourtype4 = types4[kind];
4501
4502 if (regexp != NULL)
4503 {
4504 /* Make sure spacing is right for C++ operators.
4505 This is just a courtesy to make the matching less sensitive
4506 to how many spaces the user leaves between 'operator'
4507 and <TYPENAME> or <OPERATOR>. */
4508 const char *opend;
4509 const char *opname = operator_chars (regexp, &opend);
4510
4511 if (*opname)
4512 {
4513 int fix = -1; /* -1 means ok; otherwise number of
4514 spaces needed. */
4515
4516 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4517 {
4518 /* There should 1 space between 'operator' and 'TYPENAME'. */
4519 if (opname[-1] != ' ' || opname[-2] == ' ')
4520 fix = 1;
4521 }
4522 else
4523 {
4524 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4525 if (opname[-1] == ' ')
4526 fix = 0;
4527 }
4528 /* If wrong number of spaces, fix it. */
4529 if (fix >= 0)
4530 {
4531 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4532
4533 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4534 regexp = tmp;
4535 }
4536 }
4537
4538 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4539 ? REG_ICASE : 0);
4540 preg.emplace (regexp, cflags, _("Invalid regexp"));
4541 }
4542
4543 if (t_regexp != NULL)
4544 {
4545 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4546 ? REG_ICASE : 0);
4547 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4548 }
4549
4550 /* Search through the partial symtabs *first* for all symbols
4551 matching the regexp. That way we don't have to reproduce all of
4552 the machinery below. */
4553 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4554 {
4555 return file_matches (filename, files, nfiles,
4556 basenames);
4557 },
4558 lookup_name_info::match_any (),
4559 [&] (const char *symname)
4560 {
4561 return (!preg.has_value ()
4562 || preg->exec (symname,
4563 0, NULL, 0) == 0);
4564 },
4565 NULL,
4566 kind);
4567
4568 /* Here, we search through the minimal symbol tables for functions
4569 and variables that match, and force their symbols to be read.
4570 This is in particular necessary for demangled variable names,
4571 which are no longer put into the partial symbol tables.
4572 The symbol will then be found during the scan of symtabs below.
4573
4574 For functions, find_pc_symtab should succeed if we have debug info
4575 for the function, for variables we have to call
4576 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4577 has debug info.
4578 If the lookup fails, set found_misc so that we will rescan to print
4579 any matching symbols without debug info.
4580 We only search the objfile the msymbol came from, we no longer search
4581 all objfiles. In large programs (1000s of shared libs) searching all
4582 objfiles is not worth the pain. */
4583
4584 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4585 {
4586 for (objfile *objfile : current_program_space->objfiles ())
4587 {
4588 for (minimal_symbol *msymbol : objfile->msymbols ())
4589 {
4590 QUIT;
4591
4592 if (msymbol->created_by_gdb)
4593 continue;
4594
4595 if (MSYMBOL_TYPE (msymbol) == ourtype
4596 || MSYMBOL_TYPE (msymbol) == ourtype2
4597 || MSYMBOL_TYPE (msymbol) == ourtype3
4598 || MSYMBOL_TYPE (msymbol) == ourtype4)
4599 {
4600 if (!preg.has_value ()
4601 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4602 NULL, 0) == 0)
4603 {
4604 /* Note: An important side-effect of these
4605 lookup functions is to expand the symbol
4606 table if msymbol is found, for the benefit of
4607 the next loop on compunits. */
4608 if (kind == FUNCTIONS_DOMAIN
4609 ? (find_pc_compunit_symtab
4610 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4611 == NULL)
4612 : (lookup_symbol_in_objfile_from_linkage_name
4613 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4614 VAR_DOMAIN)
4615 .symbol == NULL))
4616 found_misc = 1;
4617 }
4618 }
4619 }
4620 }
4621 }
4622
4623 for (objfile *objfile : current_program_space->objfiles ())
4624 {
4625 for (compunit_symtab *cust : objfile->compunits ())
4626 {
4627 bv = COMPUNIT_BLOCKVECTOR (cust);
4628 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4629 {
4630 b = BLOCKVECTOR_BLOCK (bv, i);
4631 ALL_BLOCK_SYMBOLS (b, iter, sym)
4632 {
4633 struct symtab *real_symtab = symbol_symtab (sym);
4634
4635 QUIT;
4636
4637 /* Check first sole REAL_SYMTAB->FILENAME. It does
4638 not need to be a substring of symtab_to_fullname as
4639 it may contain "./" etc. */
4640 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4641 || ((basenames_may_differ
4642 || file_matches (lbasename (real_symtab->filename),
4643 files, nfiles, 1))
4644 && file_matches (symtab_to_fullname (real_symtab),
4645 files, nfiles, 0)))
4646 && ((!preg.has_value ()
4647 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4648 NULL, 0) == 0)
4649 && ((kind == VARIABLES_DOMAIN
4650 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4651 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4652 && SYMBOL_CLASS (sym) != LOC_BLOCK
4653 /* LOC_CONST can be used for more than
4654 just enums, e.g., c++ static const
4655 members. We only want to skip enums
4656 here. */
4657 && !(SYMBOL_CLASS (sym) == LOC_CONST
4658 && (TYPE_CODE (SYMBOL_TYPE (sym))
4659 == TYPE_CODE_ENUM))
4660 && (!treg.has_value ()
4661 || treg_matches_sym_type_name (*treg, sym)))
4662 || (kind == FUNCTIONS_DOMAIN
4663 && SYMBOL_CLASS (sym) == LOC_BLOCK
4664 && (!treg.has_value ()
4665 || treg_matches_sym_type_name (*treg,
4666 sym)))
4667 || (kind == TYPES_DOMAIN
4668 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4669 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN))))
4670 {
4671 /* match */
4672 result.emplace_back (i, sym);
4673 }
4674 }
4675 }
4676 }
4677 }
4678
4679 if (!result.empty ())
4680 sort_search_symbols_remove_dups (&result);
4681
4682 /* If there are no eyes, avoid all contact. I mean, if there are
4683 no debug symbols, then add matching minsyms. But if the user wants
4684 to see symbols matching a type regexp, then never give a minimal symbol,
4685 as we assume that a minimal symbol does not have a type. */
4686
4687 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4688 && !exclude_minsyms
4689 && !treg.has_value ())
4690 {
4691 for (objfile *objfile : current_program_space->objfiles ())
4692 {
4693 for (minimal_symbol *msymbol : objfile->msymbols ())
4694 {
4695 QUIT;
4696
4697 if (msymbol->created_by_gdb)
4698 continue;
4699
4700 if (MSYMBOL_TYPE (msymbol) == ourtype
4701 || MSYMBOL_TYPE (msymbol) == ourtype2
4702 || MSYMBOL_TYPE (msymbol) == ourtype3
4703 || MSYMBOL_TYPE (msymbol) == ourtype4)
4704 {
4705 if (!preg.has_value ()
4706 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4707 NULL, 0) == 0)
4708 {
4709 /* For functions we can do a quick check of whether the
4710 symbol might be found via find_pc_symtab. */
4711 if (kind != FUNCTIONS_DOMAIN
4712 || (find_pc_compunit_symtab
4713 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4714 == NULL))
4715 {
4716 if (lookup_symbol_in_objfile_from_linkage_name
4717 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4718 VAR_DOMAIN)
4719 .symbol == NULL)
4720 {
4721 /* match */
4722 result.emplace_back (i, msymbol, objfile);
4723 }
4724 }
4725 }
4726 }
4727 }
4728 }
4729 }
4730
4731 return result;
4732 }
4733
4734 /* Helper function for symtab_symbol_info, this function uses
4735 the data returned from search_symbols() to print information
4736 regarding the match to gdb_stdout. If LAST is not NULL,
4737 print file and line number information for the symbol as
4738 well. Skip printing the filename if it matches LAST. */
4739
4740 static void
4741 print_symbol_info (enum search_domain kind,
4742 struct symbol *sym,
4743 int block, const char *last)
4744 {
4745 scoped_switch_to_sym_language_if_auto l (sym);
4746 struct symtab *s = symbol_symtab (sym);
4747
4748 if (last != NULL)
4749 {
4750 const char *s_filename = symtab_to_filename_for_display (s);
4751
4752 if (filename_cmp (last, s_filename) != 0)
4753 {
4754 printf_filtered (_("\nFile %ps:\n"),
4755 styled_string (file_name_style.style (),
4756 s_filename));
4757 }
4758
4759 if (SYMBOL_LINE (sym) != 0)
4760 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4761 else
4762 puts_filtered ("\t");
4763 }
4764
4765 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4766 printf_filtered ("static ");
4767
4768 /* Typedef that is not a C++ class. */
4769 if (kind == TYPES_DOMAIN
4770 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4771 {
4772 /* FIXME: For C (and C++) we end up with a difference in output here
4773 between how a typedef is printed, and non-typedefs are printed.
