Fix compile warning in symtab.c
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117 };
118
119 /* Program space key for finding name and language of "main". */
120
121 static const program_space_key<main_info> main_progspace_key;
122
123 /* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130 /* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135 /* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137 #define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141 /* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144 enum symbol_cache_slot_state
145 {
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149 };
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 };
183
184 /* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187 struct block_symbol_cache
188 {
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200 };
201
202 /* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212 struct symbol_cache
213 {
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224 };
225
226 /* Program space key for finding its symbol cache. */
227
228 static const program_space_key<symbol_cache> symbol_cache_key;
229
230 /* When non-zero, print debugging messages related to symtab creation. */
231 unsigned int symtab_create_debug = 0;
232
233 /* When non-zero, print debugging messages related to symbol lookup. */
234 unsigned int symbol_lookup_debug = 0;
235
236 /* The size of the cache is staged here. */
237 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239 /* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244 /* Non-zero if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247 int basenames_may_differ = 0;
248
249 /* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253 const char multiple_symbols_ask[] = "ask";
254 const char multiple_symbols_all[] = "all";
255 const char multiple_symbols_cancel[] = "cancel";
256 static const char *const multiple_symbols_modes[] =
257 {
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262 };
263 static const char *multiple_symbols_mode = multiple_symbols_all;
264
265 /* Read-only accessor to AUTO_SELECT_MODE. */
266
267 const char *
268 multiple_symbols_select_mode (void)
269 {
270 return multiple_symbols_mode;
271 }
272
273 /* Return the name of a domain_enum. */
274
275 const char *
276 domain_name (domain_enum e)
277 {
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288 }
289
290 /* Return the name of a search_domain . */
291
292 const char *
293 search_domain_name (enum search_domain e)
294 {
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303 }
304
305 /* See symtab.h. */
306
307 struct symtab *
308 compunit_primary_filetab (const struct compunit_symtab *cust)
309 {
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314 }
315
316 /* See symtab.h. */
317
318 enum language
319 compunit_language (const struct compunit_symtab *cust)
320 {
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323 /* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326 }
327
328 /* See symtab.h. */
329
330 bool
331 minimal_symbol::data_p () const
332 {
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338 }
339
340 /* See symtab.h. */
341
342 bool
343 minimal_symbol::text_p () const
344 {
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351 }
352
353 /* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358 int
359 compare_filenames_for_search (const char *filename, const char *search_name)
360 {
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return 0;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return 0;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389 }
390
391 /* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396 int
397 compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399 {
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return 0;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423 }
424
425 /* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439 bool
440 iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445 {
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501 void
502 iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504 {
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535 }
536
537 /* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540 struct symtab *
541 lookup_symtab (const char *name)
542 {
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552 }
553
554 \f
555 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560 char *
561 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 {
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639 }
640
641 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644 void
645 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648 {
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664 }
665
666 /* Return the demangled name of GSYMBOL. */
667
668 const char *
669 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 {
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679 }
680
681 \f
682 /* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685 void
686 symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689 {
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709 }
710
711 /* Functions to initialize a symbol's mangled name. */
712
713 /* Objects of this type are stored in the demangled name hash table. */
714 struct demangled_name_entry
715 {
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719 };
720
721 /* Hash function for the demangled name hash. */
722
723 static hashval_t
724 hash_demangled_name_entry (const void *data)
725 {
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730 }
731
732 /* Equality function for the demangled name hash. */
733
734 static int
735 eq_demangled_name_entry (const void *a, const void *b)
736 {
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743 }
744
745 /* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749 static void
750 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 {
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760 }
761
762 /* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768 static char *
769 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771 {
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799 }
800
801 /* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812 void
813 symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, int copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816 {
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926 }
927
928 /* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931 const char *
932 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 {
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950 }
951
952 /* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955 const char *
956 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 {
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976 }
977
978 /* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983 const char *
984 symbol_search_name (const struct general_symbol_info *gsymbol)
985 {
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990 }
991
992 /* See symtab.h. */
993
994 bool
995 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997 {
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001 }
1002
1003 \f
1004
1005 /* Return 1 if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009 int
1010 matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012 {
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return 1;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return 0;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return 0;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return 0;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1037 return 0;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_get_section_vma (first->owner, first)
1041 - bfd_get_start_address (first->owner)
1042 != bfd_get_section_vma (second->owner, second)
1043 - bfd_get_start_address (second->owner))
1044 return 0;
1045
1046 if (bfd_get_section_name (first->owner, first) == NULL
1047 || bfd_get_section_name (second->owner, second) == NULL
1048 || strcmp (bfd_get_section_name (first->owner, first),
1049 bfd_get_section_name (second->owner, second)) != 0)
1050 return 0;
1051
1052 /* Otherwise check that they are in corresponding objfiles. */
1053
1054 struct objfile *obj = NULL;
1055 for (objfile *objfile : current_program_space->objfiles ())
1056 if (objfile->obfd == first->owner)
1057 {
1058 obj = objfile;
1059 break;
1060 }
1061 gdb_assert (obj != NULL);
1062
1063 if (obj->separate_debug_objfile != NULL
1064 && obj->separate_debug_objfile->obfd == second->owner)
1065 return 1;
1066 if (obj->separate_debug_objfile_backlink != NULL
1067 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1068 return 1;
1069
1070 return 0;
1071 }
1072
1073 /* See symtab.h. */
1074
1075 void
1076 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1077 {
1078 struct bound_minimal_symbol msymbol;
1079
1080 /* If we know that this is not a text address, return failure. This is
1081 necessary because we loop based on texthigh and textlow, which do
1082 not include the data ranges. */
1083 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1084 if (msymbol.minsym && msymbol.minsym->data_p ())
1085 return;
1086
1087 for (objfile *objfile : current_program_space->objfiles ())
1088 {
1089 struct compunit_symtab *cust = NULL;
1090
1091 if (objfile->sf)
1092 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1093 pc, section, 0);
1094 if (cust)
1095 return;
1096 }
1097 }
1098 \f
1099 /* Hash function for the symbol cache. */
1100
1101 static unsigned int
1102 hash_symbol_entry (const struct objfile *objfile_context,
1103 const char *name, domain_enum domain)
1104 {
1105 unsigned int hash = (uintptr_t) objfile_context;
1106
1107 if (name != NULL)
1108 hash += htab_hash_string (name);
1109
1110 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1111 to map to the same slot. */
1112 if (domain == STRUCT_DOMAIN)
1113 hash += VAR_DOMAIN * 7;
1114 else
1115 hash += domain * 7;
1116
1117 return hash;
1118 }
1119
1120 /* Equality function for the symbol cache. */
1121
1122 static int
1123 eq_symbol_entry (const struct symbol_cache_slot *slot,
1124 const struct objfile *objfile_context,
1125 const char *name, domain_enum domain)
1126 {
1127 const char *slot_name;
1128 domain_enum slot_domain;
1129
1130 if (slot->state == SYMBOL_SLOT_UNUSED)
1131 return 0;
1132
1133 if (slot->objfile_context != objfile_context)
1134 return 0;
1135
1136 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1137 {
1138 slot_name = slot->value.not_found.name;
1139 slot_domain = slot->value.not_found.domain;
1140 }
1141 else
1142 {
1143 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1144 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1145 }
1146
1147 /* NULL names match. */
1148 if (slot_name == NULL && name == NULL)
1149 {
1150 /* But there's no point in calling symbol_matches_domain in the
1151 SYMBOL_SLOT_FOUND case. */
1152 if (slot_domain != domain)
1153 return 0;
1154 }
1155 else if (slot_name != NULL && name != NULL)
1156 {
1157 /* It's important that we use the same comparison that was done
1158 the first time through. If the slot records a found symbol,
1159 then this means using the symbol name comparison function of
1160 the symbol's language with SYMBOL_SEARCH_NAME. See
1161 dictionary.c. It also means using symbol_matches_domain for
1162 found symbols. See block.c.
1163
1164 If the slot records a not-found symbol, then require a precise match.
1165 We could still be lax with whitespace like strcmp_iw though. */
1166
1167 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1168 {
1169 if (strcmp (slot_name, name) != 0)
1170 return 0;
1171 if (slot_domain != domain)
1172 return 0;
1173 }
1174 else
1175 {
1176 struct symbol *sym = slot->value.found.symbol;
1177 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1178
1179 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1180 return 0;
1181
1182 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1183 slot_domain, domain))
1184 return 0;
1185 }
1186 }
1187 else
1188 {
1189 /* Only one name is NULL. */
1190 return 0;
1191 }
1192
1193 return 1;
1194 }
1195
1196 /* Given a cache of size SIZE, return the size of the struct (with variable
1197 length array) in bytes. */
1198
1199 static size_t
1200 symbol_cache_byte_size (unsigned int size)
1201 {
1202 return (sizeof (struct block_symbol_cache)
1203 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1204 }
1205
1206 /* Resize CACHE. */
1207
1208 static void
1209 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1210 {
1211 /* If there's no change in size, don't do anything.
1212 All caches have the same size, so we can just compare with the size
1213 of the global symbols cache. */
1214 if ((cache->global_symbols != NULL
1215 && cache->global_symbols->size == new_size)
1216 || (cache->global_symbols == NULL
1217 && new_size == 0))
1218 return;
1219
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1222
1223 if (new_size == 0)
1224 {
1225 cache->global_symbols = NULL;
1226 cache->static_symbols = NULL;
1227 }
1228 else
1229 {
1230 size_t total_size = symbol_cache_byte_size (new_size);
1231
1232 cache->global_symbols
1233 = (struct block_symbol_cache *) xcalloc (1, total_size);
1234 cache->static_symbols
1235 = (struct block_symbol_cache *) xcalloc (1, total_size);
1236 cache->global_symbols->size = new_size;
1237 cache->static_symbols->size = new_size;
1238 }
1239 }
1240
1241 /* Return the symbol cache of PSPACE.
1242 Create one if it doesn't exist yet. */
1243
1244 static struct symbol_cache *
1245 get_symbol_cache (struct program_space *pspace)
1246 {
1247 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1248
1249 if (cache == NULL)
1250 {
1251 cache = symbol_cache_key.emplace (pspace);
1252 resize_symbol_cache (cache, symbol_cache_size);
1253 }
1254
1255 return cache;
1256 }
1257
1258 /* Set the size of the symbol cache in all program spaces. */
1259
1260 static void
1261 set_symbol_cache_size (unsigned int new_size)
1262 {
1263 struct program_space *pspace;
1264
1265 ALL_PSPACES (pspace)
1266 {
1267 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273 }
1274
1275 /* Called when symbol-cache-size is set. */
1276
1277 static void
1278 set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280 {
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293 }
1294
1295 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1301 can be used to save the result of a full lookup attempt. */
1302
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, enum block_enum block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1309 {
1310 struct block_symbol_cache *bsc;
1311 unsigned int hash;
1312 struct symbol_cache_slot *slot;
1313
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1316 else
1317 bsc = cache->static_symbols;
1318 if (bsc == NULL)
1319 {
1320 *bsc_ptr = NULL;
1321 *slot_ptr = NULL;
1322 return {};
1323 }
1324
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1327
1328 *bsc_ptr = bsc;
1329 *slot_ptr = slot;
1330
1331 if (eq_symbol_entry (slot, objfile_context, name, domain))
1332 {
1333 if (symbol_lookup_debug)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "%s block symbol cache hit%s for %s, %s\n",
1336 block == GLOBAL_BLOCK ? "Global" : "Static",
1337 slot->state == SYMBOL_SLOT_NOT_FOUND
1338 ? " (not found)" : "",
1339 name, domain_name (domain));
1340 ++bsc->hits;
1341 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1342 return SYMBOL_LOOKUP_FAILED;
1343 return slot->value.found;
1344 }
1345
1346 /* Symbol is not present in the cache. */
1347
1348 if (symbol_lookup_debug)
1349 {
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1354 }
1355 ++bsc->misses;
1356 return {};
1357 }
1358
1359 /* Clear out SLOT. */
1360
1361 static void
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1363 {
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1367 }
1368
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1373
1374 static void
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1380 {
1381 if (bsc == NULL)
1382 return;
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1384 {
1385 ++bsc->collisions;
1386 symbol_cache_clear_slot (slot);
1387 }
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1392 }
1393
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1397
1398 static void
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1403 {
1404 if (bsc == NULL)
1405 return;
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1407 {
1408 ++bsc->collisions;
1409 symbol_cache_clear_slot (slot);
1410 }
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1415 }
1416
1417 /* Flush the symbol cache of PSPACE. */
1418
1419 static void
1420 symbol_cache_flush (struct program_space *pspace)
1421 {
1422 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1423 int pass;
1424
1425 if (cache == NULL)
1426 return;
1427 if (cache->global_symbols == NULL)
1428 {
1429 gdb_assert (symbol_cache_size == 0);
1430 gdb_assert (cache->static_symbols == NULL);
1431 return;
1432 }
1433
1434 /* If the cache is untouched since the last flush, early exit.
1435 This is important for performance during the startup of a program linked
1436 with 100s (or 1000s) of shared libraries. */
1437 if (cache->global_symbols->misses == 0
1438 && cache->static_symbols->misses == 0)
1439 return;
1440
1441 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1442 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1443
1444 for (pass = 0; pass < 2; ++pass)
1445 {
1446 struct block_symbol_cache *bsc
1447 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1448 unsigned int i;
1449
1450 for (i = 0; i < bsc->size; ++i)
1451 symbol_cache_clear_slot (&bsc->symbols[i]);
1452 }
1453
1454 cache->global_symbols->hits = 0;
1455 cache->global_symbols->misses = 0;
1456 cache->global_symbols->collisions = 0;
1457 cache->static_symbols->hits = 0;
1458 cache->static_symbols->misses = 0;
1459 cache->static_symbols->collisions = 0;
1460 }
1461
1462 /* Dump CACHE. */
1463
1464 static void
1465 symbol_cache_dump (const struct symbol_cache *cache)
1466 {
1467 int pass;
1468
1469 if (cache->global_symbols == NULL)
1470 {
1471 printf_filtered (" <disabled>\n");
1472 return;
1473 }
1474
1475 for (pass = 0; pass < 2; ++pass)
1476 {
1477 const struct block_symbol_cache *bsc
1478 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1479 unsigned int i;
1480
1481 if (pass == 0)
1482 printf_filtered ("Global symbols:\n");
1483 else
1484 printf_filtered ("Static symbols:\n");
1485
1486 for (i = 0; i < bsc->size; ++i)
1487 {
1488 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1489
1490 QUIT;
1491
1492 switch (slot->state)
1493 {
1494 case SYMBOL_SLOT_UNUSED:
1495 break;
1496 case SYMBOL_SLOT_NOT_FOUND:
1497 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1498 host_address_to_string (slot->objfile_context),
1499 slot->value.not_found.name,
1500 domain_name (slot->value.not_found.domain));
1501 break;
1502 case SYMBOL_SLOT_FOUND:
1503 {
1504 struct symbol *found = slot->value.found.symbol;
1505 const struct objfile *context = slot->objfile_context;
1506
1507 printf_filtered (" [%4u] = %s, %s %s\n", i,
1508 host_address_to_string (context),
1509 SYMBOL_PRINT_NAME (found),
1510 domain_name (SYMBOL_DOMAIN (found)));
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 }
1517
1518 /* The "mt print symbol-cache" command. */
1519
1520 static void
1521 maintenance_print_symbol_cache (const char *args, int from_tty)
1522 {
1523 struct program_space *pspace;
1524
1525 ALL_PSPACES (pspace)
1526 {
1527 struct symbol_cache *cache;
1528
1529 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1530 pspace->num,
1531 pspace->symfile_object_file != NULL
1532 ? objfile_name (pspace->symfile_object_file)
1533 : "(no object file)");
1534
1535 /* If the cache hasn't been created yet, avoid creating one. */
1536 cache = symbol_cache_key.get (pspace);
1537 if (cache == NULL)
1538 printf_filtered (" <empty>\n");
1539 else
1540 symbol_cache_dump (cache);
1541 }
1542 }
1543
1544 /* The "mt flush-symbol-cache" command. */
1545
1546 static void
1547 maintenance_flush_symbol_cache (const char *args, int from_tty)
1548 {
1549 struct program_space *pspace;
1550
1551 ALL_PSPACES (pspace)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 struct program_space *pspace;
1595
1596 ALL_PSPACES (pspace)
1597 {
1598 struct symbol_cache *cache;
1599
1600 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1601 pspace->num,
1602 pspace->symfile_object_file != NULL
1603 ? objfile_name (pspace->symfile_object_file)
1604 : "(no object file)");
1605
1606 /* If the cache hasn't been created yet, avoid creating one. */
1607 cache = symbol_cache_key.get (pspace);
1608 if (cache == NULL)
1609 printf_filtered (" empty, no stats available\n");
1610 else
1611 symbol_cache_stats (cache);
1612 }
1613 }
1614
1615 /* This module's 'new_objfile' observer. */
1616
1617 static void
1618 symtab_new_objfile_observer (struct objfile *objfile)
1619 {
1620 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1621 symbol_cache_flush (current_program_space);
1622 }
1623
1624 /* This module's 'free_objfile' observer. */
1625
1626 static void
1627 symtab_free_objfile_observer (struct objfile *objfile)
1628 {
1629 symbol_cache_flush (objfile->pspace);
1630 }
1631 \f
1632 /* Debug symbols usually don't have section information. We need to dig that
1633 out of the minimal symbols and stash that in the debug symbol. */
1634
1635 void
1636 fixup_section (struct general_symbol_info *ginfo,
1637 CORE_ADDR addr, struct objfile *objfile)
1638 {
1639 struct minimal_symbol *msym;
1640
1641 /* First, check whether a minimal symbol with the same name exists
1642 and points to the same address. The address check is required
1643 e.g. on PowerPC64, where the minimal symbol for a function will
1644 point to the function descriptor, while the debug symbol will
1645 point to the actual function code. */
1646 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1647 if (msym)
1648 ginfo->section = MSYMBOL_SECTION (msym);
1649 else
1650 {
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1659 names.
1660
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset (i.e. the
1664 ANOFFSET value) needs to be subtracted from these values when
1665 performing the comparison. We unconditionally subtract it,
1666 because, when no relocation has been performed, the ANOFFSET
1667 value will simply be zero.
1668
1669 The address of the symbol whose section we're fixing up HAS
1670 NOT BEEN adjusted (relocated) yet. It can't have been since
1671 the section isn't yet known and knowing the section is
1672 necessary in order to add the correct relocation value. In
1673 other words, we wouldn't even be in this function (attempting
1674 to compute the section) if it were already known.
1675
1676 Note that it is possible to search the minimal symbols
1677 (subtracting the relocation value if necessary) to find the
1678 matching minimal symbol, but this is overkill and much less
1679 efficient. It is not necessary to find the matching minimal
1680 symbol, only its section.
