* linux-nat.c (linux_nat_thread_address_space): New.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46
47 static void target_info (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
57
58 static int nosymbol (char *, CORE_ADDR *);
59
60 static void tcomplain (void) ATTR_NORETURN;
61
62 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
63
64 static int return_zero (void);
65
66 static int return_one (void);
67
68 static int return_minus_one (void);
69
70 void target_ignore (void);
71
72 static void target_command (char *, int);
73
74 static struct target_ops *find_default_run_target (char *);
75
76 static void nosupport_runtime (void);
77
78 static LONGEST default_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST current_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex, gdb_byte *readbuf,
87 const gdb_byte *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static LONGEST target_xfer_partial (struct target_ops *ops,
91 enum target_object object,
92 const char *annex,
93 void *readbuf, const void *writebuf,
94 ULONGEST offset, LONGEST len);
95
96 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
97 ptid_t ptid);
98
99 static void init_dummy_target (void);
100
101 static struct target_ops debug_target;
102
103 static void debug_to_open (char *, int);
104
105 static void debug_to_prepare_to_store (struct regcache *);
106
107 static void debug_to_files_info (struct target_ops *);
108
109 static int debug_to_insert_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_remove_breakpoint (struct gdbarch *,
113 struct bp_target_info *);
114
115 static int debug_to_can_use_hw_breakpoint (int, int, int);
116
117 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
121 struct bp_target_info *);
122
123 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
124
125 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
126
127 static int debug_to_stopped_by_watchpoint (void);
128
129 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
130
131 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
132 CORE_ADDR, CORE_ADDR, int);
133
134 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
135
136 static void debug_to_terminal_init (void);
137
138 static void debug_to_terminal_inferior (void);
139
140 static void debug_to_terminal_ours_for_output (void);
141
142 static void debug_to_terminal_save_ours (void);
143
144 static void debug_to_terminal_ours (void);
145
146 static void debug_to_terminal_info (char *, int);
147
148 static void debug_to_load (char *, int);
149
150 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
151
152 static int debug_to_can_run (void);
153
154 static void debug_to_notice_signals (ptid_t);
155
156 static void debug_to_stop (ptid_t);
157
158 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
159 wierd and mysterious ways. Putting the variable here lets those
160 wierd and mysterious ways keep building while they are being
161 converted to the inferior inheritance structure. */
162 struct target_ops deprecated_child_ops;
163
164 /* Pointer to array of target architecture structures; the size of the
165 array; the current index into the array; the allocated size of the
166 array. */
167 struct target_ops **target_structs;
168 unsigned target_struct_size;
169 unsigned target_struct_index;
170 unsigned target_struct_allocsize;
171 #define DEFAULT_ALLOCSIZE 10
172
173 /* The initial current target, so that there is always a semi-valid
174 current target. */
175
176 static struct target_ops dummy_target;
177
178 /* Top of target stack. */
179
180 static struct target_ops *target_stack;
181
182 /* The target structure we are currently using to talk to a process
183 or file or whatever "inferior" we have. */
184
185 struct target_ops current_target;
186
187 /* Command list for target. */
188
189 static struct cmd_list_element *targetlist = NULL;
190
191 /* Nonzero if we should trust readonly sections from the
192 executable when reading memory. */
193
194 static int trust_readonly = 0;
195
196 /* Nonzero if we should show true memory content including
197 memory breakpoint inserted by gdb. */
198
199 static int show_memory_breakpoints = 0;
200
201 /* Non-zero if we want to see trace of target level stuff. */
202
203 static int targetdebug = 0;
204 static void
205 show_targetdebug (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
209 }
210
211 static void setup_target_debug (void);
212
213 /* The option sets this. */
214 static int stack_cache_enabled_p_1 = 1;
215 /* And set_stack_cache_enabled_p updates this.
216 The reason for the separation is so that we don't flush the cache for
217 on->on transitions. */
218 static int stack_cache_enabled_p = 1;
219
220 /* This is called *after* the stack-cache has been set.
221 Flush the cache for off->on and on->off transitions.
222 There's no real need to flush the cache for on->off transitions,
223 except cleanliness. */
224
225 static void
226 set_stack_cache_enabled_p (char *args, int from_tty,
227 struct cmd_list_element *c)
228 {
229 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
230 target_dcache_invalidate ();
231
232 stack_cache_enabled_p = stack_cache_enabled_p_1;
233 }
234
235 static void
236 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
240 }
241
242 /* Cache of memory operations, to speed up remote access. */
243 static DCACHE *target_dcache;
244
245 /* Invalidate the target dcache. */
246
247 void
248 target_dcache_invalidate (void)
249 {
250 dcache_invalidate (target_dcache);
251 }
252
253 /* The user just typed 'target' without the name of a target. */
254
255 static void
256 target_command (char *arg, int from_tty)
257 {
258 fputs_filtered ("Argument required (target name). Try `help target'\n",
259 gdb_stdout);
260 }
261
262 /* Default target_has_* methods for process_stratum targets. */
263
264 int
265 default_child_has_all_memory (struct target_ops *ops)
266 {
267 /* If no inferior selected, then we can't read memory here. */
268 if (ptid_equal (inferior_ptid, null_ptid))
269 return 0;
270
271 return 1;
272 }
273
274 int
275 default_child_has_memory (struct target_ops *ops)
276 {
277 /* If no inferior selected, then we can't read memory here. */
278 if (ptid_equal (inferior_ptid, null_ptid))
279 return 0;
280
281 return 1;
282 }
283
284 int
285 default_child_has_stack (struct target_ops *ops)
286 {
287 /* If no inferior selected, there's no stack. */
288 if (ptid_equal (inferior_ptid, null_ptid))
289 return 0;
290
291 return 1;
292 }
293
294 int
295 default_child_has_registers (struct target_ops *ops)
296 {
297 /* Can't read registers from no inferior. */
298 if (ptid_equal (inferior_ptid, null_ptid))
299 return 0;
300
301 return 1;
302 }
303
304 int
305 default_child_has_execution (struct target_ops *ops)
306 {
307 /* If there's no thread selected, then we can't make it run through
308 hoops. */
309 if (ptid_equal (inferior_ptid, null_ptid))
310 return 0;
311
312 return 1;
313 }
314
315
316 int
317 target_has_all_memory_1 (void)
318 {
319 struct target_ops *t;
320
321 for (t = current_target.beneath; t != NULL; t = t->beneath)
322 if (t->to_has_all_memory (t))
323 return 1;
324
325 return 0;
326 }
327
328 int
329 target_has_memory_1 (void)
330 {
331 struct target_ops *t;
332
333 for (t = current_target.beneath; t != NULL; t = t->beneath)
334 if (t->to_has_memory (t))
335 return 1;
336
337 return 0;
338 }
339
340 int
341 target_has_stack_1 (void)
342 {
343 struct target_ops *t;
344
345 for (t = current_target.beneath; t != NULL; t = t->beneath)
346 if (t->to_has_stack (t))
347 return 1;
348
349 return 0;
350 }
351
352 int
353 target_has_registers_1 (void)
354 {
355 struct target_ops *t;
356
357 for (t = current_target.beneath; t != NULL; t = t->beneath)
358 if (t->to_has_registers (t))
359 return 1;
360
361 return 0;
362 }
363
364 int
365 target_has_execution_1 (void)
366 {
367 struct target_ops *t;
368
369 for (t = current_target.beneath; t != NULL; t = t->beneath)
370 if (t->to_has_execution (t))
371 return 1;
372
373 return 0;
374 }
375
376 /* Add a possible target architecture to the list. */
377
378 void
379 add_target (struct target_ops *t)
380 {
381 /* Provide default values for all "must have" methods. */
382 if (t->to_xfer_partial == NULL)
383 t->to_xfer_partial = default_xfer_partial;
384
385 if (t->to_has_all_memory == NULL)
386 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
387
388 if (t->to_has_memory == NULL)
389 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
390
391 if (t->to_has_stack == NULL)
392 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
393
394 if (t->to_has_registers == NULL)
395 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
396
397 if (t->to_has_execution == NULL)
398 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
399
400 if (!target_structs)
401 {
402 target_struct_allocsize = DEFAULT_ALLOCSIZE;
403 target_structs = (struct target_ops **) xmalloc
404 (target_struct_allocsize * sizeof (*target_structs));
405 }
406 if (target_struct_size >= target_struct_allocsize)
407 {
408 target_struct_allocsize *= 2;
409 target_structs = (struct target_ops **)
410 xrealloc ((char *) target_structs,
411 target_struct_allocsize * sizeof (*target_structs));
412 }
413 target_structs[target_struct_size++] = t;
414
415 if (targetlist == NULL)
416 add_prefix_cmd ("target", class_run, target_command, _("\
417 Connect to a target machine or process.\n\
418 The first argument is the type or protocol of the target machine.\n\
419 Remaining arguments are interpreted by the target protocol. For more\n\
420 information on the arguments for a particular protocol, type\n\
421 `help target ' followed by the protocol name."),
422 &targetlist, "target ", 0, &cmdlist);
423 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
424 }
425
426 /* Stub functions */
427
428 void
429 target_ignore (void)
430 {
431 }
432
433 void
434 target_kill (void)
435 {
436 struct target_ops *t;
437
438 for (t = current_target.beneath; t != NULL; t = t->beneath)
439 if (t->to_kill != NULL)
440 {
441 if (targetdebug)
442 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
443
444 t->to_kill (t);
445 return;
446 }
447
448 noprocess ();
449 }
450
451 void
452 target_load (char *arg, int from_tty)
453 {
454 target_dcache_invalidate ();
455 (*current_target.to_load) (arg, from_tty);
456 }
457
458 void
459 target_create_inferior (char *exec_file, char *args,
460 char **env, int from_tty)
461 {
462 struct target_ops *t;
463 for (t = current_target.beneath; t != NULL; t = t->beneath)
464 {
465 if (t->to_create_inferior != NULL)
466 {
467 t->to_create_inferior (t, exec_file, args, env, from_tty);
468 if (targetdebug)
469 fprintf_unfiltered (gdb_stdlog,
470 "target_create_inferior (%s, %s, xxx, %d)\n",
471 exec_file, args, from_tty);
472 return;
473 }
474 }
475
476 internal_error (__FILE__, __LINE__,
477 "could not find a target to create inferior");
478 }
479
480 void
481 target_terminal_inferior (void)
482 {
483 /* A background resume (``run&'') should leave GDB in control of the
484 terminal. */
485 if (target_is_async_p () && !sync_execution)
486 return;
487
488 /* If GDB is resuming the inferior in the foreground, install
489 inferior's terminal modes. */
490 (*current_target.to_terminal_inferior) ();
491 }
492
493 static int
494 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
495 struct target_ops *t)
496 {
497 errno = EIO; /* Can't read/write this location */
498 return 0; /* No bytes handled */
499 }
500
501 static void
502 tcomplain (void)
503 {
504 error (_("You can't do that when your target is `%s'"),
505 current_target.to_shortname);
506 }
507
508 void
509 noprocess (void)
510 {
511 error (_("You can't do that without a process to debug."));
512 }
513
514 static int
515 nosymbol (char *name, CORE_ADDR *addrp)
516 {
517 return 1; /* Symbol does not exist in target env */
518 }
519
520 static void
521 nosupport_runtime (void)
522 {
523 if (ptid_equal (inferior_ptid, null_ptid))
524 noprocess ();
525 else
526 error (_("No run-time support for this"));
527 }
528
529
530 static void
531 default_terminal_info (char *args, int from_tty)
532 {
533 printf_unfiltered (_("No saved terminal information.\n"));
534 }
535
536 /* This is the default target_create_inferior and target_attach function.
537 If the current target is executing, it asks whether to kill it off.
538 If this function returns without calling error(), it has killed off
539 the target, and the operation should be attempted. */
540
541 static void
542 kill_or_be_killed (int from_tty)
543 {
544 if (target_has_execution)
545 {
546 printf_unfiltered (_("You are already running a program:\n"));
547 target_files_info ();
548 if (query (_("Kill it? ")))
549 {
550 target_kill ();
551 if (target_has_execution)
552 error (_("Killing the program did not help."));
553 return;
554 }
555 else
556 {
557 error (_("Program not killed."));
558 }
559 }
560 tcomplain ();
561 }
562
563 /* A default implementation for the to_get_ada_task_ptid target method.
564
565 This function builds the PTID by using both LWP and TID as part of
566 the PTID lwp and tid elements. The pid used is the pid of the
567 inferior_ptid. */
568
569 static ptid_t
570 default_get_ada_task_ptid (long lwp, long tid)
571 {
572 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
573 }
574
575 /* Go through the target stack from top to bottom, copying over zero
576 entries in current_target, then filling in still empty entries. In
577 effect, we are doing class inheritance through the pushed target
578 vectors.
