[gdb] Fix more typos in comments
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117 };
118
119 /* Program space key for finding name and language of "main". */
120
121 static const program_space_key<main_info> main_progspace_key;
122
123 /* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130 /* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135 /* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137 #define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141 /* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144 enum symbol_cache_slot_state
145 {
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149 };
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 };
183
184 /* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187 struct block_symbol_cache
188 {
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200 };
201
202 /* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212 struct symbol_cache
213 {
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224 };
225
226 /* Program space key for finding its symbol cache. */
227
228 static const program_space_key<symbol_cache> symbol_cache_key;
229
230 /* When non-zero, print debugging messages related to symtab creation. */
231 unsigned int symtab_create_debug = 0;
232
233 /* When non-zero, print debugging messages related to symbol lookup. */
234 unsigned int symbol_lookup_debug = 0;
235
236 /* The size of the cache is staged here. */
237 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239 /* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244 /* True if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247 bool basenames_may_differ = false;
248
249 /* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253 const char multiple_symbols_ask[] = "ask";
254 const char multiple_symbols_all[] = "all";
255 const char multiple_symbols_cancel[] = "cancel";
256 static const char *const multiple_symbols_modes[] =
257 {
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262 };
263 static const char *multiple_symbols_mode = multiple_symbols_all;
264
265 /* Read-only accessor to AUTO_SELECT_MODE. */
266
267 const char *
268 multiple_symbols_select_mode (void)
269 {
270 return multiple_symbols_mode;
271 }
272
273 /* Return the name of a domain_enum. */
274
275 const char *
276 domain_name (domain_enum e)
277 {
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288 }
289
290 /* Return the name of a search_domain . */
291
292 const char *
293 search_domain_name (enum search_domain e)
294 {
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303 }
304
305 /* See symtab.h. */
306
307 struct symtab *
308 compunit_primary_filetab (const struct compunit_symtab *cust)
309 {
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314 }
315
316 /* See symtab.h. */
317
318 enum language
319 compunit_language (const struct compunit_symtab *cust)
320 {
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323 /* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326 }
327
328 /* See symtab.h. */
329
330 bool
331 minimal_symbol::data_p () const
332 {
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338 }
339
340 /* See symtab.h. */
341
342 bool
343 minimal_symbol::text_p () const
344 {
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351 }
352
353 /* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358 bool
359 compare_filenames_for_search (const char *filename, const char *search_name)
360 {
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return false;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return false;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389 }
390
391 /* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396 bool
397 compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399 {
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return false;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423 }
424
425 /* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439 bool
440 iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445 {
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501 void
502 iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504 {
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535 }
536
537 /* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540 struct symtab *
541 lookup_symtab (const char *name)
542 {
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552 }
553
554 \f
555 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560 char *
561 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 {
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639 }
640
641 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644 void
645 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648 {
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664 }
665
666 /* Return the demangled name of GSYMBOL. */
667
668 const char *
669 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 {
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679 }
680
681 \f
682 /* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685 void
686 symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689 {
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709 }
710
711 /* Functions to initialize a symbol's mangled name. */
712
713 /* Objects of this type are stored in the demangled name hash table. */
714 struct demangled_name_entry
715 {
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719 };
720
721 /* Hash function for the demangled name hash. */
722
723 static hashval_t
724 hash_demangled_name_entry (const void *data)
725 {
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730 }
731
732 /* Equality function for the demangled name hash. */
733
734 static int
735 eq_demangled_name_entry (const void *a, const void *b)
736 {
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743 }
744
745 /* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749 static void
750 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 {
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760 }
761
762 /* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768 static char *
769 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771 {
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799 }
800
801 /* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812 void
813 symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, bool copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816 {
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926 }
927
928 /* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931 const char *
932 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 {
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950 }
951
952 /* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955 const char *
956 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 {
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976 }
977
978 /* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983 const char *
984 symbol_search_name (const struct general_symbol_info *gsymbol)
985 {
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990 }
991
992 /* See symtab.h. */
993
994 bool
995 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997 {
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001 }
1002
1003 \f
1004
1005 /* Return true if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009 bool
1010 matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012 {
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return true;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return false;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return false;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return false;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_section_size (first) != bfd_section_size (second))
1037 return false;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1041 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1042 return false;
1043
1044 if (bfd_section_name (first) == NULL
1045 || bfd_section_name (second) == NULL
1046 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1047 return false;
1048
1049 /* Otherwise check that they are in corresponding objfiles. */
1050
1051 struct objfile *obj = NULL;
1052 for (objfile *objfile : current_program_space->objfiles ())
1053 if (objfile->obfd == first->owner)
1054 {
1055 obj = objfile;
1056 break;
1057 }
1058 gdb_assert (obj != NULL);
1059
1060 if (obj->separate_debug_objfile != NULL
1061 && obj->separate_debug_objfile->obfd == second->owner)
1062 return true;
1063 if (obj->separate_debug_objfile_backlink != NULL
1064 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1065 return true;
1066
1067 return false;
1068 }
1069
1070 /* See symtab.h. */
1071
1072 void
1073 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1074 {
1075 struct bound_minimal_symbol msymbol;
1076
1077 /* If we know that this is not a text address, return failure. This is
1078 necessary because we loop based on texthigh and textlow, which do
1079 not include the data ranges. */
1080 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1081 if (msymbol.minsym && msymbol.minsym->data_p ())
1082 return;
1083
1084 for (objfile *objfile : current_program_space->objfiles ())
1085 {
1086 struct compunit_symtab *cust = NULL;
1087
1088 if (objfile->sf)
1089 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1090 pc, section, 0);
1091 if (cust)
1092 return;
1093 }
1094 }
1095 \f
1096 /* Hash function for the symbol cache. */
1097
1098 static unsigned int
1099 hash_symbol_entry (const struct objfile *objfile_context,
1100 const char *name, domain_enum domain)
1101 {
1102 unsigned int hash = (uintptr_t) objfile_context;
1103
1104 if (name != NULL)
1105 hash += htab_hash_string (name);
1106
1107 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1108 to map to the same slot. */
1109 if (domain == STRUCT_DOMAIN)
1110 hash += VAR_DOMAIN * 7;
1111 else
1112 hash += domain * 7;
1113
1114 return hash;
1115 }
1116
1117 /* Equality function for the symbol cache. */
1118
1119 static int
1120 eq_symbol_entry (const struct symbol_cache_slot *slot,
1121 const struct objfile *objfile_context,
1122 const char *name, domain_enum domain)
1123 {
1124 const char *slot_name;
1125 domain_enum slot_domain;
1126
1127 if (slot->state == SYMBOL_SLOT_UNUSED)
1128 return 0;
1129
1130 if (slot->objfile_context != objfile_context)
1131 return 0;
1132
1133 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1134 {
1135 slot_name = slot->value.not_found.name;
1136 slot_domain = slot->value.not_found.domain;
1137 }
1138 else
1139 {
1140 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1141 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1142 }
1143
1144 /* NULL names match. */
1145 if (slot_name == NULL && name == NULL)
1146 {
1147 /* But there's no point in calling symbol_matches_domain in the
1148 SYMBOL_SLOT_FOUND case. */
1149 if (slot_domain != domain)
1150 return 0;
1151 }
1152 else if (slot_name != NULL && name != NULL)
1153 {
1154 /* It's important that we use the same comparison that was done
1155 the first time through. If the slot records a found symbol,
1156 then this means using the symbol name comparison function of
1157 the symbol's language with SYMBOL_SEARCH_NAME. See
1158 dictionary.c. It also means using symbol_matches_domain for
1159 found symbols. See block.c.
1160
1161 If the slot records a not-found symbol, then require a precise match.
1162 We could still be lax with whitespace like strcmp_iw though. */
1163
1164 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1165 {
1166 if (strcmp (slot_name, name) != 0)
1167 return 0;
1168 if (slot_domain != domain)
1169 return 0;
1170 }
1171 else
1172 {
1173 struct symbol *sym = slot->value.found.symbol;
1174 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1175
1176 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1177 return 0;
1178
1179 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1180 slot_domain, domain))
1181 return 0;
1182 }
1183 }
1184 else
1185 {
1186 /* Only one name is NULL. */
1187 return 0;
1188 }
1189
1190 return 1;
1191 }
1192
1193 /* Given a cache of size SIZE, return the size of the struct (with variable
1194 length array) in bytes. */
1195
1196 static size_t
1197 symbol_cache_byte_size (unsigned int size)
1198 {
1199 return (sizeof (struct block_symbol_cache)
1200 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1201 }
1202
1203 /* Resize CACHE. */
1204
1205 static void
1206 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1207 {
1208 /* If there's no change in size, don't do anything.
1209 All caches have the same size, so we can just compare with the size
1210 of the global symbols cache. */
1211 if ((cache->global_symbols != NULL
1212 && cache->global_symbols->size == new_size)
1213 || (cache->global_symbols == NULL
1214 && new_size == 0))
1215 return;
1216
1217 xfree (cache->global_symbols);
1218 xfree (cache->static_symbols);
1219
1220 if (new_size == 0)
1221 {
1222 cache->global_symbols = NULL;
1223 cache->static_symbols = NULL;
1224 }
1225 else
1226 {
1227 size_t total_size = symbol_cache_byte_size (new_size);
1228
1229 cache->global_symbols
1230 = (struct block_symbol_cache *) xcalloc (1, total_size);
1231 cache->static_symbols
1232 = (struct block_symbol_cache *) xcalloc (1, total_size);
1233 cache->global_symbols->size = new_size;
1234 cache->static_symbols->size = new_size;
1235 }
1236 }
1237
1238 /* Return the symbol cache of PSPACE.
1239 Create one if it doesn't exist yet. */
1240
1241 static struct symbol_cache *
1242 get_symbol_cache (struct program_space *pspace)
1243 {
1244 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1245
1246 if (cache == NULL)
1247 {
1248 cache = symbol_cache_key.emplace (pspace);
1249 resize_symbol_cache (cache, symbol_cache_size);
1250 }
1251
1252 return cache;
1253 }
1254
1255 /* Set the size of the symbol cache in all program spaces. */
1256
1257 static void
1258 set_symbol_cache_size (unsigned int new_size)
1259 {
1260 struct program_space *pspace;
1261
1262 ALL_PSPACES (pspace)
1263 {
1264 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1265
1266 /* The pspace could have been created but not have a cache yet. */
1267 if (cache != NULL)
1268 resize_symbol_cache (cache, new_size);
1269 }
1270 }
1271
1272 /* Called when symbol-cache-size is set. */
1273
1274 static void
1275 set_symbol_cache_size_handler (const char *args, int from_tty,
1276 struct cmd_list_element *c)
1277 {
1278 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1279 {
1280 /* Restore the previous value.
1281 This is the value the "show" command prints. */
1282 new_symbol_cache_size = symbol_cache_size;
1283
1284 error (_("Symbol cache size is too large, max is %u."),
1285 MAX_SYMBOL_CACHE_SIZE);
1286 }
1287 symbol_cache_size = new_symbol_cache_size;
1288
1289 set_symbol_cache_size (symbol_cache_size);
1290 }
1291
1292 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1293 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1294 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1295 failed (and thus this one will too), or NULL if the symbol is not present
1296 in the cache.
1297 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1298 can be used to save the result of a full lookup attempt. */
1299
1300 static struct block_symbol
1301 symbol_cache_lookup (struct symbol_cache *cache,
1302 struct objfile *objfile_context, enum block_enum block,
1303 const char *name, domain_enum domain,
1304 struct block_symbol_cache **bsc_ptr,
1305 struct symbol_cache_slot **slot_ptr)
1306 {
1307 struct block_symbol_cache *bsc;
1308 unsigned int hash;
1309 struct symbol_cache_slot *slot;
1310
1311 if (block == GLOBAL_BLOCK)
1312 bsc = cache->global_symbols;
1313 else
1314 bsc = cache->static_symbols;
1315 if (bsc == NULL)
1316 {
1317 *bsc_ptr = NULL;
1318 *slot_ptr = NULL;
1319 return {};
1320 }
1321
1322 hash = hash_symbol_entry (objfile_context, name, domain);
1323 slot = bsc->symbols + hash % bsc->size;
1324
1325 *bsc_ptr = bsc;
1326 *slot_ptr = slot;
1327
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1329 {
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1337 ++bsc->hits;
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1341 }
1342
1343 /* Symbol is not present in the cache. */
1344
1345 if (symbol_lookup_debug)
1346 {
1347 fprintf_unfiltered (gdb_stdlog,
1348 "%s block symbol cache miss for %s, %s\n",
1349 block == GLOBAL_BLOCK ? "Global" : "Static",
1350 name, domain_name (domain));
1351 }
1352 ++bsc->misses;
1353 return {};
1354 }
1355
1356 /* Clear out SLOT. */
1357
1358 static void
1359 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1360 {
1361 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1362 xfree (slot->value.not_found.name);
1363 slot->state = SYMBOL_SLOT_UNUSED;
1364 }
1365
1366 /* Mark SYMBOL as found in SLOT.
1367 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1368 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1369 necessarily the objfile the symbol was found in. */
1370
1371 static void
1372 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1373 struct symbol_cache_slot *slot,
1374 struct objfile *objfile_context,
1375 struct symbol *symbol,
1376 const struct block *block)
1377 {
1378 if (bsc == NULL)
1379 return;
1380 if (slot->state != SYMBOL_SLOT_UNUSED)
1381 {
1382 ++bsc->collisions;
1383 symbol_cache_clear_slot (slot);
1384 }
1385 slot->state = SYMBOL_SLOT_FOUND;
1386 slot->objfile_context = objfile_context;
1387 slot->value.found.symbol = symbol;
1388 slot->value.found.block = block;
1389 }
1390
1391 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1394
1395 static void
1396 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1397 struct symbol_cache_slot *slot,
1398 struct objfile *objfile_context,
1399 const char *name, domain_enum domain)
1400 {
1401 if (bsc == NULL)
1402 return;
1403 if (slot->state != SYMBOL_SLOT_UNUSED)
1404 {
1405 ++bsc->collisions;
1406 symbol_cache_clear_slot (slot);
1407 }
1408 slot->state = SYMBOL_SLOT_NOT_FOUND;
1409 slot->objfile_context = objfile_context;
1410 slot->value.not_found.name = xstrdup (name);
1411 slot->value.not_found.domain = domain;
1412 }
1413
1414 /* Flush the symbol cache of PSPACE. */
1415
1416 static void
1417 symbol_cache_flush (struct program_space *pspace)
1418 {
1419 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1420 int pass;
1421
1422 if (cache == NULL)
1423 return;
1424 if (cache->global_symbols == NULL)
1425 {
1426 gdb_assert (symbol_cache_size == 0);
1427 gdb_assert (cache->static_symbols == NULL);
1428 return;
1429 }
1430
1431 /* If the cache is untouched since the last flush, early exit.
1432 This is important for performance during the startup of a program linked
1433 with 100s (or 1000s) of shared libraries. */
1434 if (cache->global_symbols->misses == 0
1435 && cache->static_symbols->misses == 0)
1436 return;
1437
1438 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1439 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1440
1441 for (pass = 0; pass < 2; ++pass)
1442 {
1443 struct block_symbol_cache *bsc
1444 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1445 unsigned int i;
1446
1447 for (i = 0; i < bsc->size; ++i)
1448 symbol_cache_clear_slot (&bsc->symbols[i]);
1449 }
1450
1451 cache->global_symbols->hits = 0;
1452 cache->global_symbols->misses = 0;
1453 cache->global_symbols->collisions = 0;
1454 cache->static_symbols->hits = 0;
1455 cache->static_symbols->misses = 0;
1456 cache->static_symbols->collisions = 0;
1457 }
1458
1459 /* Dump CACHE. */
1460
1461 static void
1462 symbol_cache_dump (const struct symbol_cache *cache)
1463 {
1464 int pass;
1465
1466 if (cache->global_symbols == NULL)
1467 {
1468 printf_filtered (" <disabled>\n");
1469 return;
1470 }
1471
1472 for (pass = 0; pass < 2; ++pass)
1473 {
1474 const struct block_symbol_cache *bsc
1475 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1476 unsigned int i;
1477
1478 if (pass == 0)
1479 printf_filtered ("Global symbols:\n");
1480 else
1481 printf_filtered ("Static symbols:\n");
1482
1483 for (i = 0; i < bsc->size; ++i)
1484 {
1485 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1486
1487 QUIT;
1488
1489 switch (slot->state)
1490 {
1491 case SYMBOL_SLOT_UNUSED:
1492 break;
1493 case SYMBOL_SLOT_NOT_FOUND:
1494 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1495 host_address_to_string (slot->objfile_context),
1496 slot->value.not_found.name,
1497 domain_name (slot->value.not_found.domain));
1498 break;
1499 case SYMBOL_SLOT_FOUND:
1500 {
1501 struct symbol *found = slot->value.found.symbol;
1502 const struct objfile *context = slot->objfile_context;
1503
1504 printf_filtered (" [%4u] = %s, %s %s\n", i,
1505 host_address_to_string (context),
1506 SYMBOL_PRINT_NAME (found),
1507 domain_name (SYMBOL_DOMAIN (found)));
1508 break;
1509 }
1510 }
1511 }
1512 }
1513 }
1514
1515 /* The "mt print symbol-cache" command. */
1516
1517 static void
1518 maintenance_print_symbol_cache (const char *args, int from_tty)
1519 {
1520 struct program_space *pspace;
1521
1522 ALL_PSPACES (pspace)
1523 {
1524 struct symbol_cache *cache;
1525
1526 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1527 pspace->num,
1528 pspace->symfile_object_file != NULL
1529 ? objfile_name (pspace->symfile_object_file)
1530 : "(no object file)");
1531
1532 /* If the cache hasn't been created yet, avoid creating one. */
1533 cache = symbol_cache_key.get (pspace);
1534 if (cache == NULL)
1535 printf_filtered (" <empty>\n");
1536 else
1537 symbol_cache_dump (cache);
1538 }
1539 }
1540
1541 /* The "mt flush-symbol-cache" command. */
1542
1543 static void
1544 maintenance_flush_symbol_cache (const char *args, int from_tty)
1545 {
1546 struct program_space *pspace;
1547
1548 ALL_PSPACES (pspace)
1549 {
1550 symbol_cache_flush (pspace);
1551 }
1552 }
1553
1554 /* Print usage statistics of CACHE. */
1555
1556 static void
1557 symbol_cache_stats (struct symbol_cache *cache)
1558 {
1559 int pass;
1560
1561 if (cache->global_symbols == NULL)
1562 {
1563 printf_filtered (" <disabled>\n");
1564 return;
1565 }
1566
1567 for (pass = 0; pass < 2; ++pass)
1568 {
1569 const struct block_symbol_cache *bsc
1570 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1571
1572 QUIT;
1573
1574 if (pass == 0)
1575 printf_filtered ("Global block cache stats:\n");
1576 else
1577 printf_filtered ("Static block cache stats:\n");
1578
1579 printf_filtered (" size: %u\n", bsc->size);
1580 printf_filtered (" hits: %u\n", bsc->hits);
1581 printf_filtered (" misses: %u\n", bsc->misses);
1582 printf_filtered (" collisions: %u\n", bsc->collisions);
1583 }
1584 }
1585
1586 /* The "mt print symbol-cache-statistics" command. */
1587
1588 static void
1589 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1590 {
1591 struct program_space *pspace;
1592
1593 ALL_PSPACES (pspace)
1594 {
1595 struct symbol_cache *cache;
1596
1597 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1598 pspace->num,
1599 pspace->symfile_object_file != NULL
1600 ? objfile_name (pspace->symfile_object_file)
1601 : "(no object file)");
1602
1603 /* If the cache hasn't been created yet, avoid creating one. */
1604 cache = symbol_cache_key.get (pspace);
1605 if (cache == NULL)
1606 printf_filtered (" empty, no stats available\n");
1607 else
1608 symbol_cache_stats (cache);
1609 }
1610 }
1611
1612 /* This module's 'new_objfile' observer. */
1613
1614 static void
1615 symtab_new_objfile_observer (struct objfile *objfile)
1616 {
1617 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1618 symbol_cache_flush (current_program_space);
1619 }
1620
1621 /* This module's 'free_objfile' observer. */
1622
1623 static void
1624 symtab_free_objfile_observer (struct objfile *objfile)
1625 {
1626 symbol_cache_flush (objfile->pspace);
1627 }
1628 \f
1629 /* Debug symbols usually don't have section information. We need to dig that
1630 out of the minimal symbols and stash that in the debug symbol. */
1631
1632 void
1633 fixup_section (struct general_symbol_info *ginfo,
1634 CORE_ADDR addr, struct objfile *objfile)
1635 {
1636 struct minimal_symbol *msym;
1637
1638 /* First, check whether a minimal symbol with the same name exists
1639 and points to the same address. The address check is required
1640 e.g. on PowerPC64, where the minimal symbol for a function will
1641 point to the function descriptor, while the debug symbol will
1642 point to the actual function code. */
1643 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1644 if (msym)
1645 ginfo->section = MSYMBOL_SECTION (msym);
1646 else
1647 {
1648 /* Static, function-local variables do appear in the linker
1649 (minimal) symbols, but are frequently given names that won't
1650 be found via lookup_minimal_symbol(). E.g., it has been
1651 observed in frv-uclinux (ELF) executables that a static,
1652 function-local variable named "foo" might appear in the
1653 linker symbols as "foo.6" or "foo.3". Thus, there is no
1654 point in attempting to extend the lookup-by-name mechanism to
1655 handle this case due to the fact that there can be multiple
1656 names.