1681
1682 Note that this technique (of doing a section table search)
1683 can fail when unrelocated section addresses overlap. For
1684 this reason, we still attempt a lookup by name prior to doing
1685 a search of the section table. */
1686
1687 struct obj_section *s;
1688 int fallback = -1;
1689
1690 ALL_OBJFILE_OSECTIONS (objfile, s)
1691 {
1692 int idx = s - objfile->sections;
1693 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1694
1695 if (fallback == -1)
1696 fallback = idx;
1697
1698 if (obj_section_addr (s) - offset <= addr
1699 && addr < obj_section_endaddr (s) - offset)
1700 {
1701 ginfo->section = idx;
1702 return;
1703 }
1704 }
1705
1706 /* If we didn't find the section, assume it is in the first
1707 section. If there is no allocated section, then it hardly
1708 matters what we pick, so just pick zero. */
1709 if (fallback == -1)
1710 ginfo->section = 0;
1711 else
1712 ginfo->section = fallback;
1713 }
1714 }
1715
1716 struct symbol *
1717 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1718 {
1719 CORE_ADDR addr;
1720
1721 if (!sym)
1722 return NULL;
1723
1724 if (!SYMBOL_OBJFILE_OWNED (sym))
1725 return sym;
1726
1727 /* We either have an OBJFILE, or we can get at it from the sym's
1728 symtab. Anything else is a bug. */
1729 gdb_assert (objfile || symbol_symtab (sym));
1730
1731 if (objfile == NULL)
1732 objfile = symbol_objfile (sym);
1733
1734 if (SYMBOL_OBJ_SECTION (objfile, sym))
1735 return sym;
1736
1737 /* We should have an objfile by now. */
1738 gdb_assert (objfile);
1739
1740 switch (SYMBOL_CLASS (sym))
1741 {
1742 case LOC_STATIC:
1743 case LOC_LABEL:
1744 addr = SYMBOL_VALUE_ADDRESS (sym);
1745 break;
1746 case LOC_BLOCK:
1747 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1748 break;
1749
1750 default:
1751 /* Nothing else will be listed in the minsyms -- no use looking
1752 it up. */
1753 return sym;
1754 }
1755
1756 fixup_section (&sym->ginfo, addr, objfile);
1757
1758 return sym;
1759 }
1760
1761 /* See symtab.h. */
1762
1763 demangle_for_lookup_info::demangle_for_lookup_info
1764 (const lookup_name_info &lookup_name, language lang)
1765 {
1766 demangle_result_storage storage;
1767
1768 if (lookup_name.ignore_parameters () && lang == language_cplus)
1769 {
1770 gdb::unique_xmalloc_ptr<char> without_params
1771 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1772 lookup_name.completion_mode ());
1773
1774 if (without_params != NULL)
1775 {
1776 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1777 m_demangled_name = demangle_for_lookup (without_params.get (),
1778 lang, storage);
1779 return;
1780 }
1781 }
1782
1783 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1784 m_demangled_name = lookup_name.name ();
1785 else
1786 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1787 lang, storage);
1788 }
1789
1790 /* See symtab.h. */
1791
1792 const lookup_name_info &
1793 lookup_name_info::match_any ()
1794 {
1795 /* Lookup any symbol that "" would complete. I.e., this matches all
1796 symbol names. */
1797 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1798 true);
1799
1800 return lookup_name;
1801 }
1802
1803 /* Compute the demangled form of NAME as used by the various symbol
1804 lookup functions. The result can either be the input NAME
1805 directly, or a pointer to a buffer owned by the STORAGE object.
1806
1807 For Ada, this function just returns NAME, unmodified.
1808 Normally, Ada symbol lookups are performed using the encoded name
1809 rather than the demangled name, and so it might seem to make sense
1810 for this function to return an encoded version of NAME.
1811 Unfortunately, we cannot do this, because this function is used in
1812 circumstances where it is not appropriate to try to encode NAME.
1813 For instance, when displaying the frame info, we demangle the name
1814 of each parameter, and then perform a symbol lookup inside our
1815 function using that demangled name. In Ada, certain functions
1816 have internally-generated parameters whose name contain uppercase
1817 characters. Encoding those name would result in those uppercase
1818 characters to become lowercase, and thus cause the symbol lookup
1819 to fail. */
1820
1821 const char *
1822 demangle_for_lookup (const char *name, enum language lang,
1823 demangle_result_storage &storage)
1824 {
1825 /* If we are using C++, D, or Go, demangle the name before doing a
1826 lookup, so we can always binary search. */
1827 if (lang == language_cplus)
1828 {
1829 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1830 if (demangled_name != NULL)
1831 return storage.set_malloc_ptr (demangled_name);
1832
1833 /* If we were given a non-mangled name, canonicalize it
1834 according to the language (so far only for C++). */
1835 std::string canon = cp_canonicalize_string (name);
1836 if (!canon.empty ())
1837 return storage.swap_string (canon);
1838 }
1839 else if (lang == language_d)
1840 {
1841 char *demangled_name = d_demangle (name, 0);
1842 if (demangled_name != NULL)
1843 return storage.set_malloc_ptr (demangled_name);
1844 }
1845 else if (lang == language_go)
1846 {
1847 char *demangled_name = go_demangle (name, 0);
1848 if (demangled_name != NULL)
1849 return storage.set_malloc_ptr (demangled_name);
1850 }
1851
1852 return name;
1853 }
1854
1855 /* See symtab.h. */
1856
1857 unsigned int
1858 search_name_hash (enum language language, const char *search_name)
1859 {
1860 return language_def (language)->la_search_name_hash (search_name);
1861 }
1862
1863 /* See symtab.h.
1864
1865 This function (or rather its subordinates) have a bunch of loops and
1866 it would seem to be attractive to put in some QUIT's (though I'm not really
1867 sure whether it can run long enough to be really important). But there
1868 are a few calls for which it would appear to be bad news to quit
1869 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1870 that there is C++ code below which can error(), but that probably
1871 doesn't affect these calls since they are looking for a known
1872 variable and thus can probably assume it will never hit the C++
1873 code). */
1874
1875 struct block_symbol
1876 lookup_symbol_in_language (const char *name, const struct block *block,
1877 const domain_enum domain, enum language lang,
1878 struct field_of_this_result *is_a_field_of_this)
1879 {
1880 demangle_result_storage storage;
1881 const char *modified_name = demangle_for_lookup (name, lang, storage);
1882
1883 return lookup_symbol_aux (modified_name,
1884 symbol_name_match_type::FULL,
1885 block, domain, lang,
1886 is_a_field_of_this);
1887 }
1888
1889 /* See symtab.h. */
1890
1891 struct block_symbol
1892 lookup_symbol (const char *name, const struct block *block,
1893 domain_enum domain,
1894 struct field_of_this_result *is_a_field_of_this)
1895 {
1896 return lookup_symbol_in_language (name, block, domain,
1897 current_language->la_language,
1898 is_a_field_of_this);
1899 }
1900
1901 /* See symtab.h. */
1902
1903 struct block_symbol
1904 lookup_symbol_search_name (const char *search_name, const struct block *block,
1905 domain_enum domain)
1906 {
1907 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1908 block, domain, language_asm, NULL);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_language_this (const struct language_defn *lang,
1915 const struct block *block)
1916 {
1917 if (lang->la_name_of_this == NULL || block == NULL)
1918 return {};
1919
1920 if (symbol_lookup_debug > 1)
1921 {
1922 struct objfile *objfile = lookup_objfile_from_block (block);
1923
1924 fprintf_unfiltered (gdb_stdlog,
1925 "lookup_language_this (%s, %s (objfile %s))",
1926 lang->la_name, host_address_to_string (block),
1927 objfile_debug_name (objfile));
1928 }
1929
1930 while (block)
1931 {
1932 struct symbol *sym;
1933
1934 sym = block_lookup_symbol (block, lang->la_name_of_this,
1935 symbol_name_match_type::SEARCH_NAME,
1936 VAR_DOMAIN);
1937 if (sym != NULL)
1938 {
1939 if (symbol_lookup_debug > 1)
1940 {
1941 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1942 SYMBOL_PRINT_NAME (sym),
1943 host_address_to_string (sym),
1944 host_address_to_string (block));
1945 }
1946 return (struct block_symbol) {sym, block};
1947 }
1948 if (BLOCK_FUNCTION (block))
1949 break;
1950 block = BLOCK_SUPERBLOCK (block);
1951 }
1952
1953 if (symbol_lookup_debug > 1)
1954 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1955 return {};
1956 }
1957
1958 /* Given TYPE, a structure/union,
1959 return 1 if the component named NAME from the ultimate target
1960 structure/union is defined, otherwise, return 0. */
1961
1962 static int
1963 check_field (struct type *type, const char *name,
1964 struct field_of_this_result *is_a_field_of_this)
1965 {
1966 int i;
1967
1968 /* The type may be a stub. */
1969 type = check_typedef (type);
1970
1971 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1972 {
1973 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1974
1975 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1976 {
1977 is_a_field_of_this->type = type;
1978 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1979 return 1;
1980 }
1981 }
1982
1983 /* C++: If it was not found as a data field, then try to return it
1984 as a pointer to a method. */
1985
1986 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1987 {
1988 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1989 {
1990 is_a_field_of_this->type = type;
1991 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1992 return 1;
1993 }
1994 }
1995
1996 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1997 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1998 return 1;
1999
2000 return 0;
2001 }
2002
2003 /* Behave like lookup_symbol except that NAME is the natural name
2004 (e.g., demangled name) of the symbol that we're looking for. */
2005
2006 static struct block_symbol
2007 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2008 const struct block *block,
2009 const domain_enum domain, enum language language,
2010 struct field_of_this_result *is_a_field_of_this)
2011 {
2012 struct block_symbol result;
2013 const struct language_defn *langdef;
2014
2015 if (symbol_lookup_debug)
2016 {
2017 struct objfile *objfile = lookup_objfile_from_block (block);
2018
2019 fprintf_unfiltered (gdb_stdlog,
2020 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2021 name, host_address_to_string (block),
2022 objfile != NULL
2023 ? objfile_debug_name (objfile) : "NULL",
2024 domain_name (domain), language_str (language));
2025 }
2026
2027 /* Make sure we do something sensible with is_a_field_of_this, since
2028 the callers that set this parameter to some non-null value will
2029 certainly use it later. If we don't set it, the contents of
2030 is_a_field_of_this are undefined. */
2031 if (is_a_field_of_this != NULL)
2032 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2033
2034 /* Search specified block and its superiors. Don't search
2035 STATIC_BLOCK or GLOBAL_BLOCK. */
2036
2037 result = lookup_local_symbol (name, match_type, block, domain, language);
2038 if (result.symbol != NULL)
2039 {
2040 if (symbol_lookup_debug)
2041 {
2042 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2043 host_address_to_string (result.symbol));
2044 }
2045 return result;
2046 }
2047
2048 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2049 check to see if NAME is a field of `this'. */
2050
2051 langdef = language_def (language);
2052
2053 /* Don't do this check if we are searching for a struct. It will
2054 not be found by check_field, but will be found by other
2055 means. */
2056 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2057 {
2058 result = lookup_language_this (langdef, block);
2059
2060 if (result.symbol)
2061 {
2062 struct type *t = result.symbol->type;
2063
2064 /* I'm not really sure that type of this can ever
2065 be typedefed; just be safe. */
2066 t = check_typedef (t);
2067 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2068 t = TYPE_TARGET_TYPE (t);
2069
2070 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2071 && TYPE_CODE (t) != TYPE_CODE_UNION)
2072 error (_("Internal error: `%s' is not an aggregate"),
2073 langdef->la_name_of_this);
2074
2075 if (check_field (t, name, is_a_field_of_this))
2076 {
2077 if (symbol_lookup_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog,
2080 "lookup_symbol_aux (...) = NULL\n");
2081 }
2082 return {};
2083 }
2084 }
2085 }
2086
2087 /* Now do whatever is appropriate for LANGUAGE to look
2088 up static and global variables. */
2089
2090 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2091 if (result.symbol != NULL)
2092 {
2093 if (symbol_lookup_debug)
2094 {
2095 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2096 host_address_to_string (result.symbol));
2097 }
2098 return result;
2099 }
2100
2101 /* Now search all static file-level symbols. Not strictly correct,
2102 but more useful than an error. */
2103
2104 result = lookup_static_symbol (name, domain);
2105 if (symbol_lookup_debug)
2106 {
2107 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2108 result.symbol != NULL
2109 ? host_address_to_string (result.symbol)
2110 : "NULL");
2111 }
2112 return result;
2113 }
2114
2115 /* Check to see if the symbol is defined in BLOCK or its superiors.
2116 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2117
2118 static struct block_symbol
2119 lookup_local_symbol (const char *name,
2120 symbol_name_match_type match_type,
2121 const struct block *block,
2122 const domain_enum domain,
2123 enum language language)
2124 {
2125 struct symbol *sym;
2126 const struct block *static_block = block_static_block (block);
2127 const char *scope = block_scope (block);
2128
2129 /* Check if either no block is specified or it's a global block. */
2130
2131 if (static_block == NULL)
2132 return {};
2133
2134 while (block != static_block)
2135 {
2136 sym = lookup_symbol_in_block (name, match_type, block, domain);
2137 if (sym != NULL)
2138 return (struct block_symbol) {sym, block};
2139
2140 if (language == language_cplus || language == language_fortran)
2141 {
2142 struct block_symbol blocksym
2143 = cp_lookup_symbol_imports_or_template (scope, name, block,
2144 domain);
2145
2146 if (blocksym.symbol != NULL)
2147 return blocksym;
2148 }
2149
2150 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2151 break;
2152 block = BLOCK_SUPERBLOCK (block);
2153 }
2154
2155 /* We've reached the end of the function without finding a result. */
2156
2157 return {};
2158 }
2159
2160 /* See symtab.h. */
2161
2162 struct objfile *
2163 lookup_objfile_from_block (const struct block *block)
2164 {
2165 if (block == NULL)
2166 return NULL;
2167
2168 block = block_global_block (block);
2169 /* Look through all blockvectors. */
2170 for (objfile *obj : current_program_space->objfiles ())
2171 {
2172 for (compunit_symtab *cust : obj->compunits ())
2173 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2174 GLOBAL_BLOCK))
2175 {
2176 if (obj->separate_debug_objfile_backlink)
2177 obj = obj->separate_debug_objfile_backlink;
2178
2179 return obj;
2180 }
2181 }
2182
2183 return NULL;
2184 }
2185
2186 /* See symtab.h. */
2187
2188 struct symbol *
2189 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2190 const struct block *block,
2191 const domain_enum domain)
2192 {
2193 struct symbol *sym;
2194
2195 if (symbol_lookup_debug > 1)
2196 {
2197 struct objfile *objfile = lookup_objfile_from_block (block);
2198
2199 fprintf_unfiltered (gdb_stdlog,
2200 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2201 name, host_address_to_string (block),
2202 objfile_debug_name (objfile),
2203 domain_name (domain));
2204 }
2205
2206 sym = block_lookup_symbol (block, name, match_type, domain);
2207 if (sym)
2208 {
2209 if (symbol_lookup_debug > 1)
2210 {
2211 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2212 host_address_to_string (sym));
2213 }
2214 return fixup_symbol_section (sym, NULL);
2215 }
2216
2217 if (symbol_lookup_debug > 1)
2218 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2219 return NULL;
2220 }
2221
2222 /* See symtab.h. */
2223
2224 struct block_symbol
2225 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2226 enum block_enum block_index,
2227 const char *name,
2228 const domain_enum domain)
2229 {
2230 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2231
2232 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2233 {
2234 struct block_symbol result
2235 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2236
2237 if (result.symbol != nullptr)
2238 return result;
2239 }
2240
2241 return {};
2242 }
2243
2244 /* Check to see if the symbol is defined in one of the OBJFILE's
2245 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2246 depending on whether or not we want to search global symbols or
2247 static symbols. */
2248
2249 static struct block_symbol
2250 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2251 enum block_enum block_index, const char *name,
2252 const domain_enum domain)
2253 {
2254 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2255
2256 if (symbol_lookup_debug > 1)
2257 {
2258 fprintf_unfiltered (gdb_stdlog,
2259 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2260 objfile_debug_name (objfile),
2261 block_index == GLOBAL_BLOCK
2262 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2263 name, domain_name (domain));
2264 }
2265
2266 for (compunit_symtab *cust : objfile->compunits ())
2267 {
2268 const struct blockvector *bv;
2269 const struct block *block;
2270 struct block_symbol result;
2271
2272 bv = COMPUNIT_BLOCKVECTOR (cust);
2273 block = BLOCKVECTOR_BLOCK (bv, block_index);
2274 result.symbol = block_lookup_symbol_primary (block, name, domain);
2275 result.block = block;
2276 if (result.symbol != NULL)
2277 {
2278 if (symbol_lookup_debug > 1)
2279 {
2280 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2281 host_address_to_string (result.symbol),
2282 host_address_to_string (block));
2283 }
2284 result.symbol = fixup_symbol_section (result.symbol, objfile);
2285 return result;
2286
2287 }
2288 }
2289
2290 if (symbol_lookup_debug > 1)
2291 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2292 return {};
2293 }
2294
2295 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2296 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2297 and all associated separate debug objfiles.
