Pass Ctrl-C to the target in target_terminal_inferior
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state = terminal_is_ours;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 int
470 target_terminal_is_ours (void)
471 {
472 return (terminal_state == terminal_is_ours);
473 }
474
475 /* See target.h. */
476
477 void
478 target_terminal_inferior (void)
479 {
480 /* A background resume (``run&'') should leave GDB in control of the
481 terminal. Use target_can_async_p, not target_is_async_p, since at
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
485 return;
486
487 if (terminal_state == terminal_is_inferior)
488 return;
489
490 /* If GDB is resuming the inferior in the foreground, install
491 inferior's terminal modes. */
492 (*current_target.to_terminal_inferior) (&current_target);
493 terminal_state = terminal_is_inferior;
494
495 /* If the user hit C-c before, pretend that it was hit right
496 here. */
497 if (check_quit_flag ())
498 target_pass_ctrlc ();
499 }
500
501 /* See target.h. */
502
503 void
504 target_terminal_ours (void)
505 {
506 if (terminal_state == terminal_is_ours)
507 return;
508
509 (*current_target.to_terminal_ours) (&current_target);
510 terminal_state = terminal_is_ours;
511 }
512
513 /* See target.h. */
514
515 void
516 target_terminal_ours_for_output (void)
517 {
518 if (terminal_state != terminal_is_inferior)
519 return;
520 (*current_target.to_terminal_ours_for_output) (&current_target);
521 terminal_state = terminal_is_ours_for_output;
522 }
523
524 /* See target.h. */
525
526 int
527 target_supports_terminal_ours (void)
528 {
529 struct target_ops *t;
530
531 for (t = current_target.beneath; t != NULL; t = t->beneath)
532 {
533 if (t->to_terminal_ours != delegate_terminal_ours
534 && t->to_terminal_ours != tdefault_terminal_ours)
535 return 1;
536 }
537
538 return 0;
539 }
540
541 /* Restore the terminal to its previous state (helper for
542 make_cleanup_restore_target_terminal). */
543
544 static void
545 cleanup_restore_target_terminal (void *arg)
546 {
547 enum terminal_state *previous_state = (enum terminal_state *) arg;
548
549 switch (*previous_state)
550 {
551 case terminal_is_ours:
552 target_terminal_ours ();
553 break;
554 case terminal_is_ours_for_output:
555 target_terminal_ours_for_output ();
556 break;
557 case terminal_is_inferior:
558 target_terminal_inferior ();
559 break;
560 }
561 }
562
563 /* See target.h. */
564
565 struct cleanup *
566 make_cleanup_restore_target_terminal (void)
567 {
568 enum terminal_state *ts = XNEW (enum terminal_state);
569
570 *ts = terminal_state;
571
572 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
573 }
574
575 static void
576 tcomplain (void)
577 {
578 error (_("You can't do that when your target is `%s'"),
579 current_target.to_shortname);
580 }
581
582 void
583 noprocess (void)
584 {
585 error (_("You can't do that without a process to debug."));
586 }
587
588 static void
589 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
590 {
591 printf_unfiltered (_("No saved terminal information.\n"));
592 }
593
594 /* A default implementation for the to_get_ada_task_ptid target method.
595
596 This function builds the PTID by using both LWP and TID as part of
597 the PTID lwp and tid elements. The pid used is the pid of the
598 inferior_ptid. */
599
600 static ptid_t
601 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
602 {
603 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
604 }
605
606 static enum exec_direction_kind
607 default_execution_direction (struct target_ops *self)
608 {
609 if (!target_can_execute_reverse)
610 return EXEC_FORWARD;
611 else if (!target_can_async_p ())
612 return EXEC_FORWARD;
613 else
614 gdb_assert_not_reached ("\
615 to_execution_direction must be implemented for reverse async");
616 }
617
618 /* Go through the target stack from top to bottom, copying over zero
619 entries in current_target, then filling in still empty entries. In
620 effect, we are doing class inheritance through the pushed target
621 vectors.
622
623 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
624 is currently implemented, is that it discards any knowledge of
625 which target an inherited method originally belonged to.
626 Consequently, new new target methods should instead explicitly and
627 locally search the target stack for the target that can handle the
628 request. */
629
630 static void
631 update_current_target (void)
632 {
633 struct target_ops *t;
634
635 /* First, reset current's contents. */
636 memset (&current_target, 0, sizeof (current_target));
637
638 /* Install the delegators. */
639 install_delegators (&current_target);
640
641 current_target.to_stratum = target_stack->to_stratum;
642
643 #define INHERIT(FIELD, TARGET) \
644 if (!current_target.FIELD) \
645 current_target.FIELD = (TARGET)->FIELD
646
647 /* Do not add any new INHERITs here. Instead, use the delegation
648 mechanism provided by make-target-delegates. */
649 for (t = target_stack; t; t = t->beneath)
650 {
651 INHERIT (to_shortname, t);
652 INHERIT (to_longname, t);
653 INHERIT (to_attach_no_wait, t);
654 INHERIT (to_have_steppable_watchpoint, t);
655 INHERIT (to_have_continuable_watchpoint, t);
656 INHERIT (to_has_thread_control, t);
657 }
658 #undef INHERIT
659
660 /* Finally, position the target-stack beneath the squashed
661 "current_target". That way code looking for a non-inherited
662 target method can quickly and simply find it. */
663 current_target.beneath = target_stack;
664
665 if (targetdebug)
666 setup_target_debug ();
667 }
668
669 /* Push a new target type into the stack of the existing target accessors,
670 possibly superseding some of the existing accessors.
671
672 Rather than allow an empty stack, we always have the dummy target at
673 the bottom stratum, so we can call the function vectors without
674 checking them. */
675
676 void
677 push_target (struct target_ops *t)
678 {
679 struct target_ops **cur;
680
681 /* Check magic number. If wrong, it probably means someone changed
682 the struct definition, but not all the places that initialize one. */
683 if (t->to_magic != OPS_MAGIC)
684 {
685 fprintf_unfiltered (gdb_stderr,
686 "Magic number of %s target struct wrong\n",
687 t->to_shortname);
688 internal_error (__FILE__, __LINE__,
689 _("failed internal consistency check"));
690 }
691
692 /* Find the proper stratum to install this target in. */
693 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
694 {
695 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
696 break;
697 }
698
699 /* If there's already targets at this stratum, remove them. */
700 /* FIXME: cagney/2003-10-15: I think this should be popping all
701 targets to CUR, and not just those at this stratum level. */
702 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
703 {
704 /* There's already something at this stratum level. Close it,
705 and un-hook it from the stack. */
706 struct target_ops *tmp = (*cur);
707
708 (*cur) = (*cur)->beneath;
709 tmp->beneath = NULL;
710 target_close (tmp);
711 }
712
713 /* We have removed all targets in our stratum, now add the new one. */
714 t->beneath = (*cur);
715 (*cur) = t;
716
717 update_current_target ();
718 }
719
720 /* Remove a target_ops vector from the stack, wherever it may be.
