ce630f43de794b5e487128fcf8650fb616841930
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static struct target_ops *find_default_run_target (const char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (const char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (const char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, const char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Define it. */
433
434 enum target_terminal::terminal_state target_terminal::terminal_state
435 = target_terminal::terminal_is_ours;
436
437 /* See target/target.h. */
438
439 void
440 target_terminal::init (void)
441 {
442 (*current_target.to_terminal_init) (&current_target);
443
444 terminal_state = terminal_is_ours;
445 }
446
447 /* See target/target.h. */
448
449 void
450 target_terminal::inferior (void)
451 {
452 struct ui *ui = current_ui;
453
454 /* A background resume (``run&'') should leave GDB in control of the
455 terminal. */
456 if (ui->prompt_state != PROMPT_BLOCKED)
457 return;
458
459 /* Since we always run the inferior in the main console (unless "set
460 inferior-tty" is in effect), when some UI other than the main one
461 calls target_terminal::inferior, then we leave the main UI's
462 terminal settings as is. */
463 if (ui != main_ui)
464 return;
465
466 if (terminal_state == terminal_is_inferior)
467 return;
468
469 /* If GDB is resuming the inferior in the foreground, install
470 inferior's terminal modes. */
471 (*current_target.to_terminal_inferior) (&current_target);
472 terminal_state = terminal_is_inferior;
473
474 /* If the user hit C-c before, pretend that it was hit right
475 here. */
476 if (check_quit_flag ())
477 target_pass_ctrlc ();
478 }
479
480 /* See target/target.h. */
481
482 void
483 target_terminal::ours ()
484 {
485 struct ui *ui = current_ui;
486
487 /* See target_terminal::inferior. */
488 if (ui != main_ui)
489 return;
490
491 if (terminal_state == terminal_is_ours)
492 return;
493
494 (*current_target.to_terminal_ours) (&current_target);
495 terminal_state = terminal_is_ours;
496 }
497
498 /* See target/target.h. */
499
500 void
501 target_terminal::ours_for_output ()
502 {
503 struct ui *ui = current_ui;
504
505 /* See target_terminal::inferior. */
506 if (ui != main_ui)
507 return;
508
509 if (terminal_state != terminal_is_inferior)
510 return;
511 (*current_target.to_terminal_ours_for_output) (&current_target);
512 terminal_state = terminal_is_ours_for_output;
513 }
514
515 /* See target/target.h. */
516
517 void
518 target_terminal::info (const char *arg, int from_tty)
519 {
520 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
521 }
522
523 /* See target.h. */
524
525 int
526 target_supports_terminal_ours (void)
527 {
528 struct target_ops *t;
529
530 for (t = current_target.beneath; t != NULL; t = t->beneath)
531 {
532 if (t->to_terminal_ours != delegate_terminal_ours
533 && t->to_terminal_ours != tdefault_terminal_ours)
534 return 1;
535 }
536
537 return 0;
538 }
539
540 static void
541 tcomplain (void)
542 {
543 error (_("You can't do that when your target is `%s'"),
544 current_target.to_shortname);
545 }
546
547 void
548 noprocess (void)
549 {
550 error (_("You can't do that without a process to debug."));
551 }
552
553 static void
554 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
555 {
556 printf_unfiltered (_("No saved terminal information.\n"));
557 }
558
559 /* A default implementation for the to_get_ada_task_ptid target method.
560
561 This function builds the PTID by using both LWP and TID as part of
562 the PTID lwp and tid elements. The pid used is the pid of the
563 inferior_ptid. */
564
565 static ptid_t
566 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
567 {
568 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
569 }
570
571 static enum exec_direction_kind
572 default_execution_direction (struct target_ops *self)
573 {
574 if (!target_can_execute_reverse)
575 return EXEC_FORWARD;
576 else if (!target_can_async_p ())
577 return EXEC_FORWARD;
578 else
579 gdb_assert_not_reached ("\
580 to_execution_direction must be implemented for reverse async");
581 }
582
583 /* Go through the target stack from top to bottom, copying over zero
584 entries in current_target, then filling in still empty entries. In
585 effect, we are doing class inheritance through the pushed target
586 vectors.
587
588 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
589 is currently implemented, is that it discards any knowledge of
590 which target an inherited method originally belonged to.
591 Consequently, new new target methods should instead explicitly and
592 locally search the target stack for the target that can handle the
593 request. */
594
595 static void
596 update_current_target (void)
597 {
598 struct target_ops *t;
599
600 /* First, reset current's contents. */
601 memset (&current_target, 0, sizeof (current_target));
602
603 /* Install the delegators. */
604 install_delegators (&current_target);
605
606 current_target.to_stratum = target_stack->to_stratum;
607
608 #define INHERIT(FIELD, TARGET) \
609 if (!current_target.FIELD) \
610 current_target.FIELD = (TARGET)->FIELD
611
612 /* Do not add any new INHERITs here. Instead, use the delegation
613 mechanism provided by make-target-delegates. */
614 for (t = target_stack; t; t = t->beneath)
615 {
616 INHERIT (to_shortname, t);
617 INHERIT (to_longname, t);
618 INHERIT (to_attach_no_wait, t);
619 INHERIT (to_have_steppable_watchpoint, t);
620 INHERIT (to_have_continuable_watchpoint, t);
621 INHERIT (to_has_thread_control, t);
622 }
623 #undef INHERIT
624
625 /* Finally, position the target-stack beneath the squashed
626 "current_target". That way code looking for a non-inherited
627 target method can quickly and simply find it. */
628 current_target.beneath = target_stack;
629
630 if (targetdebug)
631 setup_target_debug ();
632 }
633
634 /* Push a new target type into the stack of the existing target accessors,
635 possibly superseding some of the existing accessors.
636
637 Rather than allow an empty stack, we always have the dummy target at
638 the bottom stratum, so we can call the function vectors without
639 checking them. */
640
641 void
642 push_target (struct target_ops *t)
643 {
644 struct target_ops **cur;
645
646 /* Check magic number. If wrong, it probably means someone changed
647 the struct definition, but not all the places that initialize one. */
648 if (t->to_magic != OPS_MAGIC)
649 {
650 fprintf_unfiltered (gdb_stderr,
651 "Magic number of %s target struct wrong\n",
652 t->to_shortname);
653 internal_error (__FILE__, __LINE__,
654 _("failed internal consistency check"));
655 }
656
657 /* Find the proper stratum to install this target in. */
658 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
659 {
660 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
661 break;
662 }
663
664 /* If there's already targets at this stratum, remove them. */
665 /* FIXME: cagney/2003-10-15: I think this should be popping all
666 targets to CUR, and not just those at this stratum level. */
667 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
668 {
669 /* There's already something at this stratum level. Close it,
670 and un-hook it from the stack. */
671 struct target_ops *tmp = (*cur);
672
673 (*cur) = (*cur)->beneath;
674 tmp->beneath = NULL;
675 target_close (tmp);
676 }
677
678 /* We have removed all targets in our stratum, now add the new one. */
679 t->beneath = (*cur);
680 (*cur) = t;
681
682 update_current_target ();
683 }
684
685 /* Remove a target_ops vector from the stack, wherever it may be.
686 Return how many times it was removed (0 or 1). */
687
688 int
689 unpush_target (struct target_ops *t)
690 {
691 struct target_ops **cur;
692 struct target_ops *tmp;
693
694 if (t->to_stratum == dummy_stratum)
695 internal_error (__FILE__, __LINE__,
696 _("Attempt to unpush the dummy target"));
697
698 /* Look for the specified target. Note that we assume that a target
699 can only occur once in the target stack. */
700
701 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
702 {
703 if ((*cur) == t)
704 break;
705 }
706
707 /* If we don't find target_ops, quit. Only open targets should be
708 closed. */
709 if ((*cur) == NULL)
710 return 0;
711
712 /* Unchain the target. */
713 tmp = (*cur);
714 (*cur) = (*cur)->beneath;
715 tmp->beneath = NULL;
716
717 update_current_target ();
718
719 /* Finally close the target. Note we do this after unchaining, so
720 any target method calls from within the target_close
721 implementation don't end up in T anymore. */
722 target_close (t);
723
724 return 1;
725 }
726
727 /* Unpush TARGET and assert that it worked. */
728
729 static void
730 unpush_target_and_assert (struct target_ops *target)
731 {
732 if (!unpush_target (target))
733 {
734 fprintf_unfiltered (gdb_stderr,
735 "pop_all_targets couldn't find target %s\n",
736 target->to_shortname);
737 internal_error (__FILE__, __LINE__,
738 _("failed internal consistency check"));
739 }
740 }
741
742 void
743 pop_all_targets_above (enum strata above_stratum)
744 {
745 while ((int) (current_target.to_stratum) > (int) above_stratum)
746 unpush_target_and_assert (target_stack);
747 }
748
749 /* See target.h. */
750
751 void
752 pop_all_targets_at_and_above (enum strata stratum)
753 {
754 while ((int) (current_target.to_stratum) >= (int) stratum)
755 unpush_target_and_assert (target_stack);
756 }
757
758 void
759 pop_all_targets (void)
760 {
761 pop_all_targets_above (dummy_stratum);
762 }
763
764 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
765
766 int
767 target_is_pushed (struct target_ops *t)
768 {
769 struct target_ops *cur;
770
771 /* Check magic number. If wrong, it probably means someone changed
772 the struct definition, but not all the places that initialize one. */
773 if (t->to_magic != OPS_MAGIC)
774 {
775 fprintf_unfiltered (gdb_stderr,
776 "Magic number of %s target struct wrong\n",
777 t->to_shortname);
778 internal_error (__FILE__, __LINE__,
779 _("failed internal consistency check"));
780 }
781
782 for (cur = target_stack; cur != NULL; cur = cur->beneath)
783 if (cur == t)
784 return 1;
785
786 return 0;
787 }
788
789 /* Default implementation of to_get_thread_local_address. */
790
791 static void
792 generic_tls_error (void)
793 {
794 throw_error (TLS_GENERIC_ERROR,
795 _("Cannot find thread-local variables on this target"));
796 }
797
798 /* Using the objfile specified in OBJFILE, find the address for the
799 current thread's thread-local storage with offset OFFSET. */
800 CORE_ADDR
801 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
802 {
803 volatile CORE_ADDR addr = 0;
804 struct target_ops *target = &current_target;
805
806 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
807 {
808 ptid_t ptid = inferior_ptid;
809
810 TRY
811 {
812 CORE_ADDR lm_addr;
813
814 /* Fetch the load module address for this objfile. */
815 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
816 objfile);
817
818 addr = target->to_get_thread_local_address (target, ptid,
819 lm_addr, offset);
820 }
821 /* If an error occurred, print TLS related messages here. Otherwise,
822 throw the error to some higher catcher. */
823 CATCH (ex, RETURN_MASK_ALL)
824 {
825 int objfile_is_library = (objfile->flags & OBJF_SHARED);
826
827 switch (ex.error)
828 {
829 case TLS_NO_LIBRARY_SUPPORT_ERROR:
830 error (_("Cannot find thread-local variables "
831 "in this thread library."));
832 break;
833 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
834 if (objfile_is_library)
835 error (_("Cannot find shared library `%s' in dynamic"
836 " linker's load module list"), objfile_name (objfile));
837 else
838 error (_("Cannot find executable file `%s' in dynamic"
839 " linker's load module list"), objfile_name (objfile));
840 break;
841 case TLS_NOT_ALLOCATED_YET_ERROR:
842 if (objfile_is_library)
843 error (_("The inferior has not yet allocated storage for"
844 " thread-local variables in\n"
845 "the shared library `%s'\n"
846 "for %s"),
847 objfile_name (objfile), target_pid_to_str (ptid));
848 else
849 error (_("The inferior has not yet allocated storage for"
850 " thread-local variables in\n"
851 "the executable `%s'\n"
852 "for %s"),
853 objfile_name (objfile), target_pid_to_str (ptid));
854 break;
855 case TLS_GENERIC_ERROR:
856 if (objfile_is_library)
857 error (_("Cannot find thread-local storage for %s, "
858 "shared library %s:\n%s"),
859 target_pid_to_str (ptid),
860 objfile_name (objfile), ex.message);
861 else
862 error (_("Cannot find thread-local storage for %s, "
863 "executable file %s:\n%s"),
864 target_pid_to_str (ptid),
865 objfile_name (objfile), ex.message);
866 break;
867 default:
868 throw_exception (ex);
869 break;
870 }
871 }
872 END_CATCH
873 }
874 /* It wouldn't be wrong here to try a gdbarch method, too; finding
875 TLS is an ABI-specific thing. But we don't do that yet. */
876 else
877 error (_("Cannot find thread-local variables on this target"));
878
879 return addr;
880 }
881
882 const char *
883 target_xfer_status_to_string (enum target_xfer_status status)
884 {
885 #define CASE(X) case X: return #X
886 switch (status)
887 {
888 CASE(TARGET_XFER_E_IO);
889 CASE(TARGET_XFER_UNAVAILABLE);
890 default:
891 return "<unknown>";
892 }
893 #undef CASE
894 };
895
896
897 #undef MIN
898 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
899
900 /* target_read_string -- read a null terminated string, up to LEN bytes,
901 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
902 Set *STRING to a pointer to malloc'd memory containing the data; the caller
903 is responsible for freeing it. Return the number of bytes successfully
904 read. */
905
906 int
907 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
908 {
909 int tlen, offset, i;
910 gdb_byte buf[4];
911 int errcode = 0;
912 char *buffer;
913 int buffer_allocated;
914 char *bufptr;
915 unsigned int nbytes_read = 0;
916
917 gdb_assert (string);
918
919 /* Small for testing. */
920 buffer_allocated = 4;
921 buffer = (char *) xmalloc (buffer_allocated);
922 bufptr = buffer;
923
924 while (len > 0)
925 {
926 tlen = MIN (len, 4 - (memaddr & 3));
927 offset = memaddr & 3;
928
929 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
930 if (errcode != 0)
931 {
932 /* The transfer request might have crossed the boundary to an
933 unallocated region of memory. Retry the transfer, requesting
934 a single byte. */
935 tlen = 1;
936 offset = 0;
937 errcode = target_read_memory (memaddr, buf, 1);
938 if (errcode != 0)
939 goto done;
940 }
941
942 if (bufptr - buffer + tlen > buffer_allocated)
943 {
944 unsigned int bytes;
945
946 bytes = bufptr - buffer;
947 buffer_allocated *= 2;
948 buffer = (char *) xrealloc (buffer, buffer_allocated);
949 bufptr = buffer + bytes;
950 }
951
952 for (i = 0; i < tlen; i++)
953 {
954 *bufptr++ = buf[i + offset];
955 if (buf[i + offset] == '\000')
956 {
957 nbytes_read += i + 1;
958 goto done;
959 }
960 }
961
962 memaddr += tlen;
963 len -= tlen;
964 nbytes_read += tlen;
965 }
966 done:
967 *string = buffer;
968 if (errnop != NULL)
969 *errnop = errcode;
970 return nbytes_read;
971 }
972
973 struct target_section_table *
974 target_get_section_table (struct target_ops *target)
975 {
976 return (*target->to_get_section_table) (target);
977 }
978
979 /* Find a section containing ADDR. */
980
981 struct target_section *
982 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
983 {
984 struct target_section_table *table = target_get_section_table (target);
985 struct target_section *secp;
986
987 if (table == NULL)
988 return NULL;
989
990 for (secp = table->sections; secp < table->sections_end; secp++)
991 {
992 if (addr >= secp->addr && addr < secp->endaddr)
993 return secp;
994 }
995 return NULL;
996 }
997
998
999 /* Helper for the memory xfer routines. Checks the attributes of the
1000 memory region of MEMADDR against the read or write being attempted.
