2013-03-20 Jan Kratochvil <jan.kratochvil@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). Returns true if they match, false
151 otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name)
155 {
156 int len = strlen (filename);
157 size_t search_len = strlen (search_name);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator.
169
170 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
171 cannot match FILENAME "/path//dir/file.c" - as user has requested
172 absolute path. The sama applies for "c:\file.c" possibly
173 incorrectly hypothetically matching "d:\dir\c:\file.c".
174
175 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
176 compatible with SEARCH_NAME "file.c". In such case a compiler had
177 to put the "c:file.c" name into debug info. Such compatibility
178 works only on GDB built for DOS host. */
179 return (len == search_len
180 || (!IS_ABSOLUTE_PATH (search_name)
181 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
182 || (HAS_DRIVE_SPEC (filename)
183 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
184 }
185
186 /* Check for a symtab of a specific name by searching some symtabs.
187 This is a helper function for callbacks of iterate_over_symtabs.
188
189 The return value, NAME, REAL_PATH, CALLBACK, and DATA
190 are identical to the `map_symtabs_matching_filename' method of
191 quick_symbol_functions.
192
193 FIRST and AFTER_LAST indicate the range of symtabs to search.
194 AFTER_LAST is one past the last symtab to search; NULL means to
195 search until the end of the list. */
196
197 int
198 iterate_over_some_symtabs (const char *name,
199 const char *real_path,
200 int (*callback) (struct symtab *symtab,
201 void *data),
202 void *data,
203 struct symtab *first,
204 struct symtab *after_last)
205 {
206 struct symtab *s = NULL;
207 const char* base_name = lbasename (name);
208
209 for (s = first; s != NULL && s != after_last; s = s->next)
210 {
211 if (compare_filenames_for_search (s->filename, name))
212 {
213 if (callback (s, data))
214 return 1;
215 continue;
216 }
217
218 /* Before we invoke realpath, which can get expensive when many
219 files are involved, do a quick comparison of the basenames. */
220 if (! basenames_may_differ
221 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
222 continue;
223
224 if (compare_filenames_for_search (symtab_to_fullname (s), name))
225 {
226 if (callback (s, data))
227 return 1;
228 continue;
229 }
230
231 /* If the user gave us an absolute path, try to find the file in
232 this symtab and use its absolute path. */
233
234 if (real_path != NULL)
235 {
236 const char *fullname = symtab_to_fullname (s);
237
238 gdb_assert (IS_ABSOLUTE_PATH (real_path));
239 gdb_assert (IS_ABSOLUTE_PATH (name));
240 if (FILENAME_CMP (real_path, fullname) == 0)
241 {
242 if (callback (s, data))
243 return 1;
244 continue;
245 }
246 }
247 }
248
249 return 0;
250 }
251
252 /* Check for a symtab of a specific name; first in symtabs, then in
253 psymtabs. *If* there is no '/' in the name, a match after a '/'
254 in the symtab filename will also work.
255
256 Calls CALLBACK with each symtab that is found and with the supplied
257 DATA. If CALLBACK returns true, the search stops. */
258
259 void
260 iterate_over_symtabs (const char *name,
261 int (*callback) (struct symtab *symtab,
262 void *data),
263 void *data)
264 {
265 struct objfile *objfile;
266 char *real_path = NULL;
267 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
268
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name))
272 {
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 gdb_assert (IS_ABSOLUTE_PATH (real_path));
276 }
277
278 ALL_OBJFILES (objfile)
279 {
280 if (iterate_over_some_symtabs (name, real_path, callback, data,
281 objfile->symtabs, NULL))
282 {
283 do_cleanups (cleanups);
284 return;
285 }
286 }
287
288 /* Same search rules as above apply here, but now we look thru the
289 psymtabs. */
290
291 ALL_OBJFILES (objfile)
292 {
293 if (objfile->sf
294 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
295 name,
296 real_path,
297 callback,
298 data))
299 {
300 do_cleanups (cleanups);
301 return;
302 }
303 }
304
305 do_cleanups (cleanups);
306 }
307
308 /* The callback function used by lookup_symtab. */
309
310 static int
311 lookup_symtab_callback (struct symtab *symtab, void *data)
312 {
313 struct symtab **result_ptr = data;
314
315 *result_ptr = symtab;
316 return 1;
317 }
318
319 /* A wrapper for iterate_over_symtabs that returns the first matching
320 symtab, or NULL. */
321
322 struct symtab *
323 lookup_symtab (const char *name)
324 {
325 struct symtab *result = NULL;
326
327 iterate_over_symtabs (name, lookup_symtab_callback, &result);
328 return result;
329 }
330
331 \f
332 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
333 full method name, which consist of the class name (from T), the unadorned
334 method name from METHOD_ID, and the signature for the specific overload,
335 specified by SIGNATURE_ID. Note that this function is g++ specific. */
336
337 char *
338 gdb_mangle_name (struct type *type, int method_id, int signature_id)
339 {
340 int mangled_name_len;
341 char *mangled_name;
342 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
343 struct fn_field *method = &f[signature_id];
344 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
345 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
346 const char *newname = type_name_no_tag (type);
347
348 /* Does the form of physname indicate that it is the full mangled name
349 of a constructor (not just the args)? */
350 int is_full_physname_constructor;
351
352 int is_constructor;
353 int is_destructor = is_destructor_name (physname);
354 /* Need a new type prefix. */
355 char *const_prefix = method->is_const ? "C" : "";
356 char *volatile_prefix = method->is_volatile ? "V" : "";
357 char buf[20];
358 int len = (newname == NULL ? 0 : strlen (newname));
359
360 /* Nothing to do if physname already contains a fully mangled v3 abi name
361 or an operator name. */
362 if ((physname[0] == '_' && physname[1] == 'Z')
363 || is_operator_name (field_name))
364 return xstrdup (physname);
365
366 is_full_physname_constructor = is_constructor_name (physname);
367
368 is_constructor = is_full_physname_constructor
369 || (newname && strcmp (field_name, newname) == 0);
370
371 if (!is_destructor)
372 is_destructor = (strncmp (physname, "__dt", 4) == 0);
373
374 if (is_destructor || is_full_physname_constructor)
375 {
376 mangled_name = (char *) xmalloc (strlen (physname) + 1);
377 strcpy (mangled_name, physname);
378 return mangled_name;
379 }
380
381 if (len == 0)
382 {
383 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
384 }
385 else if (physname[0] == 't' || physname[0] == 'Q')
386 {
387 /* The physname for template and qualified methods already includes
388 the class name. */
389 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
390 newname = NULL;
391 len = 0;
392 }
393 else
394 {
395 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
396 volatile_prefix, len);
397 }
398 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
399 + strlen (buf) + len + strlen (physname) + 1);
400
401 mangled_name = (char *) xmalloc (mangled_name_len);
402 if (is_constructor)
403 mangled_name[0] = '\0';
404 else
405 strcpy (mangled_name, field_name);
406
407 strcat (mangled_name, buf);
408 /* If the class doesn't have a name, i.e. newname NULL, then we just
409 mangle it using 0 for the length of the class. Thus it gets mangled
410 as something starting with `::' rather than `classname::'. */
411 if (newname != NULL)
412 strcat (mangled_name, newname);
413
414 strcat (mangled_name, physname);
415 return (mangled_name);
416 }
417
418 /* Initialize the cplus_specific structure. 'cplus_specific' should
419 only be allocated for use with cplus symbols. */
420
421 static void
422 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
423 struct objfile *objfile)
424 {
425 /* A language_specific structure should not have been previously
426 initialized. */
427 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
428 gdb_assert (objfile != NULL);
429
430 gsymbol->language_specific.cplus_specific =
431 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
432 }
433
434 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
435 correctly allocated. For C++ symbols a cplus_specific struct is
436 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
437 OBJFILE can be NULL. */
438
439 void
440 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
441 const char *name,
442 struct objfile *objfile)
443 {
444 if (gsymbol->language == language_cplus)
445 {
446 if (gsymbol->language_specific.cplus_specific == NULL)
447 symbol_init_cplus_specific (gsymbol, objfile);
448
449 gsymbol->language_specific.cplus_specific->demangled_name = name;
450 }
451 else
452 gsymbol->language_specific.mangled_lang.demangled_name = name;
453 }
454
455 /* Return the demangled name of GSYMBOL. */
456
457 const char *
458 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
459 {
460 if (gsymbol->language == language_cplus)
461 {
462 if (gsymbol->language_specific.cplus_specific != NULL)
463 return gsymbol->language_specific.cplus_specific->demangled_name;
464 else
465 return NULL;
466 }
467 else
468 return gsymbol->language_specific.mangled_lang.demangled_name;
469 }
470
471 \f
472 /* Initialize the language dependent portion of a symbol
473 depending upon the language for the symbol. */
474
475 void
476 symbol_set_language (struct general_symbol_info *gsymbol,
477 enum language language)
478 {
479 gsymbol->language = language;
480 if (gsymbol->language == language_d
481 || gsymbol->language == language_go
482 || gsymbol->language == language_java
483 || gsymbol->language == language_objc
484 || gsymbol->language == language_fortran)
485 {
486 symbol_set_demangled_name (gsymbol, NULL, NULL);
487 }
488 else if (gsymbol->language == language_cplus)
489 gsymbol->language_specific.cplus_specific = NULL;
490 else
491 {
492 memset (&gsymbol->language_specific, 0,
493 sizeof (gsymbol->language_specific));
494 }
495 }
496
497 /* Functions to initialize a symbol's mangled name. */
498
499 /* Objects of this type are stored in the demangled name hash table. */
500 struct demangled_name_entry
501 {
502 const char *mangled;
503 char demangled[1];
504 };
505
506 /* Hash function for the demangled name hash. */
507
508 static hashval_t
509 hash_demangled_name_entry (const void *data)
510 {
511 const struct demangled_name_entry *e = data;
512
513 return htab_hash_string (e->mangled);
514 }
515
516 /* Equality function for the demangled name hash. */
517
518 static int
519 eq_demangled_name_entry (const void *a, const void *b)
520 {
521 const struct demangled_name_entry *da = a;
522 const struct demangled_name_entry *db = b;
523
524 return strcmp (da->mangled, db->mangled) == 0;
525 }
526
527 /* Create the hash table used for demangled names. Each hash entry is
528 a pair of strings; one for the mangled name and one for the demangled
529 name. The entry is hashed via just the mangled name. */
530
531 static void
532 create_demangled_names_hash (struct objfile *objfile)
533 {
534 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
535 The hash table code will round this up to the next prime number.
536 Choosing a much larger table size wastes memory, and saves only about
537 1% in symbol reading. */
538
539 objfile->demangled_names_hash = htab_create_alloc
540 (256, hash_demangled_name_entry, eq_demangled_name_entry,
541 NULL, xcalloc, xfree);
542 }
543
544 /* Try to determine the demangled name for a symbol, based on the
545 language of that symbol. If the language is set to language_auto,
546 it will attempt to find any demangling algorithm that works and
547 then set the language appropriately. The returned name is allocated
548 by the demangler and should be xfree'd. */
549
550 static char *
551 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
552 const char *mangled)
553 {
554 char *demangled = NULL;
555
556 if (gsymbol->language == language_unknown)
557 gsymbol->language = language_auto;
558
559 if (gsymbol->language == language_objc
560 || gsymbol->language == language_auto)
561 {
562 demangled =
563 objc_demangle (mangled, 0);
564 if (demangled != NULL)
565 {
566 gsymbol->language = language_objc;
567 return demangled;
568 }
569 }
570 if (gsymbol->language == language_cplus
571 || gsymbol->language == language_auto)
572 {
573 demangled =
574 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
575 if (demangled != NULL)
576 {
577 gsymbol->language = language_cplus;
578 return demangled;
579 }
580 }
581 if (gsymbol->language == language_java)
582 {
583 demangled =
584 cplus_demangle (mangled,
585 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
586 if (demangled != NULL)
587 {
588 gsymbol->language = language_java;
589 return demangled;
590 }
591 }
592 if (gsymbol->language == language_d
593 || gsymbol->language == language_auto)
594 {
595 demangled = d_demangle(mangled, 0);
596 if (demangled != NULL)
597 {
598 gsymbol->language = language_d;
599 return demangled;
600 }
601 }
602 /* FIXME(dje): Continually adding languages here is clumsy.
603 Better to just call la_demangle if !auto, and if auto then call
604 a utility routine that tries successive languages in turn and reports
605 which one it finds. I realize the la_demangle options may be different
606 for different languages but there's already a FIXME for that. */
607 if (gsymbol->language == language_go
608 || gsymbol->language == language_auto)
609 {
610 demangled = go_demangle (mangled, 0);
611 if (demangled != NULL)
612 {
613 gsymbol->language = language_go;
614 return demangled;
615 }
616 }
617
618 /* We could support `gsymbol->language == language_fortran' here to provide
619 module namespaces also for inferiors with only minimal symbol table (ELF
620 symbols). Just the mangling standard is not standardized across compilers
621 and there is no DW_AT_producer available for inferiors with only the ELF
622 symbols to check the mangling kind. */
623 return NULL;
624 }
625
626 /* Set both the mangled and demangled (if any) names for GSYMBOL based
627 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
628 objfile's obstack; but if COPY_NAME is 0 and if NAME is
629 NUL-terminated, then this function assumes that NAME is already
630 correctly saved (either permanently or with a lifetime tied to the
631 objfile), and it will not be copied.
632
633 The hash table corresponding to OBJFILE is used, and the memory
634 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
635 so the pointer can be discarded after calling this function. */
636
637 /* We have to be careful when dealing with Java names: when we run
638 into a Java minimal symbol, we don't know it's a Java symbol, so it
639 gets demangled as a C++ name. This is unfortunate, but there's not
640 much we can do about it: but when demangling partial symbols and
641 regular symbols, we'd better not reuse the wrong demangled name.
642 (See PR gdb/1039.) We solve this by putting a distinctive prefix
643 on Java names when storing them in the hash table. */
644
645 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
646 don't mind the Java prefix so much: different languages have
647 different demangling requirements, so it's only natural that we
648 need to keep language data around in our demangling cache. But
649 it's not good that the minimal symbol has the wrong demangled name.
650 Unfortunately, I can't think of any easy solution to that
651 problem. */
652
653 #define JAVA_PREFIX "##JAVA$$"
654 #define JAVA_PREFIX_LEN 8
655
656 void
657 symbol_set_names (struct general_symbol_info *gsymbol,
658 const char *linkage_name, int len, int copy_name,
659 struct objfile *objfile)
660 {
661 struct demangled_name_entry **slot;
662 /* A 0-terminated copy of the linkage name. */
663 const char *linkage_name_copy;
664 /* A copy of the linkage name that might have a special Java prefix
665 added to it, for use when looking names up in the hash table. */
666 const char *lookup_name;
667 /* The length of lookup_name. */
668 int lookup_len;
669 struct demangled_name_entry entry;
670
671 if (gsymbol->language == language_ada)
672 {
673 /* In Ada, we do the symbol lookups using the mangled name, so
674 we can save some space by not storing the demangled name.
675
676 As a side note, we have also observed some overlap between
677 the C++ mangling and Ada mangling, similarly to what has
678 been observed with Java. Because we don't store the demangled
679 name with the symbol, we don't need to use the same trick
680 as Java. */
681 if (!copy_name)
682 gsymbol->name = linkage_name;
683 else
684 {
685 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
686
687 memcpy (name, linkage_name, len);
688 name[len] = '\0';
689 gsymbol->name = name;
690 }
691 symbol_set_demangled_name (gsymbol, NULL, NULL);
692
693 return;
694 }
695
696 if (objfile->demangled_names_hash == NULL)
697 create_demangled_names_hash (objfile);
698
699 /* The stabs reader generally provides names that are not
700 NUL-terminated; most of the other readers don't do this, so we
701 can just use the given copy, unless we're in the Java case. */
702 if (gsymbol->language == language_java)
703 {
704 char *alloc_name;
705
706 lookup_len = len + JAVA_PREFIX_LEN;
707 alloc_name = alloca (lookup_len + 1);
708 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
709 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
710 alloc_name[lookup_len] = '\0';
711
712 lookup_name = alloc_name;
713 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
714 }
715 else if (linkage_name[len] != '\0')
716 {
717 char *alloc_name;
718
719 lookup_len = len;
720 alloc_name = alloca (lookup_len + 1);
721 memcpy (alloc_name, linkage_name, len);
722 alloc_name[lookup_len] = '\0';
723
724 lookup_name = alloc_name;
725 linkage_name_copy = alloc_name;
726 }
727 else
728 {
729 lookup_len = len;
730 lookup_name = linkage_name;
731 linkage_name_copy = linkage_name;
732 }
733
734 entry.mangled = lookup_name;
735 slot = ((struct demangled_name_entry **)
736 htab_find_slot (objfile->demangled_names_hash,
737 &entry, INSERT));
738
739 /* If this name is not in the hash table, add it. */
740 if (*slot == NULL
741 /* A C version of the symbol may have already snuck into the table.
742 This happens to, e.g., main.init (__go_init_main). Cope. */
743 || (gsymbol->language == language_go
744 && (*slot)->demangled[0] == '\0'))
745 {
746 char *demangled_name = symbol_find_demangled_name (gsymbol,
747 linkage_name_copy);
748 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
749
750 /* Suppose we have demangled_name==NULL, copy_name==0, and
751 lookup_name==linkage_name. In this case, we already have the
752 mangled name saved, and we don't have a demangled name. So,
753 you might think we could save a little space by not recording
754 this in the hash table at all.