4774 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4775 appear C-like, while TYPE_PRINT doesn't.
4776
4777 For the struct printing case below, things are worse, we force
4778 printing of the ";" in this function, which is going to be wrong
4779 for languages that don't require a ";" between statements. */
4780 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4781 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4782 else
4783 {
4784 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4785 printf_filtered ("\n");
4786 }
4787 }
4788 /* variable, func, or typedef-that-is-c++-class. */
4789 else if (kind < TYPES_DOMAIN
4790 || (kind == TYPES_DOMAIN
4791 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4792 {
4793 type_print (SYMBOL_TYPE (sym),
4794 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4795 ? "" : SYMBOL_PRINT_NAME (sym)),
4796 gdb_stdout, 0);
4797
4798 printf_filtered (";\n");
4799 }
4800 }
4801
4802 /* This help function for symtab_symbol_info() prints information
4803 for non-debugging symbols to gdb_stdout. */
4804
4805 static void
4806 print_msymbol_info (struct bound_minimal_symbol msymbol)
4807 {
4808 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4809 char *tmp;
4810
4811 if (gdbarch_addr_bit (gdbarch) <= 32)
4812 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4813 & (CORE_ADDR) 0xffffffff,
4814 8);
4815 else
4816 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4817 16);
4818
4819 ui_file_style sym_style = (msymbol.minsym->text_p ()
4820 ? function_name_style.style ()
4821 : ui_file_style ());
4822
4823 printf_filtered (_("%ps %ps\n"),
4824 styled_string (address_style.style (), tmp),
4825 styled_string (sym_style,
4826 MSYMBOL_PRINT_NAME (msymbol.minsym)));
4827 }
4828
4829 /* This is the guts of the commands "info functions", "info types", and
4830 "info variables". It calls search_symbols to find all matches and then
4831 print_[m]symbol_info to print out some useful information about the
4832 matches. */
4833
4834 static void
4835 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4836 const char *regexp, enum search_domain kind,
4837 const char *t_regexp, int from_tty)
4838 {
4839 static const char * const classnames[] =
4840 {"variable", "function", "type"};
4841 const char *last_filename = "";
4842 int first = 1;
4843
4844 gdb_assert (kind <= TYPES_DOMAIN);
4845
4846 if (regexp != nullptr && *regexp == '\0')
4847 regexp = nullptr;
4848
4849 /* Must make sure that if we're interrupted, symbols gets freed. */
4850 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4851 t_regexp, 0, NULL,
4852 exclude_minsyms);
4853
4854 if (!quiet)
4855 {
4856 if (regexp != NULL)
4857 {
4858 if (t_regexp != NULL)
4859 printf_filtered
4860 (_("All %ss matching regular expression \"%s\""
4861 " with type matching regular expression \"%s\":\n"),
4862 classnames[kind], regexp, t_regexp);
4863 else
4864 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4865 classnames[kind], regexp);
4866 }
4867 else
4868 {
4869 if (t_regexp != NULL)
4870 printf_filtered
4871 (_("All defined %ss"
4872 " with type matching regular expression \"%s\" :\n"),
4873 classnames[kind], t_regexp);
4874 else
4875 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4876 }
4877 }
4878
4879 for (const symbol_search &p : symbols)
4880 {
4881 QUIT;
4882
4883 if (p.msymbol.minsym != NULL)
4884 {
4885 if (first)
4886 {
4887 if (!quiet)
4888 printf_filtered (_("\nNon-debugging symbols:\n"));
4889 first = 0;
4890 }
4891 print_msymbol_info (p.msymbol);
4892 }
4893 else
4894 {
4895 print_symbol_info (kind,
4896 p.symbol,
4897 p.block,
4898 last_filename);
4899 last_filename
4900 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4901 }
4902 }
4903 }
4904
4905 /* Structure to hold the values of the options used by the 'info variables'
4906 and 'info functions' commands. These correspond to the -q, -t, and -n
4907 options. */
4908
4909 struct info_print_options
4910 {
4911 bool quiet = false;
4912 bool exclude_minsyms = false;
4913 char *type_regexp = nullptr;
4914
4915 ~info_print_options ()
4916 {
4917 xfree (type_regexp);
4918 }
4919 };
4920
4921 /* The options used by the 'info variables' and 'info functions'
4922 commands. */
4923
4924 static const gdb::option::option_def info_print_options_defs[] = {
4925 gdb::option::boolean_option_def<info_print_options> {
4926 "q",
4927 [] (info_print_options *opt) { return &opt->quiet; },
4928 nullptr, /* show_cmd_cb */
4929 nullptr /* set_doc */
4930 },
4931
4932 gdb::option::boolean_option_def<info_print_options> {
4933 "n",
4934 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4935 nullptr, /* show_cmd_cb */
4936 nullptr /* set_doc */
4937 },
4938
4939 gdb::option::string_option_def<info_print_options> {
4940 "t",
4941 [] (info_print_options *opt) { return &opt->type_regexp; },
4942 nullptr, /* show_cmd_cb */
4943 nullptr /* set_doc */
4944 }
4945 };
4946
4947 /* Returns the option group used by 'info variables' and 'info
4948 functions'. */
4949
4950 static gdb::option::option_def_group
4951 make_info_print_options_def_group (info_print_options *opts)
4952 {
4953 return {{info_print_options_defs}, opts};
4954 }
4955
4956 /* Command completer for 'info variables' and 'info functions'. */
4957
4958 static void
4959 info_print_command_completer (struct cmd_list_element *ignore,
4960 completion_tracker &tracker,
4961 const char *text, const char * /* word */)
4962 {
4963 const auto group
4964 = make_info_print_options_def_group (nullptr);
4965 if (gdb::option::complete_options
4966 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4967 return;
4968
4969 const char *word = advance_to_expression_complete_word_point (tracker, text);
4970 symbol_completer (ignore, tracker, text, word);
4971 }
4972
4973 /* Implement the 'info variables' command. */
4974
4975 static void
4976 info_variables_command (const char *args, int from_tty)
4977 {
4978 info_print_options opts;
4979 auto grp = make_info_print_options_def_group (&opts);
4980 gdb::option::process_options
4981 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4982 if (args != nullptr && *args == '\0')
4983 args = nullptr;
4984
4985 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4986 opts.type_regexp, from_tty);
4987 }
4988
4989 /* Implement the 'info functions' command. */
4990
4991 static void
4992 info_functions_command (const char *args, int from_tty)
4993 {
4994 info_print_options opts;
4995 auto grp = make_info_print_options_def_group (&opts);
4996 gdb::option::process_options
4997 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4998 if (args != nullptr && *args == '\0')
4999 args = nullptr;
5000
5001 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5002 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5003 }
5004
5005 /* Holds the -q option for the 'info types' command. */
5006
5007 struct info_types_options
5008 {
5009 bool quiet = false;
5010 };
5011
5012 /* The options used by the 'info types' command. */
5013
5014 static const gdb::option::option_def info_types_options_defs[] = {
5015 gdb::option::boolean_option_def<info_types_options> {