1657
1658 So, instead, search the section table when lookup by name has
1659 failed. The ``addr'' and ``endaddr'' fields may have already
1660 been relocated. If so, the relocation offset (i.e. the
1661 ANOFFSET value) needs to be subtracted from these values when
1662 performing the comparison. We unconditionally subtract it,
1663 because, when no relocation has been performed, the ANOFFSET
1664 value will simply be zero.
1665
1666 The address of the symbol whose section we're fixing up HAS
1667 NOT BEEN adjusted (relocated) yet. It can't have been since
1668 the section isn't yet known and knowing the section is
1669 necessary in order to add the correct relocation value. In
1670 other words, we wouldn't even be in this function (attempting
1671 to compute the section) if it were already known.
1672
1673 Note that it is possible to search the minimal symbols
1674 (subtracting the relocation value if necessary) to find the
1675 matching minimal symbol, but this is overkill and much less
1676 efficient. It is not necessary to find the matching minimal
1677 symbol, only its section.
1678
1679 Note that this technique (of doing a section table search)
1680 can fail when unrelocated section addresses overlap. For
1681 this reason, we still attempt a lookup by name prior to doing
1682 a search of the section table. */
1683
1684 struct obj_section *s;
1685 int fallback = -1;
1686
1687 ALL_OBJFILE_OSECTIONS (objfile, s)
1688 {
1689 int idx = s - objfile->sections;
1690 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1691
1692 if (fallback == -1)
1693 fallback = idx;
1694
1695 if (obj_section_addr (s) - offset <= addr
1696 && addr < obj_section_endaddr (s) - offset)
1697 {
1698 ginfo->section = idx;
1699 return;
1700 }
1701 }
1702
1703 /* If we didn't find the section, assume it is in the first
1704 section. If there is no allocated section, then it hardly
1705 matters what we pick, so just pick zero. */
1706 if (fallback == -1)
1707 ginfo->section = 0;
1708 else
1709 ginfo->section = fallback;
1710 }
1711 }
1712
1713 struct symbol *
1714 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1715 {
1716 CORE_ADDR addr;
1717
1718 if (!sym)
1719 return NULL;
1720
1721 if (!SYMBOL_OBJFILE_OWNED (sym))
1722 return sym;
1723
1724 /* We either have an OBJFILE, or we can get at it from the sym's
1725 symtab. Anything else is a bug. */
1726 gdb_assert (objfile || symbol_symtab (sym));
1727
1728 if (objfile == NULL)
1729 objfile = symbol_objfile (sym);
1730
1731 if (SYMBOL_OBJ_SECTION (objfile, sym))
1732 return sym;
1733
1734 /* We should have an objfile by now. */
1735 gdb_assert (objfile);
1736
1737 switch (SYMBOL_CLASS (sym))
1738 {
1739 case LOC_STATIC:
1740 case LOC_LABEL:
1741 addr = SYMBOL_VALUE_ADDRESS (sym);
1742 break;
1743 case LOC_BLOCK:
1744 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1745 break;
1746
1747 default:
1748 /* Nothing else will be listed in the minsyms -- no use looking
1749 it up. */
1750 return sym;
1751 }
1752
1753 fixup_section (&sym->ginfo, addr, objfile);
1754
1755 return sym;
1756 }
1757
1758 /* See symtab.h. */
1759
1760 demangle_for_lookup_info::demangle_for_lookup_info
1761 (const lookup_name_info &lookup_name, language lang)
1762 {
1763 demangle_result_storage storage;
1764
1765 if (lookup_name.ignore_parameters () && lang == language_cplus)
1766 {
1767 gdb::unique_xmalloc_ptr<char> without_params
1768 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1769 lookup_name.completion_mode ());
1770
1771 if (without_params != NULL)
1772 {
1773 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1774 m_demangled_name = demangle_for_lookup (without_params.get (),
1775 lang, storage);
1776 return;
1777 }
1778 }
1779
1780 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1781 m_demangled_name = lookup_name.name ();
1782 else
1783 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1784 lang, storage);
1785 }
1786
1787 /* See symtab.h. */
1788
1789 const lookup_name_info &
1790 lookup_name_info::match_any ()
1791 {
1792 /* Lookup any symbol that "" would complete. I.e., this matches all
1793 symbol names. */
1794 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1795 true);
1796
1797 return lookup_name;
1798 }
1799
1800 /* Compute the demangled form of NAME as used by the various symbol
1801 lookup functions. The result can either be the input NAME
1802 directly, or a pointer to a buffer owned by the STORAGE object.
1803
1804 For Ada, this function just returns NAME, unmodified.
1805 Normally, Ada symbol lookups are performed using the encoded name
1806 rather than the demangled name, and so it might seem to make sense
1807 for this function to return an encoded version of NAME.
1808 Unfortunately, we cannot do this, because this function is used in
1809 circumstances where it is not appropriate to try to encode NAME.
1810 For instance, when displaying the frame info, we demangle the name
1811 of each parameter, and then perform a symbol lookup inside our
1812 function using that demangled name. In Ada, certain functions
1813 have internally-generated parameters whose name contain uppercase
1814 characters. Encoding those name would result in those uppercase
1815 characters to become lowercase, and thus cause the symbol lookup
1816 to fail. */
1817
1818 const char *
1819 demangle_for_lookup (const char *name, enum language lang,
1820 demangle_result_storage &storage)
1821 {
1822 /* If we are using C++, D, or Go, demangle the name before doing a
1823 lookup, so we can always binary search. */
1824 if (lang == language_cplus)
1825 {
1826 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1827 if (demangled_name != NULL)
1828 return storage.set_malloc_ptr (demangled_name);
1829
1830 /* If we were given a non-mangled name, canonicalize it
1831 according to the language (so far only for C++). */
1832 std::string canon = cp_canonicalize_string (name);
1833 if (!canon.empty ())
1834 return storage.swap_string (canon);
1835 }
1836 else if (lang == language_d)
1837 {
1838 char *demangled_name = d_demangle (name, 0);
1839 if (demangled_name != NULL)
1840 return storage.set_malloc_ptr (demangled_name);
1841 }
1842 else if (lang == language_go)
1843 {
1844 char *demangled_name = go_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848
1849 return name;
1850 }
1851
1852 /* See symtab.h. */
1853
1854 unsigned int
1855 search_name_hash (enum language language, const char *search_name)
1856 {
1857 return language_def (language)->la_search_name_hash (search_name);
1858 }
1859
1860 /* See symtab.h.
1861
1862 This function (or rather its subordinates) have a bunch of loops and
1863 it would seem to be attractive to put in some QUIT's (though I'm not really
1864 sure whether it can run long enough to be really important). But there
1865 are a few calls for which it would appear to be bad news to quit
1866 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1867 that there is C++ code below which can error(), but that probably
1868 doesn't affect these calls since they are looking for a known
1869 variable and thus can probably assume it will never hit the C++
1870 code). */
1871
1872 struct block_symbol
1873 lookup_symbol_in_language (const char *name, const struct block *block,
1874 const domain_enum domain, enum language lang,
1875 struct field_of_this_result *is_a_field_of_this)
1876 {
1877 demangle_result_storage storage;
1878 const char *modified_name = demangle_for_lookup (name, lang, storage);
1879
1880 return lookup_symbol_aux (modified_name,
1881 symbol_name_match_type::FULL,
1882 block, domain, lang,
1883 is_a_field_of_this);
1884 }
1885
1886 /* See symtab.h. */
1887
1888 struct block_symbol
1889 lookup_symbol (const char *name, const struct block *block,
1890 domain_enum domain,
1891 struct field_of_this_result *is_a_field_of_this)
1892 {
1893 return lookup_symbol_in_language (name, block, domain,
1894 current_language->la_language,
1895 is_a_field_of_this);
1896 }
1897
1898 /* See symtab.h. */
1899
1900 struct block_symbol
1901 lookup_symbol_search_name (const char *search_name, const struct block *block,
1902 domain_enum domain)
1903 {
1904 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1905 block, domain, language_asm, NULL);
1906 }
1907
1908 /* See symtab.h. */
1909
1910 struct block_symbol
1911 lookup_language_this (const struct language_defn *lang,
1912 const struct block *block)
1913 {
1914 if (lang->la_name_of_this == NULL || block == NULL)
1915 return {};
1916
1917 if (symbol_lookup_debug > 1)
1918 {
1919 struct objfile *objfile = lookup_objfile_from_block (block);
1920
1921 fprintf_unfiltered (gdb_stdlog,
1922 "lookup_language_this (%s, %s (objfile %s))",
1923 lang->la_name, host_address_to_string (block),
1924 objfile_debug_name (objfile));
1925 }
1926
1927 while (block)
1928 {
1929 struct symbol *sym;
1930
1931 sym = block_lookup_symbol (block, lang->la_name_of_this,
1932 symbol_name_match_type::SEARCH_NAME,
1933 VAR_DOMAIN);
1934 if (sym != NULL)
1935 {
1936 if (symbol_lookup_debug > 1)
1937 {
1938 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1939 SYMBOL_PRINT_NAME (sym),
1940 host_address_to_string (sym),
1941 host_address_to_string (block));
1942 }
1943 return (struct block_symbol) {sym, block};
1944 }
1945 if (BLOCK_FUNCTION (block))
1946 break;
1947 block = BLOCK_SUPERBLOCK (block);
1948 }
1949
1950 if (symbol_lookup_debug > 1)
1951 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1952 return {};
1953 }
1954
1955 /* Given TYPE, a structure/union,
1956 return 1 if the component named NAME from the ultimate target
1957 structure/union is defined, otherwise, return 0. */
1958
1959 static int
1960 check_field (struct type *type, const char *name,
1961 struct field_of_this_result *is_a_field_of_this)
1962 {
1963 int i;
1964
1965 /* The type may be a stub. */
1966 type = check_typedef (type);
1967
1968 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1969 {
1970 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1971
1972 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1973 {
1974 is_a_field_of_this->type = type;
1975 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1976 return 1;
1977 }
1978 }
1979
1980 /* C++: If it was not found as a data field, then try to return it
1981 as a pointer to a method. */
1982
1983 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1984 {
1985 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1986 {
1987 is_a_field_of_this->type = type;
1988 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1989 return 1;
1990 }
1991 }
1992
1993 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1994 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1995 return 1;
1996
1997 return 0;
1998 }
1999
2000 /* Behave like lookup_symbol except that NAME is the natural name
2001 (e.g., demangled name) of the symbol that we're looking for. */
2002
2003 static struct block_symbol
2004 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2005 const struct block *block,
2006 const domain_enum domain, enum language language,
2007 struct field_of_this_result *is_a_field_of_this)
2008 {
2009 struct block_symbol result;
2010 const struct language_defn *langdef;
2011
2012 if (symbol_lookup_debug)
2013 {
2014 struct objfile *objfile = lookup_objfile_from_block (block);
2015
2016 fprintf_unfiltered (gdb_stdlog,
2017 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2018 name, host_address_to_string (block),
2019 objfile != NULL
2020 ? objfile_debug_name (objfile) : "NULL",
2021 domain_name (domain), language_str (language));
2022 }
2023
2024 /* Make sure we do something sensible with is_a_field_of_this, since
2025 the callers that set this parameter to some non-null value will
2026 certainly use it later. If we don't set it, the contents of
2027 is_a_field_of_this are undefined. */
2028 if (is_a_field_of_this != NULL)
2029 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2030
2031 /* Search specified block and its superiors. Don't search
2032 STATIC_BLOCK or GLOBAL_BLOCK. */
2033
2034 result = lookup_local_symbol (name, match_type, block, domain, language);
2035 if (result.symbol != NULL)
2036 {
2037 if (symbol_lookup_debug)
2038 {
2039 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2040 host_address_to_string (result.symbol));
2041 }
2042 return result;
2043 }
2044
2045 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2046 check to see if NAME is a field of `this'. */
2047
2048 langdef = language_def (language);
2049
2050 /* Don't do this check if we are searching for a struct. It will
2051 not be found by check_field, but will be found by other
2052 means. */
2053 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2054 {
2055 result = lookup_language_this (langdef, block);
2056
2057 if (result.symbol)
2058 {
2059 struct type *t = result.symbol->type;
2060
2061 /* I'm not really sure that type of this can ever
2062 be typedefed; just be safe. */
2063 t = check_typedef (t);
2064 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2065 t = TYPE_TARGET_TYPE (t);
2066
2067 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2068 && TYPE_CODE (t) != TYPE_CODE_UNION)
2069 error (_("Internal error: `%s' is not an aggregate"),
2070 langdef->la_name_of_this);
2071
2072 if (check_field (t, name, is_a_field_of_this))
2073 {
2074 if (symbol_lookup_debug)
2075 {
2076 fprintf_unfiltered (gdb_stdlog,
2077 "lookup_symbol_aux (...) = NULL\n");
2078 }
2079 return {};
2080 }
2081 }
2082 }
2083
2084 /* Now do whatever is appropriate for LANGUAGE to look
2085 up static and global variables. */
2086
2087 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2088 if (result.symbol != NULL)
2089 {
2090 if (symbol_lookup_debug)
2091 {
2092 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2093 host_address_to_string (result.symbol));
2094 }
2095 return result;
2096 }
2097
2098 /* Now search all static file-level symbols. Not strictly correct,
2099 but more useful than an error. */
2100
2101 result = lookup_static_symbol (name, domain);
2102 if (symbol_lookup_debug)
2103 {
2104 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2105 result.symbol != NULL
2106 ? host_address_to_string (result.symbol)
2107 : "NULL");
2108 }
2109 return result;
2110 }
2111
2112 /* Check to see if the symbol is defined in BLOCK or its superiors.
2113 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2114
2115 static struct block_symbol
2116 lookup_local_symbol (const char *name,
2117 symbol_name_match_type match_type,
2118 const struct block *block,
2119 const domain_enum domain,
2120 enum language language)
2121 {
2122 struct symbol *sym;
2123 const struct block *static_block = block_static_block (block);
2124 const char *scope = block_scope (block);
2125
2126 /* Check if either no block is specified or it's a global block. */
2127
2128 if (static_block == NULL)
2129 return {};
2130
2131 while (block != static_block)
2132 {
2133 sym = lookup_symbol_in_block (name, match_type, block, domain);
2134 if (sym != NULL)
2135 return (struct block_symbol) {sym, block};
2136
2137 if (language == language_cplus || language == language_fortran)
2138 {
2139 struct block_symbol blocksym
2140 = cp_lookup_symbol_imports_or_template (scope, name, block,
2141 domain);
2142
2143 if (blocksym.symbol != NULL)
2144 return blocksym;
2145 }
2146
2147 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2148 break;
2149 block = BLOCK_SUPERBLOCK (block);
2150 }
2151
2152 /* We've reached the end of the function without finding a result. */
2153
2154 return {};
2155 }
2156
2157 /* See symtab.h. */
2158
2159 struct objfile *
2160 lookup_objfile_from_block (const struct block *block)
2161 {
2162 if (block == NULL)
2163 return NULL;
2164
2165 block = block_global_block (block);
2166 /* Look through all blockvectors. */
2167 for (objfile *obj : current_program_space->objfiles ())
2168 {
2169 for (compunit_symtab *cust : obj->compunits ())
2170 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2171 GLOBAL_BLOCK))
2172 {
2173 if (obj->separate_debug_objfile_backlink)
2174 obj = obj->separate_debug_objfile_backlink;
2175
2176 return obj;
2177 }
2178 }
2179
2180 return NULL;
2181 }
2182
2183 /* See symtab.h. */
2184
2185 struct symbol *
2186 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2187 const struct block *block,
2188 const domain_enum domain)
2189 {
2190 struct symbol *sym;
2191
2192 if (symbol_lookup_debug > 1)
2193 {
2194 struct objfile *objfile = lookup_objfile_from_block (block);
2195
2196 fprintf_unfiltered (gdb_stdlog,
2197 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2198 name, host_address_to_string (block),
2199 objfile_debug_name (objfile),
2200 domain_name (domain));
2201 }
2202
2203 sym = block_lookup_symbol (block, name, match_type, domain);
2204 if (sym)
2205 {
2206 if (symbol_lookup_debug > 1)
2207 {
2208 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2209 host_address_to_string (sym));
2210 }
2211 return fixup_symbol_section (sym, NULL);
2212 }
2213
2214 if (symbol_lookup_debug > 1)
2215 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2216 return NULL;
2217 }
2218
2219 /* See symtab.h. */
2220
2221 struct block_symbol
2222 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2223 enum block_enum block_index,
2224 const char *name,
2225 const domain_enum domain)
2226 {
2227 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2228
2229 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2230 {
2231 struct block_symbol result
2232 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2233
2234 if (result.symbol != nullptr)
2235 return result;
2236 }
2237
2238 return {};
2239 }
2240
2241 /* Check to see if the symbol is defined in one of the OBJFILE's
2242 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2243 depending on whether or not we want to search global symbols or
2244 static symbols. */
2245
2246 static struct block_symbol
2247 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2248 enum block_enum block_index, const char *name,
2249 const domain_enum domain)
2250 {
2251 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2252
2253 if (symbol_lookup_debug > 1)
2254 {
2255 fprintf_unfiltered (gdb_stdlog,
2256 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2257 objfile_debug_name (objfile),
2258 block_index == GLOBAL_BLOCK
2259 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2260 name, domain_name (domain));
2261 }
2262
2263 for (compunit_symtab *cust : objfile->compunits ())
2264 {
2265 const struct blockvector *bv;
2266 const struct block *block;
2267 struct block_symbol result;
2268
2269 bv = COMPUNIT_BLOCKVECTOR (cust);
2270 block = BLOCKVECTOR_BLOCK (bv, block_index);
2271 result.symbol = block_lookup_symbol_primary (block, name, domain);
2272 result.block = block;
2273 if (result.symbol != NULL)
2274 {
2275 if (symbol_lookup_debug > 1)
2276 {
2277 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2278 host_address_to_string (result.symbol),
2279 host_address_to_string (block));
2280 }
2281 result.symbol = fixup_symbol_section (result.symbol, objfile);
2282 return result;
2283
2284 }
2285 }
2286
2287 if (symbol_lookup_debug > 1)
2288 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2289 return {};
2290 }
2291
2292 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2293 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2294 and all associated separate debug objfiles.