755
756 It turns out that it is actually important to still save such
757 an entry in the hash table, because storing this name gives
758 us better bcache hit rates for partial symbols. */
759 if (!copy_name && lookup_name == linkage_name)
760 {
761 *slot = obstack_alloc (&objfile->objfile_obstack,
762 offsetof (struct demangled_name_entry,
763 demangled)
764 + demangled_len + 1);
765 (*slot)->mangled = lookup_name;
766 }
767 else
768 {
769 char *mangled_ptr;
770
771 /* If we must copy the mangled name, put it directly after
772 the demangled name so we can have a single
773 allocation. */
774 *slot = obstack_alloc (&objfile->objfile_obstack,
775 offsetof (struct demangled_name_entry,
776 demangled)
777 + lookup_len + demangled_len + 2);
778 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
779 strcpy (mangled_ptr, lookup_name);
780 (*slot)->mangled = mangled_ptr;
781 }
782
783 if (demangled_name != NULL)
784 {
785 strcpy ((*slot)->demangled, demangled_name);
786 xfree (demangled_name);
787 }
788 else
789 (*slot)->demangled[0] = '\0';
790 }
791
792 gsymbol->name = (*slot)->mangled + lookup_len - len;
793 if ((*slot)->demangled[0] != '\0')
794 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
795 else
796 symbol_set_demangled_name (gsymbol, NULL, objfile);
797 }
798
799 /* Return the source code name of a symbol. In languages where
800 demangling is necessary, this is the demangled name. */
801
802 const char *
803 symbol_natural_name (const struct general_symbol_info *gsymbol)
804 {
805 switch (gsymbol->language)
806 {
807 case language_cplus:
808 case language_d:
809 case language_go:
810 case language_java:
811 case language_objc:
812 case language_fortran:
813 if (symbol_get_demangled_name (gsymbol) != NULL)
814 return symbol_get_demangled_name (gsymbol);
815 break;
816 case language_ada:
817 if (symbol_get_demangled_name (gsymbol) != NULL)
818 return symbol_get_demangled_name (gsymbol);
819 else
820 return ada_decode_symbol (gsymbol);
821 break;
822 default:
823 break;
824 }
825 return gsymbol->name;
826 }
827
828 /* Return the demangled name for a symbol based on the language for
829 that symbol. If no demangled name exists, return NULL. */
830
831 const char *
832 symbol_demangled_name (const struct general_symbol_info *gsymbol)
833 {
834 const char *dem_name = NULL;
835
836 switch (gsymbol->language)
837 {
838 case language_cplus:
839 case language_d:
840 case language_go:
841 case language_java:
842 case language_objc:
843 case language_fortran:
844 dem_name = symbol_get_demangled_name (gsymbol);
845 break;
846 case language_ada:
847 dem_name = symbol_get_demangled_name (gsymbol);
848 if (dem_name == NULL)
849 dem_name = ada_decode_symbol (gsymbol);
850 break;
851 default:
852 break;
853 }
854 return dem_name;
855 }
856
857 /* Return the search name of a symbol---generally the demangled or
858 linkage name of the symbol, depending on how it will be searched for.
859 If there is no distinct demangled name, then returns the same value
860 (same pointer) as SYMBOL_LINKAGE_NAME. */
861
862 const char *
863 symbol_search_name (const struct general_symbol_info *gsymbol)
864 {
865 if (gsymbol->language == language_ada)
866 return gsymbol->name;
867 else
868 return symbol_natural_name (gsymbol);
869 }
870
871 /* Initialize the structure fields to zero values. */
872
873 void
874 init_sal (struct symtab_and_line *sal)
875 {
876 sal->pspace = NULL;
877 sal->symtab = 0;
878 sal->section = 0;
879 sal->line = 0;
880 sal->pc = 0;
881 sal->end = 0;
882 sal->explicit_pc = 0;
883 sal->explicit_line = 0;
884 sal->probe = NULL;
885 }
886 \f
887
888 /* Return 1 if the two sections are the same, or if they could
889 plausibly be copies of each other, one in an original object
890 file and another in a separated debug file. */
891
892 int
893 matching_obj_sections (struct obj_section *obj_first,
894 struct obj_section *obj_second)
895 {
896 asection *first = obj_first? obj_first->the_bfd_section : NULL;
897 asection *second = obj_second? obj_second->the_bfd_section : NULL;
898 struct objfile *obj;
899
900 /* If they're the same section, then they match. */
901 if (first == second)
902 return 1;
903
904 /* If either is NULL, give up. */
905 if (first == NULL || second == NULL)
906 return 0;
907
908 /* This doesn't apply to absolute symbols. */
909 if (first->owner == NULL || second->owner == NULL)
910 return 0;
911
912 /* If they're in the same object file, they must be different sections. */
913 if (first->owner == second->owner)
914 return 0;
915
916 /* Check whether the two sections are potentially corresponding. They must
917 have the same size, address, and name. We can't compare section indexes,
918 which would be more reliable, because some sections may have been
919 stripped. */
920 if (bfd_get_section_size (first) != bfd_get_section_size (second))
921 return 0;
922
923 /* In-memory addresses may start at a different offset, relativize them. */
924 if (bfd_get_section_vma (first->owner, first)
925 - bfd_get_start_address (first->owner)
926 != bfd_get_section_vma (second->owner, second)
927 - bfd_get_start_address (second->owner))
928 return 0;
929
930 if (bfd_get_section_name (first->owner, first) == NULL
931 || bfd_get_section_name (second->owner, second) == NULL
932 || strcmp (bfd_get_section_name (first->owner, first),
933 bfd_get_section_name (second->owner, second)) != 0)
934 return 0;
935
936 /* Otherwise check that they are in corresponding objfiles. */
937
938 ALL_OBJFILES (obj)
939 if (obj->obfd == first->owner)
940 break;
941 gdb_assert (obj != NULL);
942
943 if (obj->separate_debug_objfile != NULL
944 && obj->separate_debug_objfile->obfd == second->owner)
945 return 1;
946 if (obj->separate_debug_objfile_backlink != NULL
947 && obj->separate_debug_objfile_backlink->obfd == second->owner)
948 return 1;
949
950 return 0;
951 }
952
953 struct symtab *
954 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
955 {
956 struct objfile *objfile;
957 struct minimal_symbol *msymbol;
958
959 /* If we know that this is not a text address, return failure. This is
960 necessary because we loop based on texthigh and textlow, which do
961 not include the data ranges. */
962 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
963 if (msymbol
964 && (MSYMBOL_TYPE (msymbol) == mst_data
965 || MSYMBOL_TYPE (msymbol) == mst_bss
966 || MSYMBOL_TYPE (msymbol) == mst_abs
967 || MSYMBOL_TYPE (msymbol) == mst_file_data
968 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
969 return NULL;
970
971 ALL_OBJFILES (objfile)
972 {
973 struct symtab *result = NULL;
974
975 if (objfile->sf)
976 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
977 pc, section, 0);
978 if (result)
979 return result;
980 }
981
982 return NULL;
983 }
984 \f
985 /* Debug symbols usually don't have section information. We need to dig that
986 out of the minimal symbols and stash that in the debug symbol. */
987
988 void
989 fixup_section (struct general_symbol_info *ginfo,
990 CORE_ADDR addr, struct objfile *objfile)
991 {
992 struct minimal_symbol *msym;
993
994 /* First, check whether a minimal symbol with the same name exists
995 and points to the same address. The address check is required
996 e.g. on PowerPC64, where the minimal symbol for a function will
997 point to the function descriptor, while the debug symbol will
998 point to the actual function code. */
999 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1000 if (msym)
1001 {
1002 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1003 ginfo->section = SYMBOL_SECTION (msym);
1004 }
1005 else
1006 {
1007 /* Static, function-local variables do appear in the linker
1008 (minimal) symbols, but are frequently given names that won't
1009 be found via lookup_minimal_symbol(). E.g., it has been
1010 observed in frv-uclinux (ELF) executables that a static,
1011 function-local variable named "foo" might appear in the
1012 linker symbols as "foo.6" or "foo.3". Thus, there is no
1013 point in attempting to extend the lookup-by-name mechanism to
1014 handle this case due to the fact that there can be multiple
1015 names.
1016
1017 So, instead, search the section table when lookup by name has
1018 failed. The ``addr'' and ``endaddr'' fields may have already
1019 been relocated. If so, the relocation offset (i.e. the
1020 ANOFFSET value) needs to be subtracted from these values when
1021 performing the comparison. We unconditionally subtract it,
1022 because, when no relocation has been performed, the ANOFFSET
1023 value will simply be zero.
1024
1025 The address of the symbol whose section we're fixing up HAS
1026 NOT BEEN adjusted (relocated) yet. It can't have been since
1027 the section isn't yet known and knowing the section is
1028 necessary in order to add the correct relocation value. In
1029 other words, we wouldn't even be in this function (attempting
1030 to compute the section) if it were already known.
1031
1032 Note that it is possible to search the minimal symbols
1033 (subtracting the relocation value if necessary) to find the
1034 matching minimal symbol, but this is overkill and much less
1035 efficient. It is not necessary to find the matching minimal
1036 symbol, only its section.
1037
1038 Note that this technique (of doing a section table search)
1039 can fail when unrelocated section addresses overlap. For
1040 this reason, we still attempt a lookup by name prior to doing
1041 a search of the section table. */
1042
1043 struct obj_section *s;
1044
1045 ALL_OBJFILE_OSECTIONS (objfile, s)
1046 {
1047 int idx = s->the_bfd_section->index;
1048 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1049
1050 if (obj_section_addr (s) - offset <= addr
1051 && addr < obj_section_endaddr (s) - offset)
1052 {
1053 ginfo->obj_section = s;
1054 ginfo->section = idx;
1055 return;
1056 }
1057 }
1058 }
1059 }
1060
1061 struct symbol *
1062 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1063 {
1064 CORE_ADDR addr;
1065
1066 if (!sym)
1067 return NULL;
1068
1069 if (SYMBOL_OBJ_SECTION (sym))
1070 return sym;
1071
1072 /* We either have an OBJFILE, or we can get at it from the sym's
1073 symtab. Anything else is a bug. */
1074 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1075
1076 if (objfile == NULL)
1077 objfile = SYMBOL_SYMTAB (sym)->objfile;
1078
1079 /* We should have an objfile by now. */
1080 gdb_assert (objfile);
1081
1082 switch (SYMBOL_CLASS (sym))
1083 {
1084 case LOC_STATIC:
1085 case LOC_LABEL:
1086 addr = SYMBOL_VALUE_ADDRESS (sym);
1087 break;
1088 case LOC_BLOCK:
1089 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1090 break;
1091
1092 default:
1093 /* Nothing else will be listed in the minsyms -- no use looking
1094 it up. */
1095 return sym;
1096 }
1097
1098 fixup_section (&sym->ginfo, addr, objfile);
1099
1100 return sym;
1101 }
1102
1103 /* Compute the demangled form of NAME as used by the various symbol
1104 lookup functions. The result is stored in *RESULT_NAME. Returns a
1105 cleanup which can be used to clean up the result.
1106
1107 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1108 Normally, Ada symbol lookups are performed using the encoded name
1109 rather than the demangled name, and so it might seem to make sense
1110 for this function to return an encoded version of NAME.
1111 Unfortunately, we cannot do this, because this function is used in
1112 circumstances where it is not appropriate to try to encode NAME.
1113 For instance, when displaying the frame info, we demangle the name
1114 of each parameter, and then perform a symbol lookup inside our
1115 function using that demangled name. In Ada, certain functions
1116 have internally-generated parameters whose name contain uppercase
1117 characters. Encoding those name would result in those uppercase
1118 characters to become lowercase, and thus cause the symbol lookup
1119 to fail. */
1120
1121 struct cleanup *
1122 demangle_for_lookup (const char *name, enum language lang,
1123 const char **result_name)
1124 {
1125 char *demangled_name = NULL;
1126 const char *modified_name = NULL;
1127 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1128
1129 modified_name = name;
1130
1131 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1132 lookup, so we can always binary search. */
1133 if (lang == language_cplus)
1134 {
1135 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1136 if (demangled_name)
1137 {
1138 modified_name = demangled_name;
1139 make_cleanup (xfree, demangled_name);
1140 }
1141 else
1142 {
1143 /* If we were given a non-mangled name, canonicalize it
1144 according to the language (so far only for C++). */
1145 demangled_name = cp_canonicalize_string (name);
1146 if (demangled_name)
1147 {
1148 modified_name = demangled_name;
1149 make_cleanup (xfree, demangled_name);
1150 }
1151 }
1152 }
1153 else if (lang == language_java)
1154 {
1155 demangled_name = cplus_demangle (name,
1156 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1157 if (demangled_name)
1158 {
1159 modified_name = demangled_name;
1160 make_cleanup (xfree, demangled_name);
1161 }
1162 }
1163 else if (lang == language_d)
1164 {
1165 demangled_name = d_demangle (name, 0);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 else if (lang == language_go)
1173 {
1174 demangled_name = go_demangle (name, 0);
1175 if (demangled_name)
1176 {
1177 modified_name = demangled_name;
1178 make_cleanup (xfree, demangled_name);
1179 }
1180 }
1181
1182 *result_name = modified_name;
1183 return cleanup;
1184 }
1185
1186 /* Find the definition for a specified symbol name NAME
1187 in domain DOMAIN, visible from lexical block BLOCK.
1188 Returns the struct symbol pointer, or zero if no symbol is found.
1189 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1190 NAME is a field of the current implied argument `this'. If so set
1191 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1192 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1193 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1194
1195 /* This function (or rather its subordinates) have a bunch of loops and
1196 it would seem to be attractive to put in some QUIT's (though I'm not really
1197 sure whether it can run long enough to be really important). But there
1198 are a few calls for which it would appear to be bad news to quit
1199 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1200 that there is C++ code below which can error(), but that probably
1201 doesn't affect these calls since they are looking for a known
1202 variable and thus can probably assume it will never hit the C++
1203 code). */
1204
1205 struct symbol *
1206 lookup_symbol_in_language (const char *name, const struct block *block,
1207 const domain_enum domain, enum language lang,
1208 struct field_of_this_result *is_a_field_of_this)
1209 {
1210 const char *modified_name;
1211 struct symbol *returnval;
1212 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1213
1214 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1215 is_a_field_of_this);
1216 do_cleanups (cleanup);
1217
1218 return returnval;
1219 }
1220
1221 /* Behave like lookup_symbol_in_language, but performed with the
1222 current language. */
1223
1224 struct symbol *
1225 lookup_symbol (const char *name, const struct block *block,
1226 domain_enum domain,
1227 struct field_of_this_result *is_a_field_of_this)
1228 {
1229 return lookup_symbol_in_language (name, block, domain,
1230 current_language->la_language,
1231 is_a_field_of_this);
1232 }
1233
1234 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1235 found, or NULL if not found. */
1236
1237 struct symbol *
1238 lookup_language_this (const struct language_defn *lang,
1239 const struct block *block)
1240 {
1241 if (lang->la_name_of_this == NULL || block == NULL)
1242 return NULL;
1243
1244 while (block)
1245 {
1246 struct symbol *sym;
1247
1248 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1249 if (sym != NULL)
1250 {
1251 block_found = block;
1252 return sym;
1253 }
1254 if (BLOCK_FUNCTION (block))
1255 break;
1256 block = BLOCK_SUPERBLOCK (block);
1257 }
1258
1259 return NULL;
1260 }
1261
1262 /* Given TYPE, a structure/union,
1263 return 1 if the component named NAME from the ultimate target
1264 structure/union is defined, otherwise, return 0. */
1265
1266 static int
1267 check_field (struct type *type, const char *name,
1268 struct field_of_this_result *is_a_field_of_this)
1269 {
1270 int i;
1271
1272 /* The type may be a stub. */
1273 CHECK_TYPEDEF (type);
1274
1275 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1276 {
1277 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1278
1279 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1280 {
1281 is_a_field_of_this->type = type;
1282 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1283 return 1;
1284 }
1285 }
1286
1287 /* C++: If it was not found as a data field, then try to return it
1288 as a pointer to a method. */
1289
1290 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1291 {
1292 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1293 {
1294 is_a_field_of_this->type = type;
1295 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1296 return 1;
1297 }
1298 }
1299
1300 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1301 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1302 return 1;
1303
1304 return 0;
1305 }
1306
1307 /* Behave like lookup_symbol except that NAME is the natural name
1308 (e.g., demangled name) of the symbol that we're looking for. */
1309
1310 static struct symbol *
1311 lookup_symbol_aux (const char *name, const struct block *block,
1312 const domain_enum domain, enum language language,
1313 struct field_of_this_result *is_a_field_of_this)
1314 {
1315 struct symbol *sym;
1316 const struct language_defn *langdef;
1317
1318 /* Make sure we do something sensible with is_a_field_of_this, since
1319 the callers that set this parameter to some non-null value will
1320 certainly use it later. If we don't set it, the contents of
1321 is_a_field_of_this are undefined. */
1322 if (is_a_field_of_this != NULL)
1323 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1324
1325 /* Search specified block and its superiors. Don't search
1326 STATIC_BLOCK or GLOBAL_BLOCK. */
1327
1328 sym = lookup_symbol_aux_local (name, block, domain, language);
1329 if (sym != NULL)
1330 return sym;
1331
1332 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1333 check to see if NAME is a field of `this'. */
1334
1335 langdef = language_def (language);
1336
1337 /* Don't do this check if we are searching for a struct. It will
1338 not be found by check_field, but will be found by other
1339 means. */
1340 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1341 {
1342 struct symbol *sym = lookup_language_this (langdef, block);
1343
1344 if (sym)
1345 {
1346 struct type *t = sym->type;
1347
1348 /* I'm not really sure that type of this can ever
1349 be typedefed; just be safe. */
1350 CHECK_TYPEDEF (t);
1351 if (TYPE_CODE (t) == TYPE_CODE_PTR
1352 || TYPE_CODE (t) == TYPE_CODE_REF)
1353 t = TYPE_TARGET_TYPE (t);
1354
1355 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1356 && TYPE_CODE (t) != TYPE_CODE_UNION)
1357 error (_("Internal error: `%s' is not an aggregate"),
1358 langdef->la_name_of_this);
1359
1360 if (check_field (t, name, is_a_field_of_this))
1361 return NULL;
1362 }
1363 }
1364
1365 /* Now do whatever is appropriate for LANGUAGE to look
1366 up static and global variables. */
1367
1368 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1369 if (sym != NULL)
1370 return sym;
1371
1372 /* Now search all static file-level symbols. Not strictly correct,
1373 but more useful than an error. */
1374
1375 return lookup_static_symbol_aux (name, domain);
1376 }
1377
1378 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1379 first, then check the psymtabs. If a psymtab indicates the existence of the
1380 desired name as a file-level static, then do psymtab-to-symtab conversion on
1381 the fly and return the found symbol. */
1382
1383 struct symbol *
1384 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1385 {
1386 struct objfile *objfile;
1387 struct symbol *sym;
1388
1389 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1390 if (sym != NULL)
1391 return sym;
1392
1393 ALL_OBJFILES (objfile)
1394 {
1395 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1396 if (sym != NULL)
1397 return sym;
1398 }
1399
1400 return NULL;
1401 }
1402
1403 /* Check to see if the symbol is defined in BLOCK or its superiors.
