Simple -Wshadow=local fixes
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observable.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68 #include <algorithm>
69 #include "common/pathstuff.h"
70
71 /* Forward declarations for local functions. */
72
73 static void rbreak_command (const char *, int);
74
75 static int find_line_common (struct linetable *, int, int *, int);
76
77 static struct block_symbol
78 lookup_symbol_aux (const char *name,
79 symbol_name_match_type match_type,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language,
83 struct field_of_this_result *);
84
85 static
86 struct block_symbol lookup_local_symbol (const char *name,
87 symbol_name_match_type match_type,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static struct block_symbol
93 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
94 const char *name, const domain_enum domain);
95
96 /* See symtab.h. */
97 const struct block_symbol null_block_symbol = { NULL, NULL };
98
99 /* Program space key for finding name and language of "main". */
100
101 static const struct program_space_data *main_progspace_key;
102
103 /* Type of the data stored on the program space. */
104
105 struct main_info
106 {
107 /* Name of "main". */
108
109 char *name_of_main;
110
111 /* Language of "main". */
112
113 enum language language_of_main;
114 };
115
116 /* Program space key for finding its symbol cache. */
117
118 static const struct program_space_data *symbol_cache_key;
119
120 /* The default symbol cache size.
121 There is no extra cpu cost for large N (except when flushing the cache,
122 which is rare). The value here is just a first attempt. A better default
123 value may be higher or lower. A prime number can make up for a bad hash
124 computation, so that's why the number is what it is. */
125 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
126
127 /* The maximum symbol cache size.
128 There's no method to the decision of what value to use here, other than
129 there's no point in allowing a user typo to make gdb consume all memory. */
130 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
131
132 /* symbol_cache_lookup returns this if a previous lookup failed to find the
133 symbol in any objfile. */
134 #define SYMBOL_LOOKUP_FAILED \
135 ((struct block_symbol) {(struct symbol *) 1, NULL})
136 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
137
138 /* Recording lookups that don't find the symbol is just as important, if not
139 more so, than recording found symbols. */
140
141 enum symbol_cache_slot_state
142 {
143 SYMBOL_SLOT_UNUSED,
144 SYMBOL_SLOT_NOT_FOUND,
145 SYMBOL_SLOT_FOUND
146 };
147
148 struct symbol_cache_slot
149 {
150 enum symbol_cache_slot_state state;
151
152 /* The objfile that was current when the symbol was looked up.
153 This is only needed for global blocks, but for simplicity's sake
154 we allocate the space for both. If data shows the extra space used
155 for static blocks is a problem, we can split things up then.
156
157 Global blocks need cache lookup to include the objfile context because
158 we need to account for gdbarch_iterate_over_objfiles_in_search_order
159 which can traverse objfiles in, effectively, any order, depending on
160 the current objfile, thus affecting which symbol is found. Normally,
161 only the current objfile is searched first, and then the rest are
162 searched in recorded order; but putting cache lookup inside
163 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
164 Instead we just make the current objfile part of the context of
165 cache lookup. This means we can record the same symbol multiple times,
166 each with a different "current objfile" that was in effect when the
167 lookup was saved in the cache, but cache space is pretty cheap. */
168 const struct objfile *objfile_context;
169
170 union
171 {
172 struct block_symbol found;
173 struct
174 {
175 char *name;
176 domain_enum domain;
177 } not_found;
178 } value;
179 };
180
181 /* Symbols don't specify global vs static block.
182 So keep them in separate caches. */
183
184 struct block_symbol_cache
185 {
186 unsigned int hits;
187 unsigned int misses;
188 unsigned int collisions;
189
190 /* SYMBOLS is a variable length array of this size.
191 One can imagine that in general one cache (global/static) should be a
192 fraction of the size of the other, but there's no data at the moment
193 on which to decide. */
194 unsigned int size;
195
196 struct symbol_cache_slot symbols[1];
197 };
198
199 /* The symbol cache.
200
201 Searching for symbols in the static and global blocks over multiple objfiles
202 again and again can be slow, as can searching very big objfiles. This is a
203 simple cache to improve symbol lookup performance, which is critical to
204 overall gdb performance.
205
206 Symbols are hashed on the name, its domain, and block.
207 They are also hashed on their objfile for objfile-specific lookups. */
208
209 struct symbol_cache
210 {
211 struct block_symbol_cache *global_symbols;
212 struct block_symbol_cache *static_symbols;
213 };
214
215 /* When non-zero, print debugging messages related to symtab creation. */
216 unsigned int symtab_create_debug = 0;
217
218 /* When non-zero, print debugging messages related to symbol lookup. */
219 unsigned int symbol_lookup_debug = 0;
220
221 /* The size of the cache is staged here. */
222 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
223
224 /* The current value of the symbol cache size.
225 This is saved so that if the user enters a value too big we can restore
226 the original value from here. */
227 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
228
229 /* Non-zero if a file may be known by two different basenames.
230 This is the uncommon case, and significantly slows down gdb.
231 Default set to "off" to not slow down the common case. */
232 int basenames_may_differ = 0;
233
234 /* Allow the user to configure the debugger behavior with respect
235 to multiple-choice menus when more than one symbol matches during
236 a symbol lookup. */
237
238 const char multiple_symbols_ask[] = "ask";
239 const char multiple_symbols_all[] = "all";
240 const char multiple_symbols_cancel[] = "cancel";
241 static const char *const multiple_symbols_modes[] =
242 {
243 multiple_symbols_ask,
244 multiple_symbols_all,
245 multiple_symbols_cancel,
246 NULL
247 };
248 static const char *multiple_symbols_mode = multiple_symbols_all;
249
250 /* Read-only accessor to AUTO_SELECT_MODE. */
251
252 const char *
253 multiple_symbols_select_mode (void)
254 {
255 return multiple_symbols_mode;
256 }
257
258 /* Return the name of a domain_enum. */
259
260 const char *
261 domain_name (domain_enum e)
262 {
263 switch (e)
264 {
265 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
266 case VAR_DOMAIN: return "VAR_DOMAIN";
267 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
268 case MODULE_DOMAIN: return "MODULE_DOMAIN";
269 case LABEL_DOMAIN: return "LABEL_DOMAIN";
270 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
271 default: gdb_assert_not_reached ("bad domain_enum");
272 }
273 }
274
275 /* Return the name of a search_domain . */
276
277 const char *
278 search_domain_name (enum search_domain e)
279 {
280 switch (e)
281 {
282 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
283 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
284 case TYPES_DOMAIN: return "TYPES_DOMAIN";
285 case ALL_DOMAIN: return "ALL_DOMAIN";
286 default: gdb_assert_not_reached ("bad search_domain");
287 }
288 }
289
290 /* See symtab.h. */
291
292 struct symtab *
293 compunit_primary_filetab (const struct compunit_symtab *cust)
294 {
295 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
296
297 /* The primary file symtab is the first one in the list. */
298 return COMPUNIT_FILETABS (cust);
299 }
300
301 /* See symtab.h. */
302
303 enum language
304 compunit_language (const struct compunit_symtab *cust)
305 {
306 struct symtab *symtab = compunit_primary_filetab (cust);
307
308 /* The language of the compunit symtab is the language of its primary
309 source file. */
310 return SYMTAB_LANGUAGE (symtab);
311 }
312
313 /* See whether FILENAME matches SEARCH_NAME using the rule that we
314 advertise to the user. (The manual's description of linespecs
315 describes what we advertise). Returns true if they match, false
316 otherwise. */
317
318 int
319 compare_filenames_for_search (const char *filename, const char *search_name)
320 {
321 int len = strlen (filename);
322 size_t search_len = strlen (search_name);
323
324 if (len < search_len)
325 return 0;
326
327 /* The tail of FILENAME must match. */
328 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
329 return 0;
330
331 /* Either the names must completely match, or the character
332 preceding the trailing SEARCH_NAME segment of FILENAME must be a
333 directory separator.
334
335 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
336 cannot match FILENAME "/path//dir/file.c" - as user has requested
337 absolute path. The sama applies for "c:\file.c" possibly
338 incorrectly hypothetically matching "d:\dir\c:\file.c".
339
340 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
341 compatible with SEARCH_NAME "file.c". In such case a compiler had
342 to put the "c:file.c" name into debug info. Such compatibility
343 works only on GDB built for DOS host. */
344 return (len == search_len
345 || (!IS_ABSOLUTE_PATH (search_name)
346 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
347 || (HAS_DRIVE_SPEC (filename)
348 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
349 }
350
351 /* Same as compare_filenames_for_search, but for glob-style patterns.
352 Heads up on the order of the arguments. They match the order of
353 compare_filenames_for_search, but it's the opposite of the order of
354 arguments to gdb_filename_fnmatch. */
355
356 int
357 compare_glob_filenames_for_search (const char *filename,
358 const char *search_name)
359 {
360 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
361 all /s have to be explicitly specified. */
362 int file_path_elements = count_path_elements (filename);
363 int search_path_elements = count_path_elements (search_name);
364
365 if (search_path_elements > file_path_elements)
366 return 0;
367
368 if (IS_ABSOLUTE_PATH (search_name))
369 {
370 return (search_path_elements == file_path_elements
371 && gdb_filename_fnmatch (search_name, filename,
372 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
373 }
374
375 {
376 const char *file_to_compare
377 = strip_leading_path_elements (filename,
378 file_path_elements - search_path_elements);
379
380 return gdb_filename_fnmatch (search_name, file_to_compare,
381 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
382 }
383 }
384
385 /* Check for a symtab of a specific name by searching some symtabs.
386 This is a helper function for callbacks of iterate_over_symtabs.
387
388 If NAME is not absolute, then REAL_PATH is NULL
389 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
390
391 The return value, NAME, REAL_PATH and CALLBACK are identical to the
392 `map_symtabs_matching_filename' method of quick_symbol_functions.
393
394 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
395 Each symtab within the specified compunit symtab is also searched.
396 AFTER_LAST is one past the last compunit symtab to search; NULL means to
397 search until the end of the list. */
398
399 bool
400 iterate_over_some_symtabs (const char *name,
401 const char *real_path,
402 struct compunit_symtab *first,
403 struct compunit_symtab *after_last,
404 gdb::function_view<bool (symtab *)> callback)
405 {
406 struct compunit_symtab *cust;
407 struct symtab *s;
408 const char* base_name = lbasename (name);
409
410 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
411 {
412 ALL_COMPUNIT_FILETABS (cust, s)
413 {
414 if (compare_filenames_for_search (s->filename, name))
415 {
416 if (callback (s))
417 return true;
418 continue;
419 }
420
421 /* Before we invoke realpath, which can get expensive when many
422 files are involved, do a quick comparison of the basenames. */
423 if (! basenames_may_differ
424 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
425 continue;
426
427 if (compare_filenames_for_search (symtab_to_fullname (s), name))
428 {
429 if (callback (s))
430 return true;
431 continue;
432 }
433
434 /* If the user gave us an absolute path, try to find the file in
435 this symtab and use its absolute path. */
436 if (real_path != NULL)
437 {
438 const char *fullname = symtab_to_fullname (s);
439
440 gdb_assert (IS_ABSOLUTE_PATH (real_path));
441 gdb_assert (IS_ABSOLUTE_PATH (name));
442 if (FILENAME_CMP (real_path, fullname) == 0)
443 {
444 if (callback (s))
445 return true;
446 continue;
447 }
448 }
449 }
450 }
451
452 return false;
453 }
454
455 /* Check for a symtab of a specific name; first in symtabs, then in
456 psymtabs. *If* there is no '/' in the name, a match after a '/'
457 in the symtab filename will also work.
458
459 Calls CALLBACK with each symtab that is found. If CALLBACK returns
460 true, the search stops. */
461
462 void
463 iterate_over_symtabs (const char *name,
464 gdb::function_view<bool (symtab *)> callback)
465 {
466 struct objfile *objfile;
467 gdb::unique_xmalloc_ptr<char> real_path;
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
475 }
476
477 ALL_OBJFILES (objfile)
478 {
479 if (iterate_over_some_symtabs (name, real_path.get (),
480 objfile->compunit_symtabs, NULL,
481 callback))
482 return;
483 }
484
485 /* Same search rules as above apply here, but now we look thru the
486 psymtabs. */
487
488 ALL_OBJFILES (objfile)
489 {
490 if (objfile->sf
491 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
492 name,
493 real_path.get (),
494 callback))
495 return;
496 }
497 }
498
499 /* A wrapper for iterate_over_symtabs that returns the first matching
500 symtab, or NULL. */
501
502 struct symtab *
503 lookup_symtab (const char *name)
504 {
505 struct symtab *result = NULL;
506
507 iterate_over_symtabs (name, [&] (symtab *symtab)
508 {
509 result = symtab;
510 return true;
511 });
512
513 return result;
514 }
515
516 \f
517 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
518 full method name, which consist of the class name (from T), the unadorned
519 method name from METHOD_ID, and the signature for the specific overload,
520 specified by SIGNATURE_ID. Note that this function is g++ specific. */
521
522 char *
523 gdb_mangle_name (struct type *type, int method_id, int signature_id)
524 {
525 int mangled_name_len;
526 char *mangled_name;
527 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
528 struct fn_field *method = &f[signature_id];
529 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
530 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
531 const char *newname = TYPE_NAME (type);
532
533 /* Does the form of physname indicate that it is the full mangled name
534 of a constructor (not just the args)? */
535 int is_full_physname_constructor;
536
537 int is_constructor;
538 int is_destructor = is_destructor_name (physname);
539 /* Need a new type prefix. */
540 const char *const_prefix = method->is_const ? "C" : "";
541 const char *volatile_prefix = method->is_volatile ? "V" : "";
542 char buf[20];
543 int len = (newname == NULL ? 0 : strlen (newname));
544
545 /* Nothing to do if physname already contains a fully mangled v3 abi name
546 or an operator name. */
547 if ((physname[0] == '_' && physname[1] == 'Z')
548 || is_operator_name (field_name))
549 return xstrdup (physname);
550
551 is_full_physname_constructor = is_constructor_name (physname);
552
553 is_constructor = is_full_physname_constructor
554 || (newname && strcmp (field_name, newname) == 0);
555
556 if (!is_destructor)
557 is_destructor = (startswith (physname, "__dt"));
558
559 if (is_destructor || is_full_physname_constructor)
560 {
561 mangled_name = (char *) xmalloc (strlen (physname) + 1);
562 strcpy (mangled_name, physname);
563 return mangled_name;
564 }
565
566 if (len == 0)
567 {
568 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
569 }
570 else if (physname[0] == 't' || physname[0] == 'Q')
571 {
572 /* The physname for template and qualified methods already includes
573 the class name. */
574 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
575 newname = NULL;
576 len = 0;
577 }
578 else
579 {
580 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
581 volatile_prefix, len);
582 }
583 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
584 + strlen (buf) + len + strlen (physname) + 1);
585
586 mangled_name = (char *) xmalloc (mangled_name_len);
587 if (is_constructor)
588 mangled_name[0] = '\0';
589 else
590 strcpy (mangled_name, field_name);
591
592 strcat (mangled_name, buf);
593 /* If the class doesn't have a name, i.e. newname NULL, then we just
594 mangle it using 0 for the length of the class. Thus it gets mangled
595 as something starting with `::' rather than `classname::'. */
596 if (newname != NULL)
597 strcat (mangled_name, newname);
598
599 strcat (mangled_name, physname);
600 return (mangled_name);
601 }
602
603 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
604 correctly allocated. */
605
606 void
607 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
608 const char *name,
609 struct obstack *obstack)
610 {
611 if (gsymbol->language == language_ada)
612 {
613 if (name == NULL)
614 {
615 gsymbol->ada_mangled = 0;
616 gsymbol->language_specific.obstack = obstack;
617 }
618 else
619 {
620 gsymbol->ada_mangled = 1;
621 gsymbol->language_specific.demangled_name = name;
622 }
623 }
624 else
625 gsymbol->language_specific.demangled_name = name;
626 }
627
628 /* Return the demangled name of GSYMBOL. */
629
630 const char *
631 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
632 {
633 if (gsymbol->language == language_ada)
634 {
635 if (!gsymbol->ada_mangled)
636 return NULL;
637 /* Fall through. */
638 }
639
640 return gsymbol->language_specific.demangled_name;
641 }
642
643 \f
644 /* Initialize the language dependent portion of a symbol
645 depending upon the language for the symbol. */
646
647 void
648 symbol_set_language (struct general_symbol_info *gsymbol,
649 enum language language,
650 struct obstack *obstack)
651 {
652 gsymbol->language = language;
653 if (gsymbol->language == language_cplus
654 || gsymbol->language == language_d
655 || gsymbol->language == language_go
656 || gsymbol->language == language_objc
657 || gsymbol->language == language_fortran)
658 {
659 symbol_set_demangled_name (gsymbol, NULL, obstack);
660 }
661 else if (gsymbol->language == language_ada)
662 {
663 gdb_assert (gsymbol->ada_mangled == 0);
664 gsymbol->language_specific.obstack = obstack;
665 }
666 else
667 {
668 memset (&gsymbol->language_specific, 0,
669 sizeof (gsymbol->language_specific));
670 }
671 }
672
673 /* Functions to initialize a symbol's mangled name. */
674
675 /* Objects of this type are stored in the demangled name hash table. */
676 struct demangled_name_entry
677 {
678 const char *mangled;
679 char demangled[1];
680 };
681
682 /* Hash function for the demangled name hash. */
683
684 static hashval_t
685 hash_demangled_name_entry (const void *data)
686 {
687 const struct demangled_name_entry *e
688 = (const struct demangled_name_entry *) data;
689
690 return htab_hash_string (e->mangled);
691 }
692
693 /* Equality function for the demangled name hash. */
694
695 static int
696 eq_demangled_name_entry (const void *a, const void *b)
697 {
698 const struct demangled_name_entry *da
699 = (const struct demangled_name_entry *) a;
700 const struct demangled_name_entry *db
701 = (const struct demangled_name_entry *) b;
702
703 return strcmp (da->mangled, db->mangled) == 0;
704 }
705
706 /* Create the hash table used for demangled names. Each hash entry is
707 a pair of strings; one for the mangled name and one for the demangled
708 name. The entry is hashed via just the mangled name. */
709
710 static void
711 create_demangled_names_hash (struct objfile *objfile)
712 {
713 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
714 The hash table code will round this up to the next prime number.
715 Choosing a much larger table size wastes memory, and saves only about
716 1% in symbol reading. */
717
718 objfile->per_bfd->demangled_names_hash = htab_create_alloc
719 (256, hash_demangled_name_entry, eq_demangled_name_entry,
720 NULL, xcalloc, xfree);
721 }
722
723 /* Try to determine the demangled name for a symbol, based on the
724 language of that symbol. If the language is set to language_auto,
725 it will attempt to find any demangling algorithm that works and
726 then set the language appropriately. The returned name is allocated
727 by the demangler and should be xfree'd. */
728
729 static char *
730 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
731 const char *mangled)
732 {
733 char *demangled = NULL;
734 int i;
735
736 if (gsymbol->language == language_unknown)
737 gsymbol->language = language_auto;
738
739 if (gsymbol->language != language_auto)
740 {
741 const struct language_defn *lang = language_def (gsymbol->language);
742
743 language_sniff_from_mangled_name (lang, mangled, &demangled);
744 return demangled;
745 }
746
747 for (i = language_unknown; i < nr_languages; ++i)
748 {
749 enum language l = (enum language) i;
750 const struct language_defn *lang = language_def (l);
751
752 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
753 {
754 gsymbol->language = l;
755 return demangled;
756 }
757 }
758
759 return NULL;
760 }
761
762 /* Set both the mangled and demangled (if any) names for GSYMBOL based
763 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
764 objfile's obstack; but if COPY_NAME is 0 and if NAME is
765 NUL-terminated, then this function assumes that NAME is already
766 correctly saved (either permanently or with a lifetime tied to the
767 objfile), and it will not be copied.
768
769 The hash table corresponding to OBJFILE is used, and the memory
770 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
771 so the pointer can be discarded after calling this function. */
772
773 void
774 symbol_set_names (struct general_symbol_info *gsymbol,
775 const char *linkage_name, int len, int copy_name,
776 struct objfile *objfile)
777 {
778 struct demangled_name_entry **slot;
779 /* A 0-terminated copy of the linkage name. */
780 const char *linkage_name_copy;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name. */
788 if (!copy_name)
789 gsymbol->name = linkage_name;
790 else
791 {
792 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
793 len + 1);
794
795 memcpy (name, linkage_name, len);
796 name[len] = '\0';
797 gsymbol->name = name;
798 }
799 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
800
801 return;
802 }
803
804 if (per_bfd->demangled_names_hash == NULL)
805 create_demangled_names_hash (objfile);
806
807 if (linkage_name[len] != '\0')
808 {
809 char *alloc_name;
810
811 alloc_name = (char *) alloca (len + 1);
812 memcpy (alloc_name, linkage_name, len);
813 alloc_name[len] = '\0';
814
815 linkage_name_copy = alloc_name;
816 }
817 else
818 linkage_name_copy = linkage_name;
819
820 entry.mangled = linkage_name_copy;
821 slot = ((struct demangled_name_entry **)
822 htab_find_slot (per_bfd->demangled_names_hash,
823 &entry, INSERT));
824
825 /* If this name is not in the hash table, add it. */
826 if (*slot == NULL
827 /* A C version of the symbol may have already snuck into the table.
828 This happens to, e.g., main.init (__go_init_main). Cope. */
829 || (gsymbol->language == language_go
830 && (*slot)->demangled[0] == '\0'))
831 {
832 char *demangled_name = symbol_find_demangled_name (gsymbol,
833 linkage_name_copy);
834 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
835
836 /* Suppose we have demangled_name==NULL, copy_name==0, and
837 linkage_name_copy==linkage_name. In this case, we already have the
838 mangled name saved, and we don't have a demangled name. So,
839 you might think we could save a little space by not recording
840 this in the hash table at all.