721 Return how many times it was removed (0 or 1). */
722
723 int
724 unpush_target (struct target_ops *t)
725 {
726 struct target_ops **cur;
727 struct target_ops *tmp;
728
729 if (t->to_stratum == dummy_stratum)
730 internal_error (__FILE__, __LINE__,
731 _("Attempt to unpush the dummy target"));
732
733 /* Look for the specified target. Note that we assume that a target
734 can only occur once in the target stack. */
735
736 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
737 {
738 if ((*cur) == t)
739 break;
740 }
741
742 /* If we don't find target_ops, quit. Only open targets should be
743 closed. */
744 if ((*cur) == NULL)
745 return 0;
746
747 /* Unchain the target. */
748 tmp = (*cur);
749 (*cur) = (*cur)->beneath;
750 tmp->beneath = NULL;
751
752 update_current_target ();
753
754 /* Finally close the target. Note we do this after unchaining, so
755 any target method calls from within the target_close
756 implementation don't end up in T anymore. */
757 target_close (t);
758
759 return 1;
760 }
761
762 /* Unpush TARGET and assert that it worked. */
763
764 static void
765 unpush_target_and_assert (struct target_ops *target)
766 {
767 if (!unpush_target (target))
768 {
769 fprintf_unfiltered (gdb_stderr,
770 "pop_all_targets couldn't find target %s\n",
771 target->to_shortname);
772 internal_error (__FILE__, __LINE__,
773 _("failed internal consistency check"));
774 }
775 }
776
777 void
778 pop_all_targets_above (enum strata above_stratum)
779 {
780 while ((int) (current_target.to_stratum) > (int) above_stratum)
781 unpush_target_and_assert (target_stack);
782 }
783
784 /* See target.h. */
785
786 void
787 pop_all_targets_at_and_above (enum strata stratum)
788 {
789 while ((int) (current_target.to_stratum) >= (int) stratum)
790 unpush_target_and_assert (target_stack);
791 }
792
793 void
794 pop_all_targets (void)
795 {
796 pop_all_targets_above (dummy_stratum);
797 }
798
799 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
800
801 int
802 target_is_pushed (struct target_ops *t)
803 {
804 struct target_ops *cur;
805
806 /* Check magic number. If wrong, it probably means someone changed
807 the struct definition, but not all the places that initialize one. */
808 if (t->to_magic != OPS_MAGIC)
809 {
810 fprintf_unfiltered (gdb_stderr,
811 "Magic number of %s target struct wrong\n",
812 t->to_shortname);
813 internal_error (__FILE__, __LINE__,
814 _("failed internal consistency check"));
815 }
816
817 for (cur = target_stack; cur != NULL; cur = cur->beneath)
818 if (cur == t)
819 return 1;
820
821 return 0;
822 }
823
824 /* Default implementation of to_get_thread_local_address. */
825
826 static void
827 generic_tls_error (void)
828 {
829 throw_error (TLS_GENERIC_ERROR,
830 _("Cannot find thread-local variables on this target"));
831 }
832
833 /* Using the objfile specified in OBJFILE, find the address for the
834 current thread's thread-local storage with offset OFFSET. */
835 CORE_ADDR
836 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
837 {
838 volatile CORE_ADDR addr = 0;
839 struct target_ops *target = &current_target;
840
841 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
842 {
843 ptid_t ptid = inferior_ptid;
844
845 TRY
846 {
847 CORE_ADDR lm_addr;
848
849 /* Fetch the load module address for this objfile. */
850 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
851 objfile);
852
853 addr = target->to_get_thread_local_address (target, ptid,
854 lm_addr, offset);
855 }
856 /* If an error occurred, print TLS related messages here. Otherwise,
857 throw the error to some higher catcher. */
858 CATCH (ex, RETURN_MASK_ALL)
859 {
860 int objfile_is_library = (objfile->flags & OBJF_SHARED);
861
862 switch (ex.error)
863 {
864 case TLS_NO_LIBRARY_SUPPORT_ERROR:
865 error (_("Cannot find thread-local variables "
866 "in this thread library."));
867 break;
868 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
869 if (objfile_is_library)
870 error (_("Cannot find shared library `%s' in dynamic"
871 " linker's load module list"), objfile_name (objfile));
872 else
873 error (_("Cannot find executable file `%s' in dynamic"
874 " linker's load module list"), objfile_name (objfile));
875 break;
876 case TLS_NOT_ALLOCATED_YET_ERROR:
877 if (objfile_is_library)
878 error (_("The inferior has not yet allocated storage for"
879 " thread-local variables in\n"
880 "the shared library `%s'\n"
881 "for %s"),
882 objfile_name (objfile), target_pid_to_str (ptid));
883 else
884 error (_("The inferior has not yet allocated storage for"
885 " thread-local variables in\n"
886 "the executable `%s'\n"
887 "for %s"),
888 objfile_name (objfile), target_pid_to_str (ptid));
889 break;
890 case TLS_GENERIC_ERROR:
891 if (objfile_is_library)
892 error (_("Cannot find thread-local storage for %s, "
893 "shared library %s:\n%s"),
894 target_pid_to_str (ptid),
895 objfile_name (objfile), ex.message);
896 else
897 error (_("Cannot find thread-local storage for %s, "
898 "executable file %s:\n%s"),
899 target_pid_to_str (ptid),
900 objfile_name (objfile), ex.message);
901 break;
902 default:
903 throw_exception (ex);
904 break;
905 }
906 }
907 END_CATCH
908 }
909 /* It wouldn't be wrong here to try a gdbarch method, too; finding
910 TLS is an ABI-specific thing. But we don't do that yet. */
911 else
912 error (_("Cannot find thread-local variables on this target"));
913
914 return addr;
915 }
916
917 const char *
918 target_xfer_status_to_string (enum target_xfer_status status)
919 {
920 #define CASE(X) case X: return #X
921 switch (status)
922 {
923 CASE(TARGET_XFER_E_IO);
924 CASE(TARGET_XFER_UNAVAILABLE);
925 default:
926 return "<unknown>";
927 }
928 #undef CASE
929 };
930
931
932 #undef MIN
933 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
934
935 /* target_read_string -- read a null terminated string, up to LEN bytes,
936 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
937 Set *STRING to a pointer to malloc'd memory containing the data; the caller
938 is responsible for freeing it. Return the number of bytes successfully
939 read. */
940
941 int
942 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
943 {
944 int tlen, offset, i;
945 gdb_byte buf[4];
946 int errcode = 0;
947 char *buffer;
948 int buffer_allocated;
949 char *bufptr;
950 unsigned int nbytes_read = 0;
951
952 gdb_assert (string);
953
954 /* Small for testing. */
955 buffer_allocated = 4;
956 buffer = (char *) xmalloc (buffer_allocated);
957 bufptr = buffer;
958
959 while (len > 0)
960 {
961 tlen = MIN (len, 4 - (memaddr & 3));
962 offset = memaddr & 3;
963
964 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
965 if (errcode != 0)
966 {
967 /* The transfer request might have crossed the boundary to an
968 unallocated region of memory. Retry the transfer, requesting
969 a single byte. */
970 tlen = 1;
971 offset = 0;
972 errcode = target_read_memory (memaddr, buf, 1);
973 if (errcode != 0)
974 goto done;
975 }
976
977 if (bufptr - buffer + tlen > buffer_allocated)
978 {
979 unsigned int bytes;
980
981 bytes = bufptr - buffer;
982 buffer_allocated *= 2;
983 buffer = (char *) xrealloc (buffer, buffer_allocated);
984 bufptr = buffer + bytes;
985 }
986
987 for (i = 0; i < tlen; i++)
988 {
989 *bufptr++ = buf[i + offset];
990 if (buf[i + offset] == '\000')
991 {
992 nbytes_read += i + 1;
993 goto done;
994 }
995 }
996
997 memaddr += tlen;
998 len -= tlen;
999 nbytes_read += tlen;
1000 }
1001 done:
1002 *string = buffer;
1003 if (errnop != NULL)
1004 *errnop = errcode;
1005 return nbytes_read;
1006 }
1007
1008 struct target_section_table *
1009 target_get_section_table (struct target_ops *target)
1010 {
1011 return (*target->to_get_section_table) (target);
1012 }
1013
1014 /* Find a section containing ADDR. */
1015
1016 struct target_section *
1017 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1018 {
1019 struct target_section_table *table = target_get_section_table (target);
1020 struct target_section *secp;
1021
1022 if (table == NULL)
1023 return NULL;
1024
1025 for (secp = table->sections; secp < table->sections_end; secp++)
1026 {
1027 if (addr >= secp->addr && addr < secp->endaddr)
1028 return secp;
1029 }
1030 return NULL;
1031 }
1032
1033
1034 /* Helper for the memory xfer routines. Checks the attributes of the
1035 memory region of MEMADDR against the read or write being attempted.
1036 If the access is permitted returns true, otherwise returns false.
1037 REGION_P is an optional output parameter. If not-NULL, it is
1038 filled with a pointer to the memory region of MEMADDR. REG_LEN
1039 returns LEN trimmed to the end of the region. This is how much the
1040 caller can continue requesting, if the access is permitted. A
1041 single xfer request must not straddle memory region boundaries. */
1042
1043 static int
1044 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1045 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1046 struct mem_region **region_p)
1047 {
1048 struct mem_region *region;
1049
1050 region = lookup_mem_region (memaddr);
1051
1052 if (region_p != NULL)
1053 *region_p = region;
1054
1055 switch (region->attrib.mode)
1056 {
1057 case MEM_RO:
1058 if (writebuf != NULL)
1059 return 0;
1060 break;
1061
1062 case MEM_WO:
1063 if (readbuf != NULL)
1064 return 0;
1065 break;
1066
1067 case MEM_FLASH:
1068 /* We only support writing to flash during "load" for now. */
1069 if (writebuf != NULL)
1070 error (_("Writing to flash memory forbidden in this context"));
1071 break;
1072
1073 case MEM_NONE:
1074 return 0;
1075 }
1076
1077 /* region->hi == 0 means there's no upper bound. */
1078 if (memaddr + len < region->hi || region->hi == 0)
1079 *reg_len = len;
1080 else
1081 *reg_len = region->hi - memaddr;
1082
1083 return 1;
1084 }
1085
1086 /* Read memory from more than one valid target. A core file, for
1087 instance, could have some of memory but delegate other bits to
1088 the target below it. So, we must manually try all targets. */
1089
1090 enum target_xfer_status
1091 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1092 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1093 ULONGEST *xfered_len)
1094 {
1095 enum target_xfer_status res;
1096
1097 do
1098 {
1099 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1100 readbuf, writebuf, memaddr, len,
1101 xfered_len);
1102 if (res == TARGET_XFER_OK)
1103 break;
1104
1105 /* Stop if the target reports that the memory is not available. */
1106 if (res == TARGET_XFER_UNAVAILABLE)
1107 break;
1108
1109 /* We want to continue past core files to executables, but not
1110 past a running target's memory. */
1111 if (ops->to_has_all_memory (ops))
1112 break;
1113
1114 ops = ops->beneath;
1115 }
1116 while (ops != NULL);
1117
1118 /* The cache works at the raw memory level. Make sure the cache
1119 gets updated with raw contents no matter what kind of memory
1120 object was originally being written. Note we do write-through
1121 first, so that if it fails, we don't write to the cache contents
1122 that never made it to the target. */
1123 if (writebuf != NULL
1124 && !ptid_equal (inferior_ptid, null_ptid)
1125 && target_dcache_init_p ()
1126 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1127 {
1128 DCACHE *dcache = target_dcache_get ();
1129
1130 /* Note that writing to an area of memory which wasn't present
1131 in the cache doesn't cause it to be loaded in. */
1132 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1133 }
1134
1135 return res;
1136 }
1137
1138 /* Perform a partial memory transfer.
