gdb: Split print_symbol_info into two parts
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "gdbsupport/gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_obstack.h"
29 #include "gdb_regex.h"
30 #include "gdbsupport/enum-flags.h"
31 #include "gdbsupport/function-view.h"
32 #include "gdbsupport/gdb_optional.h"
33 #include "gdbsupport/gdb_string_view.h"
34 #include "gdbsupport/next-iterator.h"
35 #include "completer.h"
36 #include "gdb-demangle.h"
37
38 /* Opaque declarations. */
39 struct ui_file;
40 struct frame_info;
41 struct symbol;
42 struct obstack;
43 struct objfile;
44 struct block;
45 struct blockvector;
46 struct axs_value;
47 struct agent_expr;
48 struct program_space;
49 struct language_defn;
50 struct common_block;
51 struct obj_section;
52 struct cmd_list_element;
53 class probe;
54 struct lookup_name_info;
55
56 /* How to match a lookup name against a symbol search name. */
57 enum class symbol_name_match_type
58 {
59 /* Wild matching. Matches unqualified symbol names in all
60 namespace/module/packages, etc. */
61 WILD,
62
63 /* Full matching. The lookup name indicates a fully-qualified name,
64 and only matches symbol search names in the specified
65 namespace/module/package. */
66 FULL,
67
68 /* Search name matching. This is like FULL, but the search name did
69 not come from the user; instead it is already a search name
70 retrieved from a search_name () call.
71 For Ada, this avoids re-encoding an already-encoded search name
72 (which would potentially incorrectly lowercase letters in the
73 linkage/search name that should remain uppercase). For C++, it
74 avoids trying to demangle a name we already know is
75 demangled. */
76 SEARCH_NAME,
77
78 /* Expression matching. The same as FULL matching in most
79 languages. The same as WILD matching in Ada. */
80 EXPRESSION,
81 };
82
83 /* Hash the given symbol search name according to LANGUAGE's
84 rules. */
85 extern unsigned int search_name_hash (enum language language,
86 const char *search_name);
87
88 /* Ada-specific bits of a lookup_name_info object. This is lazily
89 constructed on demand. */
90
91 class ada_lookup_name_info final
92 {
93 public:
94 /* Construct. */
95 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
96
97 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
98 as name match type. Returns true if there's a match, false
99 otherwise. If non-NULL, store the matching results in MATCH. */
100 bool matches (const char *symbol_search_name,
101 symbol_name_match_type match_type,
102 completion_match_result *comp_match_res) const;
103
104 /* The Ada-encoded lookup name. */
105 const std::string &lookup_name () const
106 { return m_encoded_name; }
107
108 /* Return true if we're supposed to be doing a wild match look
109 up. */
110 bool wild_match_p () const
111 { return m_wild_match_p; }
112
113 /* Return true if we're looking up a name inside package
114 Standard. */
115 bool standard_p () const
116 { return m_standard_p; }
117
118 /* Return true if doing a verbatim match. */
119 bool verbatim_p () const
120 { return m_verbatim_p; }
121
122 private:
123 /* The Ada-encoded lookup name. */
124 std::string m_encoded_name;
125
126 /* Whether the user-provided lookup name was Ada encoded. If so,
127 then return encoded names in the 'matches' method's 'completion
128 match result' output. */
129 bool m_encoded_p : 1;
130
131 /* True if really doing wild matching. Even if the user requests
132 wild matching, some cases require full matching. */
133 bool m_wild_match_p : 1;
134
135 /* True if doing a verbatim match. This is true if the decoded
136 version of the symbol name is wrapped in '<'/'>'. This is an
137 escape hatch users can use to look up symbols the Ada encoding
138 does not understand. */
139 bool m_verbatim_p : 1;
140
141 /* True if the user specified a symbol name that is inside package
142 Standard. Symbol names inside package Standard are handled
143 specially. We always do a non-wild match of the symbol name
144 without the "standard__" prefix, and only search static and
145 global symbols. This was primarily introduced in order to allow
146 the user to specifically access the standard exceptions using,
147 for instance, Standard.Constraint_Error when Constraint_Error is
148 ambiguous (due to the user defining its own Constraint_Error
149 entity inside its program). */
150 bool m_standard_p : 1;
151 };
152
153 /* Language-specific bits of a lookup_name_info object, for languages
154 that do name searching using demangled names (C++/D/Go). This is
155 lazily constructed on demand. */
156
157 struct demangle_for_lookup_info final
158 {
159 public:
160 demangle_for_lookup_info (const lookup_name_info &lookup_name,
161 language lang);
162
163 /* The demangled lookup name. */
164 const std::string &lookup_name () const
165 { return m_demangled_name; }
166
167 private:
168 /* The demangled lookup name. */
169 std::string m_demangled_name;
170 };
171
172 /* Object that aggregates all information related to a symbol lookup
173 name. I.e., the name that is matched against the symbol's search
174 name. Caches per-language information so that it doesn't require
175 recomputing it for every symbol comparison, like for example the
176 Ada encoded name and the symbol's name hash for a given language.
177 The object is conceptually immutable once constructed, and thus has
178 no setters. This is to prevent some code path from tweaking some
179 property of the lookup name for some local reason and accidentally
180 altering the results of any continuing search(es).
181 lookup_name_info objects are generally passed around as a const
182 reference to reinforce that. (They're not passed around by value
183 because they're not small.) */
184 class lookup_name_info final
185 {
186 public:
187 /* Create a new object. */
188 lookup_name_info (std::string name,
189 symbol_name_match_type match_type,
190 bool completion_mode = false,
191 bool ignore_parameters = false)
192 : m_match_type (match_type),
193 m_completion_mode (completion_mode),
194 m_ignore_parameters (ignore_parameters),
195 m_name (std::move (name))
196 {}
197
198 /* Getters. See description of each corresponding field. */
199 symbol_name_match_type match_type () const { return m_match_type; }
200 bool completion_mode () const { return m_completion_mode; }
201 const std::string &name () const { return m_name; }
202 const bool ignore_parameters () const { return m_ignore_parameters; }
203
204 /* Return a version of this lookup name that is usable with
205 comparisons against symbols have no parameter info, such as
206 psymbols and GDB index symbols. */
207 lookup_name_info make_ignore_params () const
208 {
209 return lookup_name_info (m_name, m_match_type, m_completion_mode,
210 true /* ignore params */);
211 }
212
213 /* Get the search name hash for searches in language LANG. */
214 unsigned int search_name_hash (language lang) const
215 {
216 /* Only compute each language's hash once. */
217 if (!m_demangled_hashes_p[lang])
218 {
219 m_demangled_hashes[lang]
220 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
221 m_demangled_hashes_p[lang] = true;
222 }
223 return m_demangled_hashes[lang];
224 }
225
226 /* Get the search name for searches in language LANG. */
227 const std::string &language_lookup_name (language lang) const
228 {
229 switch (lang)
230 {
231 case language_ada:
232 return ada ().lookup_name ();
233 case language_cplus:
234 return cplus ().lookup_name ();
235 case language_d:
236 return d ().lookup_name ();
237 case language_go:
238 return go ().lookup_name ();
239 default:
240 return m_name;
241 }
242 }
243
244 /* Get the Ada-specific lookup info. */
245 const ada_lookup_name_info &ada () const
246 {
247 maybe_init (m_ada);
248 return *m_ada;
249 }
250
251 /* Get the C++-specific lookup info. */
252 const demangle_for_lookup_info &cplus () const
253 {
254 maybe_init (m_cplus, language_cplus);
255 return *m_cplus;
256 }
257
258 /* Get the D-specific lookup info. */
259 const demangle_for_lookup_info &d () const
260 {
261 maybe_init (m_d, language_d);
262 return *m_d;
263 }
264
265 /* Get the Go-specific lookup info. */
266 const demangle_for_lookup_info &go () const
267 {
268 maybe_init (m_go, language_go);
269 return *m_go;
270 }
271
272 /* Get a reference to a lookup_name_info object that matches any
273 symbol name. */
274 static const lookup_name_info &match_any ();
275
276 private:
277 /* Initialize FIELD, if not initialized yet. */
278 template<typename Field, typename... Args>
279 void maybe_init (Field &field, Args&&... args) const
280 {
281 if (!field)
282 field.emplace (*this, std::forward<Args> (args)...);
283 }
284
285 /* The lookup info as passed to the ctor. */
286 symbol_name_match_type m_match_type;
287 bool m_completion_mode;
288 bool m_ignore_parameters;
289 std::string m_name;
290
291 /* Language-specific info. These fields are filled lazily the first
292 time a lookup is done in the corresponding language. They're
293 mutable because lookup_name_info objects are typically passed
294 around by const reference (see intro), and they're conceptually
295 "cache" that can always be reconstructed from the non-mutable
296 fields. */
297 mutable gdb::optional<ada_lookup_name_info> m_ada;
298 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
299 mutable gdb::optional<demangle_for_lookup_info> m_d;
300 mutable gdb::optional<demangle_for_lookup_info> m_go;
301
302 /* The demangled hashes. Stored in an array with one entry for each
303 possible language. The second array records whether we've
304 already computed the each language's hash. (These are separate
305 arrays instead of a single array of optional<unsigned> to avoid
306 alignment padding). */
307 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
308 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
309 };
310
311 /* Comparison function for completion symbol lookup.