1001 If the access is permitted returns true, otherwise returns false.
1002 REGION_P is an optional output parameter. If not-NULL, it is
1003 filled with a pointer to the memory region of MEMADDR. REG_LEN
1004 returns LEN trimmed to the end of the region. This is how much the
1005 caller can continue requesting, if the access is permitted. A
1006 single xfer request must not straddle memory region boundaries. */
1007
1008 static int
1009 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1010 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1011 struct mem_region **region_p)
1012 {
1013 struct mem_region *region;
1014
1015 region = lookup_mem_region (memaddr);
1016
1017 if (region_p != NULL)
1018 *region_p = region;
1019
1020 switch (region->attrib.mode)
1021 {
1022 case MEM_RO:
1023 if (writebuf != NULL)
1024 return 0;
1025 break;
1026
1027 case MEM_WO:
1028 if (readbuf != NULL)
1029 return 0;
1030 break;
1031
1032 case MEM_FLASH:
1033 /* We only support writing to flash during "load" for now. */
1034 if (writebuf != NULL)
1035 error (_("Writing to flash memory forbidden in this context"));
1036 break;
1037
1038 case MEM_NONE:
1039 return 0;
1040 }
1041
1042 /* region->hi == 0 means there's no upper bound. */
1043 if (memaddr + len < region->hi || region->hi == 0)
1044 *reg_len = len;
1045 else
1046 *reg_len = region->hi - memaddr;
1047
1048 return 1;
1049 }
1050
1051 /* Read memory from more than one valid target. A core file, for
1052 instance, could have some of memory but delegate other bits to
1053 the target below it. So, we must manually try all targets. */
1054
1055 enum target_xfer_status
1056 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1057 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1058 ULONGEST *xfered_len)
1059 {
1060 enum target_xfer_status res;
1061
1062 do
1063 {
1064 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1065 readbuf, writebuf, memaddr, len,
1066 xfered_len);
1067 if (res == TARGET_XFER_OK)
1068 break;
1069
1070 /* Stop if the target reports that the memory is not available. */
1071 if (res == TARGET_XFER_UNAVAILABLE)
1072 break;
1073
1074 /* We want to continue past core files to executables, but not
1075 past a running target's memory. */
1076 if (ops->to_has_all_memory (ops))
1077 break;
1078
1079 ops = ops->beneath;
1080 }
1081 while (ops != NULL);
1082
1083 /* The cache works at the raw memory level. Make sure the cache
1084 gets updated with raw contents no matter what kind of memory
1085 object was originally being written. Note we do write-through
1086 first, so that if it fails, we don't write to the cache contents
1087 that never made it to the target. */
1088 if (writebuf != NULL
1089 && !ptid_equal (inferior_ptid, null_ptid)
1090 && target_dcache_init_p ()
1091 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1092 {
1093 DCACHE *dcache = target_dcache_get ();
1094
1095 /* Note that writing to an area of memory which wasn't present
1096 in the cache doesn't cause it to be loaded in. */
1097 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1098 }
1099
1100 return res;
1101 }
1102
1103 /* Perform a partial memory transfer.
1104 For docs see target.h, to_xfer_partial. */
1105
1106 static enum target_xfer_status
1107 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1108 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1109 ULONGEST len, ULONGEST *xfered_len)
1110 {
1111 enum target_xfer_status res;
1112 ULONGEST reg_len;
1113 struct mem_region *region;
1114 struct inferior *inf;
1115
1116 /* For accesses to unmapped overlay sections, read directly from
1117 files. Must do this first, as MEMADDR may need adjustment. */
1118 if (readbuf != NULL && overlay_debugging)
1119 {
1120 struct obj_section *section = find_pc_overlay (memaddr);
1121
1122 if (pc_in_unmapped_range (memaddr, section))
1123 {
1124 struct target_section_table *table
1125 = target_get_section_table (ops);
1126 const char *section_name = section->the_bfd_section->name;
1127
1128 memaddr = overlay_mapped_address (memaddr, section);
1129 return section_table_xfer_memory_partial (readbuf, writebuf,
1130 memaddr, len, xfered_len,
1131 table->sections,
1132 table->sections_end,
1133 section_name);
1134 }
1135 }
1136
1137 /* Try the executable files, if "trust-readonly-sections" is set. */
1138 if (readbuf != NULL && trust_readonly)
1139 {
1140 struct target_section *secp;
1141 struct target_section_table *table;
1142
1143 secp = target_section_by_addr (ops, memaddr);
1144 if (secp != NULL
1145 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1146 secp->the_bfd_section)
1147 & SEC_READONLY))
1148 {
1149 table = target_get_section_table (ops);
1150 return section_table_xfer_memory_partial (readbuf, writebuf,
1151 memaddr, len, xfered_len,
1152 table->sections,
1153 table->sections_end,
1154 NULL);
1155 }
1156 }
1157
1158 /* Try GDB's internal data cache. */
1159
1160 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1161 &region))
1162 return TARGET_XFER_E_IO;
1163
1164 if (!ptid_equal (inferior_ptid, null_ptid))
1165 inf = find_inferior_ptid (inferior_ptid);
1166 else
1167 inf = NULL;
1168
1169 if (inf != NULL
1170 && readbuf != NULL
1171 /* The dcache reads whole cache lines; that doesn't play well
1172 with reading from a trace buffer, because reading outside of
1173 the collected memory range fails. */
1174 && get_traceframe_number () == -1
1175 && (region->attrib.cache
1176 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1177 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1178 {
1179 DCACHE *dcache = target_dcache_get_or_init ();
1180
1181 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1182 reg_len, xfered_len);
1183 }
1184
1185 /* If none of those methods found the memory we wanted, fall back
1186 to a target partial transfer. Normally a single call to
1187 to_xfer_partial is enough; if it doesn't recognize an object
1188 it will call the to_xfer_partial of the next target down.
1189 But for memory this won't do. Memory is the only target
1190 object which can be read from more than one valid target.
1191 A core file, for instance, could have some of memory but
1192 delegate other bits to the target below it. So, we must
1193 manually try all targets. */
1194
1195 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1196 xfered_len);
1197
1198 /* If we still haven't got anything, return the last error. We
1199 give up. */
1200 return res;
1201 }
1202
1203 /* Perform a partial memory transfer. For docs see target.h,
1204 to_xfer_partial. */
1205
1206 static enum target_xfer_status
1207 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1208 gdb_byte *readbuf, const gdb_byte *writebuf,
1209 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1210 {
1211 enum target_xfer_status res;
1212
1213 /* Zero length requests are ok and require no work. */
1214 if (len == 0)
1215 return TARGET_XFER_EOF;
1216
1217 memaddr = address_significant (target_gdbarch (), memaddr);
1218
1219 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1220 breakpoint insns, thus hiding out from higher layers whether
1221 there are software breakpoints inserted in the code stream. */
1222 if (readbuf != NULL)
1223 {
1224 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1225 xfered_len);
1226
1227 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1228 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1229 }
1230 else
1231 {
1232 /* A large write request is likely to be partially satisfied
1233 by memory_xfer_partial_1. We will continually malloc
1234 and free a copy of the entire write request for breakpoint
1235 shadow handling even though we only end up writing a small
1236 subset of it. Cap writes to a limit specified by the target
1237 to mitigate this. */
1238 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1239
1240 gdb::byte_vector buf (writebuf, writebuf + len);
1241 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1242 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1243 xfered_len);
1244 }
1245
1246 return res;
1247 }
1248
1249 scoped_restore_tmpl<int>
1250 make_scoped_restore_show_memory_breakpoints (int show)
1251 {
1252 return make_scoped_restore (&show_memory_breakpoints, show);
1253 }
1254
1255 /* For docs see target.h, to_xfer_partial. */
1256
1257 enum target_xfer_status
1258 target_xfer_partial (struct target_ops *ops,
1259 enum target_object object, const char *annex,
1260 gdb_byte *readbuf, const gdb_byte *writebuf,
1261 ULONGEST offset, ULONGEST len,
1262 ULONGEST *xfered_len)
1263 {
1264 enum target_xfer_status retval;
1265
1266 gdb_assert (ops->to_xfer_partial != NULL);
1267
1268 /* Transfer is done when LEN is zero. */
1269 if (len == 0)
1270 return TARGET_XFER_EOF;
1271
1272 if (writebuf && !may_write_memory)
1273 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1274 core_addr_to_string_nz (offset), plongest (len));
1275
1276 *xfered_len = 0;
1277
1278 /* If this is a memory transfer, let the memory-specific code
1279 have a look at it instead. Memory transfers are more
1280 complicated. */
1281 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1282 || object == TARGET_OBJECT_CODE_MEMORY)
1283 retval = memory_xfer_partial (ops, object, readbuf,
1284 writebuf, offset, len, xfered_len);
1285 else if (object == TARGET_OBJECT_RAW_MEMORY)
1286 {
1287 /* Skip/avoid accessing the target if the memory region
1288 attributes block the access. Check this here instead of in
1289 raw_memory_xfer_partial as otherwise we'd end up checking
1290 this twice in the case of the memory_xfer_partial path is
1291 taken; once before checking the dcache, and another in the
1292 tail call to raw_memory_xfer_partial. */
1293 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1294 NULL))
1295 return TARGET_XFER_E_IO;
1296
1297 /* Request the normal memory object from other layers. */
1298 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1299 xfered_len);
1300 }
1301 else
1302 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1303 writebuf, offset, len, xfered_len);
1304
1305 if (targetdebug)
1306 {
1307 const unsigned char *myaddr = NULL;
1308
1309 fprintf_unfiltered (gdb_stdlog,
1310 "%s:target_xfer_partial "
1311 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1312 ops->to_shortname,
1313 (int) object,
1314 (annex ? annex : "(null)"),
1315 host_address_to_string (readbuf),
1316 host_address_to_string (writebuf),
1317 core_addr_to_string_nz (offset),
1318 pulongest (len), retval,
1319 pulongest (*xfered_len));
1320
1321 if (readbuf)
1322 myaddr = readbuf;
1323 if (writebuf)
1324 myaddr = writebuf;
1325 if (retval == TARGET_XFER_OK && myaddr != NULL)
1326 {
1327 int i;
1328
1329 fputs_unfiltered (", bytes =", gdb_stdlog);
1330 for (i = 0; i < *xfered_len; i++)
1331 {
1332 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1333 {
1334 if (targetdebug < 2 && i > 0)
1335 {
1336 fprintf_unfiltered (gdb_stdlog, " ...");
1337 break;
1338 }
1339 fprintf_unfiltered (gdb_stdlog, "\n");
1340 }
1341
1342 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1343 }
1344 }
1345
1346 fputc_unfiltered ('\n', gdb_stdlog);
1347 }
1348
1349 /* Check implementations of to_xfer_partial update *XFERED_LEN
1350 properly. Do assertion after printing debug messages, so that we
1351 can find more clues on assertion failure from debugging messages. */
1352 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1353 gdb_assert (*xfered_len > 0);
1354
1355 return retval;
1356 }
1357
1358 /* Read LEN bytes of target memory at address MEMADDR, placing the
1359 results in GDB's memory at MYADDR. Returns either 0 for success or
1360 -1 if any error occurs.
1361
1362 If an error occurs, no guarantee is made about the contents of the data at
1363 MYADDR. In particular, the caller should not depend upon partial reads
1364 filling the buffer with good data. There is no way for the caller to know
1365 how much good data might have been transfered anyway. Callers that can
1366 deal with partial reads should call target_read (which will retry until
1367 it makes no progress, and then return how much was transferred). */
1368
1369 int
1370 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1371 {
1372 /* Dispatch to the topmost target, not the flattened current_target.