2298
2299 Normally we only look in OBJFILE, and not any separate debug objfiles
2300 because the outer loop will cause them to be searched too. This case is
2301 different. Here we're called from search_symbols where it will only
2302 call us for the objfile that contains a matching minsym. */
2303
2304 static struct block_symbol
2305 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2306 const char *linkage_name,
2307 domain_enum domain)
2308 {
2309 enum language lang = current_language->la_language;
2310 struct objfile *main_objfile;
2311
2312 demangle_result_storage storage;
2313 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2314
2315 if (objfile->separate_debug_objfile_backlink)
2316 main_objfile = objfile->separate_debug_objfile_backlink;
2317 else
2318 main_objfile = objfile;
2319
2320 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2321 {
2322 struct block_symbol result;
2323
2324 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2325 modified_name, domain);
2326 if (result.symbol == NULL)
2327 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2328 modified_name, domain);
2329 if (result.symbol != NULL)
2330 return result;
2331 }
2332
2333 return {};
2334 }
2335
2336 /* A helper function that throws an exception when a symbol was found
2337 in a psymtab but not in a symtab. */
2338
2339 static void ATTRIBUTE_NORETURN
2340 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2341 struct compunit_symtab *cust)
2342 {
2343 error (_("\
2344 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2345 %s may be an inlined function, or may be a template function\n \
2346 (if a template, try specifying an instantiation: %s<type>)."),
2347 block_index == GLOBAL_BLOCK ? "global" : "static",
2348 name,
2349 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2350 name, name);
2351 }
2352
2353 /* A helper function for various lookup routines that interfaces with
2354 the "quick" symbol table functions. */
2355
2356 static struct block_symbol
2357 lookup_symbol_via_quick_fns (struct objfile *objfile,
2358 enum block_enum block_index, const char *name,
2359 const domain_enum domain)
2360 {
2361 struct compunit_symtab *cust;
2362 const struct blockvector *bv;
2363 const struct block *block;
2364 struct block_symbol result;
2365
2366 if (!objfile->sf)
2367 return {};
2368
2369 if (symbol_lookup_debug > 1)
2370 {
2371 fprintf_unfiltered (gdb_stdlog,
2372 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2373 objfile_debug_name (objfile),
2374 block_index == GLOBAL_BLOCK
2375 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2376 name, domain_name (domain));
2377 }
2378
2379 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2380 if (cust == NULL)
2381 {
2382 if (symbol_lookup_debug > 1)
2383 {
2384 fprintf_unfiltered (gdb_stdlog,
2385 "lookup_symbol_via_quick_fns (...) = NULL\n");
2386 }
2387 return {};
2388 }
2389
2390 bv = COMPUNIT_BLOCKVECTOR (cust);
2391 block = BLOCKVECTOR_BLOCK (bv, block_index);
2392 result.symbol = block_lookup_symbol (block, name,
2393 symbol_name_match_type::FULL, domain);
2394 if (result.symbol == NULL)
2395 error_in_psymtab_expansion (block_index, name, cust);
2396
2397 if (symbol_lookup_debug > 1)
2398 {
2399 fprintf_unfiltered (gdb_stdlog,
2400 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2401 host_address_to_string (result.symbol),
2402 host_address_to_string (block));
2403 }
2404
2405 result.symbol = fixup_symbol_section (result.symbol, objfile);
2406 result.block = block;
2407 return result;
2408 }
2409
2410 /* See symtab.h. */
2411
2412 struct block_symbol
2413 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2414 const char *name,
2415 const struct block *block,
2416 const domain_enum domain)
2417 {
2418 struct block_symbol result;
2419
2420 /* NOTE: carlton/2003-05-19: The comments below were written when
2421 this (or what turned into this) was part of lookup_symbol_aux;
2422 I'm much less worried about these questions now, since these
2423 decisions have turned out well, but I leave these comments here
2424 for posterity. */
2425
2426 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2427 not it would be appropriate to search the current global block
2428 here as well. (That's what this code used to do before the
2429 is_a_field_of_this check was moved up.) On the one hand, it's
2430 redundant with the lookup in all objfiles search that happens
2431 next. On the other hand, if decode_line_1 is passed an argument
2432 like filename:var, then the user presumably wants 'var' to be
2433 searched for in filename. On the third hand, there shouldn't be
2434 multiple global variables all of which are named 'var', and it's
2435 not like decode_line_1 has ever restricted its search to only
2436 global variables in a single filename. All in all, only
2437 searching the static block here seems best: it's correct and it's
2438 cleanest. */
2439
2440 /* NOTE: carlton/2002-12-05: There's also a possible performance
2441 issue here: if you usually search for global symbols in the
2442 current file, then it would be slightly better to search the
2443 current global block before searching all the symtabs. But there
2444 are other factors that have a much greater effect on performance
2445 than that one, so I don't think we should worry about that for
2446 now. */
2447
2448 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2449 the current objfile. Searching the current objfile first is useful
2450 for both matching user expectations as well as performance. */
2451
2452 result = lookup_symbol_in_static_block (name, block, domain);
2453 if (result.symbol != NULL)
2454 return result;
2455
2456 /* If we didn't find a definition for a builtin type in the static block,
2457 search for it now. This is actually the right thing to do and can be
2458 a massive performance win. E.g., when debugging a program with lots of
2459 shared libraries we could search all of them only to find out the
2460 builtin type isn't defined in any of them. This is common for types
2461 like "void". */
2462 if (domain == VAR_DOMAIN)
2463 {
2464 struct gdbarch *gdbarch;
2465
2466 if (block == NULL)
2467 gdbarch = target_gdbarch ();
2468 else
2469 gdbarch = block_gdbarch (block);
2470 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2471 gdbarch, name);
2472 result.block = NULL;
2473 if (result.symbol != NULL)
2474 return result;
2475 }
2476
2477 return lookup_global_symbol (name, block, domain);
2478 }
2479
2480 /* See symtab.h. */
2481
2482 struct block_symbol
2483 lookup_symbol_in_static_block (const char *name,
2484 const struct block *block,
2485 const domain_enum domain)
2486 {
2487 const struct block *static_block = block_static_block (block);
2488 struct symbol *sym;
2489
2490 if (static_block == NULL)
2491 return {};
2492
2493 if (symbol_lookup_debug)
2494 {
2495 struct objfile *objfile = lookup_objfile_from_block (static_block);
2496
2497 fprintf_unfiltered (gdb_stdlog,
2498 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2499 " %s)\n",
2500 name,
2501 host_address_to_string (block),
2502 objfile_debug_name (objfile),
2503 domain_name (domain));
2504 }
2505
2506 sym = lookup_symbol_in_block (name,
2507 symbol_name_match_type::FULL,
2508 static_block, domain);
2509 if (symbol_lookup_debug)
2510 {
2511 fprintf_unfiltered (gdb_stdlog,
2512 "lookup_symbol_in_static_block (...) = %s\n",
2513 sym != NULL ? host_address_to_string (sym) : "NULL");
2514 }
2515 return (struct block_symbol) {sym, static_block};
2516 }
2517
2518 /* Perform the standard symbol lookup of NAME in OBJFILE:
2519 1) First search expanded symtabs, and if not found
2520 2) Search the "quick" symtabs (partial or .gdb_index).
2521 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2522
2523 static struct block_symbol
2524 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2525 const char *name, const domain_enum domain)
2526 {
2527 struct block_symbol result;
2528
2529 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2530
2531 if (symbol_lookup_debug)
2532 {
2533 fprintf_unfiltered (gdb_stdlog,
2534 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2535 objfile_debug_name (objfile),
2536 block_index == GLOBAL_BLOCK
2537 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2538 name, domain_name (domain));
2539 }
2540
2541 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2542 name, domain);
2543 if (result.symbol != NULL)
2544 {
2545 if (symbol_lookup_debug)
2546 {
2547 fprintf_unfiltered (gdb_stdlog,
2548 "lookup_symbol_in_objfile (...) = %s"
2549 " (in symtabs)\n",
2550 host_address_to_string (result.symbol));
2551 }
2552 return result;
2553 }
2554
2555 result = lookup_symbol_via_quick_fns (objfile, block_index,
2556 name, domain);
2557 if (symbol_lookup_debug)
2558 {
2559 fprintf_unfiltered (gdb_stdlog,
2560 "lookup_symbol_in_objfile (...) = %s%s\n",
2561 result.symbol != NULL
2562 ? host_address_to_string (result.symbol)
2563 : "NULL",
2564 result.symbol != NULL ? " (via quick fns)" : "");
2565 }
2566 return result;
2567 }
2568
2569 /* See symtab.h. */
2570
2571 struct block_symbol
2572 lookup_static_symbol (const char *name, const domain_enum domain)
2573 {
2574 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2575 struct block_symbol result;
2576 struct block_symbol_cache *bsc;
2577 struct symbol_cache_slot *slot;
2578
2579 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2580 NULL for OBJFILE_CONTEXT. */
2581 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2582 &bsc, &slot);
2583 if (result.symbol != NULL)
2584 {
2585 if (SYMBOL_LOOKUP_FAILED_P (result))
2586 return {};
2587 return result;
2588 }
2589
2590 for (objfile *objfile : current_program_space->objfiles ())
2591 {
2592 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2593 if (result.symbol != NULL)
2594 {
2595 /* Still pass NULL for OBJFILE_CONTEXT here. */
2596 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2597 result.block);
2598 return result;
2599 }
2600 }
2601
2602 /* Still pass NULL for OBJFILE_CONTEXT here. */
2603 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2604 return {};
2605 }
2606
2607 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2608
2609 struct global_sym_lookup_data
2610 {
2611 /* The name of the symbol we are searching for. */
2612 const char *name;
2613
2614 /* The domain to use for our search. */
2615 domain_enum domain;
2616
2617 /* The field where the callback should store the symbol if found.
2618 It should be initialized to {NULL, NULL} before the search is started. */
2619 struct block_symbol result;
2620 };
2621
2622 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2623 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2624 OBJFILE. The arguments for the search are passed via CB_DATA,
2625 which in reality is a pointer to struct global_sym_lookup_data. */
2626
2627 static int
2628 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2629 void *cb_data)
2630 {
2631 struct global_sym_lookup_data *data =
2632 (struct global_sym_lookup_data *) cb_data;
2633
2634 gdb_assert (data->result.symbol == NULL
2635 && data->result.block == NULL);
2636
2637 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2638 data->name, data->domain);
2639
2640 /* If we found a match, tell the iterator to stop. Otherwise,
2641 keep going. */
2642 return (data->result.symbol != NULL);
2643 }
2644
2645 /* See symtab.h. */
2646
2647 struct block_symbol
2648 lookup_global_symbol (const char *name,
2649 const struct block *block,
2650 const domain_enum domain)
2651 {
2652 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2653 struct block_symbol result;
2654 struct objfile *objfile;
2655 struct global_sym_lookup_data lookup_data;
2656 struct block_symbol_cache *bsc;
2657 struct symbol_cache_slot *slot;
2658
2659 objfile = lookup_objfile_from_block (block);
2660
2661 /* First see if we can find the symbol in the cache.
2662 This works because we use the current objfile to qualify the lookup. */
2663 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2664 &bsc, &slot);
2665 if (result.symbol != NULL)
2666 {
2667 if (SYMBOL_LOOKUP_FAILED_P (result))
2668 return {};
2669 return result;
2670 }
2671
2672 /* Call library-specific lookup procedure. */
2673 if (objfile != NULL)
2674 result = solib_global_lookup (objfile, name, domain);
2675
2676 /* If that didn't work go a global search (of global blocks, heh). */
2677 if (result.symbol == NULL)
2678 {
2679 memset (&lookup_data, 0, sizeof (lookup_data));
2680 lookup_data.name = name;
2681 lookup_data.domain = domain;
2682 gdbarch_iterate_over_objfiles_in_search_order
2683 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2684 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2685 result = lookup_data.result;
2686 }
2687
2688 if (result.symbol != NULL)
2689 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2690 else
2691 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2692
2693 return result;
2694 }
2695
2696 int
2697 symbol_matches_domain (enum language symbol_language,
2698 domain_enum symbol_domain,
2699 domain_enum domain)
2700 {
2701 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2702 Similarly, any Ada type declaration implicitly defines a typedef. */
2703 if (symbol_language == language_cplus
2704 || symbol_language == language_d
2705 || symbol_language == language_ada
2706 || symbol_language == language_rust)
2707 {
2708 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2709 && symbol_domain == STRUCT_DOMAIN)
2710 return 1;
2711 }
2712 /* For all other languages, strict match is required. */
2713 return (symbol_domain == domain);
2714 }
2715
2716 /* See symtab.h. */
2717
2718 struct type *
2719 lookup_transparent_type (const char *name)
2720 {
2721 return current_language->la_lookup_transparent_type (name);
2722 }
2723
2724 /* A helper for basic_lookup_transparent_type that interfaces with the
2725 "quick" symbol table functions. */
2726
2727 static struct type *
2728 basic_lookup_transparent_type_quick (struct objfile *objfile,
2729 enum block_enum block_index,
2730 const char *name)
2731 {
2732 struct compunit_symtab *cust;
2733 const struct blockvector *bv;
2734 const struct block *block;
2735 struct symbol *sym;
2736
2737 if (!objfile->sf)
2738 return NULL;
2739 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2740 STRUCT_DOMAIN);
2741 if (cust == NULL)
2742 return NULL;
2743
2744 bv = COMPUNIT_BLOCKVECTOR (cust);
2745 block = BLOCKVECTOR_BLOCK (bv, block_index);
2746 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2747 block_find_non_opaque_type, NULL);
2748 if (sym == NULL)
2749 error_in_psymtab_expansion (block_index, name, cust);
2750 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2751 return SYMBOL_TYPE (sym);
2752 }
2753
2754 /* Subroutine of basic_lookup_transparent_type to simplify it.
2755 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2756 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2757
2758 static struct type *
2759 basic_lookup_transparent_type_1 (struct objfile *objfile,
2760 enum block_enum block_index,
2761 const char *name)
2762 {
2763 const struct blockvector *bv;
2764 const struct block *block;
2765 const struct symbol *sym;
2766
2767 for (compunit_symtab *cust : objfile->compunits ())
2768 {
2769 bv = COMPUNIT_BLOCKVECTOR (cust);
2770 block = BLOCKVECTOR_BLOCK (bv, block_index);
2771 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2772 block_find_non_opaque_type, NULL);
2773 if (sym != NULL)
2774 {
2775 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2776 return SYMBOL_TYPE (sym);
2777 }
2778 }
2779
2780 return NULL;
2781 }
2782
2783 /* The standard implementation of lookup_transparent_type. This code
2784 was modeled on lookup_symbol -- the parts not relevant to looking
2785 up types were just left out. In particular it's assumed here that
2786 types are available in STRUCT_DOMAIN and only in file-static or
2787 global blocks. */
2788
2789 struct type *
2790 basic_lookup_transparent_type (const char *name)
2791 {
2792 struct type *t;
2793
2794 /* Now search all the global symbols. Do the symtab's first, then
2795 check the psymtab's. If a psymtab indicates the existence
2796 of the desired name as a global, then do psymtab-to-symtab
2797 conversion on the fly and return the found symbol. */
2798
2799 for (objfile *objfile : current_program_space->objfiles ())
2800 {
2801 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2802 if (t)
2803 return t;
2804 }
2805
2806 for (objfile *objfile : current_program_space->objfiles ())
2807 {
2808 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2809 if (t)
2810 return t;
2811 }
2812
2813 /* Now search the static file-level symbols.
2814 Not strictly correct, but more useful than an error.
2815 Do the symtab's first, then
2816 check the psymtab's. If a psymtab indicates the existence
2817 of the desired name as a file-level static, then do psymtab-to-symtab
2818 conversion on the fly and return the found symbol. */
2819
2820 for (objfile *objfile : current_program_space->objfiles ())
2821 {
2822 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2823 if (t)
2824 return t;
2825 }
2826
2827 for (objfile *objfile : current_program_space->objfiles ())
2828 {
2829 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2830 if (t)
2831 return t;
2832 }
2833
2834 return (struct type *) 0;
2835 }
2836
2837 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2838
2839 For each symbol that matches, CALLBACK is called. The symbol is
2840 passed to the callback.
2841
2842 If CALLBACK returns false, the iteration ends. Otherwise, the
2843 search continues. */
2844
2845 void
2846 iterate_over_symbols (const struct block *block,
2847 const lookup_name_info &name,
2848 const domain_enum domain,
2849 gdb::function_view<symbol_found_callback_ftype> callback)
2850 {
2851 struct block_iterator iter;
2852 struct symbol *sym;
2853
2854 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2855 {
2856 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2857 SYMBOL_DOMAIN (sym), domain))
2858 {
2859 struct block_symbol block_sym = {sym, block};
2860
2861 if (!callback (&block_sym))
2862 return;
2863 }
2864 }
2865 }
2866
2867 /* Find the compunit symtab associated with PC and SECTION.
2868 This will read in debug info as necessary. */
2869
2870 struct compunit_symtab *
2871 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2872 {
2873 struct compunit_symtab *best_cust = NULL;
2874 CORE_ADDR distance = 0;
2875 struct bound_minimal_symbol msymbol;
2876
2877 /* If we know that this is not a text address, return failure. This is
2878 necessary because we loop based on the block's high and low code
2879 addresses, which do not include the data ranges, and because
2880 we call find_pc_sect_psymtab which has a similar restriction based
2881 on the partial_symtab's texthigh and textlow. */
2882 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2883 if (msymbol.minsym && msymbol.minsym->data_p ())
2884 return NULL;
2885
2886 /* Search all symtabs for the one whose file contains our address, and which
2887 is the smallest of all the ones containing the address. This is designed
2888 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2889 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2890 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2891
2892 This happens for native ecoff format, where code from included files
2893 gets its own symtab. The symtab for the included file should have
2894 been read in already via the dependency mechanism.
2895 It might be swifter to create several symtabs with the same name
2896 like xcoff does (I'm not sure).
2897
2898 It also happens for objfiles that have their functions reordered.
2899 For these, the symtab we are looking for is not necessarily read in. */
2900
2901 for (objfile *obj_file : current_program_space->objfiles ())
2902 {
2903 for (compunit_symtab *cust : obj_file->compunits ())
2904 {
2905 const struct block *b;
2906 const struct blockvector *bv;
2907
2908 bv = COMPUNIT_BLOCKVECTOR (cust);
2909 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2910
2911 if (BLOCK_START (b) <= pc
2912 && BLOCK_END (b) > pc
2913 && (distance == 0
2914 || BLOCK_END (b) - BLOCK_START (b) < distance))
2915 {
2916 /* For an objfile that has its functions reordered,
2917 find_pc_psymtab will find the proper partial symbol table
2918 and we simply return its corresponding symtab. */
2919 /* In order to better support objfiles that contain both
2920 stabs and coff debugging info, we continue on if a psymtab
2921 can't be found. */
2922 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2923 {
2924 struct compunit_symtab *result;
2925
2926 result
2927 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2928 msymbol,
2929 pc,
2930 section,
2931 0);
2932 if (result != NULL)
2933 return result;
2934 }
2935 if (section != 0)
2936 {
2937 struct block_iterator iter;
2938 struct symbol *sym = NULL;
2939
2940 ALL_BLOCK_SYMBOLS (b, iter, sym)
2941 {
2942 fixup_symbol_section (sym, obj_file);
2943 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2944 sym),
2945 section))
2946 break;
2947 }
2948 if (sym == NULL)
2949 continue; /* No symbol in this symtab matches
2950 section. */
2951 }
2952 distance = BLOCK_END (b) - BLOCK_START (b);
2953 best_cust = cust;
2954 }
2955 }
2956 }
2957
2958 if (best_cust != NULL)
2959 return best_cust;
2960
2961 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2962
2963 for (objfile *objf : current_program_space->objfiles ())
2964 {
2965 struct compunit_symtab *result;
2966
2967 if (!objf->sf)
2968 continue;
2969 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2970 msymbol,
2971 pc, section,
2972 1);
2973 if (result != NULL)
2974 return result;
2975 }
2976
2977 return NULL;
2978 }
2979
2980 /* Find the compunit symtab associated with PC.
2981 This will read in debug info as necessary.
2982 Backward compatibility, no section. */
2983
2984 struct compunit_symtab *
2985 find_pc_compunit_symtab (CORE_ADDR pc)
2986 {
2987 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2988 }
2989
2990 /* See symtab.h. */
2991
2992 struct symbol *
2993 find_symbol_at_address (CORE_ADDR address)
2994 {
2995 for (objfile *objfile : current_program_space->objfiles ())
2996 {
2997 if (objfile->sf == NULL
2998 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2999 continue;
3000
3001 struct compunit_symtab *symtab
3002 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3003 if (symtab != NULL)
3004 {
3005 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3006
3007 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3008 {
3009 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3010 struct block_iterator iter;
3011 struct symbol *sym;
3012
3013 ALL_BLOCK_SYMBOLS (b, iter, sym)
3014 {
3015 if (SYMBOL_CLASS (sym) == LOC_STATIC
3016 && SYMBOL_VALUE_ADDRESS (sym) == address)
3017 return sym;
3018 }
3019 }
3020 }
3021 }
3022
3023 return NULL;
3024 }
3025
3026 \f
3027
3028 /* Find the source file and line number for a given PC value and SECTION.
3029 Return a structure containing a symtab pointer, a line number,
3030 and a pc range for the entire source line.
3031 The value's .pc field is NOT the specified pc.
3032 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3033 use the line that ends there. Otherwise, in that case, the line
3034 that begins there is used. */
3035
3036 /* The big complication here is that a line may start in one file, and end just
3037 before the start of another file. This usually occurs when you #include
3038 code in the middle of a subroutine. To properly find the end of a line's PC
3039 range, we must search all symtabs associated with this compilation unit, and
3040 find the one whose first PC is closer than that of the next line in this
3041 symtab. */
3042
3043 struct symtab_and_line
3044 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3045 {
3046 struct compunit_symtab *cust;
3047 struct linetable *l;
3048 int len;
3049 struct linetable_entry *item;
3050 const struct blockvector *bv;
3051 struct bound_minimal_symbol msymbol;
3052
3053 /* Info on best line seen so far, and where it starts, and its file. */
3054
3055 struct linetable_entry *best = NULL;
3056 CORE_ADDR best_end = 0;
3057 struct symtab *best_symtab = 0;
3058
3059 /* Store here the first line number
3060 of a file which contains the line at the smallest pc after PC.
3061 If we don't find a line whose range contains PC,
3062 we will use a line one less than this,
3063 with a range from the start of that file to the first line's pc. */
3064 struct linetable_entry *alt = NULL;
3065
3066 /* Info on best line seen in this file. */
3067
3068 struct linetable_entry *prev;
3069
3070 /* If this pc is not from the current frame,
3071 it is the address of the end of a call instruction.