841
842 It turns out that it is actually important to still save such
843 an entry in the hash table, because storing this name gives
844 us better bcache hit rates for partial symbols. */
845 if (!copy_name && linkage_name_copy == linkage_name)
846 {
847 *slot
848 = ((struct demangled_name_entry *)
849 obstack_alloc (&per_bfd->storage_obstack,
850 offsetof (struct demangled_name_entry, demangled)
851 + demangled_len + 1));
852 (*slot)->mangled = linkage_name;
853 }
854 else
855 {
856 char *mangled_ptr;
857
858 /* If we must copy the mangled name, put it directly after
859 the demangled name so we can have a single
860 allocation. */
861 *slot
862 = ((struct demangled_name_entry *)
863 obstack_alloc (&per_bfd->storage_obstack,
864 offsetof (struct demangled_name_entry, demangled)
865 + len + demangled_len + 2));
866 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
867 strcpy (mangled_ptr, linkage_name_copy);
868 (*slot)->mangled = mangled_ptr;
869 }
870
871 if (demangled_name != NULL)
872 {
873 strcpy ((*slot)->demangled, demangled_name);
874 xfree (demangled_name);
875 }
876 else
877 (*slot)->demangled[0] = '\0';
878 }
879
880 gsymbol->name = (*slot)->mangled;
881 if ((*slot)->demangled[0] != '\0')
882 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
883 &per_bfd->storage_obstack);
884 else
885 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
886 }
887
888 /* Return the source code name of a symbol. In languages where
889 demangling is necessary, this is the demangled name. */
890
891 const char *
892 symbol_natural_name (const struct general_symbol_info *gsymbol)
893 {
894 switch (gsymbol->language)
895 {
896 case language_cplus:
897 case language_d:
898 case language_go:
899 case language_objc:
900 case language_fortran:
901 if (symbol_get_demangled_name (gsymbol) != NULL)
902 return symbol_get_demangled_name (gsymbol);
903 break;
904 case language_ada:
905 return ada_decode_symbol (gsymbol);
906 default:
907 break;
908 }
909 return gsymbol->name;
910 }
911
912 /* Return the demangled name for a symbol based on the language for
913 that symbol. If no demangled name exists, return NULL. */
914
915 const char *
916 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 {
918 const char *dem_name = NULL;
919
920 switch (gsymbol->language)
921 {
922 case language_cplus:
923 case language_d:
924 case language_go:
925 case language_objc:
926 case language_fortran:
927 dem_name = symbol_get_demangled_name (gsymbol);
928 break;
929 case language_ada:
930 dem_name = ada_decode_symbol (gsymbol);
931 break;
932 default:
933 break;
934 }
935 return dem_name;
936 }
937
938 /* Return the search name of a symbol---generally the demangled or
939 linkage name of the symbol, depending on how it will be searched for.
940 If there is no distinct demangled name, then returns the same value
941 (same pointer) as SYMBOL_LINKAGE_NAME. */
942
943 const char *
944 symbol_search_name (const struct general_symbol_info *gsymbol)
945 {
946 if (gsymbol->language == language_ada)
947 return gsymbol->name;
948 else
949 return symbol_natural_name (gsymbol);
950 }
951
952 /* See symtab.h. */
953
954 bool
955 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
956 const lookup_name_info &name)
957 {
958 symbol_name_matcher_ftype *name_match
959 = get_symbol_name_matcher (language_def (gsymbol->language), name);
960 return name_match (symbol_search_name (gsymbol), name, NULL);
961 }
962
963 \f
964
965 /* Return 1 if the two sections are the same, or if they could
966 plausibly be copies of each other, one in an original object
967 file and another in a separated debug file. */
968
969 int
970 matching_obj_sections (struct obj_section *obj_first,
971 struct obj_section *obj_second)
972 {
973 asection *first = obj_first? obj_first->the_bfd_section : NULL;
974 asection *second = obj_second? obj_second->the_bfd_section : NULL;
975 struct objfile *obj;
976
977 /* If they're the same section, then they match. */
978 if (first == second)
979 return 1;
980
981 /* If either is NULL, give up. */
982 if (first == NULL || second == NULL)
983 return 0;
984
985 /* This doesn't apply to absolute symbols. */
986 if (first->owner == NULL || second->owner == NULL)
987 return 0;
988
989 /* If they're in the same object file, they must be different sections. */
990 if (first->owner == second->owner)
991 return 0;
992
993 /* Check whether the two sections are potentially corresponding. They must
994 have the same size, address, and name. We can't compare section indexes,
995 which would be more reliable, because some sections may have been
996 stripped. */
997 if (bfd_get_section_size (first) != bfd_get_section_size (second))
998 return 0;
999
1000 /* In-memory addresses may start at a different offset, relativize them. */
1001 if (bfd_get_section_vma (first->owner, first)
1002 - bfd_get_start_address (first->owner)
1003 != bfd_get_section_vma (second->owner, second)
1004 - bfd_get_start_address (second->owner))
1005 return 0;
1006
1007 if (bfd_get_section_name (first->owner, first) == NULL
1008 || bfd_get_section_name (second->owner, second) == NULL
1009 || strcmp (bfd_get_section_name (first->owner, first),
1010 bfd_get_section_name (second->owner, second)) != 0)
1011 return 0;
1012
1013 /* Otherwise check that they are in corresponding objfiles. */
1014
1015 ALL_OBJFILES (obj)
1016 if (obj->obfd == first->owner)
1017 break;
1018 gdb_assert (obj != NULL);
1019
1020 if (obj->separate_debug_objfile != NULL
1021 && obj->separate_debug_objfile->obfd == second->owner)
1022 return 1;
1023 if (obj->separate_debug_objfile_backlink != NULL
1024 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1025 return 1;
1026
1027 return 0;
1028 }
1029
1030 /* See symtab.h. */
1031
1032 void
1033 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1034 {
1035 struct objfile *objfile;
1036 struct bound_minimal_symbol msymbol;
1037
1038 /* If we know that this is not a text address, return failure. This is
1039 necessary because we loop based on texthigh and textlow, which do
1040 not include the data ranges. */
1041 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1042 if (msymbol.minsym
1043 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1048 return;
1049
1050 ALL_OBJFILES (objfile)
1051 {
1052 struct compunit_symtab *cust = NULL;
1053
1054 if (objfile->sf)
1055 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1056 pc, section, 0);
1057 if (cust)
1058 return;
1059 }
1060 }
1061 \f
1062 /* Hash function for the symbol cache. */
1063
1064 static unsigned int
1065 hash_symbol_entry (const struct objfile *objfile_context,
1066 const char *name, domain_enum domain)
1067 {
1068 unsigned int hash = (uintptr_t) objfile_context;
1069
1070 if (name != NULL)
1071 hash += htab_hash_string (name);
1072
1073 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1074 to map to the same slot. */
1075 if (domain == STRUCT_DOMAIN)
1076 hash += VAR_DOMAIN * 7;
1077 else
1078 hash += domain * 7;
1079
1080 return hash;
1081 }
1082
1083 /* Equality function for the symbol cache. */
1084
1085 static int
1086 eq_symbol_entry (const struct symbol_cache_slot *slot,
1087 const struct objfile *objfile_context,
1088 const char *name, domain_enum domain)
1089 {
1090 const char *slot_name;
1091 domain_enum slot_domain;
1092
1093 if (slot->state == SYMBOL_SLOT_UNUSED)
1094 return 0;
1095
1096 if (slot->objfile_context != objfile_context)
1097 return 0;
1098
1099 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1100 {
1101 slot_name = slot->value.not_found.name;
1102 slot_domain = slot->value.not_found.domain;
1103 }
1104 else
1105 {
1106 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1107 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1108 }
1109
1110 /* NULL names match. */
1111 if (slot_name == NULL && name == NULL)
1112 {
1113 /* But there's no point in calling symbol_matches_domain in the
1114 SYMBOL_SLOT_FOUND case. */
1115 if (slot_domain != domain)
1116 return 0;
1117 }
1118 else if (slot_name != NULL && name != NULL)
1119 {
1120 /* It's important that we use the same comparison that was done
1121 the first time through. If the slot records a found symbol,
1122 then this means using the symbol name comparison function of
1123 the symbol's language with SYMBOL_SEARCH_NAME. See
1124 dictionary.c. It also means using symbol_matches_domain for
1125 found symbols. See block.c.
1126
1127 If the slot records a not-found symbol, then require a precise match.
1128 We could still be lax with whitespace like strcmp_iw though. */
1129
1130 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1131 {
1132 if (strcmp (slot_name, name) != 0)
1133 return 0;
1134 if (slot_domain != domain)
1135 return 0;
1136 }
1137 else
1138 {
1139 struct symbol *sym = slot->value.found.symbol;
1140 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1141
1142 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1143 return 0;
1144
1145 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1146 slot_domain, domain))
1147 return 0;
1148 }
1149 }
1150 else
1151 {
1152 /* Only one name is NULL. */
1153 return 0;
1154 }
1155
1156 return 1;
1157 }
1158
1159 /* Given a cache of size SIZE, return the size of the struct (with variable
1160 length array) in bytes. */
1161
1162 static size_t
1163 symbol_cache_byte_size (unsigned int size)
1164 {
1165 return (sizeof (struct block_symbol_cache)
1166 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1167 }
1168
1169 /* Resize CACHE. */
1170
1171 static void
1172 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1173 {
1174 /* If there's no change in size, don't do anything.
1175 All caches have the same size, so we can just compare with the size
1176 of the global symbols cache. */
1177 if ((cache->global_symbols != NULL
1178 && cache->global_symbols->size == new_size)
1179 || (cache->global_symbols == NULL
1180 && new_size == 0))
1181 return;
1182
1183 xfree (cache->global_symbols);
1184 xfree (cache->static_symbols);
1185
1186 if (new_size == 0)
1187 {
1188 cache->global_symbols = NULL;
1189 cache->static_symbols = NULL;
1190 }
1191 else
1192 {
1193 size_t total_size = symbol_cache_byte_size (new_size);
1194
1195 cache->global_symbols
1196 = (struct block_symbol_cache *) xcalloc (1, total_size);
1197 cache->static_symbols
1198 = (struct block_symbol_cache *) xcalloc (1, total_size);
1199 cache->global_symbols->size = new_size;
1200 cache->static_symbols->size = new_size;
1201 }
1202 }
1203
1204 /* Make a symbol cache of size SIZE. */
1205
1206 static struct symbol_cache *
1207 make_symbol_cache (unsigned int size)
1208 {
1209 struct symbol_cache *cache;
1210
1211 cache = XCNEW (struct symbol_cache);
1212 resize_symbol_cache (cache, symbol_cache_size);
1213 return cache;
1214 }
1215
1216 /* Free the space used by CACHE. */
1217
1218 static void
1219 free_symbol_cache (struct symbol_cache *cache)
1220 {
1221 xfree (cache->global_symbols);
1222 xfree (cache->static_symbols);
1223 xfree (cache);
1224 }
1225
1226 /* Return the symbol cache of PSPACE.
1227 Create one if it doesn't exist yet. */
1228
1229 static struct symbol_cache *
1230 get_symbol_cache (struct program_space *pspace)
1231 {
1232 struct symbol_cache *cache
1233 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1234
1235 if (cache == NULL)
1236 {
1237 cache = make_symbol_cache (symbol_cache_size);
1238 set_program_space_data (pspace, symbol_cache_key, cache);
1239 }
1240
1241 return cache;
1242 }
1243
1244 /* Delete the symbol cache of PSPACE.
1245 Called when PSPACE is destroyed. */
1246
1247 static void
1248 symbol_cache_cleanup (struct program_space *pspace, void *data)
1249 {
1250 struct symbol_cache *cache = (struct symbol_cache *) data;
1251
1252 free_symbol_cache (cache);
1253 }
1254
1255 /* Set the size of the symbol cache in all program spaces. */
1256
1257 static void
1258 set_symbol_cache_size (unsigned int new_size)
1259 {
1260 struct program_space *pspace;
1261
1262 ALL_PSPACES (pspace)
1263 {
1264 struct symbol_cache *cache
1265 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1266
1267 /* The pspace could have been created but not have a cache yet. */
1268 if (cache != NULL)
1269 resize_symbol_cache (cache, new_size);
1270 }
1271 }
1272
1273 /* Called when symbol-cache-size is set. */
1274
1275 static void
1276 set_symbol_cache_size_handler (const char *args, int from_tty,
1277 struct cmd_list_element *c)
1278 {
1279 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1280 {
1281 /* Restore the previous value.
1282 This is the value the "show" command prints. */
1283 new_symbol_cache_size = symbol_cache_size;
1284
1285 error (_("Symbol cache size is too large, max is %u."),
1286 MAX_SYMBOL_CACHE_SIZE);
1287 }
1288 symbol_cache_size = new_symbol_cache_size;
1289
1290 set_symbol_cache_size (symbol_cache_size);
1291 }
1292
1293 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1294 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1295 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1296 failed (and thus this one will too), or NULL if the symbol is not present
1297 in the cache.
1298 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1299 set to the cache and slot of the symbol to save the result of a full lookup
1300 attempt. */
1301
1302 static struct block_symbol
1303 symbol_cache_lookup (struct symbol_cache *cache,
1304 struct objfile *objfile_context, int block,
1305 const char *name, domain_enum domain,
1306 struct block_symbol_cache **bsc_ptr,
1307 struct symbol_cache_slot **slot_ptr)
1308 {
1309 struct block_symbol_cache *bsc;
1310 unsigned int hash;
1311 struct symbol_cache_slot *slot;
1312
1313 if (block == GLOBAL_BLOCK)
1314 bsc = cache->global_symbols;
1315 else
1316 bsc = cache->static_symbols;
1317 if (bsc == NULL)
1318 {
1319 *bsc_ptr = NULL;
1320 *slot_ptr = NULL;
1321 return (struct block_symbol) {NULL, NULL};
1322 }
1323
1324 hash = hash_symbol_entry (objfile_context, name, domain);
1325 slot = bsc->symbols + hash % bsc->size;
1326
1327 if (eq_symbol_entry (slot, objfile_context, name, domain))
1328 {
1329 if (symbol_lookup_debug)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "%s block symbol cache hit%s for %s, %s\n",
1332 block == GLOBAL_BLOCK ? "Global" : "Static",
1333 slot->state == SYMBOL_SLOT_NOT_FOUND
1334 ? " (not found)" : "",
1335 name, domain_name (domain));
1336 ++bsc->hits;
1337 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1338 return SYMBOL_LOOKUP_FAILED;
1339 return slot->value.found;
1340 }
1341
1342 /* Symbol is not present in the cache. */
1343
1344 *bsc_ptr = bsc;
1345 *slot_ptr = slot;
1346
1347 if (symbol_lookup_debug)
1348 {
1349 fprintf_unfiltered (gdb_stdlog,
1350 "%s block symbol cache miss for %s, %s\n",
1351 block == GLOBAL_BLOCK ? "Global" : "Static",
1352 name, domain_name (domain));
1353 }
1354 ++bsc->misses;
1355 return (struct block_symbol) {NULL, NULL};
1356 }
1357
1358 /* Clear out SLOT. */
1359
1360 static void
1361 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1362 {
1363 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1364 xfree (slot->value.not_found.name);
1365 slot->state = SYMBOL_SLOT_UNUSED;
1366 }
1367
1368 /* Mark SYMBOL as found in SLOT.
1369 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1370 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1371 necessarily the objfile the symbol was found in. */
1372
1373 static void
1374 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1375 struct symbol_cache_slot *slot,
1376 struct objfile *objfile_context,
1377 struct symbol *symbol,
1378 const struct block *block)
1379 {
1380 if (bsc == NULL)
1381 return;
1382 if (slot->state != SYMBOL_SLOT_UNUSED)
1383 {
1384 ++bsc->collisions;
1385 symbol_cache_clear_slot (slot);
1386 }
1387 slot->state = SYMBOL_SLOT_FOUND;
1388 slot->objfile_context = objfile_context;
1389 slot->value.found.symbol = symbol;
1390 slot->value.found.block = block;
1391 }
1392
1393 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1394 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1395 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1396
1397 static void
1398 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1399 struct symbol_cache_slot *slot,
1400 struct objfile *objfile_context,
1401 const char *name, domain_enum domain)
1402 {
1403 if (bsc == NULL)
1404 return;
1405 if (slot->state != SYMBOL_SLOT_UNUSED)
1406 {
1407 ++bsc->collisions;
1408 symbol_cache_clear_slot (slot);
1409 }
1410 slot->state = SYMBOL_SLOT_NOT_FOUND;
1411 slot->objfile_context = objfile_context;
1412 slot->value.not_found.name = xstrdup (name);
1413 slot->value.not_found.domain = domain;
1414 }
1415
1416 /* Flush the symbol cache of PSPACE. */
1417
1418 static void
1419 symbol_cache_flush (struct program_space *pspace)
1420 {
1421 struct symbol_cache *cache
1422 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1423 int pass;
1424
1425 if (cache == NULL)
1426 return;
1427 if (cache->global_symbols == NULL)
1428 {
1429 gdb_assert (symbol_cache_size == 0);
1430 gdb_assert (cache->static_symbols == NULL);
1431 return;
1432 }
1433
1434 /* If the cache is untouched since the last flush, early exit.
1435 This is important for performance during the startup of a program linked
1436 with 100s (or 1000s) of shared libraries. */
1437 if (cache->global_symbols->misses == 0
1438 && cache->static_symbols->misses == 0)
1439 return;
1440
1441 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1442 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1443
1444 for (pass = 0; pass < 2; ++pass)
1445 {
1446 struct block_symbol_cache *bsc
1447 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1448 unsigned int i;
1449
1450 for (i = 0; i < bsc->size; ++i)
1451 symbol_cache_clear_slot (&bsc->symbols[i]);
1452 }
1453
1454 cache->global_symbols->hits = 0;
1455 cache->global_symbols->misses = 0;
1456 cache->global_symbols->collisions = 0;
1457 cache->static_symbols->hits = 0;
1458 cache->static_symbols->misses = 0;
1459 cache->static_symbols->collisions = 0;
1460 }
1461
1462 /* Dump CACHE. */
1463
1464 static void
1465 symbol_cache_dump (const struct symbol_cache *cache)
1466 {
1467 int pass;
1468
1469 if (cache->global_symbols == NULL)
1470 {
1471 printf_filtered (" <disabled>\n");
1472 return;
1473 }
1474
1475 for (pass = 0; pass < 2; ++pass)
1476 {
1477 const struct block_symbol_cache *bsc
1478 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1479 unsigned int i;
1480
1481 if (pass == 0)
1482 printf_filtered ("Global symbols:\n");
1483 else
1484 printf_filtered ("Static symbols:\n");
1485
1486 for (i = 0; i < bsc->size; ++i)
1487 {
1488 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1489
1490 QUIT;
1491
1492 switch (slot->state)
1493 {
1494 case SYMBOL_SLOT_UNUSED:
1495 break;
1496 case SYMBOL_SLOT_NOT_FOUND:
1497 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1498 host_address_to_string (slot->objfile_context),
1499 slot->value.not_found.name,
1500 domain_name (slot->value.not_found.domain));
1501 break;
1502 case SYMBOL_SLOT_FOUND:
1503 {
1504 struct symbol *found = slot->value.found.symbol;
1505 const struct objfile *context = slot->objfile_context;
1506
1507 printf_filtered (" [%4u] = %s, %s %s\n", i,
1508 host_address_to_string (context),
1509 SYMBOL_PRINT_NAME (found),
1510 domain_name (SYMBOL_DOMAIN (found)));
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 }
1517
1518 /* The "mt print symbol-cache" command. */
1519
1520 static void
1521 maintenance_print_symbol_cache (const char *args, int from_tty)
1522 {
1523 struct program_space *pspace;
1524
1525 ALL_PSPACES (pspace)
1526 {
1527 struct symbol_cache *cache;
1528
1529 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1530 pspace->num,
1531 pspace->symfile_object_file != NULL
1532 ? objfile_name (pspace->symfile_object_file)
1533 : "(no object file)");
1534
1535 /* If the cache hasn't been created yet, avoid creating one. */
1536 cache
1537 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1538 if (cache == NULL)
1539 printf_filtered (" <empty>\n");
1540 else
1541 symbol_cache_dump (cache);
1542 }
1543 }
1544
1545 /* The "mt flush-symbol-cache" command. */
1546
1547 static void
1548 maintenance_flush_symbol_cache (const char *args, int from_tty)
1549 {
1550 struct program_space *pspace;
1551
1552 ALL_PSPACES (pspace)
1553 {
1554 symbol_cache_flush (pspace);
1555 }
1556 }
1557
1558 /* Print usage statistics of CACHE. */
1559
1560 static void
1561 symbol_cache_stats (struct symbol_cache *cache)
1562 {
1563 int pass;
1564
1565 if (cache->global_symbols == NULL)
1566 {
1567 printf_filtered (" <disabled>\n");
1568 return;
1569 }
1570
1571 for (pass = 0; pass < 2; ++pass)
1572 {
1573 const struct block_symbol_cache *bsc
1574 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1575
1576 QUIT;
1577
1578 if (pass == 0)
1579 printf_filtered ("Global block cache stats:\n");
1580 else
1581 printf_filtered ("Static block cache stats:\n");
1582
1583 printf_filtered (" size: %u\n", bsc->size);
1584 printf_filtered (" hits: %u\n", bsc->hits);
1585 printf_filtered (" misses: %u\n", bsc->misses);
1586 printf_filtered (" collisions: %u\n", bsc->collisions);
1587 }
1588 }
1589
1590 /* The "mt print symbol-cache-statistics" command. */
1591
1592 static void
1593 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594 {
1595 struct program_space *pspace;
1596
1597 ALL_PSPACES (pspace)
1598 {
1599 struct symbol_cache *cache;
1600
1601 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1602 pspace->num,
1603 pspace->symfile_object_file != NULL
1604 ? objfile_name (pspace->symfile_object_file)
1605 : "(no object file)");
1606
1607 /* If the cache hasn't been created yet, avoid creating one. */
1608 cache
1609 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1610 if (cache == NULL)
1611 printf_filtered (" empty, no stats available\n");
1612 else
1613 symbol_cache_stats (cache);
1614 }
1615 }
1616
1617 /* This module's 'new_objfile' observer. */
1618
1619 static void
1620 symtab_new_objfile_observer (struct objfile *objfile)
1621 {
1622 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1623 symbol_cache_flush (current_program_space);
1624 }
1625
1626 /* This module's 'free_objfile' observer. */
1627
1628 static void
1629 symtab_free_objfile_observer (struct objfile *objfile)
1630 {
1631 symbol_cache_flush (objfile->pspace);
1632 }
1633 \f
1634 /* Debug symbols usually don't have section information. We need to dig that
1635 out of the minimal symbols and stash that in the debug symbol. */
1636
1637 void
1638 fixup_section (struct general_symbol_info *ginfo,
1639 CORE_ADDR addr, struct objfile *objfile)
1640 {
1641 struct minimal_symbol *msym;
1642
1643 /* First, check whether a minimal symbol with the same name exists
1644 and points to the same address. The address check is required
1645 e.g. on PowerPC64, where the minimal symbol for a function will
1646 point to the function descriptor, while the debug symbol will
1647 point to the actual function code. */
1648 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1649 if (msym)
1650 ginfo->section = MSYMBOL_SECTION (msym);
1651 else
1652 {
1653 /* Static, function-local variables do appear in the linker
1654 (minimal) symbols, but are frequently given names that won't
1655 be found via lookup_minimal_symbol(). E.g., it has been
1656 observed in frv-uclinux (ELF) executables that a static,
1657 function-local variable named "foo" might appear in the
1658 linker symbols as "foo.6" or "foo.3". Thus, there is no
1659 point in attempting to extend the lookup-by-name mechanism to
1660 handle this case due to the fact that there can be multiple
1661 names.