5016 "q",
5017 [] (info_types_options *opt) { return &opt->quiet; },
5018 nullptr, /* show_cmd_cb */
5019 nullptr /* set_doc */
5020 }
5021 };
5022
5023 /* Returns the option group used by 'info types'. */
5024
5025 static gdb::option::option_def_group
5026 make_info_types_options_def_group (info_types_options *opts)
5027 {
5028 return {{info_types_options_defs}, opts};
5029 }
5030
5031 /* Implement the 'info types' command. */
5032
5033 static void
5034 info_types_command (const char *args, int from_tty)
5035 {
5036 info_types_options opts;
5037
5038 auto grp = make_info_types_options_def_group (&opts);
5039 gdb::option::process_options
5040 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5041 if (args != nullptr && *args == '\0')
5042 args = nullptr;
5043 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5044 }
5045
5046 /* Command completer for 'info types' command. */
5047
5048 static void
5049 info_types_command_completer (struct cmd_list_element *ignore,
5050 completion_tracker &tracker,
5051 const char *text, const char * /* word */)
5052 {
5053 const auto group
5054 = make_info_types_options_def_group (nullptr);
5055 if (gdb::option::complete_options
5056 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5057 return;
5058
5059 const char *word = advance_to_expression_complete_word_point (tracker, text);
5060 symbol_completer (ignore, tracker, text, word);
5061 }
5062
5063 /* Breakpoint all functions matching regular expression. */
5064
5065 void
5066 rbreak_command_wrapper (char *regexp, int from_tty)
5067 {
5068 rbreak_command (regexp, from_tty);
5069 }
5070
5071 static void
5072 rbreak_command (const char *regexp, int from_tty)
5073 {
5074 std::string string;
5075 const char **files = NULL;
5076 const char *file_name;
5077 int nfiles = 0;
5078
5079 if (regexp)
5080 {
5081 const char *colon = strchr (regexp, ':');
5082
5083 if (colon && *(colon + 1) != ':')
5084 {
5085 int colon_index;
5086 char *local_name;
5087
5088 colon_index = colon - regexp;
5089 local_name = (char *) alloca (colon_index + 1);
5090 memcpy (local_name, regexp, colon_index);
5091 local_name[colon_index--] = 0;
5092 while (isspace (local_name[colon_index]))
5093 local_name[colon_index--] = 0;
5094 file_name = local_name;
5095 files = &file_name;
5096 nfiles = 1;
5097 regexp = skip_spaces (colon + 1);
5098 }
5099 }
5100
5101 std::vector<symbol_search> symbols = search_symbols (regexp,
5102 FUNCTIONS_DOMAIN,
5103 NULL,
5104 nfiles, files,
5105 false);
5106
5107 scoped_rbreak_breakpoints finalize;
5108 for (const symbol_search &p : symbols)
5109 {
5110 if (p.msymbol.minsym == NULL)
5111 {
5112 struct symtab *symtab = symbol_symtab (p.symbol);
5113 const char *fullname = symtab_to_fullname (symtab);
5114
5115 string = string_printf ("%s:'%s'", fullname,
5116 SYMBOL_LINKAGE_NAME (p.symbol));
5117 break_command (&string[0], from_tty);
5118 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5119 }
5120 else
5121 {
5122 string = string_printf ("'%s'",
5123 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5124
5125 break_command (&string[0], from_tty);
5126 printf_filtered ("<function, no debug info> %s;\n",
5127 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5128 }
5129 }
5130 }
5131 \f
5132
5133 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5134
5135 static int
5136 compare_symbol_name (const char *symbol_name, language symbol_language,
5137 const lookup_name_info &lookup_name,
5138 completion_match_result &match_res)
5139 {
5140 const language_defn *lang = language_def (symbol_language);
5141
5142 symbol_name_matcher_ftype *name_match
5143 = get_symbol_name_matcher (lang, lookup_name);
5144
5145 return name_match (symbol_name, lookup_name, &match_res);
5146 }
5147
5148 /* See symtab.h. */
5149
5150 void
5151 completion_list_add_name (completion_tracker &tracker,
5152 language symbol_language,
5153 const char *symname,
5154 const lookup_name_info &lookup_name,
5155 const char *text, const char *word)
5156 {
5157 completion_match_result &match_res
5158 = tracker.reset_completion_match_result ();
5159
5160 /* Clip symbols that cannot match. */
5161 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5162 return;
5163
5164 /* Refresh SYMNAME from the match string. It's potentially
5165 different depending on language. (E.g., on Ada, the match may be
5166 the encoded symbol name wrapped in "<>"). */
5167 symname = match_res.match.match ();
5168 gdb_assert (symname != NULL);
5169
5170 /* We have a match for a completion, so add SYMNAME to the current list
5171 of matches. Note that the name is moved to freshly malloc'd space. */
5172
5173 {
5174 gdb::unique_xmalloc_ptr<char> completion
5175 = make_completion_match_str (symname, text, word);
5176
5177 /* Here we pass the match-for-lcd object to add_completion. Some
5178 languages match the user text against substrings of symbol
5179 names in some cases. E.g., in C++, "b push_ba" completes to
5180 "std::vector::push_back", "std::string::push_back", etc., and
5181 in this case we want the completion lowest common denominator
5182 to be "push_back" instead of "std::". */
5183 tracker.add_completion (std::move (completion),
5184 &match_res.match_for_lcd, text, word);
5185 }
5186 }
5187
5188 /* completion_list_add_name wrapper for struct symbol. */
5189
5190 static void
5191 completion_list_add_symbol (completion_tracker &tracker,
5192 symbol *sym,
5193 const lookup_name_info &lookup_name,
5194 const char *text, const char *word)
5195 {
5196 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5197 SYMBOL_NATURAL_NAME (sym),
5198 lookup_name, text, word);
5199 }
5200
5201 /* completion_list_add_name wrapper for struct minimal_symbol. */
5202
5203 static void
5204 completion_list_add_msymbol (completion_tracker &tracker,
5205 minimal_symbol *sym,
5206 const lookup_name_info &lookup_name,
5207 const char *text, const char *word)
5208 {
5209 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5210 MSYMBOL_NATURAL_NAME (sym),
5211 lookup_name, text, word);
5212 }
5213
5214
5215 /* ObjC: In case we are completing on a selector, look as the msymbol
5216 again and feed all the selectors into the mill. */
5217
5218 static void
5219 completion_list_objc_symbol (completion_tracker &tracker,
5220 struct minimal_symbol *msymbol,
5221 const lookup_name_info &lookup_name,
5222 const char *text, const char *word)
5223 {
5224 static char *tmp = NULL;
5225 static unsigned int tmplen = 0;
5226
5227 const char *method, *category, *selector;
5228 char *tmp2 = NULL;
5229
5230 method = MSYMBOL_NATURAL_NAME (msymbol);
5231
5232 /* Is it a method? */
5233 if ((method[0] != '-') && (method[0] != '+'))
5234 return;
5235
5236 if (text[0] == '[')
5237 /* Complete on shortened method method. */
5238 completion_list_add_name (tracker, language_objc,
5239 method + 1,
5240 lookup_name,
5241 text, word);
5242
5243 while ((strlen (method) + 1) >= tmplen)
5244 {
5245 if (tmplen == 0)
5246 tmplen = 1024;
5247 else
5248 tmplen *= 2;
5249 tmp = (char *) xrealloc (tmp, tmplen);
5250 }
5251 selector = strchr (method, ' ');