3072 Quite likely that is the start of the following statement.
3073 But what we want is the statement containing the instruction.
3074 Fudge the pc to make sure we get that. */
3075
3076 /* It's tempting to assume that, if we can't find debugging info for
3077 any function enclosing PC, that we shouldn't search for line
3078 number info, either. However, GAS can emit line number info for
3079 assembly files --- very helpful when debugging hand-written
3080 assembly code. In such a case, we'd have no debug info for the
3081 function, but we would have line info. */
3082
3083 if (notcurrent)
3084 pc -= 1;
3085
3086 /* elz: added this because this function returned the wrong
3087 information if the pc belongs to a stub (import/export)
3088 to call a shlib function. This stub would be anywhere between
3089 two functions in the target, and the line info was erroneously
3090 taken to be the one of the line before the pc. */
3091
3092 /* RT: Further explanation:
3093
3094 * We have stubs (trampolines) inserted between procedures.
3095 *
3096 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3097 * exists in the main image.
3098 *
3099 * In the minimal symbol table, we have a bunch of symbols
3100 * sorted by start address. The stubs are marked as "trampoline",
3101 * the others appear as text. E.g.:
3102 *
3103 * Minimal symbol table for main image
3104 * main: code for main (text symbol)
3105 * shr1: stub (trampoline symbol)
3106 * foo: code for foo (text symbol)
3107 * ...
3108 * Minimal symbol table for "shr1" image:
3109 * ...
3110 * shr1: code for shr1 (text symbol)
3111 * ...
3112 *
3113 * So the code below is trying to detect if we are in the stub
3114 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3115 * and if found, do the symbolization from the real-code address
3116 * rather than the stub address.
3117 *
3118 * Assumptions being made about the minimal symbol table:
3119 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3120 * if we're really in the trampoline.s If we're beyond it (say
3121 * we're in "foo" in the above example), it'll have a closer
3122 * symbol (the "foo" text symbol for example) and will not
3123 * return the trampoline.
3124 * 2. lookup_minimal_symbol_text() will find a real text symbol
3125 * corresponding to the trampoline, and whose address will
3126 * be different than the trampoline address. I put in a sanity
3127 * check for the address being the same, to avoid an
3128 * infinite recursion.
3129 */
3130 msymbol = lookup_minimal_symbol_by_pc (pc);
3131 if (msymbol.minsym != NULL)
3132 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3133 {
3134 struct bound_minimal_symbol mfunsym
3135 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3136 NULL);
3137
3138 if (mfunsym.minsym == NULL)
3139 /* I eliminated this warning since it is coming out
3140 * in the following situation:
3141 * gdb shmain // test program with shared libraries
3142 * (gdb) break shr1 // function in shared lib
3143 * Warning: In stub for ...
3144 * In the above situation, the shared lib is not loaded yet,
3145 * so of course we can't find the real func/line info,
3146 * but the "break" still works, and the warning is annoying.
3147 * So I commented out the warning. RT */
3148 /* warning ("In stub for %s; unable to find real function/line info",
3149 SYMBOL_LINKAGE_NAME (msymbol)); */
3150 ;
3151 /* fall through */
3152 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3153 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3154 /* Avoid infinite recursion */
3155 /* See above comment about why warning is commented out. */
3156 /* warning ("In stub for %s; unable to find real function/line info",
3157 SYMBOL_LINKAGE_NAME (msymbol)); */
3158 ;
3159 /* fall through */
3160 else
3161 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3162 }
3163
3164 symtab_and_line val;
3165 val.pspace = current_program_space;
3166
3167 cust = find_pc_sect_compunit_symtab (pc, section);
3168 if (cust == NULL)
3169 {
3170 /* If no symbol information, return previous pc. */
3171 if (notcurrent)
3172 pc++;
3173 val.pc = pc;
3174 return val;
3175 }
3176
3177 bv = COMPUNIT_BLOCKVECTOR (cust);
3178
3179 /* Look at all the symtabs that share this blockvector.
3180 They all have the same apriori range, that we found was right;
3181 but they have different line tables. */
3182
3183 for (symtab *iter_s : compunit_filetabs (cust))
3184 {
3185 /* Find the best line in this symtab. */
3186 l = SYMTAB_LINETABLE (iter_s);
3187 if (!l)
3188 continue;
3189 len = l->nitems;
3190 if (len <= 0)
3191 {
3192 /* I think len can be zero if the symtab lacks line numbers
3193 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3194 I'm not sure which, and maybe it depends on the symbol
3195 reader). */
3196 continue;
3197 }
3198
3199 prev = NULL;
3200 item = l->item; /* Get first line info. */
3201
3202 /* Is this file's first line closer than the first lines of other files?
3203 If so, record this file, and its first line, as best alternate. */
3204 if (item->pc > pc && (!alt || item->pc < alt->pc))
3205 alt = item;
3206
3207 auto pc_compare = [](const CORE_ADDR & comp_pc,
3208 const struct linetable_entry & lhs)->bool
3209 {
3210 return comp_pc < lhs.pc;
3211 };
3212
3213 struct linetable_entry *first = item;
3214 struct linetable_entry *last = item + len;
3215 item = std::upper_bound (first, last, pc, pc_compare);
3216 if (item != first)
3217 prev = item - 1; /* Found a matching item. */
3218
3219 /* At this point, prev points at the line whose start addr is <= pc, and
3220 item points at the next line. If we ran off the end of the linetable
3221 (pc >= start of the last line), then prev == item. If pc < start of
3222 the first line, prev will not be set. */
3223
3224 /* Is this file's best line closer than the best in the other files?
3225 If so, record this file, and its best line, as best so far. Don't
3226 save prev if it represents the end of a function (i.e. line number
3227 0) instead of a real line. */
3228
3229 if (prev && prev->line && (!best || prev->pc > best->pc))
3230 {
3231 best = prev;
3232 best_symtab = iter_s;
3233
3234 /* Discard BEST_END if it's before the PC of the current BEST. */
3235 if (best_end <= best->pc)
3236 best_end = 0;
3237 }
3238
3239 /* If another line (denoted by ITEM) is in the linetable and its
3240 PC is after BEST's PC, but before the current BEST_END, then
3241 use ITEM's PC as the new best_end. */
3242 if (best && item < last && item->pc > best->pc
3243 && (best_end == 0 || best_end > item->pc))
3244 best_end = item->pc;
3245 }
3246
3247 if (!best_symtab)
3248 {
3249 /* If we didn't find any line number info, just return zeros.
3250 We used to return alt->line - 1 here, but that could be
3251 anywhere; if we don't have line number info for this PC,
3252 don't make some up. */
3253 val.pc = pc;
3254 }
3255 else if (best->line == 0)
3256 {
3257 /* If our best fit is in a range of PC's for which no line
3258 number info is available (line number is zero) then we didn't
3259 find any valid line information. */
3260 val.pc = pc;
3261 }
3262 else
3263 {
3264 val.symtab = best_symtab;
3265 val.line = best->line;
3266 val.pc = best->pc;
3267 if (best_end && (!alt || best_end < alt->pc))
3268 val.end = best_end;
3269 else if (alt)
3270 val.end = alt->pc;
3271 else
3272 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3273 }
3274 val.section = section;
3275 return val;
3276 }
3277
3278 /* Backward compatibility (no section). */
3279
3280 struct symtab_and_line
3281 find_pc_line (CORE_ADDR pc, int notcurrent)
3282 {
3283 struct obj_section *section;
3284
3285 section = find_pc_overlay (pc);
3286 if (pc_in_unmapped_range (pc, section))
3287 pc = overlay_mapped_address (pc, section);
3288 return find_pc_sect_line (pc, section, notcurrent);
3289 }
3290
3291 /* See symtab.h. */
3292
3293 struct symtab *
3294 find_pc_line_symtab (CORE_ADDR pc)
3295 {
3296 struct symtab_and_line sal;
3297
3298 /* This always passes zero for NOTCURRENT to find_pc_line.
3299 There are currently no callers that ever pass non-zero. */
3300 sal = find_pc_line (pc, 0);
3301 return sal.symtab;
3302 }
3303 \f
3304 /* Find line number LINE in any symtab whose name is the same as
3305 SYMTAB.
3306
3307 If found, return the symtab that contains the linetable in which it was
3308 found, set *INDEX to the index in the linetable of the best entry
3309 found, and set *EXACT_MATCH nonzero if the value returned is an
3310 exact match.
3311
3312 If not found, return NULL. */
3313
3314 struct symtab *
3315 find_line_symtab (struct symtab *sym_tab, int line,
3316 int *index, int *exact_match)
3317 {
3318 int exact = 0; /* Initialized here to avoid a compiler warning. */
3319
3320 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3321 so far seen. */
3322
3323 int best_index;
3324 struct linetable *best_linetable;
3325 struct symtab *best_symtab;
3326
3327 /* First try looking it up in the given symtab. */
3328 best_linetable = SYMTAB_LINETABLE (sym_tab);
3329 best_symtab = sym_tab;
3330 best_index = find_line_common (best_linetable, line, &exact, 0);
3331 if (best_index < 0 || !exact)
3332 {
3333 /* Didn't find an exact match. So we better keep looking for
3334 another symtab with the same name. In the case of xcoff,
3335 multiple csects for one source file (produced by IBM's FORTRAN
3336 compiler) produce multiple symtabs (this is unavoidable
3337 assuming csects can be at arbitrary places in memory and that
3338 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3339
3340 /* BEST is the smallest linenumber > LINE so far seen,
3341 or 0 if none has been seen so far.
3342 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3343 int best;
3344
3345 if (best_index >= 0)
3346 best = best_linetable->item[best_index].line;
3347 else
3348 best = 0;
3349
3350 for (objfile *objfile : current_program_space->objfiles ())
3351 {
3352 if (objfile->sf)
3353 objfile->sf->qf->expand_symtabs_with_fullname
3354 (objfile, symtab_to_fullname (sym_tab));
3355 }
3356
3357 for (objfile *objfile : current_program_space->objfiles ())
3358 {
3359 for (compunit_symtab *cu : objfile->compunits ())
3360 {
3361 for (symtab *s : compunit_filetabs (cu))
3362 {
3363 struct linetable *l;
3364 int ind;
3365
3366 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3367 continue;
3368 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3369 symtab_to_fullname (s)) != 0)
3370 continue;
3371 l = SYMTAB_LINETABLE (s);
3372 ind = find_line_common (l, line, &exact, 0);
3373 if (ind >= 0)
3374 {
3375 if (exact)
3376 {
3377 best_index = ind;
3378 best_linetable = l;
3379 best_symtab = s;
3380 goto done;
3381 }
3382 if (best == 0 || l->item[ind].line < best)
3383 {
3384 best = l->item[ind].line;
3385 best_index = ind;
3386 best_linetable = l;
3387 best_symtab = s;
3388 }
3389 }
3390 }
3391 }
3392 }
3393 }
3394 done:
3395 if (best_index < 0)
3396 return NULL;
3397
3398 if (index)
3399 *index = best_index;
3400 if (exact_match)
3401 *exact_match = exact;
3402
3403 return best_symtab;
3404 }
3405
3406 /* Given SYMTAB, returns all the PCs function in the symtab that
3407 exactly match LINE. Returns an empty vector if there are no exact
3408 matches, but updates BEST_ITEM in this case. */
3409
3410 std::vector<CORE_ADDR>
3411 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3412 struct linetable_entry **best_item)
3413 {
3414 int start = 0;
3415 std::vector<CORE_ADDR> result;
3416
3417 /* First, collect all the PCs that are at this line. */
3418 while (1)
3419 {
3420 int was_exact;
3421 int idx;
3422
3423 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3424 start);
3425 if (idx < 0)
3426 break;
3427
3428 if (!was_exact)
3429 {
3430 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3431
3432 if (*best_item == NULL || item->line < (*best_item)->line)
3433 *best_item = item;
3434
3435 break;
3436 }
3437
3438 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3439 start = idx + 1;
3440 }
3441
3442 return result;
3443 }
3444
3445 \f
3446 /* Set the PC value for a given source file and line number and return true.
3447 Returns zero for invalid line number (and sets the PC to 0).
3448 The source file is specified with a struct symtab. */
3449
3450 int
3451 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3452 {
3453 struct linetable *l;
3454 int ind;
3455
3456 *pc = 0;
3457 if (symtab == 0)
3458 return 0;
3459
3460 symtab = find_line_symtab (symtab, line, &ind, NULL);
3461 if (symtab != NULL)
3462 {
3463 l = SYMTAB_LINETABLE (symtab);
3464 *pc = l->item[ind].pc;
3465 return 1;
3466 }
3467 else
3468 return 0;
3469 }
3470
3471 /* Find the range of pc values in a line.
3472 Store the starting pc of the line into *STARTPTR
3473 and the ending pc (start of next line) into *ENDPTR.
3474 Returns 1 to indicate success.
3475 Returns 0 if could not find the specified line. */
3476
3477 int
3478 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3479 CORE_ADDR *endptr)
3480 {
3481 CORE_ADDR startaddr;
3482 struct symtab_and_line found_sal;
3483
3484 startaddr = sal.pc;
3485 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3486 return 0;
3487
3488 /* This whole function is based on address. For example, if line 10 has
3489 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3490 "info line *0x123" should say the line goes from 0x100 to 0x200
3491 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3492 This also insures that we never give a range like "starts at 0x134
3493 and ends at 0x12c". */
3494
3495 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3496 if (found_sal.line != sal.line)
3497 {
3498 /* The specified line (sal) has zero bytes. */
3499 *startptr = found_sal.pc;
3500 *endptr = found_sal.pc;
3501 }
3502 else
3503 {
3504 *startptr = found_sal.pc;
3505 *endptr = found_sal.end;
3506 }
3507 return 1;
3508 }
3509
3510 /* Given a line table and a line number, return the index into the line
3511 table for the pc of the nearest line whose number is >= the specified one.
3512 Return -1 if none is found. The value is >= 0 if it is an index.
3513 START is the index at which to start searching the line table.
3514
3515 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3516
3517 static int
3518 find_line_common (struct linetable *l, int lineno,
3519 int *exact_match, int start)
3520 {
3521 int i;
3522 int len;
3523
3524 /* BEST is the smallest linenumber > LINENO so far seen,
3525 or 0 if none has been seen so far.
3526 BEST_INDEX identifies the item for it. */
3527
3528 int best_index = -1;
3529 int best = 0;
3530
3531 *exact_match = 0;
3532
3533 if (lineno <= 0)
3534 return -1;
3535 if (l == 0)
3536 return -1;
3537
3538 len = l->nitems;
3539 for (i = start; i < len; i++)
3540 {
3541 struct linetable_entry *item = &(l->item[i]);
3542
3543 if (item->line == lineno)
3544 {
3545 /* Return the first (lowest address) entry which matches. */
3546 *exact_match = 1;
3547 return i;
3548 }
3549
3550 if (item->line > lineno && (best == 0 || item->line < best))
3551 {
3552 best = item->line;
3553 best_index = i;
3554 }
3555 }
3556
3557 /* If we got here, we didn't get an exact match. */
3558 return best_index;
3559 }
3560
3561 int
3562 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3563 {
3564 struct symtab_and_line sal;
3565
3566 sal = find_pc_line (pc, 0);
3567 *startptr = sal.pc;
3568 *endptr = sal.end;
3569 return sal.symtab != 0;
3570 }
3571
3572 /* Helper for find_function_start_sal. Does most of the work, except
3573 setting the sal's symbol. */
3574
3575 static symtab_and_line
3576 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3577 bool funfirstline)
3578 {
3579 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3580
3581 if (funfirstline && sal.symtab != NULL
3582 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3583 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3584 {
3585 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3586
3587 sal.pc = func_addr;
3588 if (gdbarch_skip_entrypoint_p (gdbarch))
3589 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3590 return sal;
3591 }
3592
3593 /* We always should have a line for the function start address.
3594 If we don't, something is odd. Create a plain SAL referring
3595 just the PC and hope that skip_prologue_sal (if requested)
3596 can find a line number for after the prologue. */
3597 if (sal.pc < func_addr)
3598 {
3599 sal = {};
3600 sal.pspace = current_program_space;
3601 sal.pc = func_addr;
3602 sal.section = section;
3603 }
3604
3605 if (funfirstline)
3606 skip_prologue_sal (&sal);
3607
3608 return sal;
3609 }
3610
3611 /* See symtab.h. */
3612
3613 symtab_and_line
3614 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3615 bool funfirstline)
3616 {
3617 symtab_and_line sal
3618 = find_function_start_sal_1 (func_addr, section, funfirstline);
3619
3620 /* find_function_start_sal_1 does a linetable search, so it finds
3621 the symtab and linenumber, but not a symbol. Fill in the
3622 function symbol too. */
3623 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3624
3625 return sal;
3626 }
3627
3628 /* See symtab.h. */
3629
3630 symtab_and_line
3631 find_function_start_sal (symbol *sym, bool funfirstline)
3632 {
3633 fixup_symbol_section (sym, NULL);
3634 symtab_and_line sal
3635 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3636 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3637 funfirstline);
3638 sal.symbol = sym;
3639 return sal;
3640 }
3641
3642
3643 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3644 address for that function that has an entry in SYMTAB's line info
3645 table. If such an entry cannot be found, return FUNC_ADDR
3646 unaltered. */
3647
3648 static CORE_ADDR
3649 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3650 {
3651 CORE_ADDR func_start, func_end;
3652 struct linetable *l;
3653 int i;
3654
3655 /* Give up if this symbol has no lineinfo table. */
3656 l = SYMTAB_LINETABLE (symtab);
3657 if (l == NULL)
3658 return func_addr;
3659
3660 /* Get the range for the function's PC values, or give up if we
3661 cannot, for some reason. */
3662 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3663 return func_addr;
3664
3665 /* Linetable entries are ordered by PC values, see the commentary in
3666 symtab.h where `struct linetable' is defined. Thus, the first
3667 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3668 address we are looking for. */
3669 for (i = 0; i < l->nitems; i++)
3670 {
3671 struct linetable_entry *item = &(l->item[i]);
3672
3673 /* Don't use line numbers of zero, they mark special entries in
3674 the table. See the commentary on symtab.h before the
3675 definition of struct linetable. */
3676 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3677 return item->pc;
3678 }
3679
3680 return func_addr;
3681 }
3682
3683 /* Adjust SAL to the first instruction past the function prologue.
3684 If the PC was explicitly specified, the SAL is not changed.
3685 If the line number was explicitly specified then the SAL can still be
3686 updated, unless the language for SAL is assembler, in which case the SAL
3687 will be left unchanged.