1662
1663 So, instead, search the section table when lookup by name has
1664 failed. The ``addr'' and ``endaddr'' fields may have already
1665 been relocated. If so, the relocation offset (i.e. the
1666 ANOFFSET value) needs to be subtracted from these values when
1667 performing the comparison. We unconditionally subtract it,
1668 because, when no relocation has been performed, the ANOFFSET
1669 value will simply be zero.
1670
1671 The address of the symbol whose section we're fixing up HAS
1672 NOT BEEN adjusted (relocated) yet. It can't have been since
1673 the section isn't yet known and knowing the section is
1674 necessary in order to add the correct relocation value. In
1675 other words, we wouldn't even be in this function (attempting
1676 to compute the section) if it were already known.
1677
1678 Note that it is possible to search the minimal symbols
1679 (subtracting the relocation value if necessary) to find the
1680 matching minimal symbol, but this is overkill and much less
1681 efficient. It is not necessary to find the matching minimal
1682 symbol, only its section.
1683
1684 Note that this technique (of doing a section table search)
1685 can fail when unrelocated section addresses overlap. For
1686 this reason, we still attempt a lookup by name prior to doing
1687 a search of the section table. */
1688
1689 struct obj_section *s;
1690 int fallback = -1;
1691
1692 ALL_OBJFILE_OSECTIONS (objfile, s)
1693 {
1694 int idx = s - objfile->sections;
1695 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1696
1697 if (fallback == -1)
1698 fallback = idx;
1699
1700 if (obj_section_addr (s) - offset <= addr
1701 && addr < obj_section_endaddr (s) - offset)
1702 {
1703 ginfo->section = idx;
1704 return;
1705 }
1706 }
1707
1708 /* If we didn't find the section, assume it is in the first
1709 section. If there is no allocated section, then it hardly
1710 matters what we pick, so just pick zero. */
1711 if (fallback == -1)
1712 ginfo->section = 0;
1713 else
1714 ginfo->section = fallback;
1715 }
1716 }
1717
1718 struct symbol *
1719 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1720 {
1721 CORE_ADDR addr;
1722
1723 if (!sym)
1724 return NULL;
1725
1726 if (!SYMBOL_OBJFILE_OWNED (sym))
1727 return sym;
1728
1729 /* We either have an OBJFILE, or we can get at it from the sym's
1730 symtab. Anything else is a bug. */
1731 gdb_assert (objfile || symbol_symtab (sym));
1732
1733 if (objfile == NULL)
1734 objfile = symbol_objfile (sym);
1735
1736 if (SYMBOL_OBJ_SECTION (objfile, sym))
1737 return sym;
1738
1739 /* We should have an objfile by now. */
1740 gdb_assert (objfile);
1741
1742 switch (SYMBOL_CLASS (sym))
1743 {
1744 case LOC_STATIC:
1745 case LOC_LABEL:
1746 addr = SYMBOL_VALUE_ADDRESS (sym);
1747 break;
1748 case LOC_BLOCK:
1749 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1750 break;
1751
1752 default:
1753 /* Nothing else will be listed in the minsyms -- no use looking
1754 it up. */
1755 return sym;
1756 }
1757
1758 fixup_section (&sym->ginfo, addr, objfile);
1759
1760 return sym;
1761 }
1762
1763 /* See symtab.h. */
1764
1765 demangle_for_lookup_info::demangle_for_lookup_info
1766 (const lookup_name_info &lookup_name, language lang)
1767 {
1768 demangle_result_storage storage;
1769
1770 if (lookup_name.ignore_parameters () && lang == language_cplus)
1771 {
1772 gdb::unique_xmalloc_ptr<char> without_params
1773 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1774 lookup_name.completion_mode ());
1775
1776 if (without_params != NULL)
1777 {
1778 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1779 m_demangled_name = demangle_for_lookup (without_params.get (),
1780 lang, storage);
1781 return;
1782 }
1783 }
1784
1785 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1786 m_demangled_name = lookup_name.name ();
1787 else
1788 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1789 lang, storage);
1790 }
1791
1792 /* See symtab.h. */
1793
1794 const lookup_name_info &
1795 lookup_name_info::match_any ()
1796 {
1797 /* Lookup any symbol that "" would complete. I.e., this matches all
1798 symbol names. */
1799 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1800 true);
1801
1802 return lookup_name;
1803 }
1804
1805 /* Compute the demangled form of NAME as used by the various symbol
1806 lookup functions. The result can either be the input NAME
1807 directly, or a pointer to a buffer owned by the STORAGE object.
1808
1809 For Ada, this function just returns NAME, unmodified.
1810 Normally, Ada symbol lookups are performed using the encoded name
1811 rather than the demangled name, and so it might seem to make sense
1812 for this function to return an encoded version of NAME.
1813 Unfortunately, we cannot do this, because this function is used in
1814 circumstances where it is not appropriate to try to encode NAME.
1815 For instance, when displaying the frame info, we demangle the name
1816 of each parameter, and then perform a symbol lookup inside our
1817 function using that demangled name. In Ada, certain functions
1818 have internally-generated parameters whose name contain uppercase
1819 characters. Encoding those name would result in those uppercase
1820 characters to become lowercase, and thus cause the symbol lookup
1821 to fail. */
1822
1823 const char *
1824 demangle_for_lookup (const char *name, enum language lang,
1825 demangle_result_storage &storage)
1826 {
1827 /* If we are using C++, D, or Go, demangle the name before doing a
1828 lookup, so we can always binary search. */
1829 if (lang == language_cplus)
1830 {
1831 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1832 if (demangled_name != NULL)
1833 return storage.set_malloc_ptr (demangled_name);
1834
1835 /* If we were given a non-mangled name, canonicalize it
1836 according to the language (so far only for C++). */
1837 std::string canon = cp_canonicalize_string (name);
1838 if (!canon.empty ())
1839 return storage.swap_string (canon);
1840 }
1841 else if (lang == language_d)
1842 {
1843 char *demangled_name = d_demangle (name, 0);
1844 if (demangled_name != NULL)
1845 return storage.set_malloc_ptr (demangled_name);
1846 }
1847 else if (lang == language_go)
1848 {
1849 char *demangled_name = go_demangle (name, 0);
1850 if (demangled_name != NULL)
1851 return storage.set_malloc_ptr (demangled_name);
1852 }
1853
1854 return name;
1855 }
1856
1857 /* See symtab.h. */
1858
1859 unsigned int
1860 search_name_hash (enum language language, const char *search_name)
1861 {
1862 return language_def (language)->la_search_name_hash (search_name);
1863 }
1864
1865 /* See symtab.h.
1866
1867 This function (or rather its subordinates) have a bunch of loops and
1868 it would seem to be attractive to put in some QUIT's (though I'm not really
1869 sure whether it can run long enough to be really important). But there
1870 are a few calls for which it would appear to be bad news to quit
1871 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1872 that there is C++ code below which can error(), but that probably
1873 doesn't affect these calls since they are looking for a known
1874 variable and thus can probably assume it will never hit the C++
1875 code). */
1876
1877 struct block_symbol
1878 lookup_symbol_in_language (const char *name, const struct block *block,
1879 const domain_enum domain, enum language lang,
1880 struct field_of_this_result *is_a_field_of_this)
1881 {
1882 demangle_result_storage storage;
1883 const char *modified_name = demangle_for_lookup (name, lang, storage);
1884
1885 return lookup_symbol_aux (modified_name,
1886 symbol_name_match_type::FULL,
1887 block, domain, lang,
1888 is_a_field_of_this);
1889 }
1890
1891 /* See symtab.h. */
1892
1893 struct block_symbol
1894 lookup_symbol (const char *name, const struct block *block,
1895 domain_enum domain,
1896 struct field_of_this_result *is_a_field_of_this)
1897 {
1898 return lookup_symbol_in_language (name, block, domain,
1899 current_language->la_language,
1900 is_a_field_of_this);
1901 }
1902
1903 /* See symtab.h. */
1904
1905 struct block_symbol
1906 lookup_symbol_search_name (const char *search_name, const struct block *block,
1907 domain_enum domain)
1908 {
1909 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1910 block, domain, language_asm, NULL);
1911 }
1912
1913 /* See symtab.h. */
1914
1915 struct block_symbol
1916 lookup_language_this (const struct language_defn *lang,
1917 const struct block *block)
1918 {
1919 if (lang->la_name_of_this == NULL || block == NULL)
1920 return (struct block_symbol) {NULL, NULL};
1921
1922 if (symbol_lookup_debug > 1)
1923 {
1924 struct objfile *objfile = lookup_objfile_from_block (block);
1925
1926 fprintf_unfiltered (gdb_stdlog,
1927 "lookup_language_this (%s, %s (objfile %s))",
1928 lang->la_name, host_address_to_string (block),
1929 objfile_debug_name (objfile));
1930 }
1931
1932 while (block)
1933 {
1934 struct symbol *sym;
1935
1936 sym = block_lookup_symbol (block, lang->la_name_of_this,
1937 symbol_name_match_type::SEARCH_NAME,
1938 VAR_DOMAIN);
1939 if (sym != NULL)
1940 {
1941 if (symbol_lookup_debug > 1)
1942 {
1943 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1944 SYMBOL_PRINT_NAME (sym),
1945 host_address_to_string (sym),
1946 host_address_to_string (block));
1947 }
1948 return (struct block_symbol) {sym, block};
1949 }
1950 if (BLOCK_FUNCTION (block))
1951 break;
1952 block = BLOCK_SUPERBLOCK (block);
1953 }
1954
1955 if (symbol_lookup_debug > 1)
1956 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1957 return (struct block_symbol) {NULL, NULL};
1958 }
1959
1960 /* Given TYPE, a structure/union,
1961 return 1 if the component named NAME from the ultimate target
1962 structure/union is defined, otherwise, return 0. */
1963
1964 static int
1965 check_field (struct type *type, const char *name,
1966 struct field_of_this_result *is_a_field_of_this)
1967 {
1968 int i;
1969
1970 /* The type may be a stub. */
1971 type = check_typedef (type);
1972
1973 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1974 {
1975 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1976
1977 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1978 {
1979 is_a_field_of_this->type = type;
1980 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1981 return 1;
1982 }
1983 }
1984
1985 /* C++: If it was not found as a data field, then try to return it
1986 as a pointer to a method. */
1987
1988 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1989 {
1990 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1991 {
1992 is_a_field_of_this->type = type;
1993 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1994 return 1;
1995 }
1996 }
1997
1998 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1999 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2000 return 1;
2001
2002 return 0;
2003 }
2004
2005 /* Behave like lookup_symbol except that NAME is the natural name
2006 (e.g., demangled name) of the symbol that we're looking for. */
2007
2008 static struct block_symbol
2009 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2010 const struct block *block,
2011 const domain_enum domain, enum language language,
2012 struct field_of_this_result *is_a_field_of_this)
2013 {
2014 struct block_symbol result;
2015 const struct language_defn *langdef;
2016
2017 if (symbol_lookup_debug)
2018 {
2019 struct objfile *objfile = lookup_objfile_from_block (block);
2020
2021 fprintf_unfiltered (gdb_stdlog,
2022 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2023 name, host_address_to_string (block),
2024 objfile != NULL
2025 ? objfile_debug_name (objfile) : "NULL",
2026 domain_name (domain), language_str (language));
2027 }
2028
2029 /* Make sure we do something sensible with is_a_field_of_this, since
2030 the callers that set this parameter to some non-null value will
2031 certainly use it later. If we don't set it, the contents of
2032 is_a_field_of_this are undefined. */
2033 if (is_a_field_of_this != NULL)
2034 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2035
2036 /* Search specified block and its superiors. Don't search
2037 STATIC_BLOCK or GLOBAL_BLOCK. */
2038
2039 result = lookup_local_symbol (name, match_type, block, domain, language);
2040 if (result.symbol != NULL)
2041 {
2042 if (symbol_lookup_debug)
2043 {
2044 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2045 host_address_to_string (result.symbol));
2046 }
2047 return result;
2048 }
2049
2050 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2051 check to see if NAME is a field of `this'. */
2052
2053 langdef = language_def (language);
2054
2055 /* Don't do this check if we are searching for a struct. It will
2056 not be found by check_field, but will be found by other
2057 means. */
2058 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2059 {
2060 result = lookup_language_this (langdef, block);
2061
2062 if (result.symbol)
2063 {
2064 struct type *t = result.symbol->type;
2065
2066 /* I'm not really sure that type of this can ever
2067 be typedefed; just be safe. */
2068 t = check_typedef (t);
2069 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2070 t = TYPE_TARGET_TYPE (t);
2071
2072 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2073 && TYPE_CODE (t) != TYPE_CODE_UNION)
2074 error (_("Internal error: `%s' is not an aggregate"),
2075 langdef->la_name_of_this);
2076
2077 if (check_field (t, name, is_a_field_of_this))
2078 {
2079 if (symbol_lookup_debug)
2080 {
2081 fprintf_unfiltered (gdb_stdlog,
2082 "lookup_symbol_aux (...) = NULL\n");
2083 }
2084 return (struct block_symbol) {NULL, NULL};
2085 }
2086 }
2087 }
2088
2089 /* Now do whatever is appropriate for LANGUAGE to look
2090 up static and global variables. */
2091
2092 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2093 if (result.symbol != NULL)
2094 {
2095 if (symbol_lookup_debug)
2096 {
2097 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2098 host_address_to_string (result.symbol));
2099 }
2100 return result;
2101 }
2102
2103 /* Now search all static file-level symbols. Not strictly correct,
2104 but more useful than an error. */
2105
2106 result = lookup_static_symbol (name, domain);
2107 if (symbol_lookup_debug)
2108 {
2109 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2110 result.symbol != NULL
2111 ? host_address_to_string (result.symbol)
2112 : "NULL");
2113 }
2114 return result;
2115 }
2116
2117 /* Check to see if the symbol is defined in BLOCK or its superiors.
2118 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2119
2120 static struct block_symbol
2121 lookup_local_symbol (const char *name,
2122 symbol_name_match_type match_type,
2123 const struct block *block,
2124 const domain_enum domain,
2125 enum language language)
2126 {
2127 struct symbol *sym;
2128 const struct block *static_block = block_static_block (block);
2129 const char *scope = block_scope (block);
2130
2131 /* Check if either no block is specified or it's a global block. */
2132
2133 if (static_block == NULL)
2134 return (struct block_symbol) {NULL, NULL};
2135
2136 while (block != static_block)
2137 {
2138 sym = lookup_symbol_in_block (name, match_type, block, domain);
2139 if (sym != NULL)
2140 return (struct block_symbol) {sym, block};
2141
2142 if (language == language_cplus || language == language_fortran)
2143 {
2144 struct block_symbol blocksym
2145 = cp_lookup_symbol_imports_or_template (scope, name, block,
2146 domain);
2147
2148 if (blocksym.symbol != NULL)
2149 return blocksym;
2150 }
2151
2152 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2153 break;
2154 block = BLOCK_SUPERBLOCK (block);
2155 }
2156
2157 /* We've reached the end of the function without finding a result. */
2158
2159 return (struct block_symbol) {NULL, NULL};
2160 }
2161
2162 /* See symtab.h. */
2163
2164 struct objfile *
2165 lookup_objfile_from_block (const struct block *block)
2166 {
2167 struct objfile *obj;
2168 struct compunit_symtab *cust;
2169
2170 if (block == NULL)
2171 return NULL;
2172
2173 block = block_global_block (block);
2174 /* Look through all blockvectors. */
2175 ALL_COMPUNITS (obj, cust)
2176 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2177 GLOBAL_BLOCK))
2178 {
2179 if (obj->separate_debug_objfile_backlink)
2180 obj = obj->separate_debug_objfile_backlink;
2181
2182 return obj;
2183 }
2184
2185 return NULL;
2186 }
2187
2188 /* See symtab.h. */
2189
2190 struct symbol *
2191 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2192 const struct block *block,
2193 const domain_enum domain)
2194 {
2195 struct symbol *sym;
2196
2197 if (symbol_lookup_debug > 1)
2198 {
2199 struct objfile *objfile = lookup_objfile_from_block (block);
2200
2201 fprintf_unfiltered (gdb_stdlog,
2202 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2203 name, host_address_to_string (block),
2204 objfile_debug_name (objfile),
2205 domain_name (domain));
2206 }
2207
2208 sym = block_lookup_symbol (block, name, match_type, domain);
2209 if (sym)
2210 {
2211 if (symbol_lookup_debug > 1)
2212 {
2213 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2214 host_address_to_string (sym));
2215 }
2216 return fixup_symbol_section (sym, NULL);
2217 }
2218
2219 if (symbol_lookup_debug > 1)
2220 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2221 return NULL;
2222 }
2223
2224 /* See symtab.h. */
2225
2226 struct block_symbol
2227 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2228 const char *name,
2229 const domain_enum domain)
2230 {
2231 struct objfile *objfile;
2232
2233 for (objfile = main_objfile;
2234 objfile;
2235 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2236 {
2237 struct block_symbol result
2238 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2239
2240 if (result.symbol != NULL)
2241 return result;
2242 }
2243
2244 return (struct block_symbol) {NULL, NULL};
2245 }
2246
2247 /* Check to see if the symbol is defined in one of the OBJFILE's
2248 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2249 depending on whether or not we want to search global symbols or
2250 static symbols. */
2251
2252 static struct block_symbol
2253 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2254 const char *name, const domain_enum domain)
2255 {
2256 struct compunit_symtab *cust;
2257
2258 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2259
2260 if (symbol_lookup_debug > 1)
2261 {
2262 fprintf_unfiltered (gdb_stdlog,
2263 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2264 objfile_debug_name (objfile),
2265 block_index == GLOBAL_BLOCK
2266 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2267 name, domain_name (domain));
2268 }
2269
2270 ALL_OBJFILE_COMPUNITS (objfile, cust)
2271 {
2272 const struct blockvector *bv;
2273 const struct block *block;
2274 struct block_symbol result;
2275
2276 bv = COMPUNIT_BLOCKVECTOR (cust);
2277 block = BLOCKVECTOR_BLOCK (bv, block_index);
2278 result.symbol = block_lookup_symbol_primary (block, name, domain);
2279 result.block = block;
2280 if (result.symbol != NULL)
2281 {
2282 if (symbol_lookup_debug > 1)
2283 {
2284 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2285 host_address_to_string (result.symbol),
2286 host_address_to_string (block));
2287 }
2288 result.symbol = fixup_symbol_section (result.symbol, objfile);
2289 return result;
2290
2291 }
2292 }
2293
2294 if (symbol_lookup_debug > 1)
2295 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2296 return (struct block_symbol) {NULL, NULL};
2297 }
2298
2299 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2300 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2301 and all associated separate debug objfiles.