312
313 Returns true if the symbol name matches against LOOKUP_NAME.
314
315 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
316
317 On success and if non-NULL, COMP_MATCH_RES->match is set to point
318 to the symbol name as should be presented to the user as a
319 completion match list element. In most languages, this is the same
320 as the symbol's search name, but in some, like Ada, the display
321 name is dynamically computed within the comparison routine.
322
323 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
324 points the part of SYMBOL_SEARCH_NAME that was considered to match
325 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
326 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
327 points to "function()" inside SYMBOL_SEARCH_NAME. */
328 typedef bool (symbol_name_matcher_ftype)
329 (const char *symbol_search_name,
330 const lookup_name_info &lookup_name,
331 completion_match_result *comp_match_res);
332
333 /* Some of the structures in this file are space critical.
334 The space-critical structures are:
335
336 struct general_symbol_info
337 struct symbol
338 struct partial_symbol
339
340 These structures are laid out to encourage good packing.
341 They use ENUM_BITFIELD and short int fields, and they order the
342 structure members so that fields less than a word are next
343 to each other so they can be packed together. */
344
345 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
346 all the space critical structures (plus struct minimal_symbol).
347 Memory usage dropped from 99360768 bytes to 90001408 bytes.
348 I measured this with before-and-after tests of
349 "HEAD-old-gdb -readnow HEAD-old-gdb" and
350 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
351 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
352 typing "maint space 1" at the first command prompt.
353
354 Here is another measurement (from andrew c):
355 # no /usr/lib/debug, just plain glibc, like a normal user
356 gdb HEAD-old-gdb
357 (gdb) break internal_error
358 (gdb) run
359 (gdb) maint internal-error
360 (gdb) backtrace
361 (gdb) maint space 1
362
363 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
364 gdb HEAD 2003-08-19 space used: 8904704
365 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
366 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
367
368 The third line shows the savings from the optimizations in symtab.h.
369 The fourth line shows the savings from the optimizations in
370 gdbtypes.h. Both optimizations are in gdb HEAD now.
371
372 --chastain 2003-08-21 */
373
374 /* Define a structure for the information that is common to all symbol types,
375 including minimal symbols, partial symbols, and full symbols. In a
376 multilanguage environment, some language specific information may need to
377 be recorded along with each symbol. */
378
379 /* This structure is space critical. See space comments at the top. */
380
381 struct general_symbol_info
382 {
383 /* Short version as to when to use which name accessor:
384 Use natural_name () to refer to the name of the symbol in the original
385 source code. Use linkage_name () if you want to know what the linker
386 thinks the symbol's name is. Use print_name () for output. Use
387 demangled_name () if you specifically need to know whether natural_name ()
388 and linkage_name () are different. */
389
390 const char *linkage_name () const
391 { return name; }
392
393 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
394 the original source code. In languages like C++ where symbols may
395 be mangled for ease of manipulation by the linker, this is the
396 demangled name. */
397 const char *natural_name () const;
398
399 /* Returns a version of the name of a symbol that is
400 suitable for output. In C++ this is the "demangled" form of the
401 name if demangle is on and the "mangled" form of the name if
402 demangle is off. In other languages this is just the symbol name.
403 The result should never be NULL. Don't use this for internal
404 purposes (e.g. storing in a hashtable): it's only suitable for output. */
405 const char *print_name () const
406 { return demangle ? natural_name () : linkage_name (); }
407
408 /* Return the demangled name for a symbol based on the language for
409 that symbol. If no demangled name exists, return NULL. */
410 const char *demangled_name () const;
411
412 /* Returns the name to be used when sorting and searching symbols.
413 In C++, we search for the demangled form of a name,
414 and so sort symbols accordingly. In Ada, however, we search by mangled
415 name. If there is no distinct demangled name, then this
416 returns the same value (same pointer) as linkage_name (). */
417 const char *search_name () const;
418
419 /* Name of the symbol. This is a required field. Storage for the
420 name is allocated on the objfile_obstack for the associated
421 objfile. For languages like C++ that make a distinction between
422 the mangled name and demangled name, this is the mangled
423 name. */
424
425 const char *name;
426
427 /* Value of the symbol. Which member of this union to use, and what
428 it means, depends on what kind of symbol this is and its
429 SYMBOL_CLASS. See comments there for more details. All of these
430 are in host byte order (though what they point to might be in
431 target byte order, e.g. LOC_CONST_BYTES). */
432
433 union
434 {
435 LONGEST ivalue;
436
437 const struct block *block;
438
439 const gdb_byte *bytes;
440
441 CORE_ADDR address;
442
443 /* A common block. Used with LOC_COMMON_BLOCK. */
444
445 const struct common_block *common_block;
446
447 /* For opaque typedef struct chain. */
448
449 struct symbol *chain;
450 }
451 value;
452
453 /* Since one and only one language can apply, wrap the language specific
454 information inside a union. */
455
456 union
457 {
458 /* A pointer to an obstack that can be used for storage associated
459 with this symbol. This is only used by Ada, and only when the
460 'ada_mangled' field is zero. */
461 struct obstack *obstack;
462
463 /* This is used by languages which wish to store a demangled name.
464 currently used by Ada, C++, and Objective C. */
465 const char *demangled_name;
466 }
467 language_specific;
468
469 /* Record the source code language that applies to this symbol.
470 This is used to select one of the fields from the language specific
471 union above. */
472
473 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
474
475 /* This is only used by Ada. If set, then the 'demangled_name' field
476 of language_specific is valid. Otherwise, the 'obstack' field is
477 valid. */
478 unsigned int ada_mangled : 1;
479
480 /* Which section is this symbol in? This is an index into
481 section_offsets for this objfile. Negative means that the symbol
482 does not get relocated relative to a section. */
483
484 short section;
485 };
486
487 extern void symbol_set_demangled_name (struct general_symbol_info *,
488 const char *,
489 struct obstack *);
490
491 extern const char *symbol_get_demangled_name
492 (const struct general_symbol_info *);
493
494 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
495
496 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
497 SYM. If SYM appears in the main program's minimal symbols, then
498 that minsym's address is returned; otherwise, SYM's address is
499 returned. This should generally only be used via the
500 SYMBOL_VALUE_ADDRESS macro. */
501
502 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
503
504 /* Note that these macros only work with symbol, not partial_symbol. */
505
506 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
507 #define SYMBOL_VALUE_ADDRESS(symbol) \
508 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
509 : ((symbol)->value.address))
510 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
511 ((symbol)->value.address = (new_value))
512 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
513 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
514 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
515 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
516 #define SYMBOL_LANGUAGE(symbol) (symbol)->language
517 #define SYMBOL_SECTION(symbol) (symbol)->section
518 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
519 (((symbol)->section >= 0) \
520 ? (&(((objfile)->sections)[(symbol)->section])) \
521 : NULL)
522
523 /* Initializes the language dependent portion of a symbol
524 depending upon the language for the symbol. */
525 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
526 (symbol_set_language ((symbol), (language), (obstack)))
527 extern void symbol_set_language (struct general_symbol_info *symbol,
528 enum language language,
529 struct obstack *obstack);
530
531
532 /* Try to determine the demangled name for a symbol, based on the
533 language of that symbol. If the language is set to language_auto,
534 it will attempt to find any demangling algorithm that works and
535 then set the language appropriately. The returned name is allocated
536 by the demangler and should be xfree'd. */
537
538 extern char *symbol_find_demangled_name (struct general_symbol_info *gsymbol,
539 const char *mangled);
540
541 /* Set just the linkage name of a symbol; do not try to demangle
542 it. Used for constructs which do not have a mangled name,
543 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
544 be terminated and either already on the objfile's obstack or
545 permanently allocated. */
546 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
547 (symbol)->name = (linkage_name)
548
549 /* Set the linkage and natural names of a symbol, by demangling
550 the linkage name. If linkage_name may not be nullterminated,
551 copy_name must be set to true. */
552 #define SYMBOL_SET_NAMES(symbol,linkage_name,copy_name,objfile) \
553 symbol_set_names ((symbol), linkage_name, copy_name, \
554 (objfile)->per_bfd)
555 extern void symbol_set_names (struct general_symbol_info *symbol,
556 gdb::string_view linkage_name, bool copy_name,
557 struct objfile_per_bfd_storage *per_bfd);
558
559 /* Return true if NAME matches the "search" name of SYMBOL, according
560 to the symbol's language. */
561 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
562 symbol_matches_search_name ((symbol), (name))
563
564 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
565 and psymbols. */
566 extern bool symbol_matches_search_name
567 (const struct general_symbol_info *gsymbol,
568 const lookup_name_info &name);
569
570 /* Compute the hash of the given symbol search name of a symbol of
571 language LANGUAGE. */
572 extern unsigned int search_name_hash (enum language language,
573 const char *search_name);
574
575 /* Classification types for a minimal symbol. These should be taken as
576 "advisory only", since if gdb can't easily figure out a
577 classification it simply selects mst_unknown. It may also have to
578 guess when it can't figure out which is a better match between two
579 types (mst_data versus mst_bss) for example. Since the minimal
580 symbol info is sometimes derived from the BFD library's view of a
581 file, we need to live with what information bfd supplies. */
582
583 enum minimal_symbol_type
584 {
585 mst_unknown = 0, /* Unknown type, the default */
586 mst_text, /* Generally executable instructions */
587
588 /* A GNU ifunc symbol, in the .text section. GDB uses to know
589 whether the user is setting a breakpoint on a GNU ifunc function,
590 and thus GDB needs to actually set the breakpoint on the target
591 function. It is also used to know whether the program stepped
592 into an ifunc resolver -- the resolver may get a separate
593 symbol/alias under a different name, but it'll have the same
594 address as the ifunc symbol. */
595 mst_text_gnu_ifunc, /* Executable code returning address
596 of executable code */
597
598 /* A GNU ifunc function descriptor symbol, in a data section
599 (typically ".opd"). Seen on architectures that use function
600 descriptors, like PPC64/ELFv1. In this case, this symbol's value
601 is the address of the descriptor. There'll be a corresponding
602 mst_text_gnu_ifunc synthetic symbol for the text/entry
603 address. */
604 mst_data_gnu_ifunc, /* Executable code returning address
605 of executable code */
606
607 mst_slot_got_plt, /* GOT entries for .plt sections */
608 mst_data, /* Generally initialized data */
609 mst_bss, /* Generally uninitialized data */
610 mst_abs, /* Generally absolute (nonrelocatable) */
611 /* GDB uses mst_solib_trampoline for the start address of a shared
612 library trampoline entry. Breakpoints for shared library functions
613 are put there if the shared library is not yet loaded.