579
580 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
581 is currently implemented, is that it discards any knowledge of
582 which target an inherited method originally belonged to.
583 Consequently, new new target methods should instead explicitly and
584 locally search the target stack for the target that can handle the
585 request. */
586
587 static void
588 update_current_target (void)
589 {
590 struct target_ops *t;
591
592 /* First, reset current's contents. */
593 memset (&current_target, 0, sizeof (current_target));
594
595 #define INHERIT(FIELD, TARGET) \
596 if (!current_target.FIELD) \
597 current_target.FIELD = (TARGET)->FIELD
598
599 for (t = target_stack; t; t = t->beneath)
600 {
601 INHERIT (to_shortname, t);
602 INHERIT (to_longname, t);
603 INHERIT (to_doc, t);
604 /* Do not inherit to_open. */
605 /* Do not inherit to_close. */
606 /* Do not inherit to_attach. */
607 INHERIT (to_post_attach, t);
608 INHERIT (to_attach_no_wait, t);
609 /* Do not inherit to_detach. */
610 /* Do not inherit to_disconnect. */
611 /* Do not inherit to_resume. */
612 /* Do not inherit to_wait. */
613 /* Do not inherit to_fetch_registers. */
614 /* Do not inherit to_store_registers. */
615 INHERIT (to_prepare_to_store, t);
616 INHERIT (deprecated_xfer_memory, t);
617 INHERIT (to_files_info, t);
618 INHERIT (to_insert_breakpoint, t);
619 INHERIT (to_remove_breakpoint, t);
620 INHERIT (to_can_use_hw_breakpoint, t);
621 INHERIT (to_insert_hw_breakpoint, t);
622 INHERIT (to_remove_hw_breakpoint, t);
623 INHERIT (to_insert_watchpoint, t);
624 INHERIT (to_remove_watchpoint, t);
625 INHERIT (to_stopped_data_address, t);
626 INHERIT (to_have_steppable_watchpoint, t);
627 INHERIT (to_have_continuable_watchpoint, t);
628 INHERIT (to_stopped_by_watchpoint, t);
629 INHERIT (to_watchpoint_addr_within_range, t);
630 INHERIT (to_region_ok_for_hw_watchpoint, t);
631 INHERIT (to_terminal_init, t);
632 INHERIT (to_terminal_inferior, t);
633 INHERIT (to_terminal_ours_for_output, t);
634 INHERIT (to_terminal_ours, t);
635 INHERIT (to_terminal_save_ours, t);
636 INHERIT (to_terminal_info, t);
637 /* Do not inherit to_kill. */
638 INHERIT (to_load, t);
639 INHERIT (to_lookup_symbol, t);
640 /* Do no inherit to_create_inferior. */
641 INHERIT (to_post_startup_inferior, t);
642 INHERIT (to_acknowledge_created_inferior, t);
643 INHERIT (to_insert_fork_catchpoint, t);
644 INHERIT (to_remove_fork_catchpoint, t);
645 INHERIT (to_insert_vfork_catchpoint, t);
646 INHERIT (to_remove_vfork_catchpoint, t);
647 /* Do not inherit to_follow_fork. */
648 INHERIT (to_insert_exec_catchpoint, t);
649 INHERIT (to_remove_exec_catchpoint, t);
650 INHERIT (to_set_syscall_catchpoint, t);
651 INHERIT (to_has_exited, t);
652 /* Do not inherit to_mourn_inferiour. */
653 INHERIT (to_can_run, t);
654 INHERIT (to_notice_signals, t);
655 /* Do not inherit to_thread_alive. */
656 /* Do not inherit to_find_new_threads. */
657 /* Do not inherit to_pid_to_str. */
658 INHERIT (to_extra_thread_info, t);
659 INHERIT (to_stop, t);
660 /* Do not inherit to_xfer_partial. */
661 INHERIT (to_rcmd, t);
662 INHERIT (to_pid_to_exec_file, t);
663 INHERIT (to_log_command, t);
664 INHERIT (to_stratum, t);
665 /* Do not inherit to_has_all_memory */
666 /* Do not inherit to_has_memory */
667 /* Do not inherit to_has_stack */
668 /* Do not inherit to_has_registers */
669 /* Do not inherit to_has_execution */
670 INHERIT (to_has_thread_control, t);
671 INHERIT (to_can_async_p, t);
672 INHERIT (to_is_async_p, t);
673 INHERIT (to_async, t);
674 INHERIT (to_async_mask, t);
675 INHERIT (to_find_memory_regions, t);
676 INHERIT (to_make_corefile_notes, t);
677 /* Do not inherit to_get_thread_local_address. */
678 INHERIT (to_can_execute_reverse, t);
679 INHERIT (to_thread_architecture, t);
680 /* Do not inherit to_read_description. */
681 INHERIT (to_get_ada_task_ptid, t);
682 /* Do not inherit to_search_memory. */
683 INHERIT (to_supports_multi_process, t);
684 INHERIT (to_magic, t);
685 /* Do not inherit to_memory_map. */
686 /* Do not inherit to_flash_erase. */
687 /* Do not inherit to_flash_done. */
688 }
689 #undef INHERIT
690
691 /* Clean up a target struct so it no longer has any zero pointers in
692 it. Some entries are defaulted to a method that print an error,
693 others are hard-wired to a standard recursive default. */
694
695 #define de_fault(field, value) \
696 if (!current_target.field) \
697 current_target.field = value
698
699 de_fault (to_open,
700 (void (*) (char *, int))
701 tcomplain);
702 de_fault (to_close,
703 (void (*) (int))
704 target_ignore);
705 de_fault (to_post_attach,
706 (void (*) (int))
707 target_ignore);
708 de_fault (to_prepare_to_store,
709 (void (*) (struct regcache *))
710 noprocess);
711 de_fault (deprecated_xfer_memory,
712 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
713 nomemory);
714 de_fault (to_files_info,
715 (void (*) (struct target_ops *))
716 target_ignore);
717 de_fault (to_insert_breakpoint,
718 memory_insert_breakpoint);
719 de_fault (to_remove_breakpoint,
720 memory_remove_breakpoint);
721 de_fault (to_can_use_hw_breakpoint,
722 (int (*) (int, int, int))
723 return_zero);
724 de_fault (to_insert_hw_breakpoint,
725 (int (*) (struct gdbarch *, struct bp_target_info *))
726 return_minus_one);
727 de_fault (to_remove_hw_breakpoint,
728 (int (*) (struct gdbarch *, struct bp_target_info *))
729 return_minus_one);
730 de_fault (to_insert_watchpoint,
731 (int (*) (CORE_ADDR, int, int))
732 return_minus_one);
733 de_fault (to_remove_watchpoint,
734 (int (*) (CORE_ADDR, int, int))
735 return_minus_one);
736 de_fault (to_stopped_by_watchpoint,
737 (int (*) (void))
738 return_zero);
739 de_fault (to_stopped_data_address,
740 (int (*) (struct target_ops *, CORE_ADDR *))
741 return_zero);
742 de_fault (to_watchpoint_addr_within_range,
743 default_watchpoint_addr_within_range);
744 de_fault (to_region_ok_for_hw_watchpoint,
745 default_region_ok_for_hw_watchpoint);
746 de_fault (to_terminal_init,
747 (void (*) (void))
748 target_ignore);
749 de_fault (to_terminal_inferior,
750 (void (*) (void))
751 target_ignore);
752 de_fault (to_terminal_ours_for_output,
753 (void (*) (void))
754 target_ignore);
755 de_fault (to_terminal_ours,
756 (void (*) (void))
757 target_ignore);
758 de_fault (to_terminal_save_ours,
759 (void (*) (void))
760 target_ignore);
761 de_fault (to_terminal_info,
762 default_terminal_info);
763 de_fault (to_load,
764 (void (*) (char *, int))
765 tcomplain);
766 de_fault (to_lookup_symbol,
767 (int (*) (char *, CORE_ADDR *))
768 nosymbol);
769 de_fault (to_post_startup_inferior,
770 (void (*) (ptid_t))
771 target_ignore);
772 de_fault (to_acknowledge_created_inferior,
773 (void (*) (int))
774 target_ignore);
775 de_fault (to_insert_fork_catchpoint,
776 (void (*) (int))
777 tcomplain);
778 de_fault (to_remove_fork_catchpoint,
779 (int (*) (int))
780 tcomplain);
781 de_fault (to_insert_vfork_catchpoint,
782 (void (*) (int))
783 tcomplain);
784 de_fault (to_remove_vfork_catchpoint,
785 (int (*) (int))
786 tcomplain);
787 de_fault (to_insert_exec_catchpoint,
788 (void (*) (int))
789 tcomplain);
790 de_fault (to_remove_exec_catchpoint,
791 (int (*) (int))
792 tcomplain);
793 de_fault (to_set_syscall_catchpoint,
794 (int (*) (int, int, int, int, int *))
795 tcomplain);
796 de_fault (to_has_exited,
797 (int (*) (int, int, int *))
798 return_zero);
799 de_fault (to_can_run,
800 return_zero);
801 de_fault (to_notice_signals,
802 (void (*) (ptid_t))
803 target_ignore);
804 de_fault (to_extra_thread_info,
805 (char *(*) (struct thread_info *))
806 return_zero);
807 de_fault (to_stop,
808 (void (*) (ptid_t))
809 target_ignore);
810 current_target.to_xfer_partial = current_xfer_partial;
811 de_fault (to_rcmd,
812 (void (*) (char *, struct ui_file *))
813 tcomplain);
814 de_fault (to_pid_to_exec_file,
815 (char *(*) (int))
816 return_zero);
817 de_fault (to_async,
818 (void (*) (void (*) (enum inferior_event_type, void*), void*))
819 tcomplain);
820 de_fault (to_async_mask,
821 (int (*) (int))
822 return_one);
823 de_fault (to_thread_architecture,
824 default_thread_architecture);
825 current_target.to_read_description = NULL;
826 de_fault (to_get_ada_task_ptid,
827 (ptid_t (*) (long, long))
828 default_get_ada_task_ptid);
829 de_fault (to_supports_multi_process,
830 (int (*) (void))
831 return_zero);
832 #undef de_fault
833
834 /* Finally, position the target-stack beneath the squashed
835 "current_target". That way code looking for a non-inherited
836 target method can quickly and simply find it. */
837 current_target.beneath = target_stack;
838
839 if (targetdebug)
840 setup_target_debug ();
841 }
842
843 /* Push a new target type into the stack of the existing target accessors,
844 possibly superseding some of the existing accessors.
845
846 Result is zero if the pushed target ended up on top of the stack,
847 nonzero if at least one target is on top of it.
848
849 Rather than allow an empty stack, we always have the dummy target at
850 the bottom stratum, so we can call the function vectors without
851 checking them. */
852
853 int
854 push_target (struct target_ops *t)
855 {
856 struct target_ops **cur;
857
858 /* Check magic number. If wrong, it probably means someone changed
859 the struct definition, but not all the places that initialize one. */
860 if (t->to_magic != OPS_MAGIC)
861 {
862 fprintf_unfiltered (gdb_stderr,
863 "Magic number of %s target struct wrong\n",
864 t->to_shortname);
865 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
866 }
867
868 /* Find the proper stratum to install this target in. */
869 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
870 {
871 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
872 break;
873 }
874
875 /* If there's already targets at this stratum, remove them. */
876 /* FIXME: cagney/2003-10-15: I think this should be popping all
877 targets to CUR, and not just those at this stratum level. */
878 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
879 {
880 /* There's already something at this stratum level. Close it,
881 and un-hook it from the stack. */
882 struct target_ops *tmp = (*cur);
883 (*cur) = (*cur)->beneath;
884 tmp->beneath = NULL;
885 target_close (tmp, 0);
886 }
887
888 /* We have removed all targets in our stratum, now add the new one. */
889 t->beneath = (*cur);
890 (*cur) = t;
891
892 update_current_target ();
893
894 /* Not on top? */
895 return (t != target_stack);
896 }
897
898 /* Remove a target_ops vector from the stack, wherever it may be.