1139 For docs see target.h, to_xfer_partial. */
1140
1141 static enum target_xfer_status
1142 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1143 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1144 ULONGEST len, ULONGEST *xfered_len)
1145 {
1146 enum target_xfer_status res;
1147 ULONGEST reg_len;
1148 struct mem_region *region;
1149 struct inferior *inf;
1150
1151 /* For accesses to unmapped overlay sections, read directly from
1152 files. Must do this first, as MEMADDR may need adjustment. */
1153 if (readbuf != NULL && overlay_debugging)
1154 {
1155 struct obj_section *section = find_pc_overlay (memaddr);
1156
1157 if (pc_in_unmapped_range (memaddr, section))
1158 {
1159 struct target_section_table *table
1160 = target_get_section_table (ops);
1161 const char *section_name = section->the_bfd_section->name;
1162
1163 memaddr = overlay_mapped_address (memaddr, section);
1164 return section_table_xfer_memory_partial (readbuf, writebuf,
1165 memaddr, len, xfered_len,
1166 table->sections,
1167 table->sections_end,
1168 section_name);
1169 }
1170 }
1171
1172 /* Try the executable files, if "trust-readonly-sections" is set. */
1173 if (readbuf != NULL && trust_readonly)
1174 {
1175 struct target_section *secp;
1176 struct target_section_table *table;
1177
1178 secp = target_section_by_addr (ops, memaddr);
1179 if (secp != NULL
1180 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1181 secp->the_bfd_section)
1182 & SEC_READONLY))
1183 {
1184 table = target_get_section_table (ops);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
1186 memaddr, len, xfered_len,
1187 table->sections,
1188 table->sections_end,
1189 NULL);
1190 }
1191 }
1192
1193 /* Try GDB's internal data cache. */
1194
1195 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1196 &region))
1197 return TARGET_XFER_E_IO;
1198
1199 if (!ptid_equal (inferior_ptid, null_ptid))
1200 inf = find_inferior_ptid (inferior_ptid);
1201 else
1202 inf = NULL;
1203
1204 if (inf != NULL
1205 && readbuf != NULL
1206 /* The dcache reads whole cache lines; that doesn't play well
1207 with reading from a trace buffer, because reading outside of
1208 the collected memory range fails. */
1209 && get_traceframe_number () == -1
1210 && (region->attrib.cache
1211 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1212 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1213 {
1214 DCACHE *dcache = target_dcache_get_or_init ();
1215
1216 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1217 reg_len, xfered_len);
1218 }
1219
1220 /* If none of those methods found the memory we wanted, fall back
1221 to a target partial transfer. Normally a single call to
1222 to_xfer_partial is enough; if it doesn't recognize an object
1223 it will call the to_xfer_partial of the next target down.
1224 But for memory this won't do. Memory is the only target
1225 object which can be read from more than one valid target.
1226 A core file, for instance, could have some of memory but
1227 delegate other bits to the target below it. So, we must
1228 manually try all targets. */
1229
1230 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1231 xfered_len);
1232
1233 /* If we still haven't got anything, return the last error. We
1234 give up. */
1235 return res;
1236 }
1237
1238 /* Perform a partial memory transfer. For docs see target.h,
1239 to_xfer_partial. */
1240
1241 static enum target_xfer_status
1242 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1243 gdb_byte *readbuf, const gdb_byte *writebuf,
1244 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1245 {
1246 enum target_xfer_status res;
1247
1248 /* Zero length requests are ok and require no work. */
1249 if (len == 0)
1250 return TARGET_XFER_EOF;
1251
1252 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1253 breakpoint insns, thus hiding out from higher layers whether
1254 there are software breakpoints inserted in the code stream. */
1255 if (readbuf != NULL)
1256 {
1257 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1258 xfered_len);
1259
1260 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1261 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1262 }
1263 else
1264 {
1265 gdb_byte *buf;
1266 struct cleanup *old_chain;
1267
1268 /* A large write request is likely to be partially satisfied
1269 by memory_xfer_partial_1. We will continually malloc
1270 and free a copy of the entire write request for breakpoint
1271 shadow handling even though we only end up writing a small
1272 subset of it. Cap writes to 4KB to mitigate this. */
1273 len = min (4096, len);
1274
1275 buf = (gdb_byte *) xmalloc (len);
1276 old_chain = make_cleanup (xfree, buf);
1277 memcpy (buf, writebuf, len);
1278
1279 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1280 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1281 xfered_len);
1282
1283 do_cleanups (old_chain);
1284 }
1285
1286 return res;
1287 }
1288
1289 static void
1290 restore_show_memory_breakpoints (void *arg)
1291 {
1292 show_memory_breakpoints = (uintptr_t) arg;
1293 }
1294
1295 struct cleanup *
1296 make_show_memory_breakpoints_cleanup (int show)
1297 {
1298 int current = show_memory_breakpoints;
1299
1300 show_memory_breakpoints = show;
1301 return make_cleanup (restore_show_memory_breakpoints,
1302 (void *) (uintptr_t) current);
1303 }
1304
1305 /* For docs see target.h, to_xfer_partial. */
1306
1307 enum target_xfer_status
1308 target_xfer_partial (struct target_ops *ops,
1309 enum target_object object, const char *annex,
1310 gdb_byte *readbuf, const gdb_byte *writebuf,
1311 ULONGEST offset, ULONGEST len,
1312 ULONGEST *xfered_len)
1313 {
1314 enum target_xfer_status retval;
1315
1316 gdb_assert (ops->to_xfer_partial != NULL);
1317
1318 /* Transfer is done when LEN is zero. */
1319 if (len == 0)
1320 return TARGET_XFER_EOF;
1321
1322 if (writebuf && !may_write_memory)
1323 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1324 core_addr_to_string_nz (offset), plongest (len));
1325
1326 *xfered_len = 0;
1327
1328 /* If this is a memory transfer, let the memory-specific code
1329 have a look at it instead. Memory transfers are more
1330 complicated. */
1331 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1332 || object == TARGET_OBJECT_CODE_MEMORY)
1333 retval = memory_xfer_partial (ops, object, readbuf,
1334 writebuf, offset, len, xfered_len);
1335 else if (object == TARGET_OBJECT_RAW_MEMORY)
1336 {
1337 /* Skip/avoid accessing the target if the memory region
1338 attributes block the access. Check this here instead of in
1339 raw_memory_xfer_partial as otherwise we'd end up checking
1340 this twice in the case of the memory_xfer_partial path is
1341 taken; once before checking the dcache, and another in the
1342 tail call to raw_memory_xfer_partial. */
1343 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1344 NULL))
1345 return TARGET_XFER_E_IO;
1346
1347 /* Request the normal memory object from other layers. */
1348 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1349 xfered_len);
1350 }
1351 else
1352 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1353 writebuf, offset, len, xfered_len);
1354
1355 if (targetdebug)
1356 {
1357 const unsigned char *myaddr = NULL;
1358
1359 fprintf_unfiltered (gdb_stdlog,
1360 "%s:target_xfer_partial "
1361 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1362 ops->to_shortname,
1363 (int) object,
1364 (annex ? annex : "(null)"),
1365 host_address_to_string (readbuf),
1366 host_address_to_string (writebuf),
1367 core_addr_to_string_nz (offset),
1368 pulongest (len), retval,
1369 pulongest (*xfered_len));
1370
1371 if (readbuf)
1372 myaddr = readbuf;
1373 if (writebuf)
1374 myaddr = writebuf;
1375 if (retval == TARGET_XFER_OK && myaddr != NULL)
1376 {
1377 int i;
1378
1379 fputs_unfiltered (", bytes =", gdb_stdlog);
1380 for (i = 0; i < *xfered_len; i++)
1381 {
1382 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1383 {
1384 if (targetdebug < 2 && i > 0)
1385 {
1386 fprintf_unfiltered (gdb_stdlog, " ...");
1387 break;
1388 }
1389 fprintf_unfiltered (gdb_stdlog, "\n");
1390 }
1391
1392 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1393 }
1394 }
1395
1396 fputc_unfiltered ('\n', gdb_stdlog);
1397 }
1398
1399 /* Check implementations of to_xfer_partial update *XFERED_LEN
1400 properly. Do assertion after printing debug messages, so that we
1401 can find more clues on assertion failure from debugging messages. */
1402 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1403 gdb_assert (*xfered_len > 0);
1404
1405 return retval;
1406 }
1407
1408 /* Read LEN bytes of target memory at address MEMADDR, placing the
1409 results in GDB's memory at MYADDR. Returns either 0 for success or
1410 -1 if any error occurs.