614 After the shared library is loaded, lookup_minimal_symbol will
615 prefer the minimal symbol from the shared library (usually
616 a mst_text symbol) over the mst_solib_trampoline symbol, and the
617 breakpoints will be moved to their true address in the shared
618 library via breakpoint_re_set. */
619 mst_solib_trampoline, /* Shared library trampoline code */
620 /* For the mst_file* types, the names are only guaranteed to be unique
621 within a given .o file. */
622 mst_file_text, /* Static version of mst_text */
623 mst_file_data, /* Static version of mst_data */
624 mst_file_bss, /* Static version of mst_bss */
625 nr_minsym_types
626 };
627
628 /* The number of enum minimal_symbol_type values, with some padding for
629 reasonable growth. */
630 #define MINSYM_TYPE_BITS 4
631 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
632
633 /* Define a simple structure used to hold some very basic information about
634 all defined global symbols (text, data, bss, abs, etc). The only required
635 information is the general_symbol_info.
636
637 In many cases, even if a file was compiled with no special options for
638 debugging at all, as long as was not stripped it will contain sufficient
639 information to build a useful minimal symbol table using this structure.
640 Even when a file contains enough debugging information to build a full
641 symbol table, these minimal symbols are still useful for quickly mapping
642 between names and addresses, and vice versa. They are also sometimes
643 used to figure out what full symbol table entries need to be read in. */
644
645 struct minimal_symbol : public general_symbol_info
646 {
647 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
648 information to calculate the end of the partial symtab based on the
649 address of the last symbol plus the size of the last symbol. */
650
651 unsigned long size;
652
653 /* Which source file is this symbol in? Only relevant for mst_file_*. */
654 const char *filename;
655
656 /* Classification type for this minimal symbol. */
657
658 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
659
660 /* Non-zero if this symbol was created by gdb.
661 Such symbols do not appear in the output of "info var|fun". */
662 unsigned int created_by_gdb : 1;
663
664 /* Two flag bits provided for the use of the target. */
665 unsigned int target_flag_1 : 1;
666 unsigned int target_flag_2 : 1;
667
668 /* Nonzero iff the size of the minimal symbol has been set.
669 Symbol size information can sometimes not be determined, because
670 the object file format may not carry that piece of information. */
671 unsigned int has_size : 1;
672
673 /* For data symbols only, if this is set, then the symbol might be
674 subject to copy relocation. In this case, a minimal symbol
675 matching the symbol's linkage name is first looked for in the
676 main objfile. If found, then that address is used; otherwise the
677 address in this symbol is used. */
678
679 unsigned maybe_copied : 1;
680
681 /* Non-zero if this symbol ever had its demangled name set (even if
682 it was set to NULL). */
683 unsigned int name_set : 1;
684
685 /* Minimal symbols with the same hash key are kept on a linked
686 list. This is the link. */
687
688 struct minimal_symbol *hash_next;
689
690 /* Minimal symbols are stored in two different hash tables. This is
691 the `next' pointer for the demangled hash table. */
692
693 struct minimal_symbol *demangled_hash_next;
694
695 /* True if this symbol is of some data type. */
696
697 bool data_p () const;
698
699 /* True if MSYMBOL is of some text type. */
700
701 bool text_p () const;
702 };
703
704 /* Return the address of MINSYM, which comes from OBJF. The
705 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
706 main program's minimal symbols, then that minsym's address is
707 returned; otherwise, MINSYM's address is returned. This should
708 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
709
710 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
711 const struct minimal_symbol *minsym);
712
713 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
714 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
715 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
716 #define SET_MSYMBOL_SIZE(msymbol, sz) \
717 do \
718 { \
719 (msymbol)->size = sz; \
720 (msymbol)->has_size = 1; \
721 } while (0)
722 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
723 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
724
725 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
726 /* The unrelocated address of the minimal symbol. */
727 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
728 /* The relocated address of the minimal symbol, using the section
729 offsets from OBJFILE. */
730 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
731 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
732 : ((symbol)->value.address \
733 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
734 /* For a bound minsym, we can easily compute the address directly. */
735 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
736 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
737 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
738 ((symbol)->value.address = (new_value))
739 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
740 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
741 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
742 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
743 #define MSYMBOL_SECTION(symbol) (symbol)->section
744 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
745 (((symbol)->section >= 0) \
746 ? (&(((objfile)->sections)[(symbol)->section])) \
747 : NULL)
748
749 #include "minsyms.h"
750
751 \f
752
753 /* Represent one symbol name; a variable, constant, function or typedef. */
754
755 /* Different name domains for symbols. Looking up a symbol specifies a
756 domain and ignores symbol definitions in other name domains. */
757
758 typedef enum domain_enum_tag
759 {
760 /* UNDEF_DOMAIN is used when a domain has not been discovered or
761 none of the following apply. This usually indicates an error either
762 in the symbol information or in gdb's handling of symbols. */
763
764 UNDEF_DOMAIN,
765
766 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
767 function names, typedef names and enum type values. */
768
769 VAR_DOMAIN,
770
771 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
772 Thus, if `struct foo' is used in a C program, it produces a symbol named
773 `foo' in the STRUCT_DOMAIN. */
774
775 STRUCT_DOMAIN,
776
777 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
778
779 MODULE_DOMAIN,
780
781 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
782
783 LABEL_DOMAIN,
784
785 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
786 They also always use LOC_COMMON_BLOCK. */
787 COMMON_BLOCK_DOMAIN,
788
789 /* This must remain last. */
790 NR_DOMAINS
791 } domain_enum;
792
793 /* The number of bits in a symbol used to represent the domain. */
794
795 #define SYMBOL_DOMAIN_BITS 3
796 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
797
798 extern const char *domain_name (domain_enum);
799
800 /* Searching domains, used when searching for symbols. Element numbers are
801 hardcoded in GDB, check all enum uses before changing it. */
802
803 enum search_domain
804 {
805 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
806 TYPES_DOMAIN. */
807 VARIABLES_DOMAIN = 0,
808
809 /* All functions -- for some reason not methods, though. */
810 FUNCTIONS_DOMAIN = 1,
811
812 /* All defined types */
813 TYPES_DOMAIN = 2,
814
815 /* All modules. */
816 MODULES_DOMAIN = 3,
817
818 /* Any type. */
819 ALL_DOMAIN = 4
820 };
821
822 extern const char *search_domain_name (enum search_domain);
823
824 /* An address-class says where to find the value of a symbol. */
825
826 enum address_class
827 {
828 /* Not used; catches errors. */
829
830 LOC_UNDEF,
831
832 /* Value is constant int SYMBOL_VALUE, host byteorder. */
833
834 LOC_CONST,
835
836 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
837
838 LOC_STATIC,
839
840 /* Value is in register. SYMBOL_VALUE is the register number
841 in the original debug format. SYMBOL_REGISTER_OPS holds a
842 function that can be called to transform this into the
843 actual register number this represents in a specific target
844 architecture (gdbarch).
845
846 For some symbol formats (stabs, for some compilers at least),
847 the compiler generates two symbols, an argument and a register.
848 In some cases we combine them to a single LOC_REGISTER in symbol
849 reading, but currently not for all cases (e.g. it's passed on the
850 stack and then loaded into a register). */
851
852 LOC_REGISTER,
853
854 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
855
856 LOC_ARG,
857
858 /* Value address is at SYMBOL_VALUE offset in arglist. */
859
860 LOC_REF_ARG,
861
862 /* Value is in specified register. Just like LOC_REGISTER except the
863 register holds the address of the argument instead of the argument
864 itself. This is currently used for the passing of structs and unions
865 on sparc and hppa. It is also used for call by reference where the
866 address is in a register, at least by mipsread.c. */
867
868 LOC_REGPARM_ADDR,
869
870 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
871
872 LOC_LOCAL,
873
874 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
875 STRUCT_DOMAIN all have this class. */
876
877 LOC_TYPEDEF,
878
879 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
880
881 LOC_LABEL,
882
883 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
884 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
885 of the block. Function names have this class. */
886
887 LOC_BLOCK,
888
889 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
890 target byte order. */
891
892 LOC_CONST_BYTES,
893
894 /* Value is at fixed address, but the address of the variable has
895 to be determined from the minimal symbol table whenever the
896 variable is referenced.