2295
2296 Normally we only look in OBJFILE, and not any separate debug objfiles
2297 because the outer loop will cause them to be searched too. This case is
2298 different. Here we're called from search_symbols where it will only
2299 call us for the objfile that contains a matching minsym. */
2300
2301 static struct block_symbol
2302 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2303 const char *linkage_name,
2304 domain_enum domain)
2305 {
2306 enum language lang = current_language->la_language;
2307 struct objfile *main_objfile;
2308
2309 demangle_result_storage storage;
2310 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2311
2312 if (objfile->separate_debug_objfile_backlink)
2313 main_objfile = objfile->separate_debug_objfile_backlink;
2314 else
2315 main_objfile = objfile;
2316
2317 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2318 {
2319 struct block_symbol result;
2320
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol == NULL)
2324 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2325 modified_name, domain);
2326 if (result.symbol != NULL)
2327 return result;
2328 }
2329
2330 return {};
2331 }
2332
2333 /* A helper function that throws an exception when a symbol was found
2334 in a psymtab but not in a symtab. */
2335
2336 static void ATTRIBUTE_NORETURN
2337 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2338 struct compunit_symtab *cust)
2339 {
2340 error (_("\
2341 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2342 %s may be an inlined function, or may be a template function\n \
2343 (if a template, try specifying an instantiation: %s<type>)."),
2344 block_index == GLOBAL_BLOCK ? "global" : "static",
2345 name,
2346 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2347 name, name);
2348 }
2349
2350 /* A helper function for various lookup routines that interfaces with
2351 the "quick" symbol table functions. */
2352
2353 static struct block_symbol
2354 lookup_symbol_via_quick_fns (struct objfile *objfile,
2355 enum block_enum block_index, const char *name,
2356 const domain_enum domain)
2357 {
2358 struct compunit_symtab *cust;
2359 const struct blockvector *bv;
2360 const struct block *block;
2361 struct block_symbol result;
2362
2363 if (!objfile->sf)
2364 return {};
2365
2366 if (symbol_lookup_debug > 1)
2367 {
2368 fprintf_unfiltered (gdb_stdlog,
2369 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2370 objfile_debug_name (objfile),
2371 block_index == GLOBAL_BLOCK
2372 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2373 name, domain_name (domain));
2374 }
2375
2376 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2377 if (cust == NULL)
2378 {
2379 if (symbol_lookup_debug > 1)
2380 {
2381 fprintf_unfiltered (gdb_stdlog,
2382 "lookup_symbol_via_quick_fns (...) = NULL\n");
2383 }
2384 return {};
2385 }
2386
2387 bv = COMPUNIT_BLOCKVECTOR (cust);
2388 block = BLOCKVECTOR_BLOCK (bv, block_index);
2389 result.symbol = block_lookup_symbol (block, name,
2390 symbol_name_match_type::FULL, domain);
2391 if (result.symbol == NULL)
2392 error_in_psymtab_expansion (block_index, name, cust);
2393
2394 if (symbol_lookup_debug > 1)
2395 {
2396 fprintf_unfiltered (gdb_stdlog,
2397 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2398 host_address_to_string (result.symbol),
2399 host_address_to_string (block));
2400 }
2401
2402 result.symbol = fixup_symbol_section (result.symbol, objfile);
2403 result.block = block;
2404 return result;
2405 }
2406
2407 /* See symtab.h. */
2408
2409 struct block_symbol
2410 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2411 const char *name,
2412 const struct block *block,
2413 const domain_enum domain)
2414 {
2415 struct block_symbol result;
2416
2417 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2418 the current objfile. Searching the current objfile first is useful
2419 for both matching user expectations as well as performance. */
2420
2421 result = lookup_symbol_in_static_block (name, block, domain);
2422 if (result.symbol != NULL)
2423 return result;
2424
2425 /* If we didn't find a definition for a builtin type in the static block,
2426 search for it now. This is actually the right thing to do and can be
2427 a massive performance win. E.g., when debugging a program with lots of
2428 shared libraries we could search all of them only to find out the
2429 builtin type isn't defined in any of them. This is common for types
2430 like "void". */
2431 if (domain == VAR_DOMAIN)
2432 {
2433 struct gdbarch *gdbarch;
2434
2435 if (block == NULL)
2436 gdbarch = target_gdbarch ();
2437 else
2438 gdbarch = block_gdbarch (block);
2439 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2440 gdbarch, name);
2441 result.block = NULL;
2442 if (result.symbol != NULL)
2443 return result;
2444 }
2445
2446 return lookup_global_symbol (name, block, domain);
2447 }
2448
2449 /* See symtab.h. */
2450
2451 struct block_symbol
2452 lookup_symbol_in_static_block (const char *name,
2453 const struct block *block,
2454 const domain_enum domain)
2455 {
2456 const struct block *static_block = block_static_block (block);
2457 struct symbol *sym;
2458
2459 if (static_block == NULL)
2460 return {};
2461
2462 if (symbol_lookup_debug)
2463 {
2464 struct objfile *objfile = lookup_objfile_from_block (static_block);
2465
2466 fprintf_unfiltered (gdb_stdlog,
2467 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2468 " %s)\n",
2469 name,
2470 host_address_to_string (block),
2471 objfile_debug_name (objfile),
2472 domain_name (domain));
2473 }
2474
2475 sym = lookup_symbol_in_block (name,
2476 symbol_name_match_type::FULL,
2477 static_block, domain);
2478 if (symbol_lookup_debug)
2479 {
2480 fprintf_unfiltered (gdb_stdlog,
2481 "lookup_symbol_in_static_block (...) = %s\n",
2482 sym != NULL ? host_address_to_string (sym) : "NULL");
2483 }
2484 return (struct block_symbol) {sym, static_block};
2485 }
2486
2487 /* Perform the standard symbol lookup of NAME in OBJFILE:
2488 1) First search expanded symtabs, and if not found
2489 2) Search the "quick" symtabs (partial or .gdb_index).
2490 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2491
2492 static struct block_symbol
2493 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2494 const char *name, const domain_enum domain)
2495 {
2496 struct block_symbol result;
2497
2498 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2499
2500 if (symbol_lookup_debug)
2501 {
2502 fprintf_unfiltered (gdb_stdlog,
2503 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2504 objfile_debug_name (objfile),
2505 block_index == GLOBAL_BLOCK
2506 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2507 name, domain_name (domain));
2508 }
2509
2510 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2511 name, domain);
2512 if (result.symbol != NULL)
2513 {
2514 if (symbol_lookup_debug)
2515 {
2516 fprintf_unfiltered (gdb_stdlog,
2517 "lookup_symbol_in_objfile (...) = %s"
2518 " (in symtabs)\n",
2519 host_address_to_string (result.symbol));
2520 }
2521 return result;
2522 }
2523
2524 result = lookup_symbol_via_quick_fns (objfile, block_index,
2525 name, domain);
2526 if (symbol_lookup_debug)
2527 {
2528 fprintf_unfiltered (gdb_stdlog,
2529 "lookup_symbol_in_objfile (...) = %s%s\n",
2530 result.symbol != NULL
2531 ? host_address_to_string (result.symbol)
2532 : "NULL",
2533 result.symbol != NULL ? " (via quick fns)" : "");
2534 }
2535 return result;
2536 }
2537
2538 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2539
2540 struct global_or_static_sym_lookup_data
2541 {
2542 /* The name of the symbol we are searching for. */
2543 const char *name;
2544
2545 /* The domain to use for our search. */
2546 domain_enum domain;
2547
2548 /* The block index in which to search. */
2549 enum block_enum block_index;
2550
2551 /* The field where the callback should store the symbol if found.
2552 It should be initialized to {NULL, NULL} before the search is started. */
2553 struct block_symbol result;
2554 };
2555
2556 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2557 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2558 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2559 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2560
2561 static int
2562 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2563 void *cb_data)
2564 {
2565 struct global_or_static_sym_lookup_data *data =
2566 (struct global_or_static_sym_lookup_data *) cb_data;
2567
2568 gdb_assert (data->result.symbol == NULL
2569 && data->result.block == NULL);
2570
2571 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2572 data->name, data->domain);
2573
2574 /* If we found a match, tell the iterator to stop. Otherwise,
2575 keep going. */
2576 return (data->result.symbol != NULL);
2577 }
2578
2579 /* This function contains the common code of lookup_{global,static}_symbol.
2580 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2581 the objfile to start the lookup in. */
2582
2583 static struct block_symbol
2584 lookup_global_or_static_symbol (const char *name,
2585 enum block_enum block_index,
2586 struct objfile *objfile,
2587 const domain_enum domain)
2588 {
2589 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2590 struct block_symbol result;
2591 struct global_or_static_sym_lookup_data lookup_data;
2592 struct block_symbol_cache *bsc;
2593 struct symbol_cache_slot *slot;
2594
2595 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2596 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2597
2598 /* First see if we can find the symbol in the cache.
2599 This works because we use the current objfile to qualify the lookup. */
2600 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2601 &bsc, &slot);
2602 if (result.symbol != NULL)
2603 {
2604 if (SYMBOL_LOOKUP_FAILED_P (result))
2605 return {};
2606 return result;
2607 }
2608
2609 /* Do a global search (of global blocks, heh). */
2610 if (result.symbol == NULL)
2611 {
2612 memset (&lookup_data, 0, sizeof (lookup_data));
2613 lookup_data.name = name;
2614 lookup_data.block_index = block_index;
2615 lookup_data.domain = domain;
2616 gdbarch_iterate_over_objfiles_in_search_order
2617 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2618 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2619 result = lookup_data.result;
2620 }
2621
2622 if (result.symbol != NULL)
2623 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2624 else
2625 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2626
2627 return result;
2628 }
2629
2630 /* See symtab.h. */
2631
2632 struct block_symbol
2633 lookup_static_symbol (const char *name, const domain_enum domain)
2634 {
2635 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2636 }
2637
2638 /* See symtab.h. */
2639
2640 struct block_symbol
2641 lookup_global_symbol (const char *name,
2642 const struct block *block,
2643 const domain_enum domain)
2644 {
2645 /* If a block was passed in, we want to search the corresponding
2646 global block first. This yields "more expected" behavior, and is
2647 needed to support 'FILENAME'::VARIABLE lookups. */
2648 const struct block *global_block = block_global_block (block);
2649 if (global_block != nullptr)
2650 {
2651 symbol *sym = lookup_symbol_in_block (name,
2652 symbol_name_match_type::FULL,
2653 global_block, domain);
2654 if (sym != nullptr)
2655 return { sym, global_block };
2656 }
2657
2658 struct objfile *objfile = lookup_objfile_from_block (block);
2659 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2660 }
2661
2662 bool
2663 symbol_matches_domain (enum language symbol_language,
2664 domain_enum symbol_domain,
2665 domain_enum domain)
2666 {
2667 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2668 Similarly, any Ada type declaration implicitly defines a typedef. */
2669 if (symbol_language == language_cplus
2670 || symbol_language == language_d
2671 || symbol_language == language_ada
2672 || symbol_language == language_rust)
2673 {
2674 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2675 && symbol_domain == STRUCT_DOMAIN)
2676 return true;
2677 }
2678 /* For all other languages, strict match is required. */
2679 return (symbol_domain == domain);
2680 }
2681
2682 /* See symtab.h. */
2683
2684 struct type *
2685 lookup_transparent_type (const char *name)
2686 {
2687 return current_language->la_lookup_transparent_type (name);
2688 }
2689
2690 /* A helper for basic_lookup_transparent_type that interfaces with the
2691 "quick" symbol table functions. */
2692
2693 static struct type *
2694 basic_lookup_transparent_type_quick (struct objfile *objfile,
2695 enum block_enum block_index,
2696 const char *name)
2697 {
2698 struct compunit_symtab *cust;
2699 const struct blockvector *bv;
2700 const struct block *block;
2701 struct symbol *sym;
2702
2703 if (!objfile->sf)
2704 return NULL;
2705 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2706 STRUCT_DOMAIN);
2707 if (cust == NULL)
2708 return NULL;
2709
2710 bv = COMPUNIT_BLOCKVECTOR (cust);
2711 block = BLOCKVECTOR_BLOCK (bv, block_index);
2712 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2713 block_find_non_opaque_type, NULL);
2714 if (sym == NULL)
2715 error_in_psymtab_expansion (block_index, name, cust);
2716 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2717 return SYMBOL_TYPE (sym);
2718 }
2719
2720 /* Subroutine of basic_lookup_transparent_type to simplify it.
2721 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2722 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2723
2724 static struct type *
2725 basic_lookup_transparent_type_1 (struct objfile *objfile,
2726 enum block_enum block_index,
2727 const char *name)
2728 {
2729 const struct blockvector *bv;
2730 const struct block *block;
2731 const struct symbol *sym;
2732
2733 for (compunit_symtab *cust : objfile->compunits ())
2734 {
2735 bv = COMPUNIT_BLOCKVECTOR (cust);
2736 block = BLOCKVECTOR_BLOCK (bv, block_index);
2737 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2738 block_find_non_opaque_type, NULL);
2739 if (sym != NULL)
2740 {
2741 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2742 return SYMBOL_TYPE (sym);
2743 }
2744 }
2745
2746 return NULL;
2747 }
2748
2749 /* The standard implementation of lookup_transparent_type. This code
2750 was modeled on lookup_symbol -- the parts not relevant to looking
2751 up types were just left out. In particular it's assumed here that
2752 types are available in STRUCT_DOMAIN and only in file-static or
2753 global blocks. */
2754
2755 struct type *
2756 basic_lookup_transparent_type (const char *name)
2757 {
2758 struct type *t;
2759
2760 /* Now search all the global symbols. Do the symtab's first, then
2761 check the psymtab's. If a psymtab indicates the existence
2762 of the desired name as a global, then do psymtab-to-symtab
2763 conversion on the fly and return the found symbol. */
2764
2765 for (objfile *objfile : current_program_space->objfiles ())
2766 {
2767 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2768 if (t)
2769 return t;
2770 }
2771
2772 for (objfile *objfile : current_program_space->objfiles ())
2773 {
2774 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2775 if (t)
2776 return t;
2777 }
2778
2779 /* Now search the static file-level symbols.
2780 Not strictly correct, but more useful than an error.
2781 Do the symtab's first, then
2782 check the psymtab's. If a psymtab indicates the existence
2783 of the desired name as a file-level static, then do psymtab-to-symtab
2784 conversion on the fly and return the found symbol. */
2785
2786 for (objfile *objfile : current_program_space->objfiles ())
2787 {
2788 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2789 if (t)
2790 return t;
2791 }
2792
2793 for (objfile *objfile : current_program_space->objfiles ())
2794 {
2795 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2796 if (t)
2797 return t;
2798 }
2799
2800 return (struct type *) 0;
2801 }
2802
2803 /* See symtab.h. */
2804
2805 bool
2806 iterate_over_symbols (const struct block *block,
2807 const lookup_name_info &name,
2808 const domain_enum domain,
2809 gdb::function_view<symbol_found_callback_ftype> callback)
2810 {
2811 struct block_iterator iter;
2812 struct symbol *sym;
2813
2814 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2815 {
2816 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2817 SYMBOL_DOMAIN (sym), domain))
2818 {
2819 struct block_symbol block_sym = {sym, block};
2820
2821 if (!callback (&block_sym))
2822 return false;
2823 }
2824 }
2825 return true;
2826 }
2827
2828 /* See symtab.h. */
2829
2830 bool
2831 iterate_over_symbols_terminated
2832 (const struct block *block,
2833 const lookup_name_info &name,
2834 const domain_enum domain,
2835 gdb::function_view<symbol_found_callback_ftype> callback)
2836 {
2837 if (!iterate_over_symbols (block, name, domain, callback))
2838 return false;
2839 struct block_symbol block_sym = {nullptr, block};
2840 return callback (&block_sym);
2841 }
2842
2843 /* Find the compunit symtab associated with PC and SECTION.
2844 This will read in debug info as necessary. */
2845
2846 struct compunit_symtab *
2847 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2848 {
2849 struct compunit_symtab *best_cust = NULL;
2850 CORE_ADDR distance = 0;
2851 struct bound_minimal_symbol msymbol;
2852
2853 /* If we know that this is not a text address, return failure. This is
2854 necessary because we loop based on the block's high and low code
2855 addresses, which do not include the data ranges, and because
2856 we call find_pc_sect_psymtab which has a similar restriction based
2857 on the partial_symtab's texthigh and textlow. */
2858 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2859 if (msymbol.minsym && msymbol.minsym->data_p ())
2860 return NULL;
2861
2862 /* Search all symtabs for the one whose file contains our address, and which
2863 is the smallest of all the ones containing the address. This is designed
2864 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2865 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2866 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2867
2868 This happens for native ecoff format, where code from included files
2869 gets its own symtab. The symtab for the included file should have
2870 been read in already via the dependency mechanism.
2871 It might be swifter to create several symtabs with the same name
2872 like xcoff does (I'm not sure).
2873
2874 It also happens for objfiles that have their functions reordered.
2875 For these, the symtab we are looking for is not necessarily read in. */
2876
2877 for (objfile *obj_file : current_program_space->objfiles ())
2878 {
2879 for (compunit_symtab *cust : obj_file->compunits ())
2880 {
2881 const struct block *b;
2882 const struct blockvector *bv;
2883
2884 bv = COMPUNIT_BLOCKVECTOR (cust);
2885 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2886
2887 if (BLOCK_START (b) <= pc
2888 && BLOCK_END (b) > pc
2889 && (distance == 0
2890 || BLOCK_END (b) - BLOCK_START (b) < distance))
2891 {
2892 /* For an objfile that has its functions reordered,
2893 find_pc_psymtab will find the proper partial symbol table
2894 and we simply return its corresponding symtab. */
2895 /* In order to better support objfiles that contain both
2896 stabs and coff debugging info, we continue on if a psymtab
2897 can't be found. */
2898 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2899 {
2900 struct compunit_symtab *result;
2901
2902 result
2903 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2904 msymbol,
2905 pc,
2906 section,
2907 0);
2908 if (result != NULL)
2909 return result;
2910 }
2911 if (section != 0)
2912 {
2913 struct block_iterator iter;
2914 struct symbol *sym = NULL;
2915
2916 ALL_BLOCK_SYMBOLS (b, iter, sym)
2917 {
2918 fixup_symbol_section (sym, obj_file);
2919 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2920 sym),
2921 section))
2922 break;
2923 }
2924 if (sym == NULL)
2925 continue; /* No symbol in this symtab matches
2926 section. */
2927 }
2928 distance = BLOCK_END (b) - BLOCK_START (b);
2929 best_cust = cust;
2930 }
2931 }
2932 }
2933
2934 if (best_cust != NULL)
2935 return best_cust;
2936
2937 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2938
2939 for (objfile *objf : current_program_space->objfiles ())
2940 {
2941 struct compunit_symtab *result;
2942
2943 if (!objf->sf)
2944 continue;
2945 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2946 msymbol,
2947 pc, section,
2948 1);
2949 if (result != NULL)
2950 return result;
2951 }
2952
2953 return NULL;
2954 }
2955
2956 /* Find the compunit symtab associated with PC.
2957 This will read in debug info as necessary.
2958 Backward compatibility, no section. */
2959
2960 struct compunit_symtab *
2961 find_pc_compunit_symtab (CORE_ADDR pc)
2962 {
2963 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2964 }
2965
2966 /* See symtab.h. */
2967
2968 struct symbol *
2969 find_symbol_at_address (CORE_ADDR address)
2970 {
2971 for (objfile *objfile : current_program_space->objfiles ())
2972 {
2973 if (objfile->sf == NULL
2974 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2975 continue;
2976
2977 struct compunit_symtab *symtab
2978 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2979 if (symtab != NULL)
2980 {
2981 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2982
2983 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2984 {
2985 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
2986 struct block_iterator iter;
2987 struct symbol *sym;
2988
2989 ALL_BLOCK_SYMBOLS (b, iter, sym)
2990 {
2991 if (SYMBOL_CLASS (sym) == LOC_STATIC
2992 && SYMBOL_VALUE_ADDRESS (sym) == address)
2993 return sym;
2994 }
2995 }
2996 }
2997 }
2998
2999 return NULL;
3000 }
3001
3002 \f
3003
3004 /* Find the source file and line number for a given PC value and SECTION.
3005 Return a structure containing a symtab pointer, a line number,
3006 and a pc range for the entire source line.
3007 The value's .pc field is NOT the specified pc.
3008 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3009 use the line that ends there. Otherwise, in that case, the line
3010 that begins there is used. */
3011
3012 /* The big complication here is that a line may start in one file, and end just
3013 before the start of another file. This usually occurs when you #include
3014 code in the middle of a subroutine. To properly find the end of a line's PC
3015 range, we must search all symtabs associated with this compilation unit, and
3016 find the one whose first PC is closer than that of the next line in this
3017 symtab. */
3018
3019 struct symtab_and_line
3020 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3021 {
3022 struct compunit_symtab *cust;
3023 struct linetable *l;
3024 int len;
3025 struct linetable_entry *item;
3026 const struct blockvector *bv;
3027 struct bound_minimal_symbol msymbol;
3028
3029 /* Info on best line seen so far, and where it starts, and its file. */
3030
3031 struct linetable_entry *best = NULL;
3032 CORE_ADDR best_end = 0;
3033 struct symtab *best_symtab = 0;
3034
3035 /* Store here the first line number
3036 of a file which contains the line at the smallest pc after PC.