1411
1412 If an error occurs, no guarantee is made about the contents of the data at
1413 MYADDR. In particular, the caller should not depend upon partial reads
1414 filling the buffer with good data. There is no way for the caller to know
1415 how much good data might have been transfered anyway. Callers that can
1416 deal with partial reads should call target_read (which will retry until
1417 it makes no progress, and then return how much was transferred). */
1418
1419 int
1420 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1421 {
1422 /* Dispatch to the topmost target, not the flattened current_target.
1423 Memory accesses check target->to_has_(all_)memory, and the
1424 flattened target doesn't inherit those. */
1425 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1426 myaddr, memaddr, len) == len)
1427 return 0;
1428 else
1429 return -1;
1430 }
1431
1432 /* See target/target.h. */
1433
1434 int
1435 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1436 {
1437 gdb_byte buf[4];
1438 int r;
1439
1440 r = target_read_memory (memaddr, buf, sizeof buf);
1441 if (r != 0)
1442 return r;
1443 *result = extract_unsigned_integer (buf, sizeof buf,
1444 gdbarch_byte_order (target_gdbarch ()));
1445 return 0;
1446 }
1447
1448 /* Like target_read_memory, but specify explicitly that this is a read
1449 from the target's raw memory. That is, this read bypasses the
1450 dcache, breakpoint shadowing, etc. */
1451
1452 int
1453 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1454 {
1455 /* See comment in target_read_memory about why the request starts at
1456 current_target.beneath. */
1457 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
1461 return -1;
1462 }
1463
1464 /* Like target_read_memory, but specify explicitly that this is a read from
1465 the target's stack. This may trigger different cache behavior. */
1466
1467 int
1468 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1469 {
1470 /* See comment in target_read_memory about why the request starts at
1471 current_target.beneath. */
1472 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1473 myaddr, memaddr, len) == len)
1474 return 0;
1475 else
1476 return -1;
1477 }
1478
1479 /* Like target_read_memory, but specify explicitly that this is a read from
1480 the target's code. This may trigger different cache behavior. */
1481
1482 int
1483 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1484 {
1485 /* See comment in target_read_memory about why the request starts at
1486 current_target.beneath. */
1487 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1488 myaddr, memaddr, len) == len)
1489 return 0;
1490 else
1491 return -1;
1492 }
1493
1494 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1495 Returns either 0 for success or -1 if any error occurs. If an
1496 error occurs, no guarantee is made about how much data got written.
1497 Callers that can deal with partial writes should call
1498 target_write. */
1499
1500 int
1501 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1502 {
1503 /* See comment in target_read_memory about why the request starts at
1504 current_target.beneath. */
1505 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1506 myaddr, memaddr, len) == len)
1507 return 0;
1508 else
1509 return -1;
1510 }
1511
1512 /* Write LEN bytes from MYADDR to target raw memory at address
1513 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1514 If an error occurs, no guarantee is made about how much data got
1515 written. Callers that can deal with partial writes should call
1516 target_write. */
1517
1518 int
1519 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1520 {
1521 /* See comment in target_read_memory about why the request starts at
1522 current_target.beneath. */
1523 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1524 myaddr, memaddr, len) == len)
1525 return 0;
1526 else
1527 return -1;
1528 }
1529
1530 /* Fetch the target's memory map. */
1531
1532 VEC(mem_region_s) *
1533 target_memory_map (void)
1534 {
1535 VEC(mem_region_s) *result;
1536 struct mem_region *last_one, *this_one;
1537 int ix;
1538 struct target_ops *t;
1539
1540 result = current_target.to_memory_map (&current_target);
1541 if (result == NULL)
1542 return NULL;
1543
1544 qsort (VEC_address (mem_region_s, result),
1545 VEC_length (mem_region_s, result),
1546 sizeof (struct mem_region), mem_region_cmp);
1547
1548 /* Check that regions do not overlap. Simultaneously assign
1549 a numbering for the "mem" commands to use to refer to
1550 each region. */
1551 last_one = NULL;
1552 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1553 {
1554 this_one->number = ix;
1555
1556 if (last_one && last_one->hi > this_one->lo)
1557 {
1558 warning (_("Overlapping regions in memory map: ignoring"));
1559 VEC_free (mem_region_s, result);
1560 return NULL;
1561 }
1562 last_one = this_one;
1563 }
1564
1565 return result;
1566 }
1567
1568 void
1569 target_flash_erase (ULONGEST address, LONGEST length)
1570 {
1571 current_target.to_flash_erase (&current_target, address, length);
1572 }
1573
1574 void
1575 target_flash_done (void)
1576 {
1577 current_target.to_flash_done (&current_target);
1578 }
1579
1580 static void
1581 show_trust_readonly (struct ui_file *file, int from_tty,
1582 struct cmd_list_element *c, const char *value)
1583 {
1584 fprintf_filtered (file,
1585 _("Mode for reading from readonly sections is %s.\n"),
1586 value);
1587 }
1588
1589 /* Target vector read/write partial wrapper functions. */
1590
1591 static enum target_xfer_status
1592 target_read_partial (struct target_ops *ops,
1593 enum target_object object,
1594 const char *annex, gdb_byte *buf,
1595 ULONGEST offset, ULONGEST len,
1596 ULONGEST *xfered_len)
1597 {
1598 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1599 xfered_len);
1600 }
1601
1602 static enum target_xfer_status
1603 target_write_partial (struct target_ops *ops,
1604 enum target_object object,
1605 const char *annex, const gdb_byte *buf,
1606 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1607 {
1608 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1609 xfered_len);
1610 }
1611
1612 /* Wrappers to perform the full transfer. */
1613
1614 /* For docs on target_read see target.h. */
1615
1616 LONGEST
1617 target_read (struct target_ops *ops,
1618 enum target_object object,
1619 const char *annex, gdb_byte *buf,
1620 ULONGEST offset, LONGEST len)
1621 {
1622 LONGEST xfered_total = 0;
1623 int unit_size = 1;
1624
1625 /* If we are reading from a memory object, find the length of an addressable
1626 unit for that architecture. */
1627 if (object == TARGET_OBJECT_MEMORY
1628 || object == TARGET_OBJECT_STACK_MEMORY
1629 || object == TARGET_OBJECT_CODE_MEMORY
1630 || object == TARGET_OBJECT_RAW_MEMORY)
1631 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1632
1633 while (xfered_total < len)
1634 {
1635 ULONGEST xfered_partial;
1636 enum target_xfer_status status;
1637
1638 status = target_read_partial (ops, object, annex,
1639 buf + xfered_total * unit_size,
1640 offset + xfered_total, len - xfered_total,
1641 &xfered_partial);
1642
1643 /* Call an observer, notifying them of the xfer progress? */
1644 if (status == TARGET_XFER_EOF)
1645 return xfered_total;
1646 else if (status == TARGET_XFER_OK)
1647 {
1648 xfered_total += xfered_partial;
1649 QUIT;
1650 }
1651 else
1652 return TARGET_XFER_E_IO;
1653
1654 }
1655 return len;
1656 }
1657
1658 /* Assuming that the entire [begin, end) range of memory cannot be
1659 read, try to read whatever subrange is possible to read.
1660
1661 The function returns, in RESULT, either zero or one memory block.
1662 If there's a readable subrange at the beginning, it is completely
1663 read and returned. Any further readable subrange will not be read.
1664 Otherwise, if there's a readable subrange at the end, it will be
1665 completely read and returned. Any readable subranges before it
1666 (obviously, not starting at the beginning), will be ignored. In
1667 other cases -- either no readable subrange, or readable subrange(s)
1668 that is neither at the beginning, or end, nothing is returned.