2302
2303 Normally we only look in OBJFILE, and not any separate debug objfiles
2304 because the outer loop will cause them to be searched too. This case is
2305 different. Here we're called from search_symbols where it will only
2306 call us for the the objfile that contains a matching minsym. */
2307
2308 static struct block_symbol
2309 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2310 const char *linkage_name,
2311 domain_enum domain)
2312 {
2313 enum language lang = current_language->la_language;
2314 struct objfile *main_objfile, *cur_objfile;
2315
2316 demangle_result_storage storage;
2317 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2318
2319 if (objfile->separate_debug_objfile_backlink)
2320 main_objfile = objfile->separate_debug_objfile_backlink;
2321 else
2322 main_objfile = objfile;
2323
2324 for (cur_objfile = main_objfile;
2325 cur_objfile;
2326 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2327 {
2328 struct block_symbol result;
2329
2330 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2331 modified_name, domain);
2332 if (result.symbol == NULL)
2333 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2334 modified_name, domain);
2335 if (result.symbol != NULL)
2336 return result;
2337 }
2338
2339 return (struct block_symbol) {NULL, NULL};
2340 }
2341
2342 /* A helper function that throws an exception when a symbol was found
2343 in a psymtab but not in a symtab. */
2344
2345 static void ATTRIBUTE_NORETURN
2346 error_in_psymtab_expansion (int block_index, const char *name,
2347 struct compunit_symtab *cust)
2348 {
2349 error (_("\
2350 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2351 %s may be an inlined function, or may be a template function\n \
2352 (if a template, try specifying an instantiation: %s<type>)."),
2353 block_index == GLOBAL_BLOCK ? "global" : "static",
2354 name,
2355 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2356 name, name);
2357 }
2358
2359 /* A helper function for various lookup routines that interfaces with
2360 the "quick" symbol table functions. */
2361
2362 static struct block_symbol
2363 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2364 const char *name, const domain_enum domain)
2365 {
2366 struct compunit_symtab *cust;
2367 const struct blockvector *bv;
2368 const struct block *block;
2369 struct block_symbol result;
2370
2371 if (!objfile->sf)
2372 return (struct block_symbol) {NULL, NULL};
2373
2374 if (symbol_lookup_debug > 1)
2375 {
2376 fprintf_unfiltered (gdb_stdlog,
2377 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2378 objfile_debug_name (objfile),
2379 block_index == GLOBAL_BLOCK
2380 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2381 name, domain_name (domain));
2382 }
2383
2384 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2385 if (cust == NULL)
2386 {
2387 if (symbol_lookup_debug > 1)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "lookup_symbol_via_quick_fns (...) = NULL\n");
2391 }
2392 return (struct block_symbol) {NULL, NULL};
2393 }
2394
2395 bv = COMPUNIT_BLOCKVECTOR (cust);
2396 block = BLOCKVECTOR_BLOCK (bv, block_index);
2397 result.symbol = block_lookup_symbol (block, name,
2398 symbol_name_match_type::FULL, domain);
2399 if (result.symbol == NULL)
2400 error_in_psymtab_expansion (block_index, name, cust);
2401
2402 if (symbol_lookup_debug > 1)
2403 {
2404 fprintf_unfiltered (gdb_stdlog,
2405 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2406 host_address_to_string (result.symbol),
2407 host_address_to_string (block));
2408 }
2409
2410 result.symbol = fixup_symbol_section (result.symbol, objfile);
2411 result.block = block;
2412 return result;
2413 }
2414
2415 /* See symtab.h. */
2416
2417 struct block_symbol
2418 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2419 const char *name,
2420 const struct block *block,
2421 const domain_enum domain)
2422 {
2423 struct block_symbol result;
2424
2425 /* NOTE: carlton/2003-05-19: The comments below were written when
2426 this (or what turned into this) was part of lookup_symbol_aux;
2427 I'm much less worried about these questions now, since these
2428 decisions have turned out well, but I leave these comments here
2429 for posterity. */
2430
2431 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2432 not it would be appropriate to search the current global block
2433 here as well. (That's what this code used to do before the
2434 is_a_field_of_this check was moved up.) On the one hand, it's
2435 redundant with the lookup in all objfiles search that happens
2436 next. On the other hand, if decode_line_1 is passed an argument
2437 like filename:var, then the user presumably wants 'var' to be
2438 searched for in filename. On the third hand, there shouldn't be
2439 multiple global variables all of which are named 'var', and it's
2440 not like decode_line_1 has ever restricted its search to only
2441 global variables in a single filename. All in all, only
2442 searching the static block here seems best: it's correct and it's
2443 cleanest. */
2444
2445 /* NOTE: carlton/2002-12-05: There's also a possible performance
2446 issue here: if you usually search for global symbols in the
2447 current file, then it would be slightly better to search the
2448 current global block before searching all the symtabs. But there
2449 are other factors that have a much greater effect on performance
2450 than that one, so I don't think we should worry about that for
2451 now. */
2452
2453 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2454 the current objfile. Searching the current objfile first is useful
2455 for both matching user expectations as well as performance. */
2456
2457 result = lookup_symbol_in_static_block (name, block, domain);
2458 if (result.symbol != NULL)
2459 return result;
2460
2461 /* If we didn't find a definition for a builtin type in the static block,
2462 search for it now. This is actually the right thing to do and can be
2463 a massive performance win. E.g., when debugging a program with lots of
2464 shared libraries we could search all of them only to find out the
2465 builtin type isn't defined in any of them. This is common for types
2466 like "void". */
2467 if (domain == VAR_DOMAIN)
2468 {
2469 struct gdbarch *gdbarch;
2470
2471 if (block == NULL)
2472 gdbarch = target_gdbarch ();
2473 else
2474 gdbarch = block_gdbarch (block);
2475 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2476 gdbarch, name);
2477 result.block = NULL;
2478 if (result.symbol != NULL)
2479 return result;
2480 }
2481
2482 return lookup_global_symbol (name, block, domain);
2483 }
2484
2485 /* See symtab.h. */
2486
2487 struct block_symbol
2488 lookup_symbol_in_static_block (const char *name,
2489 const struct block *block,
2490 const domain_enum domain)
2491 {
2492 const struct block *static_block = block_static_block (block);
2493 struct symbol *sym;
2494
2495 if (static_block == NULL)
2496 return (struct block_symbol) {NULL, NULL};
2497
2498 if (symbol_lookup_debug)
2499 {
2500 struct objfile *objfile = lookup_objfile_from_block (static_block);
2501
2502 fprintf_unfiltered (gdb_stdlog,
2503 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2504 " %s)\n",
2505 name,
2506 host_address_to_string (block),
2507 objfile_debug_name (objfile),
2508 domain_name (domain));
2509 }
2510
2511 sym = lookup_symbol_in_block (name,
2512 symbol_name_match_type::FULL,
2513 static_block, domain);
2514 if (symbol_lookup_debug)
2515 {
2516 fprintf_unfiltered (gdb_stdlog,
2517 "lookup_symbol_in_static_block (...) = %s\n",
2518 sym != NULL ? host_address_to_string (sym) : "NULL");
2519 }
2520 return (struct block_symbol) {sym, static_block};
2521 }
2522
2523 /* Perform the standard symbol lookup of NAME in OBJFILE:
2524 1) First search expanded symtabs, and if not found
2525 2) Search the "quick" symtabs (partial or .gdb_index).
2526 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2527
2528 static struct block_symbol
2529 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2530 const char *name, const domain_enum domain)
2531 {
2532 struct block_symbol result;
2533
2534 if (symbol_lookup_debug)
2535 {
2536 fprintf_unfiltered (gdb_stdlog,
2537 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2538 objfile_debug_name (objfile),
2539 block_index == GLOBAL_BLOCK
2540 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2541 name, domain_name (domain));
2542 }
2543
2544 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2545 name, domain);
2546 if (result.symbol != NULL)
2547 {
2548 if (symbol_lookup_debug)
2549 {
2550 fprintf_unfiltered (gdb_stdlog,
2551 "lookup_symbol_in_objfile (...) = %s"
2552 " (in symtabs)\n",
2553 host_address_to_string (result.symbol));
2554 }
2555 return result;
2556 }
2557
2558 result = lookup_symbol_via_quick_fns (objfile, block_index,
2559 name, domain);
2560 if (symbol_lookup_debug)
2561 {
2562 fprintf_unfiltered (gdb_stdlog,
2563 "lookup_symbol_in_objfile (...) = %s%s\n",
2564 result.symbol != NULL
2565 ? host_address_to_string (result.symbol)
2566 : "NULL",
2567 result.symbol != NULL ? " (via quick fns)" : "");
2568 }
2569 return result;
2570 }
2571
2572 /* See symtab.h. */
2573
2574 struct block_symbol
2575 lookup_static_symbol (const char *name, const domain_enum domain)
2576 {
2577 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2578 struct objfile *objfile;
2579 struct block_symbol result;
2580 struct block_symbol_cache *bsc;
2581 struct symbol_cache_slot *slot;
2582
2583 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2584 NULL for OBJFILE_CONTEXT. */
2585 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2586 &bsc, &slot);
2587 if (result.symbol != NULL)
2588 {
2589 if (SYMBOL_LOOKUP_FAILED_P (result))
2590 return (struct block_symbol) {NULL, NULL};
2591 return result;
2592 }
2593
2594 ALL_OBJFILES (objfile)
2595 {
2596 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2597 if (result.symbol != NULL)
2598 {
2599 /* Still pass NULL for OBJFILE_CONTEXT here. */
2600 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2601 result.block);
2602 return result;
2603 }
2604 }
2605
2606 /* Still pass NULL for OBJFILE_CONTEXT here. */
2607 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2608 return (struct block_symbol) {NULL, NULL};
2609 }
2610
2611 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2612
2613 struct global_sym_lookup_data
2614 {
2615 /* The name of the symbol we are searching for. */
2616 const char *name;
2617
2618 /* The domain to use for our search. */
2619 domain_enum domain;
2620
2621 /* The field where the callback should store the symbol if found.
2622 It should be initialized to {NULL, NULL} before the search is started. */
2623 struct block_symbol result;
2624 };
2625
2626 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2627 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2628 OBJFILE. The arguments for the search are passed via CB_DATA,
2629 which in reality is a pointer to struct global_sym_lookup_data. */
2630
2631 static int
2632 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2633 void *cb_data)
2634 {
2635 struct global_sym_lookup_data *data =
2636 (struct global_sym_lookup_data *) cb_data;
2637
2638 gdb_assert (data->result.symbol == NULL
2639 && data->result.block == NULL);
2640
2641 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2642 data->name, data->domain);
2643
2644 /* If we found a match, tell the iterator to stop. Otherwise,
2645 keep going. */
2646 return (data->result.symbol != NULL);
2647 }
2648
2649 /* See symtab.h. */
2650
2651 struct block_symbol
2652 lookup_global_symbol (const char *name,
2653 const struct block *block,
2654 const domain_enum domain)
2655 {
2656 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2657 struct block_symbol result;
2658 struct objfile *objfile;
2659 struct global_sym_lookup_data lookup_data;
2660 struct block_symbol_cache *bsc;
2661 struct symbol_cache_slot *slot;
2662
2663 objfile = lookup_objfile_from_block (block);
2664
2665 /* First see if we can find the symbol in the cache.
2666 This works because we use the current objfile to qualify the lookup. */
2667 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2668 &bsc, &slot);
2669 if (result.symbol != NULL)
2670 {
2671 if (SYMBOL_LOOKUP_FAILED_P (result))
2672 return (struct block_symbol) {NULL, NULL};
2673 return result;
2674 }
2675
2676 /* Call library-specific lookup procedure. */
2677 if (objfile != NULL)
2678 result = solib_global_lookup (objfile, name, domain);
2679
2680 /* If that didn't work go a global search (of global blocks, heh). */
2681 if (result.symbol == NULL)
2682 {
2683 memset (&lookup_data, 0, sizeof (lookup_data));
2684 lookup_data.name = name;
2685 lookup_data.domain = domain;
2686 gdbarch_iterate_over_objfiles_in_search_order
2687 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2688 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2689 result = lookup_data.result;
2690 }
2691
2692 if (result.symbol != NULL)
2693 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2694 else
2695 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2696
2697 return result;
2698 }
2699
2700 int
2701 symbol_matches_domain (enum language symbol_language,
2702 domain_enum symbol_domain,
2703 domain_enum domain)
2704 {
2705 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2706 Similarly, any Ada type declaration implicitly defines a typedef. */
2707 if (symbol_language == language_cplus
2708 || symbol_language == language_d
2709 || symbol_language == language_ada
2710 || symbol_language == language_rust)
2711 {
2712 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2713 && symbol_domain == STRUCT_DOMAIN)
2714 return 1;
2715 }
2716 /* For all other languages, strict match is required. */
2717 return (symbol_domain == domain);
2718 }
2719
2720 /* See symtab.h. */
2721
2722 struct type *
2723 lookup_transparent_type (const char *name)
2724 {
2725 return current_language->la_lookup_transparent_type (name);
2726 }
2727
2728 /* A helper for basic_lookup_transparent_type that interfaces with the
2729 "quick" symbol table functions. */
2730
2731 static struct type *
2732 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2733 const char *name)
2734 {
2735 struct compunit_symtab *cust;
2736 const struct blockvector *bv;
2737 struct block *block;
2738 struct symbol *sym;
2739
2740 if (!objfile->sf)
2741 return NULL;
2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2743 STRUCT_DOMAIN);
2744 if (cust == NULL)
2745 return NULL;
2746
2747 bv = COMPUNIT_BLOCKVECTOR (cust);
2748 block = BLOCKVECTOR_BLOCK (bv, block_index);
2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2750 block_find_non_opaque_type, NULL);
2751 if (sym == NULL)
2752 error_in_psymtab_expansion (block_index, name, cust);
2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2754 return SYMBOL_TYPE (sym);
2755 }
2756
2757 /* Subroutine of basic_lookup_transparent_type to simplify it.
2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760
2761 static struct type *
2762 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2763 const char *name)
2764 {
2765 const struct compunit_symtab *cust;
2766 const struct blockvector *bv;
2767 const struct block *block;
2768 const struct symbol *sym;
2769
2770 ALL_OBJFILE_COMPUNITS (objfile, cust)
2771 {
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym != NULL)
2777 {
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /* The standard implementation of lookup_transparent_type. This code
2787 was modeled on lookup_symbol -- the parts not relevant to looking
2788 up types were just left out. In particular it's assumed here that
2789 types are available in STRUCT_DOMAIN and only in file-static or
2790 global blocks. */
2791
2792 struct type *
2793 basic_lookup_transparent_type (const char *name)
2794 {
2795 struct objfile *objfile;
2796 struct type *t;
2797
2798 /* Now search all the global symbols. Do the symtab's first, then
2799 check the psymtab's. If a psymtab indicates the existence
2800 of the desired name as a global, then do psymtab-to-symtab
2801 conversion on the fly and return the found symbol. */
2802
2803 ALL_OBJFILES (objfile)
2804 {
2805 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2806 if (t)
2807 return t;
2808 }
2809
2810 ALL_OBJFILES (objfile)
2811 {
2812 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2813 if (t)
2814 return t;
2815 }
2816
2817 /* Now search the static file-level symbols.
2818 Not strictly correct, but more useful than an error.
2819 Do the symtab's first, then
2820 check the psymtab's. If a psymtab indicates the existence
2821 of the desired name as a file-level static, then do psymtab-to-symtab
2822 conversion on the fly and return the found symbol. */
2823
2824 ALL_OBJFILES (objfile)
2825 {
2826 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2827 if (t)
2828 return t;
2829 }
2830
2831 ALL_OBJFILES (objfile)
2832 {
2833 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2834 if (t)
2835 return t;
2836 }
2837
2838 return (struct type *) 0;
2839 }
2840
2841 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2842
2843 For each symbol that matches, CALLBACK is called. The symbol is
2844 passed to the callback.
2845
2846 If CALLBACK returns false, the iteration ends. Otherwise, the
2847 search continues. */
2848
2849 void
2850 iterate_over_symbols (const struct block *block,
2851 const lookup_name_info &name,
2852 const domain_enum domain,
2853 gdb::function_view<symbol_found_callback_ftype> callback)
2854 {
2855 struct block_iterator iter;
2856 struct symbol *sym;
2857
2858 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2859 {
2860 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2861 SYMBOL_DOMAIN (sym), domain))
2862 {
2863 struct block_symbol block_sym = {sym, block};
2864
2865 if (!callback (&block_sym))
2866 return;
2867 }
2868 }
2869 }
2870
2871 /* Find the compunit symtab associated with PC and SECTION.
2872 This will read in debug info as necessary. */
2873
2874 struct compunit_symtab *
2875 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2876 {
2877 struct compunit_symtab *cust;
2878 struct compunit_symtab *best_cust = NULL;
2879 struct objfile *objfile;
2880 CORE_ADDR distance = 0;
2881 struct bound_minimal_symbol msymbol;
2882
2883 /* If we know that this is not a text address, return failure. This is
2884 necessary because we loop based on the block's high and low code
2885 addresses, which do not include the data ranges, and because
2886 we call find_pc_sect_psymtab which has a similar restriction based
2887 on the partial_symtab's texthigh and textlow. */
2888 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2889 if (msymbol.minsym
2890 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2891 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2892 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2893 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2894 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2895 return NULL;
2896
2897 /* Search all symtabs for the one whose file contains our address, and which
2898 is the smallest of all the ones containing the address. This is designed
2899 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2900 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2901 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2902
2903 This happens for native ecoff format, where code from included files
2904 gets its own symtab. The symtab for the included file should have
2905 been read in already via the dependency mechanism.
2906 It might be swifter to create several symtabs with the same name
2907 like xcoff does (I'm not sure).
2908
2909 It also happens for objfiles that have their functions reordered.
2910 For these, the symtab we are looking for is not necessarily read in. */
2911
2912 ALL_COMPUNITS (objfile, cust)
2913 {
2914 struct block *b;
2915 const struct blockvector *bv;
2916
2917 bv = COMPUNIT_BLOCKVECTOR (cust);
2918 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2919
2920 if (BLOCK_START (b) <= pc
2921 && BLOCK_END (b) > pc
2922 && (distance == 0
2923 || BLOCK_END (b) - BLOCK_START (b) < distance))
2924 {
2925 /* For an objfile that has its functions reordered,
2926 find_pc_psymtab will find the proper partial symbol table
2927 and we simply return its corresponding symtab. */
2928 /* In order to better support objfiles that contain both
2929 stabs and coff debugging info, we continue on if a psymtab
2930 can't be found. */
2931 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2932 {
2933 struct compunit_symtab *result;
2934
2935 result
2936 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2937 msymbol,
2938 pc, section,
2939 0);
2940 if (result != NULL)
2941 return result;
2942 }
2943 if (section != 0)
2944 {
2945 struct block_iterator iter;
2946 struct symbol *sym = NULL;
2947
2948 ALL_BLOCK_SYMBOLS (b, iter, sym)
2949 {
2950 fixup_symbol_section (sym, objfile);
2951 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2952 section))
2953 break;
2954 }
2955 if (sym == NULL)
2956 continue; /* No symbol in this symtab matches
2957 section. */
2958 }
2959 distance = BLOCK_END (b) - BLOCK_START (b);
2960 best_cust = cust;
2961 }
2962 }
2963
2964 if (best_cust != NULL)
2965 return best_cust;
2966
2967 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2968
2969 ALL_OBJFILES (objfile)
2970 {
2971 struct compunit_symtab *result;
2972
2973 if (!objfile->sf)
2974 continue;
2975 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2976 msymbol,
2977 pc, section,
2978 1);
2979 if (result != NULL)
2980 return result;
2981 }
2982
2983 return NULL;
2984 }
2985
2986 /* Find the compunit symtab associated with PC.
2987 This will read in debug info as necessary.
2988 Backward compatibility, no section. */
2989
2990 struct compunit_symtab *
2991 find_pc_compunit_symtab (CORE_ADDR pc)
2992 {
2993 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2994 }
2995
2996 /* See symtab.h. */
2997
2998 struct symbol *
2999 find_symbol_at_address (CORE_ADDR address)
3000 {
3001 struct objfile *objfile;
3002
3003 ALL_OBJFILES (objfile)
3004 {
3005 if (objfile->sf == NULL
3006 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3007 continue;
3008
3009 struct compunit_symtab *symtab
3010 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3011 if (symtab != NULL)
3012 {
3013 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3014
3015 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3016 {
3017 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3018 struct block_iterator iter;
3019 struct symbol *sym;
3020
3021 ALL_BLOCK_SYMBOLS (b, iter, sym)
3022 {
3023 if (SYMBOL_CLASS (sym) == LOC_STATIC
3024 && SYMBOL_VALUE_ADDRESS (sym) == address)
3025 return sym;
3026 }
3027 }
3028 }
3029 }
3030
3031 return NULL;
3032 }
3033
3034 \f
3035
3036 /* Find the source file and line number for a given PC value and SECTION.
3037 Return a structure containing a symtab pointer, a line number,
3038 and a pc range for the entire source line.
3039 The value's .pc field is NOT the specified pc.
3040 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3041 use the line that ends there. Otherwise, in that case, the line
3042 that begins there is used. */
3043
3044 /* The big complication here is that a line may start in one file, and end just
3045 before the start of another file. This usually occurs when you #include
3046 code in the middle of a subroutine. To properly find the end of a line's PC
3047 range, we must search all symtabs associated with this compilation unit, and
3048 find the one whose first PC is closer than that of the next line in this
3049 symtab. */
3050
3051 struct symtab_and_line
3052 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3053 {
3054 struct compunit_symtab *cust;
3055 struct symtab *iter_s;
3056 struct linetable *l;
3057 int len;
3058 struct linetable_entry *item;
3059 const struct blockvector *bv;
3060 struct bound_minimal_symbol msymbol;
3061
3062 /* Info on best line seen so far, and where it starts, and its file. */
3063
3064 struct linetable_entry *best = NULL;
3065 CORE_ADDR best_end = 0;
3066 struct symtab *best_symtab = 0;
3067
3068 /* Store here the first line number
3069 of a file which contains the line at the smallest pc after PC.
3070 If we don't find a line whose range contains PC,
3071 we will use a line one less than this,
3072 with a range from the start of that file to the first line's pc. */
3073 struct linetable_entry *alt = NULL;
3074
3075 /* Info on best line seen in this file. */
3076
3077 struct linetable_entry *prev;
3078
3079 /* If this pc is not from the current frame,
3080 it is the address of the end of a call instruction.
3081 Quite likely that is the start of the following statement.
3082 But what we want is the statement containing the instruction.
3083 Fudge the pc to make sure we get that. */
3084
3085 /* It's tempting to assume that, if we can't find debugging info for
3086 any function enclosing PC, that we shouldn't search for line
3087 number info, either. However, GAS can emit line number info for
3088 assembly files --- very helpful when debugging hand-written
3089 assembly code. In such a case, we'd have no debug info for the
3090 function, but we would have line info. */
3091
3092 if (notcurrent)
3093 pc -= 1;
3094
3095 /* elz: added this because this function returned the wrong
3096 information if the pc belongs to a stub (import/export)
3097 to call a shlib function. This stub would be anywhere between
3098 two functions in the target, and the line info was erroneously
3099 taken to be the one of the line before the pc. */
3100
3101 /* RT: Further explanation:
3102
3103 * We have stubs (trampolines) inserted between procedures.