1373 Memory accesses check target->to_has_(all_)memory, and the
1374 flattened target doesn't inherit those. */
1375 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1376 myaddr, memaddr, len) == len)
1377 return 0;
1378 else
1379 return -1;
1380 }
1381
1382 /* See target/target.h. */
1383
1384 int
1385 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1386 {
1387 gdb_byte buf[4];
1388 int r;
1389
1390 r = target_read_memory (memaddr, buf, sizeof buf);
1391 if (r != 0)
1392 return r;
1393 *result = extract_unsigned_integer (buf, sizeof buf,
1394 gdbarch_byte_order (target_gdbarch ()));
1395 return 0;
1396 }
1397
1398 /* Like target_read_memory, but specify explicitly that this is a read
1399 from the target's raw memory. That is, this read bypasses the
1400 dcache, breakpoint shadowing, etc. */
1401
1402 int
1403 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1404 {
1405 /* See comment in target_read_memory about why the request starts at
1406 current_target.beneath. */
1407 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1408 myaddr, memaddr, len) == len)
1409 return 0;
1410 else
1411 return -1;
1412 }
1413
1414 /* Like target_read_memory, but specify explicitly that this is a read from
1415 the target's stack. This may trigger different cache behavior. */
1416
1417 int
1418 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1419 {
1420 /* See comment in target_read_memory about why the request starts at
1421 current_target.beneath. */
1422 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1423 myaddr, memaddr, len) == len)
1424 return 0;
1425 else
1426 return -1;
1427 }
1428
1429 /* Like target_read_memory, but specify explicitly that this is a read from
1430 the target's code. This may trigger different cache behavior. */
1431
1432 int
1433 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1434 {
1435 /* See comment in target_read_memory about why the request starts at
1436 current_target.beneath. */
1437 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1438 myaddr, memaddr, len) == len)
1439 return 0;
1440 else
1441 return -1;
1442 }
1443
1444 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1445 Returns either 0 for success or -1 if any error occurs. If an
1446 error occurs, no guarantee is made about how much data got written.
1447 Callers that can deal with partial writes should call
1448 target_write. */
1449
1450 int
1451 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1452 {
1453 /* See comment in target_read_memory about why the request starts at
1454 current_target.beneath. */
1455 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1456 myaddr, memaddr, len) == len)
1457 return 0;
1458 else
1459 return -1;
1460 }
1461
1462 /* Write LEN bytes from MYADDR to target raw memory at address
1463 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1464 If an error occurs, no guarantee is made about how much data got
1465 written. Callers that can deal with partial writes should call
1466 target_write. */
1467
1468 int
1469 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1470 {
1471 /* See comment in target_read_memory about why the request starts at
1472 current_target.beneath. */
1473 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1474 myaddr, memaddr, len) == len)
1475 return 0;
1476 else
1477 return -1;
1478 }
1479
1480 /* Fetch the target's memory map. */
1481
1482 std::vector<mem_region>
1483 target_memory_map (void)
1484 {
1485 std::vector<mem_region> result
1486 = current_target.to_memory_map (&current_target);
1487 if (result.empty ())
1488 return result;
1489
1490 std::sort (result.begin (), result.end ());
1491
1492 /* Check that regions do not overlap. Simultaneously assign
1493 a numbering for the "mem" commands to use to refer to
1494 each region. */
1495 mem_region *last_one = NULL;
1496 for (size_t ix = 0; ix < result.size (); ix++)
1497 {
1498 mem_region *this_one = &result[ix];
1499 this_one->number = ix;
1500
1501 if (last_one != NULL && last_one->hi > this_one->lo)
1502 {
1503 warning (_("Overlapping regions in memory map: ignoring"));
1504 return std::vector<mem_region> ();
1505 }
1506
1507 last_one = this_one;
1508 }
1509
1510 return result;
1511 }
1512
1513 void
1514 target_flash_erase (ULONGEST address, LONGEST length)
1515 {
1516 current_target.to_flash_erase (&current_target, address, length);
1517 }
1518
1519 void
1520 target_flash_done (void)
1521 {
1522 current_target.to_flash_done (&current_target);
1523 }
1524
1525 static void
1526 show_trust_readonly (struct ui_file *file, int from_tty,
1527 struct cmd_list_element *c, const char *value)
1528 {
1529 fprintf_filtered (file,
1530 _("Mode for reading from readonly sections is %s.\n"),
1531 value);
1532 }
1533
1534 /* Target vector read/write partial wrapper functions. */
1535
1536 static enum target_xfer_status
1537 target_read_partial (struct target_ops *ops,
1538 enum target_object object,
1539 const char *annex, gdb_byte *buf,
1540 ULONGEST offset, ULONGEST len,
1541 ULONGEST *xfered_len)
1542 {
1543 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1544 xfered_len);
1545 }
1546
1547 static enum target_xfer_status
1548 target_write_partial (struct target_ops *ops,
1549 enum target_object object,
1550 const char *annex, const gdb_byte *buf,
1551 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1552 {
1553 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1554 xfered_len);
1555 }
1556
1557 /* Wrappers to perform the full transfer. */
1558
1559 /* For docs on target_read see target.h. */
1560
1561 LONGEST
1562 target_read (struct target_ops *ops,
1563 enum target_object object,
1564 const char *annex, gdb_byte *buf,
1565 ULONGEST offset, LONGEST len)
1566 {
1567 LONGEST xfered_total = 0;
1568 int unit_size = 1;
1569
1570 /* If we are reading from a memory object, find the length of an addressable
1571 unit for that architecture. */
1572 if (object == TARGET_OBJECT_MEMORY
1573 || object == TARGET_OBJECT_STACK_MEMORY
1574 || object == TARGET_OBJECT_CODE_MEMORY
1575 || object == TARGET_OBJECT_RAW_MEMORY)
1576 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1577
1578 while (xfered_total < len)
1579 {
1580 ULONGEST xfered_partial;
1581 enum target_xfer_status status;
1582
1583 status = target_read_partial (ops, object, annex,
1584 buf + xfered_total * unit_size,
1585 offset + xfered_total, len - xfered_total,
1586 &xfered_partial);
1587
1588 /* Call an observer, notifying them of the xfer progress? */
1589 if (status == TARGET_XFER_EOF)
1590 return xfered_total;
1591 else if (status == TARGET_XFER_OK)
1592 {
1593 xfered_total += xfered_partial;
1594 QUIT;
1595 }
1596 else
1597 return TARGET_XFER_E_IO;
1598
1599 }
1600 return len;
1601 }
1602
1603 /* Assuming that the entire [begin, end) range of memory cannot be
1604 read, try to read whatever subrange is possible to read.
1605
1606 The function returns, in RESULT, either zero or one memory block.
1607 If there's a readable subrange at the beginning, it is completely
1608 read and returned. Any further readable subrange will not be read.
1609 Otherwise, if there's a readable subrange at the end, it will be
1610 completely read and returned. Any readable subranges before it
1611 (obviously, not starting at the beginning), will be ignored. In
1612 other cases -- either no readable subrange, or readable subrange(s)
1613 that is neither at the beginning, or end, nothing is returned.
1614
1615 The purpose of this function is to handle a read across a boundary
1616 of accessible memory in a case when memory map is not available.
1617 The above restrictions are fine for this case, but will give
1618 incorrect results if the memory is 'patchy'. However, supporting
1619 'patchy' memory would require trying to read every single byte,
1620 and it seems unacceptable solution. Explicit memory map is
1621 recommended for this case -- and target_read_memory_robust will
1622 take care of reading multiple ranges then. */
1623
1624 static void
1625 read_whatever_is_readable (struct target_ops *ops,
1626 const ULONGEST begin, const ULONGEST end,
1627 int unit_size,
1628 std::vector<memory_read_result> *result)
1629 {
1630 ULONGEST current_begin = begin;
1631 ULONGEST current_end = end;
1632 int forward;
1633 ULONGEST xfered_len;
1634
1635 /* If we previously failed to read 1 byte, nothing can be done here. */
1636 if (end - begin <= 1)
1637 return;
1638
1639 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1640
1641 /* Check that either first or the last byte is readable, and give up
1642 if not. This heuristic is meant to permit reading accessible memory
1643 at the boundary of accessible region. */
1644 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1645 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1646 {
1647 forward = 1;
1648 ++current_begin;
1649 }
1650 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1651 buf.get () + (end - begin) - 1, end - 1, 1,
1652 &xfered_len) == TARGET_XFER_OK)
1653 {
1654 forward = 0;
1655 --current_end;
1656 }
1657 else
1658 return;
1659
1660 /* Loop invariant is that the [current_begin, current_end) was previously
1661 found to be not readable as a whole.
1662
1663 Note loop condition -- if the range has 1 byte, we can't divide the range
1664 so there's no point trying further. */
1665 while (current_end - current_begin > 1)
1666 {
1667 ULONGEST first_half_begin, first_half_end;
1668 ULONGEST second_half_begin, second_half_end;
1669 LONGEST xfer;
1670 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1671
1672 if (forward)
1673 {
1674 first_half_begin = current_begin;
1675 first_half_end = middle;
1676 second_half_begin = middle;
1677 second_half_end = current_end;
1678 }
1679 else
1680 {
1681 first_half_begin = middle;
1682 first_half_end = current_end;
1683 second_half_begin = current_begin;
1684 second_half_end = middle;
1685 }
1686
1687 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1688 buf.get () + (first_half_begin - begin) * unit_size,
1689 first_half_begin,
1690 first_half_end - first_half_begin);
1691
1692 if (xfer == first_half_end - first_half_begin)
1693 {
1694 /* This half reads up fine. So, the error must be in the
1695 other half. */
1696 current_begin = second_half_begin;
1697 current_end = second_half_end;
1698 }
1699 else
1700 {
1701 /* This half is not readable. Because we've tried one byte, we
1702 know some part of this half if actually readable. Go to the next
1703 iteration to divide again and try to read.