1669
1670 The purpose of this function is to handle a read across a boundary
1671 of accessible memory in a case when memory map is not available.
1672 The above restrictions are fine for this case, but will give
1673 incorrect results if the memory is 'patchy'. However, supporting
1674 'patchy' memory would require trying to read every single byte,
1675 and it seems unacceptable solution. Explicit memory map is
1676 recommended for this case -- and target_read_memory_robust will
1677 take care of reading multiple ranges then. */
1678
1679 static void
1680 read_whatever_is_readable (struct target_ops *ops,
1681 const ULONGEST begin, const ULONGEST end,
1682 int unit_size,
1683 VEC(memory_read_result_s) **result)
1684 {
1685 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1686 ULONGEST current_begin = begin;
1687 ULONGEST current_end = end;
1688 int forward;
1689 memory_read_result_s r;
1690 ULONGEST xfered_len;
1691
1692 /* If we previously failed to read 1 byte, nothing can be done here. */
1693 if (end - begin <= 1)
1694 {
1695 xfree (buf);
1696 return;
1697 }
1698
1699 /* Check that either first or the last byte is readable, and give up
1700 if not. This heuristic is meant to permit reading accessible memory
1701 at the boundary of accessible region. */
1702 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1703 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1704 {
1705 forward = 1;
1706 ++current_begin;
1707 }
1708 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1709 buf + (end - begin) - 1, end - 1, 1,
1710 &xfered_len) == TARGET_XFER_OK)
1711 {
1712 forward = 0;
1713 --current_end;
1714 }
1715 else
1716 {
1717 xfree (buf);
1718 return;
1719 }
1720
1721 /* Loop invariant is that the [current_begin, current_end) was previously
1722 found to be not readable as a whole.
1723
1724 Note loop condition -- if the range has 1 byte, we can't divide the range
1725 so there's no point trying further. */
1726 while (current_end - current_begin > 1)
1727 {
1728 ULONGEST first_half_begin, first_half_end;
1729 ULONGEST second_half_begin, second_half_end;
1730 LONGEST xfer;
1731 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1732
1733 if (forward)
1734 {
1735 first_half_begin = current_begin;
1736 first_half_end = middle;
1737 second_half_begin = middle;
1738 second_half_end = current_end;
1739 }
1740 else
1741 {
1742 first_half_begin = middle;
1743 first_half_end = current_end;
1744 second_half_begin = current_begin;
1745 second_half_end = middle;
1746 }
1747
1748 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1749 buf + (first_half_begin - begin) * unit_size,
1750 first_half_begin,
1751 first_half_end - first_half_begin);
1752
1753 if (xfer == first_half_end - first_half_begin)
1754 {
1755 /* This half reads up fine. So, the error must be in the
1756 other half. */
1757 current_begin = second_half_begin;
1758 current_end = second_half_end;
1759 }
1760 else
1761 {
1762 /* This half is not readable. Because we've tried one byte, we
1763 know some part of this half if actually readable. Go to the next
1764 iteration to divide again and try to read.
1765
1766 We don't handle the other half, because this function only tries
1767 to read a single readable subrange. */
1768 current_begin = first_half_begin;
1769 current_end = first_half_end;
1770 }
1771 }
1772
1773 if (forward)
1774 {
1775 /* The [begin, current_begin) range has been read. */
1776 r.begin = begin;
1777 r.end = current_begin;
1778 r.data = buf;
1779 }
1780 else
1781 {
1782 /* The [current_end, end) range has been read. */
1783 LONGEST region_len = end - current_end;
1784
1785 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1786 memcpy (r.data, buf + (current_end - begin) * unit_size,
1787 region_len * unit_size);
1788 r.begin = current_end;
1789 r.end = end;
1790 xfree (buf);
1791 }
1792 VEC_safe_push(memory_read_result_s, (*result), &r);
1793 }
1794
1795 void
1796 free_memory_read_result_vector (void *x)
1797 {
1798 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1799 memory_read_result_s *current;
1800 int ix;
1801
1802 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1803 {
1804 xfree (current->data);
1805 }
1806 VEC_free (memory_read_result_s, v);
1807 }
1808
1809 VEC(memory_read_result_s) *
1810 read_memory_robust (struct target_ops *ops,
1811 const ULONGEST offset, const LONGEST len)
1812 {
1813 VEC(memory_read_result_s) *result = 0;
1814 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1815
1816 LONGEST xfered_total = 0;
1817 while (xfered_total < len)
1818 {
1819 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1820 LONGEST region_len;
1821
1822 /* If there is no explicit region, a fake one should be created. */
1823 gdb_assert (region);
1824
1825 if (region->hi == 0)
1826 region_len = len - xfered_total;
1827 else
1828 region_len = region->hi - offset;
1829
1830 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1831 {
1832 /* Cannot read this region. Note that we can end up here only
1833 if the region is explicitly marked inaccessible, or
1834 'inaccessible-by-default' is in effect. */
1835 xfered_total += region_len;
1836 }
1837 else
1838 {
1839 LONGEST to_read = min (len - xfered_total, region_len);
1840 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1841
1842 LONGEST xfered_partial =
1843 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1844 (gdb_byte *) buffer,
1845 offset + xfered_total, to_read);
1846 /* Call an observer, notifying them of the xfer progress? */
1847 if (xfered_partial <= 0)
1848 {
1849 /* Got an error reading full chunk. See if maybe we can read
1850 some subrange. */
1851 xfree (buffer);
1852 read_whatever_is_readable (ops, offset + xfered_total,
1853 offset + xfered_total + to_read,
1854 unit_size, &result);
1855 xfered_total += to_read;
1856 }
1857 else
1858 {
1859 struct memory_read_result r;
1860 r.data = buffer;
1861 r.begin = offset + xfered_total;
1862 r.end = r.begin + xfered_partial;
1863 VEC_safe_push (memory_read_result_s, result, &r);
1864 xfered_total += xfered_partial;
1865 }
1866 QUIT;
1867 }
1868 }
1869 return result;
1870 }
1871
1872
1873 /* An alternative to target_write with progress callbacks. */
1874
1875 LONGEST
1876 target_write_with_progress (struct target_ops *ops,
1877 enum target_object object,
1878 const char *annex, const gdb_byte *buf,
1879 ULONGEST offset, LONGEST len,
1880 void (*progress) (ULONGEST, void *), void *baton)
1881 {
1882 LONGEST xfered_total = 0;
1883 int unit_size = 1;
1884
1885 /* If we are writing to a memory object, find the length of an addressable
1886 unit for that architecture. */
1887 if (object == TARGET_OBJECT_MEMORY
1888 || object == TARGET_OBJECT_STACK_MEMORY
1889 || object == TARGET_OBJECT_CODE_MEMORY
1890 || object == TARGET_OBJECT_RAW_MEMORY)
1891 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1892
1893 /* Give the progress callback a chance to set up. */
1894 if (progress)
1895 (*progress) (0, baton);
1896
1897 while (xfered_total < len)
1898 {
1899 ULONGEST xfered_partial;
1900 enum target_xfer_status status;
1901
1902 status = target_write_partial (ops, object, annex,
1903 buf + xfered_total * unit_size,
1904 offset + xfered_total, len - xfered_total,
1905 &xfered_partial);
1906
1907 if (status != TARGET_XFER_OK)
1908 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1909
1910 if (progress)
1911 (*progress) (xfered_partial, baton);
1912
1913 xfered_total += xfered_partial;
1914 QUIT;
1915 }
1916 return len;
1917 }
1918
1919 /* For docs on target_write see target.h. */
1920
1921 LONGEST
1922 target_write (struct target_ops *ops,
1923 enum target_object object,
1924 const char *annex, const gdb_byte *buf,
1925 ULONGEST offset, LONGEST len)
1926 {
1927 return target_write_with_progress (ops, object, annex, buf, offset, len,
1928 NULL, NULL);
1929 }
1930
1931 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1932 the size of the transferred data. PADDING additional bytes are
1933 available in *BUF_P. This is a helper function for
1934 target_read_alloc; see the declaration of that function for more
1935 information. */
1936
1937 static LONGEST
1938 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1939 const char *annex, gdb_byte **buf_p, int padding)
1940 {
1941 size_t buf_alloc, buf_pos;
1942 gdb_byte *buf;
1943
1944 /* This function does not have a length parameter; it reads the
1945 entire OBJECT). Also, it doesn't support objects fetched partly
1946 from one target and partly from another (in a different stratum,
1947 e.g. a core file and an executable). Both reasons make it
1948 unsuitable for reading memory. */
1949 gdb_assert (object != TARGET_OBJECT_MEMORY);
1950
1951 /* Start by reading up to 4K at a time. The target will throttle
1952 this number down if necessary. */
1953 buf_alloc = 4096;
1954 buf = (gdb_byte *) xmalloc (buf_alloc);
1955 buf_pos = 0;
1956 while (1)
1957 {
1958 ULONGEST xfered_len;
1959 enum target_xfer_status status;
1960
1961 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1962 buf_pos, buf_alloc - buf_pos - padding,