3688 If SAL is already past the prologue, then do nothing. */
3689
3690 void
3691 skip_prologue_sal (struct symtab_and_line *sal)
3692 {
3693 struct symbol *sym;
3694 struct symtab_and_line start_sal;
3695 CORE_ADDR pc, saved_pc;
3696 struct obj_section *section;
3697 const char *name;
3698 struct objfile *objfile;
3699 struct gdbarch *gdbarch;
3700 const struct block *b, *function_block;
3701 int force_skip, skip;
3702
3703 /* Do not change the SAL if PC was specified explicitly. */
3704 if (sal->explicit_pc)
3705 return;
3706
3707 /* In assembly code, if the user asks for a specific line then we should
3708 not adjust the SAL. The user already has instruction level
3709 visibility in this case, so selecting a line other than one requested
3710 is likely to be the wrong choice. */
3711 if (sal->symtab != nullptr
3712 && sal->explicit_line
3713 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3714 return;
3715
3716 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3717
3718 switch_to_program_space_and_thread (sal->pspace);
3719
3720 sym = find_pc_sect_function (sal->pc, sal->section);
3721 if (sym != NULL)
3722 {
3723 fixup_symbol_section (sym, NULL);
3724
3725 objfile = symbol_objfile (sym);
3726 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3727 section = SYMBOL_OBJ_SECTION (objfile, sym);
3728 name = SYMBOL_LINKAGE_NAME (sym);
3729 }
3730 else
3731 {
3732 struct bound_minimal_symbol msymbol
3733 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3734
3735 if (msymbol.minsym == NULL)
3736 return;
3737
3738 objfile = msymbol.objfile;
3739 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3740 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3741 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3742 }
3743
3744 gdbarch = get_objfile_arch (objfile);
3745
3746 /* Process the prologue in two passes. In the first pass try to skip the
3747 prologue (SKIP is true) and verify there is a real need for it (indicated
3748 by FORCE_SKIP). If no such reason was found run a second pass where the
3749 prologue is not skipped (SKIP is false). */
3750
3751 skip = 1;
3752 force_skip = 1;
3753
3754 /* Be conservative - allow direct PC (without skipping prologue) only if we
3755 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3756 have to be set by the caller so we use SYM instead. */
3757 if (sym != NULL
3758 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3759 force_skip = 0;
3760
3761 saved_pc = pc;
3762 do
3763 {
3764 pc = saved_pc;
3765
3766 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3767 so that gdbarch_skip_prologue has something unique to work on. */
3768 if (section_is_overlay (section) && !section_is_mapped (section))
3769 pc = overlay_unmapped_address (pc, section);
3770
3771 /* Skip "first line" of function (which is actually its prologue). */
3772 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3773 if (gdbarch_skip_entrypoint_p (gdbarch))
3774 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3775 if (skip)
3776 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3777
3778 /* For overlays, map pc back into its mapped VMA range. */
3779 pc = overlay_mapped_address (pc, section);
3780
3781 /* Calculate line number. */
3782 start_sal = find_pc_sect_line (pc, section, 0);
3783
3784 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3785 line is still part of the same function. */
3786 if (skip && start_sal.pc != pc
3787 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3788 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3789 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3790 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3791 {
3792 /* First pc of next line */
3793 pc = start_sal.end;
3794 /* Recalculate the line number (might not be N+1). */
3795 start_sal = find_pc_sect_line (pc, section, 0);
3796 }
3797
3798 /* On targets with executable formats that don't have a concept of
3799 constructors (ELF with .init has, PE doesn't), gcc emits a call
3800 to `__main' in `main' between the prologue and before user
3801 code. */
3802 if (gdbarch_skip_main_prologue_p (gdbarch)
3803 && name && strcmp_iw (name, "main") == 0)
3804 {
3805 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3806 /* Recalculate the line number (might not be N+1). */
3807 start_sal = find_pc_sect_line (pc, section, 0);
3808 force_skip = 1;
3809 }
3810 }
3811 while (!force_skip && skip--);
3812
3813 /* If we still don't have a valid source line, try to find the first
3814 PC in the lineinfo table that belongs to the same function. This
3815 happens with COFF debug info, which does not seem to have an
3816 entry in lineinfo table for the code after the prologue which has
3817 no direct relation to source. For example, this was found to be
3818 the case with the DJGPP target using "gcc -gcoff" when the
3819 compiler inserted code after the prologue to make sure the stack
3820 is aligned. */
3821 if (!force_skip && sym && start_sal.symtab == NULL)
3822 {
3823 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3824 /* Recalculate the line number. */
3825 start_sal = find_pc_sect_line (pc, section, 0);
3826 }
3827
3828 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3829 forward SAL to the end of the prologue. */
3830 if (sal->pc >= pc)
3831 return;
3832
3833 sal->pc = pc;
3834 sal->section = section;
3835 sal->symtab = start_sal.symtab;
3836 sal->line = start_sal.line;
3837 sal->end = start_sal.end;
3838
3839 /* Check if we are now inside an inlined function. If we can,
3840 use the call site of the function instead. */
3841 b = block_for_pc_sect (sal->pc, sal->section);
3842 function_block = NULL;
3843 while (b != NULL)
3844 {
3845 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3846 function_block = b;
3847 else if (BLOCK_FUNCTION (b) != NULL)
3848 break;
3849 b = BLOCK_SUPERBLOCK (b);
3850 }
3851 if (function_block != NULL
3852 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3853 {
3854 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3855 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3856 }
3857 }
3858
3859 /* Given PC at the function's start address, attempt to find the
3860 prologue end using SAL information. Return zero if the skip fails.
3861
3862 A non-optimized prologue traditionally has one SAL for the function
3863 and a second for the function body. A single line function has
3864 them both pointing at the same line.
3865
3866 An optimized prologue is similar but the prologue may contain
3867 instructions (SALs) from the instruction body. Need to skip those
3868 while not getting into the function body.
3869
3870 The functions end point and an increasing SAL line are used as
3871 indicators of the prologue's endpoint.
3872
3873 This code is based on the function refine_prologue_limit
3874 (found in ia64). */
3875
3876 CORE_ADDR
3877 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3878 {
3879 struct symtab_and_line prologue_sal;
3880 CORE_ADDR start_pc;
3881 CORE_ADDR end_pc;
3882 const struct block *bl;
3883
3884 /* Get an initial range for the function. */
3885 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3886 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3887
3888 prologue_sal = find_pc_line (start_pc, 0);
3889 if (prologue_sal.line != 0)
3890 {
3891 /* For languages other than assembly, treat two consecutive line
3892 entries at the same address as a zero-instruction prologue.
3893 The GNU assembler emits separate line notes for each instruction
3894 in a multi-instruction macro, but compilers generally will not
3895 do this. */
3896 if (prologue_sal.symtab->language != language_asm)
3897 {
3898 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3899 int idx = 0;
3900
3901 /* Skip any earlier lines, and any end-of-sequence marker
3902 from a previous function. */
3903 while (linetable->item[idx].pc != prologue_sal.pc
3904 || linetable->item[idx].line == 0)
3905 idx++;
3906
3907 if (idx+1 < linetable->nitems
3908 && linetable->item[idx+1].line != 0
3909 && linetable->item[idx+1].pc == start_pc)
3910 return start_pc;
3911 }
3912
3913 /* If there is only one sal that covers the entire function,
3914 then it is probably a single line function, like
3915 "foo(){}". */
3916 if (prologue_sal.end >= end_pc)
3917 return 0;
3918
3919 while (prologue_sal.end < end_pc)
3920 {
3921 struct symtab_and_line sal;
3922
3923 sal = find_pc_line (prologue_sal.end, 0);
3924 if (sal.line == 0)
3925 break;
3926 /* Assume that a consecutive SAL for the same (or larger)
3927 line mark the prologue -> body transition. */
3928 if (sal.line >= prologue_sal.line)
3929 break;
3930 /* Likewise if we are in a different symtab altogether
3931 (e.g. within a file included via #include).  */
3932 if (sal.symtab != prologue_sal.symtab)
3933 break;
3934
3935 /* The line number is smaller. Check that it's from the
3936 same function, not something inlined. If it's inlined,
3937 then there is no point comparing the line numbers. */
3938 bl = block_for_pc (prologue_sal.end);
3939 while (bl)
3940 {
3941 if (block_inlined_p (bl))
3942 break;
3943 if (BLOCK_FUNCTION (bl))
3944 {
3945 bl = NULL;
3946 break;
3947 }
3948 bl = BLOCK_SUPERBLOCK (bl);
3949 }
3950 if (bl != NULL)
3951 break;
3952
3953 /* The case in which compiler's optimizer/scheduler has
3954 moved instructions into the prologue. We look ahead in
3955 the function looking for address ranges whose
3956 corresponding line number is less the first one that we
3957 found for the function. This is more conservative then
3958 refine_prologue_limit which scans a large number of SALs
3959 looking for any in the prologue. */
3960 prologue_sal = sal;
3961 }
3962 }
3963
3964 if (prologue_sal.end < end_pc)
3965 /* Return the end of this line, or zero if we could not find a
3966 line. */
3967 return prologue_sal.end;
3968 else
3969 /* Don't return END_PC, which is past the end of the function. */
3970 return prologue_sal.pc;
3971 }
3972
3973 /* See symtab.h. */
3974
3975 symbol *
3976 find_function_alias_target (bound_minimal_symbol msymbol)
3977 {
3978 CORE_ADDR func_addr;
3979 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3980 return NULL;
3981
3982 symbol *sym = find_pc_function (func_addr);
3983 if (sym != NULL
3984 && SYMBOL_CLASS (sym) == LOC_BLOCK
3985 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3986 return sym;
3987
3988 return NULL;
3989 }
3990
3991 \f
3992 /* If P is of the form "operator[ \t]+..." where `...' is
3993 some legitimate operator text, return a pointer to the
3994 beginning of the substring of the operator text.
3995 Otherwise, return "". */
3996
3997 static const char *
3998 operator_chars (const char *p, const char **end)
3999 {
4000 *end = "";
4001 if (!startswith (p, CP_OPERATOR_STR))
4002 return *end;
4003 p += CP_OPERATOR_LEN;
4004
4005 /* Don't get faked out by `operator' being part of a longer
4006 identifier. */
4007 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4008 return *end;
4009
4010 /* Allow some whitespace between `operator' and the operator symbol. */
4011 while (*p == ' ' || *p == '\t')
4012 p++;
4013
4014 /* Recognize 'operator TYPENAME'. */
4015
4016 if (isalpha (*p) || *p == '_' || *p == '$')
4017 {
4018 const char *q = p + 1;
4019
4020 while (isalnum (*q) || *q == '_' || *q == '$')
4021 q++;
4022 *end = q;
4023 return p;
4024 }
4025
4026 while (*p)
4027 switch (*p)
4028 {
4029 case '\\': /* regexp quoting */
4030 if (p[1] == '*')
4031 {
4032 if (p[2] == '=') /* 'operator\*=' */
4033 *end = p + 3;
4034 else /* 'operator\*' */
4035 *end = p + 2;
4036 return p;
4037 }
4038 else if (p[1] == '[')
4039 {
4040 if (p[2] == ']')
4041 error (_("mismatched quoting on brackets, "
4042 "try 'operator\\[\\]'"));
4043 else if (p[2] == '\\' && p[3] == ']')
4044 {
4045 *end = p + 4; /* 'operator\[\]' */
4046 return p;
4047 }
4048 else
4049 error (_("nothing is allowed between '[' and ']'"));
4050 }
4051 else
4052 {
4053 /* Gratuitous qoute: skip it and move on. */
4054 p++;
4055 continue;
4056 }
4057 break;
4058 case '!':
4059 case '=':
4060 case '*':
4061 case '/':
4062 case '%':
4063 case '^':
4064 if (p[1] == '=')
4065 *end = p + 2;
4066 else
4067 *end = p + 1;
4068 return p;
4069 case '<':
4070 case '>':
4071 case '+':
4072 case '-':
4073 case '&':
4074 case '|':
4075 if (p[0] == '-' && p[1] == '>')
4076 {
4077 /* Struct pointer member operator 'operator->'. */
4078 if (p[2] == '*')
4079 {
4080 *end = p + 3; /* 'operator->*' */
4081 return p;
4082 }
4083 else if (p[2] == '\\')
4084 {
4085 *end = p + 4; /* Hopefully 'operator->\*' */
4086 return p;
4087 }
4088 else
4089 {
4090 *end = p + 2; /* 'operator->' */
4091 return p;
4092 }
4093 }
4094 if (p[1] == '=' || p[1] == p[0])
4095 *end = p + 2;
4096 else
4097 *end = p + 1;
4098 return p;
4099 case '~':
4100 case ',':
4101 *end = p + 1;
4102 return p;
4103 case '(':
4104 if (p[1] != ')')
4105 error (_("`operator ()' must be specified "
4106 "without whitespace in `()'"));
4107 *end = p + 2;
4108 return p;
4109 case '?':
4110 if (p[1] != ':')
4111 error (_("`operator ?:' must be specified "
4112 "without whitespace in `?:'"));
4113 *end = p + 2;
4114 return p;
4115 case '[':
4116 if (p[1] != ']')
4117 error (_("`operator []' must be specified "
4118 "without whitespace in `[]'"));
4119 *end = p + 2;
4120 return p;
4121 default:
4122 error (_("`operator %s' not supported"), p);
4123 break;
4124 }
4125
4126 *end = "";
4127 return *end;
4128 }
4129 \f
4130
4131 /* What part to match in a file name. */
4132
4133 struct filename_partial_match_opts
4134 {
4135 /* Only match the directory name part. */
4136 int dirname = false;
4137
4138 /* Only match the basename part. */
4139 int basename = false;
4140 };
4141
4142 /* Data structure to maintain printing state for output_source_filename. */
4143
4144 struct output_source_filename_data
4145 {
4146 /* Output only filenames matching REGEXP. */
4147 std::string regexp;
4148 gdb::optional<compiled_regex> c_regexp;
4149 /* Possibly only match a part of the filename. */
4150 filename_partial_match_opts partial_match;
4151
4152
4153 /* Cache of what we've seen so far. */
4154 struct filename_seen_cache *filename_seen_cache;
4155
4156 /* Flag of whether we're printing the first one. */
4157 int first;
4158 };
4159
4160 /* Slave routine for sources_info. Force line breaks at ,'s.
4161 NAME is the name to print.
4162 DATA contains the state for printing and watching for duplicates. */
4163
4164 static void
4165 output_source_filename (const char *name,
4166 struct output_source_filename_data *data)
4167 {
4168 /* Since a single source file can result in several partial symbol
4169 tables, we need to avoid printing it more than once. Note: if
4170 some of the psymtabs are read in and some are not, it gets
4171 printed both under "Source files for which symbols have been
4172 read" and "Source files for which symbols will be read in on
4173 demand". I consider this a reasonable way to deal with the
4174 situation. I'm not sure whether this can also happen for
4175 symtabs; it doesn't hurt to check. */
4176
4177 /* Was NAME already seen? */
4178 if (data->filename_seen_cache->seen (name))
4179 {
4180 /* Yes; don't print it again. */
4181 return;
4182 }
4183
4184 /* Does it match data->regexp? */
4185 if (data->c_regexp.has_value ())
4186 {
4187 const char *to_match;
4188 std::string dirname;
4189
4190 if (data->partial_match.dirname)
4191 {
4192 dirname = ldirname (name);
4193 to_match = dirname.c_str ();
4194 }
4195 else if (data->partial_match.basename)
4196 to_match = lbasename (name);
4197 else
4198 to_match = name;
4199
4200 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4201 return;
4202 }
4203
4204 /* Print it and reset *FIRST. */
4205 if (! data->first)
4206 printf_filtered (", ");
4207 data->first = 0;
4208
4209 wrap_here ("");
4210 fputs_styled (name, file_name_style.style (), gdb_stdout);
4211 }
4212
4213 /* A callback for map_partial_symbol_filenames. */
4214
4215 static void
4216 output_partial_symbol_filename (const char *filename, const char *fullname,
4217 void *data)
4218 {
4219 output_source_filename (fullname ? fullname : filename,
4220 (struct output_source_filename_data *) data);
4221 }
4222
4223 using isrc_flag_option_def
4224 = gdb::option::flag_option_def<filename_partial_match_opts>;
4225
4226 static const gdb::option::option_def info_sources_option_defs[] = {
4227
4228 isrc_flag_option_def {
4229 "dirname",
4230 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4231 N_("Show only the files having a dirname matching REGEXP."),
4232 },
4233
4234 isrc_flag_option_def {
4235 "basename",
4236 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4237 N_("Show only the files having a basename matching REGEXP."),
4238 },
4239
4240 };
4241
4242 /* Create an option_def_group for the "info sources" options, with
4243 ISRC_OPTS as context. */
4244
4245 static inline gdb::option::option_def_group
4246 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4247 {
4248 return {{info_sources_option_defs}, isrc_opts};
4249 }
4250
4251 /* Prints the header message for the source files that will be printed
4252 with the matching info present in DATA. SYMBOL_MSG is a message
4253 that tells what will or has been done with the symbols of the
4254 matching source files. */
4255
4256 static void
4257 print_info_sources_header (const char *symbol_msg,
4258 const struct output_source_filename_data *data)
4259 {
4260 puts_filtered (symbol_msg);
4261 if (!data->regexp.empty ())
4262 {
4263 if (data->partial_match.dirname)
4264 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4265 data->regexp.c_str ());
4266 else if (data->partial_match.basename)
4267 printf_filtered (_("(basename matching regular expression \"%s\")"),
4268 data->regexp.c_str ());
4269 else
4270 printf_filtered (_("(filename matching regular expression \"%s\")"),
4271 data->regexp.c_str ());
4272 }
4273 puts_filtered ("\n");
4274 }
4275
4276 /* Completer for "info sources". */
4277
4278 static void
4279 info_sources_command_completer (cmd_list_element *ignore,
4280 completion_tracker &tracker,
4281 const char *text, const char *word)
4282 {
4283 const auto group = make_info_sources_options_def_group (nullptr);
4284 if (gdb::option::complete_options
4285 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4286 return;
4287 }
4288
4289 static void
4290 info_sources_command (const char *args, int from_tty)
4291 {
4292 struct output_source_filename_data data;
4293
4294 if (!have_full_symbols () && !have_partial_symbols ())
4295 {
4296 error (_("No symbol table is loaded. Use the \"file\" command."));
4297 }
4298
4299 filename_seen_cache filenames_seen;
4300
4301 auto group = make_info_sources_options_def_group (&data.partial_match);
4302
4303 gdb::option::process_options
4304 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4305
4306 if (args != NULL && *args != '\000')
4307 data.regexp = args;
4308
4309 data.filename_seen_cache = &filenames_seen;
4310 data.first = 1;
4311
4312 if (data.partial_match.dirname && data.partial_match.basename)
4313 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4314 if ((data.partial_match.dirname || data.partial_match.basename)
4315 && data.regexp.empty ())
4316 error (_("Missing REGEXP for 'info sources'."));
4317
4318 if (data.regexp.empty ())
4319 data.c_regexp.reset ();
4320 else
4321 {
4322 int cflags = REG_NOSUB;
4323 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4324 cflags |= REG_ICASE;
4325 #endif
4326 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4327 _("Invalid regexp"));
4328 }
4329
4330 print_info_sources_header
4331 (_("Source files for which symbols have been read in:\n"), &data);
4332
4333 for (objfile *objfile : current_program_space->objfiles ())
4334 {
4335 for (compunit_symtab *cu : objfile->compunits ())
4336 {
4337 for (symtab *s : compunit_filetabs (cu))
4338 {
4339 const char *fullname = symtab_to_fullname (s);
4340
4341 output_source_filename (fullname, &data);
4342 }
4343 }
4344 }
4345 printf_filtered ("\n\n");
4346
4347 print_info_sources_header
4348 (_("Source files for which symbols will be read in on demand:\n"), &data);
4349
4350 filenames_seen.clear ();
4351 data.first = 1;
4352 map_symbol_filenames (output_partial_symbol_filename, &data,
4353 1 /*need_fullname*/);
4354 printf_filtered ("\n");
4355 }
4356
4357 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4358 non-zero compare only lbasename of FILES. */
4359
4360 static int
4361 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4362 {
4363 int i;
4364
4365 if (file != NULL && nfiles != 0)
4366 {
4367 for (i = 0; i < nfiles; i++)
4368 {
4369 if (compare_filenames_for_search (file, (basenames
4370 ? lbasename (files[i])
4371 : files[i])))
4372 return 1;
4373 }
4374 }
4375 else if (nfiles == 0)
4376 return 1;
4377 return 0;
4378 }
4379
4380 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4381 sort symbols, not minimal symbols. */
4382
4383 int
4384 symbol_search::compare_search_syms (const symbol_search &sym_a,
4385 const symbol_search &sym_b)
4386 {
4387 int c;
4388
4389 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4390 symbol_symtab (sym_b.symbol)->filename);
4391 if (c != 0)
4392 return c;
4393
4394 if (sym_a.block != sym_b.block)
4395 return sym_a.block - sym_b.block;
4396
4397 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4398 SYMBOL_PRINT_NAME (sym_b.symbol));
4399 }
4400
4401 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4402 If SYM has no symbol_type or symbol_name, returns false. */
4403
4404 bool
4405 treg_matches_sym_type_name (const compiled_regex &treg,
4406 const struct symbol *sym)
4407 {
4408 struct type *sym_type;
4409 std::string printed_sym_type_name;
4410
4411 if (symbol_lookup_debug > 1)
4412 {
4413 fprintf_unfiltered (gdb_stdlog,
4414 "treg_matches_sym_type_name\n sym %s\n",
4415 SYMBOL_NATURAL_NAME (sym));
4416 }
4417
4418 sym_type = SYMBOL_TYPE (sym);
4419 if (sym_type == NULL)
4420 return false;
4421
4422 {
4423 scoped_switch_to_sym_language_if_auto l (sym);
4424
4425 printed_sym_type_name = type_to_string (sym_type);
4426 }
4427
4428
4429 if (symbol_lookup_debug > 1)
4430 {
4431 fprintf_unfiltered (gdb_stdlog,
4432 " sym_type_name %s\n",
4433 printed_sym_type_name.c_str ());
4434 }
4435
4436
4437 if (printed_sym_type_name.empty ())
4438 return false;
4439
4440 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4441 }
4442
4443
4444 /* Sort the symbols in RESULT and remove duplicates. */
4445
4446 static void
4447 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4448 {
4449 std::sort (result->begin (), result->end ());
4450 result->erase (std::unique (result->begin (), result->end ()),
4451 result->end ());
4452 }
4453
4454 /* Search the symbol table for matches to the regular expression REGEXP,
4455 returning the results.