3104 *
3105 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3106 * exists in the main image.
3107 *
3108 * In the minimal symbol table, we have a bunch of symbols
3109 * sorted by start address. The stubs are marked as "trampoline",
3110 * the others appear as text. E.g.:
3111 *
3112 * Minimal symbol table for main image
3113 * main: code for main (text symbol)
3114 * shr1: stub (trampoline symbol)
3115 * foo: code for foo (text symbol)
3116 * ...
3117 * Minimal symbol table for "shr1" image:
3118 * ...
3119 * shr1: code for shr1 (text symbol)
3120 * ...
3121 *
3122 * So the code below is trying to detect if we are in the stub
3123 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3124 * and if found, do the symbolization from the real-code address
3125 * rather than the stub address.
3126 *
3127 * Assumptions being made about the minimal symbol table:
3128 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3129 * if we're really in the trampoline.s If we're beyond it (say
3130 * we're in "foo" in the above example), it'll have a closer
3131 * symbol (the "foo" text symbol for example) and will not
3132 * return the trampoline.
3133 * 2. lookup_minimal_symbol_text() will find a real text symbol
3134 * corresponding to the trampoline, and whose address will
3135 * be different than the trampoline address. I put in a sanity
3136 * check for the address being the same, to avoid an
3137 * infinite recursion.
3138 */
3139 msymbol = lookup_minimal_symbol_by_pc (pc);
3140 if (msymbol.minsym != NULL)
3141 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3142 {
3143 struct bound_minimal_symbol mfunsym
3144 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3145 NULL);
3146
3147 if (mfunsym.minsym == NULL)
3148 /* I eliminated this warning since it is coming out
3149 * in the following situation:
3150 * gdb shmain // test program with shared libraries
3151 * (gdb) break shr1 // function in shared lib
3152 * Warning: In stub for ...
3153 * In the above situation, the shared lib is not loaded yet,
3154 * so of course we can't find the real func/line info,
3155 * but the "break" still works, and the warning is annoying.
3156 * So I commented out the warning. RT */
3157 /* warning ("In stub for %s; unable to find real function/line info",
3158 SYMBOL_LINKAGE_NAME (msymbol)); */
3159 ;
3160 /* fall through */
3161 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3162 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3163 /* Avoid infinite recursion */
3164 /* See above comment about why warning is commented out. */
3165 /* warning ("In stub for %s; unable to find real function/line info",
3166 SYMBOL_LINKAGE_NAME (msymbol)); */
3167 ;
3168 /* fall through */
3169 else
3170 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3171 }
3172
3173 symtab_and_line val;
3174 val.pspace = current_program_space;
3175
3176 cust = find_pc_sect_compunit_symtab (pc, section);
3177 if (cust == NULL)
3178 {
3179 /* If no symbol information, return previous pc. */
3180 if (notcurrent)
3181 pc++;
3182 val.pc = pc;
3183 return val;
3184 }
3185
3186 bv = COMPUNIT_BLOCKVECTOR (cust);
3187
3188 /* Look at all the symtabs that share this blockvector.
3189 They all have the same apriori range, that we found was right;
3190 but they have different line tables. */
3191
3192 ALL_COMPUNIT_FILETABS (cust, iter_s)
3193 {
3194 /* Find the best line in this symtab. */
3195 l = SYMTAB_LINETABLE (iter_s);
3196 if (!l)
3197 continue;
3198 len = l->nitems;
3199 if (len <= 0)
3200 {
3201 /* I think len can be zero if the symtab lacks line numbers
3202 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3203 I'm not sure which, and maybe it depends on the symbol
3204 reader). */
3205 continue;
3206 }
3207
3208 prev = NULL;
3209 item = l->item; /* Get first line info. */
3210
3211 /* Is this file's first line closer than the first lines of other files?
3212 If so, record this file, and its first line, as best alternate. */
3213 if (item->pc > pc && (!alt || item->pc < alt->pc))
3214 alt = item;
3215
3216 auto pc_compare = [](const CORE_ADDR & comp_pc,
3217 const struct linetable_entry & lhs)->bool
3218 {
3219 return comp_pc < lhs.pc;
3220 };
3221
3222 struct linetable_entry *first = item;
3223 struct linetable_entry *last = item + len;
3224 item = std::upper_bound (first, last, pc, pc_compare);
3225 if (item != first)
3226 prev = item - 1; /* Found a matching item. */
3227
3228 /* At this point, prev points at the line whose start addr is <= pc, and
3229 item points at the next line. If we ran off the end of the linetable
3230 (pc >= start of the last line), then prev == item. If pc < start of
3231 the first line, prev will not be set. */
3232
3233 /* Is this file's best line closer than the best in the other files?
3234 If so, record this file, and its best line, as best so far. Don't
3235 save prev if it represents the end of a function (i.e. line number
3236 0) instead of a real line. */
3237
3238 if (prev && prev->line && (!best || prev->pc > best->pc))
3239 {
3240 best = prev;
3241 best_symtab = iter_s;
3242
3243 /* Discard BEST_END if it's before the PC of the current BEST. */
3244 if (best_end <= best->pc)
3245 best_end = 0;
3246 }
3247
3248 /* If another line (denoted by ITEM) is in the linetable and its
3249 PC is after BEST's PC, but before the current BEST_END, then
3250 use ITEM's PC as the new best_end. */
3251 if (best && item < last && item->pc > best->pc
3252 && (best_end == 0 || best_end > item->pc))
3253 best_end = item->pc;
3254 }
3255
3256 if (!best_symtab)
3257 {
3258 /* If we didn't find any line number info, just return zeros.
3259 We used to return alt->line - 1 here, but that could be
3260 anywhere; if we don't have line number info for this PC,
3261 don't make some up. */
3262 val.pc = pc;
3263 }
3264 else if (best->line == 0)
3265 {
3266 /* If our best fit is in a range of PC's for which no line
3267 number info is available (line number is zero) then we didn't
3268 find any valid line information. */
3269 val.pc = pc;
3270 }
3271 else
3272 {
3273 val.symtab = best_symtab;
3274 val.line = best->line;
3275 val.pc = best->pc;
3276 if (best_end && (!alt || best_end < alt->pc))
3277 val.end = best_end;
3278 else if (alt)
3279 val.end = alt->pc;
3280 else
3281 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3282 }
3283 val.section = section;
3284 return val;
3285 }
3286
3287 /* Backward compatibility (no section). */
3288
3289 struct symtab_and_line
3290 find_pc_line (CORE_ADDR pc, int notcurrent)
3291 {
3292 struct obj_section *section;
3293
3294 section = find_pc_overlay (pc);
3295 if (pc_in_unmapped_range (pc, section))
3296 pc = overlay_mapped_address (pc, section);
3297 return find_pc_sect_line (pc, section, notcurrent);
3298 }
3299
3300 /* See symtab.h. */
3301
3302 struct symtab *
3303 find_pc_line_symtab (CORE_ADDR pc)
3304 {
3305 struct symtab_and_line sal;
3306
3307 /* This always passes zero for NOTCURRENT to find_pc_line.
3308 There are currently no callers that ever pass non-zero. */
3309 sal = find_pc_line (pc, 0);
3310 return sal.symtab;
3311 }
3312 \f
3313 /* Find line number LINE in any symtab whose name is the same as
3314 SYMTAB.
3315
3316 If found, return the symtab that contains the linetable in which it was
3317 found, set *INDEX to the index in the linetable of the best entry
3318 found, and set *EXACT_MATCH nonzero if the value returned is an
3319 exact match.
3320
3321 If not found, return NULL. */
3322
3323 struct symtab *
3324 find_line_symtab (struct symtab *symtab, int line,
3325 int *index, int *exact_match)
3326 {
3327 int exact = 0; /* Initialized here to avoid a compiler warning. */
3328
3329 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3330 so far seen. */
3331
3332 int best_index;
3333 struct linetable *best_linetable;
3334 struct symtab *best_symtab;
3335
3336 /* First try looking it up in the given symtab. */
3337 best_linetable = SYMTAB_LINETABLE (symtab);
3338 best_symtab = symtab;
3339 best_index = find_line_common (best_linetable, line, &exact, 0);
3340 if (best_index < 0 || !exact)
3341 {
3342 /* Didn't find an exact match. So we better keep looking for
3343 another symtab with the same name. In the case of xcoff,
3344 multiple csects for one source file (produced by IBM's FORTRAN
3345 compiler) produce multiple symtabs (this is unavoidable
3346 assuming csects can be at arbitrary places in memory and that
3347 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3348
3349 /* BEST is the smallest linenumber > LINE so far seen,
3350 or 0 if none has been seen so far.
3351 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3352 int best;
3353
3354 struct objfile *objfile;
3355 struct compunit_symtab *cu;
3356 struct symtab *s;
3357
3358 if (best_index >= 0)
3359 best = best_linetable->item[best_index].line;
3360 else
3361 best = 0;
3362
3363 ALL_OBJFILES (objfile)
3364 {
3365 if (objfile->sf)
3366 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3367 symtab_to_fullname (symtab));
3368 }
3369
3370 ALL_FILETABS (objfile, cu, s)
3371 {
3372 struct linetable *l;
3373 int ind;
3374
3375 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3376 continue;
3377 if (FILENAME_CMP (symtab_to_fullname (symtab),
3378 symtab_to_fullname (s)) != 0)
3379 continue;
3380 l = SYMTAB_LINETABLE (s);
3381 ind = find_line_common (l, line, &exact, 0);
3382 if (ind >= 0)
3383 {
3384 if (exact)
3385 {
3386 best_index = ind;
3387 best_linetable = l;
3388 best_symtab = s;
3389 goto done;
3390 }
3391 if (best == 0 || l->item[ind].line < best)
3392 {
3393 best = l->item[ind].line;
3394 best_index = ind;
3395 best_linetable = l;
3396 best_symtab = s;
3397 }
3398 }
3399 }
3400 }
3401 done:
3402 if (best_index < 0)
3403 return NULL;
3404
3405 if (index)
3406 *index = best_index;
3407 if (exact_match)
3408 *exact_match = exact;
3409
3410 return best_symtab;
3411 }
3412
3413 /* Given SYMTAB, returns all the PCs function in the symtab that
3414 exactly match LINE. Returns an empty vector if there are no exact
3415 matches, but updates BEST_ITEM in this case. */
3416
3417 std::vector<CORE_ADDR>
3418 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3419 struct linetable_entry **best_item)
3420 {
3421 int start = 0;
3422 std::vector<CORE_ADDR> result;
3423
3424 /* First, collect all the PCs that are at this line. */
3425 while (1)
3426 {
3427 int was_exact;
3428 int idx;
3429
3430 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3431 start);
3432 if (idx < 0)
3433 break;
3434
3435 if (!was_exact)
3436 {
3437 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3438
3439 if (*best_item == NULL || item->line < (*best_item)->line)
3440 *best_item = item;
3441
3442 break;
3443 }
3444
3445 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3446 start = idx + 1;
3447 }
3448
3449 return result;
3450 }
3451
3452 \f
3453 /* Set the PC value for a given source file and line number and return true.
3454 Returns zero for invalid line number (and sets the PC to 0).
3455 The source file is specified with a struct symtab. */
3456
3457 int
3458 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3459 {
3460 struct linetable *l;
3461 int ind;
3462
3463 *pc = 0;
3464 if (symtab == 0)
3465 return 0;
3466
3467 symtab = find_line_symtab (symtab, line, &ind, NULL);
3468 if (symtab != NULL)
3469 {
3470 l = SYMTAB_LINETABLE (symtab);
3471 *pc = l->item[ind].pc;
3472 return 1;
3473 }
3474 else
3475 return 0;
3476 }
3477
3478 /* Find the range of pc values in a line.
3479 Store the starting pc of the line into *STARTPTR
3480 and the ending pc (start of next line) into *ENDPTR.
3481 Returns 1 to indicate success.
3482 Returns 0 if could not find the specified line. */
3483
3484 int
3485 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3486 CORE_ADDR *endptr)
3487 {
3488 CORE_ADDR startaddr;
3489 struct symtab_and_line found_sal;
3490
3491 startaddr = sal.pc;
3492 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3493 return 0;
3494
3495 /* This whole function is based on address. For example, if line 10 has
3496 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3497 "info line *0x123" should say the line goes from 0x100 to 0x200
3498 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3499 This also insures that we never give a range like "starts at 0x134
3500 and ends at 0x12c". */
3501
3502 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3503 if (found_sal.line != sal.line)
3504 {
3505 /* The specified line (sal) has zero bytes. */
3506 *startptr = found_sal.pc;
3507 *endptr = found_sal.pc;
3508 }
3509 else
3510 {
3511 *startptr = found_sal.pc;
3512 *endptr = found_sal.end;
3513 }
3514 return 1;
3515 }
3516
3517 /* Given a line table and a line number, return the index into the line
3518 table for the pc of the nearest line whose number is >= the specified one.
3519 Return -1 if none is found. The value is >= 0 if it is an index.
3520 START is the index at which to start searching the line table.
3521
3522 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3523
3524 static int
3525 find_line_common (struct linetable *l, int lineno,
3526 int *exact_match, int start)
3527 {
3528 int i;
3529 int len;
3530
3531 /* BEST is the smallest linenumber > LINENO so far seen,
3532 or 0 if none has been seen so far.
3533 BEST_INDEX identifies the item for it. */
3534
3535 int best_index = -1;
3536 int best = 0;
3537
3538 *exact_match = 0;
3539
3540 if (lineno <= 0)
3541 return -1;
3542 if (l == 0)
3543 return -1;
3544
3545 len = l->nitems;
3546 for (i = start; i < len; i++)
3547 {
3548 struct linetable_entry *item = &(l->item[i]);
3549
3550 if (item->line == lineno)
3551 {
3552 /* Return the first (lowest address) entry which matches. */
3553 *exact_match = 1;
3554 return i;
3555 }
3556
3557 if (item->line > lineno && (best == 0 || item->line < best))
3558 {
3559 best = item->line;
3560 best_index = i;
3561 }
3562 }
3563
3564 /* If we got here, we didn't get an exact match. */
3565 return best_index;
3566 }
3567
3568 int
3569 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3570 {
3571 struct symtab_and_line sal;
3572
3573 sal = find_pc_line (pc, 0);
3574 *startptr = sal.pc;
3575 *endptr = sal.end;
3576 return sal.symtab != 0;
3577 }
3578
3579 /* Helper for find_function_start_sal. Does most of the work, except
3580 setting the sal's symbol. */
3581
3582 static symtab_and_line
3583 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3584 bool funfirstline)
3585 {
3586 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3587
3588 if (funfirstline && sal.symtab != NULL
3589 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3590 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3591 {
3592 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3593
3594 sal.pc = func_addr;
3595 if (gdbarch_skip_entrypoint_p (gdbarch))
3596 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3597 return sal;
3598 }
3599
3600 /* We always should have a line for the function start address.
3601 If we don't, something is odd. Create a plain SAL referring
3602 just the PC and hope that skip_prologue_sal (if requested)
3603 can find a line number for after the prologue. */
3604 if (sal.pc < func_addr)
3605 {
3606 sal = {};
3607 sal.pspace = current_program_space;
3608 sal.pc = func_addr;
3609 sal.section = section;
3610 }
3611
3612 if (funfirstline)
3613 skip_prologue_sal (&sal);
3614
3615 return sal;
3616 }
3617
3618 /* See symtab.h. */
3619
3620 symtab_and_line
3621 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3622 bool funfirstline)
3623 {
3624 symtab_and_line sal
3625 = find_function_start_sal_1 (func_addr, section, funfirstline);
3626
3627 /* find_function_start_sal_1 does a linetable search, so it finds
3628 the symtab and linenumber, but not a symbol. Fill in the
3629 function symbol too. */
3630 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3631
3632 return sal;
3633 }
3634
3635 /* See symtab.h. */
3636
3637 symtab_and_line
3638 find_function_start_sal (symbol *sym, bool funfirstline)
3639 {
3640 fixup_symbol_section (sym, NULL);
3641 symtab_and_line sal
3642 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3643 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3644 funfirstline);
3645 sal.symbol = sym;
3646 return sal;
3647 }
3648
3649
3650 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3651 address for that function that has an entry in SYMTAB's line info
3652 table. If such an entry cannot be found, return FUNC_ADDR
3653 unaltered. */
3654
3655 static CORE_ADDR
3656 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3657 {
3658 CORE_ADDR func_start, func_end;
3659 struct linetable *l;
3660 int i;
3661
3662 /* Give up if this symbol has no lineinfo table. */
3663 l = SYMTAB_LINETABLE (symtab);
3664 if (l == NULL)
3665 return func_addr;
3666
3667 /* Get the range for the function's PC values, or give up if we
3668 cannot, for some reason. */
3669 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3670 return func_addr;
3671
3672 /* Linetable entries are ordered by PC values, see the commentary in
3673 symtab.h where `struct linetable' is defined. Thus, the first
3674 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3675 address we are looking for. */
3676 for (i = 0; i < l->nitems; i++)
3677 {
3678 struct linetable_entry *item = &(l->item[i]);
3679
3680 /* Don't use line numbers of zero, they mark special entries in
3681 the table. See the commentary on symtab.h before the
3682 definition of struct linetable. */
3683 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3684 return item->pc;
3685 }
3686
3687 return func_addr;
3688 }
3689
3690 /* Adjust SAL to the first instruction past the function prologue.
3691 If the PC was explicitly specified, the SAL is not changed.
3692 If the line number was explicitly specified, at most the SAL's PC
3693 is updated. If SAL is already past the prologue, then do nothing. */
3694
3695 void
3696 skip_prologue_sal (struct symtab_and_line *sal)
3697 {
3698 struct symbol *sym;
3699 struct symtab_and_line start_sal;
3700 CORE_ADDR pc, saved_pc;
3701 struct obj_section *section;
3702 const char *name;
3703 struct objfile *objfile;
3704 struct gdbarch *gdbarch;
3705 const struct block *b, *function_block;
3706 int force_skip, skip;
3707
3708 /* Do not change the SAL if PC was specified explicitly. */
3709 if (sal->explicit_pc)
3710 return;
3711
3712 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3713
3714 switch_to_program_space_and_thread (sal->pspace);
3715
3716 sym = find_pc_sect_function (sal->pc, sal->section);
3717 if (sym != NULL)
3718 {
3719 fixup_symbol_section (sym, NULL);
3720
3721 objfile = symbol_objfile (sym);
3722 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3723 section = SYMBOL_OBJ_SECTION (objfile, sym);
3724 name = SYMBOL_LINKAGE_NAME (sym);
3725 }
3726 else
3727 {
3728 struct bound_minimal_symbol msymbol
3729 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3730
3731 if (msymbol.minsym == NULL)
3732 return;
3733
3734 objfile = msymbol.objfile;
3735 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3736 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3737 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3738 }
3739
3740 gdbarch = get_objfile_arch (objfile);
3741
3742 /* Process the prologue in two passes. In the first pass try to skip the
3743 prologue (SKIP is true) and verify there is a real need for it (indicated
3744 by FORCE_SKIP). If no such reason was found run a second pass where the
3745 prologue is not skipped (SKIP is false). */
3746
3747 skip = 1;
3748 force_skip = 1;
3749
3750 /* Be conservative - allow direct PC (without skipping prologue) only if we
3751 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3752 have to be set by the caller so we use SYM instead. */
3753 if (sym != NULL
3754 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3755 force_skip = 0;
3756
3757 saved_pc = pc;
3758 do
3759 {
3760 pc = saved_pc;
3761
3762 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3763 so that gdbarch_skip_prologue has something unique to work on. */
3764 if (section_is_overlay (section) && !section_is_mapped (section))
3765 pc = overlay_unmapped_address (pc, section);
3766
3767 /* Skip "first line" of function (which is actually its prologue). */
3768 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3769 if (gdbarch_skip_entrypoint_p (gdbarch))
3770 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3771 if (skip)
3772 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3773
3774 /* For overlays, map pc back into its mapped VMA range. */
3775 pc = overlay_mapped_address (pc, section);
3776
3777 /* Calculate line number. */
3778 start_sal = find_pc_sect_line (pc, section, 0);
3779
3780 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3781 line is still part of the same function. */
3782 if (skip && start_sal.pc != pc
3783 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3784 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3785 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3786 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3787 {
3788 /* First pc of next line */
3789 pc = start_sal.end;
3790 /* Recalculate the line number (might not be N+1). */
3791 start_sal = find_pc_sect_line (pc, section, 0);
3792 }
3793
3794 /* On targets with executable formats that don't have a concept of
3795 constructors (ELF with .init has, PE doesn't), gcc emits a call
3796 to `__main' in `main' between the prologue and before user
3797 code. */
3798 if (gdbarch_skip_main_prologue_p (gdbarch)
3799 && name && strcmp_iw (name, "main") == 0)
3800 {
3801 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3802 /* Recalculate the line number (might not be N+1). */
3803 start_sal = find_pc_sect_line (pc, section, 0);
3804 force_skip = 1;
3805 }
3806 }
3807 while (!force_skip && skip--);
3808
3809 /* If we still don't have a valid source line, try to find the first
3810 PC in the lineinfo table that belongs to the same function. This
3811 happens with COFF debug info, which does not seem to have an
3812 entry in lineinfo table for the code after the prologue which has
3813 no direct relation to source. For example, this was found to be
3814 the case with the DJGPP target using "gcc -gcoff" when the
3815 compiler inserted code after the prologue to make sure the stack
3816 is aligned. */
3817 if (!force_skip && sym && start_sal.symtab == NULL)
3818 {
3819 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3820 /* Recalculate the line number. */
3821 start_sal = find_pc_sect_line (pc, section, 0);
3822 }
3823
3824 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3825 forward SAL to the end of the prologue. */
3826 if (sal->pc >= pc)
3827 return;
3828
3829 sal->pc = pc;
3830 sal->section = section;
3831
3832 /* Unless the explicit_line flag was set, update the SAL line
3833 and symtab to correspond to the modified PC location. */
3834 if (sal->explicit_line)
3835 return;
3836
3837 sal->symtab = start_sal.symtab;
3838 sal->line = start_sal.line;
3839 sal->end = start_sal.end;
3840
3841 /* Check if we are now inside an inlined function. If we can,
3842 use the call site of the function instead. */
3843 b = block_for_pc_sect (sal->pc, sal->section);
3844 function_block = NULL;
3845 while (b != NULL)
3846 {
3847 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3848 function_block = b;
3849 else if (BLOCK_FUNCTION (b) != NULL)
3850 break;
3851 b = BLOCK_SUPERBLOCK (b);
3852 }
3853 if (function_block != NULL
3854 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3855 {
3856 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3857 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3858 }
3859 }
3860
3861 /* Given PC at the function's start address, attempt to find the
3862 prologue end using SAL information. Return zero if the skip fails.