3037 If we don't find a line whose range contains PC,
3038 we will use a line one less than this,
3039 with a range from the start of that file to the first line's pc. */
3040 struct linetable_entry *alt = NULL;
3041
3042 /* Info on best line seen in this file. */
3043
3044 struct linetable_entry *prev;
3045
3046 /* If this pc is not from the current frame,
3047 it is the address of the end of a call instruction.
3048 Quite likely that is the start of the following statement.
3049 But what we want is the statement containing the instruction.
3050 Fudge the pc to make sure we get that. */
3051
3052 /* It's tempting to assume that, if we can't find debugging info for
3053 any function enclosing PC, that we shouldn't search for line
3054 number info, either. However, GAS can emit line number info for
3055 assembly files --- very helpful when debugging hand-written
3056 assembly code. In such a case, we'd have no debug info for the
3057 function, but we would have line info. */
3058
3059 if (notcurrent)
3060 pc -= 1;
3061
3062 /* elz: added this because this function returned the wrong
3063 information if the pc belongs to a stub (import/export)
3064 to call a shlib function. This stub would be anywhere between
3065 two functions in the target, and the line info was erroneously
3066 taken to be the one of the line before the pc. */
3067
3068 /* RT: Further explanation:
3069
3070 * We have stubs (trampolines) inserted between procedures.
3071 *
3072 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3073 * exists in the main image.
3074 *
3075 * In the minimal symbol table, we have a bunch of symbols
3076 * sorted by start address. The stubs are marked as "trampoline",
3077 * the others appear as text. E.g.:
3078 *
3079 * Minimal symbol table for main image
3080 * main: code for main (text symbol)
3081 * shr1: stub (trampoline symbol)
3082 * foo: code for foo (text symbol)
3083 * ...
3084 * Minimal symbol table for "shr1" image:
3085 * ...
3086 * shr1: code for shr1 (text symbol)
3087 * ...
3088 *
3089 * So the code below is trying to detect if we are in the stub
3090 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3091 * and if found, do the symbolization from the real-code address
3092 * rather than the stub address.
3093 *
3094 * Assumptions being made about the minimal symbol table:
3095 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3096 * if we're really in the trampoline.s If we're beyond it (say
3097 * we're in "foo" in the above example), it'll have a closer
3098 * symbol (the "foo" text symbol for example) and will not
3099 * return the trampoline.
3100 * 2. lookup_minimal_symbol_text() will find a real text symbol
3101 * corresponding to the trampoline, and whose address will
3102 * be different than the trampoline address. I put in a sanity
3103 * check for the address being the same, to avoid an
3104 * infinite recursion.
3105 */
3106 msymbol = lookup_minimal_symbol_by_pc (pc);
3107 if (msymbol.minsym != NULL)
3108 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3109 {
3110 struct bound_minimal_symbol mfunsym
3111 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3112 NULL);
3113
3114 if (mfunsym.minsym == NULL)
3115 /* I eliminated this warning since it is coming out
3116 * in the following situation:
3117 * gdb shmain // test program with shared libraries
3118 * (gdb) break shr1 // function in shared lib
3119 * Warning: In stub for ...
3120 * In the above situation, the shared lib is not loaded yet,
3121 * so of course we can't find the real func/line info,
3122 * but the "break" still works, and the warning is annoying.
3123 * So I commented out the warning. RT */
3124 /* warning ("In stub for %s; unable to find real function/line info",
3125 SYMBOL_LINKAGE_NAME (msymbol)); */
3126 ;
3127 /* fall through */
3128 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3129 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3130 /* Avoid infinite recursion */
3131 /* See above comment about why warning is commented out. */
3132 /* warning ("In stub for %s; unable to find real function/line info",
3133 SYMBOL_LINKAGE_NAME (msymbol)); */
3134 ;
3135 /* fall through */
3136 else
3137 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3138 }
3139
3140 symtab_and_line val;
3141 val.pspace = current_program_space;
3142
3143 cust = find_pc_sect_compunit_symtab (pc, section);
3144 if (cust == NULL)
3145 {
3146 /* If no symbol information, return previous pc. */
3147 if (notcurrent)
3148 pc++;
3149 val.pc = pc;
3150 return val;
3151 }
3152
3153 bv = COMPUNIT_BLOCKVECTOR (cust);
3154
3155 /* Look at all the symtabs that share this blockvector.
3156 They all have the same apriori range, that we found was right;
3157 but they have different line tables. */
3158
3159 for (symtab *iter_s : compunit_filetabs (cust))
3160 {
3161 /* Find the best line in this symtab. */
3162 l = SYMTAB_LINETABLE (iter_s);
3163 if (!l)
3164 continue;
3165 len = l->nitems;
3166 if (len <= 0)
3167 {
3168 /* I think len can be zero if the symtab lacks line numbers
3169 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3170 I'm not sure which, and maybe it depends on the symbol
3171 reader). */
3172 continue;
3173 }
3174
3175 prev = NULL;
3176 item = l->item; /* Get first line info. */
3177
3178 /* Is this file's first line closer than the first lines of other files?
3179 If so, record this file, and its first line, as best alternate. */
3180 if (item->pc > pc && (!alt || item->pc < alt->pc))
3181 alt = item;
3182
3183 auto pc_compare = [](const CORE_ADDR & comp_pc,
3184 const struct linetable_entry & lhs)->bool
3185 {
3186 return comp_pc < lhs.pc;
3187 };
3188
3189 struct linetable_entry *first = item;
3190 struct linetable_entry *last = item + len;
3191 item = std::upper_bound (first, last, pc, pc_compare);
3192 if (item != first)
3193 prev = item - 1; /* Found a matching item. */
3194
3195 /* At this point, prev points at the line whose start addr is <= pc, and
3196 item points at the next line. If we ran off the end of the linetable
3197 (pc >= start of the last line), then prev == item. If pc < start of
3198 the first line, prev will not be set. */
3199
3200 /* Is this file's best line closer than the best in the other files?
3201 If so, record this file, and its best line, as best so far. Don't
3202 save prev if it represents the end of a function (i.e. line number
3203 0) instead of a real line. */
3204
3205 if (prev && prev->line && (!best || prev->pc > best->pc))
3206 {
3207 best = prev;
3208 best_symtab = iter_s;
3209
3210 /* Discard BEST_END if it's before the PC of the current BEST. */
3211 if (best_end <= best->pc)
3212 best_end = 0;
3213 }
3214
3215 /* If another line (denoted by ITEM) is in the linetable and its
3216 PC is after BEST's PC, but before the current BEST_END, then
3217 use ITEM's PC as the new best_end. */
3218 if (best && item < last && item->pc > best->pc
3219 && (best_end == 0 || best_end > item->pc))
3220 best_end = item->pc;
3221 }
3222
3223 if (!best_symtab)
3224 {
3225 /* If we didn't find any line number info, just return zeros.
3226 We used to return alt->line - 1 here, but that could be
3227 anywhere; if we don't have line number info for this PC,
3228 don't make some up. */
3229 val.pc = pc;
3230 }
3231 else if (best->line == 0)
3232 {
3233 /* If our best fit is in a range of PC's for which no line
3234 number info is available (line number is zero) then we didn't
3235 find any valid line information. */
3236 val.pc = pc;
3237 }
3238 else
3239 {
3240 val.symtab = best_symtab;
3241 val.line = best->line;
3242 val.pc = best->pc;
3243 if (best_end && (!alt || best_end < alt->pc))
3244 val.end = best_end;
3245 else if (alt)
3246 val.end = alt->pc;
3247 else
3248 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3249 }
3250 val.section = section;
3251 return val;
3252 }
3253
3254 /* Backward compatibility (no section). */
3255
3256 struct symtab_and_line
3257 find_pc_line (CORE_ADDR pc, int notcurrent)
3258 {
3259 struct obj_section *section;
3260
3261 section = find_pc_overlay (pc);
3262 if (pc_in_unmapped_range (pc, section))
3263 pc = overlay_mapped_address (pc, section);
3264 return find_pc_sect_line (pc, section, notcurrent);
3265 }
3266
3267 /* See symtab.h. */
3268
3269 struct symtab *
3270 find_pc_line_symtab (CORE_ADDR pc)
3271 {
3272 struct symtab_and_line sal;
3273
3274 /* This always passes zero for NOTCURRENT to find_pc_line.
3275 There are currently no callers that ever pass non-zero. */
3276 sal = find_pc_line (pc, 0);
3277 return sal.symtab;
3278 }
3279 \f
3280 /* Find line number LINE in any symtab whose name is the same as
3281 SYMTAB.
3282
3283 If found, return the symtab that contains the linetable in which it was
3284 found, set *INDEX to the index in the linetable of the best entry
3285 found, and set *EXACT_MATCH to true if the value returned is an
3286 exact match.
3287
3288 If not found, return NULL. */
3289
3290 struct symtab *
3291 find_line_symtab (struct symtab *sym_tab, int line,
3292 int *index, bool *exact_match)
3293 {
3294 int exact = 0; /* Initialized here to avoid a compiler warning. */
3295
3296 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3297 so far seen. */
3298
3299 int best_index;
3300 struct linetable *best_linetable;
3301 struct symtab *best_symtab;
3302
3303 /* First try looking it up in the given symtab. */
3304 best_linetable = SYMTAB_LINETABLE (sym_tab);
3305 best_symtab = sym_tab;
3306 best_index = find_line_common (best_linetable, line, &exact, 0);
3307 if (best_index < 0 || !exact)
3308 {
3309 /* Didn't find an exact match. So we better keep looking for
3310 another symtab with the same name. In the case of xcoff,
3311 multiple csects for one source file (produced by IBM's FORTRAN
3312 compiler) produce multiple symtabs (this is unavoidable
3313 assuming csects can be at arbitrary places in memory and that
3314 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3315
3316 /* BEST is the smallest linenumber > LINE so far seen,
3317 or 0 if none has been seen so far.
3318 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3319 int best;
3320
3321 if (best_index >= 0)
3322 best = best_linetable->item[best_index].line;
3323 else
3324 best = 0;
3325
3326 for (objfile *objfile : current_program_space->objfiles ())
3327 {
3328 if (objfile->sf)
3329 objfile->sf->qf->expand_symtabs_with_fullname
3330 (objfile, symtab_to_fullname (sym_tab));
3331 }
3332
3333 for (objfile *objfile : current_program_space->objfiles ())
3334 {
3335 for (compunit_symtab *cu : objfile->compunits ())
3336 {
3337 for (symtab *s : compunit_filetabs (cu))
3338 {
3339 struct linetable *l;
3340 int ind;
3341
3342 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3343 continue;
3344 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3345 symtab_to_fullname (s)) != 0)
3346 continue;
3347 l = SYMTAB_LINETABLE (s);
3348 ind = find_line_common (l, line, &exact, 0);
3349 if (ind >= 0)
3350 {
3351 if (exact)
3352 {
3353 best_index = ind;
3354 best_linetable = l;
3355 best_symtab = s;
3356 goto done;
3357 }
3358 if (best == 0 || l->item[ind].line < best)
3359 {
3360 best = l->item[ind].line;
3361 best_index = ind;
3362 best_linetable = l;
3363 best_symtab = s;
3364 }
3365 }
3366 }
3367 }
3368 }
3369 }
3370 done:
3371 if (best_index < 0)
3372 return NULL;
3373
3374 if (index)
3375 *index = best_index;
3376 if (exact_match)
3377 *exact_match = (exact != 0);
3378
3379 return best_symtab;
3380 }
3381
3382 /* Given SYMTAB, returns all the PCs function in the symtab that
3383 exactly match LINE. Returns an empty vector if there are no exact
3384 matches, but updates BEST_ITEM in this case. */
3385
3386 std::vector<CORE_ADDR>
3387 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3388 struct linetable_entry **best_item)
3389 {
3390 int start = 0;
3391 std::vector<CORE_ADDR> result;
3392
3393 /* First, collect all the PCs that are at this line. */
3394 while (1)
3395 {
3396 int was_exact;
3397 int idx;
3398
3399 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3400 start);
3401 if (idx < 0)
3402 break;
3403
3404 if (!was_exact)
3405 {
3406 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3407
3408 if (*best_item == NULL || item->line < (*best_item)->line)
3409 *best_item = item;
3410
3411 break;
3412 }
3413
3414 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3415 start = idx + 1;
3416 }
3417
3418 return result;
3419 }
3420
3421 \f
3422 /* Set the PC value for a given source file and line number and return true.
3423 Returns false for invalid line number (and sets the PC to 0).
3424 The source file is specified with a struct symtab. */
3425
3426 bool
3427 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3428 {
3429 struct linetable *l;
3430 int ind;
3431
3432 *pc = 0;
3433 if (symtab == 0)
3434 return false;
3435
3436 symtab = find_line_symtab (symtab, line, &ind, NULL);
3437 if (symtab != NULL)
3438 {
3439 l = SYMTAB_LINETABLE (symtab);
3440 *pc = l->item[ind].pc;
3441 return true;
3442 }
3443 else
3444 return false;
3445 }
3446
3447 /* Find the range of pc values in a line.
3448 Store the starting pc of the line into *STARTPTR
3449 and the ending pc (start of next line) into *ENDPTR.
3450 Returns true to indicate success.
3451 Returns false if could not find the specified line. */
3452
3453 bool
3454 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3455 CORE_ADDR *endptr)
3456 {
3457 CORE_ADDR startaddr;
3458 struct symtab_and_line found_sal;
3459
3460 startaddr = sal.pc;
3461 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3462 return false;
3463
3464 /* This whole function is based on address. For example, if line 10 has
3465 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3466 "info line *0x123" should say the line goes from 0x100 to 0x200
3467 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3468 This also insures that we never give a range like "starts at 0x134
3469 and ends at 0x12c". */
3470
3471 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3472 if (found_sal.line != sal.line)
3473 {
3474 /* The specified line (sal) has zero bytes. */
3475 *startptr = found_sal.pc;
3476 *endptr = found_sal.pc;
3477 }
3478 else
3479 {
3480 *startptr = found_sal.pc;
3481 *endptr = found_sal.end;
3482 }
3483 return true;
3484 }
3485
3486 /* Given a line table and a line number, return the index into the line
3487 table for the pc of the nearest line whose number is >= the specified one.
3488 Return -1 if none is found. The value is >= 0 if it is an index.
3489 START is the index at which to start searching the line table.
3490
3491 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3492
3493 static int
3494 find_line_common (struct linetable *l, int lineno,
3495 int *exact_match, int start)
3496 {
3497 int i;
3498 int len;
3499
3500 /* BEST is the smallest linenumber > LINENO so far seen,
3501 or 0 if none has been seen so far.
3502 BEST_INDEX identifies the item for it. */
3503
3504 int best_index = -1;
3505 int best = 0;
3506
3507 *exact_match = 0;
3508
3509 if (lineno <= 0)
3510 return -1;
3511 if (l == 0)
3512 return -1;
3513
3514 len = l->nitems;
3515 for (i = start; i < len; i++)
3516 {
3517 struct linetable_entry *item = &(l->item[i]);
3518
3519 if (item->line == lineno)
3520 {
3521 /* Return the first (lowest address) entry which matches. */
3522 *exact_match = 1;
3523 return i;
3524 }
3525
3526 if (item->line > lineno && (best == 0 || item->line < best))
3527 {
3528 best = item->line;
3529 best_index = i;
3530 }
3531 }
3532
3533 /* If we got here, we didn't get an exact match. */
3534 return best_index;
3535 }
3536
3537 bool
3538 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3539 {
3540 struct symtab_and_line sal;
3541
3542 sal = find_pc_line (pc, 0);
3543 *startptr = sal.pc;
3544 *endptr = sal.end;
3545 return sal.symtab != 0;
3546 }
3547
3548 /* Helper for find_function_start_sal. Does most of the work, except
3549 setting the sal's symbol. */
3550
3551 static symtab_and_line
3552 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3553 bool funfirstline)
3554 {
3555 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3556
3557 if (funfirstline && sal.symtab != NULL
3558 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3559 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3560 {
3561 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3562
3563 sal.pc = func_addr;
3564 if (gdbarch_skip_entrypoint_p (gdbarch))
3565 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3566 return sal;
3567 }
3568
3569 /* We always should have a line for the function start address.
3570 If we don't, something is odd. Create a plain SAL referring
3571 just the PC and hope that skip_prologue_sal (if requested)
3572 can find a line number for after the prologue. */
3573 if (sal.pc < func_addr)
3574 {
3575 sal = {};
3576 sal.pspace = current_program_space;
3577 sal.pc = func_addr;
3578 sal.section = section;
3579 }
3580
3581 if (funfirstline)
3582 skip_prologue_sal (&sal);
3583
3584 return sal;
3585 }
3586
3587 /* See symtab.h. */
3588
3589 symtab_and_line
3590 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3591 bool funfirstline)
3592 {
3593 symtab_and_line sal
3594 = find_function_start_sal_1 (func_addr, section, funfirstline);
3595
3596 /* find_function_start_sal_1 does a linetable search, so it finds
3597 the symtab and linenumber, but not a symbol. Fill in the
3598 function symbol too. */
3599 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3600
3601 return sal;
3602 }
3603
3604 /* See symtab.h. */
3605
3606 symtab_and_line
3607 find_function_start_sal (symbol *sym, bool funfirstline)
3608 {
3609 fixup_symbol_section (sym, NULL);
3610 symtab_and_line sal
3611 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3612 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3613 funfirstline);
3614 sal.symbol = sym;
3615 return sal;
3616 }
3617
3618
3619 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3620 address for that function that has an entry in SYMTAB's line info
3621 table. If such an entry cannot be found, return FUNC_ADDR
3622 unaltered. */
3623
3624 static CORE_ADDR
3625 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3626 {
3627 CORE_ADDR func_start, func_end;
3628 struct linetable *l;
3629 int i;
3630
3631 /* Give up if this symbol has no lineinfo table. */
3632 l = SYMTAB_LINETABLE (symtab);
3633 if (l == NULL)
3634 return func_addr;
3635
3636 /* Get the range for the function's PC values, or give up if we
3637 cannot, for some reason. */
3638 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3639 return func_addr;
3640
3641 /* Linetable entries are ordered by PC values, see the commentary in
3642 symtab.h where `struct linetable' is defined. Thus, the first
3643 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3644 address we are looking for. */
3645 for (i = 0; i < l->nitems; i++)
3646 {
3647 struct linetable_entry *item = &(l->item[i]);
3648
3649 /* Don't use line numbers of zero, they mark special entries in
3650 the table. See the commentary on symtab.h before the
3651 definition of struct linetable. */
3652 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3653 return item->pc;
3654 }
3655
3656 return func_addr;
3657 }
3658
3659 /* Adjust SAL to the first instruction past the function prologue.
3660 If the PC was explicitly specified, the SAL is not changed.
3661 If the line number was explicitly specified then the SAL can still be
3662 updated, unless the language for SAL is assembler, in which case the SAL
3663 will be left unchanged.