1404 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1405
1406 static struct symbol *
1407 lookup_symbol_aux_local (const char *name, const struct block *block,
1408 const domain_enum domain,
1409 enum language language)
1410 {
1411 struct symbol *sym;
1412 const struct block *static_block = block_static_block (block);
1413 const char *scope = block_scope (block);
1414
1415 /* Check if either no block is specified or it's a global block. */
1416
1417 if (static_block == NULL)
1418 return NULL;
1419
1420 while (block != static_block)
1421 {
1422 sym = lookup_symbol_aux_block (name, block, domain);
1423 if (sym != NULL)
1424 return sym;
1425
1426 if (language == language_cplus || language == language_fortran)
1427 {
1428 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1429 domain);
1430 if (sym != NULL)
1431 return sym;
1432 }
1433
1434 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1435 break;
1436 block = BLOCK_SUPERBLOCK (block);
1437 }
1438
1439 /* We've reached the edge of the function without finding a result. */
1440
1441 return NULL;
1442 }
1443
1444 /* Look up OBJFILE to BLOCK. */
1445
1446 struct objfile *
1447 lookup_objfile_from_block (const struct block *block)
1448 {
1449 struct objfile *obj;
1450 struct symtab *s;
1451
1452 if (block == NULL)
1453 return NULL;
1454
1455 block = block_global_block (block);
1456 /* Go through SYMTABS. */
1457 ALL_SYMTABS (obj, s)
1458 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1459 {
1460 if (obj->separate_debug_objfile_backlink)
1461 obj = obj->separate_debug_objfile_backlink;
1462
1463 return obj;
1464 }
1465
1466 return NULL;
1467 }
1468
1469 /* Look up a symbol in a block; if found, fixup the symbol, and set
1470 block_found appropriately. */
1471
1472 struct symbol *
1473 lookup_symbol_aux_block (const char *name, const struct block *block,
1474 const domain_enum domain)
1475 {
1476 struct symbol *sym;
1477
1478 sym = lookup_block_symbol (block, name, domain);
1479 if (sym)
1480 {
1481 block_found = block;
1482 return fixup_symbol_section (sym, NULL);
1483 }
1484
1485 return NULL;
1486 }
1487
1488 /* Check all global symbols in OBJFILE in symtabs and
1489 psymtabs. */
1490
1491 struct symbol *
1492 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1493 const char *name,
1494 const domain_enum domain)
1495 {
1496 const struct objfile *objfile;
1497 struct symbol *sym;
1498 struct blockvector *bv;
1499 const struct block *block;
1500 struct symtab *s;
1501
1502 for (objfile = main_objfile;
1503 objfile;
1504 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1505 {
1506 /* Go through symtabs. */
1507 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1508 {
1509 bv = BLOCKVECTOR (s);
1510 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1511 sym = lookup_block_symbol (block, name, domain);
1512 if (sym)
1513 {
1514 block_found = block;
1515 return fixup_symbol_section (sym, (struct objfile *)objfile);
1516 }
1517 }
1518
1519 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1520 name, domain);
1521 if (sym)
1522 return sym;
1523 }
1524
1525 return NULL;
1526 }
1527
1528 /* Check to see if the symbol is defined in one of the OBJFILE's
1529 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1530 depending on whether or not we want to search global symbols or
1531 static symbols. */
1532
1533 static struct symbol *
1534 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1535 const char *name, const domain_enum domain)
1536 {
1537 struct symbol *sym = NULL;
1538 struct blockvector *bv;
1539 const struct block *block;
1540 struct symtab *s;
1541
1542 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1543 {
1544 bv = BLOCKVECTOR (s);
1545 block = BLOCKVECTOR_BLOCK (bv, block_index);
1546 sym = lookup_block_symbol (block, name, domain);
1547 if (sym)
1548 {
1549 block_found = block;
1550 return fixup_symbol_section (sym, objfile);
1551 }
1552 }
1553
1554 return NULL;
1555 }
1556
1557 /* Same as lookup_symbol_aux_objfile, except that it searches all
1558 objfiles. Return the first match found. */
1559
1560 static struct symbol *
1561 lookup_symbol_aux_symtabs (int block_index, const char *name,
1562 const domain_enum domain)
1563 {
1564 struct symbol *sym;
1565 struct objfile *objfile;
1566
1567 ALL_OBJFILES (objfile)
1568 {
1569 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1570 if (sym)
1571 return sym;
1572 }
1573
1574 return NULL;
1575 }
1576
1577 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1578 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1579 and all related objfiles. */
1580
1581 static struct symbol *
1582 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1583 const char *linkage_name,
1584 domain_enum domain)
1585 {
1586 enum language lang = current_language->la_language;
1587 const char *modified_name;
1588 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1589 &modified_name);
1590 struct objfile *main_objfile, *cur_objfile;
1591
1592 if (objfile->separate_debug_objfile_backlink)
1593 main_objfile = objfile->separate_debug_objfile_backlink;
1594 else
1595 main_objfile = objfile;
1596
1597 for (cur_objfile = main_objfile;
1598 cur_objfile;
1599 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1600 {
1601 struct symbol *sym;
1602
1603 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1604 modified_name, domain);
1605 if (sym == NULL)
1606 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1607 modified_name, domain);
1608 if (sym != NULL)
1609 {
1610 do_cleanups (cleanup);
1611 return sym;
1612 }
1613 }
1614
1615 do_cleanups (cleanup);
1616 return NULL;
1617 }
1618
1619 /* A helper function that throws an exception when a symbol was found
1620 in a psymtab but not in a symtab. */
1621
1622 static void ATTRIBUTE_NORETURN
1623 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1624 {
1625 error (_("\
1626 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1627 %s may be an inlined function, or may be a template function\n \
1628 (if a template, try specifying an instantiation: %s<type>)."),
1629 kind == GLOBAL_BLOCK ? "global" : "static",
1630 name, symtab_to_filename_for_display (symtab), name, name);
1631 }
1632
1633 /* A helper function for lookup_symbol_aux that interfaces with the
1634 "quick" symbol table functions. */
1635
1636 static struct symbol *
1637 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1638 const char *name, const domain_enum domain)
1639 {
1640 struct symtab *symtab;
1641 struct blockvector *bv;
1642 const struct block *block;
1643 struct symbol *sym;
1644
1645 if (!objfile->sf)
1646 return NULL;
1647 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1648 if (!symtab)
1649 return NULL;
1650
1651 bv = BLOCKVECTOR (symtab);
1652 block = BLOCKVECTOR_BLOCK (bv, kind);
1653 sym = lookup_block_symbol (block, name, domain);
1654 if (!sym)
1655 error_in_psymtab_expansion (kind, name, symtab);
1656 return fixup_symbol_section (sym, objfile);
1657 }
1658
1659 /* A default version of lookup_symbol_nonlocal for use by languages
1660 that can't think of anything better to do. This implements the C
1661 lookup rules. */
1662
1663 struct symbol *
1664 basic_lookup_symbol_nonlocal (const char *name,
1665 const struct block *block,
1666 const domain_enum domain)
1667 {
1668 struct symbol *sym;
1669
1670 /* NOTE: carlton/2003-05-19: The comments below were written when
1671 this (or what turned into this) was part of lookup_symbol_aux;
1672 I'm much less worried about these questions now, since these
1673 decisions have turned out well, but I leave these comments here
1674 for posterity. */
1675
1676 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1677 not it would be appropriate to search the current global block
1678 here as well. (That's what this code used to do before the
1679 is_a_field_of_this check was moved up.) On the one hand, it's
1680 redundant with the lookup_symbol_aux_symtabs search that happens
1681 next. On the other hand, if decode_line_1 is passed an argument
1682 like filename:var, then the user presumably wants 'var' to be
1683 searched for in filename. On the third hand, there shouldn't be
1684 multiple global variables all of which are named 'var', and it's
1685 not like decode_line_1 has ever restricted its search to only
1686 global variables in a single filename. All in all, only
1687 searching the static block here seems best: it's correct and it's
1688 cleanest. */
1689
1690 /* NOTE: carlton/2002-12-05: There's also a possible performance
1691 issue here: if you usually search for global symbols in the
1692 current file, then it would be slightly better to search the
1693 current global block before searching all the symtabs. But there
1694 are other factors that have a much greater effect on performance
1695 than that one, so I don't think we should worry about that for
1696 now. */
1697
1698 sym = lookup_symbol_static (name, block, domain);
1699 if (sym != NULL)
1700 return sym;
1701
1702 return lookup_symbol_global (name, block, domain);
1703 }
1704
1705 /* Lookup a symbol in the static block associated to BLOCK, if there
1706 is one; do nothing if BLOCK is NULL or a global block. */
1707
1708 struct symbol *
1709 lookup_symbol_static (const char *name,
1710 const struct block *block,
1711 const domain_enum domain)
1712 {
1713 const struct block *static_block = block_static_block (block);
1714
1715 if (static_block != NULL)
1716 return lookup_symbol_aux_block (name, static_block, domain);
1717 else
1718 return NULL;
1719 }
1720
1721 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1722
1723 struct global_sym_lookup_data
1724 {
1725 /* The name of the symbol we are searching for. */
1726 const char *name;
1727
1728 /* The domain to use for our search. */
1729 domain_enum domain;
1730
1731 /* The field where the callback should store the symbol if found.
1732 It should be initialized to NULL before the search is started. */
1733 struct symbol *result;
1734 };
1735
1736 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1737 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1738 OBJFILE. The arguments for the search are passed via CB_DATA,
1739 which in reality is a pointer to struct global_sym_lookup_data. */
1740
1741 static int
1742 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1743 void *cb_data)
1744 {
1745 struct global_sym_lookup_data *data =
1746 (struct global_sym_lookup_data *) cb_data;
1747
1748 gdb_assert (data->result == NULL);
1749
1750 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1751 data->name, data->domain);
1752 if (data->result == NULL)
1753 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1754 data->name, data->domain);
1755
1756 /* If we found a match, tell the iterator to stop. Otherwise,
1757 keep going. */
1758 return (data->result != NULL);
1759 }
1760
1761 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1762 necessary). */
1763
1764 struct symbol *
1765 lookup_symbol_global (const char *name,
1766 const struct block *block,
1767 const domain_enum domain)
1768 {
1769 struct symbol *sym = NULL;
1770 struct objfile *objfile = NULL;
1771 struct global_sym_lookup_data lookup_data;
1772
1773 /* Call library-specific lookup procedure. */
1774 objfile = lookup_objfile_from_block (block);
1775 if (objfile != NULL)
1776 sym = solib_global_lookup (objfile, name, domain);
1777 if (sym != NULL)
1778 return sym;
1779
1780 memset (&lookup_data, 0, sizeof (lookup_data));
1781 lookup_data.name = name;
1782 lookup_data.domain = domain;
1783 gdbarch_iterate_over_objfiles_in_search_order
1784 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1785 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1786
1787 return lookup_data.result;
1788 }
1789
1790 int
1791 symbol_matches_domain (enum language symbol_language,
1792 domain_enum symbol_domain,
1793 domain_enum domain)
1794 {
1795 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1796 A Java class declaration also defines a typedef for the class.
1797 Similarly, any Ada type declaration implicitly defines a typedef. */
1798 if (symbol_language == language_cplus
1799 || symbol_language == language_d
1800 || symbol_language == language_java
1801 || symbol_language == language_ada)
1802 {
1803 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1804 && symbol_domain == STRUCT_DOMAIN)
1805 return 1;
1806 }
1807 /* For all other languages, strict match is required. */
1808 return (symbol_domain == domain);
1809 }
1810
1811 /* Look up a type named NAME in the struct_domain. The type returned
1812 must not be opaque -- i.e., must have at least one field
1813 defined. */
1814
1815 struct type *
1816 lookup_transparent_type (const char *name)
1817 {
1818 return current_language->la_lookup_transparent_type (name);
1819 }
1820
1821 /* A helper for basic_lookup_transparent_type that interfaces with the
1822 "quick" symbol table functions. */
1823
1824 static struct type *
1825 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1826 const char *name)
1827 {
1828 struct symtab *symtab;
1829 struct blockvector *bv;
1830 struct block *block;
1831 struct symbol *sym;
1832
1833 if (!objfile->sf)
1834 return NULL;
1835 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1836 if (!symtab)
1837 return NULL;
1838
1839 bv = BLOCKVECTOR (symtab);
1840 block = BLOCKVECTOR_BLOCK (bv, kind);
1841 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1842 if (!sym)
1843 error_in_psymtab_expansion (kind, name, symtab);
1844
1845 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1846 return SYMBOL_TYPE (sym);
1847
1848 return NULL;
1849 }
1850
1851 /* The standard implementation of lookup_transparent_type. This code
1852 was modeled on lookup_symbol -- the parts not relevant to looking
1853 up types were just left out. In particular it's assumed here that
1854 types are available in struct_domain and only at file-static or
1855 global blocks. */
1856
1857 struct type *
1858 basic_lookup_transparent_type (const char *name)
1859 {
1860 struct symbol *sym;
1861 struct symtab *s = NULL;
1862 struct blockvector *bv;
1863 struct objfile *objfile;
1864 struct block *block;
1865 struct type *t;
1866
1867 /* Now search all the global symbols. Do the symtab's first, then
1868 check the psymtab's. If a psymtab indicates the existence
1869 of the desired name as a global, then do psymtab-to-symtab
1870 conversion on the fly and return the found symbol. */
1871
1872 ALL_OBJFILES (objfile)
1873 {
1874 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1875 {
1876 bv = BLOCKVECTOR (s);
1877 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1878 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1879 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1880 {
1881 return SYMBOL_TYPE (sym);
1882 }
1883 }
1884 }
1885
1886 ALL_OBJFILES (objfile)
1887 {
1888 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1889 if (t)
1890 return t;
1891 }
1892
1893 /* Now search the static file-level symbols.
1894 Not strictly correct, but more useful than an error.
1895 Do the symtab's first, then
1896 check the psymtab's. If a psymtab indicates the existence
1897 of the desired name as a file-level static, then do psymtab-to-symtab
1898 conversion on the fly and return the found symbol. */
1899
1900 ALL_OBJFILES (objfile)
1901 {
1902 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1903 {
1904 bv = BLOCKVECTOR (s);
1905 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1906 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1907 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1908 {
1909 return SYMBOL_TYPE (sym);
1910 }
1911 }
1912 }
1913
1914 ALL_OBJFILES (objfile)
1915 {
1916 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1917 if (t)
1918 return t;
1919 }
1920
1921 return (struct type *) 0;
1922 }
1923
1924 /* Find the name of the file containing main(). */
1925 /* FIXME: What about languages without main() or specially linked
1926 executables that have no main() ? */
1927
1928 const char *
1929 find_main_filename (void)
1930 {
1931 struct objfile *objfile;
1932 char *name = main_name ();
1933
1934 ALL_OBJFILES (objfile)
1935 {
1936 const char *result;
1937
1938 if (!objfile->sf)
1939 continue;
1940 result = objfile->sf->qf->find_symbol_file (objfile, name);
1941 if (result)
1942 return result;
1943 }
1944 return (NULL);
1945 }
1946
1947 /* Search BLOCK for symbol NAME in DOMAIN.
1948
1949 Note that if NAME is the demangled form of a C++ symbol, we will fail
1950 to find a match during the binary search of the non-encoded names, but
1951 for now we don't worry about the slight inefficiency of looking for
1952 a match we'll never find, since it will go pretty quick. Once the
1953 binary search terminates, we drop through and do a straight linear
1954 search on the symbols. Each symbol which is marked as being a ObjC/C++
1955 symbol (language_cplus or language_objc set) has both the encoded and
1956 non-encoded names tested for a match. */
1957
1958 struct symbol *
1959 lookup_block_symbol (const struct block *block, const char *name,
1960 const domain_enum domain)
1961 {
1962 struct block_iterator iter;
1963 struct symbol *sym;
1964
1965 if (!BLOCK_FUNCTION (block))
1966 {
1967 for (sym = block_iter_name_first (block, name, &iter);
1968 sym != NULL;
1969 sym = block_iter_name_next (name, &iter))
1970 {
1971 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1972 SYMBOL_DOMAIN (sym), domain))
1973 return sym;
1974 }
1975 return NULL;
1976 }
1977 else
1978 {
1979 /* Note that parameter symbols do not always show up last in the
1980 list; this loop makes sure to take anything else other than
1981 parameter symbols first; it only uses parameter symbols as a
1982 last resort. Note that this only takes up extra computation
1983 time on a match. */
1984
1985 struct symbol *sym_found = NULL;
1986
1987 for (sym = block_iter_name_first (block, name, &iter);
1988 sym != NULL;
1989 sym = block_iter_name_next (name, &iter))
1990 {
1991 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1992 SYMBOL_DOMAIN (sym), domain))
1993 {
1994 sym_found = sym;
1995 if (!SYMBOL_IS_ARGUMENT (sym))
1996 {
1997 break;
1998 }
1999 }
2000 }
2001 return (sym_found); /* Will be NULL if not found. */
2002 }
2003 }
2004
2005 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2006
2007 For each symbol that matches, CALLBACK is called. The symbol and
2008 DATA are passed to the callback.
2009
2010 If CALLBACK returns zero, the iteration ends. Otherwise, the
2011 search continues. */
2012
2013 void
2014 iterate_over_symbols (const struct block *block, const char *name,
2015 const domain_enum domain,
2016 symbol_found_callback_ftype *callback,
2017 void *data)
2018 {
2019 struct block_iterator iter;
2020 struct symbol *sym;
2021
2022 for (sym = block_iter_name_first (block, name, &iter);
2023 sym != NULL;
2024 sym = block_iter_name_next (name, &iter))
2025 {
2026 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2027 SYMBOL_DOMAIN (sym), domain))
2028 {
2029 if (!callback (sym, data))
2030 return;
2031 }
2032 }
2033 }
2034
2035 /* Find the symtab associated with PC and SECTION. Look through the
2036 psymtabs and read in another symtab if necessary. */
2037
2038 struct symtab *
2039 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2040 {
2041 struct block *b;
2042 struct blockvector *bv;
2043 struct symtab *s = NULL;
2044 struct symtab *best_s = NULL;
2045 struct objfile *objfile;
2046 CORE_ADDR distance = 0;
2047 struct minimal_symbol *msymbol;
2048
2049 /* If we know that this is not a text address, return failure. This is
2050 necessary because we loop based on the block's high and low code
2051 addresses, which do not include the data ranges, and because
2052 we call find_pc_sect_psymtab which has a similar restriction based
2053 on the partial_symtab's texthigh and textlow. */
2054 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2055 if (msymbol
2056 && (MSYMBOL_TYPE (msymbol) == mst_data
2057 || MSYMBOL_TYPE (msymbol) == mst_bss
2058 || MSYMBOL_TYPE (msymbol) == mst_abs
2059 || MSYMBOL_TYPE (msymbol) == mst_file_data
2060 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2061 return NULL;
2062
2063 /* Search all symtabs for the one whose file contains our address, and which
2064 is the smallest of all the ones containing the address. This is designed
2065 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2066 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2067 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2068
2069 This happens for native ecoff format, where code from included files
2070 gets its own symtab. The symtab for the included file should have
2071 been read in already via the dependency mechanism.