899 Return how many times it was removed (0 or 1). */
900
901 int
902 unpush_target (struct target_ops *t)
903 {
904 struct target_ops **cur;
905 struct target_ops *tmp;
906
907 if (t->to_stratum == dummy_stratum)
908 internal_error (__FILE__, __LINE__,
909 "Attempt to unpush the dummy target");
910
911 /* Look for the specified target. Note that we assume that a target
912 can only occur once in the target stack. */
913
914 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
915 {
916 if ((*cur) == t)
917 break;
918 }
919
920 if ((*cur) == NULL)
921 return 0; /* Didn't find target_ops, quit now */
922
923 /* NOTE: cagney/2003-12-06: In '94 the close call was made
924 unconditional by moving it to before the above check that the
925 target was in the target stack (something about "Change the way
926 pushing and popping of targets work to support target overlays
927 and inheritance"). This doesn't make much sense - only open
928 targets should be closed. */
929 target_close (t, 0);
930
931 /* Unchain the target */
932 tmp = (*cur);
933 (*cur) = (*cur)->beneath;
934 tmp->beneath = NULL;
935
936 update_current_target ();
937
938 return 1;
939 }
940
941 void
942 pop_target (void)
943 {
944 target_close (target_stack, 0); /* Let it clean up */
945 if (unpush_target (target_stack) == 1)
946 return;
947
948 fprintf_unfiltered (gdb_stderr,
949 "pop_target couldn't find target %s\n",
950 current_target.to_shortname);
951 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
952 }
953
954 void
955 pop_all_targets_above (enum strata above_stratum, int quitting)
956 {
957 while ((int) (current_target.to_stratum) > (int) above_stratum)
958 {
959 target_close (target_stack, quitting);
960 if (!unpush_target (target_stack))
961 {
962 fprintf_unfiltered (gdb_stderr,
963 "pop_all_targets couldn't find target %s\n",
964 target_stack->to_shortname);
965 internal_error (__FILE__, __LINE__,
966 _("failed internal consistency check"));
967 break;
968 }
969 }
970 }
971
972 void
973 pop_all_targets (int quitting)
974 {
975 pop_all_targets_above (dummy_stratum, quitting);
976 }
977
978 /* Using the objfile specified in OBJFILE, find the address for the
979 current thread's thread-local storage with offset OFFSET. */
980 CORE_ADDR
981 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
982 {
983 volatile CORE_ADDR addr = 0;
984 struct target_ops *target;
985
986 for (target = current_target.beneath;
987 target != NULL;
988 target = target->beneath)
989 {
990 if (target->to_get_thread_local_address != NULL)
991 break;
992 }
993
994 if (target != NULL
995 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
996 {
997 ptid_t ptid = inferior_ptid;
998 volatile struct gdb_exception ex;
999
1000 TRY_CATCH (ex, RETURN_MASK_ALL)
1001 {
1002 CORE_ADDR lm_addr;
1003
1004 /* Fetch the load module address for this objfile. */
1005 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1006 objfile);
1007 /* If it's 0, throw the appropriate exception. */
1008 if (lm_addr == 0)
1009 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1010 _("TLS load module not found"));
1011
1012 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1013 }
1014 /* If an error occurred, print TLS related messages here. Otherwise,
1015 throw the error to some higher catcher. */
1016 if (ex.reason < 0)
1017 {
1018 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1019
1020 switch (ex.error)
1021 {
1022 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1023 error (_("Cannot find thread-local variables in this thread library."));
1024 break;
1025 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1026 if (objfile_is_library)
1027 error (_("Cannot find shared library `%s' in dynamic"
1028 " linker's load module list"), objfile->name);
1029 else
1030 error (_("Cannot find executable file `%s' in dynamic"
1031 " linker's load module list"), objfile->name);
1032 break;
1033 case TLS_NOT_ALLOCATED_YET_ERROR:
1034 if (objfile_is_library)
1035 error (_("The inferior has not yet allocated storage for"
1036 " thread-local variables in\n"
1037 "the shared library `%s'\n"
1038 "for %s"),
1039 objfile->name, target_pid_to_str (ptid));
1040 else
1041 error (_("The inferior has not yet allocated storage for"
1042 " thread-local variables in\n"
1043 "the executable `%s'\n"
1044 "for %s"),
1045 objfile->name, target_pid_to_str (ptid));
1046 break;
1047 case TLS_GENERIC_ERROR:
1048 if (objfile_is_library)
1049 error (_("Cannot find thread-local storage for %s, "
1050 "shared library %s:\n%s"),
1051 target_pid_to_str (ptid),
1052 objfile->name, ex.message);
1053 else
1054 error (_("Cannot find thread-local storage for %s, "
1055 "executable file %s:\n%s"),
1056 target_pid_to_str (ptid),
1057 objfile->name, ex.message);
1058 break;
1059 default:
1060 throw_exception (ex);
1061 break;
1062 }
1063 }
1064 }
1065 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1066 TLS is an ABI-specific thing. But we don't do that yet. */
1067 else
1068 error (_("Cannot find thread-local variables on this target"));
1069
1070 return addr;
1071 }
1072
1073 #undef MIN
1074 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1075
1076 /* target_read_string -- read a null terminated string, up to LEN bytes,
1077 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1078 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1079 is responsible for freeing it. Return the number of bytes successfully
1080 read. */
1081
1082 int
1083 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1084 {
1085 int tlen, origlen, offset, i;
1086 gdb_byte buf[4];
1087 int errcode = 0;
1088 char *buffer;
1089 int buffer_allocated;
1090 char *bufptr;
1091 unsigned int nbytes_read = 0;
1092
1093 gdb_assert (string);
1094
1095 /* Small for testing. */
1096 buffer_allocated = 4;
1097 buffer = xmalloc (buffer_allocated);
1098 bufptr = buffer;
1099
1100 origlen = len;
1101
1102 while (len > 0)
1103 {
1104 tlen = MIN (len, 4 - (memaddr & 3));
1105 offset = memaddr & 3;
1106
1107 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1108 if (errcode != 0)
1109 {
1110 /* The transfer request might have crossed the boundary to an
1111 unallocated region of memory. Retry the transfer, requesting
1112 a single byte. */
1113 tlen = 1;
1114 offset = 0;
1115 errcode = target_read_memory (memaddr, buf, 1);
1116 if (errcode != 0)
1117 goto done;
1118 }
1119
1120 if (bufptr - buffer + tlen > buffer_allocated)
1121 {
1122 unsigned int bytes;
1123 bytes = bufptr - buffer;
1124 buffer_allocated *= 2;
1125 buffer = xrealloc (buffer, buffer_allocated);
1126 bufptr = buffer + bytes;
1127 }
1128
1129 for (i = 0; i < tlen; i++)
1130 {
1131 *bufptr++ = buf[i + offset];
1132 if (buf[i + offset] == '\000')
1133 {
1134 nbytes_read += i + 1;
1135 goto done;
1136 }
1137 }
1138
1139 memaddr += tlen;
1140 len -= tlen;
1141 nbytes_read += tlen;
1142 }
1143 done:
1144 *string = buffer;
1145 if (errnop != NULL)
1146 *errnop = errcode;
1147 return nbytes_read;
1148 }
1149
1150 struct target_section_table *
1151 target_get_section_table (struct target_ops *target)
1152 {
1153 struct target_ops *t;
1154
1155 if (targetdebug)
1156 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1157
1158 for (t = target; t != NULL; t = t->beneath)
1159 if (t->to_get_section_table != NULL)
1160 return (*t->to_get_section_table) (t);
1161
1162 return NULL;
1163 }
1164
1165 /* Find a section containing ADDR. */
1166
1167 struct target_section *
1168 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1169 {
1170 struct target_section_table *table = target_get_section_table (target);
1171 struct target_section *secp;
1172
1173 if (table == NULL)
1174 return NULL;
1175
1176 for (secp = table->sections; secp < table->sections_end; secp++)
1177 {
1178 if (addr >= secp->addr && addr < secp->endaddr)
1179 return secp;
1180 }
1181 return NULL;
1182 }
1183
1184 /* Perform a partial memory transfer. The arguments and return
1185 value are just as for target_xfer_partial. */
1186
1187 static LONGEST
1188 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1189 void *readbuf, const void *writebuf, ULONGEST memaddr,
1190 LONGEST len)
1191 {
1192 LONGEST res;
1193 int reg_len;
1194 struct mem_region *region;
1195 struct inferior *inf;
1196
1197 /* Zero length requests are ok and require no work. */
1198 if (len == 0)
1199 return 0;
1200
1201 /* For accesses to unmapped overlay sections, read directly from
1202 files. Must do this first, as MEMADDR may need adjustment. */
1203 if (readbuf != NULL && overlay_debugging)
1204 {
1205 struct obj_section *section = find_pc_overlay (memaddr);
1206 if (pc_in_unmapped_range (memaddr, section))
1207 {
1208 struct target_section_table *table
1209 = target_get_section_table (ops);
1210 const char *section_name = section->the_bfd_section->name;
1211 memaddr = overlay_mapped_address (memaddr, section);
1212 return section_table_xfer_memory_partial (readbuf, writebuf,
1213 memaddr, len,
1214 table->sections,
1215 table->sections_end,
1216 section_name);
1217 }
1218 }
1219
1220 /* Try the executable files, if "trust-readonly-sections" is set. */
1221 if (readbuf != NULL && trust_readonly)
1222 {
1223 struct target_section *secp;
1224 struct target_section_table *table;
1225
1226 secp = target_section_by_addr (ops, memaddr);
1227 if (secp != NULL
1228 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1229 & SEC_READONLY))
1230 {
1231 table = target_get_section_table (ops);
1232 return section_table_xfer_memory_partial (readbuf, writebuf,
1233 memaddr, len,
1234 table->sections,
1235 table->sections_end,
1236 NULL);
1237 }
1238 }
1239
1240 /* Try GDB's internal data cache. */
1241 region = lookup_mem_region (memaddr);
1242 /* region->hi == 0 means there's no upper bound. */
1243 if (memaddr + len < region->hi || region->hi == 0)
1244 reg_len = len;
1245 else
1246 reg_len = region->hi - memaddr;
1247
1248 switch (region->attrib.mode)
1249 {
1250 case MEM_RO:
1251 if (writebuf != NULL)
1252 return -1;
1253 break;
1254
1255 case MEM_WO:
1256 if (readbuf != NULL)
1257 return -1;
1258 break;
1259
1260 case MEM_FLASH:
1261 /* We only support writing to flash during "load" for now. */
1262 if (writebuf != NULL)
1263 error (_("Writing to flash memory forbidden in this context"));
1264 break;
1265
1266 case MEM_NONE:
1267 return -1;
1268 }
1269
1270 if (!ptid_equal (inferior_ptid, null_ptid))
1271 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1272 else
1273 inf = NULL;
1274
1275 if (inf != NULL
1276 && (region->attrib.cache
1277 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1278 {
1279 if (readbuf != NULL)
1280 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1281 reg_len, 0);
1282 else
1283 /* FIXME drow/2006-08-09: If we're going to preserve const
1284 correctness dcache_xfer_memory should take readbuf and
1285 writebuf. */
1286 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1287 (void *) writebuf,
1288 reg_len, 1);
1289 if (res <= 0)
1290 return -1;
1291 else
1292 {
1293 if (readbuf && !show_memory_breakpoints)
1294 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1295 return res;
1296 }
1297 }
1298
1299 /* If none of those methods found the memory we wanted, fall back
1300 to a target partial transfer. Normally a single call to
1301 to_xfer_partial is enough; if it doesn't recognize an object
1302 it will call the to_xfer_partial of the next target down.
1303 But for memory this won't do. Memory is the only target
1304 object which can be read from more than one valid target.