3664 If SAL is already past the prologue, then do nothing. */
3665
3666 void
3667 skip_prologue_sal (struct symtab_and_line *sal)
3668 {
3669 struct symbol *sym;
3670 struct symtab_and_line start_sal;
3671 CORE_ADDR pc, saved_pc;
3672 struct obj_section *section;
3673 const char *name;
3674 struct objfile *objfile;
3675 struct gdbarch *gdbarch;
3676 const struct block *b, *function_block;
3677 int force_skip, skip;
3678
3679 /* Do not change the SAL if PC was specified explicitly. */
3680 if (sal->explicit_pc)
3681 return;
3682
3683 /* In assembly code, if the user asks for a specific line then we should
3684 not adjust the SAL. The user already has instruction level
3685 visibility in this case, so selecting a line other than one requested
3686 is likely to be the wrong choice. */
3687 if (sal->symtab != nullptr
3688 && sal->explicit_line
3689 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3690 return;
3691
3692 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3693
3694 switch_to_program_space_and_thread (sal->pspace);
3695
3696 sym = find_pc_sect_function (sal->pc, sal->section);
3697 if (sym != NULL)
3698 {
3699 fixup_symbol_section (sym, NULL);
3700
3701 objfile = symbol_objfile (sym);
3702 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3703 section = SYMBOL_OBJ_SECTION (objfile, sym);
3704 name = SYMBOL_LINKAGE_NAME (sym);
3705 }
3706 else
3707 {
3708 struct bound_minimal_symbol msymbol
3709 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3710
3711 if (msymbol.minsym == NULL)
3712 return;
3713
3714 objfile = msymbol.objfile;
3715 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3716 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3717 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3718 }
3719
3720 gdbarch = get_objfile_arch (objfile);
3721
3722 /* Process the prologue in two passes. In the first pass try to skip the
3723 prologue (SKIP is true) and verify there is a real need for it (indicated
3724 by FORCE_SKIP). If no such reason was found run a second pass where the
3725 prologue is not skipped (SKIP is false). */
3726
3727 skip = 1;
3728 force_skip = 1;
3729
3730 /* Be conservative - allow direct PC (without skipping prologue) only if we
3731 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3732 have to be set by the caller so we use SYM instead. */
3733 if (sym != NULL
3734 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3735 force_skip = 0;
3736
3737 saved_pc = pc;
3738 do
3739 {
3740 pc = saved_pc;
3741
3742 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3743 so that gdbarch_skip_prologue has something unique to work on. */
3744 if (section_is_overlay (section) && !section_is_mapped (section))
3745 pc = overlay_unmapped_address (pc, section);
3746
3747 /* Skip "first line" of function (which is actually its prologue). */
3748 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3749 if (gdbarch_skip_entrypoint_p (gdbarch))
3750 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3751 if (skip)
3752 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3753
3754 /* For overlays, map pc back into its mapped VMA range. */
3755 pc = overlay_mapped_address (pc, section);
3756
3757 /* Calculate line number. */
3758 start_sal = find_pc_sect_line (pc, section, 0);
3759
3760 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3761 line is still part of the same function. */
3762 if (skip && start_sal.pc != pc
3763 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3764 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3765 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3766 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3767 {
3768 /* First pc of next line */
3769 pc = start_sal.end;
3770 /* Recalculate the line number (might not be N+1). */
3771 start_sal = find_pc_sect_line (pc, section, 0);
3772 }
3773
3774 /* On targets with executable formats that don't have a concept of
3775 constructors (ELF with .init has, PE doesn't), gcc emits a call
3776 to `__main' in `main' between the prologue and before user
3777 code. */
3778 if (gdbarch_skip_main_prologue_p (gdbarch)
3779 && name && strcmp_iw (name, "main") == 0)
3780 {
3781 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3782 /* Recalculate the line number (might not be N+1). */
3783 start_sal = find_pc_sect_line (pc, section, 0);
3784 force_skip = 1;
3785 }
3786 }
3787 while (!force_skip && skip--);
3788
3789 /* If we still don't have a valid source line, try to find the first
3790 PC in the lineinfo table that belongs to the same function. This
3791 happens with COFF debug info, which does not seem to have an
3792 entry in lineinfo table for the code after the prologue which has
3793 no direct relation to source. For example, this was found to be
3794 the case with the DJGPP target using "gcc -gcoff" when the
3795 compiler inserted code after the prologue to make sure the stack
3796 is aligned. */
3797 if (!force_skip && sym && start_sal.symtab == NULL)
3798 {
3799 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3800 /* Recalculate the line number. */
3801 start_sal = find_pc_sect_line (pc, section, 0);
3802 }
3803
3804 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3805 forward SAL to the end of the prologue. */
3806 if (sal->pc >= pc)
3807 return;
3808
3809 sal->pc = pc;
3810 sal->section = section;
3811 sal->symtab = start_sal.symtab;
3812 sal->line = start_sal.line;
3813 sal->end = start_sal.end;
3814
3815 /* Check if we are now inside an inlined function. If we can,
3816 use the call site of the function instead. */
3817 b = block_for_pc_sect (sal->pc, sal->section);
3818 function_block = NULL;
3819 while (b != NULL)
3820 {
3821 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3822 function_block = b;
3823 else if (BLOCK_FUNCTION (b) != NULL)
3824 break;
3825 b = BLOCK_SUPERBLOCK (b);
3826 }
3827 if (function_block != NULL
3828 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3829 {
3830 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3831 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3832 }
3833 }
3834
3835 /* Given PC at the function's start address, attempt to find the
3836 prologue end using SAL information. Return zero if the skip fails.
3837
3838 A non-optimized prologue traditionally has one SAL for the function
3839 and a second for the function body. A single line function has
3840 them both pointing at the same line.
3841
3842 An optimized prologue is similar but the prologue may contain
3843 instructions (SALs) from the instruction body. Need to skip those
3844 while not getting into the function body.
3845
3846 The functions end point and an increasing SAL line are used as
3847 indicators of the prologue's endpoint.
3848
3849 This code is based on the function refine_prologue_limit
3850 (found in ia64). */
3851
3852 CORE_ADDR
3853 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3854 {
3855 struct symtab_and_line prologue_sal;
3856 CORE_ADDR start_pc;
3857 CORE_ADDR end_pc;
3858 const struct block *bl;
3859
3860 /* Get an initial range for the function. */
3861 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3862 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3863
3864 prologue_sal = find_pc_line (start_pc, 0);
3865 if (prologue_sal.line != 0)
3866 {
3867 /* For languages other than assembly, treat two consecutive line
3868 entries at the same address as a zero-instruction prologue.
3869 The GNU assembler emits separate line notes for each instruction
3870 in a multi-instruction macro, but compilers generally will not
3871 do this. */
3872 if (prologue_sal.symtab->language != language_asm)
3873 {
3874 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3875 int idx = 0;
3876
3877 /* Skip any earlier lines, and any end-of-sequence marker
3878 from a previous function. */
3879 while (linetable->item[idx].pc != prologue_sal.pc
3880 || linetable->item[idx].line == 0)
3881 idx++;
3882
3883 if (idx+1 < linetable->nitems
3884 && linetable->item[idx+1].line != 0
3885 && linetable->item[idx+1].pc == start_pc)
3886 return start_pc;
3887 }
3888
3889 /* If there is only one sal that covers the entire function,
3890 then it is probably a single line function, like
3891 "foo(){}". */
3892 if (prologue_sal.end >= end_pc)
3893 return 0;
3894
3895 while (prologue_sal.end < end_pc)
3896 {
3897 struct symtab_and_line sal;
3898
3899 sal = find_pc_line (prologue_sal.end, 0);
3900 if (sal.line == 0)
3901 break;
3902 /* Assume that a consecutive SAL for the same (or larger)
3903 line mark the prologue -> body transition. */
3904 if (sal.line >= prologue_sal.line)
3905 break;
3906 /* Likewise if we are in a different symtab altogether
3907 (e.g. within a file included via #include).  */
3908 if (sal.symtab != prologue_sal.symtab)
3909 break;
3910
3911 /* The line number is smaller. Check that it's from the
3912 same function, not something inlined. If it's inlined,
3913 then there is no point comparing the line numbers. */
3914 bl = block_for_pc (prologue_sal.end);
3915 while (bl)
3916 {
3917 if (block_inlined_p (bl))
3918 break;
3919 if (BLOCK_FUNCTION (bl))
3920 {
3921 bl = NULL;
3922 break;
3923 }
3924 bl = BLOCK_SUPERBLOCK (bl);
3925 }
3926 if (bl != NULL)
3927 break;
3928
3929 /* The case in which compiler's optimizer/scheduler has
3930 moved instructions into the prologue. We look ahead in
3931 the function looking for address ranges whose
3932 corresponding line number is less the first one that we
3933 found for the function. This is more conservative then
3934 refine_prologue_limit which scans a large number of SALs
3935 looking for any in the prologue. */
3936 prologue_sal = sal;
3937 }
3938 }
3939
3940 if (prologue_sal.end < end_pc)
3941 /* Return the end of this line, or zero if we could not find a
3942 line. */
3943 return prologue_sal.end;
3944 else
3945 /* Don't return END_PC, which is past the end of the function. */
3946 return prologue_sal.pc;
3947 }
3948
3949 /* See symtab.h. */
3950
3951 symbol *
3952 find_function_alias_target (bound_minimal_symbol msymbol)
3953 {
3954 CORE_ADDR func_addr;
3955 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3956 return NULL;
3957
3958 symbol *sym = find_pc_function (func_addr);
3959 if (sym != NULL
3960 && SYMBOL_CLASS (sym) == LOC_BLOCK
3961 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3962 return sym;
3963
3964 return NULL;
3965 }
3966
3967 \f
3968 /* If P is of the form "operator[ \t]+..." where `...' is
3969 some legitimate operator text, return a pointer to the
3970 beginning of the substring of the operator text.
3971 Otherwise, return "". */
3972
3973 static const char *
3974 operator_chars (const char *p, const char **end)
3975 {
3976 *end = "";
3977 if (!startswith (p, CP_OPERATOR_STR))
3978 return *end;
3979 p += CP_OPERATOR_LEN;
3980
3981 /* Don't get faked out by `operator' being part of a longer
3982 identifier. */
3983 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3984 return *end;
3985
3986 /* Allow some whitespace between `operator' and the operator symbol. */
3987 while (*p == ' ' || *p == '\t')
3988 p++;
3989
3990 /* Recognize 'operator TYPENAME'. */
3991
3992 if (isalpha (*p) || *p == '_' || *p == '$')
3993 {
3994 const char *q = p + 1;
3995
3996 while (isalnum (*q) || *q == '_' || *q == '$')
3997 q++;
3998 *end = q;
3999 return p;
4000 }
4001
4002 while (*p)
4003 switch (*p)
4004 {
4005 case '\\': /* regexp quoting */
4006 if (p[1] == '*')
4007 {
4008 if (p[2] == '=') /* 'operator\*=' */
4009 *end = p + 3;
4010 else /* 'operator\*' */
4011 *end = p + 2;
4012 return p;
4013 }
4014 else if (p[1] == '[')
4015 {
4016 if (p[2] == ']')
4017 error (_("mismatched quoting on brackets, "
4018 "try 'operator\\[\\]'"));
4019 else if (p[2] == '\\' && p[3] == ']')
4020 {
4021 *end = p + 4; /* 'operator\[\]' */
4022 return p;
4023 }
4024 else
4025 error (_("nothing is allowed between '[' and ']'"));
4026 }
4027 else
4028 {
4029 /* Gratuitous quote: skip it and move on. */
4030 p++;
4031 continue;
4032 }
4033 break;
4034 case '!':
4035 case '=':
4036 case '*':
4037 case '/':
4038 case '%':
4039 case '^':
4040 if (p[1] == '=')
4041 *end = p + 2;
4042 else
4043 *end = p + 1;
4044 return p;
4045 case '<':
4046 case '>':
4047 case '+':
4048 case '-':
4049 case '&':
4050 case '|':
4051 if (p[0] == '-' && p[1] == '>')
4052 {
4053 /* Struct pointer member operator 'operator->'. */
4054 if (p[2] == '*')
4055 {
4056 *end = p + 3; /* 'operator->*' */
4057 return p;
4058 }
4059 else if (p[2] == '\\')
4060 {
4061 *end = p + 4; /* Hopefully 'operator->\*' */
4062 return p;
4063 }
4064 else
4065 {
4066 *end = p + 2; /* 'operator->' */
4067 return p;
4068 }
4069 }
4070 if (p[1] == '=' || p[1] == p[0])
4071 *end = p + 2;
4072 else
4073 *end = p + 1;
4074 return p;
4075 case '~':
4076 case ',':
4077 *end = p + 1;
4078 return p;
4079 case '(':
4080 if (p[1] != ')')
4081 error (_("`operator ()' must be specified "
4082 "without whitespace in `()'"));
4083 *end = p + 2;
4084 return p;
4085 case '?':
4086 if (p[1] != ':')
4087 error (_("`operator ?:' must be specified "
4088 "without whitespace in `?:'"));
4089 *end = p + 2;
4090 return p;
4091 case '[':
4092 if (p[1] != ']')
4093 error (_("`operator []' must be specified "
4094 "without whitespace in `[]'"));
4095 *end = p + 2;
4096 return p;
4097 default:
4098 error (_("`operator %s' not supported"), p);
4099 break;
4100 }
4101
4102 *end = "";
4103 return *end;
4104 }
4105 \f
4106
4107 /* What part to match in a file name. */
4108
4109 struct filename_partial_match_opts
4110 {
4111 /* Only match the directory name part. */
4112 bool dirname = false;
4113
4114 /* Only match the basename part. */
4115 bool basename = false;
4116 };
4117
4118 /* Data structure to maintain printing state for output_source_filename. */
4119
4120 struct output_source_filename_data
4121 {
4122 /* Output only filenames matching REGEXP. */
4123 std::string regexp;
4124 gdb::optional<compiled_regex> c_regexp;
4125 /* Possibly only match a part of the filename. */
4126 filename_partial_match_opts partial_match;
4127
4128
4129 /* Cache of what we've seen so far. */
4130 struct filename_seen_cache *filename_seen_cache;
4131
4132 /* Flag of whether we're printing the first one. */
4133 int first;
4134 };
4135
4136 /* Slave routine for sources_info. Force line breaks at ,'s.
4137 NAME is the name to print.
4138 DATA contains the state for printing and watching for duplicates. */
4139
4140 static void
4141 output_source_filename (const char *name,
4142 struct output_source_filename_data *data)
4143 {
4144 /* Since a single source file can result in several partial symbol
4145 tables, we need to avoid printing it more than once. Note: if
4146 some of the psymtabs are read in and some are not, it gets
4147 printed both under "Source files for which symbols have been
4148 read" and "Source files for which symbols will be read in on
4149 demand". I consider this a reasonable way to deal with the
4150 situation. I'm not sure whether this can also happen for
4151 symtabs; it doesn't hurt to check. */
4152
4153 /* Was NAME already seen? */
4154 if (data->filename_seen_cache->seen (name))
4155 {
4156 /* Yes; don't print it again. */
4157 return;
4158 }
4159
4160 /* Does it match data->regexp? */
4161 if (data->c_regexp.has_value ())
4162 {
4163 const char *to_match;
4164 std::string dirname;
4165
4166 if (data->partial_match.dirname)
4167 {
4168 dirname = ldirname (name);
4169 to_match = dirname.c_str ();
4170 }
4171 else if (data->partial_match.basename)
4172 to_match = lbasename (name);
4173 else
4174 to_match = name;
4175
4176 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4177 return;
4178 }
4179
4180 /* Print it and reset *FIRST. */
4181 if (! data->first)
4182 printf_filtered (", ");
4183 data->first = 0;
4184
4185 wrap_here ("");
4186 fputs_styled (name, file_name_style.style (), gdb_stdout);
4187 }
4188
4189 /* A callback for map_partial_symbol_filenames. */
4190
4191 static void
4192 output_partial_symbol_filename (const char *filename, const char *fullname,
4193 void *data)
4194 {
4195 output_source_filename (fullname ? fullname : filename,
4196 (struct output_source_filename_data *) data);
4197 }
4198
4199 using isrc_flag_option_def
4200 = gdb::option::flag_option_def<filename_partial_match_opts>;
4201
4202 static const gdb::option::option_def info_sources_option_defs[] = {
4203
4204 isrc_flag_option_def {
4205 "dirname",
4206 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4207 N_("Show only the files having a dirname matching REGEXP."),
4208 },
4209
4210 isrc_flag_option_def {
4211 "basename",
4212 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4213 N_("Show only the files having a basename matching REGEXP."),
4214 },
4215
4216 };
4217
4218 /* Create an option_def_group for the "info sources" options, with
4219 ISRC_OPTS as context. */
4220
4221 static inline gdb::option::option_def_group
4222 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4223 {
4224 return {{info_sources_option_defs}, isrc_opts};
4225 }
4226
4227 /* Prints the header message for the source files that will be printed
4228 with the matching info present in DATA. SYMBOL_MSG is a message
4229 that tells what will or has been done with the symbols of the
4230 matching source files. */
4231
4232 static void
4233 print_info_sources_header (const char *symbol_msg,
4234 const struct output_source_filename_data *data)
4235 {
4236 puts_filtered (symbol_msg);
4237 if (!data->regexp.empty ())
4238 {
4239 if (data->partial_match.dirname)
4240 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4241 data->regexp.c_str ());
4242 else if (data->partial_match.basename)
4243 printf_filtered (_("(basename matching regular expression \"%s\")"),
4244 data->regexp.c_str ());
4245 else
4246 printf_filtered (_("(filename matching regular expression \"%s\")"),
4247 data->regexp.c_str ());
4248 }
4249 puts_filtered ("\n");
4250 }
4251
4252 /* Completer for "info sources". */
4253
4254 static void
4255 info_sources_command_completer (cmd_list_element *ignore,
4256 completion_tracker &tracker,
4257 const char *text, const char *word)
4258 {
4259 const auto group = make_info_sources_options_def_group (nullptr);
4260 if (gdb::option::complete_options
4261 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4262 return;
4263 }
4264
4265 static void
4266 info_sources_command (const char *args, int from_tty)
4267 {
4268 struct output_source_filename_data data;
4269
4270 if (!have_full_symbols () && !have_partial_symbols ())
4271 {
4272 error (_("No symbol table is loaded. Use the \"file\" command."));
4273 }
4274
4275 filename_seen_cache filenames_seen;
4276
4277 auto group = make_info_sources_options_def_group (&data.partial_match);
4278
4279 gdb::option::process_options
4280 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4281
4282 if (args != NULL && *args != '\000')
4283 data.regexp = args;
4284
4285 data.filename_seen_cache = &filenames_seen;
4286 data.first = 1;
4287
4288 if (data.partial_match.dirname && data.partial_match.basename)
4289 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4290 if ((data.partial_match.dirname || data.partial_match.basename)
4291 && data.regexp.empty ())
4292 error (_("Missing REGEXP for 'info sources'."));
4293
4294 if (data.regexp.empty ())
4295 data.c_regexp.reset ();
4296 else
4297 {
4298 int cflags = REG_NOSUB;
4299 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4300 cflags |= REG_ICASE;
4301 #endif
4302 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4303 _("Invalid regexp"));
4304 }
4305
4306 print_info_sources_header
4307 (_("Source files for which symbols have been read in:\n"), &data);
4308
4309 for (objfile *objfile : current_program_space->objfiles ())
4310 {
4311 for (compunit_symtab *cu : objfile->compunits ())
4312 {
4313 for (symtab *s : compunit_filetabs (cu))
4314 {
4315 const char *fullname = symtab_to_fullname (s);
4316
4317 output_source_filename (fullname, &data);
4318 }
4319 }
4320 }
4321 printf_filtered ("\n\n");
4322
4323 print_info_sources_header
4324 (_("Source files for which symbols will be read in on demand:\n"), &data);
4325
4326 filenames_seen.clear ();
4327 data.first = 1;
4328 map_symbol_filenames (output_partial_symbol_filename, &data,
4329 1 /*need_fullname*/);
4330 printf_filtered ("\n");
4331 }
4332
4333 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4334 non-zero compare only lbasename of FILES. */
4335
4336 static int
4337 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4338 {
4339 int i;
4340
4341 if (file != NULL && nfiles != 0)
4342 {
4343 for (i = 0; i < nfiles; i++)
4344 {
4345 if (compare_filenames_for_search (file, (basenames
4346 ? lbasename (files[i])
4347 : files[i])))
4348 return 1;
4349 }
4350 }
4351 else if (nfiles == 0)
4352 return 1;
4353 return 0;
4354 }
4355
4356 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4357 sort symbols, not minimal symbols. */
4358
4359 int
4360 symbol_search::compare_search_syms (const symbol_search &sym_a,
4361 const symbol_search &sym_b)
4362 {
4363 int c;
4364
4365 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4366 symbol_symtab (sym_b.symbol)->filename);
4367 if (c != 0)
4368 return c;
4369
4370 if (sym_a.block != sym_b.block)
4371 return sym_a.block - sym_b.block;
4372
4373 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4374 SYMBOL_PRINT_NAME (sym_b.symbol));
4375 }
4376
4377 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4378 If SYM has no symbol_type or symbol_name, returns false. */
4379
4380 bool
4381 treg_matches_sym_type_name (const compiled_regex &treg,
4382 const struct symbol *sym)
4383 {
4384 struct type *sym_type;
4385 std::string printed_sym_type_name;
4386
4387 if (symbol_lookup_debug > 1)
4388 {
4389 fprintf_unfiltered (gdb_stdlog,
4390 "treg_matches_sym_type_name\n sym %s\n",
4391 SYMBOL_NATURAL_NAME (sym));
4392 }
4393
4394 sym_type = SYMBOL_TYPE (sym);
4395 if (sym_type == NULL)
4396 return false;
4397
4398 {
4399 scoped_switch_to_sym_language_if_auto l (sym);
4400
4401 printed_sym_type_name = type_to_string (sym_type);
4402 }
4403
4404
4405 if (symbol_lookup_debug > 1)
4406 {
4407 fprintf_unfiltered (gdb_stdlog,
4408 " sym_type_name %s\n",
4409 printed_sym_type_name.c_str ());
4410 }
4411
4412
4413 if (printed_sym_type_name.empty ())
4414 return false;
4415
4416 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4417 }
4418
4419
4420 /* Sort the symbols in RESULT and remove duplicates. */
4421
4422 static void
4423 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4424 {
4425 std::sort (result->begin (), result->end ());
4426 result->erase (std::unique (result->begin (), result->end ()),
4427 result->end ());
4428 }
4429
4430 /* Search the symbol table for matches to the regular expression REGEXP,
4431 returning the results.