4456
4457 Only symbols of KIND are searched:
4458 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4459 and constants (enums).
4460 if T_REGEXP is not NULL, only returns var that have
4461 a type matching regular expression T_REGEXP.
4462 FUNCTIONS_DOMAIN - search all functions
4463 TYPES_DOMAIN - search all type names
4464 ALL_DOMAIN - an internal error for this function
4465
4466 Within each file the results are sorted locally; each symtab's global and
4467 static blocks are separately alphabetized.
4468 Duplicate entries are removed. */
4469
4470 std::vector<symbol_search>
4471 search_symbols (const char *regexp, enum search_domain kind,
4472 const char *t_regexp,
4473 int nfiles, const char *files[])
4474 {
4475 const struct blockvector *bv;
4476 const struct block *b;
4477 int i = 0;
4478 struct block_iterator iter;
4479 struct symbol *sym;
4480 int found_misc = 0;
4481 static const enum minimal_symbol_type types[]
4482 = {mst_data, mst_text, mst_unknown};
4483 static const enum minimal_symbol_type types2[]
4484 = {mst_bss, mst_file_text, mst_unknown};
4485 static const enum minimal_symbol_type types3[]
4486 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4487 static const enum minimal_symbol_type types4[]
4488 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4489 enum minimal_symbol_type ourtype;
4490 enum minimal_symbol_type ourtype2;
4491 enum minimal_symbol_type ourtype3;
4492 enum minimal_symbol_type ourtype4;
4493 std::vector<symbol_search> result;
4494 gdb::optional<compiled_regex> preg;
4495 gdb::optional<compiled_regex> treg;
4496
4497 gdb_assert (kind <= TYPES_DOMAIN);
4498
4499 ourtype = types[kind];
4500 ourtype2 = types2[kind];
4501 ourtype3 = types3[kind];
4502 ourtype4 = types4[kind];
4503
4504 if (regexp != NULL)
4505 {
4506 /* Make sure spacing is right for C++ operators.
4507 This is just a courtesy to make the matching less sensitive
4508 to how many spaces the user leaves between 'operator'
4509 and <TYPENAME> or <OPERATOR>. */
4510 const char *opend;
4511 const char *opname = operator_chars (regexp, &opend);
4512
4513 if (*opname)
4514 {
4515 int fix = -1; /* -1 means ok; otherwise number of
4516 spaces needed. */
4517
4518 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4519 {
4520 /* There should 1 space between 'operator' and 'TYPENAME'. */
4521 if (opname[-1] != ' ' || opname[-2] == ' ')
4522 fix = 1;
4523 }
4524 else
4525 {
4526 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4527 if (opname[-1] == ' ')
4528 fix = 0;
4529 }
4530 /* If wrong number of spaces, fix it. */
4531 if (fix >= 0)
4532 {
4533 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4534
4535 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4536 regexp = tmp;
4537 }
4538 }
4539
4540 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4541 ? REG_ICASE : 0);
4542 preg.emplace (regexp, cflags, _("Invalid regexp"));
4543 }
4544
4545 if (t_regexp != NULL)
4546 {
4547 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4548 ? REG_ICASE : 0);
4549 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4550 }
4551
4552 /* Search through the partial symtabs *first* for all symbols
4553 matching the regexp. That way we don't have to reproduce all of
4554 the machinery below. */
4555 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4556 {
4557 return file_matches (filename, files, nfiles,
4558 basenames);
4559 },
4560 lookup_name_info::match_any (),
4561 [&] (const char *symname)
4562 {
4563 return (!preg.has_value ()
4564 || preg->exec (symname,
4565 0, NULL, 0) == 0);
4566 },
4567 NULL,
4568 kind);
4569
4570 /* Here, we search through the minimal symbol tables for functions
4571 and variables that match, and force their symbols to be read.
4572 This is in particular necessary for demangled variable names,
4573 which are no longer put into the partial symbol tables.
4574 The symbol will then be found during the scan of symtabs below.
4575
4576 For functions, find_pc_symtab should succeed if we have debug info
4577 for the function, for variables we have to call
4578 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4579 has debug info.
4580 If the lookup fails, set found_misc so that we will rescan to print
4581 any matching symbols without debug info.
4582 We only search the objfile the msymbol came from, we no longer search
4583 all objfiles. In large programs (1000s of shared libs) searching all
4584 objfiles is not worth the pain. */
4585
4586 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4587 {
4588 for (objfile *objfile : current_program_space->objfiles ())
4589 {
4590 for (minimal_symbol *msymbol : objfile->msymbols ())
4591 {
4592 QUIT;
4593
4594 if (msymbol->created_by_gdb)
4595 continue;
4596
4597 if (MSYMBOL_TYPE (msymbol) == ourtype
4598 || MSYMBOL_TYPE (msymbol) == ourtype2
4599 || MSYMBOL_TYPE (msymbol) == ourtype3
4600 || MSYMBOL_TYPE (msymbol) == ourtype4)
4601 {
4602 if (!preg.has_value ()
4603 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4604 NULL, 0) == 0)
4605 {
4606 /* Note: An important side-effect of these
4607 lookup functions is to expand the symbol
4608 table if msymbol is found, for the benefit of
4609 the next loop on compunits. */
4610 if (kind == FUNCTIONS_DOMAIN
4611 ? (find_pc_compunit_symtab
4612 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4613 == NULL)
4614 : (lookup_symbol_in_objfile_from_linkage_name
4615 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4616 VAR_DOMAIN)
4617 .symbol == NULL))
4618 found_misc = 1;
4619 }
4620 }
4621 }
4622 }
4623 }
4624
4625 for (objfile *objfile : current_program_space->objfiles ())
4626 {
4627 for (compunit_symtab *cust : objfile->compunits ())
4628 {
4629 bv = COMPUNIT_BLOCKVECTOR (cust);
4630 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4631 {
4632 b = BLOCKVECTOR_BLOCK (bv, i);
4633 ALL_BLOCK_SYMBOLS (b, iter, sym)
4634 {
4635 struct symtab *real_symtab = symbol_symtab (sym);
4636
4637 QUIT;
4638
4639 /* Check first sole REAL_SYMTAB->FILENAME. It does
4640 not need to be a substring of symtab_to_fullname as
4641 it may contain "./" etc. */
4642 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4643 || ((basenames_may_differ
4644 || file_matches (lbasename (real_symtab->filename),
4645 files, nfiles, 1))
4646 && file_matches (symtab_to_fullname (real_symtab),
4647 files, nfiles, 0)))
4648 && ((!preg.has_value ()
4649 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4650 NULL, 0) == 0)
4651 && ((kind == VARIABLES_DOMAIN
4652 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4653 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4654 && SYMBOL_CLASS (sym) != LOC_BLOCK
4655 /* LOC_CONST can be used for more than
4656 just enums, e.g., c++ static const
4657 members. We only want to skip enums
4658 here. */
4659 && !(SYMBOL_CLASS (sym) == LOC_CONST
4660 && (TYPE_CODE (SYMBOL_TYPE (sym))
4661 == TYPE_CODE_ENUM))
4662 && (!treg.has_value ()
4663 || treg_matches_sym_type_name (*treg, sym)))
4664 || (kind == FUNCTIONS_DOMAIN
4665 && SYMBOL_CLASS (sym) == LOC_BLOCK
4666 && (!treg.has_value ()
4667 || treg_matches_sym_type_name (*treg,
4668 sym)))
4669 || (kind == TYPES_DOMAIN
4670 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4671 {
4672 /* match */
4673 result.emplace_back (i, sym);
4674 }
4675 }
4676 }
4677 }
4678 }
4679
4680 if (!result.empty ())
4681 sort_search_symbols_remove_dups (&result);
4682
4683 /* If there are no eyes, avoid all contact. I mean, if there are
4684 no debug symbols, then add matching minsyms. But if the user wants
4685 to see symbols matching a type regexp, then never give a minimal symbol,
4686 as we assume that a minimal symbol does not have a type. */
4687
4688 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4689 && !treg.has_value ())
4690 {
4691 for (objfile *objfile : current_program_space->objfiles ())
4692 {
4693 for (minimal_symbol *msymbol : objfile->msymbols ())
4694 {
4695 QUIT;
4696
4697 if (msymbol->created_by_gdb)
4698 continue;
4699
4700 if (MSYMBOL_TYPE (msymbol) == ourtype
4701 || MSYMBOL_TYPE (msymbol) == ourtype2
4702 || MSYMBOL_TYPE (msymbol) == ourtype3
4703 || MSYMBOL_TYPE (msymbol) == ourtype4)
4704 {
4705 if (!preg.has_value ()
4706 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4707 NULL, 0) == 0)
4708 {
4709 /* For functions we can do a quick check of whether the
4710 symbol might be found via find_pc_symtab. */
4711 if (kind != FUNCTIONS_DOMAIN
4712 || (find_pc_compunit_symtab
4713 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4714 == NULL))
4715 {
4716 if (lookup_symbol_in_objfile_from_linkage_name
4717 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4718 VAR_DOMAIN)
4719 .symbol == NULL)
4720 {
4721 /* match */
4722 result.emplace_back (i, msymbol, objfile);
4723 }
4724 }
4725 }
4726 }
4727 }
4728 }
4729 }
4730
4731 return result;
4732 }
4733
4734 /* Helper function for symtab_symbol_info, this function uses
4735 the data returned from search_symbols() to print information
4736 regarding the match to gdb_stdout. If LAST is not NULL,
4737 print file and line number information for the symbol as
4738 well. Skip printing the filename if it matches LAST. */
4739
4740 static void
4741 print_symbol_info (enum search_domain kind,
4742 struct symbol *sym,
4743 int block, const char *last)
4744 {
4745 scoped_switch_to_sym_language_if_auto l (sym);
4746 struct symtab *s = symbol_symtab (sym);
4747
4748 if (last != NULL)
4749 {
4750 const char *s_filename = symtab_to_filename_for_display (s);
4751
4752 if (filename_cmp (last, s_filename) != 0)
4753 {
4754 fputs_filtered ("\nFile ", gdb_stdout);
4755 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4756 fputs_filtered (":\n", gdb_stdout);
4757 }
4758
4759 if (SYMBOL_LINE (sym) != 0)
4760 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4761 else
4762 puts_filtered ("\t");
4763 }
4764
4765 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4766 printf_filtered ("static ");
4767
4768 /* Typedef that is not a C++ class. */
4769 if (kind == TYPES_DOMAIN
4770 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4771 {
4772 /* FIXME: For C (and C++) we end up with a difference in output here
4773 between how a typedef is printed, and non-typedefs are printed.
4774 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4775 appear C-like, while TYPE_PRINT doesn't.
4776
4777 For the struct printing case below, things are worse, we force
4778 printing of the ";" in this function, which is going to be wrong
4779 for languages that don't require a ";" between statements. */
4780 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4781 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4782 else
4783 {
4784 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4785 printf_filtered ("\n");
4786 }
4787 }
4788 /* variable, func, or typedef-that-is-c++-class. */
4789 else if (kind < TYPES_DOMAIN
4790 || (kind == TYPES_DOMAIN
4791 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4792 {
4793 type_print (SYMBOL_TYPE (sym),
4794 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4795 ? "" : SYMBOL_PRINT_NAME (sym)),
4796 gdb_stdout, 0);
4797
4798 printf_filtered (";\n");
4799 }
4800 }
4801
4802 /* This help function for symtab_symbol_info() prints information
4803 for non-debugging symbols to gdb_stdout. */
4804
4805 static void
4806 print_msymbol_info (struct bound_minimal_symbol msymbol)
4807 {
4808 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4809 char *tmp;
4810
4811 if (gdbarch_addr_bit (gdbarch) <= 32)
4812 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4813 & (CORE_ADDR) 0xffffffff,
4814 8);
4815 else
4816 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4817 16);
4818 fputs_styled (tmp, address_style.style (), gdb_stdout);
4819 fputs_filtered (" ", gdb_stdout);
4820 if (msymbol.minsym->text_p ())
4821 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4822 function_name_style.style (),
4823 gdb_stdout);
4824 else
4825 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4826 fputs_filtered ("\n", gdb_stdout);
4827 }
4828
4829 /* This is the guts of the commands "info functions", "info types", and
4830 "info variables". It calls search_symbols to find all matches and then
4831 print_[m]symbol_info to print out some useful information about the
4832 matches. */
4833
4834 static void
4835 symtab_symbol_info (bool quiet,
4836 const char *regexp, enum search_domain kind,
4837 const char *t_regexp, int from_tty)
4838 {
4839 static const char * const classnames[] =
4840 {"variable", "function", "type"};
4841 const char *last_filename = "";
4842 int first = 1;
4843
4844 gdb_assert (kind <= TYPES_DOMAIN);
4845
4846 if (regexp != nullptr && *regexp == '\0')
4847 regexp = nullptr;
4848
4849 /* Must make sure that if we're interrupted, symbols gets freed. */
4850 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4851 t_regexp, 0, NULL);
4852
4853 if (!quiet)
4854 {
4855 if (regexp != NULL)
4856 {
4857 if (t_regexp != NULL)
4858 printf_filtered
4859 (_("All %ss matching regular expression \"%s\""
4860 " with type matching regular expression \"%s\":\n"),
4861 classnames[kind], regexp, t_regexp);
4862 else
4863 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4864 classnames[kind], regexp);
4865 }
4866 else
4867 {
4868 if (t_regexp != NULL)
4869 printf_filtered
4870 (_("All defined %ss"
4871 " with type matching regular expression \"%s\" :\n"),
4872 classnames[kind], t_regexp);
4873 else
4874 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4875 }
4876 }
4877
4878 for (const symbol_search &p : symbols)
4879 {
4880 QUIT;
4881
4882 if (p.msymbol.minsym != NULL)
4883 {
4884 if (first)
4885 {
4886 if (!quiet)
4887 printf_filtered (_("\nNon-debugging symbols:\n"));
4888 first = 0;
4889 }
4890 print_msymbol_info (p.msymbol);
4891 }
4892 else
4893 {
4894 print_symbol_info (kind,
4895 p.symbol,
4896 p.block,
4897 last_filename);
4898 last_filename
4899 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4900 }
4901 }
4902 }
4903
4904 /* Implement the 'info variables' command. */
4905
4906 static void
4907 info_variables_command (const char *args, int from_tty)
4908 {
4909 info_print_options opts;
4910 extract_info_print_options (&opts, &args);
4911
4912 symtab_symbol_info (opts.quiet, args, VARIABLES_DOMAIN,
4913 opts.type_regexp, from_tty);
4914 }
4915
4916 /* Implement the 'info functions' command. */
4917
4918 static void
4919 info_functions_command (const char *args, int from_tty)
4920 {
4921 info_print_options opts;
4922 extract_info_print_options (&opts, &args);
4923
4924 symtab_symbol_info (opts.quiet, args, FUNCTIONS_DOMAIN,
4925 opts.type_regexp, from_tty);
4926 }
4927
4928 /* Holds the -q option for the 'info types' command. */
4929
4930 struct info_types_options
4931 {
4932 int quiet = false;
4933 };
4934
4935 /* The options used by the 'info types' command. */
4936
4937 static const gdb::option::option_def info_types_options_defs[] = {
4938 gdb::option::boolean_option_def<info_types_options> {
4939 "q",
4940 [] (info_types_options *opt) { return &opt->quiet; },
4941 nullptr, /* show_cmd_cb */
4942 nullptr /* set_doc */
4943 }
4944 };
4945
4946 /* Returns the option group used by 'info types'. */
4947
4948 static gdb::option::option_def_group
4949 make_info_types_options_def_group (info_types_options *opts)
4950 {
4951 return {{info_types_options_defs}, opts};
4952 }
4953
4954 /* Implement the 'info types' command. */
4955
4956 static void
4957 info_types_command (const char *args, int from_tty)
4958 {
4959 info_types_options opts;
4960
4961 auto grp = make_info_types_options_def_group (&opts);
4962 gdb::option::process_options
4963 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4964 if (args != nullptr && *args == '\0')
4965 args = nullptr;
4966 symtab_symbol_info (opts.quiet, args, TYPES_DOMAIN, NULL, from_tty);
4967 }
4968
4969 /* Command completer for 'info types' command. */
4970
4971 static void
4972 info_types_command_completer (struct cmd_list_element *ignore,
4973 completion_tracker &tracker,
4974 const char *text, const char * /* word */)
4975 {
4976 const auto group
4977 = make_info_types_options_def_group (nullptr);
4978 if (gdb::option::complete_options
4979 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4980 return;
4981
4982 const char *word = advance_to_expression_complete_word_point (tracker, text);
4983 symbol_completer (ignore, tracker, text, word);
4984 }
4985
4986 /* Breakpoint all functions matching regular expression. */
4987
4988 void
4989 rbreak_command_wrapper (char *regexp, int from_tty)
4990 {
4991 rbreak_command (regexp, from_tty);
4992 }
4993
4994 static void
4995 rbreak_command (const char *regexp, int from_tty)
4996 {
4997 std::string string;
4998 const char **files = NULL;
4999 const char *file_name;
5000 int nfiles = 0;
5001
5002 if (regexp)
5003 {
5004 const char *colon = strchr (regexp, ':');
5005
5006 if (colon && *(colon + 1) != ':')
5007 {
5008 int colon_index;
5009 char *local_name;
5010
5011 colon_index = colon - regexp;
5012 local_name = (char *) alloca (colon_index + 1);
5013 memcpy (local_name, regexp, colon_index);
5014 local_name[colon_index--] = 0;
5015 while (isspace (local_name[colon_index]))
5016 local_name[colon_index--] = 0;
5017 file_name = local_name;
5018 files = &file_name;
5019 nfiles = 1;
5020 regexp = skip_spaces (colon + 1);
5021 }
5022 }
5023
5024 std::vector<symbol_search> symbols = search_symbols (regexp,
5025 FUNCTIONS_DOMAIN,
5026 NULL,
5027 nfiles, files);
5028
5029 scoped_rbreak_breakpoints finalize;
5030 for (const symbol_search &p : symbols)
5031 {
5032 if (p.msymbol.minsym == NULL)
5033 {
5034 struct symtab *symtab = symbol_symtab (p.symbol);
5035 const char *fullname = symtab_to_fullname (symtab);
5036
5037 string = string_printf ("%s:'%s'", fullname,
5038 SYMBOL_LINKAGE_NAME (p.symbol));
5039 break_command (&string[0], from_tty);
5040 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5041 }
5042 else
5043 {
5044 string = string_printf ("'%s'",
5045 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5046
5047 break_command (&string[0], from_tty);
5048 printf_filtered ("<function, no debug info> %s;\n",