1305 A core file, for instance, could have some of memory but
1306 delegate other bits to the target below it. So, we must
1307 manually try all targets. */
1308
1309 do
1310 {
1311 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1312 readbuf, writebuf, memaddr, reg_len);
1313 if (res > 0)
1314 break;
1315
1316 /* We want to continue past core files to executables, but not
1317 past a running target's memory. */
1318 if (ops->to_has_all_memory (ops))
1319 break;
1320
1321 ops = ops->beneath;
1322 }
1323 while (ops != NULL);
1324
1325 if (readbuf && !show_memory_breakpoints)
1326 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1327
1328 /* Make sure the cache gets updated no matter what - if we are writing
1329 to the stack. Even if this write is not tagged as such, we still need
1330 to update the cache. */
1331
1332 if (res > 0
1333 && inf != NULL
1334 && writebuf != NULL
1335 && !region->attrib.cache
1336 && stack_cache_enabled_p
1337 && object != TARGET_OBJECT_STACK_MEMORY)
1338 {
1339 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1340 }
1341
1342 /* If we still haven't got anything, return the last error. We
1343 give up. */
1344 return res;
1345 }
1346
1347 static void
1348 restore_show_memory_breakpoints (void *arg)
1349 {
1350 show_memory_breakpoints = (uintptr_t) arg;
1351 }
1352
1353 struct cleanup *
1354 make_show_memory_breakpoints_cleanup (int show)
1355 {
1356 int current = show_memory_breakpoints;
1357 show_memory_breakpoints = show;
1358
1359 return make_cleanup (restore_show_memory_breakpoints,
1360 (void *) (uintptr_t) current);
1361 }
1362
1363 static LONGEST
1364 target_xfer_partial (struct target_ops *ops,
1365 enum target_object object, const char *annex,
1366 void *readbuf, const void *writebuf,
1367 ULONGEST offset, LONGEST len)
1368 {
1369 LONGEST retval;
1370
1371 gdb_assert (ops->to_xfer_partial != NULL);
1372
1373 /* If this is a memory transfer, let the memory-specific code
1374 have a look at it instead. Memory transfers are more
1375 complicated. */
1376 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1377 retval = memory_xfer_partial (ops, object, readbuf,
1378 writebuf, offset, len);
1379 else
1380 {
1381 enum target_object raw_object = object;
1382
1383 /* If this is a raw memory transfer, request the normal
1384 memory object from other layers. */
1385 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1386 raw_object = TARGET_OBJECT_MEMORY;
1387
1388 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1389 writebuf, offset, len);
1390 }
1391
1392 if (targetdebug)
1393 {
1394 const unsigned char *myaddr = NULL;
1395
1396 fprintf_unfiltered (gdb_stdlog,
1397 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1398 ops->to_shortname,
1399 (int) object,
1400 (annex ? annex : "(null)"),
1401 host_address_to_string (readbuf),
1402 host_address_to_string (writebuf),
1403 core_addr_to_string_nz (offset),
1404 plongest (len), plongest (retval));
1405
1406 if (readbuf)
1407 myaddr = readbuf;
1408 if (writebuf)
1409 myaddr = writebuf;
1410 if (retval > 0 && myaddr != NULL)
1411 {
1412 int i;
1413
1414 fputs_unfiltered (", bytes =", gdb_stdlog);
1415 for (i = 0; i < retval; i++)
1416 {
1417 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1418 {
1419 if (targetdebug < 2 && i > 0)
1420 {
1421 fprintf_unfiltered (gdb_stdlog, " ...");
1422 break;
1423 }
1424 fprintf_unfiltered (gdb_stdlog, "\n");
1425 }
1426
1427 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1428 }
1429 }
1430
1431 fputc_unfiltered ('\n', gdb_stdlog);
1432 }
1433 return retval;
1434 }
1435
1436 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1437 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1438 if any error occurs.
1439
1440 If an error occurs, no guarantee is made about the contents of the data at
1441 MYADDR. In particular, the caller should not depend upon partial reads
1442 filling the buffer with good data. There is no way for the caller to know
1443 how much good data might have been transfered anyway. Callers that can
1444 deal with partial reads should call target_read (which will retry until
1445 it makes no progress, and then return how much was transferred). */
1446
1447 int
1448 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1449 {
1450 /* Dispatch to the topmost target, not the flattened current_target.
1451 Memory accesses check target->to_has_(all_)memory, and the
1452 flattened target doesn't inherit those. */
1453 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1454 myaddr, memaddr, len) == len)
1455 return 0;
1456 else
1457 return EIO;
1458 }
1459
1460 /* Like target_read_memory, but specify explicitly that this is a read from
1461 the target's stack. This may trigger different cache behavior. */
1462
1463 int
1464 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1465 {
1466 /* Dispatch to the topmost target, not the flattened current_target.
1467 Memory accesses check target->to_has_(all_)memory, and the
1468 flattened target doesn't inherit those. */
1469
1470 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1471 myaddr, memaddr, len) == len)
1472 return 0;
1473 else
1474 return EIO;
1475 }
1476
1477 int
1478 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1479 {
1480 /* Dispatch to the topmost target, not the flattened current_target.
1481 Memory accesses check target->to_has_(all_)memory, and the
1482 flattened target doesn't inherit those. */
1483 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1484 myaddr, memaddr, len) == len)
1485 return 0;
1486 else
1487 return EIO;
1488 }
1489
1490 /* Fetch the target's memory map. */
1491
1492 VEC(mem_region_s) *
1493 target_memory_map (void)
1494 {
1495 VEC(mem_region_s) *result;
1496 struct mem_region *last_one, *this_one;
1497 int ix;
1498 struct target_ops *t;
1499
1500 if (targetdebug)
1501 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1502
1503 for (t = current_target.beneath; t != NULL; t = t->beneath)
1504 if (t->to_memory_map != NULL)
1505 break;
1506
1507 if (t == NULL)
1508 return NULL;
1509
1510 result = t->to_memory_map (t);
1511 if (result == NULL)
1512 return NULL;
1513
1514 qsort (VEC_address (mem_region_s, result),
1515 VEC_length (mem_region_s, result),
1516 sizeof (struct mem_region), mem_region_cmp);
1517
1518 /* Check that regions do not overlap. Simultaneously assign
1519 a numbering for the "mem" commands to use to refer to
1520 each region. */
1521 last_one = NULL;
1522 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1523 {
1524 this_one->number = ix;
1525
1526 if (last_one && last_one->hi > this_one->lo)
1527 {
1528 warning (_("Overlapping regions in memory map: ignoring"));
1529 VEC_free (mem_region_s, result);
1530 return NULL;
1531 }
1532 last_one = this_one;
1533 }
1534
1535 return result;
1536 }
1537
1538 void
1539 target_flash_erase (ULONGEST address, LONGEST length)
1540 {
1541 struct target_ops *t;
1542
1543 for (t = current_target.beneath; t != NULL; t = t->beneath)
1544 if (t->to_flash_erase != NULL)
1545 {
1546 if (targetdebug)
1547 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1548 hex_string (address), phex (length, 0));
1549 t->to_flash_erase (t, address, length);
1550 return;
1551 }
1552
1553 tcomplain ();
1554 }
1555
1556 void
1557 target_flash_done (void)
1558 {
1559 struct target_ops *t;
1560
1561 for (t = current_target.beneath; t != NULL; t = t->beneath)
1562 if (t->to_flash_done != NULL)
1563 {
1564 if (targetdebug)
1565 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1566 t->to_flash_done (t);
1567 return;
1568 }
1569
1570 tcomplain ();
1571 }
1572
1573 static void
1574 show_trust_readonly (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c, const char *value)
1576 {
1577 fprintf_filtered (file, _("\
1578 Mode for reading from readonly sections is %s.\n"),
1579 value);
1580 }
1581
1582 /* More generic transfers. */
1583
1584 static LONGEST
1585 default_xfer_partial (struct target_ops *ops, enum target_object object,
1586 const char *annex, gdb_byte *readbuf,
1587 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1588 {
1589 if (object == TARGET_OBJECT_MEMORY
1590 && ops->deprecated_xfer_memory != NULL)
1591 /* If available, fall back to the target's
1592 "deprecated_xfer_memory" method. */
1593 {
1594 int xfered = -1;
1595 errno = 0;
1596 if (writebuf != NULL)
1597 {
1598 void *buffer = xmalloc (len);
1599 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1600 memcpy (buffer, writebuf, len);
1601 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1602 1/*write*/, NULL, ops);
1603 do_cleanups (cleanup);
1604 }
1605 if (readbuf != NULL)
1606 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1607 0/*read*/, NULL, ops);
1608 if (xfered > 0)
1609 return xfered;
1610 else if (xfered == 0 && errno == 0)
1611 /* "deprecated_xfer_memory" uses 0, cross checked against
1612 ERRNO as one indication of an error. */
1613 return 0;
1614 else
1615 return -1;
1616 }
1617 else if (ops->beneath != NULL)
1618 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1619 readbuf, writebuf, offset, len);
1620 else
1621 return -1;
1622 }
1623
1624 /* The xfer_partial handler for the topmost target. Unlike the default,
1625 it does not need to handle memory specially; it just passes all
1626 requests down the stack. */
1627
1628 static LONGEST
1629 current_xfer_partial (struct target_ops *ops, enum target_object object,
1630 const char *annex, gdb_byte *readbuf,
1631 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1632 {
1633 if (ops->beneath != NULL)
1634 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1635 readbuf, writebuf, offset, len);
1636 else
1637 return -1;
1638 }
1639
1640 /* Target vector read/write partial wrapper functions.
1641
1642 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1643 (inbuf, outbuf)", instead of separate read/write methods, make life
1644 easier. */
1645
1646 static LONGEST
1647 target_read_partial (struct target_ops *ops,
1648 enum target_object object,
1649 const char *annex, gdb_byte *buf,
1650 ULONGEST offset, LONGEST len)
1651 {
1652 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1653 }
1654
1655 static LONGEST
1656 target_write_partial (struct target_ops *ops,
1657 enum target_object object,
1658 const char *annex, const gdb_byte *buf,
1659 ULONGEST offset, LONGEST len)
1660 {
1661 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1662 }
1663
1664 /* Wrappers to perform the full transfer. */
1665 LONGEST
1666 target_read (struct target_ops *ops,
1667 enum target_object object,
1668 const char *annex, gdb_byte *buf,
1669 ULONGEST offset, LONGEST len)
1670 {
1671 LONGEST xfered = 0;
1672 while (xfered < len)
1673 {
1674 LONGEST xfer = target_read_partial (ops, object, annex,
1675 (gdb_byte *) buf + xfered,
1676 offset + xfered, len - xfered);
1677 /* Call an observer, notifying them of the xfer progress? */
1678 if (xfer == 0)
1679 return xfered;
1680 if (xfer < 0)
1681 return -1;
1682 xfered += xfer;
1683 QUIT;
1684 }
1685 return len;
1686 }
1687
1688 LONGEST
1689 target_read_until_error (struct target_ops *ops,
1690 enum target_object object,
1691 const char *annex, gdb_byte *buf,
1692 ULONGEST offset, LONGEST len)
1693 {
1694 LONGEST xfered = 0;
1695 while (xfered < len)
1696 {
1697 LONGEST xfer = target_read_partial (ops, object, annex,
1698 (gdb_byte *) buf + xfered,
1699 offset + xfered, len - xfered);
1700 /* Call an observer, notifying them of the xfer progress? */
1701 if (xfer == 0)
1702 return xfered;
1703 if (xfer < 0)
1704 {
1705 /* We've got an error. Try to read in smaller blocks. */
1706 ULONGEST start = offset + xfered;
1707 ULONGEST remaining = len - xfered;
1708 ULONGEST half;
1709
1710 /* If an attempt was made to read a random memory address,
1711 it's likely that the very first byte is not accessible.