4432
4433 Only symbols of KIND are searched:
4434 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4435 and constants (enums).
4436 if T_REGEXP is not NULL, only returns var that have
4437 a type matching regular expression T_REGEXP.
4438 FUNCTIONS_DOMAIN - search all functions
4439 TYPES_DOMAIN - search all type names
4440 ALL_DOMAIN - an internal error for this function
4441
4442 Within each file the results are sorted locally; each symtab's global and
4443 static blocks are separately alphabetized.
4444 Duplicate entries are removed.
4445
4446 When EXCLUDE_MINSYMS is false then matching minsyms are also returned,
4447 otherwise they are excluded. */
4448
4449 std::vector<symbol_search>
4450 search_symbols (const char *regexp, enum search_domain kind,
4451 const char *t_regexp,
4452 int nfiles, const char *files[],
4453 bool exclude_minsyms)
4454 {
4455 const struct blockvector *bv;
4456 const struct block *b;
4457 int i = 0;
4458 struct block_iterator iter;
4459 struct symbol *sym;
4460 int found_misc = 0;
4461 static const enum minimal_symbol_type types[]
4462 = {mst_data, mst_text, mst_unknown};
4463 static const enum minimal_symbol_type types2[]
4464 = {mst_bss, mst_file_text, mst_unknown};
4465 static const enum minimal_symbol_type types3[]
4466 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4467 static const enum minimal_symbol_type types4[]
4468 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4469 enum minimal_symbol_type ourtype;
4470 enum minimal_symbol_type ourtype2;
4471 enum minimal_symbol_type ourtype3;
4472 enum minimal_symbol_type ourtype4;
4473 std::vector<symbol_search> result;
4474 gdb::optional<compiled_regex> preg;
4475 gdb::optional<compiled_regex> treg;
4476
4477 gdb_assert (kind <= TYPES_DOMAIN);
4478
4479 ourtype = types[kind];
4480 ourtype2 = types2[kind];
4481 ourtype3 = types3[kind];
4482 ourtype4 = types4[kind];
4483
4484 if (regexp != NULL)
4485 {
4486 /* Make sure spacing is right for C++ operators.
4487 This is just a courtesy to make the matching less sensitive
4488 to how many spaces the user leaves between 'operator'
4489 and <TYPENAME> or <OPERATOR>. */
4490 const char *opend;
4491 const char *opname = operator_chars (regexp, &opend);
4492
4493 if (*opname)
4494 {
4495 int fix = -1; /* -1 means ok; otherwise number of
4496 spaces needed. */
4497
4498 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4499 {
4500 /* There should 1 space between 'operator' and 'TYPENAME'. */
4501 if (opname[-1] != ' ' || opname[-2] == ' ')
4502 fix = 1;
4503 }
4504 else
4505 {
4506 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4507 if (opname[-1] == ' ')
4508 fix = 0;
4509 }
4510 /* If wrong number of spaces, fix it. */
4511 if (fix >= 0)
4512 {
4513 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4514
4515 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4516 regexp = tmp;
4517 }
4518 }
4519
4520 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4521 ? REG_ICASE : 0);
4522 preg.emplace (regexp, cflags, _("Invalid regexp"));
4523 }
4524
4525 if (t_regexp != NULL)
4526 {
4527 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4528 ? REG_ICASE : 0);
4529 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4530 }
4531
4532 /* Search through the partial symtabs *first* for all symbols
4533 matching the regexp. That way we don't have to reproduce all of
4534 the machinery below. */
4535 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4536 {
4537 return file_matches (filename, files, nfiles,
4538 basenames);
4539 },
4540 lookup_name_info::match_any (),
4541 [&] (const char *symname)
4542 {
4543 return (!preg.has_value ()
4544 || preg->exec (symname,
4545 0, NULL, 0) == 0);
4546 },
4547 NULL,
4548 kind);
4549
4550 /* Here, we search through the minimal symbol tables for functions
4551 and variables that match, and force their symbols to be read.
4552 This is in particular necessary for demangled variable names,
4553 which are no longer put into the partial symbol tables.
4554 The symbol will then be found during the scan of symtabs below.
4555
4556 For functions, find_pc_symtab should succeed if we have debug info
4557 for the function, for variables we have to call
4558 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4559 has debug info.
4560 If the lookup fails, set found_misc so that we will rescan to print
4561 any matching symbols without debug info.
4562 We only search the objfile the msymbol came from, we no longer search
4563 all objfiles. In large programs (1000s of shared libs) searching all
4564 objfiles is not worth the pain. */
4565
4566 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4567 {
4568 for (objfile *objfile : current_program_space->objfiles ())
4569 {
4570 for (minimal_symbol *msymbol : objfile->msymbols ())
4571 {
4572 QUIT;
4573
4574 if (msymbol->created_by_gdb)
4575 continue;
4576
4577 if (MSYMBOL_TYPE (msymbol) == ourtype
4578 || MSYMBOL_TYPE (msymbol) == ourtype2
4579 || MSYMBOL_TYPE (msymbol) == ourtype3
4580 || MSYMBOL_TYPE (msymbol) == ourtype4)
4581 {
4582 if (!preg.has_value ()
4583 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4584 NULL, 0) == 0)
4585 {
4586 /* Note: An important side-effect of these
4587 lookup functions is to expand the symbol
4588 table if msymbol is found, for the benefit of
4589 the next loop on compunits. */
4590 if (kind == FUNCTIONS_DOMAIN
4591 ? (find_pc_compunit_symtab
4592 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4593 == NULL)
4594 : (lookup_symbol_in_objfile_from_linkage_name
4595 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4596 VAR_DOMAIN)
4597 .symbol == NULL))
4598 found_misc = 1;
4599 }
4600 }
4601 }
4602 }
4603 }
4604
4605 for (objfile *objfile : current_program_space->objfiles ())
4606 {
4607 for (compunit_symtab *cust : objfile->compunits ())
4608 {
4609 bv = COMPUNIT_BLOCKVECTOR (cust);
4610 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4611 {
4612 b = BLOCKVECTOR_BLOCK (bv, i);
4613 ALL_BLOCK_SYMBOLS (b, iter, sym)
4614 {
4615 struct symtab *real_symtab = symbol_symtab (sym);
4616
4617 QUIT;
4618
4619 /* Check first sole REAL_SYMTAB->FILENAME. It does
4620 not need to be a substring of symtab_to_fullname as
4621 it may contain "./" etc. */
4622 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4623 || ((basenames_may_differ
4624 || file_matches (lbasename (real_symtab->filename),
4625 files, nfiles, 1))
4626 && file_matches (symtab_to_fullname (real_symtab),
4627 files, nfiles, 0)))
4628 && ((!preg.has_value ()
4629 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4630 NULL, 0) == 0)
4631 && ((kind == VARIABLES_DOMAIN
4632 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4633 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4634 && SYMBOL_CLASS (sym) != LOC_BLOCK
4635 /* LOC_CONST can be used for more than
4636 just enums, e.g., c++ static const
4637 members. We only want to skip enums
4638 here. */
4639 && !(SYMBOL_CLASS (sym) == LOC_CONST
4640 && (TYPE_CODE (SYMBOL_TYPE (sym))
4641 == TYPE_CODE_ENUM))
4642 && (!treg.has_value ()
4643 || treg_matches_sym_type_name (*treg, sym)))
4644 || (kind == FUNCTIONS_DOMAIN
4645 && SYMBOL_CLASS (sym) == LOC_BLOCK
4646 && (!treg.has_value ()
4647 || treg_matches_sym_type_name (*treg,
4648 sym)))
4649 || (kind == TYPES_DOMAIN
4650 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4651 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN))))
4652 {
4653 /* match */
4654 result.emplace_back (i, sym);
4655 }
4656 }
4657 }
4658 }
4659 }
4660
4661 if (!result.empty ())
4662 sort_search_symbols_remove_dups (&result);
4663
4664 /* If there are no eyes, avoid all contact. I mean, if there are
4665 no debug symbols, then add matching minsyms. But if the user wants
4666 to see symbols matching a type regexp, then never give a minimal symbol,
4667 as we assume that a minimal symbol does not have a type. */
4668
4669 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4670 && !exclude_minsyms
4671 && !treg.has_value ())
4672 {
4673 for (objfile *objfile : current_program_space->objfiles ())
4674 {
4675 for (minimal_symbol *msymbol : objfile->msymbols ())
4676 {
4677 QUIT;
4678
4679 if (msymbol->created_by_gdb)
4680 continue;
4681
4682 if (MSYMBOL_TYPE (msymbol) == ourtype
4683 || MSYMBOL_TYPE (msymbol) == ourtype2
4684 || MSYMBOL_TYPE (msymbol) == ourtype3
4685 || MSYMBOL_TYPE (msymbol) == ourtype4)
4686 {
4687 if (!preg.has_value ()
4688 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4689 NULL, 0) == 0)
4690 {
4691 /* For functions we can do a quick check of whether the
4692 symbol might be found via find_pc_symtab. */
4693 if (kind != FUNCTIONS_DOMAIN
4694 || (find_pc_compunit_symtab
4695 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4696 == NULL))
4697 {
4698 if (lookup_symbol_in_objfile_from_linkage_name
4699 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4700 VAR_DOMAIN)
4701 .symbol == NULL)
4702 {
4703 /* match */
4704 result.emplace_back (i, msymbol, objfile);
4705 }
4706 }
4707 }
4708 }
4709 }
4710 }
4711 }
4712
4713 return result;
4714 }
4715
4716 /* Helper function for symtab_symbol_info, this function uses
4717 the data returned from search_symbols() to print information
4718 regarding the match to gdb_stdout. If LAST is not NULL,
4719 print file and line number information for the symbol as
4720 well. Skip printing the filename if it matches LAST. */
4721
4722 static void
4723 print_symbol_info (enum search_domain kind,
4724 struct symbol *sym,
4725 int block, const char *last)
4726 {
4727 scoped_switch_to_sym_language_if_auto l (sym);
4728 struct symtab *s = symbol_symtab (sym);
4729
4730 if (last != NULL)
4731 {
4732 const char *s_filename = symtab_to_filename_for_display (s);
4733
4734 if (filename_cmp (last, s_filename) != 0)
4735 {
4736 printf_filtered (_("\nFile %ps:\n"),
4737 styled_string (file_name_style.style (),
4738 s_filename));
4739 }
4740
4741 if (SYMBOL_LINE (sym) != 0)
4742 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4743 else
4744 puts_filtered ("\t");
4745 }
4746
4747 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4748 printf_filtered ("static ");
4749
4750 /* Typedef that is not a C++ class. */
4751 if (kind == TYPES_DOMAIN
4752 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4753 {
4754 /* FIXME: For C (and C++) we end up with a difference in output here
4755 between how a typedef is printed, and non-typedefs are printed.
4756 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4757 appear C-like, while TYPE_PRINT doesn't.
4758
4759 For the struct printing case below, things are worse, we force
4760 printing of the ";" in this function, which is going to be wrong
4761 for languages that don't require a ";" between statements. */
4762 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4763 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4764 else
4765 {
4766 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4767 printf_filtered ("\n");
4768 }
4769 }
4770 /* variable, func, or typedef-that-is-c++-class. */
4771 else if (kind < TYPES_DOMAIN
4772 || (kind == TYPES_DOMAIN
4773 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4774 {
4775 type_print (SYMBOL_TYPE (sym),
4776 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4777 ? "" : SYMBOL_PRINT_NAME (sym)),
4778 gdb_stdout, 0);
4779
4780 printf_filtered (";\n");
4781 }
4782 }
4783
4784 /* This help function for symtab_symbol_info() prints information
4785 for non-debugging symbols to gdb_stdout. */
4786
4787 static void
4788 print_msymbol_info (struct bound_minimal_symbol msymbol)
4789 {
4790 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4791 char *tmp;
4792
4793 if (gdbarch_addr_bit (gdbarch) <= 32)
4794 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4795 & (CORE_ADDR) 0xffffffff,
4796 8);
4797 else
4798 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4799 16);
4800
4801 ui_file_style sym_style = (msymbol.minsym->text_p ()
4802 ? function_name_style.style ()
4803 : ui_file_style ());
4804
4805 printf_filtered (_("%ps %ps\n"),
4806 styled_string (address_style.style (), tmp),
4807 styled_string (sym_style,
4808 MSYMBOL_PRINT_NAME (msymbol.minsym)));
4809 }
4810
4811 /* This is the guts of the commands "info functions", "info types", and
4812 "info variables". It calls search_symbols to find all matches and then
4813 print_[m]symbol_info to print out some useful information about the
4814 matches. */
4815
4816 static void
4817 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4818 const char *regexp, enum search_domain kind,
4819 const char *t_regexp, int from_tty)
4820 {
4821 static const char * const classnames[] =
4822 {"variable", "function", "type"};
4823 const char *last_filename = "";
4824 int first = 1;
4825
4826 gdb_assert (kind <= TYPES_DOMAIN);
4827
4828 if (regexp != nullptr && *regexp == '\0')
4829 regexp = nullptr;
4830
4831 /* Must make sure that if we're interrupted, symbols gets freed. */
4832 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4833 t_regexp, 0, NULL,
4834 exclude_minsyms);
4835
4836 if (!quiet)
4837 {
4838 if (regexp != NULL)
4839 {
4840 if (t_regexp != NULL)
4841 printf_filtered
4842 (_("All %ss matching regular expression \"%s\""
4843 " with type matching regular expression \"%s\":\n"),
4844 classnames[kind], regexp, t_regexp);
4845 else
4846 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4847 classnames[kind], regexp);
4848 }
4849 else
4850 {
4851 if (t_regexp != NULL)
4852 printf_filtered
4853 (_("All defined %ss"
4854 " with type matching regular expression \"%s\" :\n"),
4855 classnames[kind], t_regexp);
4856 else
4857 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4858 }
4859 }
4860
4861 for (const symbol_search &p : symbols)
4862 {
4863 QUIT;
4864
4865 if (p.msymbol.minsym != NULL)
4866 {
4867 if (first)
4868 {
4869 if (!quiet)
4870 printf_filtered (_("\nNon-debugging symbols:\n"));
4871 first = 0;
4872 }
4873 print_msymbol_info (p.msymbol);
4874 }
4875 else
4876 {
4877 print_symbol_info (kind,
4878 p.symbol,
4879 p.block,
4880 last_filename);
4881 last_filename
4882 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4883 }
4884 }
4885 }
4886
4887 /* Structure to hold the values of the options used by the 'info variables'
4888 and 'info functions' commands. These correspond to the -q, -t, and -n
4889 options. */
4890
4891 struct info_print_options
4892 {
4893 bool quiet = false;
4894 bool exclude_minsyms = false;
4895 char *type_regexp = nullptr;
4896
4897 ~info_print_options ()
4898 {
4899 xfree (type_regexp);
4900 }
4901 };
4902
4903 /* The options used by the 'info variables' and 'info functions'
4904 commands. */
4905
4906 static const gdb::option::option_def info_print_options_defs[] = {
4907 gdb::option::boolean_option_def<info_print_options> {
4908 "q",
4909 [] (info_print_options *opt) { return &opt->quiet; },
4910 nullptr, /* show_cmd_cb */
4911 nullptr /* set_doc */
4912 },
4913
4914 gdb::option::boolean_option_def<info_print_options> {
4915 "n",
4916 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4917 nullptr, /* show_cmd_cb */
4918 nullptr /* set_doc */
4919 },
4920
4921 gdb::option::string_option_def<info_print_options> {
4922 "t",
4923 [] (info_print_options *opt) { return &opt->type_regexp; },
4924 nullptr, /* show_cmd_cb */
4925 nullptr /* set_doc */
4926 }
4927 };
4928
4929 /* Returns the option group used by 'info variables' and 'info
4930 functions'. */
4931
4932 static gdb::option::option_def_group
4933 make_info_print_options_def_group (info_print_options *opts)
4934 {
4935 return {{info_print_options_defs}, opts};
4936 }
4937
4938 /* Command completer for 'info variables' and 'info functions'. */
4939
4940 static void
4941 info_print_command_completer (struct cmd_list_element *ignore,
4942 completion_tracker &tracker,
4943 const char *text, const char * /* word */)
4944 {
4945 const auto group
4946 = make_info_print_options_def_group (nullptr);
4947 if (gdb::option::complete_options
4948 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4949 return;
4950
4951 const char *word = advance_to_expression_complete_word_point (tracker, text);
4952 symbol_completer (ignore, tracker, text, word);
4953 }
4954
4955 /* Implement the 'info variables' command. */
4956
4957 static void
4958 info_variables_command (const char *args, int from_tty)
4959 {
4960 info_print_options opts;
4961 auto grp = make_info_print_options_def_group (&opts);
4962 gdb::option::process_options
4963 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4964 if (args != nullptr && *args == '\0')
4965 args = nullptr;
4966
4967 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4968 opts.type_regexp, from_tty);
4969 }
4970
4971 /* Implement the 'info functions' command. */
4972
4973 static void
4974 info_functions_command (const char *args, int from_tty)
4975 {
4976 info_print_options opts;
4977 auto grp = make_info_print_options_def_group (&opts);
4978 gdb::option::process_options
4979 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4980 if (args != nullptr && *args == '\0')
4981 args = nullptr;
4982
4983 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
4984 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
4985 }
4986
4987 /* Holds the -q option for the 'info types' command. */
4988
4989 struct info_types_options
4990 {
4991 bool quiet = false;
4992 };
4993
4994 /* The options used by the 'info types' command. */
4995
4996 static const gdb::option::option_def info_types_options_defs[] = {
4997 gdb::option::boolean_option_def<info_types_options> {
4998 "q",
4999 [] (info_types_options *opt) { return &opt->quiet; },
5000 nullptr, /* show_cmd_cb */
5001 nullptr /* set_doc */
5002 }
5003 };
5004
5005 /* Returns the option group used by 'info types'. */
5006
5007 static gdb::option::option_def_group
5008 make_info_types_options_def_group (info_types_options *opts)
5009 {
5010 return {{info_types_options_defs}, opts};
5011 }
5012
5013 /* Implement the 'info types' command. */
5014
5015 static void
5016 info_types_command (const char *args, int from_tty)
5017 {
5018 info_types_options opts;
5019
5020 auto grp = make_info_types_options_def_group (&opts);
5021 gdb::option::process_options
5022 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5023 if (args != nullptr && *args == '\0')
5024 args = nullptr;
5025 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5026 }
5027
5028 /* Command completer for 'info types' command. */
5029
5030 static void
5031 info_types_command_completer (struct cmd_list_element *ignore,
5032 completion_tracker &tracker,
5033 const char *text, const char * /* word */)
5034 {
5035 const auto group
5036 = make_info_types_options_def_group (nullptr);
5037 if (gdb::option::complete_options
5038 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5039 return;
5040
5041 const char *word = advance_to_expression_complete_word_point (tracker, text);
5042 symbol_completer (ignore, tracker, text, word);
5043 }
5044
5045 /* Breakpoint all functions matching regular expression. */
5046
5047 void
5048 rbreak_command_wrapper (char *regexp, int from_tty)
5049 {
5050 rbreak_command (regexp, from_tty);
5051 }
5052
5053 static void
5054 rbreak_command (const char *regexp, int from_tty)
5055 {
5056 std::string string;
5057 const char **files = NULL;
5058 const char *file_name;
5059 int nfiles = 0;
5060
5061 if (regexp)
5062 {
5063 const char *colon = strchr (regexp, ':');