2072 It might be swifter to create several symtabs with the same name
2073 like xcoff does (I'm not sure).
2074
2075 It also happens for objfiles that have their functions reordered.
2076 For these, the symtab we are looking for is not necessarily read in. */
2077
2078 ALL_PRIMARY_SYMTABS (objfile, s)
2079 {
2080 bv = BLOCKVECTOR (s);
2081 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2082
2083 if (BLOCK_START (b) <= pc
2084 && BLOCK_END (b) > pc
2085 && (distance == 0
2086 || BLOCK_END (b) - BLOCK_START (b) < distance))
2087 {
2088 /* For an objfile that has its functions reordered,
2089 find_pc_psymtab will find the proper partial symbol table
2090 and we simply return its corresponding symtab. */
2091 /* In order to better support objfiles that contain both
2092 stabs and coff debugging info, we continue on if a psymtab
2093 can't be found. */
2094 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2095 {
2096 struct symtab *result;
2097
2098 result
2099 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2100 msymbol,
2101 pc, section,
2102 0);
2103 if (result)
2104 return result;
2105 }
2106 if (section != 0)
2107 {
2108 struct block_iterator iter;
2109 struct symbol *sym = NULL;
2110
2111 ALL_BLOCK_SYMBOLS (b, iter, sym)
2112 {
2113 fixup_symbol_section (sym, objfile);
2114 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2115 break;
2116 }
2117 if (sym == NULL)
2118 continue; /* No symbol in this symtab matches
2119 section. */
2120 }
2121 distance = BLOCK_END (b) - BLOCK_START (b);
2122 best_s = s;
2123 }
2124 }
2125
2126 if (best_s != NULL)
2127 return (best_s);
2128
2129 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2130
2131 ALL_OBJFILES (objfile)
2132 {
2133 struct symtab *result;
2134
2135 if (!objfile->sf)
2136 continue;
2137 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2138 msymbol,
2139 pc, section,
2140 1);
2141 if (result)
2142 return result;
2143 }
2144
2145 return NULL;
2146 }
2147
2148 /* Find the symtab associated with PC. Look through the psymtabs and read
2149 in another symtab if necessary. Backward compatibility, no section. */
2150
2151 struct symtab *
2152 find_pc_symtab (CORE_ADDR pc)
2153 {
2154 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2155 }
2156 \f
2157
2158 /* Find the source file and line number for a given PC value and SECTION.
2159 Return a structure containing a symtab pointer, a line number,
2160 and a pc range for the entire source line.
2161 The value's .pc field is NOT the specified pc.
2162 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2163 use the line that ends there. Otherwise, in that case, the line
2164 that begins there is used. */
2165
2166 /* The big complication here is that a line may start in one file, and end just
2167 before the start of another file. This usually occurs when you #include
2168 code in the middle of a subroutine. To properly find the end of a line's PC
2169 range, we must search all symtabs associated with this compilation unit, and
2170 find the one whose first PC is closer than that of the next line in this
2171 symtab. */
2172
2173 /* If it's worth the effort, we could be using a binary search. */
2174
2175 struct symtab_and_line
2176 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2177 {
2178 struct symtab *s;
2179 struct linetable *l;
2180 int len;
2181 int i;
2182 struct linetable_entry *item;
2183 struct symtab_and_line val;
2184 struct blockvector *bv;
2185 struct minimal_symbol *msymbol;
2186 struct minimal_symbol *mfunsym;
2187 struct objfile *objfile;
2188
2189 /* Info on best line seen so far, and where it starts, and its file. */
2190
2191 struct linetable_entry *best = NULL;
2192 CORE_ADDR best_end = 0;
2193 struct symtab *best_symtab = 0;
2194
2195 /* Store here the first line number
2196 of a file which contains the line at the smallest pc after PC.
2197 If we don't find a line whose range contains PC,
2198 we will use a line one less than this,
2199 with a range from the start of that file to the first line's pc. */
2200 struct linetable_entry *alt = NULL;
2201
2202 /* Info on best line seen in this file. */
2203
2204 struct linetable_entry *prev;
2205
2206 /* If this pc is not from the current frame,
2207 it is the address of the end of a call instruction.
2208 Quite likely that is the start of the following statement.
2209 But what we want is the statement containing the instruction.
2210 Fudge the pc to make sure we get that. */
2211
2212 init_sal (&val); /* initialize to zeroes */
2213
2214 val.pspace = current_program_space;
2215
2216 /* It's tempting to assume that, if we can't find debugging info for
2217 any function enclosing PC, that we shouldn't search for line
2218 number info, either. However, GAS can emit line number info for
2219 assembly files --- very helpful when debugging hand-written
2220 assembly code. In such a case, we'd have no debug info for the
2221 function, but we would have line info. */
2222
2223 if (notcurrent)
2224 pc -= 1;
2225
2226 /* elz: added this because this function returned the wrong
2227 information if the pc belongs to a stub (import/export)
2228 to call a shlib function. This stub would be anywhere between
2229 two functions in the target, and the line info was erroneously
2230 taken to be the one of the line before the pc. */
2231
2232 /* RT: Further explanation:
2233
2234 * We have stubs (trampolines) inserted between procedures.
2235 *
2236 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2237 * exists in the main image.
2238 *
2239 * In the minimal symbol table, we have a bunch of symbols
2240 * sorted by start address. The stubs are marked as "trampoline",
2241 * the others appear as text. E.g.:
2242 *
2243 * Minimal symbol table for main image
2244 * main: code for main (text symbol)
2245 * shr1: stub (trampoline symbol)
2246 * foo: code for foo (text symbol)
2247 * ...
2248 * Minimal symbol table for "shr1" image:
2249 * ...
2250 * shr1: code for shr1 (text symbol)
2251 * ...
2252 *
2253 * So the code below is trying to detect if we are in the stub
2254 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2255 * and if found, do the symbolization from the real-code address
2256 * rather than the stub address.
2257 *
2258 * Assumptions being made about the minimal symbol table:
2259 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2260 * if we're really in the trampoline.s If we're beyond it (say
2261 * we're in "foo" in the above example), it'll have a closer
2262 * symbol (the "foo" text symbol for example) and will not
2263 * return the trampoline.
2264 * 2. lookup_minimal_symbol_text() will find a real text symbol
2265 * corresponding to the trampoline, and whose address will
2266 * be different than the trampoline address. I put in a sanity
2267 * check for the address being the same, to avoid an
2268 * infinite recursion.
2269 */
2270 msymbol = lookup_minimal_symbol_by_pc (pc);
2271 if (msymbol != NULL)
2272 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2273 {
2274 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2275 NULL);
2276 if (mfunsym == NULL)
2277 /* I eliminated this warning since it is coming out
2278 * in the following situation:
2279 * gdb shmain // test program with shared libraries
2280 * (gdb) break shr1 // function in shared lib
2281 * Warning: In stub for ...
2282 * In the above situation, the shared lib is not loaded yet,
2283 * so of course we can't find the real func/line info,
2284 * but the "break" still works, and the warning is annoying.
2285 * So I commented out the warning. RT */
2286 /* warning ("In stub for %s; unable to find real function/line info",
2287 SYMBOL_LINKAGE_NAME (msymbol)); */
2288 ;
2289 /* fall through */
2290 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2291 == SYMBOL_VALUE_ADDRESS (msymbol))
2292 /* Avoid infinite recursion */
2293 /* See above comment about why warning is commented out. */
2294 /* warning ("In stub for %s; unable to find real function/line info",
2295 SYMBOL_LINKAGE_NAME (msymbol)); */
2296 ;
2297 /* fall through */
2298 else
2299 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2300 }
2301
2302
2303 s = find_pc_sect_symtab (pc, section);
2304 if (!s)
2305 {
2306 /* If no symbol information, return previous pc. */
2307 if (notcurrent)
2308 pc++;
2309 val.pc = pc;
2310 return val;
2311 }
2312
2313 bv = BLOCKVECTOR (s);
2314 objfile = s->objfile;
2315
2316 /* Look at all the symtabs that share this blockvector.
2317 They all have the same apriori range, that we found was right;
2318 but they have different line tables. */
2319
2320 ALL_OBJFILE_SYMTABS (objfile, s)
2321 {
2322 if (BLOCKVECTOR (s) != bv)
2323 continue;
2324
2325 /* Find the best line in this symtab. */
2326 l = LINETABLE (s);
2327 if (!l)
2328 continue;
2329 len = l->nitems;
2330 if (len <= 0)
2331 {
2332 /* I think len can be zero if the symtab lacks line numbers
2333 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2334 I'm not sure which, and maybe it depends on the symbol
2335 reader). */
2336 continue;
2337 }
2338
2339 prev = NULL;
2340 item = l->item; /* Get first line info. */
2341
2342 /* Is this file's first line closer than the first lines of other files?
2343 If so, record this file, and its first line, as best alternate. */
2344 if (item->pc > pc && (!alt || item->pc < alt->pc))
2345 alt = item;
2346
2347 for (i = 0; i < len; i++, item++)
2348 {
2349 /* Leave prev pointing to the linetable entry for the last line
2350 that started at or before PC. */
2351 if (item->pc > pc)
2352 break;
2353
2354 prev = item;
2355 }
2356
2357 /* At this point, prev points at the line whose start addr is <= pc, and
2358 item points at the next line. If we ran off the end of the linetable
2359 (pc >= start of the last line), then prev == item. If pc < start of
2360 the first line, prev will not be set. */
2361
2362 /* Is this file's best line closer than the best in the other files?
2363 If so, record this file, and its best line, as best so far. Don't
2364 save prev if it represents the end of a function (i.e. line number
2365 0) instead of a real line. */
2366
2367 if (prev && prev->line && (!best || prev->pc > best->pc))
2368 {
2369 best = prev;
2370 best_symtab = s;
2371
2372 /* Discard BEST_END if it's before the PC of the current BEST. */
2373 if (best_end <= best->pc)
2374 best_end = 0;
2375 }
2376
2377 /* If another line (denoted by ITEM) is in the linetable and its
2378 PC is after BEST's PC, but before the current BEST_END, then
2379 use ITEM's PC as the new best_end. */
2380 if (best && i < len && item->pc > best->pc
2381 && (best_end == 0 || best_end > item->pc))
2382 best_end = item->pc;
2383 }
2384
2385 if (!best_symtab)
2386 {
2387 /* If we didn't find any line number info, just return zeros.
2388 We used to return alt->line - 1 here, but that could be
2389 anywhere; if we don't have line number info for this PC,
2390 don't make some up. */
2391 val.pc = pc;
2392 }
2393 else if (best->line == 0)
2394 {
2395 /* If our best fit is in a range of PC's for which no line
2396 number info is available (line number is zero) then we didn't
2397 find any valid line information. */
2398 val.pc = pc;
2399 }
2400 else
2401 {
2402 val.symtab = best_symtab;
2403 val.line = best->line;
2404 val.pc = best->pc;
2405 if (best_end && (!alt || best_end < alt->pc))
2406 val.end = best_end;
2407 else if (alt)
2408 val.end = alt->pc;
2409 else
2410 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2411 }
2412 val.section = section;
2413 return val;
2414 }
2415
2416 /* Backward compatibility (no section). */
2417
2418 struct symtab_and_line
2419 find_pc_line (CORE_ADDR pc, int notcurrent)
2420 {
2421 struct obj_section *section;
2422
2423 section = find_pc_overlay (pc);
2424 if (pc_in_unmapped_range (pc, section))
2425 pc = overlay_mapped_address (pc, section);
2426 return find_pc_sect_line (pc, section, notcurrent);
2427 }
2428 \f
2429 /* Find line number LINE in any symtab whose name is the same as
2430 SYMTAB.
2431
2432 If found, return the symtab that contains the linetable in which it was
2433 found, set *INDEX to the index in the linetable of the best entry
2434 found, and set *EXACT_MATCH nonzero if the value returned is an
2435 exact match.
2436
2437 If not found, return NULL. */
2438
2439 struct symtab *
2440 find_line_symtab (struct symtab *symtab, int line,
2441 int *index, int *exact_match)
2442 {
2443 int exact = 0; /* Initialized here to avoid a compiler warning. */
2444
2445 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2446 so far seen. */
2447
2448 int best_index;
2449 struct linetable *best_linetable;
2450 struct symtab *best_symtab;
2451
2452 /* First try looking it up in the given symtab. */
2453 best_linetable = LINETABLE (symtab);
2454 best_symtab = symtab;
2455 best_index = find_line_common (best_linetable, line, &exact, 0);
2456 if (best_index < 0 || !exact)
2457 {
2458 /* Didn't find an exact match. So we better keep looking for
2459 another symtab with the same name. In the case of xcoff,
2460 multiple csects for one source file (produced by IBM's FORTRAN
2461 compiler) produce multiple symtabs (this is unavoidable
2462 assuming csects can be at arbitrary places in memory and that
2463 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2464
2465 /* BEST is the smallest linenumber > LINE so far seen,
2466 or 0 if none has been seen so far.
2467 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2468 int best;
2469
2470 struct objfile *objfile;
2471 struct symtab *s;
2472
2473 if (best_index >= 0)
2474 best = best_linetable->item[best_index].line;
2475 else
2476 best = 0;
2477
2478 ALL_OBJFILES (objfile)
2479 {
2480 if (objfile->sf)
2481 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2482 symtab_to_fullname (symtab));
2483 }
2484
2485 ALL_SYMTABS (objfile, s)
2486 {
2487 struct linetable *l;
2488 int ind;
2489
2490 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2491 continue;
2492 if (FILENAME_CMP (symtab_to_fullname (symtab),
2493 symtab_to_fullname (s)) != 0)
2494 continue;
2495 l = LINETABLE (s);
2496 ind = find_line_common (l, line, &exact, 0);
2497 if (ind >= 0)
2498 {
2499 if (exact)
2500 {
2501 best_index = ind;
2502 best_linetable = l;
2503 best_symtab = s;
2504 goto done;
2505 }
2506 if (best == 0 || l->item[ind].line < best)
2507 {
2508 best = l->item[ind].line;
2509 best_index = ind;
2510 best_linetable = l;
2511 best_symtab = s;
2512 }
2513 }
2514 }
2515 }
2516 done:
2517 if (best_index < 0)
2518 return NULL;
2519
2520 if (index)
2521 *index = best_index;
2522 if (exact_match)
2523 *exact_match = exact;
2524
2525 return best_symtab;
2526 }
2527
2528 /* Given SYMTAB, returns all the PCs function in the symtab that
2529 exactly match LINE. Returns NULL if there are no exact matches,
2530 but updates BEST_ITEM in this case. */
2531
2532 VEC (CORE_ADDR) *
2533 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2534 struct linetable_entry **best_item)
2535 {
2536 int start = 0;
2537 VEC (CORE_ADDR) *result = NULL;
2538
2539 /* First, collect all the PCs that are at this line. */
2540 while (1)
2541 {
2542 int was_exact;
2543 int idx;
2544
2545 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2546 if (idx < 0)
2547 break;
2548
2549 if (!was_exact)
2550 {
2551 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2552
2553 if (*best_item == NULL || item->line < (*best_item)->line)
2554 *best_item = item;
2555
2556 break;
2557 }
2558
2559 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2560 start = idx + 1;
2561 }
2562
2563 return result;
2564 }
2565
2566 \f
2567 /* Set the PC value for a given source file and line number and return true.
2568 Returns zero for invalid line number (and sets the PC to 0).
2569 The source file is specified with a struct symtab. */
2570
2571 int
2572 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2573 {
2574 struct linetable *l;
2575 int ind;
2576
2577 *pc = 0;
2578 if (symtab == 0)
2579 return 0;
2580
2581 symtab = find_line_symtab (symtab, line, &ind, NULL);
2582 if (symtab != NULL)
2583 {
2584 l = LINETABLE (symtab);
2585 *pc = l->item[ind].pc;
2586 return 1;
2587 }
2588 else
2589 return 0;
2590 }
2591
2592 /* Find the range of pc values in a line.
2593 Store the starting pc of the line into *STARTPTR
2594 and the ending pc (start of next line) into *ENDPTR.
2595 Returns 1 to indicate success.
2596 Returns 0 if could not find the specified line. */
2597
2598 int
2599 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2600 CORE_ADDR *endptr)
2601 {
2602 CORE_ADDR startaddr;
2603 struct symtab_and_line found_sal;
2604
2605 startaddr = sal.pc;
2606 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2607 return 0;
2608
2609 /* This whole function is based on address. For example, if line 10 has
2610 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2611 "info line *0x123" should say the line goes from 0x100 to 0x200
2612 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2613 This also insures that we never give a range like "starts at 0x134
2614 and ends at 0x12c". */
2615
2616 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2617 if (found_sal.line != sal.line)
2618 {
2619 /* The specified line (sal) has zero bytes. */
2620 *startptr = found_sal.pc;
2621 *endptr = found_sal.pc;
2622 }
2623 else
2624 {
2625 *startptr = found_sal.pc;
2626 *endptr = found_sal.end;
2627 }
2628 return 1;
2629 }
2630
2631 /* Given a line table and a line number, return the index into the line
2632 table for the pc of the nearest line whose number is >= the specified one.
2633 Return -1 if none is found. The value is >= 0 if it is an index.
2634 START is the index at which to start searching the line table.
2635
2636 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2637
2638 static int
2639 find_line_common (struct linetable *l, int lineno,
2640 int *exact_match, int start)
2641 {
2642 int i;
2643 int len;
2644
2645 /* BEST is the smallest linenumber > LINENO so far seen,
2646 or 0 if none has been seen so far.