1704
1705 We don't handle the other half, because this function only tries
1706 to read a single readable subrange. */
1707 current_begin = first_half_begin;
1708 current_end = first_half_end;
1709 }
1710 }
1711
1712 if (forward)
1713 {
1714 /* The [begin, current_begin) range has been read. */
1715 result->emplace_back (begin, current_end, std::move (buf));
1716 }
1717 else
1718 {
1719 /* The [current_end, end) range has been read. */
1720 LONGEST region_len = end - current_end;
1721
1722 gdb::unique_xmalloc_ptr<gdb_byte> data
1723 ((gdb_byte *) xmalloc (region_len * unit_size));
1724 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1725 region_len * unit_size);
1726 result->emplace_back (current_end, end, std::move (data));
1727 }
1728 }
1729
1730 std::vector<memory_read_result>
1731 read_memory_robust (struct target_ops *ops,
1732 const ULONGEST offset, const LONGEST len)
1733 {
1734 std::vector<memory_read_result> result;
1735 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1736
1737 LONGEST xfered_total = 0;
1738 while (xfered_total < len)
1739 {
1740 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1741 LONGEST region_len;
1742
1743 /* If there is no explicit region, a fake one should be created. */
1744 gdb_assert (region);
1745
1746 if (region->hi == 0)
1747 region_len = len - xfered_total;
1748 else
1749 region_len = region->hi - offset;
1750
1751 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1752 {
1753 /* Cannot read this region. Note that we can end up here only
1754 if the region is explicitly marked inaccessible, or
1755 'inaccessible-by-default' is in effect. */
1756 xfered_total += region_len;
1757 }
1758 else
1759 {
1760 LONGEST to_read = std::min (len - xfered_total, region_len);
1761 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1762 ((gdb_byte *) xmalloc (to_read * unit_size));
1763
1764 LONGEST xfered_partial =
1765 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1766 offset + xfered_total, to_read);
1767 /* Call an observer, notifying them of the xfer progress? */
1768 if (xfered_partial <= 0)
1769 {
1770 /* Got an error reading full chunk. See if maybe we can read
1771 some subrange. */
1772 read_whatever_is_readable (ops, offset + xfered_total,
1773 offset + xfered_total + to_read,
1774 unit_size, &result);
1775 xfered_total += to_read;
1776 }
1777 else
1778 {
1779 result.emplace_back (offset + xfered_total,
1780 offset + xfered_total + xfered_partial,
1781 std::move (buffer));
1782 xfered_total += xfered_partial;
1783 }
1784 QUIT;
1785 }
1786 }
1787
1788 return result;
1789 }
1790
1791
1792 /* An alternative to target_write with progress callbacks. */
1793
1794 LONGEST
1795 target_write_with_progress (struct target_ops *ops,
1796 enum target_object object,
1797 const char *annex, const gdb_byte *buf,
1798 ULONGEST offset, LONGEST len,
1799 void (*progress) (ULONGEST, void *), void *baton)
1800 {
1801 LONGEST xfered_total = 0;
1802 int unit_size = 1;
1803
1804 /* If we are writing to a memory object, find the length of an addressable
1805 unit for that architecture. */
1806 if (object == TARGET_OBJECT_MEMORY
1807 || object == TARGET_OBJECT_STACK_MEMORY
1808 || object == TARGET_OBJECT_CODE_MEMORY
1809 || object == TARGET_OBJECT_RAW_MEMORY)
1810 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1811
1812 /* Give the progress callback a chance to set up. */
1813 if (progress)
1814 (*progress) (0, baton);
1815
1816 while (xfered_total < len)
1817 {
1818 ULONGEST xfered_partial;
1819 enum target_xfer_status status;
1820
1821 status = target_write_partial (ops, object, annex,
1822 buf + xfered_total * unit_size,
1823 offset + xfered_total, len - xfered_total,
1824 &xfered_partial);
1825
1826 if (status != TARGET_XFER_OK)
1827 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1828
1829 if (progress)
1830 (*progress) (xfered_partial, baton);
1831
1832 xfered_total += xfered_partial;
1833 QUIT;
1834 }
1835 return len;
1836 }
1837
1838 /* For docs on target_write see target.h. */
1839
1840 LONGEST
1841 target_write (struct target_ops *ops,
1842 enum target_object object,
1843 const char *annex, const gdb_byte *buf,
1844 ULONGEST offset, LONGEST len)
1845 {
1846 return target_write_with_progress (ops, object, annex, buf, offset, len,
1847 NULL, NULL);
1848 }
1849
1850 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1851 the size of the transferred data. PADDING additional bytes are
1852 available in *BUF_P. This is a helper function for
1853 target_read_alloc; see the declaration of that function for more
1854 information. */
1855
1856 static LONGEST
1857 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1858 const char *annex, gdb_byte **buf_p, int padding)
1859 {
1860 size_t buf_alloc, buf_pos;
1861 gdb_byte *buf;
1862
1863 /* This function does not have a length parameter; it reads the
1864 entire OBJECT). Also, it doesn't support objects fetched partly
1865 from one target and partly from another (in a different stratum,
1866 e.g. a core file and an executable). Both reasons make it
1867 unsuitable for reading memory. */
1868 gdb_assert (object != TARGET_OBJECT_MEMORY);
1869
1870 /* Start by reading up to 4K at a time. The target will throttle
1871 this number down if necessary. */
1872 buf_alloc = 4096;
1873 buf = (gdb_byte *) xmalloc (buf_alloc);
1874 buf_pos = 0;
1875 while (1)
1876 {
1877 ULONGEST xfered_len;
1878 enum target_xfer_status status;
1879
1880 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1881 buf_pos, buf_alloc - buf_pos - padding,
1882 &xfered_len);
1883
1884 if (status == TARGET_XFER_EOF)
1885 {
1886 /* Read all there was. */
1887 if (buf_pos == 0)
1888 xfree (buf);
1889 else
1890 *buf_p = buf;
1891 return buf_pos;
1892 }
1893 else if (status != TARGET_XFER_OK)
1894 {
1895 /* An error occurred. */
1896 xfree (buf);
1897 return TARGET_XFER_E_IO;
1898 }
1899
1900 buf_pos += xfered_len;
1901
1902 /* If the buffer is filling up, expand it. */
1903 if (buf_alloc < buf_pos * 2)
1904 {
1905 buf_alloc *= 2;
1906 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1907 }
1908
1909 QUIT;
1910 }
1911 }
1912
1913 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1914 the size of the transferred data. See the declaration in "target.h"
1915 function for more information about the return value. */
1916
1917 LONGEST
1918 target_read_alloc (struct target_ops *ops, enum target_object object,
1919 const char *annex, gdb_byte **buf_p)
1920 {
1921 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1922 }
1923
1924 /* See target.h. */
1925
1926 gdb::unique_xmalloc_ptr<char>
1927 target_read_stralloc (struct target_ops *ops, enum target_object object,
1928 const char *annex)
1929 {
1930 gdb_byte *buffer;
1931 char *bufstr;
1932 LONGEST i, transferred;
1933
1934 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1935 bufstr = (char *) buffer;
1936
1937 if (transferred < 0)
1938 return NULL;
1939
1940 if (transferred == 0)
1941 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
1942
1943 bufstr[transferred] = 0;
1944
1945 /* Check for embedded NUL bytes; but allow trailing NULs. */
1946 for (i = strlen (bufstr); i < transferred; i++)
1947 if (bufstr[i] != 0)
1948 {
1949 warning (_("target object %d, annex %s, "
1950 "contained unexpected null characters"),
1951 (int) object, annex ? annex : "(none)");
1952 break;
1953 }
1954
1955 return gdb::unique_xmalloc_ptr<char> (bufstr);
1956 }
1957
1958 /* Memory transfer methods. */
1959
1960 void
1961 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1962 LONGEST len)
1963 {
1964 /* This method is used to read from an alternate, non-current
1965 target. This read must bypass the overlay support (as symbols
1966 don't match this target), and GDB's internal cache (wrong cache
1967 for this target). */
1968 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1969 != len)
1970 memory_error (TARGET_XFER_E_IO, addr);
1971 }
1972
1973 ULONGEST
1974 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1975 int len, enum bfd_endian byte_order)
1976 {
1977 gdb_byte buf[sizeof (ULONGEST)];
1978
1979 gdb_assert (len <= sizeof (buf));
1980 get_target_memory (ops, addr, buf, len);
1981 return extract_unsigned_integer (buf, len, byte_order);
1982 }
1983
1984 /* See target.h. */
1985
1986 int
1987 target_insert_breakpoint (struct gdbarch *gdbarch,
1988 struct bp_target_info *bp_tgt)
1989 {
1990 if (!may_insert_breakpoints)
1991 {
1992 warning (_("May not insert breakpoints"));
1993 return 1;
1994 }
1995
1996 return current_target.to_insert_breakpoint (&current_target,
1997 gdbarch, bp_tgt);
1998 }
1999
2000 /* See target.h. */
2001
2002 int
2003 target_remove_breakpoint (struct gdbarch *gdbarch,
2004 struct bp_target_info *bp_tgt,
2005 enum remove_bp_reason reason)
2006 {
2007 /* This is kind of a weird case to handle, but the permission might
2008 have been changed after breakpoints were inserted - in which case
2009 we should just take the user literally and assume that any
2010 breakpoints should be left in place. */
2011 if (!may_insert_breakpoints)
2012 {
2013 warning (_("May not remove breakpoints"));
2014 return 1;
2015 }
2016
2017 return current_target.to_remove_breakpoint (&current_target,
2018 gdbarch, bp_tgt, reason);
2019 }
2020
2021 static void
2022 info_target_command (const char *args, int from_tty)
2023 {
2024 struct target_ops *t;
2025 int has_all_mem = 0;
2026
2027 if (symfile_objfile != NULL)
2028 printf_unfiltered (_("Symbols from \"%s\".\n"),
2029 objfile_name (symfile_objfile));
2030
2031 for (t = target_stack; t != NULL; t = t->beneath)
2032 {
2033 if (!(*t->to_has_memory) (t))
2034 continue;
2035
2036 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2037 continue;
2038 if (has_all_mem)
2039 printf_unfiltered (_("\tWhile running this, "
2040 "GDB does not access memory from...\n"));
2041 printf_unfiltered ("%s:\n", t->to_longname);
2042 (t->to_files_info) (t);
2043 has_all_mem = (*t->to_has_all_memory) (t);
2044 }
2045 }
2046
2047 /* This function is called before any new inferior is created, e.g.
2048 by running a program, attaching, or connecting to a target.
2049 It cleans up any state from previous invocations which might
2050 change between runs. This is a subset of what target_preopen
2051 resets (things which might change between targets). */
2052
2053 void
2054 target_pre_inferior (int from_tty)
2055 {
2056 /* Clear out solib state. Otherwise the solib state of the previous
2057 inferior might have survived and is entirely wrong for the new
2058 target. This has been observed on GNU/Linux using glibc 2.3. How
2059 to reproduce:
2060
2061 bash$ ./foo&
2062 [1] 4711
2063 bash$ ./foo&
2064 [1] 4712
2065 bash$ gdb ./foo
2066 [...]
2067 (gdb) attach 4711
2068 (gdb) detach
2069 (gdb) attach 4712
2070 Cannot access memory at address 0xdeadbeef
2071 */
2072
2073 /* In some OSs, the shared library list is the same/global/shared
2074 across inferiors. If code is shared between processes, so are
2075 memory regions and features. */
2076 if (!gdbarch_has_global_solist (target_gdbarch ()))
2077 {
2078 no_shared_libraries (NULL, from_tty);
2079
2080 invalidate_target_mem_regions ();
2081
2082 target_clear_description ();
2083 }
2084
2085 /* attach_flag may be set if the previous process associated with
2086 the inferior was attached to. */
2087 current_inferior ()->attach_flag = 0;
2088
2089 current_inferior ()->highest_thread_num = 0;
2090
2091 agent_capability_invalidate ();
2092 }
2093
2094 /* Callback for iterate_over_inferiors. Gets rid of the given
2095 inferior. */
2096
2097 static int
2098 dispose_inferior (struct inferior *inf, void *args)
2099 {
2100 struct thread_info *thread;
2101
2102 thread = any_thread_of_process (inf->pid);
2103 if (thread)
2104 {
2105 switch_to_thread (thread->ptid);
2106
2107 /* Core inferiors actually should be detached, not killed. */
2108 if (target_has_execution)
2109 target_kill ();
2110 else
2111 target_detach (inf, 0);
2112 }
2113
2114 return 0;
2115 }
2116
2117 /* This is to be called by the open routine before it does
2118 anything. */
2119
2120 void
2121 target_preopen (int from_tty)
2122 {
2123 dont_repeat ();
2124
2125 if (have_inferiors ())
2126 {
2127 if (!from_tty
2128 || !have_live_inferiors ()
2129 || query (_("A program is being debugged already. Kill it? ")))
2130 iterate_over_inferiors (dispose_inferior, NULL);
2131 else
2132 error (_("Program not killed."));
2133 }
2134
2135 /* Calling target_kill may remove the target from the stack. But if
2136 it doesn't (which seems like a win for UDI), remove it now. */
2137 /* Leave the exec target, though. The user may be switching from a
2138 live process to a core of the same program. */
2139 pop_all_targets_above (file_stratum);
2140
2141 target_pre_inferior (from_tty);
2142 }
2143
2144 /* See target.h. */
2145
2146 void
2147 target_detach (inferior *inf, int from_tty)
2148 {
2149 /* As long as some to_detach implementations rely on the current_inferior
2150 (either directly, or indirectly, like through target_gdbarch or by
2151 reading memory), INF needs to be the current inferior. When that
2152 requirement will become no longer true, then we can remove this
2153 assertion. */
2154 gdb_assert (inf == current_inferior ());
2155
2156 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2157 /* Don't remove global breakpoints here. They're removed on
2158 disconnection from the target. */
2159 ;
2160 else
2161 /* If we're in breakpoints-always-inserted mode, have to remove
2162 them before detaching. */
2163 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2164
2165 prepare_for_detach ();
2166
2167 current_target.to_detach (&current_target, inf, from_tty);
2168 }
2169
2170 void
2171 target_disconnect (const char *args, int from_tty)
2172 {
2173 /* If we're in breakpoints-always-inserted mode or if breakpoints
2174 are global across processes, we have to remove them before
2175 disconnecting. */
2176 remove_breakpoints ();
2177
2178 current_target.to_disconnect (&current_target, args, from_tty);
2179 }
2180
2181 /* See target/target.h. */
2182
2183 ptid_t
2184 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2185 {
2186 return (current_target.to_wait) (&current_target, ptid, status, options);
2187 }
2188
2189 /* See target.h. */
2190
2191 ptid_t
2192 default_target_wait (struct target_ops *ops,
2193 ptid_t ptid, struct target_waitstatus *status,
2194 int options)
2195 {
2196 status->kind = TARGET_WAITKIND_IGNORE;
2197 return minus_one_ptid;
2198 }
2199
2200 const char *
2201 target_pid_to_str (ptid_t ptid)
2202 {
2203 return (*current_target.to_pid_to_str) (&current_target, ptid);
2204 }
2205
2206 const char *
2207 target_thread_name (struct thread_info *info)
2208 {
2209 return current_target.to_thread_name (&current_target, info);
2210 }
2211
2212 struct thread_info *
2213 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2214 int handle_len,
2215 struct inferior *inf)
2216 {
2217 return current_target.to_thread_handle_to_thread_info
2218 (&current_target, thread_handle, handle_len, inf);
2219 }
2220
2221 void
2222 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2223 {
2224 target_dcache_invalidate ();
2225
2226 current_target.to_resume (&current_target, ptid, step, signal);
2227
2228 registers_changed_ptid (ptid);
2229 /* We only set the internal executing state here. The user/frontend
2230 running state is set at a higher level. */
2231 set_executing (ptid, 1);
2232 clear_inline_frame_state (ptid);
2233 }
2234
2235 /* If true, target_commit_resume is a nop. */
2236 static int defer_target_commit_resume;
2237
2238 /* See target.h. */
2239
2240 void
2241 target_commit_resume (void)
2242 {
2243 if (defer_target_commit_resume)
2244 return;
2245
2246 current_target.to_commit_resume (&current_target);
2247 }
2248
2249 /* See target.h. */
2250
2251 scoped_restore_tmpl<int>
2252 make_scoped_defer_target_commit_resume ()
2253 {
2254 return make_scoped_restore (&defer_target_commit_resume, 1);
2255 }
2256
2257 void
2258 target_pass_signals (int numsigs, unsigned char *pass_signals)
2259 {
2260 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2261 }
2262
2263 void
2264 target_program_signals (int numsigs, unsigned char *program_signals)
2265 {
2266 (*current_target.to_program_signals) (&current_target,
2267 numsigs, program_signals);
2268 }
2269
2270 static int
2271 default_follow_fork (struct target_ops *self, int follow_child,
2272 int detach_fork)
2273 {
2274 /* Some target returned a fork event, but did not know how to follow it. */
2275 internal_error (__FILE__, __LINE__,
2276 _("could not find a target to follow fork"));
2277 }
2278
2279 /* Look through the list of possible targets for a target that can
2280 follow forks. */
2281
2282 int
2283 target_follow_fork (int follow_child, int detach_fork)
2284 {
2285 return current_target.to_follow_fork (&current_target,
2286 follow_child, detach_fork);
2287 }
2288
2289 /* Target wrapper for follow exec hook. */
2290
2291 void
2292 target_follow_exec (struct inferior *inf, char *execd_pathname)
2293 {
2294 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2295 }
2296
2297 static void
2298 default_mourn_inferior (struct target_ops *self)
2299 {
2300 internal_error (__FILE__, __LINE__,
2301 _("could not find a target to follow mourn inferior"));
2302 }
2303
2304 void
2305 target_mourn_inferior (ptid_t ptid)
2306 {
2307 gdb_assert (ptid_equal (ptid, inferior_ptid));
2308 current_target.to_mourn_inferior (&current_target);
2309
2310 /* We no longer need to keep handles on any of the object files.