5252 if (selector != NULL)
5253 selector++;
5254
5255 category = strchr (method, '(');
5256
5257 if ((category != NULL) && (selector != NULL))
5258 {
5259 memcpy (tmp, method, (category - method));
5260 tmp[category - method] = ' ';
5261 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5262 completion_list_add_name (tracker, language_objc, tmp,
5263 lookup_name, text, word);
5264 if (text[0] == '[')
5265 completion_list_add_name (tracker, language_objc, tmp + 1,
5266 lookup_name, text, word);
5267 }
5268
5269 if (selector != NULL)
5270 {
5271 /* Complete on selector only. */
5272 strcpy (tmp, selector);
5273 tmp2 = strchr (tmp, ']');
5274 if (tmp2 != NULL)
5275 *tmp2 = '\0';
5276
5277 completion_list_add_name (tracker, language_objc, tmp,
5278 lookup_name, text, word);
5279 }
5280 }
5281
5282 /* Break the non-quoted text based on the characters which are in
5283 symbols. FIXME: This should probably be language-specific. */
5284
5285 static const char *
5286 language_search_unquoted_string (const char *text, const char *p)
5287 {
5288 for (; p > text; --p)
5289 {
5290 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5291 continue;
5292 else
5293 {
5294 if ((current_language->la_language == language_objc))
5295 {
5296 if (p[-1] == ':') /* Might be part of a method name. */
5297 continue;
5298 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5299 p -= 2; /* Beginning of a method name. */
5300 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5301 { /* Might be part of a method name. */
5302 const char *t = p;
5303
5304 /* Seeing a ' ' or a '(' is not conclusive evidence
5305 that we are in the middle of a method name. However,
5306 finding "-[" or "+[" should be pretty un-ambiguous.
5307 Unfortunately we have to find it now to decide. */
5308
5309 while (t > text)
5310 if (isalnum (t[-1]) || t[-1] == '_' ||
5311 t[-1] == ' ' || t[-1] == ':' ||
5312 t[-1] == '(' || t[-1] == ')')
5313 --t;
5314 else
5315 break;
5316
5317 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5318 p = t - 2; /* Method name detected. */
5319 /* Else we leave with p unchanged. */
5320 }
5321 }
5322 break;
5323 }
5324 }
5325 return p;
5326 }
5327
5328 static void
5329 completion_list_add_fields (completion_tracker &tracker,
5330 struct symbol *sym,
5331 const lookup_name_info &lookup_name,
5332 const char *text, const char *word)
5333 {
5334 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5335 {
5336 struct type *t = SYMBOL_TYPE (sym);
5337 enum type_code c = TYPE_CODE (t);
5338 int j;
5339
5340 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5341 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5342 if (TYPE_FIELD_NAME (t, j))
5343 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5344 TYPE_FIELD_NAME (t, j),
5345 lookup_name, text, word);
5346 }
5347 }
5348
5349 /* See symtab.h. */
5350
5351 bool
5352 symbol_is_function_or_method (symbol *sym)
5353 {
5354 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5355 {
5356 case TYPE_CODE_FUNC:
5357 case TYPE_CODE_METHOD:
5358 return true;
5359 default:
5360 return false;
5361 }
5362 }
5363
5364 /* See symtab.h. */
5365
5366 bool
5367 symbol_is_function_or_method (minimal_symbol *msymbol)
5368 {
5369 switch (MSYMBOL_TYPE (msymbol))
5370 {
5371 case mst_text:
5372 case mst_text_gnu_ifunc:
5373 case mst_solib_trampoline:
5374 case mst_file_text:
5375 return true;
5376 default:
5377 return false;
5378 }
5379 }
5380
5381 /* See symtab.h. */
5382
5383 bound_minimal_symbol
5384 find_gnu_ifunc (const symbol *sym)
5385 {
5386 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5387 return {};
5388
5389 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5390 symbol_name_match_type::SEARCH_NAME);
5391 struct objfile *objfile = symbol_objfile (sym);
5392
5393 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5394 minimal_symbol *ifunc = NULL;
5395
5396 iterate_over_minimal_symbols (objfile, lookup_name,
5397 [&] (minimal_symbol *minsym)
5398 {
5399 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5400 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5401 {
5402 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5403 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5404 {
5405 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5406 msym_addr
5407 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5408 msym_addr,
5409 current_top_target ());
5410 }
5411 if (msym_addr == address)
5412 {
5413 ifunc = minsym;
5414 return true;
5415 }
5416 }
5417 return false;
5418 });
5419
5420 if (ifunc != NULL)
5421 return {ifunc, objfile};
5422 return {};
5423 }
5424
5425 /* Add matching symbols from SYMTAB to the current completion list. */
5426
5427 static void
5428 add_symtab_completions (struct compunit_symtab *cust,
5429 completion_tracker &tracker,
5430 complete_symbol_mode mode,
5431 const lookup_name_info &lookup_name,
5432 const char *text, const char *word,
5433 enum type_code code)
5434 {
5435 struct symbol *sym;
5436 const struct block *b;
5437 struct block_iterator iter;
5438 int i;
5439
5440 if (cust == NULL)
5441 return;
5442
5443 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5444 {
5445 QUIT;
5446 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5447 ALL_BLOCK_SYMBOLS (b, iter, sym)
5448 {
5449 if (completion_skip_symbol (mode, sym))
5450 continue;
5451
5452 if (code == TYPE_CODE_UNDEF
5453 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5454 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5455 completion_list_add_symbol (tracker, sym,
5456 lookup_name,
5457 text, word);
5458 }
5459 }
5460 }
5461
5462 void
5463 default_collect_symbol_completion_matches_break_on
5464 (completion_tracker &tracker, complete_symbol_mode mode,
5465 symbol_name_match_type name_match_type,
5466 const char *text, const char *word,
5467 const char *break_on, enum type_code code)
5468 {
5469 /* Problem: All of the symbols have to be copied because readline
5470 frees them. I'm not going to worry about this; hopefully there
5471 won't be that many. */
5472
5473 struct symbol *sym;
5474 const struct block *b;
5475 const struct block *surrounding_static_block, *surrounding_global_block;
5476 struct block_iterator iter;
5477 /* The symbol we are completing on. Points in same buffer as text. */
5478 const char *sym_text;
5479
5480 /* Now look for the symbol we are supposed to complete on. */
5481 if (mode == complete_symbol_mode::LINESPEC)
5482 sym_text = text;
5483 else
5484 {
5485 const char *p;
5486 char quote_found;
5487 const char *quote_pos = NULL;
5488
5489 /* First see if this is a quoted string. */
5490 quote_found = '\0';
5491 for (p = text; *p != '\0'; ++p)
5492 {
5493 if (quote_found != '\0')
5494 {
5495 if (*p == quote_found)
5496 /* Found close quote. */
5497 quote_found = '\0';
5498 else if (*p == '\\' && p[1] == quote_found)
5499 /* A backslash followed by the quote character
5500 doesn't end the string. */
5501 ++p;
5502 }
5503 else if (*p == '\'' || *p == '"')
5504 {
5505 quote_found = *p;
5506 quote_pos = p;
5507 }
5508 }
5509 if (quote_found == '\'')