897 This happens if debugging information for a global symbol is
898 emitted and the corresponding minimal symbol is defined
899 in another object file or runtime common storage.
900 The linker might even remove the minimal symbol if the global
901 symbol is never referenced, in which case the symbol remains
902 unresolved.
903
904 GDB would normally find the symbol in the minimal symbol table if it will
905 not find it in the full symbol table. But a reference to an external
906 symbol in a local block shadowing other definition requires full symbol
907 without possibly having its address available for LOC_STATIC. Testcase
908 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
909
910 This is also used for thread local storage (TLS) variables. In this case,
911 the address of the TLS variable must be determined when the variable is
912 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
913 of the TLS variable in the thread local storage of the shared
914 library/object. */
915
916 LOC_UNRESOLVED,
917
918 /* The variable does not actually exist in the program.
919 The value is ignored. */
920
921 LOC_OPTIMIZED_OUT,
922
923 /* The variable's address is computed by a set of location
924 functions (see "struct symbol_computed_ops" below). */
925 LOC_COMPUTED,
926
927 /* The variable uses general_symbol_info->value->common_block field.
928 It also always uses COMMON_BLOCK_DOMAIN. */
929 LOC_COMMON_BLOCK,
930
931 /* Not used, just notes the boundary of the enum. */
932 LOC_FINAL_VALUE
933 };
934
935 /* The number of bits needed for values in enum address_class, with some
936 padding for reasonable growth, and room for run-time registered address
937 classes. See symtab.c:MAX_SYMBOL_IMPLS.
938 This is a #define so that we can have a assertion elsewhere to
939 verify that we have reserved enough space for synthetic address
940 classes. */
941 #define SYMBOL_ACLASS_BITS 5
942 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
943
944 /* The methods needed to implement LOC_COMPUTED. These methods can
945 use the symbol's .aux_value for additional per-symbol information.
946
947 At present this is only used to implement location expressions. */
948
949 struct symbol_computed_ops
950 {
951
952 /* Return the value of the variable SYMBOL, relative to the stack
953 frame FRAME. If the variable has been optimized out, return
954 zero.
955
956 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
957 FRAME may be zero. */
958
959 struct value *(*read_variable) (struct symbol * symbol,
960 struct frame_info * frame);
961
962 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
963 entry. SYMBOL should be a function parameter, otherwise
964 NO_ENTRY_VALUE_ERROR will be thrown. */
965 struct value *(*read_variable_at_entry) (struct symbol *symbol,
966 struct frame_info *frame);
967
968 /* Find the "symbol_needs_kind" value for the given symbol. This
969 value determines whether reading the symbol needs memory (e.g., a
970 global variable), just registers (a thread-local), or a frame (a
971 local variable). */
972 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
973
974 /* Write to STREAM a natural-language description of the location of
975 SYMBOL, in the context of ADDR. */
976 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
977 struct ui_file * stream);
978
979 /* Non-zero if this symbol's address computation is dependent on PC. */
980 unsigned char location_has_loclist;
981
982 /* Tracepoint support. Append bytecodes to the tracepoint agent
983 expression AX that push the address of the object SYMBOL. Set
984 VALUE appropriately. Note --- for objects in registers, this
985 needn't emit any code; as long as it sets VALUE properly, then
986 the caller will generate the right code in the process of
987 treating this as an lvalue or rvalue. */
988
989 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
990 struct axs_value *value);
991
992 /* Generate C code to compute the location of SYMBOL. The C code is
993 emitted to STREAM. GDBARCH is the current architecture and PC is
994 the PC at which SYMBOL's location should be evaluated.
995 REGISTERS_USED is a vector indexed by register number; the
996 generator function should set an element in this vector if the
997 corresponding register is needed by the location computation.
998 The generated C code must assign the location to a local
999 variable; this variable's name is RESULT_NAME. */
1000
1001 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1002 struct gdbarch *gdbarch,
1003 unsigned char *registers_used,
1004 CORE_ADDR pc, const char *result_name);
1005
1006 };
1007
1008 /* The methods needed to implement LOC_BLOCK for inferior functions.
1009 These methods can use the symbol's .aux_value for additional
1010 per-symbol information. */
1011
1012 struct symbol_block_ops
1013 {
1014 /* Fill in *START and *LENGTH with DWARF block data of function
1015 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1016 zero if such location is not valid for PC; *START is left
1017 uninitialized in such case. */
1018 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1019 const gdb_byte **start, size_t *length);
1020
1021 /* Return the frame base address. FRAME is the frame for which we want to
1022 compute the base address while FRAMEFUNC is the symbol for the
1023 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1024 information we need).
1025
1026 This method is designed to work with static links (nested functions
1027 handling). Static links are function properties whose evaluation returns
1028 the frame base address for the enclosing frame. However, there are
1029 multiple definitions for "frame base": the content of the frame base
1030 register, the CFA as defined by DWARF unwinding information, ...
1031
1032 So this specific method is supposed to compute the frame base address such
1033 as for nested functions, the static link computes the same address. For
1034 instance, considering DWARF debugging information, the static link is
1035 computed with DW_AT_static_link and this method must be used to compute
1036 the corresponding DW_AT_frame_base attribute. */
1037 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1038 struct frame_info *frame);
1039 };
1040
1041 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1042
1043 struct symbol_register_ops
1044 {
1045 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1046 };
1047
1048 /* Objects of this type are used to find the address class and the
1049 various computed ops vectors of a symbol. */
1050
1051 struct symbol_impl
1052 {
1053 enum address_class aclass;
1054
1055 /* Used with LOC_COMPUTED. */
1056 const struct symbol_computed_ops *ops_computed;
1057
1058 /* Used with LOC_BLOCK. */
1059 const struct symbol_block_ops *ops_block;
1060
1061 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1062 const struct symbol_register_ops *ops_register;
1063 };
1064
1065 /* struct symbol has some subclasses. This enum is used to
1066 differentiate between them. */
1067
1068 enum symbol_subclass_kind
1069 {
1070 /* Plain struct symbol. */
1071 SYMBOL_NONE,
1072
1073 /* struct template_symbol. */
1074 SYMBOL_TEMPLATE,
1075
1076 /* struct rust_vtable_symbol. */
1077 SYMBOL_RUST_VTABLE
1078 };
1079
1080 /* This structure is space critical. See space comments at the top. */
1081
1082 struct symbol : public general_symbol_info, public allocate_on_obstack
1083 {
1084 symbol ()
1085 /* Class-initialization of bitfields is only allowed in C++20. */
1086 : domain (UNDEF_DOMAIN),
1087 aclass_index (0),
1088 is_objfile_owned (0),
1089 is_argument (0),
1090 is_inlined (0),
1091 maybe_copied (0),
1092 subclass (SYMBOL_NONE)
1093 {
1094 /* We can't use an initializer list for members of a base class, and
1095 general_symbol_info needs to stay a POD type. */
1096 name = nullptr;
1097 value.ivalue = 0;
1098 language_specific.obstack = nullptr;
1099 language = language_unknown;
1100 ada_mangled = 0;
1101 section = 0;
1102 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1103 initialization of unions, so we initialize it manually here. */
1104 owner.symtab = nullptr;
1105 }
1106
1107 /* Data type of value */
1108
1109 struct type *type = nullptr;
1110
1111 /* The owner of this symbol.
1112 Which one to use is defined by symbol.is_objfile_owned. */
1113
1114 union
1115 {
1116 /* The symbol table containing this symbol. This is the file associated
1117 with LINE. It can be NULL during symbols read-in but it is never NULL
1118 during normal operation. */
1119 struct symtab *symtab;
1120
1121 /* For types defined by the architecture. */
1122 struct gdbarch *arch;
1123 } owner;
1124
1125 /* Domain code. */
1126
1127 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1128
1129 /* Address class. This holds an index into the 'symbol_impls'
1130 table. The actual enum address_class value is stored there,
1131 alongside any per-class ops vectors. */
1132
1133 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1134
1135 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1136 Otherwise symbol is arch-owned, use owner.arch. */
1137
1138 unsigned int is_objfile_owned : 1;
1139
1140 /* Whether this is an argument. */
1141
1142 unsigned is_argument : 1;
1143
1144 /* Whether this is an inlined function (class LOC_BLOCK only). */
1145 unsigned is_inlined : 1;
1146
1147 /* For LOC_STATIC only, if this is set, then the symbol might be
1148 subject to copy relocation. In this case, a minimal symbol
1149 matching the symbol's linkage name is first looked for in the
1150 main objfile. If found, then that address is used; otherwise the
1151 address in this symbol is used. */
1152
1153 unsigned maybe_copied : 1;
1154
1155 /* The concrete type of this symbol. */
1156
1157 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1158
1159 /* Line number of this symbol's definition, except for inlined
1160 functions. For an inlined function (class LOC_BLOCK and
1161 SYMBOL_INLINED set) this is the line number of the function's call
1162 site. Inlined function symbols are not definitions, and they are
1163 never found by symbol table lookup.