2311 Make sure to release them to avoid unnecessarily locking any
2312 of them while we're not actually debugging. */
2313 bfd_cache_close_all ();
2314 }
2315
2316 /* Look for a target which can describe architectural features, starting
2317 from TARGET. If we find one, return its description. */
2318
2319 const struct target_desc *
2320 target_read_description (struct target_ops *target)
2321 {
2322 return target->to_read_description (target);
2323 }
2324
2325 /* This implements a basic search of memory, reading target memory and
2326 performing the search here (as opposed to performing the search in on the
2327 target side with, for example, gdbserver). */
2328
2329 int
2330 simple_search_memory (struct target_ops *ops,
2331 CORE_ADDR start_addr, ULONGEST search_space_len,
2332 const gdb_byte *pattern, ULONGEST pattern_len,
2333 CORE_ADDR *found_addrp)
2334 {
2335 /* NOTE: also defined in find.c testcase. */
2336 #define SEARCH_CHUNK_SIZE 16000
2337 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2338 /* Buffer to hold memory contents for searching. */
2339 unsigned search_buf_size;
2340
2341 search_buf_size = chunk_size + pattern_len - 1;
2342
2343 /* No point in trying to allocate a buffer larger than the search space. */
2344 if (search_space_len < search_buf_size)
2345 search_buf_size = search_space_len;
2346
2347 gdb::byte_vector search_buf (search_buf_size);
2348
2349 /* Prime the search buffer. */
2350
2351 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2352 search_buf.data (), start_addr, search_buf_size)
2353 != search_buf_size)
2354 {
2355 warning (_("Unable to access %s bytes of target "
2356 "memory at %s, halting search."),
2357 pulongest (search_buf_size), hex_string (start_addr));
2358 return -1;
2359 }
2360
2361 /* Perform the search.
2362
2363 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2364 When we've scanned N bytes we copy the trailing bytes to the start and
2365 read in another N bytes. */
2366
2367 while (search_space_len >= pattern_len)
2368 {
2369 gdb_byte *found_ptr;
2370 unsigned nr_search_bytes
2371 = std::min (search_space_len, (ULONGEST) search_buf_size);
2372
2373 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2374 pattern, pattern_len);
2375
2376 if (found_ptr != NULL)
2377 {
2378 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2379
2380 *found_addrp = found_addr;
2381 return 1;
2382 }
2383
2384 /* Not found in this chunk, skip to next chunk. */
2385
2386 /* Don't let search_space_len wrap here, it's unsigned. */
2387 if (search_space_len >= chunk_size)
2388 search_space_len -= chunk_size;
2389 else
2390 search_space_len = 0;
2391
2392 if (search_space_len >= pattern_len)
2393 {
2394 unsigned keep_len = search_buf_size - chunk_size;
2395 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2396 int nr_to_read;
2397
2398 /* Copy the trailing part of the previous iteration to the front
2399 of the buffer for the next iteration. */
2400 gdb_assert (keep_len == pattern_len - 1);
2401 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2402
2403 nr_to_read = std::min (search_space_len - keep_len,
2404 (ULONGEST) chunk_size);
2405
2406 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2407 &search_buf[keep_len], read_addr,
2408 nr_to_read) != nr_to_read)
2409 {
2410 warning (_("Unable to access %s bytes of target "
2411 "memory at %s, halting search."),
2412 plongest (nr_to_read),
2413 hex_string (read_addr));
2414 return -1;
2415 }
2416
2417 start_addr += chunk_size;
2418 }
2419 }
2420
2421 /* Not found. */
2422
2423 return 0;
2424 }
2425
2426 /* Default implementation of memory-searching. */
2427
2428 static int
2429 default_search_memory (struct target_ops *self,
2430 CORE_ADDR start_addr, ULONGEST search_space_len,
2431 const gdb_byte *pattern, ULONGEST pattern_len,
2432 CORE_ADDR *found_addrp)
2433 {
2434 /* Start over from the top of the target stack. */
2435 return simple_search_memory (current_target.beneath,
2436 start_addr, search_space_len,
2437 pattern, pattern_len, found_addrp);
2438 }
2439
2440 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2441 sequence of bytes in PATTERN with length PATTERN_LEN.
2442
2443 The result is 1 if found, 0 if not found, and -1 if there was an error
2444 requiring halting of the search (e.g. memory read error).
2445 If the pattern is found the address is recorded in FOUND_ADDRP. */
2446
2447 int
2448 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2449 const gdb_byte *pattern, ULONGEST pattern_len,
2450 CORE_ADDR *found_addrp)
2451 {
2452 return current_target.to_search_memory (&current_target, start_addr,
2453 search_space_len,
2454 pattern, pattern_len, found_addrp);
2455 }
2456
2457 /* Look through the currently pushed targets. If none of them will
2458 be able to restart the currently running process, issue an error
2459 message. */
2460
2461 void
2462 target_require_runnable (void)
2463 {
2464 struct target_ops *t;
2465
2466 for (t = target_stack; t != NULL; t = t->beneath)
2467 {
2468 /* If this target knows how to create a new program, then
2469 assume we will still be able to after killing the current
2470 one. Either killing and mourning will not pop T, or else
2471 find_default_run_target will find it again. */
2472 if (t->to_create_inferior != NULL)
2473 return;
2474
2475 /* Do not worry about targets at certain strata that can not
2476 create inferiors. Assume they will be pushed again if
2477 necessary, and continue to the process_stratum. */
2478 if (t->to_stratum == thread_stratum
2479 || t->to_stratum == record_stratum
2480 || t->to_stratum == arch_stratum)
2481 continue;
2482
2483 error (_("The \"%s\" target does not support \"run\". "
2484 "Try \"help target\" or \"continue\"."),
2485 t->to_shortname);
2486 }
2487
2488 /* This function is only called if the target is running. In that
2489 case there should have been a process_stratum target and it
2490 should either know how to create inferiors, or not... */
2491 internal_error (__FILE__, __LINE__, _("No targets found"));
2492 }
2493
2494 /* Whether GDB is allowed to fall back to the default run target for
2495 "run", "attach", etc. when no target is connected yet. */
2496 static int auto_connect_native_target = 1;
2497
2498 static void
2499 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2500 struct cmd_list_element *c, const char *value)
2501 {
2502 fprintf_filtered (file,
2503 _("Whether GDB may automatically connect to the "
2504 "native target is %s.\n"),
2505 value);
2506 }
2507
2508 /* Look through the list of possible targets for a target that can
2509 execute a run or attach command without any other data. This is
2510 used to locate the default process stratum.
2511
2512 If DO_MESG is not NULL, the result is always valid (error() is
2513 called for errors); else, return NULL on error. */
2514
2515 static struct target_ops *
2516 find_default_run_target (const char *do_mesg)
2517 {
2518 struct target_ops *runable = NULL;
2519
2520 if (auto_connect_native_target)
2521 {
2522 struct target_ops *t;
2523 int count = 0;
2524 int i;
2525
2526 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2527 {
2528 if (t->to_can_run != delegate_can_run && target_can_run (t))
2529 {
2530 runable = t;
2531 ++count;
2532 }
2533 }
2534
2535 if (count != 1)
2536 runable = NULL;
2537 }
2538
2539 if (runable == NULL)
2540 {
2541 if (do_mesg)
2542 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2543 else
2544 return NULL;
2545 }
2546
2547 return runable;
2548 }
2549
2550 /* See target.h. */
2551
2552 struct target_ops *
2553 find_attach_target (void)
2554 {
2555 struct target_ops *t;
2556
2557 /* If a target on the current stack can attach, use it. */
2558 for (t = current_target.beneath; t != NULL; t = t->beneath)
2559 {
2560 if (t->to_attach != NULL)
2561 break;
2562 }
2563
2564 /* Otherwise, use the default run target for attaching. */
2565 if (t == NULL)
2566 t = find_default_run_target ("attach");
2567
2568 return t;
2569 }
2570
2571 /* See target.h. */
2572
2573 struct target_ops *
2574 find_run_target (void)
2575 {
2576 struct target_ops *t;
2577
2578 /* If a target on the current stack can attach, use it. */
2579 for (t = current_target.beneath; t != NULL; t = t->beneath)
2580 {
2581 if (t->to_create_inferior != NULL)
2582 break;
2583 }
2584
2585 /* Otherwise, use the default run target. */
2586 if (t == NULL)
2587 t = find_default_run_target ("run");
2588
2589 return t;
2590 }
2591
2592 /* Implement the "info proc" command. */
2593
2594 int
2595 target_info_proc (const char *args, enum info_proc_what what)
2596 {
2597 struct target_ops *t;
2598
2599 /* If we're already connected to something that can get us OS
2600 related data, use it. Otherwise, try using the native
2601 target. */
2602 if (current_target.to_stratum >= process_stratum)
2603 t = current_target.beneath;
2604 else
2605 t = find_default_run_target (NULL);
2606
2607 for (; t != NULL; t = t->beneath)
2608 {
2609 if (t->to_info_proc != NULL)
2610 {
2611 t->to_info_proc (t, args, what);
2612
2613 if (targetdebug)
2614 fprintf_unfiltered (gdb_stdlog,
2615 "target_info_proc (\"%s\", %d)\n", args, what);
2616
2617 return 1;
2618 }
2619 }
2620
2621 return 0;
2622 }
2623
2624 static int
2625 find_default_supports_disable_randomization (struct target_ops *self)
2626 {
2627 struct target_ops *t;
2628
2629 t = find_default_run_target (NULL);
2630 if (t && t->to_supports_disable_randomization)
2631 return (t->to_supports_disable_randomization) (t);
2632 return 0;
2633 }
2634
2635 int
2636 target_supports_disable_randomization (void)
2637 {
2638 struct target_ops *t;
2639
2640 for (t = &current_target; t != NULL; t = t->beneath)
2641 if (t->to_supports_disable_randomization)
2642 return t->to_supports_disable_randomization (t);
2643
2644 return 0;
2645 }
2646
2647 /* See target/target.h. */
2648
2649 int
2650 target_supports_multi_process (void)
2651 {
2652 return (*current_target.to_supports_multi_process) (&current_target);
2653 }
2654
2655 /* See target.h. */
2656
2657 gdb::unique_xmalloc_ptr<char>
2658 target_get_osdata (const char *type)
2659 {
2660 struct target_ops *t;
2661
2662 /* If we're already connected to something that can get us OS
2663 related data, use it. Otherwise, try using the native
2664 target. */
2665 if (current_target.to_stratum >= process_stratum)
2666 t = current_target.beneath;
2667 else
2668 t = find_default_run_target ("get OS data");
2669
2670 if (!t)
2671 return NULL;
2672
2673 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2674 }
2675
2676 static struct address_space *
2677 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2678 {
2679 struct inferior *inf;
2680
2681 /* Fall-back to the "main" address space of the inferior. */
2682 inf = find_inferior_ptid (ptid);
2683
2684 if (inf == NULL || inf->aspace == NULL)
2685 internal_error (__FILE__, __LINE__,
2686 _("Can't determine the current "
2687 "address space of thread %s\n"),
2688 target_pid_to_str (ptid));
2689
2690 return inf->aspace;
2691 }
2692
2693 /* Determine the current address space of thread PTID. */
2694
2695 struct address_space *
2696 target_thread_address_space (ptid_t ptid)
2697 {
2698 struct address_space *aspace;
2699
2700 aspace = current_target.to_thread_address_space (&current_target, ptid);
2701 gdb_assert (aspace != NULL);
2702
2703 return aspace;
2704 }
2705
2706
2707 /* Target file operations. */
2708
2709 static struct target_ops *
2710 default_fileio_target (void)
2711 {
2712 /* If we're already connected to something that can perform