5049 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5050 }
5051 }
5052 }
5053 \f
5054
5055 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5056
5057 static int
5058 compare_symbol_name (const char *symbol_name, language symbol_language,
5059 const lookup_name_info &lookup_name,
5060 completion_match_result &match_res)
5061 {
5062 const language_defn *lang = language_def (symbol_language);
5063
5064 symbol_name_matcher_ftype *name_match
5065 = get_symbol_name_matcher (lang, lookup_name);
5066
5067 return name_match (symbol_name, lookup_name, &match_res);
5068 }
5069
5070 /* See symtab.h. */
5071
5072 void
5073 completion_list_add_name (completion_tracker &tracker,
5074 language symbol_language,
5075 const char *symname,
5076 const lookup_name_info &lookup_name,
5077 const char *text, const char *word)
5078 {
5079 completion_match_result &match_res
5080 = tracker.reset_completion_match_result ();
5081
5082 /* Clip symbols that cannot match. */
5083 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5084 return;
5085
5086 /* Refresh SYMNAME from the match string. It's potentially
5087 different depending on language. (E.g., on Ada, the match may be
5088 the encoded symbol name wrapped in "<>"). */
5089 symname = match_res.match.match ();
5090 gdb_assert (symname != NULL);
5091
5092 /* We have a match for a completion, so add SYMNAME to the current list
5093 of matches. Note that the name is moved to freshly malloc'd space. */
5094
5095 {
5096 gdb::unique_xmalloc_ptr<char> completion
5097 = make_completion_match_str (symname, text, word);
5098
5099 /* Here we pass the match-for-lcd object to add_completion. Some
5100 languages match the user text against substrings of symbol
5101 names in some cases. E.g., in C++, "b push_ba" completes to
5102 "std::vector::push_back", "std::string::push_back", etc., and
5103 in this case we want the completion lowest common denominator
5104 to be "push_back" instead of "std::". */
5105 tracker.add_completion (std::move (completion),
5106 &match_res.match_for_lcd, text, word);
5107 }
5108 }
5109
5110 /* completion_list_add_name wrapper for struct symbol. */
5111
5112 static void
5113 completion_list_add_symbol (completion_tracker &tracker,
5114 symbol *sym,
5115 const lookup_name_info &lookup_name,
5116 const char *text, const char *word)
5117 {
5118 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5119 SYMBOL_NATURAL_NAME (sym),
5120 lookup_name, text, word);
5121 }
5122
5123 /* completion_list_add_name wrapper for struct minimal_symbol. */
5124
5125 static void
5126 completion_list_add_msymbol (completion_tracker &tracker,
5127 minimal_symbol *sym,
5128 const lookup_name_info &lookup_name,
5129 const char *text, const char *word)
5130 {
5131 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5132 MSYMBOL_NATURAL_NAME (sym),
5133 lookup_name, text, word);
5134 }
5135
5136
5137 /* ObjC: In case we are completing on a selector, look as the msymbol
5138 again and feed all the selectors into the mill. */
5139
5140 static void
5141 completion_list_objc_symbol (completion_tracker &tracker,
5142 struct minimal_symbol *msymbol,
5143 const lookup_name_info &lookup_name,
5144 const char *text, const char *word)
5145 {
5146 static char *tmp = NULL;
5147 static unsigned int tmplen = 0;
5148
5149 const char *method, *category, *selector;
5150 char *tmp2 = NULL;
5151
5152 method = MSYMBOL_NATURAL_NAME (msymbol);
5153
5154 /* Is it a method? */
5155 if ((method[0] != '-') && (method[0] != '+'))
5156 return;
5157
5158 if (text[0] == '[')
5159 /* Complete on shortened method method. */
5160 completion_list_add_name (tracker, language_objc,
5161 method + 1,
5162 lookup_name,
5163 text, word);
5164
5165 while ((strlen (method) + 1) >= tmplen)
5166 {
5167 if (tmplen == 0)
5168 tmplen = 1024;
5169 else
5170 tmplen *= 2;
5171 tmp = (char *) xrealloc (tmp, tmplen);
5172 }
5173 selector = strchr (method, ' ');
5174 if (selector != NULL)
5175 selector++;
5176
5177 category = strchr (method, '(');
5178
5179 if ((category != NULL) && (selector != NULL))
5180 {
5181 memcpy (tmp, method, (category - method));
5182 tmp[category - method] = ' ';
5183 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5184 completion_list_add_name (tracker, language_objc, tmp,
5185 lookup_name, text, word);
5186 if (text[0] == '[')
5187 completion_list_add_name (tracker, language_objc, tmp + 1,
5188 lookup_name, text, word);
5189 }
5190
5191 if (selector != NULL)
5192 {
5193 /* Complete on selector only. */
5194 strcpy (tmp, selector);
5195 tmp2 = strchr (tmp, ']');
5196 if (tmp2 != NULL)
5197 *tmp2 = '\0';
5198
5199 completion_list_add_name (tracker, language_objc, tmp,
5200 lookup_name, text, word);
5201 }
5202 }
5203
5204 /* Break the non-quoted text based on the characters which are in
5205 symbols. FIXME: This should probably be language-specific. */
5206
5207 static const char *
5208 language_search_unquoted_string (const char *text, const char *p)
5209 {
5210 for (; p > text; --p)
5211 {
5212 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5213 continue;
5214 else
5215 {
5216 if ((current_language->la_language == language_objc))
5217 {
5218 if (p[-1] == ':') /* Might be part of a method name. */
5219 continue;
5220 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5221 p -= 2; /* Beginning of a method name. */
5222 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5223 { /* Might be part of a method name. */
5224 const char *t = p;
5225
5226 /* Seeing a ' ' or a '(' is not conclusive evidence
5227 that we are in the middle of a method name. However,
5228 finding "-[" or "+[" should be pretty un-ambiguous.
5229 Unfortunately we have to find it now to decide. */
5230
5231 while (t > text)
5232 if (isalnum (t[-1]) || t[-1] == '_' ||
5233 t[-1] == ' ' || t[-1] == ':' ||
5234 t[-1] == '(' || t[-1] == ')')
5235 --t;
5236 else
5237 break;
5238
5239 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5240 p = t - 2; /* Method name detected. */
5241 /* Else we leave with p unchanged. */
5242 }
5243 }
5244 break;
5245 }
5246 }
5247 return p;
5248 }
5249
5250 static void
5251 completion_list_add_fields (completion_tracker &tracker,
5252 struct symbol *sym,
5253 const lookup_name_info &lookup_name,
5254 const char *text, const char *word)
5255 {
5256 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5257 {
5258 struct type *t = SYMBOL_TYPE (sym);
5259 enum type_code c = TYPE_CODE (t);
5260 int j;
5261
5262 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5263 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5264 if (TYPE_FIELD_NAME (t, j))
5265 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5266 TYPE_FIELD_NAME (t, j),
5267 lookup_name, text, word);
5268 }
5269 }
5270
5271 /* See symtab.h. */
5272
5273 bool
5274 symbol_is_function_or_method (symbol *sym)
5275 {
5276 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5277 {
5278 case TYPE_CODE_FUNC:
5279 case TYPE_CODE_METHOD:
5280 return true;
5281 default:
5282 return false;
5283 }
5284 }
5285
5286 /* See symtab.h. */
5287
5288 bool
5289 symbol_is_function_or_method (minimal_symbol *msymbol)
5290 {
5291 switch (MSYMBOL_TYPE (msymbol))
5292 {
5293 case mst_text:
5294 case mst_text_gnu_ifunc:
5295 case mst_solib_trampoline:
5296 case mst_file_text:
5297 return true;
5298 default:
5299 return false;
5300 }
5301 }
5302
5303 /* See symtab.h. */
5304
5305 bound_minimal_symbol
5306 find_gnu_ifunc (const symbol *sym)
5307 {
5308 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5309 return {};
5310
5311 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5312 symbol_name_match_type::SEARCH_NAME);
5313 struct objfile *objfile = symbol_objfile (sym);
5314
5315 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5316 minimal_symbol *ifunc = NULL;
5317
5318 iterate_over_minimal_symbols (objfile, lookup_name,
5319 [&] (minimal_symbol *minsym)
5320 {
5321 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5322 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5323 {
5324 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5325 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5326 {
5327 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5328 msym_addr
5329 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5330 msym_addr,
5331 current_top_target ());
5332 }
5333 if (msym_addr == address)
5334 {
5335 ifunc = minsym;
5336 return true;
5337 }
5338 }
5339 return false;
5340 });
5341
5342 if (ifunc != NULL)
5343 return {ifunc, objfile};
5344 return {};
5345 }
5346
5347 /* Add matching symbols from SYMTAB to the current completion list. */
5348
5349 static void
5350 add_symtab_completions (struct compunit_symtab *cust,
5351 completion_tracker &tracker,
5352 complete_symbol_mode mode,
5353 const lookup_name_info &lookup_name,
5354 const char *text, const char *word,
5355 enum type_code code)
5356 {
5357 struct symbol *sym;
5358 const struct block *b;
5359 struct block_iterator iter;
5360 int i;
5361
5362 if (cust == NULL)
5363 return;
5364
5365 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5366 {
5367 QUIT;
5368 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5369 ALL_BLOCK_SYMBOLS (b, iter, sym)
5370 {
5371 if (completion_skip_symbol (mode, sym))
5372 continue;
5373
5374 if (code == TYPE_CODE_UNDEF
5375 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5376 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5377 completion_list_add_symbol (tracker, sym,
5378 lookup_name,
5379 text, word);
5380 }
5381 }
5382 }
5383
5384 void
5385 default_collect_symbol_completion_matches_break_on
5386 (completion_tracker &tracker, complete_symbol_mode mode,
5387 symbol_name_match_type name_match_type,
5388 const char *text, const char *word,
5389 const char *break_on, enum type_code code)
5390 {
5391 /* Problem: All of the symbols have to be copied because readline
5392 frees them. I'm not going to worry about this; hopefully there
5393 won't be that many. */
5394
5395 struct symbol *sym;
5396 const struct block *b;
5397 const struct block *surrounding_static_block, *surrounding_global_block;
5398 struct block_iterator iter;
5399 /* The symbol we are completing on. Points in same buffer as text. */
5400 const char *sym_text;
5401
5402 /* Now look for the symbol we are supposed to complete on. */
5403 if (mode == complete_symbol_mode::LINESPEC)
5404 sym_text = text;
5405 else
5406 {
5407 const char *p;
5408 char quote_found;
5409 const char *quote_pos = NULL;
5410
5411 /* First see if this is a quoted string. */
5412 quote_found = '\0';
5413 for (p = text; *p != '\0'; ++p)
5414 {
5415 if (quote_found != '\0')
5416 {
5417 if (*p == quote_found)
5418 /* Found close quote. */
5419 quote_found = '\0';
5420 else if (*p == '\\' && p[1] == quote_found)
5421 /* A backslash followed by the quote character
5422 doesn't end the string. */
5423 ++p;
5424 }
5425 else if (*p == '\'' || *p == '"')
5426 {
5427 quote_found = *p;
5428 quote_pos = p;
5429 }
5430 }
5431 if (quote_found == '\'')
5432 /* A string within single quotes can be a symbol, so complete on it. */
5433 sym_text = quote_pos + 1;
5434 else if (quote_found == '"')
5435 /* A double-quoted string is never a symbol, nor does it make sense
5436 to complete it any other way. */
5437 {
5438 return;
5439 }
5440 else
5441 {
5442 /* It is not a quoted string. Break it based on the characters
5443 which are in symbols. */
5444 while (p > text)
5445 {
5446 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5447 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5448 --p;
5449 else
5450 break;
5451 }
5452 sym_text = p;
5453 }
5454 }
5455
5456 lookup_name_info lookup_name (sym_text, name_match_type, true);
5457
5458 /* At this point scan through the misc symbol vectors and add each
5459 symbol you find to the list. Eventually we want to ignore
5460 anything that isn't a text symbol (everything else will be
5461 handled by the psymtab code below). */
5462
5463 if (code == TYPE_CODE_UNDEF)
5464 {
5465 for (objfile *objfile : current_program_space->objfiles ())
5466 {
5467 for (minimal_symbol *msymbol : objfile->msymbols ())
5468 {
5469 QUIT;
5470
5471 if (completion_skip_symbol (mode, msymbol))
5472 continue;
5473
5474 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5475 sym_text, word);
5476
5477 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5478 sym_text, word);
5479 }
5480 }
5481 }
5482
5483 /* Add completions for all currently loaded symbol tables. */
5484 for (objfile *objfile : current_program_space->objfiles ())
5485 {
5486 for (compunit_symtab *cust : objfile->compunits ())
5487 add_symtab_completions (cust, tracker, mode, lookup_name,
5488 sym_text, word, code);
5489 }
5490
5491 /* Look through the partial symtabs for all symbols which begin by
5492 matching SYM_TEXT. Expand all CUs that you find to the list. */
5493 expand_symtabs_matching (NULL,
5494 lookup_name,
5495 NULL,
5496 [&] (compunit_symtab *symtab) /* expansion notify */
5497 {
5498 add_symtab_completions (symtab,
5499 tracker, mode, lookup_name,
5500 sym_text, word, code);
5501 },
5502 ALL_DOMAIN);
5503
5504 /* Search upwards from currently selected frame (so that we can
5505 complete on local vars). Also catch fields of types defined in
5506 this places which match our text string. Only complete on types
5507 visible from current context. */
5508
5509 b = get_selected_block (0);
5510 surrounding_static_block = block_static_block (b);
5511 surrounding_global_block = block_global_block (b);
5512 if (surrounding_static_block != NULL)
5513 while (b != surrounding_static_block)
5514 {
5515 QUIT;
5516
5517 ALL_BLOCK_SYMBOLS (b, iter, sym)
5518 {
5519 if (code == TYPE_CODE_UNDEF)
5520 {
5521 completion_list_add_symbol (tracker, sym, lookup_name,
5522 sym_text, word);
5523 completion_list_add_fields (tracker, sym, lookup_name,
5524 sym_text, word);
5525 }
5526 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5527 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5528 completion_list_add_symbol (tracker, sym, lookup_name,
5529 sym_text, word);
5530 }
5531
5532 /* Stop when we encounter an enclosing function. Do not stop for
5533 non-inlined functions - the locals of the enclosing function
5534 are in scope for a nested function. */
5535 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5536 break;
5537 b = BLOCK_SUPERBLOCK (b);
5538 }
5539
5540 /* Add fields from the file's types; symbols will be added below. */
5541
5542 if (code == TYPE_CODE_UNDEF)
5543 {
5544 if (surrounding_static_block != NULL)
5545 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5546 completion_list_add_fields (tracker, sym, lookup_name,
5547 sym_text, word);
5548
5549 if (surrounding_global_block != NULL)
5550 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5551 completion_list_add_fields (tracker, sym, lookup_name,
5552 sym_text, word);
5553 }
5554
5555 /* Skip macros if we are completing a struct tag -- arguable but
5556 usually what is expected. */
5557 if (current_language->la_macro_expansion == macro_expansion_c
5558 && code == TYPE_CODE_UNDEF)
5559 {
5560 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5561
5562 /* This adds a macro's name to the current completion list. */
5563 auto add_macro_name = [&] (const char *macro_name,
5564 const macro_definition *,
5565 macro_source_file *,
5566 int)
5567 {
5568 completion_list_add_name (tracker, language_c, macro_name,
5569 lookup_name, sym_text, word);
5570 };
5571
5572 /* Add any macros visible in the default scope. Note that this
5573 may yield the occasional wrong result, because an expression
5574 might be evaluated in a scope other than the default. For
5575 example, if the user types "break file:line if <TAB>", the
5576 resulting expression will be evaluated at "file:line" -- but
5577 at there does not seem to be a way to detect this at
5578 completion time. */
5579 scope = default_macro_scope ();
5580 if (scope)
5581 macro_for_each_in_scope (scope->file, scope->line,
5582 add_macro_name);
5583
5584 /* User-defined macros are always visible. */
5585 macro_for_each (macro_user_macros, add_macro_name);
5586 }
5587 }
5588
5589 void
5590 default_collect_symbol_completion_matches (completion_tracker &tracker,
5591 complete_symbol_mode mode,
5592 symbol_name_match_type name_match_type,
5593 const char *text, const char *word,
5594 enum type_code code)
5595 {
5596 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5597 name_match_type,
5598 text, word, "",
5599 code);
5600 }
5601
5602 /* Collect all symbols (regardless of class) which begin by matching
5603 TEXT. */
5604
5605 void
5606 collect_symbol_completion_matches (completion_tracker &tracker,
5607 complete_symbol_mode mode,
5608 symbol_name_match_type name_match_type,
5609 const char *text, const char *word)
5610 {
5611 current_language->la_collect_symbol_completion_matches (tracker, mode,
5612 name_match_type,
5613 text, word,
5614 TYPE_CODE_UNDEF);
5615 }
5616
5617 /* Like collect_symbol_completion_matches, but only collect
5618 STRUCT_DOMAIN symbols whose type code is CODE. */
5619
5620 void
5621 collect_symbol_completion_matches_type (completion_tracker &tracker,
5622 const char *text, const char *word,
5623 enum type_code code)
5624 {
5625 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5626 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5627
5628 gdb_assert (code == TYPE_CODE_UNION
5629 || code == TYPE_CODE_STRUCT
5630 || code == TYPE_CODE_ENUM);
5631 current_language->la_collect_symbol_completion_matches (tracker, mode,
5632 name_match_type,
5633 text, word, code);
5634 }
5635
5636 /* Like collect_symbol_completion_matches, but collects a list of
5637 symbols defined in all source files named SRCFILE. */
5638
5639 void
5640 collect_file_symbol_completion_matches (completion_tracker &tracker,
5641 complete_symbol_mode mode,
5642 symbol_name_match_type name_match_type,
5643 const char *text, const char *word,
5644 const char *srcfile)
5645 {
5646 /* The symbol we are completing on. Points in same buffer as text. */
5647 const char *sym_text;
5648
5649 /* Now look for the symbol we are supposed to complete on.