1164 If this symbol is arch-owned, LINE shall be zero.
1165
1166 FIXME: Should we really make the assumption that nobody will try
1167 to debug files longer than 64K lines? What about machine
1168 generated programs? */
1169
1170 unsigned short line = 0;
1171
1172 /* An arbitrary data pointer, allowing symbol readers to record
1173 additional information on a per-symbol basis. Note that this data
1174 must be allocated using the same obstack as the symbol itself. */
1175 /* So far it is only used by:
1176 LOC_COMPUTED: to find the location information
1177 LOC_BLOCK (DWARF2 function): information used internally by the
1178 DWARF 2 code --- specifically, the location expression for the frame
1179 base for this function. */
1180 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1181 to add a magic symbol to the block containing this information,
1182 or to have a generic debug info annotation slot for symbols. */
1183
1184 void *aux_value = nullptr;
1185
1186 struct symbol *hash_next = nullptr;
1187 };
1188
1189 /* Several lookup functions return both a symbol and the block in which the
1190 symbol is found. This structure is used in these cases. */
1191
1192 struct block_symbol
1193 {
1194 /* The symbol that was found, or NULL if no symbol was found. */
1195 struct symbol *symbol;
1196
1197 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1198 defined. */
1199 const struct block *block;
1200 };
1201
1202 extern const struct symbol_impl *symbol_impls;
1203
1204 /* Note: There is no accessor macro for symbol.owner because it is
1205 "private". */
1206
1207 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1208 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1209 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1210 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1211 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1212 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1213 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1214 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1215 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1216 #define SYMBOL_TYPE(symbol) (symbol)->type
1217 #define SYMBOL_LINE(symbol) (symbol)->line
1218 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1219 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1220 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1221 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1222
1223 extern int register_symbol_computed_impl (enum address_class,
1224 const struct symbol_computed_ops *);
1225
1226 extern int register_symbol_block_impl (enum address_class aclass,
1227 const struct symbol_block_ops *ops);
1228
1229 extern int register_symbol_register_impl (enum address_class,
1230 const struct symbol_register_ops *);
1231
1232 /* Return the OBJFILE of SYMBOL.
1233 It is an error to call this if symbol.is_objfile_owned is false, which
1234 only happens for architecture-provided types. */
1235
1236 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1237
1238 /* Return the ARCH of SYMBOL. */
1239
1240 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1241
1242 /* Return the SYMTAB of SYMBOL.
1243 It is an error to call this if symbol.is_objfile_owned is false, which
1244 only happens for architecture-provided types. */
1245
1246 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1247
1248 /* Set the symtab of SYMBOL to SYMTAB.
1249 It is an error to call this if symbol.is_objfile_owned is false, which
1250 only happens for architecture-provided types. */
1251
1252 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1253
1254 /* An instance of this type is used to represent a C++ template
1255 function. A symbol is really of this type iff
1256 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1257
1258 struct template_symbol : public symbol
1259 {
1260 /* The number of template arguments. */
1261 int n_template_arguments = 0;
1262
1263 /* The template arguments. This is an array with
1264 N_TEMPLATE_ARGUMENTS elements. */
1265 struct symbol **template_arguments = nullptr;
1266 };
1267
1268 /* A symbol that represents a Rust virtual table object. */
1269
1270 struct rust_vtable_symbol : public symbol
1271 {
1272 /* The concrete type for which this vtable was created; that is, in
1273 "impl Trait for Type", this is "Type". */
1274 struct type *concrete_type = nullptr;
1275 };
1276
1277 \f
1278 /* Each item represents a line-->pc (or the reverse) mapping. This is
1279 somewhat more wasteful of space than one might wish, but since only
1280 the files which are actually debugged are read in to core, we don't
1281 waste much space. */
1282
1283 struct linetable_entry
1284 {
1285 int line;
1286 CORE_ADDR pc;
1287 };
1288
1289 /* The order of entries in the linetable is significant. They should
1290 be sorted by increasing values of the pc field. If there is more than
1291 one entry for a given pc, then I'm not sure what should happen (and
1292 I not sure whether we currently handle it the best way).
1293
1294 Example: a C for statement generally looks like this
1295
1296 10 0x100 - for the init/test part of a for stmt.
1297 20 0x200
1298 30 0x300
1299 10 0x400 - for the increment part of a for stmt.
1300
1301 If an entry has a line number of zero, it marks the start of a PC
1302 range for which no line number information is available. It is
1303 acceptable, though wasteful of table space, for such a range to be
1304 zero length. */
1305
1306 struct linetable
1307 {
1308 int nitems;
1309
1310 /* Actually NITEMS elements. If you don't like this use of the
1311 `struct hack', you can shove it up your ANSI (seriously, if the
1312 committee tells us how to do it, we can probably go along). */
1313 struct linetable_entry item[1];
1314 };
1315
1316 /* How to relocate the symbols from each section in a symbol file.
1317 Each struct contains an array of offsets.
1318 The ordering and meaning of the offsets is file-type-dependent;
1319 typically it is indexed by section numbers or symbol types or
1320 something like that.
1321
1322 To give us flexibility in changing the internal representation
1323 of these offsets, the ANOFFSET macro must be used to insert and
1324 extract offset values in the struct. */
1325
1326 struct section_offsets
1327 {
1328 CORE_ADDR offsets[1]; /* As many as needed. */
1329 };
1330
1331 #define ANOFFSET(secoff, whichone) \
1332 ((whichone == -1) \
1333 ? (internal_error (__FILE__, __LINE__, \
1334 _("Section index is uninitialized")), -1) \
1335 : secoff->offsets[whichone])
1336
1337 /* The size of a section_offsets table for N sections. */
1338 #define SIZEOF_N_SECTION_OFFSETS(n) \
1339 (sizeof (struct section_offsets) \
1340 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1341
1342 /* Each source file or header is represented by a struct symtab.
1343 The name "symtab" is historical, another name for it is "filetab".
1344 These objects are chained through the `next' field. */
1345
1346 struct symtab
1347 {
1348 /* Unordered chain of all filetabs in the compunit, with the exception
1349 that the "main" source file is the first entry in the list. */
1350
1351 struct symtab *next;
1352
1353 /* Backlink to containing compunit symtab. */
1354
1355 struct compunit_symtab *compunit_symtab;
1356
1357 /* Table mapping core addresses to line numbers for this file.
1358 Can be NULL if none. Never shared between different symtabs. */
1359
1360 struct linetable *linetable;
1361
1362 /* Name of this source file. This pointer is never NULL. */
1363
1364 const char *filename;
1365
1366 /* Language of this source file. */
1367
1368 enum language language;
1369
1370 /* Full name of file as found by searching the source path.
1371 NULL if not yet known. */
1372
1373 char *fullname;
1374 };
1375
1376 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1377 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1378 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1379 #define SYMTAB_BLOCKVECTOR(symtab) \
1380 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1381 #define SYMTAB_OBJFILE(symtab) \
1382 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1383 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1384 #define SYMTAB_DIRNAME(symtab) \
1385 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1386
1387 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1388 as the list of all source files (what gdb has historically associated with
1389 the term "symtab").
1390 Additional information is recorded here that is common to all symtabs in a
1391 compilation unit (DWARF or otherwise).
1392
1393 Example:
1394 For the case of a program built out of these files:
1395
1396 foo.c
1397 foo1.h
1398 foo2.h
1399 bar.c
1400 foo1.h
1401 bar.h
1402
1403 This is recorded as:
1404
1405 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1406 | |
1407 v v
1408 foo.c bar.c
1409 | |
1410 v v
1411 foo1.h foo1.h
1412 | |
1413 v v
1414 foo2.h bar.h
1415 | |
1416 v v
1417 NULL NULL
1418
1419 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1420 and the files foo.c, etc. are struct symtab objects. */
1421
1422 struct compunit_symtab
1423 {
1424 /* Unordered chain of all compunit symtabs of this objfile. */
1425 struct compunit_symtab *next;
1426
1427 /* Object file from which this symtab information was read. */
1428 struct objfile *objfile;
1429
1430 /* Name of the symtab.
1431 This is *not* intended to be a usable filename, and is
1432 for debugging purposes only. */
1433 const char *name;
1434
1435 /* Unordered list of file symtabs, except that by convention the "main"
1436 source file (e.g., .c, .cc) is guaranteed to be first.
1437 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1438 or header (e.g., .h). */
1439 struct symtab *filetabs;
1440
1441 /* Last entry in FILETABS list.
1442 Subfiles are added to the end of the list so they accumulate in order,
1443 with the main source subfile living at the front.