1712 Try reading the first byte, to avoid doing log N tries
1713 below. */
1714 xfer = target_read_partial (ops, object, annex,
1715 (gdb_byte *) buf + xfered, start, 1);
1716 if (xfer <= 0)
1717 return xfered;
1718 start += 1;
1719 remaining -= 1;
1720 half = remaining/2;
1721
1722 while (half > 0)
1723 {
1724 xfer = target_read_partial (ops, object, annex,
1725 (gdb_byte *) buf + xfered,
1726 start, half);
1727 if (xfer == 0)
1728 return xfered;
1729 if (xfer < 0)
1730 {
1731 remaining = half;
1732 }
1733 else
1734 {
1735 /* We have successfully read the first half. So, the
1736 error must be in the second half. Adjust start and
1737 remaining to point at the second half. */
1738 xfered += xfer;
1739 start += xfer;
1740 remaining -= xfer;
1741 }
1742 half = remaining/2;
1743 }
1744
1745 return xfered;
1746 }
1747 xfered += xfer;
1748 QUIT;
1749 }
1750 return len;
1751 }
1752
1753
1754 /* An alternative to target_write with progress callbacks. */
1755
1756 LONGEST
1757 target_write_with_progress (struct target_ops *ops,
1758 enum target_object object,
1759 const char *annex, const gdb_byte *buf,
1760 ULONGEST offset, LONGEST len,
1761 void (*progress) (ULONGEST, void *), void *baton)
1762 {
1763 LONGEST xfered = 0;
1764
1765 /* Give the progress callback a chance to set up. */
1766 if (progress)
1767 (*progress) (0, baton);
1768
1769 while (xfered < len)
1770 {
1771 LONGEST xfer = target_write_partial (ops, object, annex,
1772 (gdb_byte *) buf + xfered,
1773 offset + xfered, len - xfered);
1774
1775 if (xfer == 0)
1776 return xfered;
1777 if (xfer < 0)
1778 return -1;
1779
1780 if (progress)
1781 (*progress) (xfer, baton);
1782
1783 xfered += xfer;
1784 QUIT;
1785 }
1786 return len;
1787 }
1788
1789 LONGEST
1790 target_write (struct target_ops *ops,
1791 enum target_object object,
1792 const char *annex, const gdb_byte *buf,
1793 ULONGEST offset, LONGEST len)
1794 {
1795 return target_write_with_progress (ops, object, annex, buf, offset, len,
1796 NULL, NULL);
1797 }
1798
1799 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1800 the size of the transferred data. PADDING additional bytes are
1801 available in *BUF_P. This is a helper function for
1802 target_read_alloc; see the declaration of that function for more
1803 information. */
1804
1805 static LONGEST
1806 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1807 const char *annex, gdb_byte **buf_p, int padding)
1808 {
1809 size_t buf_alloc, buf_pos;
1810 gdb_byte *buf;
1811 LONGEST n;
1812
1813 /* This function does not have a length parameter; it reads the
1814 entire OBJECT). Also, it doesn't support objects fetched partly
1815 from one target and partly from another (in a different stratum,
1816 e.g. a core file and an executable). Both reasons make it
1817 unsuitable for reading memory. */
1818 gdb_assert (object != TARGET_OBJECT_MEMORY);
1819
1820 /* Start by reading up to 4K at a time. The target will throttle
1821 this number down if necessary. */
1822 buf_alloc = 4096;
1823 buf = xmalloc (buf_alloc);
1824 buf_pos = 0;
1825 while (1)
1826 {
1827 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1828 buf_pos, buf_alloc - buf_pos - padding);
1829 if (n < 0)
1830 {
1831 /* An error occurred. */
1832 xfree (buf);
1833 return -1;
1834 }
1835 else if (n == 0)
1836 {
1837 /* Read all there was. */
1838 if (buf_pos == 0)
1839 xfree (buf);
1840 else
1841 *buf_p = buf;
1842 return buf_pos;
1843 }
1844
1845 buf_pos += n;
1846
1847 /* If the buffer is filling up, expand it. */
1848 if (buf_alloc < buf_pos * 2)
1849 {
1850 buf_alloc *= 2;
1851 buf = xrealloc (buf, buf_alloc);
1852 }
1853
1854 QUIT;
1855 }
1856 }
1857
1858 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1859 the size of the transferred data. See the declaration in "target.h"
1860 function for more information about the return value. */
1861
1862 LONGEST
1863 target_read_alloc (struct target_ops *ops, enum target_object object,
1864 const char *annex, gdb_byte **buf_p)
1865 {
1866 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1867 }
1868
1869 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1870 returned as a string, allocated using xmalloc. If an error occurs
1871 or the transfer is unsupported, NULL is returned. Empty objects
1872 are returned as allocated but empty strings. A warning is issued
1873 if the result contains any embedded NUL bytes. */
1874
1875 char *
1876 target_read_stralloc (struct target_ops *ops, enum target_object object,
1877 const char *annex)
1878 {
1879 gdb_byte *buffer;
1880 LONGEST transferred;
1881
1882 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1883
1884 if (transferred < 0)
1885 return NULL;
1886
1887 if (transferred == 0)
1888 return xstrdup ("");
1889
1890 buffer[transferred] = 0;
1891 if (strlen (buffer) < transferred)
1892 warning (_("target object %d, annex %s, "
1893 "contained unexpected null characters"),
1894 (int) object, annex ? annex : "(none)");
1895
1896 return (char *) buffer;
1897 }
1898
1899 /* Memory transfer methods. */
1900
1901 void
1902 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1903 LONGEST len)
1904 {
1905 /* This method is used to read from an alternate, non-current
1906 target. This read must bypass the overlay support (as symbols
1907 don't match this target), and GDB's internal cache (wrong cache
1908 for this target). */
1909 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1910 != len)
1911 memory_error (EIO, addr);
1912 }
1913
1914 ULONGEST
1915 get_target_memory_unsigned (struct target_ops *ops,
1916 CORE_ADDR addr, int len, enum bfd_endian byte_order)
1917 {
1918 gdb_byte buf[sizeof (ULONGEST)];
1919
1920 gdb_assert (len <= sizeof (buf));
1921 get_target_memory (ops, addr, buf, len);
1922 return extract_unsigned_integer (buf, len, byte_order);
1923 }
1924
1925 static void
1926 target_info (char *args, int from_tty)
1927 {
1928 struct target_ops *t;
1929 int has_all_mem = 0;
1930
1931 if (symfile_objfile != NULL)
1932 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1933
1934 for (t = target_stack; t != NULL; t = t->beneath)
1935 {
1936 if (!(*t->to_has_memory) (t))
1937 continue;
1938
1939 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1940 continue;
1941 if (has_all_mem)
1942 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1943 printf_unfiltered ("%s:\n", t->to_longname);
1944 (t->to_files_info) (t);
1945 has_all_mem = (*t->to_has_all_memory) (t);
1946 }
1947 }
1948
1949 /* This function is called before any new inferior is created, e.g.
1950 by running a program, attaching, or connecting to a target.
1951 It cleans up any state from previous invocations which might
1952 change between runs. This is a subset of what target_preopen
1953 resets (things which might change between targets). */
1954
1955 void
1956 target_pre_inferior (int from_tty)
1957 {
1958 /* Clear out solib state. Otherwise the solib state of the previous
1959 inferior might have survived and is entirely wrong for the new
1960 target. This has been observed on GNU/Linux using glibc 2.3. How
1961 to reproduce:
1962
1963 bash$ ./foo&
1964 [1] 4711
1965 bash$ ./foo&
1966 [1] 4712
1967 bash$ gdb ./foo
1968 [...]
1969 (gdb) attach 4711
1970 (gdb) detach
1971 (gdb) attach 4712
1972 Cannot access memory at address 0xdeadbeef
1973 */
1974
1975 /* In some OSs, the shared library list is the same/global/shared
1976 across inferiors. If code is shared between processes, so are
1977 memory regions and features. */
1978 if (!gdbarch_has_global_solist (target_gdbarch))
1979 {
1980 no_shared_libraries (NULL, from_tty);
1981
1982 invalidate_target_mem_regions ();
1983
1984 target_clear_description ();
1985 }
1986 }
1987
1988 /* Callback for iterate_over_inferiors. Gets rid of the given
1989 inferior. */
1990
1991 static int
1992 dispose_inferior (struct inferior *inf, void *args)
1993 {
1994 struct thread_info *thread;
1995
1996 thread = any_thread_of_process (inf->pid);
1997 if (thread)
1998 {
1999 switch_to_thread (thread->ptid);
2000
2001 /* Core inferiors actually should be detached, not killed. */
2002 if (target_has_execution)
2003 target_kill ();
2004 else
2005 target_detach (NULL, 0);
2006 }
2007
2008 return 0;
2009 }
2010
2011 /* This is to be called by the open routine before it does
2012 anything. */
2013
2014 void
2015 target_preopen (int from_tty)
2016 {
2017 dont_repeat ();
2018
2019 if (have_inferiors ())
2020 {
2021 if (!from_tty
2022 || !have_live_inferiors ()
2023 || query (_("A program is being debugged already. Kill it? ")))
2024 iterate_over_inferiors (dispose_inferior, NULL);
2025 else
2026 error (_("Program not killed."));
2027 }
2028
2029 /* Calling target_kill may remove the target from the stack. But if
2030 it doesn't (which seems like a win for UDI), remove it now. */
2031 /* Leave the exec target, though. The user may be switching from a
2032 live process to a core of the same program. */
2033 pop_all_targets_above (file_stratum, 0);
2034
2035 target_pre_inferior (from_tty);
2036 }
2037
2038 /* Detach a target after doing deferred register stores. */
2039
2040 void
2041 target_detach (char *args, int from_tty)
2042 {
2043 struct target_ops* t;
2044
2045 if (gdbarch_has_global_breakpoints (target_gdbarch))
2046 /* Don't remove global breakpoints here. They're removed on
2047 disconnection from the target. */
2048 ;
2049 else
2050 /* If we're in breakpoints-always-inserted mode, have to remove
2051 them before detaching. */
2052 remove_breakpoints_pid (PIDGET (inferior_ptid));
2053
2054 for (t = current_target.beneath; t != NULL; t = t->beneath)
2055 {
2056 if (t->to_detach != NULL)
2057 {
2058 t->to_detach (t, args, from_tty);
2059 if (targetdebug)
2060 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2061 args, from_tty);
2062 return;
2063 }
2064 }
2065
2066 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2067 }
2068
2069 void
2070 target_disconnect (char *args, int from_tty)
2071 {
2072 struct target_ops *t;
2073
2074 /* If we're in breakpoints-always-inserted mode or if breakpoints
2075 are global across processes, we have to remove them before
2076 disconnecting. */
2077 remove_breakpoints ();
2078
2079 for (t = current_target.beneath; t != NULL; t = t->beneath)
2080 if (t->to_disconnect != NULL)
2081 {
2082 if (targetdebug)
2083 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2084 args, from_tty);
2085 t->to_disconnect (t, args, from_tty);
2086 return;
2087 }
2088
2089 tcomplain ();
2090 }
2091
2092 ptid_t
2093 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2094 {
2095 struct target_ops *t;
2096
2097 for (t = current_target.beneath; t != NULL; t = t->beneath)
2098 {
2099 if (t->to_wait != NULL)
2100 {
2101 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2102
2103 if (targetdebug)
2104 {
2105 char *status_string;
2106
2107 status_string = target_waitstatus_to_string (status);
2108 fprintf_unfiltered (gdb_stdlog,
2109 "target_wait (%d, status) = %d, %s\n",
2110 PIDGET (ptid), PIDGET (retval),
2111 status_string);
2112 xfree (status_string);
2113 }
2114
2115 return retval;
2116 }
2117 }
2118
2119 noprocess ();
2120 }
2121
2122 char *
2123 target_pid_to_str (ptid_t ptid)
2124 {
2125 struct target_ops *t;
2126
2127 for (t = current_target.beneath; t != NULL; t = t->beneath)
2128 {
2129 if (t->to_pid_to_str != NULL)
2130 return (*t->to_pid_to_str) (t, ptid);
2131 }
2132
2133 return normal_pid_to_str (ptid);
2134 }
2135
2136 void
2137 target_resume (ptid_t ptid, int step, enum target_signal signal)
2138 {
2139 struct target_ops *t;
2140
2141 target_dcache_invalidate ();
2142
2143 for (t = current_target.beneath; t != NULL; t = t->beneath)
2144 {
2145 if (t->to_resume != NULL)
2146 {
2147 t->to_resume (t, ptid, step, signal);
2148 if (targetdebug)
2149 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2150 PIDGET (ptid),
2151 step ? "step" : "continue",
2152 target_signal_to_name (signal));
2153
2154 set_executing (ptid, 1);
2155 set_running (ptid, 1);
2156 clear_inline_frame_state (ptid);
2157 return;
2158 }
2159 }
2160
2161 noprocess ();
2162 }
2163 /* Look through the list of possible targets for a target that can
2164 follow forks. */
2165
2166 int
2167 target_follow_fork (int follow_child)
2168 {
2169 struct target_ops *t;
2170
2171 for (t = current_target.beneath; t != NULL; t = t->beneath)
2172 {
2173 if (t->to_follow_fork != NULL)
2174 {
2175 int retval = t->to_follow_fork (t, follow_child);
2176 if (targetdebug)
2177 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2178 follow_child, retval);
2179 return retval;
2180 }
2181 }
2182
2183 /* Some target returned a fork event, but did not know how to follow it. */
2184 internal_error (__FILE__, __LINE__,
2185 "could not find a target to follow fork");
2186 }
2187
2188 void
2189 target_mourn_inferior (void)
2190 {
2191 struct target_ops *t;
2192 for (t = current_target.beneath; t != NULL; t = t->beneath)
2193 {
2194 if (t->to_mourn_inferior != NULL)
2195 {
2196 t->to_mourn_inferior (t);
2197 if (targetdebug)
2198 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2199
2200 /* We no longer need to keep handles on any of the object files.
2201 Make sure to release them to avoid unnecessarily locking any
2202 of them while we're not actually debugging. */
2203 bfd_cache_close_all ();
2204
2205 return;
2206 }
2207 }
2208
2209 internal_error (__FILE__, __LINE__,
2210 "could not find a target to follow mourn inferiour");
2211 }
2212
2213 /* Look for a target which can describe architectural features, starting
2214 from TARGET. If we find one, return its description. */
2215
2216 const struct target_desc *
2217 target_read_description (struct target_ops *target)
2218 {
2219 struct target_ops *t;
2220
2221 for (t = target; t != NULL; t = t->beneath)
2222 if (t->to_read_description != NULL)
2223 {
2224 const struct target_desc *tdesc;
2225
2226 tdesc = t->to_read_description (t);
2227 if (tdesc)
2228 return tdesc;
2229 }
2230
2231 return NULL;
2232 }
2233
2234 /* The default implementation of to_search_memory.