5510 /* A string within single quotes can be a symbol, so complete on it. */
5511 sym_text = quote_pos + 1;
5512 else if (quote_found == '"')
5513 /* A double-quoted string is never a symbol, nor does it make sense
5514 to complete it any other way. */
5515 {
5516 return;
5517 }
5518 else
5519 {
5520 /* It is not a quoted string. Break it based on the characters
5521 which are in symbols. */
5522 while (p > text)
5523 {
5524 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5525 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5526 --p;
5527 else
5528 break;
5529 }
5530 sym_text = p;
5531 }
5532 }
5533
5534 lookup_name_info lookup_name (sym_text, name_match_type, true);
5535
5536 /* At this point scan through the misc symbol vectors and add each
5537 symbol you find to the list. Eventually we want to ignore
5538 anything that isn't a text symbol (everything else will be
5539 handled by the psymtab code below). */
5540
5541 if (code == TYPE_CODE_UNDEF)
5542 {
5543 for (objfile *objfile : current_program_space->objfiles ())
5544 {
5545 for (minimal_symbol *msymbol : objfile->msymbols ())
5546 {
5547 QUIT;
5548
5549 if (completion_skip_symbol (mode, msymbol))
5550 continue;
5551
5552 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5553 sym_text, word);
5554
5555 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5556 sym_text, word);
5557 }
5558 }
5559 }
5560
5561 /* Add completions for all currently loaded symbol tables. */
5562 for (objfile *objfile : current_program_space->objfiles ())
5563 {
5564 for (compunit_symtab *cust : objfile->compunits ())
5565 add_symtab_completions (cust, tracker, mode, lookup_name,
5566 sym_text, word, code);
5567 }
5568
5569 /* Look through the partial symtabs for all symbols which begin by
5570 matching SYM_TEXT. Expand all CUs that you find to the list. */
5571 expand_symtabs_matching (NULL,
5572 lookup_name,
5573 NULL,
5574 [&] (compunit_symtab *symtab) /* expansion notify */
5575 {
5576 add_symtab_completions (symtab,
5577 tracker, mode, lookup_name,
5578 sym_text, word, code);
5579 },
5580 ALL_DOMAIN);
5581
5582 /* Search upwards from currently selected frame (so that we can
5583 complete on local vars). Also catch fields of types defined in
5584 this places which match our text string. Only complete on types
5585 visible from current context. */
5586
5587 b = get_selected_block (0);
5588 surrounding_static_block = block_static_block (b);
5589 surrounding_global_block = block_global_block (b);
5590 if (surrounding_static_block != NULL)
5591 while (b != surrounding_static_block)
5592 {
5593 QUIT;
5594
5595 ALL_BLOCK_SYMBOLS (b, iter, sym)
5596 {
5597 if (code == TYPE_CODE_UNDEF)
5598 {
5599 completion_list_add_symbol (tracker, sym, lookup_name,
5600 sym_text, word);
5601 completion_list_add_fields (tracker, sym, lookup_name,
5602 sym_text, word);
5603 }
5604 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5605 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5606 completion_list_add_symbol (tracker, sym, lookup_name,
5607 sym_text, word);
5608 }
5609
5610 /* Stop when we encounter an enclosing function. Do not stop for
5611 non-inlined functions - the locals of the enclosing function
5612 are in scope for a nested function. */
5613 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5614 break;
5615 b = BLOCK_SUPERBLOCK (b);
5616 }
5617
5618 /* Add fields from the file's types; symbols will be added below. */
5619
5620 if (code == TYPE_CODE_UNDEF)
5621 {
5622 if (surrounding_static_block != NULL)
5623 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5624 completion_list_add_fields (tracker, sym, lookup_name,
5625 sym_text, word);
5626
5627 if (surrounding_global_block != NULL)
5628 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5629 completion_list_add_fields (tracker, sym, lookup_name,
5630 sym_text, word);
5631 }
5632
5633 /* Skip macros if we are completing a struct tag -- arguable but
5634 usually what is expected. */
5635 if (current_language->la_macro_expansion == macro_expansion_c
5636 && code == TYPE_CODE_UNDEF)
5637 {
5638 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5639
5640 /* This adds a macro's name to the current completion list. */
5641 auto add_macro_name = [&] (const char *macro_name,
5642 const macro_definition *,
5643 macro_source_file *,
5644 int)
5645 {
5646 completion_list_add_name (tracker, language_c, macro_name,
5647 lookup_name, sym_text, word);
5648 };
5649
5650 /* Add any macros visible in the default scope. Note that this
5651 may yield the occasional wrong result, because an expression
5652 might be evaluated in a scope other than the default. For
5653 example, if the user types "break file:line if <TAB>", the
5654 resulting expression will be evaluated at "file:line" -- but
5655 at there does not seem to be a way to detect this at
5656 completion time. */
5657 scope = default_macro_scope ();
5658 if (scope)
5659 macro_for_each_in_scope (scope->file, scope->line,
5660 add_macro_name);
5661
5662 /* User-defined macros are always visible. */
5663 macro_for_each (macro_user_macros, add_macro_name);
5664 }
5665 }
5666
5667 void
5668 default_collect_symbol_completion_matches (completion_tracker &tracker,
5669 complete_symbol_mode mode,
5670 symbol_name_match_type name_match_type,
5671 const char *text, const char *word,
5672 enum type_code code)
5673 {
5674 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5675 name_match_type,
5676 text, word, "",
5677 code);
5678 }
5679
5680 /* Collect all symbols (regardless of class) which begin by matching
5681 TEXT. */
5682
5683 void
5684 collect_symbol_completion_matches (completion_tracker &tracker,
5685 complete_symbol_mode mode,
5686 symbol_name_match_type name_match_type,
5687 const char *text, const char *word)
5688 {
5689 current_language->la_collect_symbol_completion_matches (tracker, mode,
5690 name_match_type,
5691 text, word,
5692 TYPE_CODE_UNDEF);
5693 }
5694
5695 /* Like collect_symbol_completion_matches, but only collect
5696 STRUCT_DOMAIN symbols whose type code is CODE. */
5697
5698 void
5699 collect_symbol_completion_matches_type (completion_tracker &tracker,
5700 const char *text, const char *word,
5701 enum type_code code)
5702 {
5703 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5704 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5705
5706 gdb_assert (code == TYPE_CODE_UNION
5707 || code == TYPE_CODE_STRUCT
5708 || code == TYPE_CODE_ENUM);
5709 current_language->la_collect_symbol_completion_matches (tracker, mode,
5710 name_match_type,
5711 text, word, code);
5712 }
5713
5714 /* Like collect_symbol_completion_matches, but collects a list of
5715 symbols defined in all source files named SRCFILE. */
5716
5717 void
5718 collect_file_symbol_completion_matches (completion_tracker &tracker,
5719 complete_symbol_mode mode,
5720 symbol_name_match_type name_match_type,
5721 const char *text, const char *word,
5722 const char *srcfile)
5723 {
5724 /* The symbol we are completing on. Points in same buffer as text. */
5725 const char *sym_text;
5726
5727 /* Now look for the symbol we are supposed to complete on.