1963 &xfered_len);
1964
1965 if (status == TARGET_XFER_EOF)
1966 {
1967 /* Read all there was. */
1968 if (buf_pos == 0)
1969 xfree (buf);
1970 else
1971 *buf_p = buf;
1972 return buf_pos;
1973 }
1974 else if (status != TARGET_XFER_OK)
1975 {
1976 /* An error occurred. */
1977 xfree (buf);
1978 return TARGET_XFER_E_IO;
1979 }
1980
1981 buf_pos += xfered_len;
1982
1983 /* If the buffer is filling up, expand it. */
1984 if (buf_alloc < buf_pos * 2)
1985 {
1986 buf_alloc *= 2;
1987 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1988 }
1989
1990 QUIT;
1991 }
1992 }
1993
1994 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1995 the size of the transferred data. See the declaration in "target.h"
1996 function for more information about the return value. */
1997
1998 LONGEST
1999 target_read_alloc (struct target_ops *ops, enum target_object object,
2000 const char *annex, gdb_byte **buf_p)
2001 {
2002 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2003 }
2004
2005 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2006 returned as a string, allocated using xmalloc. If an error occurs
2007 or the transfer is unsupported, NULL is returned. Empty objects
2008 are returned as allocated but empty strings. A warning is issued
2009 if the result contains any embedded NUL bytes. */
2010
2011 char *
2012 target_read_stralloc (struct target_ops *ops, enum target_object object,
2013 const char *annex)
2014 {
2015 gdb_byte *buffer;
2016 char *bufstr;
2017 LONGEST i, transferred;
2018
2019 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2020 bufstr = (char *) buffer;
2021
2022 if (transferred < 0)
2023 return NULL;
2024
2025 if (transferred == 0)
2026 return xstrdup ("");
2027
2028 bufstr[transferred] = 0;
2029
2030 /* Check for embedded NUL bytes; but allow trailing NULs. */
2031 for (i = strlen (bufstr); i < transferred; i++)
2032 if (bufstr[i] != 0)
2033 {
2034 warning (_("target object %d, annex %s, "
2035 "contained unexpected null characters"),
2036 (int) object, annex ? annex : "(none)");
2037 break;
2038 }
2039
2040 return bufstr;
2041 }
2042
2043 /* Memory transfer methods. */
2044
2045 void
2046 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2047 LONGEST len)
2048 {
2049 /* This method is used to read from an alternate, non-current
2050 target. This read must bypass the overlay support (as symbols
2051 don't match this target), and GDB's internal cache (wrong cache
2052 for this target). */
2053 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2054 != len)
2055 memory_error (TARGET_XFER_E_IO, addr);
2056 }
2057
2058 ULONGEST
2059 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2060 int len, enum bfd_endian byte_order)
2061 {
2062 gdb_byte buf[sizeof (ULONGEST)];
2063
2064 gdb_assert (len <= sizeof (buf));
2065 get_target_memory (ops, addr, buf, len);
2066 return extract_unsigned_integer (buf, len, byte_order);
2067 }
2068
2069 /* See target.h. */
2070
2071 int
2072 target_insert_breakpoint (struct gdbarch *gdbarch,
2073 struct bp_target_info *bp_tgt)
2074 {
2075 if (!may_insert_breakpoints)
2076 {
2077 warning (_("May not insert breakpoints"));
2078 return 1;
2079 }
2080
2081 return current_target.to_insert_breakpoint (&current_target,
2082 gdbarch, bp_tgt);
2083 }
2084
2085 /* See target.h. */
2086
2087 int
2088 target_remove_breakpoint (struct gdbarch *gdbarch,
2089 struct bp_target_info *bp_tgt)
2090 {
2091 /* This is kind of a weird case to handle, but the permission might
2092 have been changed after breakpoints were inserted - in which case
2093 we should just take the user literally and assume that any
2094 breakpoints should be left in place. */
2095 if (!may_insert_breakpoints)
2096 {
2097 warning (_("May not remove breakpoints"));
2098 return 1;
2099 }
2100
2101 return current_target.to_remove_breakpoint (&current_target,
2102 gdbarch, bp_tgt);
2103 }
2104
2105 static void
2106 target_info (char *args, int from_tty)
2107 {
2108 struct target_ops *t;
2109 int has_all_mem = 0;
2110
2111 if (symfile_objfile != NULL)
2112 printf_unfiltered (_("Symbols from \"%s\".\n"),
2113 objfile_name (symfile_objfile));
2114
2115 for (t = target_stack; t != NULL; t = t->beneath)
2116 {
2117 if (!(*t->to_has_memory) (t))
2118 continue;
2119
2120 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2121 continue;
2122 if (has_all_mem)
2123 printf_unfiltered (_("\tWhile running this, "
2124 "GDB does not access memory from...\n"));
2125 printf_unfiltered ("%s:\n", t->to_longname);
2126 (t->to_files_info) (t);
2127 has_all_mem = (*t->to_has_all_memory) (t);
2128 }
2129 }
2130
2131 /* This function is called before any new inferior is created, e.g.
2132 by running a program, attaching, or connecting to a target.
2133 It cleans up any state from previous invocations which might
2134 change between runs. This is a subset of what target_preopen
2135 resets (things which might change between targets). */
2136
2137 void
2138 target_pre_inferior (int from_tty)
2139 {
2140 /* Clear out solib state. Otherwise the solib state of the previous
2141 inferior might have survived and is entirely wrong for the new
2142 target. This has been observed on GNU/Linux using glibc 2.3. How
2143 to reproduce:
2144
2145 bash$ ./foo&
2146 [1] 4711
2147 bash$ ./foo&
2148 [1] 4712
2149 bash$ gdb ./foo
2150 [...]
2151 (gdb) attach 4711
2152 (gdb) detach
2153 (gdb) attach 4712
2154 Cannot access memory at address 0xdeadbeef
2155 */
2156
2157 /* In some OSs, the shared library list is the same/global/shared
2158 across inferiors. If code is shared between processes, so are
2159 memory regions and features. */
2160 if (!gdbarch_has_global_solist (target_gdbarch ()))
2161 {
2162 no_shared_libraries (NULL, from_tty);
2163
2164 invalidate_target_mem_regions ();
2165
2166 target_clear_description ();
2167 }
2168
2169 /* attach_flag may be set if the previous process associated with
2170 the inferior was attached to. */
2171 current_inferior ()->attach_flag = 0;
2172
2173 current_inferior ()->highest_thread_num = 0;
2174
2175 agent_capability_invalidate ();
2176 }
2177
2178 /* Callback for iterate_over_inferiors. Gets rid of the given
2179 inferior. */
2180
2181 static int
2182 dispose_inferior (struct inferior *inf, void *args)
2183 {
2184 struct thread_info *thread;
2185
2186 thread = any_thread_of_process (inf->pid);
2187 if (thread)
2188 {
2189 switch_to_thread (thread->ptid);
2190
2191 /* Core inferiors actually should be detached, not killed. */
2192 if (target_has_execution)
2193 target_kill ();
2194 else
2195 target_detach (NULL, 0);
2196 }
2197
2198 return 0;
2199 }
2200
2201 /* This is to be called by the open routine before it does
2202 anything. */
2203
2204 void
2205 target_preopen (int from_tty)
2206 {
2207 dont_repeat ();
2208
2209 if (have_inferiors ())
2210 {
2211 if (!from_tty
2212 || !have_live_inferiors ()
2213 || query (_("A program is being debugged already. Kill it? ")))
2214 iterate_over_inferiors (dispose_inferior, NULL);
2215 else
2216 error (_("Program not killed."));
2217 }
2218
2219 /* Calling target_kill may remove the target from the stack. But if
2220 it doesn't (which seems like a win for UDI), remove it now. */
2221 /* Leave the exec target, though. The user may be switching from a
2222 live process to a core of the same program. */
2223 pop_all_targets_above (file_stratum);
2224
2225 target_pre_inferior (from_tty);
2226 }
2227
2228 /* Detach a target after doing deferred register stores. */
2229
2230 void
2231 target_detach (const char *args, int from_tty)
2232 {
2233 struct target_ops* t;
2234
2235 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2236 /* Don't remove global breakpoints here. They're removed on
2237 disconnection from the target. */
2238 ;
2239 else
2240 /* If we're in breakpoints-always-inserted mode, have to remove
2241 them before detaching. */
2242 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2243
2244 prepare_for_detach ();
2245
2246 current_target.to_detach (&current_target, args, from_tty);
2247 }
2248
2249 void
2250 target_disconnect (const char *args, int from_tty)
2251 {
2252 /* If we're in breakpoints-always-inserted mode or if breakpoints
2253 are global across processes, we have to remove them before
2254 disconnecting. */
2255 remove_breakpoints ();
2256
2257 current_target.to_disconnect (&current_target, args, from_tty);
2258 }
2259
2260 ptid_t
2261 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2262 {
2263 return (current_target.to_wait) (&current_target, ptid, status, options);
2264 }
2265
2266 /* See target.h. */
2267
2268 ptid_t
2269 default_target_wait (struct target_ops *ops,
2270 ptid_t ptid, struct target_waitstatus *status,
2271 int options)
2272 {
2273 status->kind = TARGET_WAITKIND_IGNORE;
2274 return minus_one_ptid;
2275 }
2276
2277 char *
2278 target_pid_to_str (ptid_t ptid)
2279 {
2280 return (*current_target.to_pid_to_str) (&current_target, ptid);
2281 }
2282
2283 const char *
2284 target_thread_name (struct thread_info *info)
2285 {