5064
5065 if (colon && *(colon + 1) != ':')
5066 {
5067 int colon_index;
5068 char *local_name;
5069
5070 colon_index = colon - regexp;
5071 local_name = (char *) alloca (colon_index + 1);
5072 memcpy (local_name, regexp, colon_index);
5073 local_name[colon_index--] = 0;
5074 while (isspace (local_name[colon_index]))
5075 local_name[colon_index--] = 0;
5076 file_name = local_name;
5077 files = &file_name;
5078 nfiles = 1;
5079 regexp = skip_spaces (colon + 1);
5080 }
5081 }
5082
5083 std::vector<symbol_search> symbols = search_symbols (regexp,
5084 FUNCTIONS_DOMAIN,
5085 NULL,
5086 nfiles, files,
5087 false);
5088
5089 scoped_rbreak_breakpoints finalize;
5090 for (const symbol_search &p : symbols)
5091 {
5092 if (p.msymbol.minsym == NULL)
5093 {
5094 struct symtab *symtab = symbol_symtab (p.symbol);
5095 const char *fullname = symtab_to_fullname (symtab);
5096
5097 string = string_printf ("%s:'%s'", fullname,
5098 SYMBOL_LINKAGE_NAME (p.symbol));
5099 break_command (&string[0], from_tty);
5100 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5101 }
5102 else
5103 {
5104 string = string_printf ("'%s'",
5105 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5106
5107 break_command (&string[0], from_tty);
5108 printf_filtered ("<function, no debug info> %s;\n",
5109 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5110 }
5111 }
5112 }
5113 \f
5114
5115 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5116
5117 static int
5118 compare_symbol_name (const char *symbol_name, language symbol_language,
5119 const lookup_name_info &lookup_name,
5120 completion_match_result &match_res)
5121 {
5122 const language_defn *lang = language_def (symbol_language);
5123
5124 symbol_name_matcher_ftype *name_match
5125 = get_symbol_name_matcher (lang, lookup_name);
5126
5127 return name_match (symbol_name, lookup_name, &match_res);
5128 }
5129
5130 /* See symtab.h. */
5131
5132 void
5133 completion_list_add_name (completion_tracker &tracker,
5134 language symbol_language,
5135 const char *symname,
5136 const lookup_name_info &lookup_name,
5137 const char *text, const char *word)
5138 {
5139 completion_match_result &match_res
5140 = tracker.reset_completion_match_result ();
5141
5142 /* Clip symbols that cannot match. */
5143 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5144 return;
5145
5146 /* Refresh SYMNAME from the match string. It's potentially
5147 different depending on language. (E.g., on Ada, the match may be
5148 the encoded symbol name wrapped in "<>"). */
5149 symname = match_res.match.match ();
5150 gdb_assert (symname != NULL);
5151
5152 /* We have a match for a completion, so add SYMNAME to the current list
5153 of matches. Note that the name is moved to freshly malloc'd space. */
5154
5155 {
5156 gdb::unique_xmalloc_ptr<char> completion
5157 = make_completion_match_str (symname, text, word);
5158
5159 /* Here we pass the match-for-lcd object to add_completion. Some
5160 languages match the user text against substrings of symbol
5161 names in some cases. E.g., in C++, "b push_ba" completes to
5162 "std::vector::push_back", "std::string::push_back", etc., and
5163 in this case we want the completion lowest common denominator
5164 to be "push_back" instead of "std::". */
5165 tracker.add_completion (std::move (completion),
5166 &match_res.match_for_lcd, text, word);
5167 }
5168 }
5169
5170 /* completion_list_add_name wrapper for struct symbol. */
5171
5172 static void
5173 completion_list_add_symbol (completion_tracker &tracker,
5174 symbol *sym,
5175 const lookup_name_info &lookup_name,
5176 const char *text, const char *word)
5177 {
5178 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5179 SYMBOL_NATURAL_NAME (sym),
5180 lookup_name, text, word);
5181 }
5182
5183 /* completion_list_add_name wrapper for struct minimal_symbol. */
5184
5185 static void
5186 completion_list_add_msymbol (completion_tracker &tracker,
5187 minimal_symbol *sym,
5188 const lookup_name_info &lookup_name,
5189 const char *text, const char *word)
5190 {
5191 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5192 MSYMBOL_NATURAL_NAME (sym),
5193 lookup_name, text, word);
5194 }
5195
5196
5197 /* ObjC: In case we are completing on a selector, look as the msymbol
5198 again and feed all the selectors into the mill. */
5199
5200 static void
5201 completion_list_objc_symbol (completion_tracker &tracker,
5202 struct minimal_symbol *msymbol,
5203 const lookup_name_info &lookup_name,
5204 const char *text, const char *word)
5205 {
5206 static char *tmp = NULL;
5207 static unsigned int tmplen = 0;
5208
5209 const char *method, *category, *selector;
5210 char *tmp2 = NULL;
5211
5212 method = MSYMBOL_NATURAL_NAME (msymbol);
5213
5214 /* Is it a method? */
5215 if ((method[0] != '-') && (method[0] != '+'))
5216 return;
5217
5218 if (text[0] == '[')
5219 /* Complete on shortened method method. */
5220 completion_list_add_name (tracker, language_objc,
5221 method + 1,
5222 lookup_name,
5223 text, word);
5224
5225 while ((strlen (method) + 1) >= tmplen)
5226 {
5227 if (tmplen == 0)
5228 tmplen = 1024;
5229 else
5230 tmplen *= 2;
5231 tmp = (char *) xrealloc (tmp, tmplen);
5232 }
5233 selector = strchr (method, ' ');
5234 if (selector != NULL)
5235 selector++;
5236
5237 category = strchr (method, '(');
5238
5239 if ((category != NULL) && (selector != NULL))
5240 {
5241 memcpy (tmp, method, (category - method));
5242 tmp[category - method] = ' ';
5243 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5244 completion_list_add_name (tracker, language_objc, tmp,
5245 lookup_name, text, word);
5246 if (text[0] == '[')
5247 completion_list_add_name (tracker, language_objc, tmp + 1,
5248 lookup_name, text, word);
5249 }
5250
5251 if (selector != NULL)
5252 {
5253 /* Complete on selector only. */
5254 strcpy (tmp, selector);
5255 tmp2 = strchr (tmp, ']');
5256 if (tmp2 != NULL)
5257 *tmp2 = '\0';
5258
5259 completion_list_add_name (tracker, language_objc, tmp,
5260 lookup_name, text, word);
5261 }
5262 }
5263
5264 /* Break the non-quoted text based on the characters which are in
5265 symbols. FIXME: This should probably be language-specific. */
5266
5267 static const char *
5268 language_search_unquoted_string (const char *text, const char *p)
5269 {
5270 for (; p > text; --p)
5271 {
5272 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5273 continue;
5274 else
5275 {
5276 if ((current_language->la_language == language_objc))
5277 {
5278 if (p[-1] == ':') /* Might be part of a method name. */
5279 continue;
5280 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5281 p -= 2; /* Beginning of a method name. */
5282 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5283 { /* Might be part of a method name. */
5284 const char *t = p;
5285
5286 /* Seeing a ' ' or a '(' is not conclusive evidence
5287 that we are in the middle of a method name. However,
5288 finding "-[" or "+[" should be pretty un-ambiguous.
5289 Unfortunately we have to find it now to decide. */
5290
5291 while (t > text)
5292 if (isalnum (t[-1]) || t[-1] == '_' ||
5293 t[-1] == ' ' || t[-1] == ':' ||
5294 t[-1] == '(' || t[-1] == ')')
5295 --t;
5296 else
5297 break;
5298
5299 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5300 p = t - 2; /* Method name detected. */
5301 /* Else we leave with p unchanged. */
5302 }
5303 }
5304 break;
5305 }
5306 }
5307 return p;
5308 }
5309
5310 static void
5311 completion_list_add_fields (completion_tracker &tracker,
5312 struct symbol *sym,
5313 const lookup_name_info &lookup_name,
5314 const char *text, const char *word)
5315 {
5316 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5317 {
5318 struct type *t = SYMBOL_TYPE (sym);
5319 enum type_code c = TYPE_CODE (t);
5320 int j;
5321
5322 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5323 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5324 if (TYPE_FIELD_NAME (t, j))
5325 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5326 TYPE_FIELD_NAME (t, j),
5327 lookup_name, text, word);
5328 }
5329 }
5330
5331 /* See symtab.h. */
5332
5333 bool
5334 symbol_is_function_or_method (symbol *sym)
5335 {
5336 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5337 {
5338 case TYPE_CODE_FUNC:
5339 case TYPE_CODE_METHOD:
5340 return true;
5341 default:
5342 return false;
5343 }
5344 }
5345
5346 /* See symtab.h. */
5347
5348 bool
5349 symbol_is_function_or_method (minimal_symbol *msymbol)
5350 {
5351 switch (MSYMBOL_TYPE (msymbol))
5352 {
5353 case mst_text:
5354 case mst_text_gnu_ifunc:
5355 case mst_solib_trampoline:
5356 case mst_file_text:
5357 return true;
5358 default:
5359 return false;
5360 }
5361 }
5362
5363 /* See symtab.h. */
5364
5365 bound_minimal_symbol
5366 find_gnu_ifunc (const symbol *sym)
5367 {
5368 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5369 return {};
5370
5371 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5372 symbol_name_match_type::SEARCH_NAME);
5373 struct objfile *objfile = symbol_objfile (sym);
5374
5375 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5376 minimal_symbol *ifunc = NULL;
5377
5378 iterate_over_minimal_symbols (objfile, lookup_name,
5379 [&] (minimal_symbol *minsym)
5380 {
5381 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5382 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5383 {
5384 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5385 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5386 {
5387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5388 msym_addr
5389 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5390 msym_addr,
5391 current_top_target ());
5392 }
5393 if (msym_addr == address)
5394 {
5395 ifunc = minsym;
5396 return true;
5397 }
5398 }
5399 return false;
5400 });
5401
5402 if (ifunc != NULL)
5403 return {ifunc, objfile};
5404 return {};
5405 }
5406
5407 /* Add matching symbols from SYMTAB to the current completion list. */
5408
5409 static void
5410 add_symtab_completions (struct compunit_symtab *cust,
5411 completion_tracker &tracker,
5412 complete_symbol_mode mode,
5413 const lookup_name_info &lookup_name,
5414 const char *text, const char *word,
5415 enum type_code code)
5416 {
5417 struct symbol *sym;
5418 const struct block *b;
5419 struct block_iterator iter;
5420 int i;
5421
5422 if (cust == NULL)
5423 return;
5424
5425 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5426 {
5427 QUIT;
5428 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5429 ALL_BLOCK_SYMBOLS (b, iter, sym)
5430 {
5431 if (completion_skip_symbol (mode, sym))
5432 continue;
5433
5434 if (code == TYPE_CODE_UNDEF
5435 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5436 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5437 completion_list_add_symbol (tracker, sym,
5438 lookup_name,
5439 text, word);
5440 }
5441 }
5442 }
5443
5444 void
5445 default_collect_symbol_completion_matches_break_on
5446 (completion_tracker &tracker, complete_symbol_mode mode,
5447 symbol_name_match_type name_match_type,
5448 const char *text, const char *word,
5449 const char *break_on, enum type_code code)
5450 {
5451 /* Problem: All of the symbols have to be copied because readline
5452 frees them. I'm not going to worry about this; hopefully there
5453 won't be that many. */
5454
5455 struct symbol *sym;
5456 const struct block *b;
5457 const struct block *surrounding_static_block, *surrounding_global_block;
5458 struct block_iterator iter;
5459 /* The symbol we are completing on. Points in same buffer as text. */
5460 const char *sym_text;
5461
5462 /* Now look for the symbol we are supposed to complete on. */
5463 if (mode == complete_symbol_mode::LINESPEC)
5464 sym_text = text;
5465 else
5466 {
5467 const char *p;
5468 char quote_found;
5469 const char *quote_pos = NULL;
5470
5471 /* First see if this is a quoted string. */
5472 quote_found = '\0';
5473 for (p = text; *p != '\0'; ++p)
5474 {
5475 if (quote_found != '\0')
5476 {
5477 if (*p == quote_found)
5478 /* Found close quote. */
5479 quote_found = '\0';
5480 else if (*p == '\\' && p[1] == quote_found)
5481 /* A backslash followed by the quote character
5482 doesn't end the string. */
5483 ++p;
5484 }
5485 else if (*p == '\'' || *p == '"')
5486 {
5487 quote_found = *p;
5488 quote_pos = p;
5489 }
5490 }
5491 if (quote_found == '\'')
5492 /* A string within single quotes can be a symbol, so complete on it. */
5493 sym_text = quote_pos + 1;
5494 else if (quote_found == '"')
5495 /* A double-quoted string is never a symbol, nor does it make sense
5496 to complete it any other way. */
5497 {
5498 return;
5499 }
5500 else
5501 {
5502 /* It is not a quoted string. Break it based on the characters
5503 which are in symbols. */
5504 while (p > text)
5505 {
5506 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5507 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5508 --p;
5509 else
5510 break;
5511 }
5512 sym_text = p;
5513 }
5514 }
5515
5516 lookup_name_info lookup_name (sym_text, name_match_type, true);
5517
5518 /* At this point scan through the misc symbol vectors and add each
5519 symbol you find to the list. Eventually we want to ignore
5520 anything that isn't a text symbol (everything else will be
5521 handled by the psymtab code below). */
5522
5523 if (code == TYPE_CODE_UNDEF)
5524 {
5525 for (objfile *objfile : current_program_space->objfiles ())
5526 {
5527 for (minimal_symbol *msymbol : objfile->msymbols ())
5528 {
5529 QUIT;
5530
5531 if (completion_skip_symbol (mode, msymbol))
5532 continue;
5533
5534 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5535 sym_text, word);
5536
5537 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5538 sym_text, word);
5539 }
5540 }
5541 }
5542
5543 /* Add completions for all currently loaded symbol tables. */
5544 for (objfile *objfile : current_program_space->objfiles ())
5545 {
5546 for (compunit_symtab *cust : objfile->compunits ())
5547 add_symtab_completions (cust, tracker, mode, lookup_name,
5548 sym_text, word, code);
5549 }
5550
5551 /* Look through the partial symtabs for all symbols which begin by
5552 matching SYM_TEXT. Expand all CUs that you find to the list. */
5553 expand_symtabs_matching (NULL,
5554 lookup_name,
5555 NULL,
5556 [&] (compunit_symtab *symtab) /* expansion notify */
5557 {
5558 add_symtab_completions (symtab,
5559 tracker, mode, lookup_name,
5560 sym_text, word, code);
5561 },
5562 ALL_DOMAIN);
5563
5564 /* Search upwards from currently selected frame (so that we can
5565 complete on local vars). Also catch fields of types defined in
5566 this places which match our text string. Only complete on types
5567 visible from current context. */
5568
5569 b = get_selected_block (0);
5570 surrounding_static_block = block_static_block (b);
5571 surrounding_global_block = block_global_block (b);
5572 if (surrounding_static_block != NULL)
5573 while (b != surrounding_static_block)
5574 {
5575 QUIT;
5576
5577 ALL_BLOCK_SYMBOLS (b, iter, sym)
5578 {
5579 if (code == TYPE_CODE_UNDEF)
5580 {
5581 completion_list_add_symbol (tracker, sym, lookup_name,
5582 sym_text, word);
5583 completion_list_add_fields (tracker, sym, lookup_name,
5584 sym_text, word);
5585 }
5586 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5587 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5588 completion_list_add_symbol (tracker, sym, lookup_name,
5589 sym_text, word);
5590 }
5591
5592 /* Stop when we encounter an enclosing function. Do not stop for
5593 non-inlined functions - the locals of the enclosing function
5594 are in scope for a nested function. */
5595 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5596 break;
5597 b = BLOCK_SUPERBLOCK (b);
5598 }
5599
5600 /* Add fields from the file's types; symbols will be added below. */
5601
5602 if (code == TYPE_CODE_UNDEF)
5603 {
5604 if (surrounding_static_block != NULL)
5605 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5606 completion_list_add_fields (tracker, sym, lookup_name,
5607 sym_text, word);
5608
5609 if (surrounding_global_block != NULL)
5610 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5611 completion_list_add_fields (tracker, sym, lookup_name,
5612 sym_text, word);
5613 }
5614
5615 /* Skip macros if we are completing a struct tag -- arguable but
5616 usually what is expected. */
5617 if (current_language->la_macro_expansion == macro_expansion_c
5618 && code == TYPE_CODE_UNDEF)
5619 {
5620 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5621
5622 /* This adds a macro's name to the current completion list. */
5623 auto add_macro_name = [&] (const char *macro_name,
5624 const macro_definition *,
5625 macro_source_file *,
5626 int)
5627 {
5628 completion_list_add_name (tracker, language_c, macro_name,
5629 lookup_name, sym_text, word);
5630 };
5631
5632 /* Add any macros visible in the default scope. Note that this
5633 may yield the occasional wrong result, because an expression
5634 might be evaluated in a scope other than the default. For
5635 example, if the user types "break file:line if <TAB>", the
5636 resulting expression will be evaluated at "file:line" -- but
5637 at there does not seem to be a way to detect this at
5638 completion time. */
5639 scope = default_macro_scope ();
5640 if (scope)
5641 macro_for_each_in_scope (scope->file, scope->line,
5642 add_macro_name);
5643
5644 /* User-defined macros are always visible. */
5645 macro_for_each (macro_user_macros, add_macro_name);
5646 }
5647 }
5648
5649 void
5650 default_collect_symbol_completion_matches (completion_tracker &tracker,
5651 complete_symbol_mode mode,
5652 symbol_name_match_type name_match_type,
5653 const char *text, const char *word,
5654 enum type_code code)
5655 {
5656 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5657 name_match_type,
5658 text, word, "",
5659 code);
5660 }
5661
5662 /* Collect all symbols (regardless of class) which begin by matching
5663 TEXT. */
5664
5665 void
5666 collect_symbol_completion_matches (completion_tracker &tracker,
5667 complete_symbol_mode mode,
5668 symbol_name_match_type name_match_type,
5669 const char *text, const char *word)
5670 {
5671 current_language->la_collect_symbol_completion_matches (tracker, mode,
5672 name_match_type,
5673 text, word,
5674 TYPE_CODE_UNDEF);
5675 }
5676
5677 /* Like collect_symbol_completion_matches, but only collect
5678 STRUCT_DOMAIN symbols whose type code is CODE. */
5679
5680 void
5681 collect_symbol_completion_matches_type (completion_tracker &tracker,
5682 const char *text, const char *word,
5683 enum type_code code)
5684 {
5685 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5686 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5687
5688 gdb_assert (code == TYPE_CODE_UNION
5689 || code == TYPE_CODE_STRUCT
5690 || code == TYPE_CODE_ENUM);
5691 current_language->la_collect_symbol_completion_matches (tracker, mode,
5692 name_match_type,
5693 text, word, code);
5694 }
5695
5696 /* Like collect_symbol_completion_matches, but collects a list of
5697 symbols defined in all source files named SRCFILE. */
5698
5699 void
5700 collect_file_symbol_completion_matches (completion_tracker &tracker,
5701 complete_symbol_mode mode,
5702 symbol_name_match_type name_match_type,
5703 const char *text, const char *word,
5704 const char *srcfile)
5705 {
5706 /* The symbol we are completing on. Points in same buffer as text. */
5707 const char *sym_text;
5708
5709 /* Now look for the symbol we are supposed to complete on.