5728 FIXME: This should be language-specific. */
5729 if (mode == complete_symbol_mode::LINESPEC)
5730 sym_text = text;
5731 else
5732 {
5733 const char *p;
5734 char quote_found;
5735 const char *quote_pos = NULL;
5736
5737 /* First see if this is a quoted string. */
5738 quote_found = '\0';
5739 for (p = text; *p != '\0'; ++p)
5740 {
5741 if (quote_found != '\0')
5742 {
5743 if (*p == quote_found)
5744 /* Found close quote. */
5745 quote_found = '\0';
5746 else if (*p == '\\' && p[1] == quote_found)
5747 /* A backslash followed by the quote character
5748 doesn't end the string. */
5749 ++p;
5750 }
5751 else if (*p == '\'' || *p == '"')
5752 {
5753 quote_found = *p;
5754 quote_pos = p;
5755 }
5756 }
5757 if (quote_found == '\'')
5758 /* A string within single quotes can be a symbol, so complete on it. */
5759 sym_text = quote_pos + 1;
5760 else if (quote_found == '"')
5761 /* A double-quoted string is never a symbol, nor does it make sense
5762 to complete it any other way. */
5763 {
5764 return;
5765 }
5766 else
5767 {
5768 /* Not a quoted string. */
5769 sym_text = language_search_unquoted_string (text, p);
5770 }
5771 }
5772
5773 lookup_name_info lookup_name (sym_text, name_match_type, true);
5774
5775 /* Go through symtabs for SRCFILE and check the externs and statics
5776 for symbols which match. */
5777 iterate_over_symtabs (srcfile, [&] (symtab *s)
5778 {
5779 add_symtab_completions (SYMTAB_COMPUNIT (s),
5780 tracker, mode, lookup_name,
5781 sym_text, word, TYPE_CODE_UNDEF);
5782 return false;
5783 });
5784 }
5785
5786 /* A helper function for make_source_files_completion_list. It adds
5787 another file name to a list of possible completions, growing the
5788 list as necessary. */
5789
5790 static void
5791 add_filename_to_list (const char *fname, const char *text, const char *word,
5792 completion_list *list)
5793 {
5794 list->emplace_back (make_completion_match_str (fname, text, word));
5795 }
5796
5797 static int
5798 not_interesting_fname (const char *fname)
5799 {
5800 static const char *illegal_aliens[] = {
5801 "_globals_", /* inserted by coff_symtab_read */
5802 NULL
5803 };
5804 int i;
5805
5806 for (i = 0; illegal_aliens[i]; i++)
5807 {
5808 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5809 return 1;
5810 }
5811 return 0;
5812 }
5813
5814 /* An object of this type is passed as the user_data argument to
5815 map_partial_symbol_filenames. */
5816 struct add_partial_filename_data
5817 {
5818 struct filename_seen_cache *filename_seen_cache;
5819 const char *text;
5820 const char *word;
5821 int text_len;
5822 completion_list *list;
5823 };
5824
5825 /* A callback for map_partial_symbol_filenames. */
5826
5827 static void
5828 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5829 void *user_data)
5830 {
5831 struct add_partial_filename_data *data
5832 = (struct add_partial_filename_data *) user_data;
5833
5834 if (not_interesting_fname (filename))
5835 return;
5836 if (!data->filename_seen_cache->seen (filename)
5837 && filename_ncmp (filename, data->text, data->text_len) == 0)
5838 {
5839 /* This file matches for a completion; add it to the
5840 current list of matches. */
5841 add_filename_to_list (filename, data->text, data->word, data->list);
5842 }
5843 else
5844 {
5845 const char *base_name = lbasename (filename);
5846
5847 if (base_name != filename
5848 && !data->filename_seen_cache->seen (base_name)
5849 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5850 add_filename_to_list (base_name, data->text, data->word, data->list);
5851 }
5852 }
5853
5854 /* Return a list of all source files whose names begin with matching
5855 TEXT. The file names are looked up in the symbol tables of this
5856 program. */
5857
5858 completion_list
5859 make_source_files_completion_list (const char *text, const char *word)
5860 {
5861 size_t text_len = strlen (text);
5862 completion_list list;
5863 const char *base_name;
5864 struct add_partial_filename_data datum;
5865
5866 if (!have_full_symbols () && !have_partial_symbols ())
5867 return list;
5868
5869 filename_seen_cache filenames_seen;
5870
5871 for (objfile *objfile : current_program_space->objfiles ())
5872 {
5873 for (compunit_symtab *cu : objfile->compunits ())
5874 {
5875 for (symtab *s : compunit_filetabs (cu))
5876 {
5877 if (not_interesting_fname (s->filename))
5878 continue;
5879 if (!filenames_seen.seen (s->filename)
5880 && filename_ncmp (s->filename, text, text_len) == 0)
5881 {
5882 /* This file matches for a completion; add it to the current
5883 list of matches. */
5884 add_filename_to_list (s->filename, text, word, &list);
5885 }
5886 else
5887 {
5888 /* NOTE: We allow the user to type a base name when the
5889 debug info records leading directories, but not the other
5890 way around. This is what subroutines of breakpoint
5891 command do when they parse file names. */
5892 base_name = lbasename (s->filename);
5893 if (base_name != s->filename
5894 && !filenames_seen.seen (base_name)
5895 && filename_ncmp (base_name, text, text_len) == 0)
5896 add_filename_to_list (base_name, text, word, &list);
5897 }
5898 }
5899 }
5900 }
5901
5902 datum.filename_seen_cache = &filenames_seen;
5903 datum.text = text;
5904 datum.word = word;
5905 datum.text_len = text_len;
5906 datum.list = &list;
5907 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5908 0 /*need_fullname*/);
5909
5910 return list;
5911 }
5912 \f
5913 /* Track MAIN */
5914
5915 /* Return the "main_info" object for the current program space. If
5916 the object has not yet been created, create it and fill in some
5917 default values. */
5918
5919 static struct main_info *
5920 get_main_info (void)
5921 {
5922 struct main_info *info = main_progspace_key.get (current_program_space);
5923
5924 if (info == NULL)
5925 {
5926 /* It may seem strange to store the main name in the progspace
5927 and also in whatever objfile happens to see a main name in
5928 its debug info. The reason for this is mainly historical:
5929 gdb returned "main" as the name even if no function named
5930 "main" was defined the program; and this approach lets us
5931 keep compatibility. */
5932 info = main_progspace_key.emplace (current_program_space);
5933 }
5934
5935 return info;
5936 }
5937
5938 static void
5939 set_main_name (const char *name, enum language lang)
5940 {
5941 struct main_info *info = get_main_info ();
5942
5943 if (info->name_of_main != NULL)
5944 {
5945 xfree (info->name_of_main);
5946 info->name_of_main = NULL;
5947 info->language_of_main = language_unknown;
5948 }
5949 if (name != NULL)
5950 {
5951 info->name_of_main = xstrdup (name);
5952 info->language_of_main = lang;
5953 }
5954 }
5955
5956 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5957 accordingly. */
5958
5959 static void
5960 find_main_name (void)
5961 {
5962 const char *new_main_name;
5963
5964 /* First check the objfiles to see whether a debuginfo reader has
5965 picked up the appropriate main name. Historically the main name
5966 was found in a more or less random way; this approach instead
5967 relies on the order of objfile creation -- which still isn't
5968 guaranteed to get the correct answer, but is just probably more
5969 accurate. */
5970 for (objfile *objfile : current_program_space->objfiles ())
5971 {
5972 if (objfile->per_bfd->name_of_main != NULL)
5973 {
5974 set_main_name (objfile->per_bfd->name_of_main,
5975 objfile->per_bfd->language_of_main);
5976 return;
5977 }
5978 }
5979
5980 /* Try to see if the main procedure is in Ada. */
5981 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5982 be to add a new method in the language vector, and call this
5983 method for each language until one of them returns a non-empty
5984 name. This would allow us to remove this hard-coded call to
5985 an Ada function. It is not clear that this is a better approach
5986 at this point, because all methods need to be written in a way
5987 such that false positives never be returned. For instance, it is
5988 important that a method does not return a wrong name for the main
5989 procedure if the main procedure is actually written in a different
5990 language. It is easy to guaranty this with Ada, since we use a
5991 special symbol generated only when the main in Ada to find the name
5992 of the main procedure. It is difficult however to see how this can
5993 be guarantied for languages such as C, for instance. This suggests
5994 that order of call for these methods becomes important, which means
5995 a more complicated approach. */
5996 new_main_name = ada_main_name ();
5997 if (new_main_name != NULL)
5998 {
5999 set_main_name (new_main_name, language_ada);
6000 return;
6001 }
6002
6003 new_main_name = d_main_name ();
6004 if (new_main_name != NULL)
6005 {
6006 set_main_name (new_main_name, language_d);
6007 return;
6008 }
6009
6010 new_main_name = go_main_name ();
6011 if (new_main_name != NULL)
6012 {
6013 set_main_name (new_main_name, language_go);
6014 return;
6015 }
6016
6017 new_main_name = pascal_main_name ();
6018 if (new_main_name != NULL)
6019 {
6020 set_main_name (new_main_name, language_pascal);
6021 return;
6022 }
6023
6024 /* The languages above didn't identify the name of the main procedure.