2647 BEST_INDEX identifies the item for it. */
2648
2649 int best_index = -1;
2650 int best = 0;
2651
2652 *exact_match = 0;
2653
2654 if (lineno <= 0)
2655 return -1;
2656 if (l == 0)
2657 return -1;
2658
2659 len = l->nitems;
2660 for (i = start; i < len; i++)
2661 {
2662 struct linetable_entry *item = &(l->item[i]);
2663
2664 if (item->line == lineno)
2665 {
2666 /* Return the first (lowest address) entry which matches. */
2667 *exact_match = 1;
2668 return i;
2669 }
2670
2671 if (item->line > lineno && (best == 0 || item->line < best))
2672 {
2673 best = item->line;
2674 best_index = i;
2675 }
2676 }
2677
2678 /* If we got here, we didn't get an exact match. */
2679 return best_index;
2680 }
2681
2682 int
2683 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2684 {
2685 struct symtab_and_line sal;
2686
2687 sal = find_pc_line (pc, 0);
2688 *startptr = sal.pc;
2689 *endptr = sal.end;
2690 return sal.symtab != 0;
2691 }
2692
2693 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2694 address for that function that has an entry in SYMTAB's line info
2695 table. If such an entry cannot be found, return FUNC_ADDR
2696 unaltered. */
2697
2698 static CORE_ADDR
2699 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2700 {
2701 CORE_ADDR func_start, func_end;
2702 struct linetable *l;
2703 int i;
2704
2705 /* Give up if this symbol has no lineinfo table. */
2706 l = LINETABLE (symtab);
2707 if (l == NULL)
2708 return func_addr;
2709
2710 /* Get the range for the function's PC values, or give up if we
2711 cannot, for some reason. */
2712 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2713 return func_addr;
2714
2715 /* Linetable entries are ordered by PC values, see the commentary in
2716 symtab.h where `struct linetable' is defined. Thus, the first
2717 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2718 address we are looking for. */
2719 for (i = 0; i < l->nitems; i++)
2720 {
2721 struct linetable_entry *item = &(l->item[i]);
2722
2723 /* Don't use line numbers of zero, they mark special entries in
2724 the table. See the commentary on symtab.h before the
2725 definition of struct linetable. */
2726 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2727 return item->pc;
2728 }
2729
2730 return func_addr;
2731 }
2732
2733 /* Given a function symbol SYM, find the symtab and line for the start
2734 of the function.
2735 If the argument FUNFIRSTLINE is nonzero, we want the first line
2736 of real code inside the function. */
2737
2738 struct symtab_and_line
2739 find_function_start_sal (struct symbol *sym, int funfirstline)
2740 {
2741 struct symtab_and_line sal;
2742
2743 fixup_symbol_section (sym, NULL);
2744 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2745 SYMBOL_OBJ_SECTION (sym), 0);
2746
2747 /* We always should have a line for the function start address.
2748 If we don't, something is odd. Create a plain SAL refering
2749 just the PC and hope that skip_prologue_sal (if requested)
2750 can find a line number for after the prologue. */
2751 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2752 {
2753 init_sal (&sal);
2754 sal.pspace = current_program_space;
2755 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2756 sal.section = SYMBOL_OBJ_SECTION (sym);
2757 }
2758
2759 if (funfirstline)
2760 skip_prologue_sal (&sal);
2761
2762 return sal;
2763 }
2764
2765 /* Adjust SAL to the first instruction past the function prologue.
2766 If the PC was explicitly specified, the SAL is not changed.
2767 If the line number was explicitly specified, at most the SAL's PC
2768 is updated. If SAL is already past the prologue, then do nothing. */
2769
2770 void
2771 skip_prologue_sal (struct symtab_and_line *sal)
2772 {
2773 struct symbol *sym;
2774 struct symtab_and_line start_sal;
2775 struct cleanup *old_chain;
2776 CORE_ADDR pc, saved_pc;
2777 struct obj_section *section;
2778 const char *name;
2779 struct objfile *objfile;
2780 struct gdbarch *gdbarch;
2781 struct block *b, *function_block;
2782 int force_skip, skip;
2783
2784 /* Do not change the SAL if PC was specified explicitly. */
2785 if (sal->explicit_pc)
2786 return;
2787
2788 old_chain = save_current_space_and_thread ();
2789 switch_to_program_space_and_thread (sal->pspace);
2790
2791 sym = find_pc_sect_function (sal->pc, sal->section);
2792 if (sym != NULL)
2793 {
2794 fixup_symbol_section (sym, NULL);
2795
2796 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2797 section = SYMBOL_OBJ_SECTION (sym);
2798 name = SYMBOL_LINKAGE_NAME (sym);
2799 objfile = SYMBOL_SYMTAB (sym)->objfile;
2800 }
2801 else
2802 {
2803 struct minimal_symbol *msymbol
2804 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2805
2806 if (msymbol == NULL)
2807 {
2808 do_cleanups (old_chain);
2809 return;
2810 }
2811
2812 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2813 section = SYMBOL_OBJ_SECTION (msymbol);
2814 name = SYMBOL_LINKAGE_NAME (msymbol);
2815 objfile = msymbol_objfile (msymbol);
2816 }
2817
2818 gdbarch = get_objfile_arch (objfile);
2819
2820 /* Process the prologue in two passes. In the first pass try to skip the
2821 prologue (SKIP is true) and verify there is a real need for it (indicated
2822 by FORCE_SKIP). If no such reason was found run a second pass where the
2823 prologue is not skipped (SKIP is false). */
2824
2825 skip = 1;
2826 force_skip = 1;
2827
2828 /* Be conservative - allow direct PC (without skipping prologue) only if we
2829 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2830 have to be set by the caller so we use SYM instead. */
2831 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2832 force_skip = 0;
2833
2834 saved_pc = pc;
2835 do
2836 {
2837 pc = saved_pc;
2838
2839 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2840 so that gdbarch_skip_prologue has something unique to work on. */
2841 if (section_is_overlay (section) && !section_is_mapped (section))
2842 pc = overlay_unmapped_address (pc, section);
2843
2844 /* Skip "first line" of function (which is actually its prologue). */
2845 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2846 if (skip)
2847 pc = gdbarch_skip_prologue (gdbarch, pc);
2848
2849 /* For overlays, map pc back into its mapped VMA range. */
2850 pc = overlay_mapped_address (pc, section);
2851
2852 /* Calculate line number. */
2853 start_sal = find_pc_sect_line (pc, section, 0);
2854
2855 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2856 line is still part of the same function. */
2857 if (skip && start_sal.pc != pc
2858 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2859 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2860 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2861 == lookup_minimal_symbol_by_pc_section (pc, section))))
2862 {
2863 /* First pc of next line */
2864 pc = start_sal.end;
2865 /* Recalculate the line number (might not be N+1). */
2866 start_sal = find_pc_sect_line (pc, section, 0);
2867 }
2868
2869 /* On targets with executable formats that don't have a concept of
2870 constructors (ELF with .init has, PE doesn't), gcc emits a call
2871 to `__main' in `main' between the prologue and before user
2872 code. */
2873 if (gdbarch_skip_main_prologue_p (gdbarch)
2874 && name && strcmp_iw (name, "main") == 0)
2875 {
2876 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2877 /* Recalculate the line number (might not be N+1). */
2878 start_sal = find_pc_sect_line (pc, section, 0);
2879 force_skip = 1;
2880 }
2881 }
2882 while (!force_skip && skip--);
2883
2884 /* If we still don't have a valid source line, try to find the first
2885 PC in the lineinfo table that belongs to the same function. This
2886 happens with COFF debug info, which does not seem to have an
2887 entry in lineinfo table for the code after the prologue which has
2888 no direct relation to source. For example, this was found to be
2889 the case with the DJGPP target using "gcc -gcoff" when the
2890 compiler inserted code after the prologue to make sure the stack
2891 is aligned. */
2892 if (!force_skip && sym && start_sal.symtab == NULL)
2893 {
2894 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2895 /* Recalculate the line number. */
2896 start_sal = find_pc_sect_line (pc, section, 0);
2897 }
2898
2899 do_cleanups (old_chain);
2900
2901 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2902 forward SAL to the end of the prologue. */
2903 if (sal->pc >= pc)
2904 return;
2905
2906 sal->pc = pc;
2907 sal->section = section;
2908
2909 /* Unless the explicit_line flag was set, update the SAL line
2910 and symtab to correspond to the modified PC location. */
2911 if (sal->explicit_line)
2912 return;
2913
2914 sal->symtab = start_sal.symtab;
2915 sal->line = start_sal.line;
2916 sal->end = start_sal.end;
2917
2918 /* Check if we are now inside an inlined function. If we can,
2919 use the call site of the function instead. */
2920 b = block_for_pc_sect (sal->pc, sal->section);
2921 function_block = NULL;
2922 while (b != NULL)
2923 {
2924 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2925 function_block = b;
2926 else if (BLOCK_FUNCTION (b) != NULL)
2927 break;
2928 b = BLOCK_SUPERBLOCK (b);
2929 }
2930 if (function_block != NULL
2931 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2932 {
2933 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2934 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2935 }
2936 }
2937
2938 /* If P is of the form "operator[ \t]+..." where `...' is
2939 some legitimate operator text, return a pointer to the
2940 beginning of the substring of the operator text.
2941 Otherwise, return "". */
2942
2943 static char *
2944 operator_chars (char *p, char **end)
2945 {
2946 *end = "";
2947 if (strncmp (p, "operator", 8))
2948 return *end;
2949 p += 8;
2950
2951 /* Don't get faked out by `operator' being part of a longer
2952 identifier. */
2953 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2954 return *end;
2955
2956 /* Allow some whitespace between `operator' and the operator symbol. */
2957 while (*p == ' ' || *p == '\t')
2958 p++;
2959
2960 /* Recognize 'operator TYPENAME'. */
2961
2962 if (isalpha (*p) || *p == '_' || *p == '$')
2963 {
2964 char *q = p + 1;
2965
2966 while (isalnum (*q) || *q == '_' || *q == '$')
2967 q++;
2968 *end = q;
2969 return p;
2970 }
2971
2972 while (*p)
2973 switch (*p)
2974 {
2975 case '\\': /* regexp quoting */
2976 if (p[1] == '*')
2977 {
2978 if (p[2] == '=') /* 'operator\*=' */
2979 *end = p + 3;
2980 else /* 'operator\*' */
2981 *end = p + 2;
2982 return p;
2983 }
2984 else if (p[1] == '[')
2985 {
2986 if (p[2] == ']')
2987 error (_("mismatched quoting on brackets, "
2988 "try 'operator\\[\\]'"));
2989 else if (p[2] == '\\' && p[3] == ']')
2990 {
2991 *end = p + 4; /* 'operator\[\]' */
2992 return p;
2993 }
2994 else
2995 error (_("nothing is allowed between '[' and ']'"));
2996 }
2997 else
2998 {
2999 /* Gratuitous qoute: skip it and move on. */
3000 p++;
3001 continue;
3002 }
3003 break;
3004 case '!':
3005 case '=':
3006 case '*':
3007 case '/':
3008 case '%':
3009 case '^':
3010 if (p[1] == '=')
3011 *end = p + 2;
3012 else
3013 *end = p + 1;
3014 return p;
3015 case '<':
3016 case '>':
3017 case '+':
3018 case '-':
3019 case '&':
3020 case '|':
3021 if (p[0] == '-' && p[1] == '>')
3022 {
3023 /* Struct pointer member operator 'operator->'. */
3024 if (p[2] == '*')
3025 {
3026 *end = p + 3; /* 'operator->*' */
3027 return p;
3028 }
3029 else if (p[2] == '\\')
3030 {
3031 *end = p + 4; /* Hopefully 'operator->\*' */
3032 return p;
3033 }
3034 else
3035 {
3036 *end = p + 2; /* 'operator->' */
3037 return p;
3038 }
3039 }
3040 if (p[1] == '=' || p[1] == p[0])
3041 *end = p + 2;
3042 else
3043 *end = p + 1;
3044 return p;
3045 case '~':
3046 case ',':
3047 *end = p + 1;
3048 return p;
3049 case '(':
3050 if (p[1] != ')')
3051 error (_("`operator ()' must be specified "
3052 "without whitespace in `()'"));
3053 *end = p + 2;
3054 return p;
3055 case '?':
3056 if (p[1] != ':')
3057 error (_("`operator ?:' must be specified "
3058 "without whitespace in `?:'"));
3059 *end = p + 2;
3060 return p;
3061 case '[':
3062 if (p[1] != ']')
3063 error (_("`operator []' must be specified "
3064 "without whitespace in `[]'"));
3065 *end = p + 2;
3066 return p;
3067 default:
3068 error (_("`operator %s' not supported"), p);
3069 break;
3070 }
3071
3072 *end = "";
3073 return *end;
3074 }
3075 \f
3076
3077 /* Cache to watch for file names already seen by filename_seen. */
3078
3079 struct filename_seen_cache
3080 {
3081 /* Table of files seen so far. */
3082 htab_t tab;
3083 /* Initial size of the table. It automagically grows from here. */
3084 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3085 };
3086
3087 /* filename_seen_cache constructor. */
3088
3089 static struct filename_seen_cache *
3090 create_filename_seen_cache (void)
3091 {
3092 struct filename_seen_cache *cache;
3093
3094 cache = XNEW (struct filename_seen_cache);
3095 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3096 filename_hash, filename_eq,
3097 NULL, xcalloc, xfree);
3098
3099 return cache;
3100 }
3101
3102 /* Empty the cache, but do not delete it. */
3103
3104 static void
3105 clear_filename_seen_cache (struct filename_seen_cache *cache)
3106 {
3107 htab_empty (cache->tab);
3108 }
3109
3110 /* filename_seen_cache destructor.
3111 This takes a void * argument as it is generally used as a cleanup. */
3112
3113 static void
3114 delete_filename_seen_cache (void *ptr)
3115 {
3116 struct filename_seen_cache *cache = ptr;
3117
3118 htab_delete (cache->tab);
3119 xfree (cache);
3120 }
3121
3122 /* If FILE is not already in the table of files in CACHE, return zero;
3123 otherwise return non-zero. Optionally add FILE to the table if ADD
3124 is non-zero.
3125
3126 NOTE: We don't manage space for FILE, we assume FILE lives as long
3127 as the caller needs. */
3128
3129 static int
3130 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3131 {
3132 void **slot;
3133
3134 /* Is FILE in tab? */
3135 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3136 if (*slot != NULL)
3137 return 1;
3138
3139 /* No; maybe add it to tab. */
3140 if (add)
3141 *slot = (char *) file;
3142
3143 return 0;
3144 }
3145
3146 /* Data structure to maintain printing state for output_source_filename. */
3147
3148 struct output_source_filename_data
3149 {
3150 /* Cache of what we've seen so far. */
3151 struct filename_seen_cache *filename_seen_cache;
3152
3153 /* Flag of whether we're printing the first one. */
3154 int first;
3155 };
3156
3157 /* Slave routine for sources_info. Force line breaks at ,'s.
3158 NAME is the name to print.
3159 DATA contains the state for printing and watching for duplicates. */
3160
3161 static void
3162 output_source_filename (const char *name,
3163 struct output_source_filename_data *data)
3164 {
3165 /* Since a single source file can result in several partial symbol
3166 tables, we need to avoid printing it more than once. Note: if
3167 some of the psymtabs are read in and some are not, it gets
3168 printed both under "Source files for which symbols have been
3169 read" and "Source files for which symbols will be read in on
3170 demand". I consider this a reasonable way to deal with the
3171 situation. I'm not sure whether this can also happen for
3172 symtabs; it doesn't hurt to check. */
3173
3174 /* Was NAME already seen? */
3175 if (filename_seen (data->filename_seen_cache, name, 1))
3176 {
3177 /* Yes; don't print it again. */
3178 return;
3179 }
3180
3181 /* No; print it and reset *FIRST. */
3182 if (! data->first)
3183 printf_filtered (", ");
3184 data->first = 0;
3185
3186 wrap_here ("");
3187 fputs_filtered (name, gdb_stdout);
3188 }
3189
3190 /* A callback for map_partial_symbol_filenames. */
3191
3192 static void
3193 output_partial_symbol_filename (const char *filename, const char *fullname,
3194 void *data)
3195 {
3196 output_source_filename (fullname ? fullname : filename, data);
3197 }
3198
3199 static void
3200 sources_info (char *ignore, int from_tty)
3201 {
3202 struct symtab *s;
3203 struct objfile *objfile;
3204 struct output_source_filename_data data;
3205 struct cleanup *cleanups;
3206
3207 if (!have_full_symbols () && !have_partial_symbols ())
3208 {
3209 error (_("No symbol table is loaded. Use the \"file\" command."));
3210 }
3211
3212 data.filename_seen_cache = create_filename_seen_cache ();
3213 cleanups = make_cleanup (delete_filename_seen_cache,
3214 data.filename_seen_cache);
3215
3216 printf_filtered ("Source files for which symbols have been read in:\n\n");
3217
3218 data.first = 1;
3219 ALL_SYMTABS (objfile, s)
3220 {
3221 const char *fullname = symtab_to_fullname (s);
3222
3223 output_source_filename (fullname, &data);
3224 }
3225 printf_filtered ("\n\n");
3226
3227 printf_filtered ("Source files for which symbols "
3228 "will be read in on demand:\n\n");
3229
3230 clear_filename_seen_cache (data.filename_seen_cache);
3231 data.first = 1;
3232 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3233 1 /*need_fullname*/);
3234 printf_filtered ("\n");
3235
3236 do_cleanups (cleanups);
3237 }
3238
3239 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3240 non-zero compare only lbasename of FILES. */
3241
3242 static int
3243 file_matches (const char *file, char *files[], int nfiles, int basenames)
3244 {
3245 int i;
3246
3247 if (file != NULL && nfiles != 0)
3248 {
3249 for (i = 0; i < nfiles; i++)
3250 {
3251 if (compare_filenames_for_search (file, (basenames
3252 ? lbasename (files[i])
3253 : files[i])))
3254 return 1;
3255 }
3256 }
3257 else if (nfiles == 0)
3258 return 1;
3259 return 0;
3260 }
3261
3262 /* Free any memory associated with a search. */
3263
3264 void
3265 free_search_symbols (struct symbol_search *symbols)
3266 {
3267 struct symbol_search *p;
3268 struct symbol_search *next;
3269
3270 for (p = symbols; p != NULL; p = next)
3271 {
3272 next = p->next;
3273 xfree (p);
3274 }
3275 }
3276
3277 static void
3278 do_free_search_symbols_cleanup (void *symbols)
3279 {
3280 free_search_symbols (symbols);
3281 }
3282
3283 struct cleanup *
3284 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3285 {
3286 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3287 }
3288
3289 /* Helper function for sort_search_symbols and qsort. Can only
3290 sort symbols, not minimal symbols. */
3291
3292 static int
3293 compare_search_syms (const void *sa, const void *sb)
3294 {
3295 struct symbol_search **sym_a = (struct symbol_search **) sa;
3296 struct symbol_search **sym_b = (struct symbol_search **) sb;
3297
3298 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3299 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3300 }
3301
3302 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3303 prevtail where it is, but update its next pointer to point to
3304 the first of the sorted symbols. */
3305
3306 static struct symbol_search *
3307 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3308 {
3309 struct symbol_search **symbols, *symp, *old_next;
3310 int i;
3311
3312 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3313 * nfound);
3314 symp = prevtail->next;
3315 for (i = 0; i < nfound; i++)
3316 {
3317 symbols[i] = symp;
3318 symp = symp->next;
3319 }
3320 /* Generally NULL. */
3321 old_next = symp;
3322
3323 qsort (symbols, nfound, sizeof (struct symbol_search *),
3324 compare_search_syms);
3325
3326 symp = prevtail;
3327 for (i = 0; i < nfound; i++)
3328 {
3329 symp->next = symbols[i];
3330 symp = symp->next;
3331 }
3332 symp->next = old_next;
3333
3334 xfree (symbols);
3335 return symp;
3336 }
3337
3338 /* An object of this type is passed as the user_data to the
3339 expand_symtabs_matching method. */
3340 struct search_symbols_data
3341 {
3342 int nfiles;
3343 char **files;
3344
3345 /* It is true if PREG contains valid data, false otherwise. */
3346 unsigned preg_p : 1;
3347 regex_t preg;
3348 };
3349
3350 /* A callback for expand_symtabs_matching. */
3351
3352 static int
3353 search_symbols_file_matches (const char *filename, void *user_data,
3354 int basenames)
3355 {
3356 struct search_symbols_data *data = user_data;
3357
3358 return file_matches (filename, data->files, data->nfiles, basenames);
3359 }
3360
3361 /* A callback for expand_symtabs_matching. */
3362
3363 static int
3364 search_symbols_name_matches (const char *symname, void *user_data)
3365 {
3366 struct search_symbols_data *data = user_data;
3367
3368 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3369 }
3370
3371 /* Search the symbol table for matches to the regular expression REGEXP,
3372 returning the results in *MATCHES.