5710 FIXME: This should be language-specific. */
5711 if (mode == complete_symbol_mode::LINESPEC)
5712 sym_text = text;
5713 else
5714 {
5715 const char *p;
5716 char quote_found;
5717 const char *quote_pos = NULL;
5718
5719 /* First see if this is a quoted string. */
5720 quote_found = '\0';
5721 for (p = text; *p != '\0'; ++p)
5722 {
5723 if (quote_found != '\0')
5724 {
5725 if (*p == quote_found)
5726 /* Found close quote. */
5727 quote_found = '\0';
5728 else if (*p == '\\' && p[1] == quote_found)
5729 /* A backslash followed by the quote character
5730 doesn't end the string. */
5731 ++p;
5732 }
5733 else if (*p == '\'' || *p == '"')
5734 {
5735 quote_found = *p;
5736 quote_pos = p;
5737 }
5738 }
5739 if (quote_found == '\'')
5740 /* A string within single quotes can be a symbol, so complete on it. */
5741 sym_text = quote_pos + 1;
5742 else if (quote_found == '"')
5743 /* A double-quoted string is never a symbol, nor does it make sense
5744 to complete it any other way. */
5745 {
5746 return;
5747 }
5748 else
5749 {
5750 /* Not a quoted string. */
5751 sym_text = language_search_unquoted_string (text, p);
5752 }
5753 }
5754
5755 lookup_name_info lookup_name (sym_text, name_match_type, true);
5756
5757 /* Go through symtabs for SRCFILE and check the externs and statics
5758 for symbols which match. */
5759 iterate_over_symtabs (srcfile, [&] (symtab *s)
5760 {
5761 add_symtab_completions (SYMTAB_COMPUNIT (s),
5762 tracker, mode, lookup_name,
5763 sym_text, word, TYPE_CODE_UNDEF);
5764 return false;
5765 });
5766 }
5767
5768 /* A helper function for make_source_files_completion_list. It adds
5769 another file name to a list of possible completions, growing the
5770 list as necessary. */
5771
5772 static void
5773 add_filename_to_list (const char *fname, const char *text, const char *word,
5774 completion_list *list)
5775 {
5776 list->emplace_back (make_completion_match_str (fname, text, word));
5777 }
5778
5779 static int
5780 not_interesting_fname (const char *fname)
5781 {
5782 static const char *illegal_aliens[] = {
5783 "_globals_", /* inserted by coff_symtab_read */
5784 NULL
5785 };
5786 int i;
5787
5788 for (i = 0; illegal_aliens[i]; i++)
5789 {
5790 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5791 return 1;
5792 }
5793 return 0;
5794 }
5795
5796 /* An object of this type is passed as the user_data argument to
5797 map_partial_symbol_filenames. */
5798 struct add_partial_filename_data
5799 {
5800 struct filename_seen_cache *filename_seen_cache;
5801 const char *text;
5802 const char *word;
5803 int text_len;
5804 completion_list *list;
5805 };
5806
5807 /* A callback for map_partial_symbol_filenames. */
5808
5809 static void
5810 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5811 void *user_data)
5812 {
5813 struct add_partial_filename_data *data
5814 = (struct add_partial_filename_data *) user_data;
5815
5816 if (not_interesting_fname (filename))
5817 return;
5818 if (!data->filename_seen_cache->seen (filename)
5819 && filename_ncmp (filename, data->text, data->text_len) == 0)
5820 {
5821 /* This file matches for a completion; add it to the
5822 current list of matches. */
5823 add_filename_to_list (filename, data->text, data->word, data->list);
5824 }
5825 else
5826 {
5827 const char *base_name = lbasename (filename);
5828
5829 if (base_name != filename
5830 && !data->filename_seen_cache->seen (base_name)
5831 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5832 add_filename_to_list (base_name, data->text, data->word, data->list);
5833 }
5834 }
5835
5836 /* Return a list of all source files whose names begin with matching
5837 TEXT. The file names are looked up in the symbol tables of this
5838 program. */
5839
5840 completion_list
5841 make_source_files_completion_list (const char *text, const char *word)
5842 {
5843 size_t text_len = strlen (text);
5844 completion_list list;
5845 const char *base_name;
5846 struct add_partial_filename_data datum;
5847
5848 if (!have_full_symbols () && !have_partial_symbols ())
5849 return list;
5850
5851 filename_seen_cache filenames_seen;
5852
5853 for (objfile *objfile : current_program_space->objfiles ())
5854 {
5855 for (compunit_symtab *cu : objfile->compunits ())
5856 {
5857 for (symtab *s : compunit_filetabs (cu))
5858 {
5859 if (not_interesting_fname (s->filename))
5860 continue;
5861 if (!filenames_seen.seen (s->filename)
5862 && filename_ncmp (s->filename, text, text_len) == 0)
5863 {
5864 /* This file matches for a completion; add it to the current
5865 list of matches. */
5866 add_filename_to_list (s->filename, text, word, &list);
5867 }
5868 else
5869 {
5870 /* NOTE: We allow the user to type a base name when the
5871 debug info records leading directories, but not the other
5872 way around. This is what subroutines of breakpoint
5873 command do when they parse file names. */
5874 base_name = lbasename (s->filename);
5875 if (base_name != s->filename
5876 && !filenames_seen.seen (base_name)
5877 && filename_ncmp (base_name, text, text_len) == 0)
5878 add_filename_to_list (base_name, text, word, &list);
5879 }
5880 }
5881 }
5882 }
5883
5884 datum.filename_seen_cache = &filenames_seen;
5885 datum.text = text;
5886 datum.word = word;
5887 datum.text_len = text_len;
5888 datum.list = &list;
5889 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5890 0 /*need_fullname*/);
5891
5892 return list;
5893 }
5894 \f
5895 /* Track MAIN */
5896
5897 /* Return the "main_info" object for the current program space. If
5898 the object has not yet been created, create it and fill in some
5899 default values. */
5900
5901 static struct main_info *
5902 get_main_info (void)
5903 {
5904 struct main_info *info = main_progspace_key.get (current_program_space);
5905
5906 if (info == NULL)
5907 {
5908 /* It may seem strange to store the main name in the progspace
5909 and also in whatever objfile happens to see a main name in
5910 its debug info. The reason for this is mainly historical:
5911 gdb returned "main" as the name even if no function named
5912 "main" was defined the program; and this approach lets us
5913 keep compatibility. */
5914 info = main_progspace_key.emplace (current_program_space);
5915 }
5916
5917 return info;
5918 }
5919
5920 static void
5921 set_main_name (const char *name, enum language lang)
5922 {
5923 struct main_info *info = get_main_info ();
5924
5925 if (info->name_of_main != NULL)
5926 {
5927 xfree (info->name_of_main);
5928 info->name_of_main = NULL;
5929 info->language_of_main = language_unknown;
5930 }
5931 if (name != NULL)
5932 {
5933 info->name_of_main = xstrdup (name);
5934 info->language_of_main = lang;
5935 }
5936 }
5937
5938 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5939 accordingly. */
5940
5941 static void
5942 find_main_name (void)
5943 {
5944 const char *new_main_name;
5945
5946 /* First check the objfiles to see whether a debuginfo reader has
5947 picked up the appropriate main name. Historically the main name
5948 was found in a more or less random way; this approach instead
5949 relies on the order of objfile creation -- which still isn't
5950 guaranteed to get the correct answer, but is just probably more
5951 accurate. */
5952 for (objfile *objfile : current_program_space->objfiles ())
5953 {
5954 if (objfile->per_bfd->name_of_main != NULL)
5955 {
5956 set_main_name (objfile->per_bfd->name_of_main,
5957 objfile->per_bfd->language_of_main);
5958 return;
5959 }
5960 }
5961
5962 /* Try to see if the main procedure is in Ada. */
5963 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5964 be to add a new method in the language vector, and call this
5965 method for each language until one of them returns a non-empty
5966 name. This would allow us to remove this hard-coded call to
5967 an Ada function. It is not clear that this is a better approach
5968 at this point, because all methods need to be written in a way
5969 such that false positives never be returned. For instance, it is
5970 important that a method does not return a wrong name for the main
5971 procedure if the main procedure is actually written in a different
5972 language. It is easy to guaranty this with Ada, since we use a
5973 special symbol generated only when the main in Ada to find the name
5974 of the main procedure. It is difficult however to see how this can
5975 be guarantied for languages such as C, for instance. This suggests
5976 that order of call for these methods becomes important, which means
5977 a more complicated approach. */
5978 new_main_name = ada_main_name ();
5979 if (new_main_name != NULL)
5980 {
5981 set_main_name (new_main_name, language_ada);
5982 return;
5983 }
5984
5985 new_main_name = d_main_name ();
5986 if (new_main_name != NULL)
5987 {
5988 set_main_name (new_main_name, language_d);
5989 return;
5990 }
5991
5992 new_main_name = go_main_name ();
5993 if (new_main_name != NULL)
5994 {
5995 set_main_name (new_main_name, language_go);
5996 return;
5997 }
5998
5999 new_main_name = pascal_main_name ();
6000 if (new_main_name != NULL)
6001 {
6002 set_main_name (new_main_name, language_pascal);
6003 return;
6004 }
6005
6006 /* The languages above didn't identify the name of the main procedure.
6007 Fallback to "main". */
6008 set_main_name ("main", language_unknown);
6009 }
6010
6011 /* See symtab.h. */
6012
6013 const char *
6014 main_name ()
6015 {
6016 struct main_info *info = get_main_info ();
6017
6018 if (info->name_of_main == NULL)
6019 find_main_name ();
6020
6021 return info->name_of_main;
6022 }
6023
6024 /* Return the language of the main function. If it is not known,
6025 return language_unknown. */
6026
6027 enum language
6028 main_language (void)
6029 {
6030 struct main_info *info = get_main_info ();
6031
6032 if (info->name_of_main == NULL)
6033 find_main_name ();
6034
6035 return info->language_of_main;
6036 }
6037
6038 /* Handle ``executable_changed'' events for the symtab module. */
6039
6040 static void
6041 symtab_observer_executable_changed (void)
6042 {
6043 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6044 set_main_name (NULL, language_unknown);
6045 }
6046
6047 /* Return 1 if the supplied producer string matches the ARM RealView
6048 compiler (armcc). */
6049
6050 bool
6051 producer_is_realview (const char *producer)
6052 {
6053 static const char *const arm_idents[] = {
6054 "ARM C Compiler, ADS",
6055 "Thumb C Compiler, ADS",
6056 "ARM C++ Compiler, ADS",
6057 "Thumb C++ Compiler, ADS",
6058 "ARM/Thumb C/C++ Compiler, RVCT",
6059 "ARM C/C++ Compiler, RVCT"
6060 };
6061 int i;
6062
6063 if (producer == NULL)
6064 return false;
6065
6066 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6067 if (startswith (producer, arm_idents[i]))
6068 return true;
6069
6070 return false;
6071 }
6072
6073 \f
6074
6075 /* The next index to hand out in response to a registration request. */
6076
6077 static int next_aclass_value = LOC_FINAL_VALUE;
6078
6079 /* The maximum number of "aclass" registrations we support. This is
6080 constant for convenience. */
6081 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6082
6083 /* The objects representing the various "aclass" values. The elements
6084 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6085 elements are those registered at gdb initialization time. */
6086
6087 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6088
6089 /* The globally visible pointer. This is separate from 'symbol_impl'
6090 so that it can be const. */
6091
6092 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6093
6094 /* Make sure we saved enough room in struct symbol. */
6095
6096 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6097
6098 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6099 is the ops vector associated with this index. This returns the new
6100 index, which should be used as the aclass_index field for symbols
6101 of this type. */
6102
6103 int
6104 register_symbol_computed_impl (enum address_class aclass,
6105 const struct symbol_computed_ops *ops)
6106 {
6107 int result = next_aclass_value++;
6108
6109 gdb_assert (aclass == LOC_COMPUTED);
6110 gdb_assert (result < MAX_SYMBOL_IMPLS);
6111 symbol_impl[result].aclass = aclass;
6112 symbol_impl[result].ops_computed = ops;
6113
6114 /* Sanity check OPS. */
6115 gdb_assert (ops != NULL);
6116 gdb_assert (ops->tracepoint_var_ref != NULL);
6117 gdb_assert (ops->describe_location != NULL);
6118 gdb_assert (ops->get_symbol_read_needs != NULL);
6119 gdb_assert (ops->read_variable != NULL);
6120
6121 return result;
6122 }
6123
6124 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6125 OPS is the ops vector associated with this index. This returns the
6126 new index, which should be used as the aclass_index field for symbols
6127 of this type. */
6128
6129 int
6130 register_symbol_block_impl (enum address_class aclass,
6131 const struct symbol_block_ops *ops)
6132 {
6133 int result = next_aclass_value++;
6134
6135 gdb_assert (aclass == LOC_BLOCK);
6136 gdb_assert (result < MAX_SYMBOL_IMPLS);
6137 symbol_impl[result].aclass = aclass;
6138 symbol_impl[result].ops_block = ops;
6139
6140 /* Sanity check OPS. */
6141 gdb_assert (ops != NULL);
6142 gdb_assert (ops->find_frame_base_location != NULL);
6143
6144 return result;
6145 }
6146
6147 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6148 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6149 this index. This returns the new index, which should be used as
6150 the aclass_index field for symbols of this type. */
6151
6152 int
6153 register_symbol_register_impl (enum address_class aclass,
6154 const struct symbol_register_ops *ops)
6155 {
6156 int result = next_aclass_value++;
6157
6158 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6159 gdb_assert (result < MAX_SYMBOL_IMPLS);
6160 symbol_impl[result].aclass = aclass;
6161 symbol_impl[result].ops_register = ops;
6162
6163 return result;
6164 }
6165
6166 /* Initialize elements of 'symbol_impl' for the constants in enum
6167 address_class. */
6168
6169 static void
6170 initialize_ordinary_address_classes (void)
6171 {
6172 int i;
6173
6174 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6175 symbol_impl[i].aclass = (enum address_class) i;
6176 }
6177
6178 \f
6179
6180 /* Helper function to initialize the fields of an objfile-owned symbol.
6181 It assumed that *SYM is already all zeroes. */
6182
6183 static void
6184 initialize_objfile_symbol_1 (struct symbol *sym)
6185 {
6186 SYMBOL_OBJFILE_OWNED (sym) = 1;
6187 SYMBOL_SECTION (sym) = -1;
6188 }
6189
6190 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6191
6192 void
6193 initialize_objfile_symbol (struct symbol *sym)
6194 {
6195 memset (sym, 0, sizeof (*sym));
6196 initialize_objfile_symbol_1 (sym);
6197 }
6198
6199 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6200 obstack. */
6201
6202 struct symbol *
6203 allocate_symbol (struct objfile *objfile)
6204 {
6205 struct symbol *result;
6206
6207 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6208 initialize_objfile_symbol_1 (result);
6209
6210 return result;
6211 }
6212
6213 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6214 obstack. */
6215
6216 struct template_symbol *
6217 allocate_template_symbol (struct objfile *objfile)
6218 {
6219 struct template_symbol *result;
6220
6221 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6222 initialize_objfile_symbol_1 (result);
6223
6224 return result;
6225 }
6226
6227 /* See symtab.h. */
6228
6229 struct objfile *
6230 symbol_objfile (const struct symbol *symbol)
6231 {
6232 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6233 return SYMTAB_OBJFILE (symbol->owner.symtab);
6234 }
6235
6236 /* See symtab.h. */
6237
6238 struct gdbarch *
6239 symbol_arch (const struct symbol *symbol)
6240 {
6241 if (!SYMBOL_OBJFILE_OWNED (symbol))
6242 return symbol->owner.arch;
6243 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6244 }
6245
6246 /* See symtab.h. */
6247
6248 struct symtab *
6249 symbol_symtab (const struct symbol *symbol)
6250 {
6251 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6252 return symbol->owner.symtab;
6253 }
6254
6255 /* See symtab.h. */
6256
6257 void
6258 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6259 {
6260 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6261 symbol->owner.symtab = symtab;
6262 }
6263
6264 /* See symtab.h. */
6265
6266 CORE_ADDR
6267 get_symbol_address (const struct symbol *sym)
6268 {
6269 gdb_assert (sym->maybe_copied);
6270 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6271
6272 const char *linkage_name = SYMBOL_LINKAGE_NAME (sym);
6273
6274 for (objfile *objfile : current_program_space->objfiles ())
6275 {
6276 bound_minimal_symbol minsym
6277 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6278 if (minsym.minsym != nullptr)
6279 return BMSYMBOL_VALUE_ADDRESS (minsym);
6280 }
6281 return sym->ginfo.value.address;
6282 }
6283
6284 /* See symtab.h. */
6285
6286 CORE_ADDR
6287 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6288 {
6289 gdb_assert (minsym->maybe_copied);
6290 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6291
6292 const char *linkage_name = MSYMBOL_LINKAGE_NAME (minsym);
6293
6294 for (objfile *objfile : current_program_space->objfiles ())
6295 {
6296 if ((objfile->flags & OBJF_MAINLINE) != 0)
6297 {
6298 bound_minimal_symbol found
6299 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6300 if (found.minsym != nullptr)
6301 return BMSYMBOL_VALUE_ADDRESS (found);
6302 }
6303 }
6304 return (minsym->value.address
6305 + ANOFFSET (objf->section_offsets, minsym->section));
6306 }
6307
6308 \f
6309
6310 void
6311 _initialize_symtab (void)
6312 {
6313 cmd_list_element *c;
6314
6315 initialize_ordinary_address_classes ();
6316
6317 c = add_info ("variables", info_variables_command,
6318 info_print_args_help (_("\
6319 All global and static variable names or those matching REGEXPs.\n\
6320 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6321 Prints the global and static variables.\n"),
6322 _("global and static variables"),
6323 true));
6324 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6325 if (dbx_commands)
6326 {
6327 c = add_com ("whereis", class_info, info_variables_command,
6328 info_print_args_help (_("\
6329 All global and static variable names, or those matching REGEXPs.\n\
6330 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6331 Prints the global and static variables.\n"),
6332 _("global and static variables"),
6333 true));
6334 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6335 }
6336
6337 c = add_info ("functions", info_functions_command,
6338 info_print_args_help (_("\
6339 All function names or those matching REGEXPs.\n\
6340 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6341 Prints the functions.\n"),
6342 _("functions"),
6343 true));
6344 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6345
6346 c = add_info ("types", info_types_command, _("\
6347 All type names, or those matching REGEXP.\n\
6348 Usage: info types [-q] [REGEXP]\n\
6349 Print information about all types matching REGEXP, or all types if no\n\
6350 REGEXP is given. The optional flag -q disables printing of headers."));
6351 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6352
6353 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6354
6355 static std::string info_sources_help
6356 = gdb::option::build_help (_("\
6357 All source files in the program or those matching REGEXP.\n\
6358 Usage: info sources [OPTION]... [REGEXP]\n\
6359 By default, REGEXP is used to match anywhere in the filename.\n\
6360 \n\
6361 Options:\n\
6362 %OPTIONS%"),
6363 info_sources_opts);
6364
6365 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6366 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6367
6368 add_com ("rbreak", class_breakpoint, rbreak_command,
6369 _("Set a breakpoint for all functions matching REGEXP."));
6370
6371 add_setshow_enum_cmd ("multiple-symbols", no_class,
6372 multiple_symbols_modes, &multiple_symbols_mode,
6373 _("\
6374 Set how the debugger handles ambiguities in expressions."), _("\
6375 Show how the debugger handles ambiguities in expressions."), _("\
6376 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6377 NULL, NULL, &setlist, &showlist);
6378
6379 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6380 &basenames_may_differ, _("\
6381 Set whether a source file may have multiple base names."), _("\
6382 Show whether a source file may have multiple base names."), _("\
6383 (A \"base name\" is the name of a file with the directory part removed.\n\
6384 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6385 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6386 before comparing them. Canonicalization is an expensive operation,\n\
6387 but it allows the same file be known by more than one base name.\n\
6388 If not set (the default), all source files are assumed to have just\n\
6389 one base name, and gdb will do file name comparisons more efficiently."),
6390 NULL, NULL,
6391 &setlist, &showlist);
6392
6393 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6394 _("Set debugging of symbol table creation."),
6395 _("Show debugging of symbol table creation."), _("\
6396 When enabled (non-zero), debugging messages are printed when building\n\
6397 symbol tables. A value of 1 (one) normally provides enough information.\n\
6398 A value greater than 1 provides more verbose information."),
6399 NULL,
6400 NULL,
6401 &setdebuglist, &showdebuglist);
6402
6403 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6404 _("\
6405 Set debugging of symbol lookup."), _("\
6406 Show debugging of symbol lookup."), _("\
6407 When enabled (non-zero), symbol lookups are logged."),
6408 NULL, NULL,
6409 &setdebuglist, &showdebuglist);
6410
6411 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6412 &new_symbol_cache_size,
6413 _("Set the size of the symbol cache."),
6414 _("Show the size of the symbol cache."), _("\
6415 The size of the symbol cache.\n\
6416 If zero then the symbol cache is disabled."),
6417 set_symbol_cache_size_handler, NULL,
6418 &maintenance_set_cmdlist,
6419 &maintenance_show_cmdlist);
6420
6421 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6422 _("Dump the symbol cache for each program space."),
6423 &maintenanceprintlist);
6424
6425 add_cmd ("symbol-cache-statistics", class_maintenance,
6426 maintenance_print_symbol_cache_statistics,
6427 _("Print symbol cache statistics for each program space."),
6428 &maintenanceprintlist);
6429
6430 add_cmd ("flush-symbol-cache", class_maintenance,
6431 maintenance_flush_symbol_cache,
6432 _("Flush the symbol cache for each program space."),
6433 &maintenancelist);
6434
6435 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6436 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6437 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6438 }
This page took 0.216105 seconds and 5 git commands to generate.