6025 Fallback to "main". */
6026 set_main_name ("main", language_unknown);
6027 }
6028
6029 /* See symtab.h. */
6030
6031 const char *
6032 main_name ()
6033 {
6034 struct main_info *info = get_main_info ();
6035
6036 if (info->name_of_main == NULL)
6037 find_main_name ();
6038
6039 return info->name_of_main;
6040 }
6041
6042 /* Return the language of the main function. If it is not known,
6043 return language_unknown. */
6044
6045 enum language
6046 main_language (void)
6047 {
6048 struct main_info *info = get_main_info ();
6049
6050 if (info->name_of_main == NULL)
6051 find_main_name ();
6052
6053 return info->language_of_main;
6054 }
6055
6056 /* Handle ``executable_changed'' events for the symtab module. */
6057
6058 static void
6059 symtab_observer_executable_changed (void)
6060 {
6061 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6062 set_main_name (NULL, language_unknown);
6063 }
6064
6065 /* Return 1 if the supplied producer string matches the ARM RealView
6066 compiler (armcc). */
6067
6068 bool
6069 producer_is_realview (const char *producer)
6070 {
6071 static const char *const arm_idents[] = {
6072 "ARM C Compiler, ADS",
6073 "Thumb C Compiler, ADS",
6074 "ARM C++ Compiler, ADS",
6075 "Thumb C++ Compiler, ADS",
6076 "ARM/Thumb C/C++ Compiler, RVCT",
6077 "ARM C/C++ Compiler, RVCT"
6078 };
6079 int i;
6080
6081 if (producer == NULL)
6082 return false;
6083
6084 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6085 if (startswith (producer, arm_idents[i]))
6086 return true;
6087
6088 return false;
6089 }
6090
6091 \f
6092
6093 /* The next index to hand out in response to a registration request. */
6094
6095 static int next_aclass_value = LOC_FINAL_VALUE;
6096
6097 /* The maximum number of "aclass" registrations we support. This is
6098 constant for convenience. */
6099 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6100
6101 /* The objects representing the various "aclass" values. The elements
6102 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6103 elements are those registered at gdb initialization time. */
6104
6105 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6106
6107 /* The globally visible pointer. This is separate from 'symbol_impl'
6108 so that it can be const. */
6109
6110 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6111
6112 /* Make sure we saved enough room in struct symbol. */
6113
6114 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6115
6116 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6117 is the ops vector associated with this index. This returns the new
6118 index, which should be used as the aclass_index field for symbols
6119 of this type. */
6120
6121 int
6122 register_symbol_computed_impl (enum address_class aclass,
6123 const struct symbol_computed_ops *ops)
6124 {
6125 int result = next_aclass_value++;
6126
6127 gdb_assert (aclass == LOC_COMPUTED);
6128 gdb_assert (result < MAX_SYMBOL_IMPLS);
6129 symbol_impl[result].aclass = aclass;
6130 symbol_impl[result].ops_computed = ops;
6131
6132 /* Sanity check OPS. */
6133 gdb_assert (ops != NULL);
6134 gdb_assert (ops->tracepoint_var_ref != NULL);
6135 gdb_assert (ops->describe_location != NULL);
6136 gdb_assert (ops->get_symbol_read_needs != NULL);
6137 gdb_assert (ops->read_variable != NULL);
6138
6139 return result;
6140 }
6141
6142 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6143 OPS is the ops vector associated with this index. This returns the
6144 new index, which should be used as the aclass_index field for symbols
6145 of this type. */
6146
6147 int
6148 register_symbol_block_impl (enum address_class aclass,
6149 const struct symbol_block_ops *ops)
6150 {
6151 int result = next_aclass_value++;
6152
6153 gdb_assert (aclass == LOC_BLOCK);
6154 gdb_assert (result < MAX_SYMBOL_IMPLS);
6155 symbol_impl[result].aclass = aclass;
6156 symbol_impl[result].ops_block = ops;
6157
6158 /* Sanity check OPS. */
6159 gdb_assert (ops != NULL);
6160 gdb_assert (ops->find_frame_base_location != NULL);
6161
6162 return result;
6163 }
6164
6165 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6166 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6167 this index. This returns the new index, which should be used as
6168 the aclass_index field for symbols of this type. */
6169
6170 int
6171 register_symbol_register_impl (enum address_class aclass,
6172 const struct symbol_register_ops *ops)
6173 {
6174 int result = next_aclass_value++;
6175
6176 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6177 gdb_assert (result < MAX_SYMBOL_IMPLS);
6178 symbol_impl[result].aclass = aclass;
6179 symbol_impl[result].ops_register = ops;
6180
6181 return result;
6182 }
6183
6184 /* Initialize elements of 'symbol_impl' for the constants in enum
6185 address_class. */
6186
6187 static void
6188 initialize_ordinary_address_classes (void)
6189 {
6190 int i;
6191
6192 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6193 symbol_impl[i].aclass = (enum address_class) i;
6194 }
6195
6196 \f
6197
6198 /* Helper function to initialize the fields of an objfile-owned symbol.