2713 file I/O, use it. Otherwise, try using the native target. */
2714 if (current_target.to_stratum >= process_stratum)
2715 return current_target.beneath;
2716 else
2717 return find_default_run_target ("file I/O");
2718 }
2719
2720 /* File handle for target file operations. */
2721
2722 typedef struct
2723 {
2724 /* The target on which this file is open. */
2725 struct target_ops *t;
2726
2727 /* The file descriptor on the target. */
2728 int fd;
2729 } fileio_fh_t;
2730
2731 DEF_VEC_O (fileio_fh_t);
2732
2733 /* Vector of currently open file handles. The value returned by
2734 target_fileio_open and passed as the FD argument to other
2735 target_fileio_* functions is an index into this vector. This
2736 vector's entries are never freed; instead, files are marked as
2737 closed, and the handle becomes available for reuse. */
2738 static VEC (fileio_fh_t) *fileio_fhandles;
2739
2740 /* Macro to check whether a fileio_fh_t represents a closed file. */
2741 #define is_closed_fileio_fh(fd) ((fd) < 0)
2742
2743 /* Index into fileio_fhandles of the lowest handle that might be
2744 closed. This permits handle reuse without searching the whole
2745 list each time a new file is opened. */
2746 static int lowest_closed_fd;
2747
2748 /* Acquire a target fileio file descriptor. */
2749
2750 static int
2751 acquire_fileio_fd (struct target_ops *t, int fd)
2752 {
2753 fileio_fh_t *fh;
2754
2755 gdb_assert (!is_closed_fileio_fh (fd));
2756
2757 /* Search for closed handles to reuse. */
2758 for (;
2759 VEC_iterate (fileio_fh_t, fileio_fhandles,
2760 lowest_closed_fd, fh);
2761 lowest_closed_fd++)
2762 if (is_closed_fileio_fh (fh->fd))
2763 break;
2764
2765 /* Push a new handle if no closed handles were found. */
2766 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2767 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2768
2769 /* Fill in the handle. */
2770 fh->t = t;
2771 fh->fd = fd;
2772
2773 /* Return its index, and start the next lookup at
2774 the next index. */
2775 return lowest_closed_fd++;
2776 }
2777
2778 /* Release a target fileio file descriptor. */
2779
2780 static void
2781 release_fileio_fd (int fd, fileio_fh_t *fh)
2782 {
2783 fh->fd = -1;
2784 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2785 }
2786
2787 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2788
2789 #define fileio_fd_to_fh(fd) \
2790 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2791
2792 /* Helper for target_fileio_open and
2793 target_fileio_open_warn_if_slow. */
2794
2795 static int
2796 target_fileio_open_1 (struct inferior *inf, const char *filename,
2797 int flags, int mode, int warn_if_slow,
2798 int *target_errno)
2799 {
2800 struct target_ops *t;
2801
2802 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2803 {
2804 if (t->to_fileio_open != NULL)
2805 {
2806 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2807 warn_if_slow, target_errno);
2808
2809 if (fd < 0)
2810 fd = -1;
2811 else
2812 fd = acquire_fileio_fd (t, fd);
2813
2814 if (targetdebug)
2815 fprintf_unfiltered (gdb_stdlog,
2816 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2817 " = %d (%d)\n",
2818 inf == NULL ? 0 : inf->num,
2819 filename, flags, mode,
2820 warn_if_slow, fd,
2821 fd != -1 ? 0 : *target_errno);
2822 return fd;
2823 }
2824 }
2825
2826 *target_errno = FILEIO_ENOSYS;
2827 return -1;
2828 }
2829
2830 /* See target.h. */
2831
2832 int
2833 target_fileio_open (struct inferior *inf, const char *filename,
2834 int flags, int mode, int *target_errno)
2835 {
2836 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2837 target_errno);
2838 }
2839
2840 /* See target.h. */
2841
2842 int
2843 target_fileio_open_warn_if_slow (struct inferior *inf,
2844 const char *filename,
2845 int flags, int mode, int *target_errno)
2846 {
2847 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2848 target_errno);
2849 }
2850
2851 /* See target.h. */
2852
2853 int
2854 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2855 ULONGEST offset, int *target_errno)
2856 {
2857 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2858 int ret = -1;
2859
2860 if (is_closed_fileio_fh (fh->fd))
2861 *target_errno = EBADF;
2862 else
2863 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2864 len, offset, target_errno);
2865
2866 if (targetdebug)
2867 fprintf_unfiltered (gdb_stdlog,
2868 "target_fileio_pwrite (%d,...,%d,%s) "
2869 "= %d (%d)\n",
2870 fd, len, pulongest (offset),
2871 ret, ret != -1 ? 0 : *target_errno);
2872 return ret;
2873 }
2874
2875 /* See target.h. */
2876
2877 int
2878 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2879 ULONGEST offset, int *target_errno)
2880 {
2881 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2882 int ret = -1;
2883
2884 if (is_closed_fileio_fh (fh->fd))
2885 *target_errno = EBADF;
2886 else
2887 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2888 len, offset, target_errno);
2889
2890 if (targetdebug)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "target_fileio_pread (%d,...,%d,%s) "
2893 "= %d (%d)\n",
2894 fd, len, pulongest (offset),
2895 ret, ret != -1 ? 0 : *target_errno);
2896 return ret;
2897 }
2898
2899 /* See target.h. */
2900
2901 int
2902 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2903 {
2904 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2905 int ret = -1;
2906
2907 if (is_closed_fileio_fh (fh->fd))
2908 *target_errno = EBADF;
2909 else
2910 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2911
2912 if (targetdebug)
2913 fprintf_unfiltered (gdb_stdlog,
2914 "target_fileio_fstat (%d) = %d (%d)\n",
2915 fd, ret, ret != -1 ? 0 : *target_errno);
2916 return ret;
2917 }
2918
2919 /* See target.h. */
2920
2921 int
2922 target_fileio_close (int fd, int *target_errno)
2923 {
2924 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2925 int ret = -1;
2926
2927 if (is_closed_fileio_fh (fh->fd))
2928 *target_errno = EBADF;
2929 else
2930 {
2931 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2932 release_fileio_fd (fd, fh);
2933 }
2934
2935 if (targetdebug)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "target_fileio_close (%d) = %d (%d)\n",
2938 fd, ret, ret != -1 ? 0 : *target_errno);
2939 return ret;
2940 }
2941
2942 /* See target.h. */
2943
2944 int
2945 target_fileio_unlink (struct inferior *inf, const char *filename,
2946 int *target_errno)
2947 {
2948 struct target_ops *t;
2949
2950 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2951 {
2952 if (t->to_fileio_unlink != NULL)
2953 {
2954 int ret = t->to_fileio_unlink (t, inf, filename,
2955 target_errno);
2956
2957 if (targetdebug)
2958 fprintf_unfiltered (gdb_stdlog,
2959 "target_fileio_unlink (%d,%s)"
2960 " = %d (%d)\n",
2961 inf == NULL ? 0 : inf->num, filename,
2962 ret, ret != -1 ? 0 : *target_errno);
2963 return ret;
2964 }
2965 }
2966
2967 *target_errno = FILEIO_ENOSYS;
2968 return -1;
2969 }
2970
2971 /* See target.h. */
2972
2973 char *
2974 target_fileio_readlink (struct inferior *inf, const char *filename,
2975 int *target_errno)
2976 {
2977 struct target_ops *t;
2978
2979 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2980 {
2981 if (t->to_fileio_readlink != NULL)
2982 {
2983 char *ret = t->to_fileio_readlink (t, inf, filename,
2984 target_errno);
2985
2986 if (targetdebug)
2987 fprintf_unfiltered (gdb_stdlog,
2988 "target_fileio_readlink (%d,%s)"
2989 " = %s (%d)\n",
2990 inf == NULL ? 0 : inf->num,
2991 filename, ret? ret : "(nil)",
2992 ret? 0 : *target_errno);
2993 return ret;
2994 }
2995 }
2996
2997 *target_errno = FILEIO_ENOSYS;
2998 return NULL;
2999 }
3000
3001 static void
3002 target_fileio_close_cleanup (void *opaque)
3003 {
3004 int fd = *(int *) opaque;
3005 int target_errno;
3006
3007 target_fileio_close (fd, &target_errno);
3008 }
3009
3010 /* Read target file FILENAME, in the filesystem as seen by INF. If
3011 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3012 remote targets, the remote stub). Store the result in *BUF_P and
3013 return the size of the transferred data. PADDING additional bytes
3014 are available in *BUF_P. This is a helper function for
3015 target_fileio_read_alloc; see the declaration of that function for
3016 more information. */
3017
3018 static LONGEST
3019 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3020 gdb_byte **buf_p, int padding)
3021 {
3022 struct cleanup *close_cleanup;
3023 size_t buf_alloc, buf_pos;
3024 gdb_byte *buf;
3025 LONGEST n;
3026 int fd;
3027 int target_errno;
3028
3029 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3030 &target_errno);
3031 if (fd == -1)
3032 return -1;
3033
3034 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3035
3036 /* Start by reading up to 4K at a time. The target will throttle
3037 this number down if necessary. */
3038 buf_alloc = 4096;
3039 buf = (gdb_byte *) xmalloc (buf_alloc);
3040 buf_pos = 0;
3041 while (1)
3042 {
3043 n = target_fileio_pread (fd, &buf[buf_pos],
3044 buf_alloc - buf_pos - padding, buf_pos,
3045 &target_errno);
3046 if (n < 0)
3047 {
3048 /* An error occurred. */
3049 do_cleanups (close_cleanup);
3050 xfree (buf);
3051 return -1;
3052 }
3053 else if (n == 0)
3054 {
3055 /* Read all there was. */
3056 do_cleanups (close_cleanup);
3057 if (buf_pos == 0)
3058 xfree (buf);
3059 else
3060 *buf_p = buf;
3061 return buf_pos;
3062 }
3063
3064 buf_pos += n;
3065
3066 /* If the buffer is filling up, expand it. */
3067 if (buf_alloc < buf_pos * 2)
3068 {
3069 buf_alloc *= 2;
3070 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3071 }
3072
3073 QUIT;
3074 }
3075 }
3076
3077 /* See target.h. */
3078
3079 LONGEST
3080 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3081 gdb_byte **buf_p)
3082 {
3083 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3084 }
3085
3086 /* See target.h. */
3087
3088 gdb::unique_xmalloc_ptr<char>
3089 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3090 {
3091 gdb_byte *buffer;
3092 char *bufstr;
3093 LONGEST i, transferred;
3094
3095 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3096 bufstr = (char *) buffer;
3097
3098 if (transferred < 0)
3099 return gdb::unique_xmalloc_ptr<char> (nullptr);
3100
3101 if (transferred == 0)
3102 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3103
3104 bufstr[transferred] = 0;
3105
3106 /* Check for embedded NUL bytes; but allow trailing NULs. */
3107 for (i = strlen (bufstr); i < transferred; i++)
3108 if (bufstr[i] != 0)
3109 {
3110 warning (_("target file %s "
3111 "contained unexpected null characters"),
3112 filename);
3113 break;
3114 }
3115
3116 return gdb::unique_xmalloc_ptr<char> (bufstr);
3117 }
3118
3119
3120 static int
3121 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3122 CORE_ADDR addr, int len)
3123 {
3124 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3125 }
3126
3127 static int
3128 default_watchpoint_addr_within_range (struct target_ops *target,
3129 CORE_ADDR addr,
3130 CORE_ADDR start, int length)
3131 {
3132 return addr >= start && addr < start + length;
3133 }
3134
3135 static struct gdbarch *
3136 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3137 {
3138 inferior *inf = find_inferior_ptid (ptid);
3139 gdb_assert (inf != NULL);
3140 return inf->gdbarch;
3141 }
3142
3143 static int
3144 return_zero (struct target_ops *ignore)
3145 {
3146 return 0;
3147 }
3148
3149 static int
3150 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3151 {
3152 return 0;
3153 }
3154
3155 /*
3156 * Find the next target down the stack from the specified target.