3373
3374 Only symbols of KIND are searched:
3375 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3376 and constants (enums)
3377 FUNCTIONS_DOMAIN - search all functions
3378 TYPES_DOMAIN - search all type names
3379 ALL_DOMAIN - an internal error for this function
3380
3381 free_search_symbols should be called when *MATCHES is no longer needed.
3382
3383 The results are sorted locally; each symtab's global and static blocks are
3384 separately alphabetized. */
3385
3386 void
3387 search_symbols (char *regexp, enum search_domain kind,
3388 int nfiles, char *files[],
3389 struct symbol_search **matches)
3390 {
3391 struct symtab *s;
3392 struct blockvector *bv;
3393 struct block *b;
3394 int i = 0;
3395 struct block_iterator iter;
3396 struct symbol *sym;
3397 struct objfile *objfile;
3398 struct minimal_symbol *msymbol;
3399 int found_misc = 0;
3400 static const enum minimal_symbol_type types[]
3401 = {mst_data, mst_text, mst_abs};
3402 static const enum minimal_symbol_type types2[]
3403 = {mst_bss, mst_file_text, mst_abs};
3404 static const enum minimal_symbol_type types3[]
3405 = {mst_file_data, mst_solib_trampoline, mst_abs};
3406 static const enum minimal_symbol_type types4[]
3407 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3408 enum minimal_symbol_type ourtype;
3409 enum minimal_symbol_type ourtype2;
3410 enum minimal_symbol_type ourtype3;
3411 enum minimal_symbol_type ourtype4;
3412 struct symbol_search *sr;
3413 struct symbol_search *psr;
3414 struct symbol_search *tail;
3415 struct search_symbols_data datum;
3416
3417 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3418 CLEANUP_CHAIN is freed only in the case of an error. */
3419 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3420 struct cleanup *retval_chain;
3421
3422 gdb_assert (kind <= TYPES_DOMAIN);
3423
3424 ourtype = types[kind];
3425 ourtype2 = types2[kind];
3426 ourtype3 = types3[kind];
3427 ourtype4 = types4[kind];
3428
3429 sr = *matches = NULL;
3430 tail = NULL;
3431 datum.preg_p = 0;
3432
3433 if (regexp != NULL)
3434 {
3435 /* Make sure spacing is right for C++ operators.
3436 This is just a courtesy to make the matching less sensitive
3437 to how many spaces the user leaves between 'operator'
3438 and <TYPENAME> or <OPERATOR>. */
3439 char *opend;
3440 char *opname = operator_chars (regexp, &opend);
3441 int errcode;
3442
3443 if (*opname)
3444 {
3445 int fix = -1; /* -1 means ok; otherwise number of
3446 spaces needed. */
3447
3448 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3449 {
3450 /* There should 1 space between 'operator' and 'TYPENAME'. */
3451 if (opname[-1] != ' ' || opname[-2] == ' ')
3452 fix = 1;
3453 }
3454 else
3455 {
3456 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3457 if (opname[-1] == ' ')
3458 fix = 0;
3459 }
3460 /* If wrong number of spaces, fix it. */
3461 if (fix >= 0)
3462 {
3463 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3464
3465 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3466 regexp = tmp;
3467 }
3468 }
3469
3470 errcode = regcomp (&datum.preg, regexp,
3471 REG_NOSUB | (case_sensitivity == case_sensitive_off
3472 ? REG_ICASE : 0));
3473 if (errcode != 0)
3474 {
3475 char *err = get_regcomp_error (errcode, &datum.preg);
3476
3477 make_cleanup (xfree, err);
3478 error (_("Invalid regexp (%s): %s"), err, regexp);
3479 }
3480 datum.preg_p = 1;
3481 make_regfree_cleanup (&datum.preg);
3482 }
3483
3484 /* Search through the partial symtabs *first* for all symbols
3485 matching the regexp. That way we don't have to reproduce all of
3486 the machinery below. */
3487
3488 datum.nfiles = nfiles;
3489 datum.files = files;
3490 ALL_OBJFILES (objfile)
3491 {
3492 if (objfile->sf)
3493 objfile->sf->qf->expand_symtabs_matching (objfile,
3494 (nfiles == 0
3495 ? NULL
3496 : search_symbols_file_matches),
3497 search_symbols_name_matches,
3498 kind,
3499 &datum);
3500 }
3501
3502 retval_chain = old_chain;
3503
3504 /* Here, we search through the minimal symbol tables for functions
3505 and variables that match, and force their symbols to be read.
3506 This is in particular necessary for demangled variable names,
3507 which are no longer put into the partial symbol tables.
3508 The symbol will then be found during the scan of symtabs below.
3509
3510 For functions, find_pc_symtab should succeed if we have debug info
3511 for the function, for variables we have to call
3512 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3513 has debug info.
3514 If the lookup fails, set found_misc so that we will rescan to print
3515 any matching symbols without debug info.
3516 We only search the objfile the msymbol came from, we no longer search
3517 all objfiles. In large programs (1000s of shared libs) searching all
3518 objfiles is not worth the pain. */
3519
3520 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3521 {
3522 ALL_MSYMBOLS (objfile, msymbol)
3523 {
3524 QUIT;
3525
3526 if (msymbol->created_by_gdb)
3527 continue;
3528
3529 if (MSYMBOL_TYPE (msymbol) == ourtype
3530 || MSYMBOL_TYPE (msymbol) == ourtype2
3531 || MSYMBOL_TYPE (msymbol) == ourtype3
3532 || MSYMBOL_TYPE (msymbol) == ourtype4)
3533 {
3534 if (!datum.preg_p
3535 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3536 NULL, 0) == 0)
3537 {
3538 /* Note: An important side-effect of these lookup functions
3539 is to expand the symbol table if msymbol is found, for the
3540 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3541 if (kind == FUNCTIONS_DOMAIN
3542 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3543 : (lookup_symbol_in_objfile_from_linkage_name
3544 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3545 == NULL))
3546 found_misc = 1;
3547 }
3548 }
3549 }
3550 }
3551
3552 ALL_PRIMARY_SYMTABS (objfile, s)
3553 {
3554 bv = BLOCKVECTOR (s);
3555 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3556 {
3557 struct symbol_search *prevtail = tail;
3558 int nfound = 0;
3559
3560 b = BLOCKVECTOR_BLOCK (bv, i);
3561 ALL_BLOCK_SYMBOLS (b, iter, sym)
3562 {
3563 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3564
3565 QUIT;
3566
3567 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3568 a substring of symtab_to_fullname as it may contain "./" etc. */
3569 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3570 || ((basenames_may_differ
3571 || file_matches (lbasename (real_symtab->filename),
3572 files, nfiles, 1))
3573 && file_matches (symtab_to_fullname (real_symtab),
3574 files, nfiles, 0)))
3575 && ((!datum.preg_p
3576 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3577 NULL, 0) == 0)
3578 && ((kind == VARIABLES_DOMAIN
3579 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3580 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3581 && SYMBOL_CLASS (sym) != LOC_BLOCK
3582 /* LOC_CONST can be used for more than just enums,
3583 e.g., c++ static const members.
3584 We only want to skip enums here. */
3585 && !(SYMBOL_CLASS (sym) == LOC_CONST
3586 && TYPE_CODE (SYMBOL_TYPE (sym))
3587 == TYPE_CODE_ENUM))
3588 || (kind == FUNCTIONS_DOMAIN
3589 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3590 || (kind == TYPES_DOMAIN
3591 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3592 {
3593 /* match */
3594 psr = (struct symbol_search *)
3595 xmalloc (sizeof (struct symbol_search));
3596 psr->block = i;
3597 psr->symtab = real_symtab;
3598 psr->symbol = sym;
3599 psr->msymbol = NULL;
3600 psr->next = NULL;
3601 if (tail == NULL)
3602 sr = psr;
3603 else
3604 tail->next = psr;
3605 tail = psr;
3606 nfound ++;
3607 }
3608 }
3609 if (nfound > 0)
3610 {
3611 if (prevtail == NULL)
3612 {
3613 struct symbol_search dummy;
3614
3615 dummy.next = sr;
3616 tail = sort_search_symbols (&dummy, nfound);
3617 sr = dummy.next;
3618
3619 make_cleanup_free_search_symbols (sr);
3620 }
3621 else
3622 tail = sort_search_symbols (prevtail, nfound);
3623 }
3624 }
3625 }
3626
3627 /* If there are no eyes, avoid all contact. I mean, if there are
3628 no debug symbols, then print directly from the msymbol_vector. */
3629
3630 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3631 {
3632 ALL_MSYMBOLS (objfile, msymbol)
3633 {
3634 QUIT;
3635
3636 if (msymbol->created_by_gdb)
3637 continue;
3638
3639 if (MSYMBOL_TYPE (msymbol) == ourtype
3640 || MSYMBOL_TYPE (msymbol) == ourtype2
3641 || MSYMBOL_TYPE (msymbol) == ourtype3
3642 || MSYMBOL_TYPE (msymbol) == ourtype4)
3643 {
3644 if (!datum.preg_p
3645 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3646 NULL, 0) == 0)
3647 {
3648 /* For functions we can do a quick check of whether the
3649 symbol might be found via find_pc_symtab. */
3650 if (kind != FUNCTIONS_DOMAIN
3651 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3652 {
3653 if (lookup_symbol_in_objfile_from_linkage_name
3654 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3655 == NULL)
3656 {
3657 /* match */
3658 psr = (struct symbol_search *)
3659 xmalloc (sizeof (struct symbol_search));
3660 psr->block = i;
3661 psr->msymbol = msymbol;
3662 psr->symtab = NULL;
3663 psr->symbol = NULL;
3664 psr->next = NULL;
3665 if (tail == NULL)
3666 {
3667 sr = psr;
3668 make_cleanup_free_search_symbols (sr);
3669 }
3670 else
3671 tail->next = psr;
3672 tail = psr;
3673 }
3674 }
3675 }
3676 }
3677 }
3678 }
3679
3680 discard_cleanups (retval_chain);
3681 do_cleanups (old_chain);
3682 *matches = sr;
3683 }
3684
3685 /* Helper function for symtab_symbol_info, this function uses
3686 the data returned from search_symbols() to print information
3687 regarding the match to gdb_stdout. */
3688
3689 static void
3690 print_symbol_info (enum search_domain kind,
3691 struct symtab *s, struct symbol *sym,
3692 int block, const char *last)
3693 {
3694 const char *s_filename = symtab_to_filename_for_display (s);
3695
3696 if (last == NULL || filename_cmp (last, s_filename) != 0)
3697 {
3698 fputs_filtered ("\nFile ", gdb_stdout);
3699 fputs_filtered (s_filename, gdb_stdout);
3700 fputs_filtered (":\n", gdb_stdout);
3701 }
3702
3703 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3704 printf_filtered ("static ");
3705
3706 /* Typedef that is not a C++ class. */
3707 if (kind == TYPES_DOMAIN
3708 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3709 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3710 /* variable, func, or typedef-that-is-c++-class. */
3711 else if (kind < TYPES_DOMAIN
3712 || (kind == TYPES_DOMAIN
3713 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3714 {
3715 type_print (SYMBOL_TYPE (sym),
3716 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3717 ? "" : SYMBOL_PRINT_NAME (sym)),
3718 gdb_stdout, 0);
3719
3720 printf_filtered (";\n");
3721 }
3722 }
3723
3724 /* This help function for symtab_symbol_info() prints information
3725 for non-debugging symbols to gdb_stdout. */
3726
3727 static void
3728 print_msymbol_info (struct minimal_symbol *msymbol)
3729 {
3730 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3731 char *tmp;
3732
3733 if (gdbarch_addr_bit (gdbarch) <= 32)
3734 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3735 & (CORE_ADDR) 0xffffffff,
3736 8);
3737 else
3738 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3739 16);
3740 printf_filtered ("%s %s\n",
3741 tmp, SYMBOL_PRINT_NAME (msymbol));
3742 }
3743
3744 /* This is the guts of the commands "info functions", "info types", and
3745 "info variables". It calls search_symbols to find all matches and then
3746 print_[m]symbol_info to print out some useful information about the
3747 matches. */
3748
3749 static void
3750 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3751 {
3752 static const char * const classnames[] =
3753 {"variable", "function", "type"};
3754 struct symbol_search *symbols;
3755 struct symbol_search *p;
3756 struct cleanup *old_chain;
3757 const char *last_filename = NULL;
3758 int first = 1;
3759
3760 gdb_assert (kind <= TYPES_DOMAIN);
3761
3762 /* Must make sure that if we're interrupted, symbols gets freed. */
3763 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3764 old_chain = make_cleanup_free_search_symbols (symbols);
3765
3766 if (regexp != NULL)
3767 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3768 classnames[kind], regexp);
3769 else
3770 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3771
3772 for (p = symbols; p != NULL; p = p->next)
3773 {
3774 QUIT;
3775
3776 if (p->msymbol != NULL)
3777 {
3778 if (first)
3779 {
3780 printf_filtered (_("\nNon-debugging symbols:\n"));
3781 first = 0;
3782 }
3783 print_msymbol_info (p->msymbol);
3784 }
3785 else
3786 {
3787 print_symbol_info (kind,
3788 p->symtab,
3789 p->symbol,
3790 p->block,
3791 last_filename);
3792 last_filename = symtab_to_filename_for_display (p->symtab);
3793 }
3794 }
3795
3796 do_cleanups (old_chain);
3797 }
3798
3799 static void
3800 variables_info (char *regexp, int from_tty)
3801 {
3802 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3803 }
3804
3805 static void
3806 functions_info (char *regexp, int from_tty)
3807 {
3808 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3809 }
3810
3811
3812 static void
3813 types_info (char *regexp, int from_tty)
3814 {
3815 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3816 }
3817
3818 /* Breakpoint all functions matching regular expression. */
3819
3820 void
3821 rbreak_command_wrapper (char *regexp, int from_tty)
3822 {
3823 rbreak_command (regexp, from_tty);
3824 }
3825
3826 /* A cleanup function that calls end_rbreak_breakpoints. */
3827
3828 static void
3829 do_end_rbreak_breakpoints (void *ignore)
3830 {
3831 end_rbreak_breakpoints ();
3832 }
3833
3834 static void
3835 rbreak_command (char *regexp, int from_tty)
3836 {
3837 struct symbol_search *ss;
3838 struct symbol_search *p;
3839 struct cleanup *old_chain;
3840 char *string = NULL;
3841 int len = 0;
3842 char **files = NULL, *file_name;
3843 int nfiles = 0;
3844
3845 if (regexp)
3846 {
3847 char *colon = strchr (regexp, ':');
3848
3849 if (colon && *(colon + 1) != ':')
3850 {
3851 int colon_index;
3852
3853 colon_index = colon - regexp;
3854 file_name = alloca (colon_index + 1);
3855 memcpy (file_name, regexp, colon_index);
3856 file_name[colon_index--] = 0;
3857 while (isspace (file_name[colon_index]))
3858 file_name[colon_index--] = 0;
3859 files = &file_name;
3860 nfiles = 1;
3861 regexp = skip_spaces (colon + 1);
3862 }
3863 }
3864
3865 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3866 old_chain = make_cleanup_free_search_symbols (ss);
3867 make_cleanup (free_current_contents, &string);
3868
3869 start_rbreak_breakpoints ();
3870 make_cleanup (do_end_rbreak_breakpoints, NULL);
3871 for (p = ss; p != NULL; p = p->next)
3872 {
3873 if (p->msymbol == NULL)
3874 {
3875 const char *fullname = symtab_to_fullname (p->symtab);
3876
3877 int newlen = (strlen (fullname)
3878 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3879 + 4);
3880
3881 if (newlen > len)
3882 {
3883 string = xrealloc (string, newlen);
3884 len = newlen;
3885 }
3886 strcpy (string, fullname);
3887 strcat (string, ":'");
3888 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3889 strcat (string, "'");
3890 break_command (string, from_tty);
3891 print_symbol_info (FUNCTIONS_DOMAIN,
3892 p->symtab,
3893 p->symbol,
3894 p->block,
3895 symtab_to_filename_for_display (p->symtab));
3896 }
3897 else
3898 {
3899 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3900
3901 if (newlen > len)
3902 {
3903 string = xrealloc (string, newlen);
3904 len = newlen;
3905 }
3906 strcpy (string, "'");
3907 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3908 strcat (string, "'");
3909
3910 break_command (string, from_tty);
3911 printf_filtered ("<function, no debug info> %s;\n",
3912 SYMBOL_PRINT_NAME (p->msymbol));
3913 }
3914 }
3915
3916 do_cleanups (old_chain);
3917 }
3918 \f
3919
3920 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3921
3922 Either sym_text[sym_text_len] != '(' and then we search for any
3923 symbol starting with SYM_TEXT text.
3924
3925 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3926 be terminated at that point. Partial symbol tables do not have parameters
3927 information. */
3928
3929 static int
3930 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3931 {
3932 int (*ncmp) (const char *, const char *, size_t);
3933
3934 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3935
3936 if (ncmp (name, sym_text, sym_text_len) != 0)
3937 return 0;
3938
3939 if (sym_text[sym_text_len] == '(')
3940 {
3941 /* User searches for `name(someth...'. Require NAME to be terminated.