2286 return current_target.to_thread_name (&current_target, info);
2287 }
2288
2289 void
2290 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2291 {
2292 struct target_ops *t;
2293
2294 target_dcache_invalidate ();
2295
2296 current_target.to_resume (&current_target, ptid, step, signal);
2297
2298 registers_changed_ptid (ptid);
2299 /* We only set the internal executing state here. The user/frontend
2300 running state is set at a higher level. */
2301 set_executing (ptid, 1);
2302 clear_inline_frame_state (ptid);
2303 }
2304
2305 void
2306 target_pass_signals (int numsigs, unsigned char *pass_signals)
2307 {
2308 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2309 }
2310
2311 void
2312 target_program_signals (int numsigs, unsigned char *program_signals)
2313 {
2314 (*current_target.to_program_signals) (&current_target,
2315 numsigs, program_signals);
2316 }
2317
2318 static int
2319 default_follow_fork (struct target_ops *self, int follow_child,
2320 int detach_fork)
2321 {
2322 /* Some target returned a fork event, but did not know how to follow it. */
2323 internal_error (__FILE__, __LINE__,
2324 _("could not find a target to follow fork"));
2325 }
2326
2327 /* Look through the list of possible targets for a target that can
2328 follow forks. */
2329
2330 int
2331 target_follow_fork (int follow_child, int detach_fork)
2332 {
2333 return current_target.to_follow_fork (&current_target,
2334 follow_child, detach_fork);
2335 }
2336
2337 /* Target wrapper for follow exec hook. */
2338
2339 void
2340 target_follow_exec (struct inferior *inf, char *execd_pathname)
2341 {
2342 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2343 }
2344
2345 static void
2346 default_mourn_inferior (struct target_ops *self)
2347 {
2348 internal_error (__FILE__, __LINE__,
2349 _("could not find a target to follow mourn inferior"));
2350 }
2351
2352 void
2353 target_mourn_inferior (void)
2354 {
2355 current_target.to_mourn_inferior (&current_target);
2356
2357 /* We no longer need to keep handles on any of the object files.
2358 Make sure to release them to avoid unnecessarily locking any
2359 of them while we're not actually debugging. */
2360 bfd_cache_close_all ();
2361 }
2362
2363 /* Look for a target which can describe architectural features, starting
2364 from TARGET. If we find one, return its description. */
2365
2366 const struct target_desc *
2367 target_read_description (struct target_ops *target)
2368 {
2369 return target->to_read_description (target);
2370 }
2371
2372 /* This implements a basic search of memory, reading target memory and
2373 performing the search here (as opposed to performing the search in on the
2374 target side with, for example, gdbserver). */
2375
2376 int
2377 simple_search_memory (struct target_ops *ops,
2378 CORE_ADDR start_addr, ULONGEST search_space_len,
2379 const gdb_byte *pattern, ULONGEST pattern_len,
2380 CORE_ADDR *found_addrp)
2381 {
2382 /* NOTE: also defined in find.c testcase. */
2383 #define SEARCH_CHUNK_SIZE 16000
2384 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2385 /* Buffer to hold memory contents for searching. */
2386 gdb_byte *search_buf;
2387 unsigned search_buf_size;
2388 struct cleanup *old_cleanups;
2389
2390 search_buf_size = chunk_size + pattern_len - 1;
2391
2392 /* No point in trying to allocate a buffer larger than the search space. */
2393 if (search_space_len < search_buf_size)
2394 search_buf_size = search_space_len;
2395
2396 search_buf = (gdb_byte *) malloc (search_buf_size);
2397 if (search_buf == NULL)
2398 error (_("Unable to allocate memory to perform the search."));
2399 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2400
2401 /* Prime the search buffer. */
2402
2403 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2404 search_buf, start_addr, search_buf_size) != search_buf_size)
2405 {
2406 warning (_("Unable to access %s bytes of target "
2407 "memory at %s, halting search."),
2408 pulongest (search_buf_size), hex_string (start_addr));
2409 do_cleanups (old_cleanups);
2410 return -1;
2411 }
2412
2413 /* Perform the search.
2414
2415 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2416 When we've scanned N bytes we copy the trailing bytes to the start and
2417 read in another N bytes. */
2418
2419 while (search_space_len >= pattern_len)
2420 {
2421 gdb_byte *found_ptr;
2422 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2423
2424 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2425 pattern, pattern_len);
2426
2427 if (found_ptr != NULL)
2428 {
2429 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2430
2431 *found_addrp = found_addr;
2432 do_cleanups (old_cleanups);
2433 return 1;
2434 }
2435
2436 /* Not found in this chunk, skip to next chunk. */
2437
2438 /* Don't let search_space_len wrap here, it's unsigned. */
2439 if (search_space_len >= chunk_size)
2440 search_space_len -= chunk_size;
2441 else
2442 search_space_len = 0;
2443
2444 if (search_space_len >= pattern_len)
2445 {
2446 unsigned keep_len = search_buf_size - chunk_size;
2447 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2448 int nr_to_read;
2449
2450 /* Copy the trailing part of the previous iteration to the front
2451 of the buffer for the next iteration. */
2452 gdb_assert (keep_len == pattern_len - 1);
2453 memcpy (search_buf, search_buf + chunk_size, keep_len);
2454
2455 nr_to_read = min (search_space_len - keep_len, chunk_size);
2456
2457 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2458 search_buf + keep_len, read_addr,
2459 nr_to_read) != nr_to_read)
2460 {
2461 warning (_("Unable to access %s bytes of target "
2462 "memory at %s, halting search."),
2463 plongest (nr_to_read),
2464 hex_string (read_addr));
2465 do_cleanups (old_cleanups);
2466 return -1;
2467 }
2468
2469 start_addr += chunk_size;
2470 }
2471 }
2472
2473 /* Not found. */
2474
2475 do_cleanups (old_cleanups);
2476 return 0;
2477 }
2478
2479 /* Default implementation of memory-searching. */
2480
2481 static int
2482 default_search_memory (struct target_ops *self,
2483 CORE_ADDR start_addr, ULONGEST search_space_len,
2484 const gdb_byte *pattern, ULONGEST pattern_len,
2485 CORE_ADDR *found_addrp)
2486 {
2487 /* Start over from the top of the target stack. */
2488 return simple_search_memory (current_target.beneath,
2489 start_addr, search_space_len,
2490 pattern, pattern_len, found_addrp);
2491 }
2492
2493 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2494 sequence of bytes in PATTERN with length PATTERN_LEN.
2495
2496 The result is 1 if found, 0 if not found, and -1 if there was an error
2497 requiring halting of the search (e.g. memory read error).
2498 If the pattern is found the address is recorded in FOUND_ADDRP. */
2499
2500 int
2501 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2502 const gdb_byte *pattern, ULONGEST pattern_len,
2503 CORE_ADDR *found_addrp)
2504 {
2505 return current_target.to_search_memory (&current_target, start_addr,
2506 search_space_len,
2507 pattern, pattern_len, found_addrp);
2508 }
2509
2510 /* Look through the currently pushed targets. If none of them will
2511 be able to restart the currently running process, issue an error
2512 message. */
2513
2514 void
2515 target_require_runnable (void)
2516 {
2517 struct target_ops *t;
2518
2519 for (t = target_stack; t != NULL; t = t->beneath)
2520 {
2521 /* If this target knows how to create a new program, then
2522 assume we will still be able to after killing the current
2523 one. Either killing and mourning will not pop T, or else
2524 find_default_run_target will find it again. */
2525 if (t->to_create_inferior != NULL)
2526 return;
2527
2528 /* Do not worry about targets at certain strata that can not
2529 create inferiors. Assume they will be pushed again if
2530 necessary, and continue to the process_stratum. */
2531 if (t->to_stratum == thread_stratum
2532 || t->to_stratum == record_stratum
2533 || t->to_stratum == arch_stratum)
2534 continue;
2535
2536 error (_("The \"%s\" target does not support \"run\". "
2537 "Try \"help target\" or \"continue\"."),
2538 t->to_shortname);
2539 }
2540
2541 /* This function is only called if the target is running. In that
2542 case there should have been a process_stratum target and it
2543 should either know how to create inferiors, or not... */
2544 internal_error (__FILE__, __LINE__, _("No targets found"));
2545 }
2546
2547 /* Whether GDB is allowed to fall back to the default run target for
2548 "run", "attach", etc. when no target is connected yet. */
2549 static int auto_connect_native_target = 1;
2550
2551 static void
2552 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2553 struct cmd_list_element *c, const char *value)
2554 {
2555 fprintf_filtered (file,
2556 _("Whether GDB may automatically connect to the "
2557 "native target is %s.\n"),
2558 value);
2559 }
2560
2561 /* Look through the list of possible targets for a target that can
2562 execute a run or attach command without any other data. This is
2563 used to locate the default process stratum.