3157 */
3158
3159 struct target_ops *
3160 find_target_beneath (struct target_ops *t)
3161 {
3162 return t->beneath;
3163 }
3164
3165 /* See target.h. */
3166
3167 struct target_ops *
3168 find_target_at (enum strata stratum)
3169 {
3170 struct target_ops *t;
3171
3172 for (t = current_target.beneath; t != NULL; t = t->beneath)
3173 if (t->to_stratum == stratum)
3174 return t;
3175
3176 return NULL;
3177 }
3178
3179 \f
3180
3181 /* See target.h */
3182
3183 void
3184 target_announce_detach (int from_tty)
3185 {
3186 pid_t pid;
3187 const char *exec_file;
3188
3189 if (!from_tty)
3190 return;
3191
3192 exec_file = get_exec_file (0);
3193 if (exec_file == NULL)
3194 exec_file = "";
3195
3196 pid = ptid_get_pid (inferior_ptid);
3197 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3198 target_pid_to_str (pid_to_ptid (pid)));
3199 gdb_flush (gdb_stdout);
3200 }
3201
3202 /* The inferior process has died. Long live the inferior! */
3203
3204 void
3205 generic_mourn_inferior (void)
3206 {
3207 ptid_t ptid;
3208
3209 ptid = inferior_ptid;
3210 inferior_ptid = null_ptid;
3211
3212 /* Mark breakpoints uninserted in case something tries to delete a
3213 breakpoint while we delete the inferior's threads (which would
3214 fail, since the inferior is long gone). */
3215 mark_breakpoints_out ();
3216
3217 if (!ptid_equal (ptid, null_ptid))
3218 {
3219 int pid = ptid_get_pid (ptid);
3220 exit_inferior (pid);
3221 }
3222
3223 /* Note this wipes step-resume breakpoints, so needs to be done
3224 after exit_inferior, which ends up referencing the step-resume
3225 breakpoints through clear_thread_inferior_resources. */
3226 breakpoint_init_inferior (inf_exited);
3227
3228 registers_changed ();
3229
3230 reopen_exec_file ();
3231 reinit_frame_cache ();
3232
3233 if (deprecated_detach_hook)
3234 deprecated_detach_hook ();
3235 }
3236 \f
3237 /* Convert a normal process ID to a string. Returns the string in a
3238 static buffer. */
3239
3240 const char *
3241 normal_pid_to_str (ptid_t ptid)
3242 {
3243 static char buf[32];
3244
3245 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3246 return buf;
3247 }
3248
3249 static const char *
3250 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3251 {
3252 return normal_pid_to_str (ptid);
3253 }
3254
3255 /* Error-catcher for target_find_memory_regions. */
3256 static int
3257 dummy_find_memory_regions (struct target_ops *self,
3258 find_memory_region_ftype ignore1, void *ignore2)
3259 {
3260 error (_("Command not implemented for this target."));
3261 return 0;
3262 }
3263
3264 /* Error-catcher for target_make_corefile_notes. */
3265 static char *
3266 dummy_make_corefile_notes (struct target_ops *self,
3267 bfd *ignore1, int *ignore2)
3268 {
3269 error (_("Command not implemented for this target."));
3270 return NULL;
3271 }
3272
3273 /* Set up the handful of non-empty slots needed by the dummy target
3274 vector. */
3275
3276 static void
3277 init_dummy_target (void)
3278 {
3279 dummy_target.to_shortname = "None";
3280 dummy_target.to_longname = "None";
3281 dummy_target.to_doc = "";
3282 dummy_target.to_supports_disable_randomization
3283 = find_default_supports_disable_randomization;
3284 dummy_target.to_stratum = dummy_stratum;
3285 dummy_target.to_has_all_memory = return_zero;
3286 dummy_target.to_has_memory = return_zero;
3287 dummy_target.to_has_stack = return_zero;
3288 dummy_target.to_has_registers = return_zero;
3289 dummy_target.to_has_execution = return_zero_has_execution;
3290 dummy_target.to_magic = OPS_MAGIC;
3291
3292 install_dummy_methods (&dummy_target);
3293 }
3294 \f
3295
3296 void
3297 target_close (struct target_ops *targ)
3298 {
3299 gdb_assert (!target_is_pushed (targ));
3300
3301 if (targ->to_xclose != NULL)
3302 targ->to_xclose (targ);
3303 else if (targ->to_close != NULL)
3304 targ->to_close (targ);
3305
3306 if (targetdebug)
3307 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3308 }
3309
3310 int
3311 target_thread_alive (ptid_t ptid)
3312 {
3313 return current_target.to_thread_alive (&current_target, ptid);
3314 }
3315
3316 void
3317 target_update_thread_list (void)
3318 {
3319 current_target.to_update_thread_list (&current_target);
3320 }
3321
3322 void
3323 target_stop (ptid_t ptid)
3324 {
3325 if (!may_stop)
3326 {
3327 warning (_("May not interrupt or stop the target, ignoring attempt"));
3328 return;
3329 }
3330
3331 (*current_target.to_stop) (&current_target, ptid);
3332 }
3333
3334 void
3335 target_interrupt (ptid_t ptid)
3336 {
3337 if (!may_stop)
3338 {
3339 warning (_("May not interrupt or stop the target, ignoring attempt"));
3340 return;
3341 }
3342
3343 (*current_target.to_interrupt) (&current_target, ptid);
3344 }
3345
3346 /* See target.h. */
3347
3348 void
3349 target_pass_ctrlc (void)
3350 {
3351 (*current_target.to_pass_ctrlc) (&current_target);
3352 }
3353
3354 /* See target.h. */
3355
3356 void
3357 default_target_pass_ctrlc (struct target_ops *ops)
3358 {
3359 target_interrupt (inferior_ptid);
3360 }
3361
3362 /* See target/target.h. */
3363
3364 void
3365 target_stop_and_wait (ptid_t ptid)
3366 {
3367 struct target_waitstatus status;
3368 int was_non_stop = non_stop;
3369
3370 non_stop = 1;
3371 target_stop (ptid);
3372
3373 memset (&status, 0, sizeof (status));
3374 target_wait (ptid, &status, 0);
3375
3376 non_stop = was_non_stop;
3377 }
3378
3379 /* See target/target.h. */
3380
3381 void
3382 target_continue_no_signal (ptid_t ptid)
3383 {
3384 target_resume (ptid, 0, GDB_SIGNAL_0);
3385 }
3386
3387 /* See target/target.h. */
3388
3389 void
3390 target_continue (ptid_t ptid, enum gdb_signal signal)
3391 {
3392 target_resume (ptid, 0, signal);
3393 }
3394
3395 /* Concatenate ELEM to LIST, a comma separate list, and return the
3396 result. The LIST incoming argument is released. */
3397
3398 static char *
3399 str_comma_list_concat_elem (char *list, const char *elem)
3400 {
3401 if (list == NULL)
3402 return xstrdup (elem);
3403 else
3404 return reconcat (list, list, ", ", elem, (char *) NULL);
3405 }
3406
3407 /* Helper for target_options_to_string. If OPT is present in
3408 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3409 Returns the new resulting string. OPT is removed from
3410 TARGET_OPTIONS. */
3411
3412 static char *
3413 do_option (int *target_options, char *ret,
3414 int opt, const char *opt_str)
3415 {
3416 if ((*target_options & opt) != 0)
3417 {
3418 ret = str_comma_list_concat_elem (ret, opt_str);
3419 *target_options &= ~opt;
3420 }
3421
3422 return ret;
3423 }
3424
3425 char *
3426 target_options_to_string (int target_options)
3427 {
3428 char *ret = NULL;
3429
3430 #define DO_TARG_OPTION(OPT) \
3431 ret = do_option (&target_options, ret, OPT, #OPT)
3432
3433 DO_TARG_OPTION (TARGET_WNOHANG);
3434
3435 if (target_options != 0)
3436 ret = str_comma_list_concat_elem (ret, "unknown???");
3437
3438 if (ret == NULL)
3439 ret = xstrdup ("");
3440 return ret;
3441 }
3442
3443 void
3444 target_fetch_registers (struct regcache *regcache, int regno)
3445 {
3446 current_target.to_fetch_registers (&current_target, regcache, regno);
3447 if (targetdebug)
3448 regcache->debug_print_register ("target_fetch_registers", regno);
3449 }
3450
3451 void
3452 target_store_registers (struct regcache *regcache, int regno)
3453 {
3454 if (!may_write_registers)
3455 error (_("Writing to registers is not allowed (regno %d)"), regno);
3456
3457 current_target.to_store_registers (&current_target, regcache, regno);
3458 if (targetdebug)
3459 {
3460 regcache->debug_print_register ("target_store_registers", regno);
3461 }
3462 }
3463
3464 int
3465 target_core_of_thread (ptid_t ptid)
3466 {
3467 return current_target.to_core_of_thread (&current_target, ptid);
3468 }
3469
3470 int
3471 simple_verify_memory (struct target_ops *ops,
3472 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3473 {
3474 LONGEST total_xfered = 0;
3475
3476 while (total_xfered < size)
3477 {
3478 ULONGEST xfered_len;
3479 enum target_xfer_status status;
3480 gdb_byte buf[1024];
3481 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3482
3483 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3484 buf, NULL, lma + total_xfered, howmuch,
3485 &xfered_len);
3486 if (status == TARGET_XFER_OK
3487 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3488 {
3489 total_xfered += xfered_len;
3490 QUIT;
3491 }
3492 else
3493 return 0;
3494 }
3495 return 1;
3496 }
3497
3498 /* Default implementation of memory verification. */
3499
3500 static int
3501 default_verify_memory (struct target_ops *self,
3502 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3503 {
3504 /* Start over from the top of the target stack. */
3505 return simple_verify_memory (current_target.beneath,
3506 data, memaddr, size);
3507 }
3508
3509 int
3510 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3511 {
3512 return current_target.to_verify_memory (&current_target,
3513 data, memaddr, size);
3514 }
3515
3516 /* The documentation for this function is in its prototype declaration in
3517 target.h. */
3518
3519 int
3520 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3521 enum target_hw_bp_type rw)
3522 {
3523 return current_target.to_insert_mask_watchpoint (&current_target,
3524 addr, mask, rw);
3525 }
3526
3527 /* The documentation for this function is in its prototype declaration in
3528 target.h. */
3529
3530 int
3531 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3532 enum target_hw_bp_type rw)
3533 {
3534 return current_target.to_remove_mask_watchpoint (&current_target,
3535 addr, mask, rw);
3536 }
3537
3538 /* The documentation for this function is in its prototype declaration
3539 in target.h. */
3540
3541 int
3542 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3543 {
3544 return current_target.to_masked_watch_num_registers (&current_target,
3545 addr, mask);
3546 }
3547
3548 /* The documentation for this function is in its prototype declaration
3549 in target.h. */
3550
3551 int
3552 target_ranged_break_num_registers (void)
3553 {
3554 return current_target.to_ranged_break_num_registers (&current_target);
3555 }
3556
3557 /* See target.h. */
3558
3559 int
3560 target_supports_btrace (enum btrace_format format)
3561 {
3562 return current_target.to_supports_btrace (&current_target, format);
3563 }
3564
3565 /* See target.h. */
3566
3567 struct btrace_target_info *
3568 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3569 {
3570 return current_target.to_enable_btrace (&current_target, ptid, conf);
3571 }
3572
3573 /* See target.h. */
3574
3575 void
3576 target_disable_btrace (struct btrace_target_info *btinfo)
3577 {
3578 current_target.to_disable_btrace (&current_target, btinfo);
3579 }
3580
3581 /* See target.h. */
3582
3583 void
3584 target_teardown_btrace (struct btrace_target_info *btinfo)
3585 {
3586 current_target.to_teardown_btrace (&current_target, btinfo);
3587 }
3588
3589 /* See target.h. */
3590
3591 enum btrace_error
3592 target_read_btrace (struct btrace_data *btrace,
3593 struct btrace_target_info *btinfo,
3594 enum btrace_read_type type)
3595 {
3596 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3597 }
3598
3599 /* See target.h. */
3600
3601 const struct btrace_config *
3602 target_btrace_conf (const struct btrace_target_info *btinfo)
3603 {
3604 return current_target.to_btrace_conf (&current_target, btinfo);
3605 }
3606
3607 /* See target.h. */
3608
3609 void
3610 target_stop_recording (void)
3611 {
3612 current_target.to_stop_recording (&current_target);
3613 }
3614
3615 /* See target.h. */
3616
3617 void
3618 target_save_record (const char *filename)
3619 {
3620 current_target.to_save_record (&current_target, filename);
3621 }
3622
3623 /* See target.h. */
3624
3625 int
3626 target_supports_delete_record (void)
3627 {
3628 struct target_ops *t;
3629
3630 for (t = current_target.beneath; t != NULL; t = t->beneath)
3631 if (t->to_delete_record != delegate_delete_record
3632 && t->to_delete_record != tdefault_delete_record)
3633 return 1;
3634
3635 return 0;
3636 }
3637
3638 /* See target.h. */
3639
3640 void
3641 target_delete_record (void)
3642 {
3643 current_target.to_delete_record (&current_target);
3644 }
3645
3646 /* See target.h. */
3647
3648 enum record_method
3649 target_record_method (ptid_t ptid)
3650 {
3651 return current_target.to_record_method (&current_target, ptid);
3652 }
3653
3654 /* See target.h. */
3655
3656 int
3657 target_record_is_replaying (ptid_t ptid)
3658 {
3659 return current_target.to_record_is_replaying (&current_target, ptid);
3660 }
3661
3662 /* See target.h. */
3663
3664 int
3665 target_record_will_replay (ptid_t ptid, int dir)
3666 {
3667 return current_target.to_record_will_replay (&current_target, ptid, dir);
3668 }
3669
3670 /* See target.h. */
3671
3672 void
3673 target_record_stop_replaying (void)
3674 {
3675 current_target.to_record_stop_replaying (&current_target);
3676 }
3677
3678 /* See target.h. */
3679
3680 void
3681 target_goto_record_begin (void)
3682 {
3683 current_target.to_goto_record_begin (&current_target);
3684 }
3685
3686 /* See target.h. */
3687
3688 void
3689 target_goto_record_end (void)
3690 {
3691 current_target.to_goto_record_end (&current_target);
3692 }
3693
3694 /* See target.h. */
3695
3696 void
3697 target_goto_record (ULONGEST insn)
3698 {
3699 current_target.to_goto_record (&current_target, insn);
3700 }
3701
3702 /* See target.h. */
3703
3704 void
3705 target_insn_history (int size, gdb_disassembly_flags flags)
3706 {
3707 current_target.to_insn_history (&current_target, size, flags);
3708 }
3709
3710 /* See target.h. */
3711
3712 void
3713 target_insn_history_from (ULONGEST from, int size,
3714 gdb_disassembly_flags flags)
3715 {
3716 current_target.to_insn_history_from (&current_target, from, size, flags);
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_insn_history_range (ULONGEST begin, ULONGEST end,
3723 gdb_disassembly_flags flags)
3724 {
3725 current_target.to_insn_history_range (&current_target, begin, end, flags);
3726 }
3727
3728 /* See target.h. */
3729
3730 void
3731 target_call_history (int size, int flags)
3732 {
3733 current_target.to_call_history (&current_target, size, flags);
3734 }
3735
3736 /* See target.h. */
3737
3738 void
3739 target_call_history_from (ULONGEST begin, int size, int flags)
3740 {
3741 current_target.to_call_history_from (&current_target, begin, size, flags);
3742 }
3743
3744 /* See target.h. */
3745
3746 void
3747 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3748 {
3749 current_target.to_call_history_range (&current_target, begin, end, flags);
3750 }
3751
3752 /* See target.h. */
3753
3754 const struct frame_unwind *
3755 target_get_unwinder (void)
3756 {