2235 This implements a basic search of memory, reading target memory and
2236 performing the search here (as opposed to performing the search in on the
2237 target side with, for example, gdbserver). */
2238
2239 int
2240 simple_search_memory (struct target_ops *ops,
2241 CORE_ADDR start_addr, ULONGEST search_space_len,
2242 const gdb_byte *pattern, ULONGEST pattern_len,
2243 CORE_ADDR *found_addrp)
2244 {
2245 /* NOTE: also defined in find.c testcase. */
2246 #define SEARCH_CHUNK_SIZE 16000
2247 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2248 /* Buffer to hold memory contents for searching. */
2249 gdb_byte *search_buf;
2250 unsigned search_buf_size;
2251 struct cleanup *old_cleanups;
2252
2253 search_buf_size = chunk_size + pattern_len - 1;
2254
2255 /* No point in trying to allocate a buffer larger than the search space. */
2256 if (search_space_len < search_buf_size)
2257 search_buf_size = search_space_len;
2258
2259 search_buf = malloc (search_buf_size);
2260 if (search_buf == NULL)
2261 error (_("Unable to allocate memory to perform the search."));
2262 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2263
2264 /* Prime the search buffer. */
2265
2266 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2267 search_buf, start_addr, search_buf_size) != search_buf_size)
2268 {
2269 warning (_("Unable to access target memory at %s, halting search."),
2270 hex_string (start_addr));
2271 do_cleanups (old_cleanups);
2272 return -1;
2273 }
2274
2275 /* Perform the search.
2276
2277 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2278 When we've scanned N bytes we copy the trailing bytes to the start and
2279 read in another N bytes. */
2280
2281 while (search_space_len >= pattern_len)
2282 {
2283 gdb_byte *found_ptr;
2284 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2285
2286 found_ptr = memmem (search_buf, nr_search_bytes,
2287 pattern, pattern_len);
2288
2289 if (found_ptr != NULL)
2290 {
2291 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2292 *found_addrp = found_addr;
2293 do_cleanups (old_cleanups);
2294 return 1;
2295 }
2296
2297 /* Not found in this chunk, skip to next chunk. */
2298
2299 /* Don't let search_space_len wrap here, it's unsigned. */
2300 if (search_space_len >= chunk_size)
2301 search_space_len -= chunk_size;
2302 else
2303 search_space_len = 0;
2304
2305 if (search_space_len >= pattern_len)
2306 {
2307 unsigned keep_len = search_buf_size - chunk_size;
2308 CORE_ADDR read_addr = start_addr + keep_len;
2309 int nr_to_read;
2310
2311 /* Copy the trailing part of the previous iteration to the front
2312 of the buffer for the next iteration. */
2313 gdb_assert (keep_len == pattern_len - 1);
2314 memcpy (search_buf, search_buf + chunk_size, keep_len);
2315
2316 nr_to_read = min (search_space_len - keep_len, chunk_size);
2317
2318 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2319 search_buf + keep_len, read_addr,
2320 nr_to_read) != nr_to_read)
2321 {
2322 warning (_("Unable to access target memory at %s, halting search."),
2323 hex_string (read_addr));
2324 do_cleanups (old_cleanups);
2325 return -1;
2326 }
2327
2328 start_addr += chunk_size;
2329 }
2330 }
2331
2332 /* Not found. */
2333
2334 do_cleanups (old_cleanups);
2335 return 0;
2336 }
2337
2338 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2339 sequence of bytes in PATTERN with length PATTERN_LEN.
2340
2341 The result is 1 if found, 0 if not found, and -1 if there was an error
2342 requiring halting of the search (e.g. memory read error).
2343 If the pattern is found the address is recorded in FOUND_ADDRP. */
2344
2345 int
2346 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2347 const gdb_byte *pattern, ULONGEST pattern_len,
2348 CORE_ADDR *found_addrp)
2349 {
2350 struct target_ops *t;
2351 int found;
2352
2353 /* We don't use INHERIT to set current_target.to_search_memory,
2354 so we have to scan the target stack and handle targetdebug
2355 ourselves. */
2356
2357 if (targetdebug)
2358 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2359 hex_string (start_addr));
2360
2361 for (t = current_target.beneath; t != NULL; t = t->beneath)
2362 if (t->to_search_memory != NULL)
2363 break;
2364
2365 if (t != NULL)
2366 {
2367 found = t->to_search_memory (t, start_addr, search_space_len,
2368 pattern, pattern_len, found_addrp);
2369 }
2370 else
2371 {
2372 /* If a special version of to_search_memory isn't available, use the
2373 simple version. */
2374 found = simple_search_memory (current_target.beneath,
2375 start_addr, search_space_len,
2376 pattern, pattern_len, found_addrp);
2377 }
2378
2379 if (targetdebug)
2380 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2381
2382 return found;
2383 }
2384
2385 /* Look through the currently pushed targets. If none of them will
2386 be able to restart the currently running process, issue an error
2387 message. */
2388
2389 void
2390 target_require_runnable (void)
2391 {
2392 struct target_ops *t;
2393
2394 for (t = target_stack; t != NULL; t = t->beneath)
2395 {
2396 /* If this target knows how to create a new program, then
2397 assume we will still be able to after killing the current
2398 one. Either killing and mourning will not pop T, or else
2399 find_default_run_target will find it again. */
2400 if (t->to_create_inferior != NULL)
2401 return;
2402
2403 /* Do not worry about thread_stratum targets that can not
2404 create inferiors. Assume they will be pushed again if
2405 necessary, and continue to the process_stratum. */
2406 if (t->to_stratum == thread_stratum
2407 || t->to_stratum == arch_stratum)
2408 continue;
2409
2410 error (_("\
2411 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2412 t->to_shortname);
2413 }
2414
2415 /* This function is only called if the target is running. In that
2416 case there should have been a process_stratum target and it
2417 should either know how to create inferiors, or not... */
2418 internal_error (__FILE__, __LINE__, "No targets found");
2419 }
2420
2421 /* Look through the list of possible targets for a target that can
2422 execute a run or attach command without any other data. This is
2423 used to locate the default process stratum.
2424
2425 If DO_MESG is not NULL, the result is always valid (error() is
2426 called for errors); else, return NULL on error. */
2427
2428 static struct target_ops *
2429 find_default_run_target (char *do_mesg)
2430 {
2431 struct target_ops **t;
2432 struct target_ops *runable = NULL;
2433 int count;
2434
2435 count = 0;
2436
2437 for (t = target_structs; t < target_structs + target_struct_size;
2438 ++t)
2439 {
2440 if ((*t)->to_can_run && target_can_run (*t))
2441 {
2442 runable = *t;
2443 ++count;
2444 }
2445 }
2446
2447 if (count != 1)
2448 {
2449 if (do_mesg)
2450 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2451 else
2452 return NULL;
2453 }
2454
2455 return runable;
2456 }
2457
2458 void
2459 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2460 {
2461 struct target_ops *t;
2462
2463 t = find_default_run_target ("attach");
2464 (t->to_attach) (t, args, from_tty);
2465 return;
2466 }
2467
2468 void
2469 find_default_create_inferior (struct target_ops *ops,
2470 char *exec_file, char *allargs, char **env,
2471 int from_tty)
2472 {
2473 struct target_ops *t;
2474
2475 t = find_default_run_target ("run");
2476 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2477 return;
2478 }
2479
2480 static int
2481 find_default_can_async_p (void)
2482 {
2483 struct target_ops *t;
2484
2485 /* This may be called before the target is pushed on the stack;
2486 look for the default process stratum. If there's none, gdb isn't
2487 configured with a native debugger, and target remote isn't
2488 connected yet. */
2489 t = find_default_run_target (NULL);
2490 if (t && t->to_can_async_p)
2491 return (t->to_can_async_p) ();
2492 return 0;
2493 }
2494
2495 static int
2496 find_default_is_async_p (void)
2497 {
2498 struct target_ops *t;
2499
2500 /* This may be called before the target is pushed on the stack;
2501 look for the default process stratum. If there's none, gdb isn't
2502 configured with a native debugger, and target remote isn't
2503 connected yet. */
2504 t = find_default_run_target (NULL);
2505 if (t && t->to_is_async_p)
2506 return (t->to_is_async_p) ();
2507 return 0;
2508 }
2509
2510 static int
2511 find_default_supports_non_stop (void)
2512 {
2513 struct target_ops *t;
2514
2515 t = find_default_run_target (NULL);
2516 if (t && t->to_supports_non_stop)
2517 return (t->to_supports_non_stop) ();
2518 return 0;
2519 }
2520
2521 int
2522 target_supports_non_stop (void)
2523 {
2524 struct target_ops *t;
2525 for (t = &current_target; t != NULL; t = t->beneath)
2526 if (t->to_supports_non_stop)
2527 return t->to_supports_non_stop ();
2528
2529 return 0;
2530 }
2531
2532
2533 char *
2534 target_get_osdata (const char *type)
2535 {
2536 char *document;
2537 struct target_ops *t;
2538
2539 /* If we're already connected to something that can get us OS
2540 related data, use it. Otherwise, try using the native
2541 target. */
2542 if (current_target.to_stratum >= process_stratum)
2543 t = current_target.beneath;
2544 else
2545 t = find_default_run_target ("get OS data");
2546
2547 if (!t)
2548 return NULL;
2549
2550 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2551 }
2552
2553 /* Determine the current address space of thread PTID. */
2554
2555 struct address_space *
2556 target_thread_address_space (ptid_t ptid)
2557 {
2558 struct address_space *aspace;
2559 struct inferior *inf;
2560 struct target_ops *t;
2561
2562 for (t = current_target.beneath; t != NULL; t = t->beneath)
2563 {
2564 if (t->to_thread_address_space != NULL)
2565 {
2566 aspace = t->to_thread_address_space (t, ptid);
2567 gdb_assert (aspace);
2568
2569 if (targetdebug)
2570 fprintf_unfiltered (gdb_stdlog,
2571 "target_thread_address_space (%s) = %d\n",
2572 target_pid_to_str (ptid),
2573 address_space_num (aspace));
2574 return aspace;
2575 }
2576 }
2577
2578 /* Fall-back to the "main" address space of the inferior. */
2579 inf = find_inferior_pid (ptid_get_pid (ptid));
2580
2581 if (inf == NULL || inf->aspace == NULL)
2582 internal_error (__FILE__, __LINE__, "\
2583 Can't determine the current address space of thread %s\n",
2584 target_pid_to_str (ptid));
2585
2586 return inf->aspace;
2587 }
2588
2589 static int
2590 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2591 {
2592 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2593 }
2594
2595 static int
2596 default_watchpoint_addr_within_range (struct target_ops *target,
2597 CORE_ADDR addr,
2598 CORE_ADDR start, int length)
2599 {
2600 return addr >= start && addr < start + length;
2601 }
2602
2603 static struct gdbarch *
2604 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2605 {
2606 return target_gdbarch;
2607 }
2608
2609 static int
2610 return_zero (void)
2611 {
2612 return 0;
2613 }
2614
2615 static int
2616 return_one (void)
2617 {
2618 return 1;
2619 }
2620
2621 static int
2622 return_minus_one (void)
2623 {
2624 return -1;
2625 }
2626
2627 /* Find a single runnable target in the stack and return it. If for
2628 some reason there is more than one, return NULL. */
2629
2630 struct target_ops *
2631 find_run_target (void)
2632 {
2633 struct target_ops **t;
2634 struct target_ops *runable = NULL;
2635 int count;
2636
2637 count = 0;
2638
2639 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2640 {
2641 if ((*t)->to_can_run && target_can_run (*t))
2642 {
2643 runable = *t;
2644 ++count;
2645 }
2646 }
2647
2648 return (count == 1 ? runable : NULL);
2649 }
2650
2651 /* Find a single core_stratum target in the list of targets and return it.