3863
3864 A non-optimized prologue traditionally has one SAL for the function
3865 and a second for the function body. A single line function has
3866 them both pointing at the same line.
3867
3868 An optimized prologue is similar but the prologue may contain
3869 instructions (SALs) from the instruction body. Need to skip those
3870 while not getting into the function body.
3871
3872 The functions end point and an increasing SAL line are used as
3873 indicators of the prologue's endpoint.
3874
3875 This code is based on the function refine_prologue_limit
3876 (found in ia64). */
3877
3878 CORE_ADDR
3879 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3880 {
3881 struct symtab_and_line prologue_sal;
3882 CORE_ADDR start_pc;
3883 CORE_ADDR end_pc;
3884 const struct block *bl;
3885
3886 /* Get an initial range for the function. */
3887 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3888 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3889
3890 prologue_sal = find_pc_line (start_pc, 0);
3891 if (prologue_sal.line != 0)
3892 {
3893 /* For languages other than assembly, treat two consecutive line
3894 entries at the same address as a zero-instruction prologue.
3895 The GNU assembler emits separate line notes for each instruction
3896 in a multi-instruction macro, but compilers generally will not
3897 do this. */
3898 if (prologue_sal.symtab->language != language_asm)
3899 {
3900 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3901 int idx = 0;
3902
3903 /* Skip any earlier lines, and any end-of-sequence marker
3904 from a previous function. */
3905 while (linetable->item[idx].pc != prologue_sal.pc
3906 || linetable->item[idx].line == 0)
3907 idx++;
3908
3909 if (idx+1 < linetable->nitems
3910 && linetable->item[idx+1].line != 0
3911 && linetable->item[idx+1].pc == start_pc)
3912 return start_pc;
3913 }
3914
3915 /* If there is only one sal that covers the entire function,
3916 then it is probably a single line function, like
3917 "foo(){}". */
3918 if (prologue_sal.end >= end_pc)
3919 return 0;
3920
3921 while (prologue_sal.end < end_pc)
3922 {
3923 struct symtab_and_line sal;
3924
3925 sal = find_pc_line (prologue_sal.end, 0);
3926 if (sal.line == 0)
3927 break;
3928 /* Assume that a consecutive SAL for the same (or larger)
3929 line mark the prologue -> body transition. */
3930 if (sal.line >= prologue_sal.line)
3931 break;
3932 /* Likewise if we are in a different symtab altogether
3933 (e.g. within a file included via #include).  */
3934 if (sal.symtab != prologue_sal.symtab)
3935 break;
3936
3937 /* The line number is smaller. Check that it's from the
3938 same function, not something inlined. If it's inlined,
3939 then there is no point comparing the line numbers. */
3940 bl = block_for_pc (prologue_sal.end);
3941 while (bl)
3942 {
3943 if (block_inlined_p (bl))
3944 break;
3945 if (BLOCK_FUNCTION (bl))
3946 {
3947 bl = NULL;
3948 break;
3949 }
3950 bl = BLOCK_SUPERBLOCK (bl);
3951 }
3952 if (bl != NULL)
3953 break;
3954
3955 /* The case in which compiler's optimizer/scheduler has
3956 moved instructions into the prologue. We look ahead in
3957 the function looking for address ranges whose
3958 corresponding line number is less the first one that we
3959 found for the function. This is more conservative then
3960 refine_prologue_limit which scans a large number of SALs
3961 looking for any in the prologue. */
3962 prologue_sal = sal;
3963 }
3964 }
3965
3966 if (prologue_sal.end < end_pc)
3967 /* Return the end of this line, or zero if we could not find a
3968 line. */
3969 return prologue_sal.end;
3970 else
3971 /* Don't return END_PC, which is past the end of the function. */
3972 return prologue_sal.pc;
3973 }
3974
3975 /* See symtab.h. */
3976
3977 symbol *
3978 find_function_alias_target (bound_minimal_symbol msymbol)
3979 {
3980 CORE_ADDR func_addr;
3981 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3982 return NULL;
3983
3984 symbol *sym = find_pc_function (func_addr);
3985 if (sym != NULL
3986 && SYMBOL_CLASS (sym) == LOC_BLOCK
3987 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3988 return sym;
3989
3990 return NULL;
3991 }
3992
3993 \f
3994 /* If P is of the form "operator[ \t]+..." where `...' is
3995 some legitimate operator text, return a pointer to the
3996 beginning of the substring of the operator text.
3997 Otherwise, return "". */
3998
3999 static const char *
4000 operator_chars (const char *p, const char **end)
4001 {
4002 *end = "";
4003 if (!startswith (p, CP_OPERATOR_STR))
4004 return *end;
4005 p += CP_OPERATOR_LEN;
4006
4007 /* Don't get faked out by `operator' being part of a longer
4008 identifier. */
4009 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4010 return *end;
4011
4012 /* Allow some whitespace between `operator' and the operator symbol. */
4013 while (*p == ' ' || *p == '\t')
4014 p++;
4015
4016 /* Recognize 'operator TYPENAME'. */
4017
4018 if (isalpha (*p) || *p == '_' || *p == '$')
4019 {
4020 const char *q = p + 1;
4021
4022 while (isalnum (*q) || *q == '_' || *q == '$')
4023 q++;
4024 *end = q;
4025 return p;
4026 }
4027
4028 while (*p)
4029 switch (*p)
4030 {
4031 case '\\': /* regexp quoting */
4032 if (p[1] == '*')
4033 {
4034 if (p[2] == '=') /* 'operator\*=' */
4035 *end = p + 3;
4036 else /* 'operator\*' */
4037 *end = p + 2;
4038 return p;
4039 }
4040 else if (p[1] == '[')
4041 {
4042 if (p[2] == ']')
4043 error (_("mismatched quoting on brackets, "
4044 "try 'operator\\[\\]'"));
4045 else if (p[2] == '\\' && p[3] == ']')
4046 {
4047 *end = p + 4; /* 'operator\[\]' */
4048 return p;
4049 }
4050 else
4051 error (_("nothing is allowed between '[' and ']'"));
4052 }
4053 else
4054 {
4055 /* Gratuitous qoute: skip it and move on. */
4056 p++;
4057 continue;
4058 }
4059 break;
4060 case '!':
4061 case '=':
4062 case '*':
4063 case '/':
4064 case '%':
4065 case '^':
4066 if (p[1] == '=')
4067 *end = p + 2;
4068 else
4069 *end = p + 1;
4070 return p;
4071 case '<':
4072 case '>':
4073 case '+':
4074 case '-':
4075 case '&':
4076 case '|':
4077 if (p[0] == '-' && p[1] == '>')
4078 {
4079 /* Struct pointer member operator 'operator->'. */
4080 if (p[2] == '*')
4081 {
4082 *end = p + 3; /* 'operator->*' */
4083 return p;
4084 }
4085 else if (p[2] == '\\')
4086 {
4087 *end = p + 4; /* Hopefully 'operator->\*' */
4088 return p;
4089 }
4090 else
4091 {
4092 *end = p + 2; /* 'operator->' */
4093 return p;
4094 }
4095 }
4096 if (p[1] == '=' || p[1] == p[0])
4097 *end = p + 2;
4098 else
4099 *end = p + 1;
4100 return p;
4101 case '~':
4102 case ',':
4103 *end = p + 1;
4104 return p;
4105 case '(':
4106 if (p[1] != ')')
4107 error (_("`operator ()' must be specified "
4108 "without whitespace in `()'"));
4109 *end = p + 2;
4110 return p;
4111 case '?':
4112 if (p[1] != ':')
4113 error (_("`operator ?:' must be specified "
4114 "without whitespace in `?:'"));
4115 *end = p + 2;
4116 return p;
4117 case '[':
4118 if (p[1] != ']')
4119 error (_("`operator []' must be specified "
4120 "without whitespace in `[]'"));
4121 *end = p + 2;
4122 return p;
4123 default:
4124 error (_("`operator %s' not supported"), p);
4125 break;
4126 }
4127
4128 *end = "";
4129 return *end;
4130 }
4131 \f
4132
4133 /* Data structure to maintain printing state for output_source_filename. */
4134
4135 struct output_source_filename_data
4136 {
4137 /* Cache of what we've seen so far. */
4138 struct filename_seen_cache *filename_seen_cache;
4139
4140 /* Flag of whether we're printing the first one. */
4141 int first;
4142 };
4143
4144 /* Slave routine for sources_info. Force line breaks at ,'s.
4145 NAME is the name to print.
4146 DATA contains the state for printing and watching for duplicates. */
4147
4148 static void
4149 output_source_filename (const char *name,
4150 struct output_source_filename_data *data)
4151 {
4152 /* Since a single source file can result in several partial symbol
4153 tables, we need to avoid printing it more than once. Note: if
4154 some of the psymtabs are read in and some are not, it gets
4155 printed both under "Source files for which symbols have been
4156 read" and "Source files for which symbols will be read in on
4157 demand". I consider this a reasonable way to deal with the
4158 situation. I'm not sure whether this can also happen for
4159 symtabs; it doesn't hurt to check. */
4160
4161 /* Was NAME already seen? */
4162 if (data->filename_seen_cache->seen (name))
4163 {
4164 /* Yes; don't print it again. */
4165 return;
4166 }
4167
4168 /* No; print it and reset *FIRST. */
4169 if (! data->first)
4170 printf_filtered (", ");
4171 data->first = 0;
4172
4173 wrap_here ("");
4174 fputs_filtered (name, gdb_stdout);
4175 }
4176
4177 /* A callback for map_partial_symbol_filenames. */
4178
4179 static void
4180 output_partial_symbol_filename (const char *filename, const char *fullname,
4181 void *data)
4182 {
4183 output_source_filename (fullname ? fullname : filename,
4184 (struct output_source_filename_data *) data);
4185 }
4186
4187 static void
4188 info_sources_command (const char *ignore, int from_tty)
4189 {
4190 struct compunit_symtab *cu;
4191 struct symtab *s;
4192 struct objfile *objfile;
4193 struct output_source_filename_data data;
4194
4195 if (!have_full_symbols () && !have_partial_symbols ())
4196 {
4197 error (_("No symbol table is loaded. Use the \"file\" command."));
4198 }
4199
4200 filename_seen_cache filenames_seen;
4201
4202 data.filename_seen_cache = &filenames_seen;
4203
4204 printf_filtered ("Source files for which symbols have been read in:\n\n");
4205
4206 data.first = 1;
4207 ALL_FILETABS (objfile, cu, s)
4208 {
4209 const char *fullname = symtab_to_fullname (s);
4210
4211 output_source_filename (fullname, &data);
4212 }
4213 printf_filtered ("\n\n");
4214
4215 printf_filtered ("Source files for which symbols "
4216 "will be read in on demand:\n\n");
4217
4218 filenames_seen.clear ();
4219 data.first = 1;
4220 map_symbol_filenames (output_partial_symbol_filename, &data,
4221 1 /*need_fullname*/);
4222 printf_filtered ("\n");
4223 }
4224
4225 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4226 non-zero compare only lbasename of FILES. */
4227
4228 static int
4229 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4230 {
4231 int i;
4232
4233 if (file != NULL && nfiles != 0)
4234 {
4235 for (i = 0; i < nfiles; i++)
4236 {
4237 if (compare_filenames_for_search (file, (basenames
4238 ? lbasename (files[i])
4239 : files[i])))
4240 return 1;
4241 }
4242 }
4243 else if (nfiles == 0)
4244 return 1;
4245 return 0;
4246 }
4247
4248 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4249 sort symbols, not minimal symbols. */
4250
4251 int
4252 symbol_search::compare_search_syms (const symbol_search &sym_a,
4253 const symbol_search &sym_b)
4254 {
4255 int c;
4256
4257 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4258 symbol_symtab (sym_b.symbol)->filename);
4259 if (c != 0)
4260 return c;
4261
4262 if (sym_a.block != sym_b.block)
4263 return sym_a.block - sym_b.block;
4264
4265 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4266 SYMBOL_PRINT_NAME (sym_b.symbol));
4267 }
4268
4269 /* Sort the symbols in RESULT and remove duplicates. */
4270
4271 static void
4272 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4273 {
4274 std::sort (result->begin (), result->end ());
4275 result->erase (std::unique (result->begin (), result->end ()),
4276 result->end ());
4277 }
4278
4279 /* Search the symbol table for matches to the regular expression REGEXP,
4280 returning the results.
4281
4282 Only symbols of KIND are searched:
4283 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4284 and constants (enums)
4285 FUNCTIONS_DOMAIN - search all functions
4286 TYPES_DOMAIN - search all type names
4287 ALL_DOMAIN - an internal error for this function
4288
4289 Within each file the results are sorted locally; each symtab's global and
4290 static blocks are separately alphabetized.
4291 Duplicate entries are removed. */
4292
4293 std::vector<symbol_search>
4294 search_symbols (const char *regexp, enum search_domain kind,
4295 int nfiles, const char *files[])
4296 {
4297 struct compunit_symtab *cust;
4298 const struct blockvector *bv;
4299 struct block *b;
4300 int i = 0;
4301 struct block_iterator iter;
4302 struct symbol *sym;
4303 struct objfile *objfile;
4304 struct minimal_symbol *msymbol;
4305 int found_misc = 0;
4306 static const enum minimal_symbol_type types[]
4307 = {mst_data, mst_text, mst_abs};
4308 static const enum minimal_symbol_type types2[]
4309 = {mst_bss, mst_file_text, mst_abs};
4310 static const enum minimal_symbol_type types3[]
4311 = {mst_file_data, mst_solib_trampoline, mst_abs};
4312 static const enum minimal_symbol_type types4[]
4313 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4314 enum minimal_symbol_type ourtype;
4315 enum minimal_symbol_type ourtype2;
4316 enum minimal_symbol_type ourtype3;
4317 enum minimal_symbol_type ourtype4;
4318 std::vector<symbol_search> result;
4319 gdb::optional<compiled_regex> preg;
4320
4321 gdb_assert (kind <= TYPES_DOMAIN);
4322
4323 ourtype = types[kind];
4324 ourtype2 = types2[kind];
4325 ourtype3 = types3[kind];
4326 ourtype4 = types4[kind];
4327
4328 if (regexp != NULL)
4329 {
4330 /* Make sure spacing is right for C++ operators.
4331 This is just a courtesy to make the matching less sensitive
4332 to how many spaces the user leaves between 'operator'
4333 and <TYPENAME> or <OPERATOR>. */
4334 const char *opend;
4335 const char *opname = operator_chars (regexp, &opend);
4336
4337 if (*opname)
4338 {
4339 int fix = -1; /* -1 means ok; otherwise number of
4340 spaces needed. */
4341
4342 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4343 {
4344 /* There should 1 space between 'operator' and 'TYPENAME'. */
4345 if (opname[-1] != ' ' || opname[-2] == ' ')
4346 fix = 1;
4347 }
4348 else
4349 {
4350 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4351 if (opname[-1] == ' ')
4352 fix = 0;
4353 }
4354 /* If wrong number of spaces, fix it. */
4355 if (fix >= 0)
4356 {
4357 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4358
4359 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4360 regexp = tmp;
4361 }
4362 }
4363
4364 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4365 ? REG_ICASE : 0);
4366 preg.emplace (regexp, cflags, _("Invalid regexp"));
4367 }
4368
4369 /* Search through the partial symtabs *first* for all symbols
4370 matching the regexp. That way we don't have to reproduce all of
4371 the machinery below. */
4372 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4373 {
4374 return file_matches (filename, files, nfiles,
4375 basenames);
4376 },
4377 lookup_name_info::match_any (),
4378 [&] (const char *symname)
4379 {
4380 return (!preg || preg->exec (symname,
4381 0, NULL, 0) == 0);
4382 },
4383 NULL,
4384 kind);
4385
4386 /* Here, we search through the minimal symbol tables for functions
4387 and variables that match, and force their symbols to be read.
4388 This is in particular necessary for demangled variable names,
4389 which are no longer put into the partial symbol tables.
4390 The symbol will then be found during the scan of symtabs below.
4391
4392 For functions, find_pc_symtab should succeed if we have debug info
4393 for the function, for variables we have to call
4394 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4395 has debug info.
4396 If the lookup fails, set found_misc so that we will rescan to print
4397 any matching symbols without debug info.
4398 We only search the objfile the msymbol came from, we no longer search
4399 all objfiles. In large programs (1000s of shared libs) searching all
4400 objfiles is not worth the pain. */
4401
4402 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4403 {
4404 ALL_MSYMBOLS (objfile, msymbol)
4405 {
4406 QUIT;
4407
4408 if (msymbol->created_by_gdb)
4409 continue;
4410
4411 if (MSYMBOL_TYPE (msymbol) == ourtype
4412 || MSYMBOL_TYPE (msymbol) == ourtype2
4413 || MSYMBOL_TYPE (msymbol) == ourtype3
4414 || MSYMBOL_TYPE (msymbol) == ourtype4)
4415 {
4416 if (!preg
4417 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4418 NULL, 0) == 0)
4419 {
4420 /* Note: An important side-effect of these lookup functions
4421 is to expand the symbol table if msymbol is found, for the
4422 benefit of the next loop on ALL_COMPUNITS. */
4423 if (kind == FUNCTIONS_DOMAIN
4424 ? (find_pc_compunit_symtab
4425 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4426 : (lookup_symbol_in_objfile_from_linkage_name
4427 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4428 .symbol == NULL))
4429 found_misc = 1;
4430 }
4431 }
4432 }
4433 }
4434
4435 ALL_COMPUNITS (objfile, cust)
4436 {
4437 bv = COMPUNIT_BLOCKVECTOR (cust);
4438 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4439 {
4440 b = BLOCKVECTOR_BLOCK (bv, i);
4441 ALL_BLOCK_SYMBOLS (b, iter, sym)
4442 {
4443 struct symtab *real_symtab = symbol_symtab (sym);
4444
4445 QUIT;
4446
4447 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4448 a substring of symtab_to_fullname as it may contain "./" etc. */
4449 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4450 || ((basenames_may_differ
4451 || file_matches (lbasename (real_symtab->filename),
4452 files, nfiles, 1))
4453 && file_matches (symtab_to_fullname (real_symtab),
4454 files, nfiles, 0)))
4455 && ((!preg
4456 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4457 NULL, 0) == 0)
4458 && ((kind == VARIABLES_DOMAIN
4459 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4460 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4461 && SYMBOL_CLASS (sym) != LOC_BLOCK
4462 /* LOC_CONST can be used for more than just enums,
4463 e.g., c++ static const members.