3757 return current_target.to_get_unwinder (&current_target);
3758 }
3759
3760 /* See target.h. */
3761
3762 const struct frame_unwind *
3763 target_get_tailcall_unwinder (void)
3764 {
3765 return current_target.to_get_tailcall_unwinder (&current_target);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_prepare_to_generate_core (void)
3772 {
3773 current_target.to_prepare_to_generate_core (&current_target);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_done_generating_core (void)
3780 {
3781 current_target.to_done_generating_core (&current_target);
3782 }
3783
3784 static void
3785 setup_target_debug (void)
3786 {
3787 memcpy (&debug_target, &current_target, sizeof debug_target);
3788
3789 init_debug_target (&current_target);
3790 }
3791 \f
3792
3793 static char targ_desc[] =
3794 "Names of targets and files being debugged.\nShows the entire \
3795 stack of targets currently in use (including the exec-file,\n\
3796 core-file, and process, if any), as well as the symbol file name.";
3797
3798 static void
3799 default_rcmd (struct target_ops *self, const char *command,
3800 struct ui_file *output)
3801 {
3802 error (_("\"monitor\" command not supported by this target."));
3803 }
3804
3805 static void
3806 do_monitor_command (const char *cmd, int from_tty)
3807 {
3808 target_rcmd (cmd, gdb_stdtarg);
3809 }
3810
3811 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3812 ignored. */
3813
3814 void
3815 flash_erase_command (const char *cmd, int from_tty)
3816 {
3817 /* Used to communicate termination of flash operations to the target. */
3818 bool found_flash_region = false;
3819 struct gdbarch *gdbarch = target_gdbarch ();
3820
3821 std::vector<mem_region> mem_regions = target_memory_map ();
3822
3823 /* Iterate over all memory regions. */
3824 for (const mem_region &m : mem_regions)
3825 {
3826 /* Is this a flash memory region? */
3827 if (m.attrib.mode == MEM_FLASH)
3828 {
3829 found_flash_region = true;
3830 target_flash_erase (m.lo, m.hi - m.lo);
3831
3832 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3833
3834 current_uiout->message (_("Erasing flash memory region at address "));
3835 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3836 current_uiout->message (", size = ");
3837 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3838 current_uiout->message ("\n");
3839 }
3840 }
3841
3842 /* Did we do any flash operations? If so, we need to finalize them. */
3843 if (found_flash_region)
3844 target_flash_done ();
3845 else
3846 current_uiout->message (_("No flash memory regions found.\n"));
3847 }
3848
3849 /* Print the name of each layers of our target stack. */
3850
3851 static void
3852 maintenance_print_target_stack (const char *cmd, int from_tty)
3853 {
3854 struct target_ops *t;
3855
3856 printf_filtered (_("The current target stack is:\n"));
3857
3858 for (t = target_stack; t != NULL; t = t->beneath)
3859 {
3860 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3861 }
3862 }
3863
3864 /* See target.h. */
3865
3866 void
3867 target_async (int enable)
3868 {
3869 infrun_async (enable);
3870 current_target.to_async (&current_target, enable);
3871 }
3872
3873 /* See target.h. */
3874
3875 void
3876 target_thread_events (int enable)
3877 {
3878 current_target.to_thread_events (&current_target, enable);
3879 }
3880
3881 /* Controls if targets can report that they can/are async. This is
3882 just for maintainers to use when debugging gdb. */
3883 int target_async_permitted = 1;
3884
3885 /* The set command writes to this variable. If the inferior is
3886 executing, target_async_permitted is *not* updated. */
3887 static int target_async_permitted_1 = 1;
3888
3889 static void
3890 maint_set_target_async_command (const char *args, int from_tty,
3891 struct cmd_list_element *c)
3892 {
3893 if (have_live_inferiors ())
3894 {
3895 target_async_permitted_1 = target_async_permitted;
3896 error (_("Cannot change this setting while the inferior is running."));
3897 }
3898
3899 target_async_permitted = target_async_permitted_1;
3900 }
3901
3902 static void
3903 maint_show_target_async_command (struct ui_file *file, int from_tty,
3904 struct cmd_list_element *c,
3905 const char *value)
3906 {
3907 fprintf_filtered (file,
3908 _("Controlling the inferior in "
3909 "asynchronous mode is %s.\n"), value);
3910 }
3911
3912 /* Return true if the target operates in non-stop mode even with "set
3913 non-stop off". */
3914
3915 static int
3916 target_always_non_stop_p (void)
3917 {
3918 return current_target.to_always_non_stop_p (&current_target);
3919 }
3920
3921 /* See target.h. */
3922
3923 int
3924 target_is_non_stop_p (void)
3925 {
3926 return (non_stop
3927 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3928 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3929 && target_always_non_stop_p ()));
3930 }
3931
3932 /* Controls if targets can report that they always run in non-stop
3933 mode. This is just for maintainers to use when debugging gdb. */
3934 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3935
3936 /* The set command writes to this variable. If the inferior is
3937 executing, target_non_stop_enabled is *not* updated. */
3938 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3939
3940 /* Implementation of "maint set target-non-stop". */
3941
3942 static void
3943 maint_set_target_non_stop_command (const char *args, int from_tty,
3944 struct cmd_list_element *c)
3945 {
3946 if (have_live_inferiors ())
3947 {
3948 target_non_stop_enabled_1 = target_non_stop_enabled;
3949 error (_("Cannot change this setting while the inferior is running."));
3950 }
3951
3952 target_non_stop_enabled = target_non_stop_enabled_1;
3953 }
3954
3955 /* Implementation of "maint show target-non-stop". */
3956
3957 static void
3958 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3959 struct cmd_list_element *c,
3960 const char *value)
3961 {
3962 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3963 fprintf_filtered (file,
3964 _("Whether the target is always in non-stop mode "
3965 "is %s (currently %s).\n"), value,
3966 target_always_non_stop_p () ? "on" : "off");
3967 else
3968 fprintf_filtered (file,
3969 _("Whether the target is always in non-stop mode "
3970 "is %s.\n"), value);
3971 }
3972
3973 /* Temporary copies of permission settings. */
3974
3975 static int may_write_registers_1 = 1;
3976 static int may_write_memory_1 = 1;
3977 static int may_insert_breakpoints_1 = 1;
3978 static int may_insert_tracepoints_1 = 1;
3979 static int may_insert_fast_tracepoints_1 = 1;
3980 static int may_stop_1 = 1;
3981
3982 /* Make the user-set values match the real values again. */
3983
3984 void
3985 update_target_permissions (void)
3986 {
3987 may_write_registers_1 = may_write_registers;
3988 may_write_memory_1 = may_write_memory;
3989 may_insert_breakpoints_1 = may_insert_breakpoints;
3990 may_insert_tracepoints_1 = may_insert_tracepoints;
3991 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3992 may_stop_1 = may_stop;
3993 }
3994
3995 /* The one function handles (most of) the permission flags in the same
3996 way. */
3997
3998 static void
3999 set_target_permissions (const char *args, int from_tty,
4000 struct cmd_list_element *c)
4001 {
4002 if (target_has_execution)
4003 {
4004 update_target_permissions ();
4005 error (_("Cannot change this setting while the inferior is running."));
4006 }
4007
4008 /* Make the real values match the user-changed values. */
4009 may_write_registers = may_write_registers_1;
4010 may_insert_breakpoints = may_insert_breakpoints_1;
4011 may_insert_tracepoints = may_insert_tracepoints_1;
4012 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4013 may_stop = may_stop_1;
4014 update_observer_mode ();
4015 }
4016
4017 /* Set memory write permission independently of observer mode. */
4018
4019 static void
4020 set_write_memory_permission (const char *args, int from_tty,
4021 struct cmd_list_element *c)
4022 {
4023 /* Make the real values match the user-changed values. */
4024 may_write_memory = may_write_memory_1;
4025 update_observer_mode ();
4026 }
4027
4028 #if GDB_SELF_TEST
4029 namespace selftests {
4030
4031 static int
4032 test_target_has_registers (target_ops *self)
4033 {
4034 return 1;
4035 }
4036
4037 static int
4038 test_target_has_stack (target_ops *self)
4039 {
4040 return 1;
4041 }
4042
4043 static int
4044 test_target_has_memory (target_ops *self)
4045 {
4046 return 1;
4047 }
4048
4049 static void
4050 test_target_prepare_to_store (target_ops *self, regcache *regs)
4051 {
4052 }
4053
4054 static void
4055 test_target_store_registers (target_ops *self, regcache *regs, int regno)
4056 {
4057 }
4058
4059 test_target_ops::test_target_ops ()
4060 : target_ops {}
4061 {
4062 to_magic = OPS_MAGIC;
4063 to_stratum = process_stratum;
4064 to_has_memory = test_target_has_memory;
4065 to_has_stack = test_target_has_stack;
4066 to_has_registers = test_target_has_registers;
4067 to_prepare_to_store = test_target_prepare_to_store;
4068 to_store_registers = test_target_store_registers;
4069
4070 complete_target_initialization (this);
4071 }
4072
4073 } // namespace selftests
4074 #endif /* GDB_SELF_TEST */
4075
4076 void
4077 initialize_targets (void)
4078 {
4079 init_dummy_target ();
4080 push_target (&dummy_target);
4081
4082 add_info ("target", info_target_command, targ_desc);
4083 add_info ("files", info_target_command, targ_desc);
4084
4085 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4086 Set target debugging."), _("\
4087 Show target debugging."), _("\
4088 When non-zero, target debugging is enabled. Higher numbers are more\n\
4089 verbose."),
4090 set_targetdebug,
4091 show_targetdebug,
4092 &setdebuglist, &showdebuglist);
4093
4094 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4095 &trust_readonly, _("\
4096 Set mode for reading from readonly sections."), _("\
4097 Show mode for reading from readonly sections."), _("\
4098 When this mode is on, memory reads from readonly sections (such as .text)\n\
4099 will be read from the object file instead of from the target. This will\n\
4100 result in significant performance improvement for remote targets."),
4101 NULL,
4102 show_trust_readonly,
4103 &setlist, &showlist);
4104
4105 add_com ("monitor", class_obscure, do_monitor_command,
4106 _("Send a command to the remote monitor (remote targets only)."));
4107
4108 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4109 _("Print the name of each layer of the internal target stack."),
4110 &maintenanceprintlist);
4111
4112 add_setshow_boolean_cmd ("target-async", no_class,
4113 &target_async_permitted_1, _("\
4114 Set whether gdb controls the inferior in asynchronous mode."), _("\
4115 Show whether gdb controls the inferior in asynchronous mode."), _("\
4116 Tells gdb whether to control the inferior in asynchronous mode."),
4117 maint_set_target_async_command,
4118 maint_show_target_async_command,
4119 &maintenance_set_cmdlist,
4120 &maintenance_show_cmdlist);
4121
4122 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4123 &target_non_stop_enabled_1, _("\
4124 Set whether gdb always controls the inferior in non-stop mode."), _("\
4125 Show whether gdb always controls the inferior in non-stop mode."), _("\
4126 Tells gdb whether to control the inferior in non-stop mode."),
4127 maint_set_target_non_stop_command,
4128 maint_show_target_non_stop_command,
4129 &maintenance_set_cmdlist,
4130 &maintenance_show_cmdlist);
4131
4132 add_setshow_boolean_cmd ("may-write-registers", class_support,
4133 &may_write_registers_1, _("\
4134 Set permission to write into registers."), _("\
4135 Show permission to write into registers."), _("\
4136 When this permission is on, GDB may write into the target's registers.\n\
4137 Otherwise, any sort of write attempt will result in an error."),
4138 set_target_permissions, NULL,
4139 &setlist, &showlist);
4140
4141 add_setshow_boolean_cmd ("may-write-memory", class_support,
4142 &may_write_memory_1, _("\
4143 Set permission to write into target memory."), _("\
4144 Show permission to write into target memory."), _("\
4145 When this permission is on, GDB may write into the target's memory.\n\
4146 Otherwise, any sort of write attempt will result in an error."),
4147 set_write_memory_permission, NULL,
4148 &setlist, &showlist);
4149
4150 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4151 &may_insert_breakpoints_1, _("\
4152 Set permission to insert breakpoints in the target."), _("\
4153 Show permission to insert breakpoints in the target."), _("\
4154 When this permission is on, GDB may insert breakpoints in the program.\n\
4155 Otherwise, any sort of insertion attempt will result in an error."),
4156 set_target_permissions, NULL,
4157 &setlist, &showlist);
4158
4159 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4160 &may_insert_tracepoints_1, _("\
4161 Set permission to insert tracepoints in the target."), _("\
4162 Show permission to insert tracepoints in the target."), _("\
4163 When this permission is on, GDB may insert tracepoints in the program.\n\
4164 Otherwise, any sort of insertion attempt will result in an error."),
4165 set_target_permissions, NULL,
4166 &setlist, &showlist);
4167
4168 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4169 &may_insert_fast_tracepoints_1, _("\
4170 Set permission to insert fast tracepoints in the target."), _("\
4171 Show permission to insert fast tracepoints in the target."), _("\
4172 When this permission is on, GDB may insert fast tracepoints.\n\
4173 Otherwise, any sort of insertion attempt will result in an error."),
4174 set_target_permissions, NULL,
4175 &setlist, &showlist);
4176
4177 add_setshow_boolean_cmd ("may-interrupt", class_support,
4178 &may_stop_1, _("\
4179 Set permission to interrupt or signal the target."), _("\
4180 Show permission to interrupt or signal the target."), _("\
4181 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4182 Otherwise, any attempt to interrupt or stop will be ignored."),
4183 set_target_permissions, NULL,
4184 &setlist, &showlist);
4185
4186 add_com ("flash-erase", no_class, flash_erase_command,
4187 _("Erase all flash memory regions."));
4188
4189 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4190 &auto_connect_native_target, _("\
4191 Set whether GDB may automatically connect to the native target."), _("\
4192 Show whether GDB may automatically connect to the native target."), _("\
4193 When on, and GDB is not connected to a target yet, GDB\n\
4194 attempts \"run\" and other commands with the native target."),
4195 NULL, show_auto_connect_native_target,
4196 &setlist, &showlist);
4197 }
This page took 0.111388 seconds and 3 git commands to generate.