6199 It assumed that *SYM is already all zeroes. */
6200
6201 static void
6202 initialize_objfile_symbol_1 (struct symbol *sym)
6203 {
6204 SYMBOL_OBJFILE_OWNED (sym) = 1;
6205 SYMBOL_SECTION (sym) = -1;
6206 }
6207
6208 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6209
6210 void
6211 initialize_objfile_symbol (struct symbol *sym)
6212 {
6213 memset (sym, 0, sizeof (*sym));
6214 initialize_objfile_symbol_1 (sym);
6215 }
6216
6217 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6218 obstack. */
6219
6220 struct symbol *
6221 allocate_symbol (struct objfile *objfile)
6222 {
6223 struct symbol *result;
6224
6225 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6226 initialize_objfile_symbol_1 (result);
6227
6228 return result;
6229 }
6230
6231 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6232 obstack. */
6233
6234 struct template_symbol *
6235 allocate_template_symbol (struct objfile *objfile)
6236 {
6237 struct template_symbol *result;
6238
6239 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6240 initialize_objfile_symbol_1 (result);
6241
6242 return result;
6243 }
6244
6245 /* See symtab.h. */
6246
6247 struct objfile *
6248 symbol_objfile (const struct symbol *symbol)
6249 {
6250 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6251 return SYMTAB_OBJFILE (symbol->owner.symtab);
6252 }
6253
6254 /* See symtab.h. */
6255
6256 struct gdbarch *
6257 symbol_arch (const struct symbol *symbol)
6258 {
6259 if (!SYMBOL_OBJFILE_OWNED (symbol))
6260 return symbol->owner.arch;
6261 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6262 }
6263
6264 /* See symtab.h. */
6265
6266 struct symtab *
6267 symbol_symtab (const struct symbol *symbol)
6268 {
6269 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6270 return symbol->owner.symtab;
6271 }
6272
6273 /* See symtab.h. */
6274
6275 void
6276 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6277 {
6278 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6279 symbol->owner.symtab = symtab;
6280 }
6281
6282 /* See symtab.h. */
6283
6284 CORE_ADDR
6285 get_symbol_address (const struct symbol *sym)
6286 {
6287 gdb_assert (sym->maybe_copied);
6288 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6289
6290 const char *linkage_name = SYMBOL_LINKAGE_NAME (sym);
6291
6292 for (objfile *objfile : current_program_space->objfiles ())
6293 {
6294 bound_minimal_symbol minsym
6295 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6296 if (minsym.minsym != nullptr)
6297 return BMSYMBOL_VALUE_ADDRESS (minsym);
6298 }
6299 return sym->ginfo.value.address;
6300 }
6301
6302 /* See symtab.h. */
6303
6304 CORE_ADDR
6305 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6306 {
6307 gdb_assert (minsym->maybe_copied);
6308 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6309
6310 const char *linkage_name = MSYMBOL_LINKAGE_NAME (minsym);
6311
6312 for (objfile *objfile : current_program_space->objfiles ())
6313 {
6314 if ((objfile->flags & OBJF_MAINLINE) != 0)
6315 {
6316 bound_minimal_symbol found
6317 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6318 if (found.minsym != nullptr)
6319 return BMSYMBOL_VALUE_ADDRESS (found);
6320 }
6321 }
6322 return (minsym->value.address
6323 + ANOFFSET (objf->section_offsets, minsym->section));
6324 }
6325
6326 \f
6327
6328 void
6329 _initialize_symtab (void)
6330 {
6331 cmd_list_element *c;
6332
6333 initialize_ordinary_address_classes ();
6334
6335 c = add_info ("variables", info_variables_command,
6336 info_print_args_help (_("\
6337 All global and static variable names or those matching REGEXPs.\n\
6338 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6339 Prints the global and static variables.\n"),
6340 _("global and static variables"),
6341 true));
6342 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6343 if (dbx_commands)
6344 {
6345 c = add_com ("whereis", class_info, info_variables_command,
6346 info_print_args_help (_("\
6347 All global and static variable names, or those matching REGEXPs.\n\
6348 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6349 Prints the global and static variables.\n"),
6350 _("global and static variables"),
6351 true));
6352 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6353 }
6354
6355 c = add_info ("functions", info_functions_command,
6356 info_print_args_help (_("\
6357 All function names or those matching REGEXPs.\n\
6358 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6359 Prints the functions.\n"),
6360 _("functions"),
6361 true));
6362 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6363
6364 c = add_info ("types", info_types_command, _("\
6365 All type names, or those matching REGEXP.\n\
6366 Usage: info types [-q] [REGEXP]\n\
6367 Print information about all types matching REGEXP, or all types if no\n\
6368 REGEXP is given. The optional flag -q disables printing of headers."));
6369 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6370
6371 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6372
6373 static std::string info_sources_help
6374 = gdb::option::build_help (_("\
6375 All source files in the program or those matching REGEXP.\n\
6376 Usage: info sources [OPTION]... [REGEXP]\n\
6377 By default, REGEXP is used to match anywhere in the filename.\n\
6378 \n\
6379 Options:\n\
6380 %OPTIONS%"),
6381 info_sources_opts);
6382
6383 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6384 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6385
6386 add_com ("rbreak", class_breakpoint, rbreak_command,
6387 _("Set a breakpoint for all functions matching REGEXP."));
6388
6389 add_setshow_enum_cmd ("multiple-symbols", no_class,
6390 multiple_symbols_modes, &multiple_symbols_mode,
6391 _("\
6392 Set how the debugger handles ambiguities in expressions."), _("\
6393 Show how the debugger handles ambiguities in expressions."), _("\
6394 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6395 NULL, NULL, &setlist, &showlist);
6396
6397 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6398 &basenames_may_differ, _("\
6399 Set whether a source file may have multiple base names."), _("\
6400 Show whether a source file may have multiple base names."), _("\
6401 (A \"base name\" is the name of a file with the directory part removed.\n\
6402 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6403 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6404 before comparing them. Canonicalization is an expensive operation,\n\
6405 but it allows the same file be known by more than one base name.\n\
6406 If not set (the default), all source files are assumed to have just\n\
6407 one base name, and gdb will do file name comparisons more efficiently."),
6408 NULL, NULL,
6409 &setlist, &showlist);
6410
6411 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6412 _("Set debugging of symbol table creation."),
6413 _("Show debugging of symbol table creation."), _("\
6414 When enabled (non-zero), debugging messages are printed when building\n\
6415 symbol tables. A value of 1 (one) normally provides enough information.\n\
6416 A value greater than 1 provides more verbose information."),
6417 NULL,
6418 NULL,
6419 &setdebuglist, &showdebuglist);
6420
6421 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6422 _("\
6423 Set debugging of symbol lookup."), _("\
6424 Show debugging of symbol lookup."), _("\
6425 When enabled (non-zero), symbol lookups are logged."),
6426 NULL, NULL,
6427 &setdebuglist, &showdebuglist);
6428
6429 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6430 &new_symbol_cache_size,
6431 _("Set the size of the symbol cache."),
6432 _("Show the size of the symbol cache."), _("\
6433 The size of the symbol cache.\n\
6434 If zero then the symbol cache is disabled."),
6435 set_symbol_cache_size_handler, NULL,
6436 &maintenance_set_cmdlist,
6437 &maintenance_show_cmdlist);
6438
6439 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6440 _("Dump the symbol cache for each program space."),
6441 &maintenanceprintlist);
6442
6443 add_cmd ("symbol-cache-statistics", class_maintenance,
6444 maintenance_print_symbol_cache_statistics,
6445 _("Print symbol cache statistics for each program space."),
6446 &maintenanceprintlist);
6447
6448 add_cmd ("flush-symbol-cache", class_maintenance,
6449 maintenance_flush_symbol_cache,
6450 _("Flush the symbol cache for each program space."),
6451 &maintenancelist);
6452
6453 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6454 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6455 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6456 }
This page took 0.285865 seconds and 5 git commands to generate.