4464 We only want to skip enums here. */
4465 && !(SYMBOL_CLASS (sym) == LOC_CONST
4466 && (TYPE_CODE (SYMBOL_TYPE (sym))
4467 == TYPE_CODE_ENUM)))
4468 || (kind == FUNCTIONS_DOMAIN
4469 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4470 || (kind == TYPES_DOMAIN
4471 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4472 {
4473 /* match */
4474 result.emplace_back (i, sym);
4475 }
4476 }
4477 }
4478 }
4479
4480 if (!result.empty ())
4481 sort_search_symbols_remove_dups (&result);
4482
4483 /* If there are no eyes, avoid all contact. I mean, if there are
4484 no debug symbols, then add matching minsyms. */
4485
4486 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4487 {
4488 ALL_MSYMBOLS (objfile, msymbol)
4489 {
4490 QUIT;
4491
4492 if (msymbol->created_by_gdb)
4493 continue;
4494
4495 if (MSYMBOL_TYPE (msymbol) == ourtype
4496 || MSYMBOL_TYPE (msymbol) == ourtype2
4497 || MSYMBOL_TYPE (msymbol) == ourtype3
4498 || MSYMBOL_TYPE (msymbol) == ourtype4)
4499 {
4500 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4501 NULL, 0) == 0)
4502 {
4503 /* For functions we can do a quick check of whether the
4504 symbol might be found via find_pc_symtab. */
4505 if (kind != FUNCTIONS_DOMAIN
4506 || (find_pc_compunit_symtab
4507 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4508 {
4509 if (lookup_symbol_in_objfile_from_linkage_name
4510 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4511 .symbol == NULL)
4512 {
4513 /* match */
4514 result.emplace_back (i, msymbol, objfile);
4515 }
4516 }
4517 }
4518 }
4519 }
4520 }
4521
4522 return result;
4523 }
4524
4525 /* Helper function for symtab_symbol_info, this function uses
4526 the data returned from search_symbols() to print information
4527 regarding the match to gdb_stdout. If LAST is not NULL,
4528 print file and line number information for the symbol as
4529 well. Skip printing the filename if it matches LAST. */
4530
4531 static void
4532 print_symbol_info (enum search_domain kind,
4533 struct symbol *sym,
4534 int block, const char *last)
4535 {
4536 struct symtab *s = symbol_symtab (sym);
4537
4538 if (last != NULL)
4539 {
4540 const char *s_filename = symtab_to_filename_for_display (s);
4541
4542 if (filename_cmp (last, s_filename) != 0)
4543 {
4544 fputs_filtered ("\nFile ", gdb_stdout);
4545 fputs_filtered (s_filename, gdb_stdout);
4546 fputs_filtered (":\n", gdb_stdout);
4547 }
4548
4549 if (SYMBOL_LINE (sym) != 0)
4550 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4551 else
4552 puts_filtered ("\t");
4553 }
4554
4555 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4556 printf_filtered ("static ");
4557
4558 /* Typedef that is not a C++ class. */
4559 if (kind == TYPES_DOMAIN
4560 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4561 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4562 /* variable, func, or typedef-that-is-c++-class. */
4563 else if (kind < TYPES_DOMAIN
4564 || (kind == TYPES_DOMAIN
4565 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4566 {
4567 type_print (SYMBOL_TYPE (sym),
4568 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4569 ? "" : SYMBOL_PRINT_NAME (sym)),
4570 gdb_stdout, 0);
4571
4572 printf_filtered (";\n");
4573 }
4574 }
4575
4576 /* This help function for symtab_symbol_info() prints information
4577 for non-debugging symbols to gdb_stdout. */
4578
4579 static void
4580 print_msymbol_info (struct bound_minimal_symbol msymbol)
4581 {
4582 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4583 char *tmp;
4584
4585 if (gdbarch_addr_bit (gdbarch) <= 32)
4586 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4587 & (CORE_ADDR) 0xffffffff,
4588 8);
4589 else
4590 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4591 16);
4592 printf_filtered ("%s %s\n",
4593 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4594 }
4595
4596 /* This is the guts of the commands "info functions", "info types", and
4597 "info variables". It calls search_symbols to find all matches and then
4598 print_[m]symbol_info to print out some useful information about the
4599 matches. */
4600
4601 static void
4602 symtab_symbol_info (const char *regexp, enum search_domain kind, int from_tty)
4603 {
4604 static const char * const classnames[] =
4605 {"variable", "function", "type"};
4606 const char *last_filename = "";
4607 int first = 1;
4608
4609 gdb_assert (kind <= TYPES_DOMAIN);
4610
4611 /* Must make sure that if we're interrupted, symbols gets freed. */
4612 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 0, NULL);
4613
4614 if (regexp != NULL)
4615 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4616 classnames[kind], regexp);
4617 else
4618 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4619
4620 for (const symbol_search &p : symbols)
4621 {
4622 QUIT;
4623
4624 if (p.msymbol.minsym != NULL)
4625 {
4626 if (first)
4627 {
4628 printf_filtered (_("\nNon-debugging symbols:\n"));
4629 first = 0;
4630 }
4631 print_msymbol_info (p.msymbol);
4632 }
4633 else
4634 {
4635 print_symbol_info (kind,
4636 p.symbol,
4637 p.block,
4638 last_filename);
4639 last_filename
4640 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4641 }
4642 }
4643 }
4644
4645 static void
4646 info_variables_command (const char *regexp, int from_tty)
4647 {
4648 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4649 }
4650
4651 static void
4652 info_functions_command (const char *regexp, int from_tty)
4653 {
4654 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4655 }
4656
4657
4658 static void
4659 info_types_command (const char *regexp, int from_tty)
4660 {
4661 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4662 }
4663
4664 /* Breakpoint all functions matching regular expression. */
4665
4666 void
4667 rbreak_command_wrapper (char *regexp, int from_tty)
4668 {
4669 rbreak_command (regexp, from_tty);
4670 }
4671
4672 static void
4673 rbreak_command (const char *regexp, int from_tty)
4674 {
4675 std::string string;
4676 const char **files = NULL;
4677 const char *file_name;
4678 int nfiles = 0;
4679
4680 if (regexp)
4681 {
4682 const char *colon = strchr (regexp, ':');
4683
4684 if (colon && *(colon + 1) != ':')
4685 {
4686 int colon_index;
4687 char *local_name;
4688
4689 colon_index = colon - regexp;
4690 local_name = (char *) alloca (colon_index + 1);
4691 memcpy (local_name, regexp, colon_index);
4692 local_name[colon_index--] = 0;
4693 while (isspace (local_name[colon_index]))
4694 local_name[colon_index--] = 0;
4695 file_name = local_name;
4696 files = &file_name;
4697 nfiles = 1;
4698 regexp = skip_spaces (colon + 1);
4699 }
4700 }
4701
4702 std::vector<symbol_search> symbols = search_symbols (regexp,
4703 FUNCTIONS_DOMAIN,
4704 nfiles, files);
4705
4706 scoped_rbreak_breakpoints finalize;
4707 for (const symbol_search &p : symbols)
4708 {
4709 if (p.msymbol.minsym == NULL)
4710 {
4711 struct symtab *symtab = symbol_symtab (p.symbol);
4712 const char *fullname = symtab_to_fullname (symtab);
4713
4714 string = string_printf ("%s:'%s'", fullname,
4715 SYMBOL_LINKAGE_NAME (p.symbol));
4716 break_command (&string[0], from_tty);
4717 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4718 }
4719 else
4720 {
4721 string = string_printf ("'%s'",
4722 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4723
4724 break_command (&string[0], from_tty);
4725 printf_filtered ("<function, no debug info> %s;\n",
4726 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4727 }
4728 }
4729 }
4730 \f
4731
4732 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4733
4734 static int
4735 compare_symbol_name (const char *symbol_name, language symbol_language,
4736 const lookup_name_info &lookup_name,
4737 completion_match_result &match_res)
4738 {
4739 const language_defn *lang = language_def (symbol_language);
4740
4741 symbol_name_matcher_ftype *name_match
4742 = get_symbol_name_matcher (lang, lookup_name);
4743
4744 return name_match (symbol_name, lookup_name, &match_res);
4745 }
4746
4747 /* See symtab.h. */
4748
4749 void
4750 completion_list_add_name (completion_tracker &tracker,
4751 language symbol_language,
4752 const char *symname,
4753 const lookup_name_info &lookup_name,
4754 const char *text, const char *word)
4755 {
4756 completion_match_result &match_res
4757 = tracker.reset_completion_match_result ();
4758
4759 /* Clip symbols that cannot match. */
4760 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4761 return;
4762
4763 /* Refresh SYMNAME from the match string. It's potentially
4764 different depending on language. (E.g., on Ada, the match may be
4765 the encoded symbol name wrapped in "<>"). */
4766 symname = match_res.match.match ();
4767 gdb_assert (symname != NULL);
4768
4769 /* We have a match for a completion, so add SYMNAME to the current list
4770 of matches. Note that the name is moved to freshly malloc'd space. */
4771
4772 {
4773 gdb::unique_xmalloc_ptr<char> completion
4774 = make_completion_match_str (symname, text, word);
4775
4776 /* Here we pass the match-for-lcd object to add_completion. Some
4777 languages match the user text against substrings of symbol
4778 names in some cases. E.g., in C++, "b push_ba" completes to
4779 "std::vector::push_back", "std::string::push_back", etc., and
4780 in this case we want the completion lowest common denominator
4781 to be "push_back" instead of "std::". */
4782 tracker.add_completion (std::move (completion),
4783 &match_res.match_for_lcd, text, word);
4784 }
4785 }
4786
4787 /* completion_list_add_name wrapper for struct symbol. */
4788
4789 static void
4790 completion_list_add_symbol (completion_tracker &tracker,
4791 symbol *sym,
4792 const lookup_name_info &lookup_name,
4793 const char *text, const char *word)
4794 {
4795 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4796 SYMBOL_NATURAL_NAME (sym),
4797 lookup_name, text, word);
4798 }
4799
4800 /* completion_list_add_name wrapper for struct minimal_symbol. */
4801
4802 static void
4803 completion_list_add_msymbol (completion_tracker &tracker,
4804 minimal_symbol *sym,
4805 const lookup_name_info &lookup_name,
4806 const char *text, const char *word)
4807 {
4808 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4809 MSYMBOL_NATURAL_NAME (sym),
4810 lookup_name, text, word);
4811 }
4812
4813
4814 /* ObjC: In case we are completing on a selector, look as the msymbol
4815 again and feed all the selectors into the mill. */
4816
4817 static void
4818 completion_list_objc_symbol (completion_tracker &tracker,
4819 struct minimal_symbol *msymbol,
4820 const lookup_name_info &lookup_name,
4821 const char *text, const char *word)
4822 {
4823 static char *tmp = NULL;
4824 static unsigned int tmplen = 0;
4825
4826 const char *method, *category, *selector;
4827 char *tmp2 = NULL;
4828
4829 method = MSYMBOL_NATURAL_NAME (msymbol);
4830
4831 /* Is it a method? */
4832 if ((method[0] != '-') && (method[0] != '+'))
4833 return;
4834
4835 if (text[0] == '[')
4836 /* Complete on shortened method method. */
4837 completion_list_add_name (tracker, language_objc,
4838 method + 1,
4839 lookup_name,
4840 text, word);
4841
4842 while ((strlen (method) + 1) >= tmplen)
4843 {
4844 if (tmplen == 0)
4845 tmplen = 1024;
4846 else
4847 tmplen *= 2;
4848 tmp = (char *) xrealloc (tmp, tmplen);
4849 }
4850 selector = strchr (method, ' ');
4851 if (selector != NULL)
4852 selector++;
4853
4854 category = strchr (method, '(');
4855
4856 if ((category != NULL) && (selector != NULL))
4857 {
4858 memcpy (tmp, method, (category - method));
4859 tmp[category - method] = ' ';
4860 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4861 completion_list_add_name (tracker, language_objc, tmp,
4862 lookup_name, text, word);
4863 if (text[0] == '[')
4864 completion_list_add_name (tracker, language_objc, tmp + 1,
4865 lookup_name, text, word);
4866 }
4867
4868 if (selector != NULL)
4869 {
4870 /* Complete on selector only. */
4871 strcpy (tmp, selector);
4872 tmp2 = strchr (tmp, ']');
4873 if (tmp2 != NULL)
4874 *tmp2 = '\0';
4875
4876 completion_list_add_name (tracker, language_objc, tmp,
4877 lookup_name, text, word);
4878 }
4879 }
4880
4881 /* Break the non-quoted text based on the characters which are in
4882 symbols. FIXME: This should probably be language-specific. */
4883
4884 static const char *
4885 language_search_unquoted_string (const char *text, const char *p)
4886 {
4887 for (; p > text; --p)
4888 {
4889 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4890 continue;
4891 else
4892 {
4893 if ((current_language->la_language == language_objc))
4894 {
4895 if (p[-1] == ':') /* Might be part of a method name. */
4896 continue;
4897 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4898 p -= 2; /* Beginning of a method name. */
4899 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4900 { /* Might be part of a method name. */
4901 const char *t = p;
4902
4903 /* Seeing a ' ' or a '(' is not conclusive evidence
4904 that we are in the middle of a method name. However,
4905 finding "-[" or "+[" should be pretty un-ambiguous.
4906 Unfortunately we have to find it now to decide. */
4907
4908 while (t > text)
4909 if (isalnum (t[-1]) || t[-1] == '_' ||
4910 t[-1] == ' ' || t[-1] == ':' ||
4911 t[-1] == '(' || t[-1] == ')')
4912 --t;
4913 else
4914 break;
4915
4916 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4917 p = t - 2; /* Method name detected. */
4918 /* Else we leave with p unchanged. */
4919 }
4920 }
4921 break;
4922 }
4923 }
4924 return p;
4925 }
4926
4927 static void
4928 completion_list_add_fields (completion_tracker &tracker,
4929 struct symbol *sym,
4930 const lookup_name_info &lookup_name,
4931 const char *text, const char *word)
4932 {
4933 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4934 {
4935 struct type *t = SYMBOL_TYPE (sym);
4936 enum type_code c = TYPE_CODE (t);
4937 int j;
4938
4939 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4940 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4941 if (TYPE_FIELD_NAME (t, j))
4942 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4943 TYPE_FIELD_NAME (t, j),
4944 lookup_name, text, word);
4945 }
4946 }
4947
4948 /* See symtab.h. */
4949
4950 bool
4951 symbol_is_function_or_method (symbol *sym)
4952 {
4953 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
4954 {
4955 case TYPE_CODE_FUNC:
4956 case TYPE_CODE_METHOD:
4957 return true;
4958 default:
4959 return false;
4960 }
4961 }
4962
4963 /* See symtab.h. */
4964
4965 bool
4966 symbol_is_function_or_method (minimal_symbol *msymbol)
4967 {
4968 switch (MSYMBOL_TYPE (msymbol))
4969 {
4970 case mst_text:
4971 case mst_text_gnu_ifunc:
4972 case mst_solib_trampoline:
4973 case mst_file_text:
4974 return true;
4975 default:
4976 return false;
4977 }
4978 }
4979
4980 /* See symtab.h. */
4981
4982 bound_minimal_symbol
4983 find_gnu_ifunc (const symbol *sym)
4984 {
4985 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
4986 return {};
4987
4988 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
4989 symbol_name_match_type::SEARCH_NAME);
4990 struct objfile *objfile = symbol_objfile (sym);
4991
4992 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
4993 minimal_symbol *ifunc = NULL;
4994
4995 iterate_over_minimal_symbols (objfile, lookup_name,
4996 [&] (minimal_symbol *minsym)
4997 {
4998 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
4999 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5000 {
5001 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5002 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5003 {
5004 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5005 msym_addr
5006 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5007 msym_addr,
5008 current_top_target ());
5009 }
5010 if (msym_addr == address)
5011 {
5012 ifunc = minsym;
5013 return true;
5014 }
5015 }
5016 return false;
5017 });
5018
5019 if (ifunc != NULL)
5020 return {ifunc, objfile};
5021 return {};
5022 }
5023
5024 /* Add matching symbols from SYMTAB to the current completion list. */
5025
5026 static void
5027 add_symtab_completions (struct compunit_symtab *cust,
5028 completion_tracker &tracker,
5029 complete_symbol_mode mode,
5030 const lookup_name_info &lookup_name,
5031 const char *text, const char *word,
5032 enum type_code code)
5033 {
5034 struct symbol *sym;
5035 const struct block *b;
5036 struct block_iterator iter;
5037 int i;
5038
5039 if (cust == NULL)
5040 return;
5041
5042 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5043 {
5044 QUIT;
5045 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5046 ALL_BLOCK_SYMBOLS (b, iter, sym)
5047 {
5048 if (completion_skip_symbol (mode, sym))
5049 continue;
5050
5051 if (code == TYPE_CODE_UNDEF
5052 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5053 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5054 completion_list_add_symbol (tracker, sym,
5055 lookup_name,
5056 text, word);
5057 }
5058 }
5059 }
5060
5061 void
5062 default_collect_symbol_completion_matches_break_on
5063 (completion_tracker &tracker, complete_symbol_mode mode,
5064 symbol_name_match_type name_match_type,
5065 const char *text, const char *word,
5066 const char *break_on, enum type_code code)
5067 {
5068 /* Problem: All of the symbols have to be copied because readline
5069 frees them. I'm not going to worry about this; hopefully there
5070 won't be that many. */
5071
5072 struct symbol *sym;
5073 struct compunit_symtab *cust;
5074 struct minimal_symbol *msymbol;
5075 struct objfile *objfile;
5076 const struct block *b;
5077 const struct block *surrounding_static_block, *surrounding_global_block;
5078 struct block_iterator iter;
5079 /* The symbol we are completing on. Points in same buffer as text. */
5080 const char *sym_text;
5081
5082 /* Now look for the symbol we are supposed to complete on. */
5083 if (mode == complete_symbol_mode::LINESPEC)
5084 sym_text = text;
5085 else
5086 {
5087 const char *p;
5088 char quote_found;
5089 const char *quote_pos = NULL;
5090
5091 /* First see if this is a quoted string. */
5092 quote_found = '\0';
5093 for (p = text; *p != '\0'; ++p)
5094 {
5095 if (quote_found != '\0')
5096 {
5097 if (*p == quote_found)
5098 /* Found close quote. */
5099 quote_found = '\0';
5100 else if (*p == '\\' && p[1] == quote_found)
5101 /* A backslash followed by the quote character
5102 doesn't end the string. */
5103 ++p;
5104 }
5105 else if (*p == '\'' || *p == '"')
5106 {
5107 quote_found = *p;
5108 quote_pos = p;
5109 }
5110 }
5111 if (quote_found == '\'')
5112 /* A string within single quotes can be a symbol, so complete on it. */
5113 sym_text = quote_pos + 1;
5114 else if (quote_found == '"')
5115 /* A double-quoted string is never a symbol, nor does it make sense
5116 to complete it any other way. */
5117 {
5118 return;
5119 }
5120 else
5121 {
5122 /* It is not a quoted string. Break it based on the characters
5123 which are in symbols. */
5124 while (p > text)
5125 {
5126 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5127 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5128 --p;
5129 else
5130 break;
5131 }
5132 sym_text = p;
5133 }
5134 }
5135
5136 lookup_name_info lookup_name (sym_text, name_match_type, true);
5137
5138 /* At this point scan through the misc symbol vectors and add each
5139 symbol you find to the list. Eventually we want to ignore
5140 anything that isn't a text symbol (everything else will be
5141 handled by the psymtab code below). */
5142
5143 if (code == TYPE_CODE_UNDEF)
5144 {
5145 ALL_MSYMBOLS (objfile, msymbol)
5146 {
5147 QUIT;
5148
5149 if (completion_skip_symbol (mode, msymbol))
5150 continue;
5151
5152 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5153 sym_text, word);
5154
5155 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5156 sym_text, word);
5157 }
5158 }
5159
5160 /* Add completions for all currently loaded symbol tables. */
5161 ALL_COMPUNITS (objfile, cust)
5162 add_symtab_completions (cust, tracker, mode, lookup_name,
5163 sym_text, word, code);
5164
5165 /* Look through the partial symtabs for all symbols which begin by
5166 matching SYM_TEXT. Expand all CUs that you find to the list. */
5167 expand_symtabs_matching (NULL,
5168 lookup_name,
5169 NULL,
5170 [&] (compunit_symtab *symtab) /* expansion notify */
5171 {
5172 add_symtab_completions (symtab,
5173 tracker, mode, lookup_name,
5174 sym_text, word, code);
5175 },
5176 ALL_DOMAIN);
5177
5178 /* Search upwards from currently selected frame (so that we can
5179 complete on local vars). Also catch fields of types defined in
5180 this places which match our text string. Only complete on types
5181 visible from current context. */
5182
5183 b = get_selected_block (0);
5184 surrounding_static_block = block_static_block (b);
5185 surrounding_global_block = block_global_block (b);
5186 if (surrounding_static_block != NULL)
5187 while (b != surrounding_static_block)
5188 {
5189 QUIT;
5190
5191 ALL_BLOCK_SYMBOLS (b, iter, sym)
5192 {
5193 if (code == TYPE_CODE_UNDEF)
5194 {
5195 completion_list_add_symbol (tracker, sym, lookup_name,
5196 sym_text, word);
5197 completion_list_add_fields (tracker, sym, lookup_name,
5198 sym_text, word);
5199 }
5200 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5201 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5202 completion_list_add_symbol (tracker, sym, lookup_name,
5203 sym_text, word);
5204 }
5205
5206 /* Stop when we encounter an enclosing function. Do not stop for
5207 non-inlined functions - the locals of the enclosing function
5208 are in scope for a nested function. */
5209 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5210 break;
5211 b = BLOCK_SUPERBLOCK (b);
5212 }
5213
5214 /* Add fields from the file's types; symbols will be added below. */
5215
5216 if (code == TYPE_CODE_UNDEF)
5217 {
5218 if (surrounding_static_block != NULL)
5219 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5220 completion_list_add_fields (tracker, sym, lookup_name,
5221 sym_text, word);
5222
5223 if (surrounding_global_block != NULL)
5224 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5225 completion_list_add_fields (tracker, sym, lookup_name,
5226 sym_text, word);
5227 }
5228
5229 /* Skip macros if we are completing a struct tag -- arguable but
5230 usually what is expected. */
5231 if (current_language->la_macro_expansion == macro_expansion_c
5232 && code == TYPE_CODE_UNDEF)
5233 {
5234 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5235
5236 /* This adds a macro's name to the current completion list. */
5237 auto add_macro_name = [&] (const char *macro_name,
5238 const macro_definition *,
5239 macro_source_file *,
5240 int)
5241 {
5242 completion_list_add_name (tracker, language_c, macro_name,
5243 lookup_name, sym_text, word);
5244 };
5245
5246 /* Add any macros visible in the default scope. Note that this
5247 may yield the occasional wrong result, because an expression
5248 might be evaluated in a scope other than the default. For
5249 example, if the user types "break file:line if <TAB>", the
5250 resulting expression will be evaluated at "file:line" -- but
5251 at there does not seem to be a way to detect this at
5252 completion time. */
5253 scope = default_macro_scope ();
5254 if (scope)
5255 macro_for_each_in_scope (scope->file, scope->line,
5256 add_macro_name);
5257
5258 /* User-defined macros are always visible. */
5259 macro_for_each (macro_user_macros, add_macro_name);
5260 }
5261 }
5262
5263 void
5264 default_collect_symbol_completion_matches (completion_tracker &tracker,
5265 complete_symbol_mode mode,
5266 symbol_name_match_type name_match_type,
5267 const char *text, const char *word,
5268 enum type_code code)
5269 {
5270 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5271 name_match_type,
5272 text, word, "",
5273 code);
5274 }
5275
5276 /* Collect all symbols (regardless of class) which begin by matching
5277 TEXT. */
5278
5279 void
5280 collect_symbol_completion_matches (completion_tracker &tracker,
5281 complete_symbol_mode mode,
5282 symbol_name_match_type name_match_type,
5283 const char *text, const char *word)
5284 {
5285 current_language->la_collect_symbol_completion_matches (tracker, mode,
5286 name_match_type,
5287 text, word,
5288 TYPE_CODE_UNDEF);
5289 }
5290
5291 /* Like collect_symbol_completion_matches, but only collect
5292 STRUCT_DOMAIN symbols whose type code is CODE. */
5293
5294 void
5295 collect_symbol_completion_matches_type (completion_tracker &tracker,
5296 const char *text, const char *word,
5297 enum type_code code)
5298 {
5299 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5300 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5301
5302 gdb_assert (code == TYPE_CODE_UNION
5303 || code == TYPE_CODE_STRUCT
5304 || code == TYPE_CODE_ENUM);
5305 current_language->la_collect_symbol_completion_matches (tracker, mode,
5306 name_match_type,
5307 text, word, code);
5308 }
5309
5310 /* Like collect_symbol_completion_matches, but collects a list of
5311 symbols defined in all source files named SRCFILE. */
5312
5313 void
5314 collect_file_symbol_completion_matches (completion_tracker &tracker,
5315 complete_symbol_mode mode,
5316 symbol_name_match_type name_match_type,
5317 const char *text, const char *word,
5318 const char *srcfile)
5319 {
5320 /* The symbol we are completing on. Points in same buffer as text. */
5321 const char *sym_text;
5322
5323 /* Now look for the symbol we are supposed to complete on.