3942 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3943 present but accept even parameters presence. In this case this
3944 function is in fact strcmp_iw but whitespace skipping is not supported
3945 for tab completion. */
3946
3947 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3948 return 0;
3949 }
3950
3951 return 1;
3952 }
3953
3954 /* Free any memory associated with a completion list. */
3955
3956 static void
3957 free_completion_list (VEC (char_ptr) **list_ptr)
3958 {
3959 int i;
3960 char *p;
3961
3962 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3963 xfree (p);
3964 VEC_free (char_ptr, *list_ptr);
3965 }
3966
3967 /* Callback for make_cleanup. */
3968
3969 static void
3970 do_free_completion_list (void *list)
3971 {
3972 free_completion_list (list);
3973 }
3974
3975 /* Helper routine for make_symbol_completion_list. */
3976
3977 static VEC (char_ptr) *return_val;
3978
3979 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3980 completion_list_add_name \
3981 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3982
3983 /* Test to see if the symbol specified by SYMNAME (which is already
3984 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3985 characters. If so, add it to the current completion list. */
3986
3987 static void
3988 completion_list_add_name (const char *symname,
3989 const char *sym_text, int sym_text_len,
3990 const char *text, const char *word)
3991 {
3992 /* Clip symbols that cannot match. */
3993 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3994 return;
3995
3996 /* We have a match for a completion, so add SYMNAME to the current list
3997 of matches. Note that the name is moved to freshly malloc'd space. */
3998
3999 {
4000 char *new;
4001
4002 if (word == sym_text)
4003 {
4004 new = xmalloc (strlen (symname) + 5);
4005 strcpy (new, symname);
4006 }
4007 else if (word > sym_text)
4008 {
4009 /* Return some portion of symname. */
4010 new = xmalloc (strlen (symname) + 5);
4011 strcpy (new, symname + (word - sym_text));
4012 }
4013 else
4014 {
4015 /* Return some of SYM_TEXT plus symname. */
4016 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4017 strncpy (new, word, sym_text - word);
4018 new[sym_text - word] = '\0';
4019 strcat (new, symname);
4020 }
4021
4022 VEC_safe_push (char_ptr, return_val, new);
4023 }
4024 }
4025
4026 /* ObjC: In case we are completing on a selector, look as the msymbol
4027 again and feed all the selectors into the mill. */
4028
4029 static void
4030 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4031 const char *sym_text, int sym_text_len,
4032 const char *text, const char *word)
4033 {
4034 static char *tmp = NULL;
4035 static unsigned int tmplen = 0;
4036
4037 const char *method, *category, *selector;
4038 char *tmp2 = NULL;
4039
4040 method = SYMBOL_NATURAL_NAME (msymbol);
4041
4042 /* Is it a method? */
4043 if ((method[0] != '-') && (method[0] != '+'))
4044 return;
4045
4046 if (sym_text[0] == '[')
4047 /* Complete on shortened method method. */
4048 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4049
4050 while ((strlen (method) + 1) >= tmplen)
4051 {
4052 if (tmplen == 0)
4053 tmplen = 1024;
4054 else
4055 tmplen *= 2;
4056 tmp = xrealloc (tmp, tmplen);
4057 }
4058 selector = strchr (method, ' ');
4059 if (selector != NULL)
4060 selector++;
4061
4062 category = strchr (method, '(');
4063
4064 if ((category != NULL) && (selector != NULL))
4065 {
4066 memcpy (tmp, method, (category - method));
4067 tmp[category - method] = ' ';
4068 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4069 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4070 if (sym_text[0] == '[')
4071 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4072 }
4073
4074 if (selector != NULL)
4075 {
4076 /* Complete on selector only. */
4077 strcpy (tmp, selector);
4078 tmp2 = strchr (tmp, ']');
4079 if (tmp2 != NULL)
4080 *tmp2 = '\0';
4081
4082 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4083 }
4084 }
4085
4086 /* Break the non-quoted text based on the characters which are in
4087 symbols. FIXME: This should probably be language-specific. */
4088
4089 static const char *
4090 language_search_unquoted_string (const char *text, const char *p)
4091 {
4092 for (; p > text; --p)
4093 {
4094 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4095 continue;
4096 else
4097 {
4098 if ((current_language->la_language == language_objc))
4099 {
4100 if (p[-1] == ':') /* Might be part of a method name. */
4101 continue;
4102 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4103 p -= 2; /* Beginning of a method name. */
4104 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4105 { /* Might be part of a method name. */
4106 const char *t = p;
4107
4108 /* Seeing a ' ' or a '(' is not conclusive evidence
4109 that we are in the middle of a method name. However,
4110 finding "-[" or "+[" should be pretty un-ambiguous.
4111 Unfortunately we have to find it now to decide. */
4112
4113 while (t > text)
4114 if (isalnum (t[-1]) || t[-1] == '_' ||
4115 t[-1] == ' ' || t[-1] == ':' ||
4116 t[-1] == '(' || t[-1] == ')')
4117 --t;
4118 else
4119 break;
4120
4121 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4122 p = t - 2; /* Method name detected. */
4123 /* Else we leave with p unchanged. */
4124 }
4125 }
4126 break;
4127 }
4128 }
4129 return p;
4130 }
4131
4132 static void
4133 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4134 int sym_text_len, const char *text,
4135 const char *word)
4136 {
4137 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4138 {
4139 struct type *t = SYMBOL_TYPE (sym);
4140 enum type_code c = TYPE_CODE (t);
4141 int j;
4142
4143 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4144 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4145 if (TYPE_FIELD_NAME (t, j))
4146 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4147 sym_text, sym_text_len, text, word);
4148 }
4149 }
4150
4151 /* Type of the user_data argument passed to add_macro_name or
4152 expand_partial_symbol_name. The contents are simply whatever is
4153 needed by completion_list_add_name. */
4154 struct add_name_data
4155 {
4156 const char *sym_text;
4157 int sym_text_len;
4158 const char *text;
4159 const char *word;
4160 };
4161
4162 /* A callback used with macro_for_each and macro_for_each_in_scope.
4163 This adds a macro's name to the current completion list. */
4164
4165 static void
4166 add_macro_name (const char *name, const struct macro_definition *ignore,
4167 struct macro_source_file *ignore2, int ignore3,
4168 void *user_data)
4169 {
4170 struct add_name_data *datum = (struct add_name_data *) user_data;
4171
4172 completion_list_add_name ((char *) name,
4173 datum->sym_text, datum->sym_text_len,
4174 datum->text, datum->word);
4175 }
4176
4177 /* A callback for expand_partial_symbol_names. */
4178
4179 static int
4180 expand_partial_symbol_name (const char *name, void *user_data)
4181 {
4182 struct add_name_data *datum = (struct add_name_data *) user_data;
4183
4184 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4185 }
4186
4187 VEC (char_ptr) *
4188 default_make_symbol_completion_list_break_on (const char *text,
4189 const char *word,
4190 const char *break_on,
4191 enum type_code code)
4192 {
4193 /* Problem: All of the symbols have to be copied because readline
4194 frees them. I'm not going to worry about this; hopefully there
4195 won't be that many. */
4196
4197 struct symbol *sym;
4198 struct symtab *s;
4199 struct minimal_symbol *msymbol;
4200 struct objfile *objfile;
4201 struct block *b;
4202 const struct block *surrounding_static_block, *surrounding_global_block;
4203 struct block_iterator iter;
4204 /* The symbol we are completing on. Points in same buffer as text. */
4205 const char *sym_text;
4206 /* Length of sym_text. */
4207 int sym_text_len;
4208 struct add_name_data datum;
4209 struct cleanup *back_to;
4210
4211 /* Now look for the symbol we are supposed to complete on. */
4212 {
4213 const char *p;
4214 char quote_found;
4215 const char *quote_pos = NULL;
4216
4217 /* First see if this is a quoted string. */
4218 quote_found = '\0';
4219 for (p = text; *p != '\0'; ++p)
4220 {
4221 if (quote_found != '\0')
4222 {
4223 if (*p == quote_found)
4224 /* Found close quote. */
4225 quote_found = '\0';
4226 else if (*p == '\\' && p[1] == quote_found)
4227 /* A backslash followed by the quote character
4228 doesn't end the string. */
4229 ++p;
4230 }
4231 else if (*p == '\'' || *p == '"')
4232 {
4233 quote_found = *p;
4234 quote_pos = p;
4235 }
4236 }
4237 if (quote_found == '\'')
4238 /* A string within single quotes can be a symbol, so complete on it. */
4239 sym_text = quote_pos + 1;
4240 else if (quote_found == '"')
4241 /* A double-quoted string is never a symbol, nor does it make sense
4242 to complete it any other way. */
4243 {
4244 return NULL;
4245 }
4246 else
4247 {
4248 /* It is not a quoted string. Break it based on the characters
4249 which are in symbols. */
4250 while (p > text)
4251 {
4252 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4253 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4254 --p;
4255 else
4256 break;
4257 }
4258 sym_text = p;
4259 }
4260 }
4261
4262 sym_text_len = strlen (sym_text);
4263
4264 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4265
4266 if (current_language->la_language == language_cplus
4267 || current_language->la_language == language_java
4268 || current_language->la_language == language_fortran)
4269 {
4270 /* These languages may have parameters entered by user but they are never
4271 present in the partial symbol tables. */
4272
4273 const char *cs = memchr (sym_text, '(', sym_text_len);
4274
4275 if (cs)
4276 sym_text_len = cs - sym_text;
4277 }
4278 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4279
4280 return_val = NULL;
4281 back_to = make_cleanup (do_free_completion_list, &return_val);
4282
4283 datum.sym_text = sym_text;
4284 datum.sym_text_len = sym_text_len;
4285 datum.text = text;
4286 datum.word = word;
4287
4288 /* Look through the partial symtabs for all symbols which begin
4289 by matching SYM_TEXT. Expand all CUs that you find to the list.
4290 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4291 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4292
4293 /* At this point scan through the misc symbol vectors and add each
4294 symbol you find to the list. Eventually we want to ignore
4295 anything that isn't a text symbol (everything else will be
4296 handled by the psymtab code above). */
4297
4298 if (code == TYPE_CODE_UNDEF)
4299 {
4300 ALL_MSYMBOLS (objfile, msymbol)
4301 {
4302 QUIT;
4303 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4304 word);
4305
4306 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4307 word);
4308 }
4309 }
4310
4311 /* Search upwards from currently selected frame (so that we can
4312 complete on local vars). Also catch fields of types defined in
4313 this places which match our text string. Only complete on types
4314 visible from current context. */
4315
4316 b = get_selected_block (0);
4317 surrounding_static_block = block_static_block (b);
4318 surrounding_global_block = block_global_block (b);
4319 if (surrounding_static_block != NULL)
4320 while (b != surrounding_static_block)
4321 {
4322 QUIT;
4323
4324 ALL_BLOCK_SYMBOLS (b, iter, sym)
4325 {
4326 if (code == TYPE_CODE_UNDEF)
4327 {
4328 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4329 word);
4330 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4331 word);
4332 }
4333 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4334 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4335 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4336 word);
4337 }
4338
4339 /* Stop when we encounter an enclosing function. Do not stop for
4340 non-inlined functions - the locals of the enclosing function
4341 are in scope for a nested function. */
4342 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4343 break;
4344 b = BLOCK_SUPERBLOCK (b);
4345 }
4346
4347 /* Add fields from the file's types; symbols will be added below. */
4348
4349 if (code == TYPE_CODE_UNDEF)
4350 {
4351 if (surrounding_static_block != NULL)
4352 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4353 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4354
4355 if (surrounding_global_block != NULL)
4356 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4357 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4358 }
4359
4360 /* Go through the symtabs and check the externs and statics for
4361 symbols which match. */
4362
4363 ALL_PRIMARY_SYMTABS (objfile, s)
4364 {
4365 QUIT;
4366 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4367 ALL_BLOCK_SYMBOLS (b, iter, sym)
4368 {
4369 if (code == TYPE_CODE_UNDEF
4370 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4371 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4372 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4373 }
4374 }
4375
4376 ALL_PRIMARY_SYMTABS (objfile, s)
4377 {
4378 QUIT;
4379 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4380 ALL_BLOCK_SYMBOLS (b, iter, sym)
4381 {
4382 if (code == TYPE_CODE_UNDEF
4383 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4384 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4385 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4386 }
4387 }
4388
4389 /* Skip macros if we are completing a struct tag -- arguable but
4390 usually what is expected. */
4391 if (current_language->la_macro_expansion == macro_expansion_c
4392 && code == TYPE_CODE_UNDEF)
4393 {
4394 struct macro_scope *scope;
4395
4396 /* Add any macros visible in the default scope. Note that this
4397 may yield the occasional wrong result, because an expression
4398 might be evaluated in a scope other than the default. For
4399 example, if the user types "break file:line if <TAB>", the
4400 resulting expression will be evaluated at "file:line" -- but
4401 at there does not seem to be a way to detect this at
4402 completion time. */
4403 scope = default_macro_scope ();
4404 if (scope)
4405 {
4406 macro_for_each_in_scope (scope->file, scope->line,
4407 add_macro_name, &datum);
4408 xfree (scope);
4409 }
4410
4411 /* User-defined macros are always visible. */
4412 macro_for_each (macro_user_macros, add_macro_name, &datum);
4413 }
4414
4415 discard_cleanups (back_to);
4416 return (return_val);
4417 }
4418
4419 VEC (char_ptr) *
4420 default_make_symbol_completion_list (const char *text, const char *word,
4421 enum type_code code)
4422 {
4423 return default_make_symbol_completion_list_break_on (text, word, "", code);
4424 }
4425
4426 /* Return a vector of all symbols (regardless of class) which begin by
4427 matching TEXT. If the answer is no symbols, then the return value
4428 is NULL. */
4429
4430 VEC (char_ptr) *
4431 make_symbol_completion_list (const char *text, const char *word)
4432 {
4433 return current_language->la_make_symbol_completion_list (text, word,
4434 TYPE_CODE_UNDEF);
4435 }
4436
4437 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4438 symbols whose type code is CODE. */
4439
4440 VEC (char_ptr) *
4441 make_symbol_completion_type (const char *text, const char *word,
4442 enum type_code code)
4443 {
4444 gdb_assert (code == TYPE_CODE_UNION
4445 || code == TYPE_CODE_STRUCT
4446 || code == TYPE_CODE_CLASS
4447 || code == TYPE_CODE_ENUM);
4448 return current_language->la_make_symbol_completion_list (text, word, code);
4449 }
4450
4451 /* Like make_symbol_completion_list, but suitable for use as a
4452 completion function. */
4453
4454 VEC (char_ptr) *
4455 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4456 const char *text, const char *word)
4457 {
4458 return make_symbol_completion_list (text, word);
4459 }
4460
4461 /* Like make_symbol_completion_list, but returns a list of symbols
4462 defined in a source file FILE. */
4463
4464 VEC (char_ptr) *
4465 make_file_symbol_completion_list (const char *text, const char *word,
4466 const char *srcfile)
4467 {
4468 struct symbol *sym;
4469 struct symtab *s;
4470 struct block *b;
4471 struct block_iterator iter;
4472 /* The symbol we are completing on. Points in same buffer as text. */
4473 const char *sym_text;
4474 /* Length of sym_text. */
4475 int sym_text_len;
4476
4477 /* Now look for the symbol we are supposed to complete on.