1444 The main reason is so that the main source file symtab is at the head
1445 of the list, and the rest appear in order for debugging convenience. */
1446 struct symtab *last_filetab;
1447
1448 /* Non-NULL string that identifies the format of the debugging information,
1449 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1450 for automated testing of gdb but may also be information that is
1451 useful to the user. */
1452 const char *debugformat;
1453
1454 /* String of producer version information, or NULL if we don't know. */
1455 const char *producer;
1456
1457 /* Directory in which it was compiled, or NULL if we don't know. */
1458 const char *dirname;
1459
1460 /* List of all symbol scope blocks for this symtab. It is shared among
1461 all symtabs in a given compilation unit. */
1462 const struct blockvector *blockvector;
1463
1464 /* Section in objfile->section_offsets for the blockvector and
1465 the linetable. Probably always SECT_OFF_TEXT. */
1466 int block_line_section;
1467
1468 /* Symtab has been compiled with both optimizations and debug info so that
1469 GDB may stop skipping prologues as variables locations are valid already
1470 at function entry points. */
1471 unsigned int locations_valid : 1;
1472
1473 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1474 instruction). This is supported by GCC since 4.5.0. */
1475 unsigned int epilogue_unwind_valid : 1;
1476
1477 /* struct call_site entries for this compilation unit or NULL. */
1478 htab_t call_site_htab;
1479
1480 /* The macro table for this symtab. Like the blockvector, this
1481 is shared between different symtabs in a given compilation unit.
1482 It's debatable whether it *should* be shared among all the symtabs in
1483 the given compilation unit, but it currently is. */
1484 struct macro_table *macro_table;
1485
1486 /* If non-NULL, then this points to a NULL-terminated vector of
1487 included compunits. When searching the static or global
1488 block of this compunit, the corresponding block of all
1489 included compunits will also be searched. Note that this
1490 list must be flattened -- the symbol reader is responsible for
1491 ensuring that this vector contains the transitive closure of all
1492 included compunits. */
1493 struct compunit_symtab **includes;
1494
1495 /* If this is an included compunit, this points to one includer
1496 of the table. This user is considered the canonical compunit
1497 containing this one. An included compunit may itself be
1498 included by another. */
1499 struct compunit_symtab *user;
1500 };
1501
1502 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1503 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1504 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1505 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1506 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1507 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1508 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1509 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1510 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1511 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1512 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1513
1514 /* A range adapter to allowing iterating over all the file tables
1515 within a compunit. */
1516
1517 struct compunit_filetabs : public next_adapter<struct symtab>
1518 {
1519 compunit_filetabs (struct compunit_symtab *cu)
1520 : next_adapter<struct symtab> (cu->filetabs)
1521 {
1522 }
1523 };
1524
1525 /* Return the primary symtab of CUST. */
1526
1527 extern struct symtab *
1528 compunit_primary_filetab (const struct compunit_symtab *cust);
1529
1530 /* Return the language of CUST. */
1531
1532 extern enum language compunit_language (const struct compunit_symtab *cust);
1533
1534 \f
1535
1536 /* The virtual function table is now an array of structures which have the
1537 form { int16 offset, delta; void *pfn; }.
1538
1539 In normal virtual function tables, OFFSET is unused.
1540 DELTA is the amount which is added to the apparent object's base
1541 address in order to point to the actual object to which the
1542 virtual function should be applied.
1543 PFN is a pointer to the virtual function.
1544
1545 Note that this macro is g++ specific (FIXME). */
1546
1547 #define VTBL_FNADDR_OFFSET 2
1548
1549 /* External variables and functions for the objects described above. */
1550
1551 /* True if we are nested inside psymtab_to_symtab. */
1552
1553 extern int currently_reading_symtab;
1554
1555 /* symtab.c lookup functions */
1556
1557 extern const char multiple_symbols_ask[];
1558 extern const char multiple_symbols_all[];
1559 extern const char multiple_symbols_cancel[];
1560
1561 const char *multiple_symbols_select_mode (void);
1562
1563 bool symbol_matches_domain (enum language symbol_language,
1564 domain_enum symbol_domain,
1565 domain_enum domain);
1566
1567 /* lookup a symbol table by source file name. */
1568
1569 extern struct symtab *lookup_symtab (const char *);
1570
1571 /* An object of this type is passed as the 'is_a_field_of_this'
1572 argument to lookup_symbol and lookup_symbol_in_language. */
1573
1574 struct field_of_this_result
1575 {
1576 /* The type in which the field was found. If this is NULL then the
1577 symbol was not found in 'this'. If non-NULL, then one of the
1578 other fields will be non-NULL as well. */
1579
1580 struct type *type;
1581
1582 /* If the symbol was found as an ordinary field of 'this', then this
1583 is non-NULL and points to the particular field. */
1584
1585 struct field *field;
1586
1587 /* If the symbol was found as a function field of 'this', then this
1588 is non-NULL and points to the particular field. */
1589
1590 struct fn_fieldlist *fn_field;
1591 };
1592
1593 /* Find the definition for a specified symbol name NAME
1594 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1595 if non-NULL or from global/static blocks if BLOCK is NULL.
1596 Returns the struct symbol pointer, or NULL if no symbol is found.
1597 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1598 NAME is a field of the current implied argument `this'. If so fill in the
1599 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1600 The symbol's section is fixed up if necessary. */
1601
1602 extern struct block_symbol
1603 lookup_symbol_in_language (const char *,
1604 const struct block *,
1605 const domain_enum,
1606 enum language,
1607 struct field_of_this_result *);
1608
1609 /* Same as lookup_symbol_in_language, but using the current language. */
1610
1611 extern struct block_symbol lookup_symbol (const char *,
1612 const struct block *,
1613 const domain_enum,
1614 struct field_of_this_result *);
1615
1616 /* Find the definition for a specified symbol search name in domain
1617 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1618 global/static blocks if BLOCK is NULL. The passed-in search name
1619 should not come from the user; instead it should already be a
1620 search name as retrieved from a search_name () call. See definition of
1621 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1622 pointer, or NULL if no symbol is found. The symbol's section is
1623 fixed up if necessary. */
1624
1625 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1626 const struct block *block,
1627 domain_enum domain);
1628
1629 /* A default version of lookup_symbol_nonlocal for use by languages
1630 that can't think of anything better to do.
1631 This implements the C lookup rules. */
1632
1633 extern struct block_symbol
1634 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1635 const char *,
1636 const struct block *,
1637 const domain_enum);
1638
1639 /* Some helper functions for languages that need to write their own
1640 lookup_symbol_nonlocal functions. */
1641
1642 /* Lookup a symbol in the static block associated to BLOCK, if there
1643 is one; do nothing if BLOCK is NULL or a global block.
1644 Upon success fixes up the symbol's section if necessary. */
1645
1646 extern struct block_symbol
1647 lookup_symbol_in_static_block (const char *name,
1648 const struct block *block,
1649 const domain_enum domain);
1650
1651 /* Search all static file-level symbols for NAME from DOMAIN.
1652 Upon success fixes up the symbol's section if necessary. */
1653
1654 extern struct block_symbol lookup_static_symbol (const char *name,
1655 const domain_enum domain);
1656
1657 /* Lookup a symbol in all files' global blocks.
1658
1659 If BLOCK is non-NULL then it is used for two things:
1660 1) If a target-specific lookup routine for libraries exists, then use the
1661 routine for the objfile of BLOCK, and
1662 2) The objfile of BLOCK is used to assist in determining the search order
1663 if the target requires it.
1664 See gdbarch_iterate_over_objfiles_in_search_order.
1665
1666 Upon success fixes up the symbol's section if necessary. */
1667
1668 extern struct block_symbol
1669 lookup_global_symbol (const char *name,
1670 const struct block *block,
1671 const domain_enum domain);
1672
1673 /* Lookup a symbol in block BLOCK.
1674 Upon success fixes up the symbol's section if necessary. */
1675
1676 extern struct symbol *
1677 lookup_symbol_in_block (const char *name,
1678 symbol_name_match_type match_type,
1679 const struct block *block,
1680 const domain_enum domain);
1681
1682 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1683 found, or NULL if not found. */
1684
1685 extern struct block_symbol
1686 lookup_language_this (const struct language_defn *lang,
1687 const struct block *block);
1688
1689 /* Lookup a [struct, union, enum] by name, within a specified block. */
1690
1691 extern struct type *lookup_struct (const char *, const struct block *);
1692
1693 extern struct type *lookup_union (const char *, const struct block *);
1694
1695 extern struct type *lookup_enum (const char *, const struct block *);
1696
1697 /* from blockframe.c: */
1698
1699 /* lookup the function symbol corresponding to the address. The
1700 return value will not be an inlined function; the containing
1701 function will be returned instead. */
1702
1703 extern struct symbol *find_pc_function (CORE_ADDR);
1704
1705 /* lookup the function corresponding to the address and section. The
1706 return value will not be an inlined function; the containing
1707 function will be returned instead. */
1708
1709 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1710
1711 /* lookup the function symbol corresponding to the address and
1712 section. The return value will be the closest enclosing function,
1713 which might be an inline function. */
1714
1715 extern struct symbol *find_pc_sect_containing_function
1716 (CORE_ADDR pc, struct obj_section *section);
1717
1718 /* Find the symbol at the given address. Returns NULL if no symbol
1719 found. Only exact matches for ADDRESS are considered. */
1720
1721 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1722
1723 /* Finds the "function" (text symbol) that is smaller than PC but
1724 greatest of all of the potential text symbols in SECTION. Sets
1725 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1726 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1727 function (exclusive). If the optional parameter BLOCK is non-null,
1728 then set *BLOCK to the address of the block corresponding to the
1729 function symbol, if such a symbol could be found during the lookup;
1730 nullptr is used as a return value for *BLOCK if no block is found.