5324 FIXME: This should be language-specific. */
5325 if (mode == complete_symbol_mode::LINESPEC)
5326 sym_text = text;
5327 else
5328 {
5329 const char *p;
5330 char quote_found;
5331 const char *quote_pos = NULL;
5332
5333 /* First see if this is a quoted string. */
5334 quote_found = '\0';
5335 for (p = text; *p != '\0'; ++p)
5336 {
5337 if (quote_found != '\0')
5338 {
5339 if (*p == quote_found)
5340 /* Found close quote. */
5341 quote_found = '\0';
5342 else if (*p == '\\' && p[1] == quote_found)
5343 /* A backslash followed by the quote character
5344 doesn't end the string. */
5345 ++p;
5346 }
5347 else if (*p == '\'' || *p == '"')
5348 {
5349 quote_found = *p;
5350 quote_pos = p;
5351 }
5352 }
5353 if (quote_found == '\'')
5354 /* A string within single quotes can be a symbol, so complete on it. */
5355 sym_text = quote_pos + 1;
5356 else if (quote_found == '"')
5357 /* A double-quoted string is never a symbol, nor does it make sense
5358 to complete it any other way. */
5359 {
5360 return;
5361 }
5362 else
5363 {
5364 /* Not a quoted string. */
5365 sym_text = language_search_unquoted_string (text, p);
5366 }
5367 }
5368
5369 lookup_name_info lookup_name (sym_text, name_match_type, true);
5370
5371 /* Go through symtabs for SRCFILE and check the externs and statics
5372 for symbols which match. */
5373 iterate_over_symtabs (srcfile, [&] (symtab *s)
5374 {
5375 add_symtab_completions (SYMTAB_COMPUNIT (s),
5376 tracker, mode, lookup_name,
5377 sym_text, word, TYPE_CODE_UNDEF);
5378 return false;
5379 });
5380 }
5381
5382 /* A helper function for make_source_files_completion_list. It adds
5383 another file name to a list of possible completions, growing the
5384 list as necessary. */
5385
5386 static void
5387 add_filename_to_list (const char *fname, const char *text, const char *word,
5388 completion_list *list)
5389 {
5390 list->emplace_back (make_completion_match_str (fname, text, word));
5391 }
5392
5393 static int
5394 not_interesting_fname (const char *fname)
5395 {
5396 static const char *illegal_aliens[] = {
5397 "_globals_", /* inserted by coff_symtab_read */
5398 NULL
5399 };
5400 int i;
5401
5402 for (i = 0; illegal_aliens[i]; i++)
5403 {
5404 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5405 return 1;
5406 }
5407 return 0;
5408 }
5409
5410 /* An object of this type is passed as the user_data argument to
5411 map_partial_symbol_filenames. */
5412 struct add_partial_filename_data
5413 {
5414 struct filename_seen_cache *filename_seen_cache;
5415 const char *text;
5416 const char *word;
5417 int text_len;
5418 completion_list *list;
5419 };
5420
5421 /* A callback for map_partial_symbol_filenames. */
5422
5423 static void
5424 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5425 void *user_data)
5426 {
5427 struct add_partial_filename_data *data
5428 = (struct add_partial_filename_data *) user_data;
5429
5430 if (not_interesting_fname (filename))
5431 return;
5432 if (!data->filename_seen_cache->seen (filename)
5433 && filename_ncmp (filename, data->text, data->text_len) == 0)
5434 {
5435 /* This file matches for a completion; add it to the
5436 current list of matches. */
5437 add_filename_to_list (filename, data->text, data->word, data->list);
5438 }
5439 else
5440 {
5441 const char *base_name = lbasename (filename);
5442
5443 if (base_name != filename
5444 && !data->filename_seen_cache->seen (base_name)
5445 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5446 add_filename_to_list (base_name, data->text, data->word, data->list);
5447 }
5448 }
5449
5450 /* Return a list of all source files whose names begin with matching
5451 TEXT. The file names are looked up in the symbol tables of this
5452 program. */
5453
5454 completion_list
5455 make_source_files_completion_list (const char *text, const char *word)
5456 {
5457 struct compunit_symtab *cu;
5458 struct symtab *s;
5459 struct objfile *objfile;
5460 size_t text_len = strlen (text);
5461 completion_list list;
5462 const char *base_name;
5463 struct add_partial_filename_data datum;
5464
5465 if (!have_full_symbols () && !have_partial_symbols ())
5466 return list;
5467
5468 filename_seen_cache filenames_seen;
5469
5470 ALL_FILETABS (objfile, cu, s)
5471 {
5472 if (not_interesting_fname (s->filename))
5473 continue;
5474 if (!filenames_seen.seen (s->filename)
5475 && filename_ncmp (s->filename, text, text_len) == 0)
5476 {
5477 /* This file matches for a completion; add it to the current
5478 list of matches. */
5479 add_filename_to_list (s->filename, text, word, &list);
5480 }
5481 else
5482 {
5483 /* NOTE: We allow the user to type a base name when the
5484 debug info records leading directories, but not the other
5485 way around. This is what subroutines of breakpoint
5486 command do when they parse file names. */
5487 base_name = lbasename (s->filename);
5488 if (base_name != s->filename
5489 && !filenames_seen.seen (base_name)
5490 && filename_ncmp (base_name, text, text_len) == 0)
5491 add_filename_to_list (base_name, text, word, &list);
5492 }
5493 }
5494
5495 datum.filename_seen_cache = &filenames_seen;
5496 datum.text = text;
5497 datum.word = word;
5498 datum.text_len = text_len;
5499 datum.list = &list;
5500 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5501 0 /*need_fullname*/);
5502
5503 return list;
5504 }
5505 \f
5506 /* Track MAIN */
5507
5508 /* Return the "main_info" object for the current program space. If
5509 the object has not yet been created, create it and fill in some
5510 default values. */
5511
5512 static struct main_info *
5513 get_main_info (void)
5514 {
5515 struct main_info *info
5516 = (struct main_info *) program_space_data (current_program_space,
5517 main_progspace_key);
5518
5519 if (info == NULL)
5520 {
5521 /* It may seem strange to store the main name in the progspace
5522 and also in whatever objfile happens to see a main name in
5523 its debug info. The reason for this is mainly historical:
5524 gdb returned "main" as the name even if no function named
5525 "main" was defined the program; and this approach lets us
5526 keep compatibility. */
5527 info = XCNEW (struct main_info);
5528 info->language_of_main = language_unknown;
5529 set_program_space_data (current_program_space, main_progspace_key,
5530 info);
5531 }
5532
5533 return info;
5534 }
5535
5536 /* A cleanup to destroy a struct main_info when a progspace is
5537 destroyed. */
5538
5539 static void
5540 main_info_cleanup (struct program_space *pspace, void *data)
5541 {
5542 struct main_info *info = (struct main_info *) data;
5543
5544 if (info != NULL)
5545 xfree (info->name_of_main);
5546 xfree (info);
5547 }
5548
5549 static void
5550 set_main_name (const char *name, enum language lang)
5551 {
5552 struct main_info *info = get_main_info ();
5553
5554 if (info->name_of_main != NULL)
5555 {
5556 xfree (info->name_of_main);
5557 info->name_of_main = NULL;
5558 info->language_of_main = language_unknown;
5559 }
5560 if (name != NULL)
5561 {
5562 info->name_of_main = xstrdup (name);
5563 info->language_of_main = lang;
5564 }
5565 }
5566
5567 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5568 accordingly. */
5569
5570 static void
5571 find_main_name (void)
5572 {
5573 const char *new_main_name;
5574 struct objfile *objfile;
5575
5576 /* First check the objfiles to see whether a debuginfo reader has
5577 picked up the appropriate main name. Historically the main name
5578 was found in a more or less random way; this approach instead
5579 relies on the order of objfile creation -- which still isn't
5580 guaranteed to get the correct answer, but is just probably more
5581 accurate. */
5582 ALL_OBJFILES (objfile)
5583 {
5584 if (objfile->per_bfd->name_of_main != NULL)
5585 {
5586 set_main_name (objfile->per_bfd->name_of_main,
5587 objfile->per_bfd->language_of_main);
5588 return;
5589 }
5590 }
5591
5592 /* Try to see if the main procedure is in Ada. */
5593 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5594 be to add a new method in the language vector, and call this
5595 method for each language until one of them returns a non-empty
5596 name. This would allow us to remove this hard-coded call to
5597 an Ada function. It is not clear that this is a better approach
5598 at this point, because all methods need to be written in a way
5599 such that false positives never be returned. For instance, it is
5600 important that a method does not return a wrong name for the main
5601 procedure if the main procedure is actually written in a different
5602 language. It is easy to guaranty this with Ada, since we use a
5603 special symbol generated only when the main in Ada to find the name
5604 of the main procedure. It is difficult however to see how this can
5605 be guarantied for languages such as C, for instance. This suggests
5606 that order of call for these methods becomes important, which means
5607 a more complicated approach. */
5608 new_main_name = ada_main_name ();
5609 if (new_main_name != NULL)
5610 {
5611 set_main_name (new_main_name, language_ada);
5612 return;
5613 }
5614
5615 new_main_name = d_main_name ();
5616 if (new_main_name != NULL)
5617 {
5618 set_main_name (new_main_name, language_d);
5619 return;
5620 }
5621
5622 new_main_name = go_main_name ();
5623 if (new_main_name != NULL)
5624 {
5625 set_main_name (new_main_name, language_go);
5626 return;
5627 }
5628
5629 new_main_name = pascal_main_name ();
5630 if (new_main_name != NULL)
5631 {
5632 set_main_name (new_main_name, language_pascal);
5633 return;
5634 }
5635
5636 /* The languages above didn't identify the name of the main procedure.
5637 Fallback to "main". */
5638 set_main_name ("main", language_unknown);
5639 }
5640
5641 char *
5642 main_name (void)
5643 {
5644 struct main_info *info = get_main_info ();
5645
5646 if (info->name_of_main == NULL)
5647 find_main_name ();
5648
5649 return info->name_of_main;
5650 }
5651
5652 /* Return the language of the main function. If it is not known,
5653 return language_unknown. */
5654
5655 enum language
5656 main_language (void)
5657 {
5658 struct main_info *info = get_main_info ();
5659
5660 if (info->name_of_main == NULL)
5661 find_main_name ();
5662
5663 return info->language_of_main;
5664 }
5665
5666 /* Handle ``executable_changed'' events for the symtab module. */
5667
5668 static void
5669 symtab_observer_executable_changed (void)
5670 {
5671 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5672 set_main_name (NULL, language_unknown);
5673 }
5674
5675 /* Return 1 if the supplied producer string matches the ARM RealView
5676 compiler (armcc). */
5677
5678 int
5679 producer_is_realview (const char *producer)
5680 {
5681 static const char *const arm_idents[] = {
5682 "ARM C Compiler, ADS",
5683 "Thumb C Compiler, ADS",
5684 "ARM C++ Compiler, ADS",
5685 "Thumb C++ Compiler, ADS",
5686 "ARM/Thumb C/C++ Compiler, RVCT",
5687 "ARM C/C++ Compiler, RVCT"
5688 };
5689 int i;
5690
5691 if (producer == NULL)
5692 return 0;
5693
5694 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5695 if (startswith (producer, arm_idents[i]))
5696 return 1;
5697
5698 return 0;
5699 }
5700
5701 \f
5702
5703 /* The next index to hand out in response to a registration request. */
5704
5705 static int next_aclass_value = LOC_FINAL_VALUE;
5706
5707 /* The maximum number of "aclass" registrations we support. This is
5708 constant for convenience. */
5709 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5710
5711 /* The objects representing the various "aclass" values. The elements
5712 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5713 elements are those registered at gdb initialization time. */
5714
5715 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5716
5717 /* The globally visible pointer. This is separate from 'symbol_impl'
5718 so that it can be const. */
5719
5720 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5721
5722 /* Make sure we saved enough room in struct symbol. */
5723
5724 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5725
5726 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5727 is the ops vector associated with this index. This returns the new
5728 index, which should be used as the aclass_index field for symbols
5729 of this type. */
5730
5731 int
5732 register_symbol_computed_impl (enum address_class aclass,
5733 const struct symbol_computed_ops *ops)
5734 {
5735 int result = next_aclass_value++;
5736
5737 gdb_assert (aclass == LOC_COMPUTED);
5738 gdb_assert (result < MAX_SYMBOL_IMPLS);
5739 symbol_impl[result].aclass = aclass;
5740 symbol_impl[result].ops_computed = ops;
5741
5742 /* Sanity check OPS. */
5743 gdb_assert (ops != NULL);
5744 gdb_assert (ops->tracepoint_var_ref != NULL);
5745 gdb_assert (ops->describe_location != NULL);
5746 gdb_assert (ops->get_symbol_read_needs != NULL);
5747 gdb_assert (ops->read_variable != NULL);
5748
5749 return result;
5750 }
5751
5752 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5753 OPS is the ops vector associated with this index. This returns the
5754 new index, which should be used as the aclass_index field for symbols
5755 of this type. */
5756
5757 int
5758 register_symbol_block_impl (enum address_class aclass,
5759 const struct symbol_block_ops *ops)
5760 {
5761 int result = next_aclass_value++;
5762
5763 gdb_assert (aclass == LOC_BLOCK);
5764 gdb_assert (result < MAX_SYMBOL_IMPLS);
5765 symbol_impl[result].aclass = aclass;
5766 symbol_impl[result].ops_block = ops;
5767
5768 /* Sanity check OPS. */
5769 gdb_assert (ops != NULL);
5770 gdb_assert (ops->find_frame_base_location != NULL);
5771
5772 return result;
5773 }
5774
5775 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5776 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5777 this index. This returns the new index, which should be used as
5778 the aclass_index field for symbols of this type. */
5779
5780 int
5781 register_symbol_register_impl (enum address_class aclass,
5782 const struct symbol_register_ops *ops)
5783 {
5784 int result = next_aclass_value++;
5785
5786 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5787 gdb_assert (result < MAX_SYMBOL_IMPLS);
5788 symbol_impl[result].aclass = aclass;
5789 symbol_impl[result].ops_register = ops;
5790
5791 return result;
5792 }
5793
5794 /* Initialize elements of 'symbol_impl' for the constants in enum
5795 address_class. */
5796
5797 static void
5798 initialize_ordinary_address_classes (void)
5799 {
5800 int i;
5801
5802 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5803 symbol_impl[i].aclass = (enum address_class) i;
5804 }
5805
5806 \f
5807
5808 /* Helper function to initialize the fields of an objfile-owned symbol.
5809 It assumed that *SYM is already all zeroes. */
5810
5811 static void
5812 initialize_objfile_symbol_1 (struct symbol *sym)
5813 {
5814 SYMBOL_OBJFILE_OWNED (sym) = 1;
5815 SYMBOL_SECTION (sym) = -1;
5816 }
5817
5818 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5819
5820 void
5821 initialize_objfile_symbol (struct symbol *sym)
5822 {
5823 memset (sym, 0, sizeof (*sym));
5824 initialize_objfile_symbol_1 (sym);
5825 }
5826
5827 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5828 obstack. */
5829
5830 struct symbol *
5831 allocate_symbol (struct objfile *objfile)
5832 {
5833 struct symbol *result;
5834
5835 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5836 initialize_objfile_symbol_1 (result);
5837
5838 return result;
5839 }
5840
5841 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5842 obstack. */
5843
5844 struct template_symbol *
5845 allocate_template_symbol (struct objfile *objfile)
5846 {
5847 struct template_symbol *result;
5848
5849 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5850 initialize_objfile_symbol_1 (result);
5851
5852 return result;
5853 }
5854
5855 /* See symtab.h. */
5856
5857 struct objfile *
5858 symbol_objfile (const struct symbol *symbol)
5859 {
5860 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5861 return SYMTAB_OBJFILE (symbol->owner.symtab);
5862 }
5863
5864 /* See symtab.h. */
5865
5866 struct gdbarch *
5867 symbol_arch (const struct symbol *symbol)
5868 {
5869 if (!SYMBOL_OBJFILE_OWNED (symbol))
5870 return symbol->owner.arch;
5871 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5872 }
5873
5874 /* See symtab.h. */
5875
5876 struct symtab *
5877 symbol_symtab (const struct symbol *symbol)
5878 {
5879 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5880 return symbol->owner.symtab;
5881 }
5882
5883 /* See symtab.h. */
5884
5885 void
5886 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5887 {
5888 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5889 symbol->owner.symtab = symtab;
5890 }
5891
5892 \f
5893
5894 void
5895 _initialize_symtab (void)
5896 {
5897 initialize_ordinary_address_classes ();
5898
5899 main_progspace_key
5900 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5901
5902 symbol_cache_key
5903 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5904
5905 add_info ("variables", info_variables_command, _("\
5906 All global and static variable names, or those matching REGEXP."));
5907 if (dbx_commands)
5908 add_com ("whereis", class_info, info_variables_command, _("\
5909 All global and static variable names, or those matching REGEXP."));
5910
5911 add_info ("functions", info_functions_command,
5912 _("All function names, or those matching REGEXP."));
5913
5914 /* FIXME: This command has at least the following problems:
5915 1. It prints builtin types (in a very strange and confusing fashion).
5916 2. It doesn't print right, e.g. with
5917 typedef struct foo *FOO
5918 type_print prints "FOO" when we want to make it (in this situation)
5919 print "struct foo *".
5920 I also think "ptype" or "whatis" is more likely to be useful (but if
5921 there is much disagreement "info types" can be fixed). */
5922 add_info ("types", info_types_command,
5923 _("All type names, or those matching REGEXP."));
5924
5925 add_info ("sources", info_sources_command,
5926 _("Source files in the program."));
5927
5928 add_com ("rbreak", class_breakpoint, rbreak_command,
5929 _("Set a breakpoint for all functions matching REGEXP."));
5930
5931 add_setshow_enum_cmd ("multiple-symbols", no_class,
5932 multiple_symbols_modes, &multiple_symbols_mode,
5933 _("\
5934 Set the debugger behavior when more than one symbol are possible matches\n\
5935 in an expression."), _("\
5936 Show how the debugger handles ambiguities in expressions."), _("\
5937 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5938 NULL, NULL, &setlist, &showlist);
5939
5940 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5941 &basenames_may_differ, _("\
5942 Set whether a source file may have multiple base names."), _("\
5943 Show whether a source file may have multiple base names."), _("\
5944 (A \"base name\" is the name of a file with the directory part removed.\n\
5945 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5946 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5947 before comparing them. Canonicalization is an expensive operation,\n\
5948 but it allows the same file be known by more than one base name.\n\
5949 If not set (the default), all source files are assumed to have just\n\
5950 one base name, and gdb will do file name comparisons more efficiently."),
5951 NULL, NULL,
5952 &setlist, &showlist);
5953
5954 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5955 _("Set debugging of symbol table creation."),
5956 _("Show debugging of symbol table creation."), _("\
5957 When enabled (non-zero), debugging messages are printed when building\n\
5958 symbol tables. A value of 1 (one) normally provides enough information.\n\
5959 A value greater than 1 provides more verbose information."),
5960 NULL,
5961 NULL,
5962 &setdebuglist, &showdebuglist);
5963
5964 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5965 _("\
5966 Set debugging of symbol lookup."), _("\
5967 Show debugging of symbol lookup."), _("\
5968 When enabled (non-zero), symbol lookups are logged."),
5969 NULL, NULL,
5970 &setdebuglist, &showdebuglist);
5971
5972 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5973 &new_symbol_cache_size,
5974 _("Set the size of the symbol cache."),
5975 _("Show the size of the symbol cache."), _("\
5976 The size of the symbol cache.\n\
5977 If zero then the symbol cache is disabled."),
5978 set_symbol_cache_size_handler, NULL,
5979 &maintenance_set_cmdlist,
5980 &maintenance_show_cmdlist);
5981
5982 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5983 _("Dump the symbol cache for each program space."),
5984 &maintenanceprintlist);
5985
5986 add_cmd ("symbol-cache-statistics", class_maintenance,
5987 maintenance_print_symbol_cache_statistics,
5988 _("Print symbol cache statistics for each program space."),
5989 &maintenanceprintlist);
5990
5991 add_cmd ("flush-symbol-cache", class_maintenance,
5992 maintenance_flush_symbol_cache,
5993 _("Flush the symbol cache for each program space."),
5994 &maintenancelist);
5995
5996 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
5997 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
5998 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
5999 }
This page took 0.160125 seconds and 5 git commands to generate.