4478 FIXME: This should be language-specific. */
4479 {
4480 const char *p;
4481 char quote_found;
4482 const char *quote_pos = NULL;
4483
4484 /* First see if this is a quoted string. */
4485 quote_found = '\0';
4486 for (p = text; *p != '\0'; ++p)
4487 {
4488 if (quote_found != '\0')
4489 {
4490 if (*p == quote_found)
4491 /* Found close quote. */
4492 quote_found = '\0';
4493 else if (*p == '\\' && p[1] == quote_found)
4494 /* A backslash followed by the quote character
4495 doesn't end the string. */
4496 ++p;
4497 }
4498 else if (*p == '\'' || *p == '"')
4499 {
4500 quote_found = *p;
4501 quote_pos = p;
4502 }
4503 }
4504 if (quote_found == '\'')
4505 /* A string within single quotes can be a symbol, so complete on it. */
4506 sym_text = quote_pos + 1;
4507 else if (quote_found == '"')
4508 /* A double-quoted string is never a symbol, nor does it make sense
4509 to complete it any other way. */
4510 {
4511 return NULL;
4512 }
4513 else
4514 {
4515 /* Not a quoted string. */
4516 sym_text = language_search_unquoted_string (text, p);
4517 }
4518 }
4519
4520 sym_text_len = strlen (sym_text);
4521
4522 return_val = NULL;
4523
4524 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4525 in). */
4526 s = lookup_symtab (srcfile);
4527 if (s == NULL)
4528 {
4529 /* Maybe they typed the file with leading directories, while the
4530 symbol tables record only its basename. */
4531 const char *tail = lbasename (srcfile);
4532
4533 if (tail > srcfile)
4534 s = lookup_symtab (tail);
4535 }
4536
4537 /* If we have no symtab for that file, return an empty list. */
4538 if (s == NULL)
4539 return (return_val);
4540
4541 /* Go through this symtab and check the externs and statics for
4542 symbols which match. */
4543
4544 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4545 ALL_BLOCK_SYMBOLS (b, iter, sym)
4546 {
4547 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4548 }
4549
4550 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4551 ALL_BLOCK_SYMBOLS (b, iter, sym)
4552 {
4553 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4554 }
4555
4556 return (return_val);
4557 }
4558
4559 /* A helper function for make_source_files_completion_list. It adds
4560 another file name to a list of possible completions, growing the
4561 list as necessary. */
4562
4563 static void
4564 add_filename_to_list (const char *fname, const char *text, const char *word,
4565 VEC (char_ptr) **list)
4566 {
4567 char *new;
4568 size_t fnlen = strlen (fname);
4569
4570 if (word == text)
4571 {
4572 /* Return exactly fname. */
4573 new = xmalloc (fnlen + 5);
4574 strcpy (new, fname);
4575 }
4576 else if (word > text)
4577 {
4578 /* Return some portion of fname. */
4579 new = xmalloc (fnlen + 5);
4580 strcpy (new, fname + (word - text));
4581 }
4582 else
4583 {
4584 /* Return some of TEXT plus fname. */
4585 new = xmalloc (fnlen + (text - word) + 5);
4586 strncpy (new, word, text - word);
4587 new[text - word] = '\0';
4588 strcat (new, fname);
4589 }
4590 VEC_safe_push (char_ptr, *list, new);
4591 }
4592
4593 static int
4594 not_interesting_fname (const char *fname)
4595 {
4596 static const char *illegal_aliens[] = {
4597 "_globals_", /* inserted by coff_symtab_read */
4598 NULL
4599 };
4600 int i;
4601
4602 for (i = 0; illegal_aliens[i]; i++)
4603 {
4604 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4605 return 1;
4606 }
4607 return 0;
4608 }
4609
4610 /* An object of this type is passed as the user_data argument to
4611 map_partial_symbol_filenames. */
4612 struct add_partial_filename_data
4613 {
4614 struct filename_seen_cache *filename_seen_cache;
4615 const char *text;
4616 const char *word;
4617 int text_len;
4618 VEC (char_ptr) **list;
4619 };
4620
4621 /* A callback for map_partial_symbol_filenames. */
4622
4623 static void
4624 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4625 void *user_data)
4626 {
4627 struct add_partial_filename_data *data = user_data;
4628
4629 if (not_interesting_fname (filename))
4630 return;
4631 if (!filename_seen (data->filename_seen_cache, filename, 1)
4632 && filename_ncmp (filename, data->text, data->text_len) == 0)
4633 {
4634 /* This file matches for a completion; add it to the
4635 current list of matches. */
4636 add_filename_to_list (filename, data->text, data->word, data->list);
4637 }
4638 else
4639 {
4640 const char *base_name = lbasename (filename);
4641
4642 if (base_name != filename
4643 && !filename_seen (data->filename_seen_cache, base_name, 1)
4644 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4645 add_filename_to_list (base_name, data->text, data->word, data->list);
4646 }
4647 }
4648
4649 /* Return a vector of all source files whose names begin with matching
4650 TEXT. The file names are looked up in the symbol tables of this
4651 program. If the answer is no matchess, then the return value is
4652 NULL. */
4653
4654 VEC (char_ptr) *
4655 make_source_files_completion_list (const char *text, const char *word)
4656 {
4657 struct symtab *s;
4658 struct objfile *objfile;
4659 size_t text_len = strlen (text);
4660 VEC (char_ptr) *list = NULL;
4661 const char *base_name;
4662 struct add_partial_filename_data datum;
4663 struct filename_seen_cache *filename_seen_cache;
4664 struct cleanup *back_to, *cache_cleanup;
4665
4666 if (!have_full_symbols () && !have_partial_symbols ())
4667 return list;
4668
4669 back_to = make_cleanup (do_free_completion_list, &list);
4670
4671 filename_seen_cache = create_filename_seen_cache ();
4672 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4673 filename_seen_cache);
4674
4675 ALL_SYMTABS (objfile, s)
4676 {
4677 if (not_interesting_fname (s->filename))
4678 continue;
4679 if (!filename_seen (filename_seen_cache, s->filename, 1)
4680 && filename_ncmp (s->filename, text, text_len) == 0)
4681 {
4682 /* This file matches for a completion; add it to the current
4683 list of matches. */
4684 add_filename_to_list (s->filename, text, word, &list);
4685 }
4686 else
4687 {
4688 /* NOTE: We allow the user to type a base name when the
4689 debug info records leading directories, but not the other
4690 way around. This is what subroutines of breakpoint
4691 command do when they parse file names. */
4692 base_name = lbasename (s->filename);
4693 if (base_name != s->filename
4694 && !filename_seen (filename_seen_cache, base_name, 1)
4695 && filename_ncmp (base_name, text, text_len) == 0)
4696 add_filename_to_list (base_name, text, word, &list);
4697 }
4698 }
4699
4700 datum.filename_seen_cache = filename_seen_cache;
4701 datum.text = text;
4702 datum.word = word;
4703 datum.text_len = text_len;
4704 datum.list = &list;
4705 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4706 0 /*need_fullname*/);
4707
4708 do_cleanups (cache_cleanup);
4709 discard_cleanups (back_to);
4710
4711 return list;
4712 }
4713
4714 /* Determine if PC is in the prologue of a function. The prologue is the area
4715 between the first instruction of a function, and the first executable line.
4716 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4717
4718 If non-zero, func_start is where we think the prologue starts, possibly
4719 by previous examination of symbol table information. */
4720
4721 int
4722 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4723 {
4724 struct symtab_and_line sal;
4725 CORE_ADDR func_addr, func_end;
4726
4727 /* We have several sources of information we can consult to figure
4728 this out.
4729 - Compilers usually emit line number info that marks the prologue
4730 as its own "source line". So the ending address of that "line"
4731 is the end of the prologue. If available, this is the most
4732 reliable method.
4733 - The minimal symbols and partial symbols, which can usually tell
4734 us the starting and ending addresses of a function.
4735 - If we know the function's start address, we can call the
4736 architecture-defined gdbarch_skip_prologue function to analyze the
4737 instruction stream and guess where the prologue ends.
4738 - Our `func_start' argument; if non-zero, this is the caller's
4739 best guess as to the function's entry point. At the time of
4740 this writing, handle_inferior_event doesn't get this right, so
4741 it should be our last resort. */
4742
4743 /* Consult the partial symbol table, to find which function
4744 the PC is in. */
4745 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4746 {
4747 CORE_ADDR prologue_end;
4748
4749 /* We don't even have minsym information, so fall back to using
4750 func_start, if given. */
4751 if (! func_start)
4752 return 1; /* We *might* be in a prologue. */
4753
4754 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4755
4756 return func_start <= pc && pc < prologue_end;
4757 }
4758
4759 /* If we have line number information for the function, that's
4760 usually pretty reliable. */
4761 sal = find_pc_line (func_addr, 0);
4762
4763 /* Now sal describes the source line at the function's entry point,
4764 which (by convention) is the prologue. The end of that "line",
4765 sal.end, is the end of the prologue.
4766
4767 Note that, for functions whose source code is all on a single
4768 line, the line number information doesn't always end up this way.
4769 So we must verify that our purported end-of-prologue address is
4770 *within* the function, not at its start or end. */
4771 if (sal.line == 0
4772 || sal.end <= func_addr
4773 || func_end <= sal.end)
4774 {
4775 /* We don't have any good line number info, so use the minsym
4776 information, together with the architecture-specific prologue
4777 scanning code. */
4778 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4779
4780 return func_addr <= pc && pc < prologue_end;
4781 }
4782
4783 /* We have line number info, and it looks good. */
4784 return func_addr <= pc && pc < sal.end;
4785 }
4786
4787 /* Given PC at the function's start address, attempt to find the
4788 prologue end using SAL information. Return zero if the skip fails.
4789
4790 A non-optimized prologue traditionally has one SAL for the function
4791 and a second for the function body. A single line function has
4792 them both pointing at the same line.
4793
4794 An optimized prologue is similar but the prologue may contain
4795 instructions (SALs) from the instruction body. Need to skip those
4796 while not getting into the function body.
4797
4798 The functions end point and an increasing SAL line are used as
4799 indicators of the prologue's endpoint.
4800
4801 This code is based on the function refine_prologue_limit
4802 (found in ia64). */
4803
4804 CORE_ADDR
4805 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4806 {
4807 struct symtab_and_line prologue_sal;
4808 CORE_ADDR start_pc;
4809 CORE_ADDR end_pc;
4810 struct block *bl;
4811
4812 /* Get an initial range for the function. */
4813 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4814 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4815
4816 prologue_sal = find_pc_line (start_pc, 0);
4817 if (prologue_sal.line != 0)
4818 {
4819 /* For languages other than assembly, treat two consecutive line
4820 entries at the same address as a zero-instruction prologue.
4821 The GNU assembler emits separate line notes for each instruction
4822 in a multi-instruction macro, but compilers generally will not
4823 do this. */
4824 if (prologue_sal.symtab->language != language_asm)
4825 {
4826 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4827 int idx = 0;
4828
4829 /* Skip any earlier lines, and any end-of-sequence marker
4830 from a previous function. */
4831 while (linetable->item[idx].pc != prologue_sal.pc
4832 || linetable->item[idx].line == 0)
4833 idx++;
4834
4835 if (idx+1 < linetable->nitems
4836 && linetable->item[idx+1].line != 0
4837 && linetable->item[idx+1].pc == start_pc)
4838 return start_pc;
4839 }
4840
4841 /* If there is only one sal that covers the entire function,
4842 then it is probably a single line function, like
4843 "foo(){}". */
4844 if (prologue_sal.end >= end_pc)
4845 return 0;
4846
4847 while (prologue_sal.end < end_pc)
4848 {
4849 struct symtab_and_line sal;
4850
4851 sal = find_pc_line (prologue_sal.end, 0);
4852 if (sal.line == 0)
4853 break;
4854 /* Assume that a consecutive SAL for the same (or larger)
4855 line mark the prologue -> body transition. */
4856 if (sal.line >= prologue_sal.line)
4857 break;
4858 /* Likewise if we are in a different symtab altogether
4859 (e.g. within a file included via #include).  */
4860 if (sal.symtab != prologue_sal.symtab)
4861 break;
4862
4863 /* The line number is smaller. Check that it's from the
4864 same function, not something inlined. If it's inlined,
4865 then there is no point comparing the line numbers. */
4866 bl = block_for_pc (prologue_sal.end);
4867 while (bl)
4868 {
4869 if (block_inlined_p (bl))
4870 break;
4871 if (BLOCK_FUNCTION (bl))
4872 {
4873 bl = NULL;
4874 break;
4875 }
4876 bl = BLOCK_SUPERBLOCK (bl);
4877 }
4878 if (bl != NULL)
4879 break;
4880
4881 /* The case in which compiler's optimizer/scheduler has
4882 moved instructions into the prologue. We look ahead in
4883 the function looking for address ranges whose
4884 corresponding line number is less the first one that we
4885 found for the function. This is more conservative then
4886 refine_prologue_limit which scans a large number of SALs
4887 looking for any in the prologue. */
4888 prologue_sal = sal;
4889 }
4890 }
4891
4892 if (prologue_sal.end < end_pc)
4893 /* Return the end of this line, or zero if we could not find a
4894 line. */
4895 return prologue_sal.end;
4896 else
4897 /* Don't return END_PC, which is past the end of the function. */
4898 return prologue_sal.pc;
4899 }
4900 \f
4901 /* Track MAIN */
4902 static char *name_of_main;
4903 enum language language_of_main = language_unknown;
4904
4905 void
4906 set_main_name (const char *name)
4907 {
4908 if (name_of_main != NULL)
4909 {
4910 xfree (name_of_main);
4911 name_of_main = NULL;
4912 language_of_main = language_unknown;
4913 }
4914 if (name != NULL)
4915 {
4916 name_of_main = xstrdup (name);
4917 language_of_main = language_unknown;
4918 }
4919 }
4920
4921 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4922 accordingly. */
4923
4924 static void
4925 find_main_name (void)
4926 {
4927 const char *new_main_name;
4928
4929 /* Try to see if the main procedure is in Ada. */
4930 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4931 be to add a new method in the language vector, and call this
4932 method for each language until one of them returns a non-empty
4933 name. This would allow us to remove this hard-coded call to
4934 an Ada function. It is not clear that this is a better approach
4935 at this point, because all methods need to be written in a way
4936 such that false positives never be returned. For instance, it is
4937 important that a method does not return a wrong name for the main
4938 procedure if the main procedure is actually written in a different
4939 language. It is easy to guaranty this with Ada, since we use a
4940 special symbol generated only when the main in Ada to find the name
4941 of the main procedure. It is difficult however to see how this can
4942 be guarantied for languages such as C, for instance. This suggests
4943 that order of call for these methods becomes important, which means
4944 a more complicated approach. */
4945 new_main_name = ada_main_name ();
4946 if (new_main_name != NULL)
4947 {
4948 set_main_name (new_main_name);
4949 return;
4950 }
4951
4952 new_main_name = go_main_name ();
4953 if (new_main_name != NULL)
4954 {
4955 set_main_name (new_main_name);
4956 return;
4957 }
4958
4959 new_main_name = pascal_main_name ();
4960 if (new_main_name != NULL)
4961 {
4962 set_main_name (new_main_name);
4963 return;
4964 }
4965
4966 /* The languages above didn't identify the name of the main procedure.
4967 Fallback to "main". */
4968 set_main_name ("main");
4969 }
4970
4971 char *
4972 main_name (void)
4973 {
4974 if (name_of_main == NULL)
4975 find_main_name ();
4976
4977 return name_of_main;
4978 }
4979
4980 /* Handle ``executable_changed'' events for the symtab module. */
4981
4982 static void
4983 symtab_observer_executable_changed (void)
4984 {
4985 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4986 set_main_name (NULL);
4987 }
4988
4989 /* Return 1 if the supplied producer string matches the ARM RealView
4990 compiler (armcc). */
4991
4992 int
4993 producer_is_realview (const char *producer)
4994 {
4995 static const char *const arm_idents[] = {
4996 "ARM C Compiler, ADS",
4997 "Thumb C Compiler, ADS",
4998 "ARM C++ Compiler, ADS",
4999 "Thumb C++ Compiler, ADS",
5000 "ARM/Thumb C/C++ Compiler, RVCT",
5001 "ARM C/C++ Compiler, RVCT"
5002 };
5003 int i;
5004
5005 if (producer == NULL)
5006 return 0;
5007
5008 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5009 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5010 return 1;
5011
5012 return 0;
5013 }
5014
5015 \f
5016
5017 /* The next index to hand out in response to a registration request. */
5018
5019 static int next_aclass_value = LOC_FINAL_VALUE;
5020
5021 /* The maximum number of "aclass" registrations we support. This is
5022 constant for convenience. */
5023 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5024
5025 /* The objects representing the various "aclass" values. The elements
5026 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5027 elements are those registered at gdb initialization time. */
5028
5029 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5030
5031 /* The globally visible pointer. This is separate from 'symbol_impl'
5032 so that it can be const. */
5033
5034 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5035
5036 /* Make sure we saved enough room in struct symbol. */
5037
5038 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5039
5040 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5041 is the ops vector associated with this index. This returns the new
5042 index, which should be used as the aclass_index field for symbols
5043 of this type. */
5044
5045 int
5046 register_symbol_computed_impl (enum address_class aclass,
5047 const struct symbol_computed_ops *ops)
5048 {
5049 int result = next_aclass_value++;
5050
5051 gdb_assert (aclass == LOC_COMPUTED);
5052 gdb_assert (result < MAX_SYMBOL_IMPLS);
5053 symbol_impl[result].aclass = aclass;
5054 symbol_impl[result].ops_computed = ops;
5055
5056 return result;
5057 }
5058
5059 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5060 OPS is the ops vector associated with this index. This returns the
5061 new index, which should be used as the aclass_index field for symbols
5062 of this type. */
5063
5064 int
5065 register_symbol_block_impl (enum address_class aclass,
5066 const struct symbol_block_ops *ops)
5067 {
5068 int result = next_aclass_value++;
5069
5070 gdb_assert (aclass == LOC_BLOCK);
5071 gdb_assert (result < MAX_SYMBOL_IMPLS);
5072 symbol_impl[result].aclass = aclass;
5073 symbol_impl[result].ops_block = ops;
5074
5075 /* Sanity check OPS. */
5076 gdb_assert (ops != NULL);
5077 gdb_assert (ops->find_frame_base_location != NULL);
5078
5079 return result;
5080 }
5081
5082 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5083 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5084 this index. This returns the new index, which should be used as
5085 the aclass_index field for symbols of this type. */
5086
5087 int
5088 register_symbol_register_impl (enum address_class aclass,
5089 const struct symbol_register_ops *ops)
5090 {
5091 int result = next_aclass_value++;
5092
5093 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5094 gdb_assert (result < MAX_SYMBOL_IMPLS);
5095 symbol_impl[result].aclass = aclass;
5096 symbol_impl[result].ops_register = ops;
5097
5098 return result;
5099 }
5100
5101 /* Initialize elements of 'symbol_impl' for the constants in enum
5102 address_class. */
5103
5104 static void
5105 initialize_ordinary_address_classes (void)
5106 {
5107 int i;
5108
5109 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5110 symbol_impl[i].aclass = i;
5111 }
5112
5113 \f
5114
5115 void
5116 _initialize_symtab (void)
5117 {
5118 initialize_ordinary_address_classes ();
5119
5120 add_info ("variables", variables_info, _("\
5121 All global and static variable names, or those matching REGEXP."));
5122 if (dbx_commands)
5123 add_com ("whereis", class_info, variables_info, _("\
5124 All global and static variable names, or those matching REGEXP."));
5125
5126 add_info ("functions", functions_info,
5127 _("All function names, or those matching REGEXP."));
5128
5129 /* FIXME: This command has at least the following problems:
5130 1. It prints builtin types (in a very strange and confusing fashion).
5131 2. It doesn't print right, e.g. with
5132 typedef struct foo *FOO
5133 type_print prints "FOO" when we want to make it (in this situation)
5134 print "struct foo *".
5135 I also think "ptype" or "whatis" is more likely to be useful (but if
5136 there is much disagreement "info types" can be fixed). */
5137 add_info ("types", types_info,
5138 _("All type names, or those matching REGEXP."));
5139
5140 add_info ("sources", sources_info,
5141 _("Source files in the program."));
5142
5143 add_com ("rbreak", class_breakpoint, rbreak_command,
5144 _("Set a breakpoint for all functions matching REGEXP."));
5145
5146 if (xdb_commands)
5147 {
5148 add_com ("lf", class_info, sources_info,
5149 _("Source files in the program"));
5150 add_com ("lg", class_info, variables_info, _("\
5151 All global and static variable names, or those matching REGEXP."));
5152 }
5153
5154 add_setshow_enum_cmd ("multiple-symbols", no_class,
5155 multiple_symbols_modes, &multiple_symbols_mode,
5156 _("\
5157 Set the debugger behavior when more than one symbol are possible matches\n\
5158 in an expression."), _("\
5159 Show how the debugger handles ambiguities in expressions."), _("\
5160 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5161 NULL, NULL, &setlist, &showlist);
5162
5163 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5164 &basenames_may_differ, _("\
5165 Set whether a source file may have multiple base names."), _("\
5166 Show whether a source file may have multiple base names."), _("\
5167 (A \"base name\" is the name of a file with the directory part removed.\n\
5168 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5169 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5170 before comparing them. Canonicalization is an expensive operation,\n\
5171 but it allows the same file be known by more than one base name.\n\
5172 If not set (the default), all source files are assumed to have just\n\
5173 one base name, and gdb will do file name comparisons more efficiently."),
5174 NULL, NULL,
5175 &setlist, &showlist);
5176
5177 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5178 _("Set debugging of symbol table creation."),
5179 _("Show debugging of symbol table creation."), _("\
5180 When enabled, debugging messages are printed when building symbol tables."),
5181 NULL,
5182 NULL,
5183 &setdebuglist, &showdebuglist);
5184
5185 observer_attach_executable_changed (symtab_observer_executable_changed);
5186 }
This page took 0.127278 seconds and 5 git commands to generate.