1731 This function either succeeds or fails (not halfway succeeds). If
1732 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1733 information and returns true. If it fails, it sets *NAME, *ADDRESS
1734 and *ENDADDR to zero and returns false.
1735
1736 If the function in question occupies non-contiguous ranges,
1737 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1738 to the start and end of the range in which PC is found. Thus
1739 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1740 from other functions might be found).
1741
1742 This property allows find_pc_partial_function to be used (as it had
1743 been prior to the introduction of non-contiguous range support) by
1744 various tdep files for finding a start address and limit address
1745 for prologue analysis. This still isn't ideal, however, because we
1746 probably shouldn't be doing prologue analysis (in which
1747 instructions are scanned to determine frame size and stack layout)
1748 for any range that doesn't contain the entry pc. Moreover, a good
1749 argument can be made that prologue analysis ought to be performed
1750 starting from the entry pc even when PC is within some other range.
1751 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1752 limits of the entry pc range, but that will cause the
1753 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1754 callers of find_pc_partial_function expect this condition to hold.
1755
1756 Callers which require the start and/or end addresses for the range
1757 containing the entry pc should instead call
1758 find_function_entry_range_from_pc. */
1759
1760 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1761 CORE_ADDR *address, CORE_ADDR *endaddr,
1762 const struct block **block = nullptr);
1763
1764 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1765 set to start and end addresses of the range containing the entry pc.
1766
1767 Note that it is not necessarily the case that (for non-NULL ADDRESS
1768 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1769 hold.
1770
1771 See comment for find_pc_partial_function, above, for further
1772 explanation. */
1773
1774 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1775 const char **name,
1776 CORE_ADDR *address,
1777 CORE_ADDR *endaddr);
1778
1779 /* Return the type of a function with its first instruction exactly at
1780 the PC address. Return NULL otherwise. */
1781
1782 extern struct type *find_function_type (CORE_ADDR pc);
1783
1784 /* See if we can figure out the function's actual type from the type
1785 that the resolver returns. RESOLVER_FUNADDR is the address of the
1786 ifunc resolver. */
1787
1788 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1789
1790 /* Find the GNU ifunc minimal symbol that matches SYM. */
1791 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1792
1793 extern void clear_pc_function_cache (void);
1794
1795 /* Expand symtab containing PC, SECTION if not already expanded. */
1796
1797 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1798
1799 /* lookup full symbol table by address. */
1800
1801 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1802
1803 /* lookup full symbol table by address and section. */
1804
1805 extern struct compunit_symtab *
1806 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1807
1808 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1809
1810 extern void reread_symbols (void);
1811
1812 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1813 The type returned must not be opaque -- i.e., must have at least one field
1814 defined. */
1815
1816 extern struct type *lookup_transparent_type (const char *);
1817
1818 extern struct type *basic_lookup_transparent_type (const char *);
1819
1820 /* Macro for name of symbol to indicate a file compiled with gcc. */
1821 #ifndef GCC_COMPILED_FLAG_SYMBOL
1822 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1823 #endif
1824
1825 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1826 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1827 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1828 #endif
1829
1830 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1831
1832 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1833 for ELF symbol files. */
1834
1835 struct gnu_ifunc_fns
1836 {
1837 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1838 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1839
1840 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1841 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1842 CORE_ADDR *function_address_p);
1843
1844 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1845 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1846
1847 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1848 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1849 };
1850
1851 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1852 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1853 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1854 #define gnu_ifunc_resolver_return_stop \
1855 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1856
1857 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1858
1859 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1860
1861 struct symtab_and_line
1862 {
1863 /* The program space of this sal. */
1864 struct program_space *pspace = NULL;
1865
1866 struct symtab *symtab = NULL;
1867 struct symbol *symbol = NULL;
1868 struct obj_section *section = NULL;
1869 struct minimal_symbol *msymbol = NULL;
1870 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1871 0 is never a valid line number; it is used to indicate that line number
1872 information is not available. */
1873 int line = 0;
1874
1875 CORE_ADDR pc = 0;
1876 CORE_ADDR end = 0;
1877 bool explicit_pc = false;
1878 bool explicit_line = false;
1879
1880 /* The probe associated with this symtab_and_line. */
1881 probe *prob = NULL;
1882 /* If PROBE is not NULL, then this is the objfile in which the probe
1883 originated. */
1884 struct objfile *objfile = NULL;
1885 };
1886
1887 \f
1888
1889 /* Given a pc value, return line number it is in. Second arg nonzero means
1890 if pc is on the boundary use the previous statement's line number. */
1891
1892 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1893
1894 /* Same function, but specify a section as well as an address. */
1895
1896 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1897 struct obj_section *, int);
1898
1899 /* Wrapper around find_pc_line to just return the symtab. */
1900
1901 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1902
1903 /* Given a symtab and line number, return the pc there. */
1904
1905 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1906
1907 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1908 CORE_ADDR *);
1909
1910 extern void resolve_sal_pc (struct symtab_and_line *);
1911
1912 /* solib.c */
1913
1914 extern void clear_solib (void);
1915
1916 /* The reason we're calling into a completion match list collector
1917 function. */
1918 enum class complete_symbol_mode
1919 {
1920 /* Completing an expression. */
1921 EXPRESSION,
1922
1923 /* Completing a linespec. */
1924 LINESPEC,
1925 };
1926
1927 extern void default_collect_symbol_completion_matches_break_on
1928 (completion_tracker &tracker,
1929 complete_symbol_mode mode,
1930 symbol_name_match_type name_match_type,
1931 const char *text, const char *word, const char *break_on,
1932 enum type_code code);
1933 extern void default_collect_symbol_completion_matches
1934 (completion_tracker &tracker,
1935 complete_symbol_mode,
1936 symbol_name_match_type name_match_type,
1937 const char *,
1938 const char *,
1939 enum type_code);
1940 extern void collect_symbol_completion_matches
1941 (completion_tracker &tracker,
1942 complete_symbol_mode mode,
1943 symbol_name_match_type name_match_type,
1944 const char *, const char *);
1945 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1946 const char *, const char *,
1947 enum type_code);
1948
1949 extern void collect_file_symbol_completion_matches
1950 (completion_tracker &tracker,
1951 complete_symbol_mode,
1952 symbol_name_match_type name_match_type,
1953 const char *, const char *, const char *);
1954
1955 extern completion_list
1956 make_source_files_completion_list (const char *, const char *);
1957
1958 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1959
1960 extern bool symbol_is_function_or_method (symbol *sym);
1961
1962 /* Return whether MSYMBOL is a function/method, as opposed to a data
1963 symbol */
1964
1965 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1966
1967 /* Return whether SYM should be skipped in completion mode MODE. In
1968 linespec mode, we're only interested in functions/methods. */
1969
1970 template<typename Symbol>
1971 static bool
1972 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1973 {
1974 return (mode == complete_symbol_mode::LINESPEC
1975 && !symbol_is_function_or_method (sym));
1976 }
1977
1978 /* symtab.c */
1979
1980 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1981
1982 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1983
1984 /* Given a function symbol SYM, find the symtab and line for the start
1985 of the function. If FUNFIRSTLINE is true, we want the first line
1986 of real code inside the function. */
1987 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1988 funfirstline);
1989
1990 /* Same, but start with a function address/section instead of a
1991 symbol. */
1992 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1993 obj_section *section,
1994 bool funfirstline);
1995
1996 extern void skip_prologue_sal (struct symtab_and_line *);
1997
1998 /* symtab.c */
1999
2000 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2001 CORE_ADDR func_addr);
2002
2003 extern struct symbol *fixup_symbol_section (struct symbol *,
2004 struct objfile *);
2005
2006 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2007 the same address. Returns NULL if not found. This is necessary in
2008 case a function is an alias to some other function, because debug
2009 information is only emitted for the alias target function's
2010 definition, not for the alias. */
2011 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2012
2013 /* Symbol searching */
2014
2015 /* When using the symbol_searcher struct to search for symbols, a vector of
2016 the following structs is returned. */
2017 struct symbol_search
2018 {
2019 symbol_search (int block_, struct symbol *symbol_)
2020 : block (block_),
2021 symbol (symbol_)
2022 {
2023 msymbol.minsym = nullptr;
2024 msymbol.objfile = nullptr;
2025 }
2026
2027 symbol_search (int block_, struct minimal_symbol *minsym,
2028 struct objfile *objfile)
2029 : block (block_),
2030 symbol (nullptr)
2031 {
2032 msymbol.minsym = minsym;
2033 msymbol.objfile = objfile;
2034 }
2035
2036 bool operator< (const symbol_search &other) const
2037 {
2038 return compare_search_syms (*this, other) < 0;
2039 }
2040
2041 bool operator== (const symbol_search &other) const
2042 {
2043 return compare_search_syms (*this, other) == 0;
2044 }
2045
2046 /* The block in which the match was found. Could be, for example,
2047 STATIC_BLOCK or GLOBAL_BLOCK. */
2048 int block;
2049
2050 /* Information describing what was found.