2652 If for some reason there is more than one, return NULL. */
2653
2654 struct target_ops *
2655 find_core_target (void)
2656 {
2657 struct target_ops **t;
2658 struct target_ops *runable = NULL;
2659 int count;
2660
2661 count = 0;
2662
2663 for (t = target_structs; t < target_structs + target_struct_size;
2664 ++t)
2665 {
2666 if ((*t)->to_stratum == core_stratum)
2667 {
2668 runable = *t;
2669 ++count;
2670 }
2671 }
2672
2673 return (count == 1 ? runable : NULL);
2674 }
2675
2676 /*
2677 * Find the next target down the stack from the specified target.
2678 */
2679
2680 struct target_ops *
2681 find_target_beneath (struct target_ops *t)
2682 {
2683 return t->beneath;
2684 }
2685
2686 \f
2687 /* The inferior process has died. Long live the inferior! */
2688
2689 void
2690 generic_mourn_inferior (void)
2691 {
2692 ptid_t ptid;
2693
2694 ptid = inferior_ptid;
2695 inferior_ptid = null_ptid;
2696
2697 if (!ptid_equal (ptid, null_ptid))
2698 {
2699 int pid = ptid_get_pid (ptid);
2700 exit_inferior (pid);
2701 }
2702
2703 breakpoint_init_inferior (inf_exited);
2704 registers_changed ();
2705
2706 reopen_exec_file ();
2707 reinit_frame_cache ();
2708
2709 if (deprecated_detach_hook)
2710 deprecated_detach_hook ();
2711 }
2712 \f
2713 /* Helper function for child_wait and the derivatives of child_wait.
2714 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2715 translation of that in OURSTATUS. */
2716 void
2717 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2718 {
2719 if (WIFEXITED (hoststatus))
2720 {
2721 ourstatus->kind = TARGET_WAITKIND_EXITED;
2722 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2723 }
2724 else if (!WIFSTOPPED (hoststatus))
2725 {
2726 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2727 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2728 }
2729 else
2730 {
2731 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2732 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2733 }
2734 }
2735 \f
2736 /* Convert a normal process ID to a string. Returns the string in a
2737 static buffer. */
2738
2739 char *
2740 normal_pid_to_str (ptid_t ptid)
2741 {
2742 static char buf[32];
2743
2744 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2745 return buf;
2746 }
2747
2748 static char *
2749 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2750 {
2751 return normal_pid_to_str (ptid);
2752 }
2753
2754 /* Error-catcher for target_find_memory_regions */
2755 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2756 {
2757 error (_("No target."));
2758 return 0;
2759 }
2760
2761 /* Error-catcher for target_make_corefile_notes */
2762 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2763 {
2764 error (_("No target."));
2765 return NULL;
2766 }
2767
2768 /* Set up the handful of non-empty slots needed by the dummy target
2769 vector. */
2770
2771 static void
2772 init_dummy_target (void)
2773 {
2774 dummy_target.to_shortname = "None";
2775 dummy_target.to_longname = "None";
2776 dummy_target.to_doc = "";
2777 dummy_target.to_attach = find_default_attach;
2778 dummy_target.to_detach =
2779 (void (*)(struct target_ops *, char *, int))target_ignore;
2780 dummy_target.to_create_inferior = find_default_create_inferior;
2781 dummy_target.to_can_async_p = find_default_can_async_p;
2782 dummy_target.to_is_async_p = find_default_is_async_p;
2783 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2784 dummy_target.to_pid_to_str = dummy_pid_to_str;
2785 dummy_target.to_stratum = dummy_stratum;
2786 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2787 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2788 dummy_target.to_xfer_partial = default_xfer_partial;
2789 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2790 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2791 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2792 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2793 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2794 dummy_target.to_magic = OPS_MAGIC;
2795 }
2796 \f
2797 static void
2798 debug_to_open (char *args, int from_tty)
2799 {
2800 debug_target.to_open (args, from_tty);
2801
2802 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2803 }
2804
2805 void
2806 target_close (struct target_ops *targ, int quitting)
2807 {
2808 if (targ->to_xclose != NULL)
2809 targ->to_xclose (targ, quitting);
2810 else if (targ->to_close != NULL)
2811 targ->to_close (quitting);
2812
2813 if (targetdebug)
2814 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2815 }
2816
2817 void
2818 target_attach (char *args, int from_tty)
2819 {
2820 struct target_ops *t;
2821 for (t = current_target.beneath; t != NULL; t = t->beneath)
2822 {
2823 if (t->to_attach != NULL)
2824 {
2825 t->to_attach (t, args, from_tty);
2826 if (targetdebug)
2827 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2828 args, from_tty);
2829 return;
2830 }
2831 }
2832
2833 internal_error (__FILE__, __LINE__,
2834 "could not find a target to attach");
2835 }
2836
2837 int
2838 target_thread_alive (ptid_t ptid)
2839 {
2840 struct target_ops *t;
2841 for (t = current_target.beneath; t != NULL; t = t->beneath)
2842 {
2843 if (t->to_thread_alive != NULL)
2844 {
2845 int retval;
2846
2847 retval = t->to_thread_alive (t, ptid);
2848 if (targetdebug)
2849 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2850 PIDGET (ptid), retval);
2851
2852 return retval;
2853 }
2854 }
2855
2856 return 0;
2857 }
2858
2859 void
2860 target_find_new_threads (void)
2861 {
2862 struct target_ops *t;
2863 for (t = current_target.beneath; t != NULL; t = t->beneath)
2864 {
2865 if (t->to_find_new_threads != NULL)
2866 {
2867 t->to_find_new_threads (t);
2868 if (targetdebug)
2869 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2870
2871 return;
2872 }
2873 }
2874 }
2875
2876 static void
2877 debug_to_post_attach (int pid)
2878 {
2879 debug_target.to_post_attach (pid);
2880
2881 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2882 }
2883
2884 /* Return a pretty printed form of target_waitstatus.
2885 Space for the result is malloc'd, caller must free. */
2886
2887 char *
2888 target_waitstatus_to_string (const struct target_waitstatus *ws)
2889 {
2890 const char *kind_str = "status->kind = ";
2891
2892 switch (ws->kind)
2893 {
2894 case TARGET_WAITKIND_EXITED:
2895 return xstrprintf ("%sexited, status = %d",
2896 kind_str, ws->value.integer);
2897 case TARGET_WAITKIND_STOPPED:
2898 return xstrprintf ("%sstopped, signal = %s",
2899 kind_str, target_signal_to_name (ws->value.sig));
2900 case TARGET_WAITKIND_SIGNALLED:
2901 return xstrprintf ("%ssignalled, signal = %s",
2902 kind_str, target_signal_to_name (ws->value.sig));
2903 case TARGET_WAITKIND_LOADED:
2904 return xstrprintf ("%sloaded", kind_str);
2905 case TARGET_WAITKIND_FORKED:
2906 return xstrprintf ("%sforked", kind_str);
2907 case TARGET_WAITKIND_VFORKED:
2908 return xstrprintf ("%svforked", kind_str);
2909 case TARGET_WAITKIND_EXECD:
2910 return xstrprintf ("%sexecd", kind_str);
2911 case TARGET_WAITKIND_SYSCALL_ENTRY:
2912 return xstrprintf ("%sentered syscall", kind_str);
2913 case TARGET_WAITKIND_SYSCALL_RETURN:
2914 return xstrprintf ("%sexited syscall", kind_str);
2915 case TARGET_WAITKIND_SPURIOUS:
2916 return xstrprintf ("%sspurious", kind_str);
2917 case TARGET_WAITKIND_IGNORE:
2918 return xstrprintf ("%signore", kind_str);
2919 case TARGET_WAITKIND_NO_HISTORY:
2920 return xstrprintf ("%sno-history", kind_str);
2921 default:
2922 return xstrprintf ("%sunknown???", kind_str);
2923 }
2924 }
2925
2926 static void
2927 debug_print_register (const char * func,
2928 struct regcache *regcache, int regno)
2929 {
2930 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2931 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2932 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2933 && gdbarch_register_name (gdbarch, regno) != NULL
2934 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2935 fprintf_unfiltered (gdb_stdlog, "(%s)",
2936 gdbarch_register_name (gdbarch, regno));
2937 else
2938 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2939 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2940 {
2941 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2942 int i, size = register_size (gdbarch, regno);
2943 unsigned char buf[MAX_REGISTER_SIZE];
2944 regcache_raw_collect (regcache, regno, buf);
2945 fprintf_unfiltered (gdb_stdlog, " = ");
2946 for (i = 0; i < size; i++)
2947 {
2948 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2949 }
2950 if (size <= sizeof (LONGEST))
2951 {
2952 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
2953 fprintf_unfiltered (gdb_stdlog, " %s %s",
2954 core_addr_to_string_nz (val), plongest (val));
2955 }
2956 }
2957 fprintf_unfiltered (gdb_stdlog, "\n");
2958 }
2959
2960 void
2961 target_fetch_registers (struct regcache *regcache, int regno)
2962 {
2963 struct target_ops *t;
2964 for (t = current_target.beneath; t != NULL; t = t->beneath)
2965 {
2966 if (t->to_fetch_registers != NULL)
2967 {
2968 t->to_fetch_registers (t, regcache, regno);
2969 if (targetdebug)
2970 debug_print_register ("target_fetch_registers", regcache, regno);
2971 return;
2972 }
2973 }
2974 }
2975
2976 void
2977 target_store_registers (struct regcache *regcache, int regno)
2978 {
2979
2980 struct target_ops *t;
2981 for (t = current_target.beneath; t != NULL; t = t->beneath)
2982 {
2983 if (t->to_store_registers != NULL)
2984 {
2985 t->to_store_registers (t, regcache, regno);
2986 if (targetdebug)
2987 {
2988 debug_print_register ("target_store_registers", regcache, regno);
2989 }
2990 return;
2991 }
2992 }
2993
2994 noprocess ();
2995 }
2996
2997 static void
2998 debug_to_prepare_to_store (struct regcache *regcache)
2999 {
3000 debug_target.to_prepare_to_store (regcache);
3001
3002 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3003 }
3004
3005 static int
3006 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3007 int write, struct mem_attrib *attrib,
3008 struct target_ops *target)
3009 {
3010 int retval;
3011
3012 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3013 attrib, target);
3014
3015 fprintf_unfiltered (gdb_stdlog,
3016 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3017 paddress (target_gdbarch, memaddr), len,
3018 write ? "write" : "read", retval);
3019
3020 if (retval > 0)
3021 {
3022 int i;
3023
3024 fputs_unfiltered (", bytes =", gdb_stdlog);
3025 for (i = 0; i < retval; i++)
3026 {
3027 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3028 {
3029 if (targetdebug < 2 && i > 0)
3030 {
3031 fprintf_unfiltered (gdb_stdlog, " ...");
3032 break;
3033 }
3034 fprintf_unfiltered (gdb_stdlog, "\n");
3035 }
3036
3037 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3038 }
3039 }
3040
3041 fputc_unfiltered ('\n', gdb_stdlog);
3042
3043 return retval;
3044 }
3045
3046 static void
3047 debug_to_files_info (struct target_ops *target)
3048 {
3049 debug_target.to_files_info (target);
3050
3051 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3052 }
3053
3054 static int
3055 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3056 struct bp_target_info *bp_tgt)
3057 {
3058 int retval;
3059
3060 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3061
3062 fprintf_unfiltered (gdb_stdlog,
3063 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3064 (unsigned long) bp_tgt->placed_address,
3065 (unsigned long) retval);
3066 return retval;
3067 }
3068
3069 static int
3070 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3071 struct bp_target_info *bp_tgt)
3072 {
3073 int retval;
3074
3075 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3076
3077 fprintf_unfiltered (gdb_stdlog,
3078 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3079 (unsigned long) bp_tgt->placed_address,
3080 (unsigned long) retval);
3081 return retval;
3082 }
3083
3084 static int
3085 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3086 {
3087 int retval;
3088
3089 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3090
3091 fprintf_unfiltered (gdb_stdlog,
3092 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3093 (unsigned long) type,
3094 (unsigned long) cnt,
3095 (unsigned long) from_tty,
3096 (unsigned long) retval);
3097 return retval;
3098 }
3099
3100 static int
3101 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3102 {
3103 CORE_ADDR retval;
3104
3105 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3106
3107 fprintf_unfiltered (gdb_stdlog,
3108 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3109 (unsigned long) addr,
3110 (unsigned long) len,
3111 (unsigned long) retval);
3112 return retval;
3113 }
3114
3115 static int
3116 debug_to_stopped_by_watchpoint (void)
3117 {
3118 int retval;
3119
3120 retval = debug_target.to_stopped_by_watchpoint ();
3121
3122 fprintf_unfiltered (gdb_stdlog,
3123 "target_stopped_by_watchpoint () = %ld\n",
3124 (unsigned long) retval);
3125 return retval;
3126 }
3127
3128 static int
3129 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3130 {
3131 int retval;
3132
3133 retval = debug_target.to_stopped_data_address (target, addr);
3134
3135 fprintf_unfiltered (gdb_stdlog,
3136 "target_stopped_data_address ([0x%lx]) = %ld\n",
3137 (unsigned long)*addr,
3138 (unsigned long)retval);
3139 return retval;
3140 }
3141
3142 static int
3143 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3144 CORE_ADDR addr,
3145 CORE_ADDR start, int length)
3146 {
3147 int retval;
3148
3149 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3150 start, length);
3151
3152 fprintf_filtered (gdb_stdlog,
3153 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3154 (unsigned long) addr, (unsigned long) start, length,
3155 retval);