5650 FIXME: This should be language-specific. */
5651 if (mode == complete_symbol_mode::LINESPEC)
5652 sym_text = text;
5653 else
5654 {
5655 const char *p;
5656 char quote_found;
5657 const char *quote_pos = NULL;
5658
5659 /* First see if this is a quoted string. */
5660 quote_found = '\0';
5661 for (p = text; *p != '\0'; ++p)
5662 {
5663 if (quote_found != '\0')
5664 {
5665 if (*p == quote_found)
5666 /* Found close quote. */
5667 quote_found = '\0';
5668 else if (*p == '\\' && p[1] == quote_found)
5669 /* A backslash followed by the quote character
5670 doesn't end the string. */
5671 ++p;
5672 }
5673 else if (*p == '\'' || *p == '"')
5674 {
5675 quote_found = *p;
5676 quote_pos = p;
5677 }
5678 }
5679 if (quote_found == '\'')
5680 /* A string within single quotes can be a symbol, so complete on it. */
5681 sym_text = quote_pos + 1;
5682 else if (quote_found == '"')
5683 /* A double-quoted string is never a symbol, nor does it make sense
5684 to complete it any other way. */
5685 {
5686 return;
5687 }
5688 else
5689 {
5690 /* Not a quoted string. */
5691 sym_text = language_search_unquoted_string (text, p);
5692 }
5693 }
5694
5695 lookup_name_info lookup_name (sym_text, name_match_type, true);
5696
5697 /* Go through symtabs for SRCFILE and check the externs and statics
5698 for symbols which match. */
5699 iterate_over_symtabs (srcfile, [&] (symtab *s)
5700 {
5701 add_symtab_completions (SYMTAB_COMPUNIT (s),
5702 tracker, mode, lookup_name,
5703 sym_text, word, TYPE_CODE_UNDEF);
5704 return false;
5705 });
5706 }
5707
5708 /* A helper function for make_source_files_completion_list. It adds
5709 another file name to a list of possible completions, growing the
5710 list as necessary. */
5711
5712 static void
5713 add_filename_to_list (const char *fname, const char *text, const char *word,
5714 completion_list *list)
5715 {
5716 list->emplace_back (make_completion_match_str (fname, text, word));
5717 }
5718
5719 static int
5720 not_interesting_fname (const char *fname)
5721 {
5722 static const char *illegal_aliens[] = {
5723 "_globals_", /* inserted by coff_symtab_read */
5724 NULL
5725 };
5726 int i;
5727
5728 for (i = 0; illegal_aliens[i]; i++)
5729 {
5730 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5731 return 1;
5732 }
5733 return 0;
5734 }
5735
5736 /* An object of this type is passed as the user_data argument to
5737 map_partial_symbol_filenames. */
5738 struct add_partial_filename_data
5739 {
5740 struct filename_seen_cache *filename_seen_cache;
5741 const char *text;
5742 const char *word;
5743 int text_len;
5744 completion_list *list;
5745 };
5746
5747 /* A callback for map_partial_symbol_filenames. */
5748
5749 static void
5750 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5751 void *user_data)
5752 {
5753 struct add_partial_filename_data *data
5754 = (struct add_partial_filename_data *) user_data;
5755
5756 if (not_interesting_fname (filename))
5757 return;
5758 if (!data->filename_seen_cache->seen (filename)
5759 && filename_ncmp (filename, data->text, data->text_len) == 0)
5760 {
5761 /* This file matches for a completion; add it to the
5762 current list of matches. */
5763 add_filename_to_list (filename, data->text, data->word, data->list);
5764 }
5765 else
5766 {
5767 const char *base_name = lbasename (filename);
5768
5769 if (base_name != filename
5770 && !data->filename_seen_cache->seen (base_name)
5771 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5772 add_filename_to_list (base_name, data->text, data->word, data->list);
5773 }
5774 }
5775
5776 /* Return a list of all source files whose names begin with matching
5777 TEXT. The file names are looked up in the symbol tables of this
5778 program. */
5779
5780 completion_list
5781 make_source_files_completion_list (const char *text, const char *word)
5782 {
5783 size_t text_len = strlen (text);
5784 completion_list list;
5785 const char *base_name;
5786 struct add_partial_filename_data datum;
5787
5788 if (!have_full_symbols () && !have_partial_symbols ())
5789 return list;
5790
5791 filename_seen_cache filenames_seen;
5792
5793 for (objfile *objfile : current_program_space->objfiles ())
5794 {
5795 for (compunit_symtab *cu : objfile->compunits ())
5796 {
5797 for (symtab *s : compunit_filetabs (cu))
5798 {
5799 if (not_interesting_fname (s->filename))
5800 continue;
5801 if (!filenames_seen.seen (s->filename)
5802 && filename_ncmp (s->filename, text, text_len) == 0)
5803 {
5804 /* This file matches for a completion; add it to the current
5805 list of matches. */
5806 add_filename_to_list (s->filename, text, word, &list);
5807 }
5808 else
5809 {
5810 /* NOTE: We allow the user to type a base name when the
5811 debug info records leading directories, but not the other
5812 way around. This is what subroutines of breakpoint
5813 command do when they parse file names. */
5814 base_name = lbasename (s->filename);
5815 if (base_name != s->filename
5816 && !filenames_seen.seen (base_name)
5817 && filename_ncmp (base_name, text, text_len) == 0)
5818 add_filename_to_list (base_name, text, word, &list);
5819 }
5820 }
5821 }
5822 }
5823
5824 datum.filename_seen_cache = &filenames_seen;
5825 datum.text = text;
5826 datum.word = word;
5827 datum.text_len = text_len;
5828 datum.list = &list;
5829 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5830 0 /*need_fullname*/);
5831
5832 return list;
5833 }
5834 \f
5835 /* Track MAIN */
5836
5837 /* Return the "main_info" object for the current program space. If
5838 the object has not yet been created, create it and fill in some
5839 default values. */
5840
5841 static struct main_info *
5842 get_main_info (void)
5843 {
5844 struct main_info *info = main_progspace_key.get (current_program_space);
5845
5846 if (info == NULL)
5847 {
5848 /* It may seem strange to store the main name in the progspace
5849 and also in whatever objfile happens to see a main name in
5850 its debug info. The reason for this is mainly historical:
5851 gdb returned "main" as the name even if no function named
5852 "main" was defined the program; and this approach lets us
5853 keep compatibility. */
5854 info = main_progspace_key.emplace (current_program_space);
5855 }
5856
5857 return info;
5858 }
5859
5860 static void
5861 set_main_name (const char *name, enum language lang)
5862 {
5863 struct main_info *info = get_main_info ();
5864
5865 if (info->name_of_main != NULL)
5866 {
5867 xfree (info->name_of_main);
5868 info->name_of_main = NULL;
5869 info->language_of_main = language_unknown;
5870 }
5871 if (name != NULL)
5872 {
5873 info->name_of_main = xstrdup (name);
5874 info->language_of_main = lang;
5875 }
5876 }
5877
5878 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5879 accordingly. */
5880
5881 static void
5882 find_main_name (void)
5883 {
5884 const char *new_main_name;
5885
5886 /* First check the objfiles to see whether a debuginfo reader has
5887 picked up the appropriate main name. Historically the main name
5888 was found in a more or less random way; this approach instead
5889 relies on the order of objfile creation -- which still isn't
5890 guaranteed to get the correct answer, but is just probably more
5891 accurate. */
5892 for (objfile *objfile : current_program_space->objfiles ())
5893 {
5894 if (objfile->per_bfd->name_of_main != NULL)
5895 {
5896 set_main_name (objfile->per_bfd->name_of_main,
5897 objfile->per_bfd->language_of_main);
5898 return;
5899 }
5900 }
5901
5902 /* Try to see if the main procedure is in Ada. */
5903 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5904 be to add a new method in the language vector, and call this
5905 method for each language until one of them returns a non-empty
5906 name. This would allow us to remove this hard-coded call to
5907 an Ada function. It is not clear that this is a better approach
5908 at this point, because all methods need to be written in a way
5909 such that false positives never be returned. For instance, it is
5910 important that a method does not return a wrong name for the main
5911 procedure if the main procedure is actually written in a different
5912 language. It is easy to guaranty this with Ada, since we use a
5913 special symbol generated only when the main in Ada to find the name
5914 of the main procedure. It is difficult however to see how this can
5915 be guarantied for languages such as C, for instance. This suggests
5916 that order of call for these methods becomes important, which means
5917 a more complicated approach. */
5918 new_main_name = ada_main_name ();
5919 if (new_main_name != NULL)
5920 {
5921 set_main_name (new_main_name, language_ada);
5922 return;
5923 }
5924
5925 new_main_name = d_main_name ();
5926 if (new_main_name != NULL)
5927 {
5928 set_main_name (new_main_name, language_d);
5929 return;
5930 }
5931
5932 new_main_name = go_main_name ();
5933 if (new_main_name != NULL)
5934 {
5935 set_main_name (new_main_name, language_go);
5936 return;
5937 }
5938
5939 new_main_name = pascal_main_name ();
5940 if (new_main_name != NULL)
5941 {
5942 set_main_name (new_main_name, language_pascal);
5943 return;
5944 }
5945
5946 /* The languages above didn't identify the name of the main procedure.
5947 Fallback to "main". */
5948 set_main_name ("main", language_unknown);
5949 }
5950
5951 /* See symtab.h. */
5952
5953 const char *
5954 main_name ()
5955 {
5956 struct main_info *info = get_main_info ();
5957
5958 if (info->name_of_main == NULL)
5959 find_main_name ();
5960
5961 return info->name_of_main;
5962 }
5963
5964 /* Return the language of the main function. If it is not known,
5965 return language_unknown. */
5966
5967 enum language
5968 main_language (void)
5969 {
5970 struct main_info *info = get_main_info ();
5971
5972 if (info->name_of_main == NULL)
5973 find_main_name ();
5974
5975 return info->language_of_main;
5976 }
5977
5978 /* Handle ``executable_changed'' events for the symtab module. */
5979
5980 static void
5981 symtab_observer_executable_changed (void)
5982 {
5983 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5984 set_main_name (NULL, language_unknown);
5985 }
5986
5987 /* Return 1 if the supplied producer string matches the ARM RealView
5988 compiler (armcc). */
5989
5990 int
5991 producer_is_realview (const char *producer)
5992 {
5993 static const char *const arm_idents[] = {
5994 "ARM C Compiler, ADS",
5995 "Thumb C Compiler, ADS",
5996 "ARM C++ Compiler, ADS",
5997 "Thumb C++ Compiler, ADS",
5998 "ARM/Thumb C/C++ Compiler, RVCT",
5999 "ARM C/C++ Compiler, RVCT"
6000 };
6001 int i;
6002
6003 if (producer == NULL)
6004 return 0;
6005
6006 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6007 if (startswith (producer, arm_idents[i]))
6008 return 1;
6009
6010 return 0;
6011 }
6012
6013 \f
6014
6015 /* The next index to hand out in response to a registration request. */
6016
6017 static int next_aclass_value = LOC_FINAL_VALUE;
6018
6019 /* The maximum number of "aclass" registrations we support. This is
6020 constant for convenience. */
6021 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6022
6023 /* The objects representing the various "aclass" values. The elements
6024 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6025 elements are those registered at gdb initialization time. */
6026
6027 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6028
6029 /* The globally visible pointer. This is separate from 'symbol_impl'
6030 so that it can be const. */
6031
6032 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6033
6034 /* Make sure we saved enough room in struct symbol. */
6035
6036 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6037
6038 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6039 is the ops vector associated with this index. This returns the new
6040 index, which should be used as the aclass_index field for symbols
6041 of this type. */
6042
6043 int
6044 register_symbol_computed_impl (enum address_class aclass,
6045 const struct symbol_computed_ops *ops)
6046 {
6047 int result = next_aclass_value++;
6048
6049 gdb_assert (aclass == LOC_COMPUTED);
6050 gdb_assert (result < MAX_SYMBOL_IMPLS);
6051 symbol_impl[result].aclass = aclass;
6052 symbol_impl[result].ops_computed = ops;
6053
6054 /* Sanity check OPS. */
6055 gdb_assert (ops != NULL);
6056 gdb_assert (ops->tracepoint_var_ref != NULL);
6057 gdb_assert (ops->describe_location != NULL);
6058 gdb_assert (ops->get_symbol_read_needs != NULL);
6059 gdb_assert (ops->read_variable != NULL);
6060
6061 return result;
6062 }
6063
6064 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6065 OPS is the ops vector associated with this index. This returns the
6066 new index, which should be used as the aclass_index field for symbols
6067 of this type. */
6068
6069 int
6070 register_symbol_block_impl (enum address_class aclass,
6071 const struct symbol_block_ops *ops)
6072 {
6073 int result = next_aclass_value++;
6074
6075 gdb_assert (aclass == LOC_BLOCK);
6076 gdb_assert (result < MAX_SYMBOL_IMPLS);
6077 symbol_impl[result].aclass = aclass;
6078 symbol_impl[result].ops_block = ops;
6079
6080 /* Sanity check OPS. */
6081 gdb_assert (ops != NULL);
6082 gdb_assert (ops->find_frame_base_location != NULL);
6083
6084 return result;
6085 }
6086
6087 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6088 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6089 this index. This returns the new index, which should be used as
6090 the aclass_index field for symbols of this type. */
6091
6092 int
6093 register_symbol_register_impl (enum address_class aclass,
6094 const struct symbol_register_ops *ops)
6095 {
6096 int result = next_aclass_value++;
6097
6098 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6099 gdb_assert (result < MAX_SYMBOL_IMPLS);
6100 symbol_impl[result].aclass = aclass;
6101 symbol_impl[result].ops_register = ops;
6102
6103 return result;
6104 }
6105
6106 /* Initialize elements of 'symbol_impl' for the constants in enum
6107 address_class. */
6108
6109 static void
6110 initialize_ordinary_address_classes (void)
6111 {
6112 int i;
6113
6114 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6115 symbol_impl[i].aclass = (enum address_class) i;
6116 }
6117
6118 \f
6119
6120 /* Helper function to initialize the fields of an objfile-owned symbol.
6121 It assumed that *SYM is already all zeroes. */
6122
6123 static void
6124 initialize_objfile_symbol_1 (struct symbol *sym)
6125 {
6126 SYMBOL_OBJFILE_OWNED (sym) = 1;
6127 SYMBOL_SECTION (sym) = -1;
6128 }
6129
6130 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6131
6132 void
6133 initialize_objfile_symbol (struct symbol *sym)
6134 {
6135 memset (sym, 0, sizeof (*sym));
6136 initialize_objfile_symbol_1 (sym);
6137 }
6138
6139 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6140 obstack. */
6141
6142 struct symbol *
6143 allocate_symbol (struct objfile *objfile)
6144 {
6145 struct symbol *result;
6146
6147 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6148 initialize_objfile_symbol_1 (result);
6149
6150 return result;
6151 }
6152
6153 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6154 obstack. */
6155
6156 struct template_symbol *
6157 allocate_template_symbol (struct objfile *objfile)
6158 {
6159 struct template_symbol *result;
6160
6161 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6162 initialize_objfile_symbol_1 (result);
6163
6164 return result;
6165 }
6166
6167 /* See symtab.h. */
6168
6169 struct objfile *
6170 symbol_objfile (const struct symbol *symbol)
6171 {
6172 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6173 return SYMTAB_OBJFILE (symbol->owner.symtab);
6174 }
6175
6176 /* See symtab.h. */
6177
6178 struct gdbarch *
6179 symbol_arch (const struct symbol *symbol)
6180 {
6181 if (!SYMBOL_OBJFILE_OWNED (symbol))
6182 return symbol->owner.arch;
6183 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6184 }
6185
6186 /* See symtab.h. */
6187
6188 struct symtab *
6189 symbol_symtab (const struct symbol *symbol)
6190 {
6191 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6192 return symbol->owner.symtab;
6193 }
6194
6195 /* See symtab.h. */
6196
6197 void
6198 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6199 {
6200 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6201 symbol->owner.symtab = symtab;
6202 }
6203
6204 \f
6205
6206 void
6207 _initialize_symtab (void)
6208 {
6209 cmd_list_element *c;
6210
6211 initialize_ordinary_address_classes ();
6212
6213 c = add_info ("variables", info_variables_command,
6214 info_print_args_help (_("\
6215 All global and static variable names or those matching REGEXPs.\n\
6216 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6217 Prints the global and static variables.\n"),
6218 _("global and static variables")));
6219 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6220 if (dbx_commands)
6221 {
6222 c = add_com ("whereis", class_info, info_variables_command,
6223 info_print_args_help (_("\
6224 All global and static variable names, or those matching REGEXPs.\n\
6225 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6226 Prints the global and static variables.\n"),
6227 _("global and static variables")));
6228 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6229 }
6230
6231 c = add_info ("functions", info_functions_command,
6232 info_print_args_help (_("\
6233 All function names or those matching REGEXPs.\n\
6234 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6235 Prints the functions.\n"),
6236 _("functions")));
6237 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6238
6239 c = add_info ("types", info_types_command, _("\
6240 All type names, or those matching REGEXP.\n\
6241 Usage: info types [-q] [REGEXP]\n\
6242 Print information about all types matching REGEXP, or all types if no\n\
6243 REGEXP is given. The optional flag -q disables printing of headers."));
6244 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6245
6246 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6247
6248 static std::string info_sources_help
6249 = gdb::option::build_help (_("\
6250 All source files in the program or those matching REGEXP.\n\
6251 Usage: info sources [OPTION]... [REGEXP]\n\
6252 By default, REGEXP is used to match anywhere in the filename.\n\
6253 \n\
6254 Options:\n\
6255 %OPTIONS%"),
6256 info_sources_opts);
6257
6258 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6259 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6260
6261 add_com ("rbreak", class_breakpoint, rbreak_command,
6262 _("Set a breakpoint for all functions matching REGEXP."));
6263
6264 add_setshow_enum_cmd ("multiple-symbols", no_class,
6265 multiple_symbols_modes, &multiple_symbols_mode,
6266 _("\
6267 Set how the debugger handles ambiguities in expressions."), _("\
6268 Show how the debugger handles ambiguities in expressions."), _("\
6269 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6270 NULL, NULL, &setlist, &showlist);
6271
6272 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6273 &basenames_may_differ, _("\
6274 Set whether a source file may have multiple base names."), _("\
6275 Show whether a source file may have multiple base names."), _("\
6276 (A \"base name\" is the name of a file with the directory part removed.\n\
6277 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6278 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6279 before comparing them. Canonicalization is an expensive operation,\n\
6280 but it allows the same file be known by more than one base name.\n\
6281 If not set (the default), all source files are assumed to have just\n\
6282 one base name, and gdb will do file name comparisons more efficiently."),
6283 NULL, NULL,
6284 &setlist, &showlist);
6285
6286 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6287 _("Set debugging of symbol table creation."),
6288 _("Show debugging of symbol table creation."), _("\
6289 When enabled (non-zero), debugging messages are printed when building\n\
6290 symbol tables. A value of 1 (one) normally provides enough information.\n\
6291 A value greater than 1 provides more verbose information."),
6292 NULL,
6293 NULL,
6294 &setdebuglist, &showdebuglist);
6295
6296 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6297 _("\
6298 Set debugging of symbol lookup."), _("\
6299 Show debugging of symbol lookup."), _("\
6300 When enabled (non-zero), symbol lookups are logged."),
6301 NULL, NULL,
6302 &setdebuglist, &showdebuglist);
6303
6304 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6305 &new_symbol_cache_size,
6306 _("Set the size of the symbol cache."),
6307 _("Show the size of the symbol cache."), _("\
6308 The size of the symbol cache.\n\
6309 If zero then the symbol cache is disabled."),
6310 set_symbol_cache_size_handler, NULL,
6311 &maintenance_set_cmdlist,
6312 &maintenance_show_cmdlist);
6313
6314 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6315 _("Dump the symbol cache for each program space."),
6316 &maintenanceprintlist);
6317
6318 add_cmd ("symbol-cache-statistics", class_maintenance,
6319 maintenance_print_symbol_cache_statistics,
6320 _("Print symbol cache statistics for each program space."),
6321 &maintenanceprintlist);
6322
6323 add_cmd ("flush-symbol-cache", class_maintenance,
6324 maintenance_flush_symbol_cache,
6325 _("Flush the symbol cache for each program space."),
6326 &maintenancelist);
6327
6328 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6329 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6330 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6331 }
This page took 0.204571 seconds and 5 git commands to generate.