2051
2052 If symbol is NOT NULL, then information was found for this match. */
2053 struct symbol *symbol;
2054
2055 /* If msymbol is non-null, then a match was made on something for
2056 which only minimal_symbols exist. */
2057 struct bound_minimal_symbol msymbol;
2058
2059 private:
2060
2061 static int compare_search_syms (const symbol_search &sym_a,
2062 const symbol_search &sym_b);
2063 };
2064
2065 /* In order to search for global symbols of a particular kind matching
2066 particular regular expressions, create an instance of this structure and
2067 call the SEARCH member function. */
2068 class global_symbol_searcher
2069 {
2070 public:
2071
2072 /* Constructor. */
2073 global_symbol_searcher (enum search_domain kind,
2074 const char *symbol_name_regexp)
2075 : m_kind (kind),
2076 m_symbol_name_regexp (symbol_name_regexp)
2077 {
2078 /* The symbol searching is designed to only find one kind of thing. */
2079 gdb_assert (m_kind != ALL_DOMAIN);
2080 }
2081
2082 /* Set the optional regexp that matches against the symbol type. */
2083 void set_symbol_type_regexp (const char *regexp)
2084 {
2085 m_symbol_type_regexp = regexp;
2086 }
2087
2088 /* Set the flag to exclude minsyms from the search results. */
2089 void set_exclude_minsyms (bool exclude_minsyms)
2090 {
2091 m_exclude_minsyms = exclude_minsyms;
2092 }
2093
2094 /* Search the symbols from all objfiles in the current program space
2095 looking for matches as defined by the current state of this object.
2096
2097 Within each file the results are sorted locally; each symtab's global
2098 and static blocks are separately alphabetized. Duplicate entries are
2099 removed. */
2100 std::vector<symbol_search> search () const;
2101
2102 /* The set of source files to search in for matching symbols. This is
2103 currently public so that it can be populated after this object has
2104 been constructed. */
2105 std::vector<const char *> filenames;
2106
2107 private:
2108 /* The kind of symbols are we searching for.
2109 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2110 names, and constants (enums).
2111 FUNCTIONS_DOMAIN - Search all functions..
2112 TYPES_DOMAIN - Search all type names.
2113 MODULES_DOMAIN - Search all Fortran modules.
2114 ALL_DOMAIN - Not valid for this function. */
2115 enum search_domain m_kind;
2116
2117 /* Regular expression to match against the symbol name. */
2118 const char *m_symbol_name_regexp = nullptr;
2119
2120 /* Regular expression to match against the symbol type. */
2121 const char *m_symbol_type_regexp = nullptr;
2122
2123 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2124 be included in the results, otherwise they are excluded. */
2125 bool m_exclude_minsyms = false;
2126 };
2127
2128 /* When searching for Fortran symbols within modules (functions/variables)
2129 we return a vector of this type. The first item in the pair is the
2130 module symbol, and the second item is the symbol for the function or
2131 variable we found. */
2132 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2133
2134 /* Searches the symbols to find function and variables symbols (depending
2135 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2136 name of the module, REGEXP matches against the name of the symbol within
2137 the module, and TYPE_REGEXP matches against the type of the symbol
2138 within the module. */
2139 extern std::vector<module_symbol_search> search_module_symbols
2140 (const char *module_regexp, const char *regexp,
2141 const char *type_regexp, search_domain kind);
2142
2143 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2144 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2145 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2146 the type of symbol that was searched for which gave us SYM. */
2147
2148 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2149 enum search_domain kind);
2150
2151 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2152 const struct symbol *sym);
2153
2154 /* The name of the ``main'' function. */
2155 extern const char *main_name ();
2156 extern enum language main_language (void);
2157
2158 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2159 as specified by BLOCK_INDEX.
2160 This searches MAIN_OBJFILE as well as any associated separate debug info
2161 objfiles of MAIN_OBJFILE.
2162 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2163 Upon success fixes up the symbol's section if necessary. */
2164
2165 extern struct block_symbol
2166 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2167 enum block_enum block_index,
2168 const char *name,
2169 const domain_enum domain);
2170
2171 /* Return 1 if the supplied producer string matches the ARM RealView
2172 compiler (armcc). */
2173 bool producer_is_realview (const char *producer);
2174
2175 void fixup_section (struct general_symbol_info *ginfo,
2176 CORE_ADDR addr, struct objfile *objfile);
2177
2178 /* Look up objfile containing BLOCK. */
2179
2180 struct objfile *lookup_objfile_from_block (const struct block *block);
2181
2182 extern unsigned int symtab_create_debug;
2183
2184 extern unsigned int symbol_lookup_debug;
2185
2186 extern bool basenames_may_differ;
2187
2188 bool compare_filenames_for_search (const char *filename,
2189 const char *search_name);
2190
2191 bool compare_glob_filenames_for_search (const char *filename,
2192 const char *search_name);
2193
2194 bool iterate_over_some_symtabs (const char *name,
2195 const char *real_path,
2196 struct compunit_symtab *first,
2197 struct compunit_symtab *after_last,
2198 gdb::function_view<bool (symtab *)> callback);
2199
2200 void iterate_over_symtabs (const char *name,
2201 gdb::function_view<bool (symtab *)> callback);
2202
2203
2204 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2205 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2206
2207 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2208 is called once per matching symbol SYM. The callback should return
2209 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2210 iterating, or false to indicate that the iteration should end. */
2211
2212 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2213
2214 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2215
2216 For each symbol that matches, CALLBACK is called. The symbol is
2217 passed to the callback.
2218
2219 If CALLBACK returns false, the iteration ends and this function
2220 returns false. Otherwise, the search continues, and the function
2221 eventually returns true. */
2222
2223 bool iterate_over_symbols (const struct block *block,
2224 const lookup_name_info &name,
2225 const domain_enum domain,
2226 gdb::function_view<symbol_found_callback_ftype> callback);
2227
2228 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2229 true, then calls CALLBACK one additional time with a block_symbol
2230 that has a valid block but a NULL symbol. */
2231
2232 bool iterate_over_symbols_terminated
2233 (const struct block *block,
2234 const lookup_name_info &name,
2235 const domain_enum domain,
2236 gdb::function_view<symbol_found_callback_ftype> callback);
2237
2238 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2239 either returns a const char * pointer that points to either of the
2240 fields of this type, or a pointer to the input NAME. This is done
2241 this way because the underlying functions that demangle_for_lookup
2242 calls either return a std::string (e.g., cp_canonicalize_string) or
2243 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2244 unnecessary reallocation/string copying. */
2245 class demangle_result_storage
2246 {
2247 public:
2248
2249 /* Swap the std::string storage with STR, and return a pointer to
2250 the beginning of the new string. */
2251 const char *swap_string (std::string &str)
2252 {
2253 std::swap (m_string, str);
2254 return m_string.c_str ();
2255 }
2256
2257 /* Set the malloc storage to now point at PTR. Any previous malloc
2258 storage is released. */
2259 const char *set_malloc_ptr (char *ptr)
2260 {
2261 m_malloc.reset (ptr);
2262 return ptr;
2263 }
2264
2265 private:
2266
2267 /* The storage. */
2268 std::string m_string;
2269 gdb::unique_xmalloc_ptr<char> m_malloc;
2270 };
2271
2272 const char *
2273 demangle_for_lookup (const char *name, enum language lang,
2274 demangle_result_storage &storage);
2275
2276 struct symbol *allocate_symbol (struct objfile *);
2277
2278 void initialize_objfile_symbol (struct symbol *);
2279
2280 struct template_symbol *allocate_template_symbol (struct objfile *);
2281
2282 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2283 SYMNAME (which is already demangled for C++ symbols) matches
2284 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2285 the current completion list. */
2286 void completion_list_add_name (completion_tracker &tracker,
2287 language symbol_language,
2288 const char *symname,
2289 const lookup_name_info &lookup_name,
2290 const char *text, const char *word);
2291
2292 /* A simple symbol searching class. */
2293
2294 class symbol_searcher
2295 {
2296 public:
2297 /* Returns the symbols found for the search. */
2298 const std::vector<block_symbol> &
2299 matching_symbols () const
2300 {
2301 return m_symbols;
2302 }
2303
2304 /* Returns the minimal symbols found for the search. */
2305 const std::vector<bound_minimal_symbol> &
2306 matching_msymbols () const
2307 {
2308 return m_minimal_symbols;
2309 }
2310
2311 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2312 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2313 to search all symtabs and program spaces. */
2314 void find_all_symbols (const std::string &name,
2315 const struct language_defn *language,
2316 enum search_domain search_domain,
2317 std::vector<symtab *> *search_symtabs,
2318 struct program_space *search_pspace);
2319
2320 /* Reset this object to perform another search. */
2321 void reset ()
2322 {
2323 m_symbols.clear ();
2324 m_minimal_symbols.clear ();
2325 }
2326
2327 private:
2328 /* Matching debug symbols. */
2329 std::vector<block_symbol> m_symbols;
2330
2331 /* Matching non-debug symbols. */
2332 std::vector<bound_minimal_symbol> m_minimal_symbols;
2333 };
2334
2335 #endif /* !defined(SYMTAB_H) */
This page took 0.07695 seconds and 4 git commands to generate.