3156 return retval;
3157 }
3158
3159 static int
3160 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3161 struct bp_target_info *bp_tgt)
3162 {
3163 int retval;
3164
3165 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3166
3167 fprintf_unfiltered (gdb_stdlog,
3168 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3169 (unsigned long) bp_tgt->placed_address,
3170 (unsigned long) retval);
3171 return retval;
3172 }
3173
3174 static int
3175 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3176 struct bp_target_info *bp_tgt)
3177 {
3178 int retval;
3179
3180 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3181
3182 fprintf_unfiltered (gdb_stdlog,
3183 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3184 (unsigned long) bp_tgt->placed_address,
3185 (unsigned long) retval);
3186 return retval;
3187 }
3188
3189 static int
3190 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
3191 {
3192 int retval;
3193
3194 retval = debug_target.to_insert_watchpoint (addr, len, type);
3195
3196 fprintf_unfiltered (gdb_stdlog,
3197 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
3198 (unsigned long) addr, len, type, (unsigned long) retval);
3199 return retval;
3200 }
3201
3202 static int
3203 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
3204 {
3205 int retval;
3206
3207 retval = debug_target.to_remove_watchpoint (addr, len, type);
3208
3209 fprintf_unfiltered (gdb_stdlog,
3210 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3211 (unsigned long) addr, len, type, (unsigned long) retval);
3212 return retval;
3213 }
3214
3215 static void
3216 debug_to_terminal_init (void)
3217 {
3218 debug_target.to_terminal_init ();
3219
3220 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3221 }
3222
3223 static void
3224 debug_to_terminal_inferior (void)
3225 {
3226 debug_target.to_terminal_inferior ();
3227
3228 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3229 }
3230
3231 static void
3232 debug_to_terminal_ours_for_output (void)
3233 {
3234 debug_target.to_terminal_ours_for_output ();
3235
3236 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3237 }
3238
3239 static void
3240 debug_to_terminal_ours (void)
3241 {
3242 debug_target.to_terminal_ours ();
3243
3244 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3245 }
3246
3247 static void
3248 debug_to_terminal_save_ours (void)
3249 {
3250 debug_target.to_terminal_save_ours ();
3251
3252 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3253 }
3254
3255 static void
3256 debug_to_terminal_info (char *arg, int from_tty)
3257 {
3258 debug_target.to_terminal_info (arg, from_tty);
3259
3260 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3261 from_tty);
3262 }
3263
3264 static void
3265 debug_to_load (char *args, int from_tty)
3266 {
3267 debug_target.to_load (args, from_tty);
3268
3269 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3270 }
3271
3272 static int
3273 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3274 {
3275 int retval;
3276
3277 retval = debug_target.to_lookup_symbol (name, addrp);
3278
3279 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3280
3281 return retval;
3282 }
3283
3284 static void
3285 debug_to_post_startup_inferior (ptid_t ptid)
3286 {
3287 debug_target.to_post_startup_inferior (ptid);
3288
3289 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3290 PIDGET (ptid));
3291 }
3292
3293 static void
3294 debug_to_acknowledge_created_inferior (int pid)
3295 {
3296 debug_target.to_acknowledge_created_inferior (pid);
3297
3298 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3299 pid);
3300 }
3301
3302 static void
3303 debug_to_insert_fork_catchpoint (int pid)
3304 {
3305 debug_target.to_insert_fork_catchpoint (pid);
3306
3307 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3308 pid);
3309 }
3310
3311 static int
3312 debug_to_remove_fork_catchpoint (int pid)
3313 {
3314 int retval;
3315
3316 retval = debug_target.to_remove_fork_catchpoint (pid);
3317
3318 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3319 pid, retval);
3320
3321 return retval;
3322 }
3323
3324 static void
3325 debug_to_insert_vfork_catchpoint (int pid)
3326 {
3327 debug_target.to_insert_vfork_catchpoint (pid);
3328
3329 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3330 pid);
3331 }
3332
3333 static int
3334 debug_to_remove_vfork_catchpoint (int pid)
3335 {
3336 int retval;
3337
3338 retval = debug_target.to_remove_vfork_catchpoint (pid);
3339
3340 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3341 pid, retval);
3342
3343 return retval;
3344 }
3345
3346 static void
3347 debug_to_insert_exec_catchpoint (int pid)
3348 {
3349 debug_target.to_insert_exec_catchpoint (pid);
3350
3351 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3352 pid);
3353 }
3354
3355 static int
3356 debug_to_remove_exec_catchpoint (int pid)
3357 {
3358 int retval;
3359
3360 retval = debug_target.to_remove_exec_catchpoint (pid);
3361
3362 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3363 pid, retval);
3364
3365 return retval;
3366 }
3367
3368 static int
3369 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3370 {
3371 int has_exited;
3372
3373 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3374
3375 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3376 pid, wait_status, *exit_status, has_exited);
3377
3378 return has_exited;
3379 }
3380
3381 static int
3382 debug_to_can_run (void)
3383 {
3384 int retval;
3385
3386 retval = debug_target.to_can_run ();
3387
3388 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3389
3390 return retval;
3391 }
3392
3393 static void
3394 debug_to_notice_signals (ptid_t ptid)
3395 {
3396 debug_target.to_notice_signals (ptid);
3397
3398 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3399 PIDGET (ptid));
3400 }
3401
3402 static struct gdbarch *
3403 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3404 {
3405 struct gdbarch *retval;
3406
3407 retval = debug_target.to_thread_architecture (ops, ptid);
3408
3409 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3410 target_pid_to_str (ptid), host_address_to_string (retval),
3411 gdbarch_bfd_arch_info (retval)->printable_name);
3412 return retval;
3413 }
3414
3415 static void
3416 debug_to_stop (ptid_t ptid)
3417 {
3418 debug_target.to_stop (ptid);
3419
3420 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3421 target_pid_to_str (ptid));
3422 }
3423
3424 static void
3425 debug_to_rcmd (char *command,
3426 struct ui_file *outbuf)
3427 {
3428 debug_target.to_rcmd (command, outbuf);
3429 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3430 }
3431
3432 static char *
3433 debug_to_pid_to_exec_file (int pid)
3434 {
3435 char *exec_file;
3436
3437 exec_file = debug_target.to_pid_to_exec_file (pid);
3438
3439 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3440 pid, exec_file);
3441
3442 return exec_file;
3443 }
3444
3445 static void
3446 setup_target_debug (void)
3447 {
3448 memcpy (&debug_target, &current_target, sizeof debug_target);
3449
3450 current_target.to_open = debug_to_open;
3451 current_target.to_post_attach = debug_to_post_attach;
3452 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3453 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3454 current_target.to_files_info = debug_to_files_info;
3455 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3456 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3457 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3458 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3459 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3460 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3461 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3462 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3463 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3464 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3465 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3466 current_target.to_terminal_init = debug_to_terminal_init;
3467 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3468 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3469 current_target.to_terminal_ours = debug_to_terminal_ours;
3470 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3471 current_target.to_terminal_info = debug_to_terminal_info;
3472 current_target.to_load = debug_to_load;
3473 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3474 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3475 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3476 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3477 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3478 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3479 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3480 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3481 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3482 current_target.to_has_exited = debug_to_has_exited;
3483 current_target.to_can_run = debug_to_can_run;
3484 current_target.to_notice_signals = debug_to_notice_signals;
3485 current_target.to_stop = debug_to_stop;
3486 current_target.to_rcmd = debug_to_rcmd;
3487 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3488 current_target.to_thread_architecture = debug_to_thread_architecture;
3489 }
3490 \f
3491
3492 static char targ_desc[] =
3493 "Names of targets and files being debugged.\n\
3494 Shows the entire stack of targets currently in use (including the exec-file,\n\
3495 core-file, and process, if any), as well as the symbol file name.";
3496
3497 static void
3498 do_monitor_command (char *cmd,
3499 int from_tty)
3500 {
3501 if ((current_target.to_rcmd
3502 == (void (*) (char *, struct ui_file *)) tcomplain)
3503 || (current_target.to_rcmd == debug_to_rcmd
3504 && (debug_target.to_rcmd
3505 == (void (*) (char *, struct ui_file *)) tcomplain)))
3506 error (_("\"monitor\" command not supported by this target."));
3507 target_rcmd (cmd, gdb_stdtarg);
3508 }
3509
3510 /* Print the name of each layers of our target stack. */
3511
3512 static void
3513 maintenance_print_target_stack (char *cmd, int from_tty)
3514 {
3515 struct target_ops *t;
3516
3517 printf_filtered (_("The current target stack is:\n"));
3518
3519 for (t = target_stack; t != NULL; t = t->beneath)
3520 {
3521 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3522 }
3523 }
3524
3525 /* Controls if async mode is permitted. */
3526 int target_async_permitted = 0;
3527
3528 /* The set command writes to this variable. If the inferior is
3529 executing, linux_nat_async_permitted is *not* updated. */
3530 static int target_async_permitted_1 = 0;
3531
3532 static void
3533 set_maintenance_target_async_permitted (char *args, int from_tty,
3534 struct cmd_list_element *c)
3535 {
3536 if (have_live_inferiors ())
3537 {
3538 target_async_permitted_1 = target_async_permitted;
3539 error (_("Cannot change this setting while the inferior is running."));
3540 }
3541
3542 target_async_permitted = target_async_permitted_1;
3543 }
3544
3545 static void
3546 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3547 struct cmd_list_element *c,
3548 const char *value)
3549 {
3550 fprintf_filtered (file, _("\
3551 Controlling the inferior in asynchronous mode is %s.\n"), value);
3552 }
3553
3554 void
3555 initialize_targets (void)
3556 {
3557 init_dummy_target ();
3558 push_target (&dummy_target);
3559
3560 add_info ("target", target_info, targ_desc);
3561 add_info ("files", target_info, targ_desc);
3562
3563 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3564 Set target debugging."), _("\
3565 Show target debugging."), _("\
3566 When non-zero, target debugging is enabled. Higher numbers are more\n\
3567 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3568 command."),
3569 NULL,
3570 show_targetdebug,
3571 &setdebuglist, &showdebuglist);
3572
3573 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3574 &trust_readonly, _("\
3575 Set mode for reading from readonly sections."), _("\
3576 Show mode for reading from readonly sections."), _("\
3577 When this mode is on, memory reads from readonly sections (such as .text)\n\
3578 will be read from the object file instead of from the target. This will\n\
3579 result in significant performance improvement for remote targets."),
3580 NULL,
3581 show_trust_readonly,
3582 &setlist, &showlist);
3583
3584 add_com ("monitor", class_obscure, do_monitor_command,
3585 _("Send a command to the remote monitor (remote targets only)."));
3586
3587 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3588 _("Print the name of each layer of the internal target stack."),
3589 &maintenanceprintlist);
3590
3591 add_setshow_boolean_cmd ("target-async", no_class,
3592 &target_async_permitted_1, _("\
3593 Set whether gdb controls the inferior in asynchronous mode."), _("\
3594 Show whether gdb controls the inferior in asynchronous mode."), _("\
3595 Tells gdb whether to control the inferior in asynchronous mode."),
3596 set_maintenance_target_async_permitted,
3597 show_maintenance_target_async_permitted,
3598 &setlist,
3599 &showlist);
3600
3601 add_setshow_boolean_cmd ("stack-cache", class_support,
3602 &stack_cache_enabled_p_1, _("\
3603 Set cache use for stack access."), _("\
3604 Show cache use for stack access."), _("\
3605 When on, use the data cache for all stack access, regardless of any\n\
3606 configured memory regions. This improves remote performance significantly.\n\
3607 By default, caching for stack access is on."),
3608 set_stack_cache_enabled_p,
3609 show_stack_cache_enabled_p,
3610 &setlist, &showlist);
3611
3612 target_dcache = dcache_init ();
3613 }
This page took 0.111284 seconds and 4 git commands to generate.