2564
2565 If DO_MESG is not NULL, the result is always valid (error() is
2566 called for errors); else, return NULL on error. */
2567
2568 static struct target_ops *
2569 find_default_run_target (char *do_mesg)
2570 {
2571 struct target_ops *runable = NULL;
2572
2573 if (auto_connect_native_target)
2574 {
2575 struct target_ops *t;
2576 int count = 0;
2577 int i;
2578
2579 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2580 {
2581 if (t->to_can_run != delegate_can_run && target_can_run (t))
2582 {
2583 runable = t;
2584 ++count;
2585 }
2586 }
2587
2588 if (count != 1)
2589 runable = NULL;
2590 }
2591
2592 if (runable == NULL)
2593 {
2594 if (do_mesg)
2595 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2596 else
2597 return NULL;
2598 }
2599
2600 return runable;
2601 }
2602
2603 /* See target.h. */
2604
2605 struct target_ops *
2606 find_attach_target (void)
2607 {
2608 struct target_ops *t;
2609
2610 /* If a target on the current stack can attach, use it. */
2611 for (t = current_target.beneath; t != NULL; t = t->beneath)
2612 {
2613 if (t->to_attach != NULL)
2614 break;
2615 }
2616
2617 /* Otherwise, use the default run target for attaching. */
2618 if (t == NULL)
2619 t = find_default_run_target ("attach");
2620
2621 return t;
2622 }
2623
2624 /* See target.h. */
2625
2626 struct target_ops *
2627 find_run_target (void)
2628 {
2629 struct target_ops *t;
2630
2631 /* If a target on the current stack can attach, use it. */
2632 for (t = current_target.beneath; t != NULL; t = t->beneath)
2633 {
2634 if (t->to_create_inferior != NULL)
2635 break;
2636 }
2637
2638 /* Otherwise, use the default run target. */
2639 if (t == NULL)
2640 t = find_default_run_target ("run");
2641
2642 return t;
2643 }
2644
2645 /* Implement the "info proc" command. */
2646
2647 int
2648 target_info_proc (const char *args, enum info_proc_what what)
2649 {
2650 struct target_ops *t;
2651
2652 /* If we're already connected to something that can get us OS
2653 related data, use it. Otherwise, try using the native
2654 target. */
2655 if (current_target.to_stratum >= process_stratum)
2656 t = current_target.beneath;
2657 else
2658 t = find_default_run_target (NULL);
2659
2660 for (; t != NULL; t = t->beneath)
2661 {
2662 if (t->to_info_proc != NULL)
2663 {
2664 t->to_info_proc (t, args, what);
2665
2666 if (targetdebug)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "target_info_proc (\"%s\", %d)\n", args, what);
2669
2670 return 1;
2671 }
2672 }
2673
2674 return 0;
2675 }
2676
2677 static int
2678 find_default_supports_disable_randomization (struct target_ops *self)
2679 {
2680 struct target_ops *t;
2681
2682 t = find_default_run_target (NULL);
2683 if (t && t->to_supports_disable_randomization)
2684 return (t->to_supports_disable_randomization) (t);
2685 return 0;
2686 }
2687
2688 int
2689 target_supports_disable_randomization (void)
2690 {
2691 struct target_ops *t;
2692
2693 for (t = &current_target; t != NULL; t = t->beneath)
2694 if (t->to_supports_disable_randomization)
2695 return t->to_supports_disable_randomization (t);
2696
2697 return 0;
2698 }
2699
2700 char *
2701 target_get_osdata (const char *type)
2702 {
2703 struct target_ops *t;
2704
2705 /* If we're already connected to something that can get us OS
2706 related data, use it. Otherwise, try using the native
2707 target. */
2708 if (current_target.to_stratum >= process_stratum)
2709 t = current_target.beneath;
2710 else
2711 t = find_default_run_target ("get OS data");
2712
2713 if (!t)
2714 return NULL;
2715
2716 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2717 }
2718
2719 static struct address_space *
2720 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2721 {
2722 struct inferior *inf;
2723
2724 /* Fall-back to the "main" address space of the inferior. */
2725 inf = find_inferior_ptid (ptid);
2726
2727 if (inf == NULL || inf->aspace == NULL)
2728 internal_error (__FILE__, __LINE__,
2729 _("Can't determine the current "
2730 "address space of thread %s\n"),
2731 target_pid_to_str (ptid));
2732
2733 return inf->aspace;
2734 }
2735
2736 /* Determine the current address space of thread PTID. */
2737
2738 struct address_space *
2739 target_thread_address_space (ptid_t ptid)
2740 {
2741 struct address_space *aspace;
2742
2743 aspace = current_target.to_thread_address_space (&current_target, ptid);
2744 gdb_assert (aspace != NULL);
2745
2746 return aspace;
2747 }
2748
2749
2750 /* Target file operations. */
2751
2752 static struct target_ops *
2753 default_fileio_target (void)
2754 {
2755 /* If we're already connected to something that can perform
2756 file I/O, use it. Otherwise, try using the native target. */
2757 if (current_target.to_stratum >= process_stratum)
2758 return current_target.beneath;
2759 else
2760 return find_default_run_target ("file I/O");
2761 }
2762
2763 /* File handle for target file operations. */
2764
2765 typedef struct
2766 {
2767 /* The target on which this file is open. */
2768 struct target_ops *t;
2769
2770 /* The file descriptor on the target. */
2771 int fd;
2772 } fileio_fh_t;
2773
2774 DEF_VEC_O (fileio_fh_t);
2775
2776 /* Vector of currently open file handles. The value returned by
2777 target_fileio_open and passed as the FD argument to other
2778 target_fileio_* functions is an index into this vector. This
2779 vector's entries are never freed; instead, files are marked as
2780 closed, and the handle becomes available for reuse. */
2781 static VEC (fileio_fh_t) *fileio_fhandles;
2782
2783 /* Macro to check whether a fileio_fh_t represents a closed file. */
2784 #define is_closed_fileio_fh(fd) ((fd) < 0)
2785
2786 /* Index into fileio_fhandles of the lowest handle that might be
2787 closed. This permits handle reuse without searching the whole
2788 list each time a new file is opened. */
2789 static int lowest_closed_fd;
2790
2791 /* Acquire a target fileio file descriptor. */
2792
2793 static int
2794 acquire_fileio_fd (struct target_ops *t, int fd)
2795 {
2796 fileio_fh_t *fh, buf;
2797
2798 gdb_assert (!is_closed_fileio_fh (fd));
2799
2800 /* Search for closed handles to reuse. */
2801 for (;
2802 VEC_iterate (fileio_fh_t, fileio_fhandles,
2803 lowest_closed_fd, fh);
2804 lowest_closed_fd++)
2805 if (is_closed_fileio_fh (fh->fd))
2806 break;
2807
2808 /* Push a new handle if no closed handles were found. */
2809 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2810 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2811
2812 /* Fill in the handle. */
2813 fh->t = t;
2814 fh->fd = fd;
2815
2816 /* Return its index, and start the next lookup at
2817 the next index. */
2818 return lowest_closed_fd++;
2819 }
2820
2821 /* Release a target fileio file descriptor. */
2822
2823 static void
2824 release_fileio_fd (int fd, fileio_fh_t *fh)
2825 {
2826 fh->fd = -1;
2827 lowest_closed_fd = min (lowest_closed_fd, fd);
2828 }
2829
2830 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2831
2832 #define fileio_fd_to_fh(fd) \
2833 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2834
2835 /* Helper for target_fileio_open and
2836 target_fileio_open_warn_if_slow. */
2837
2838 static int
2839 target_fileio_open_1 (struct inferior *inf, const char *filename,
2840 int flags, int mode, int warn_if_slow,
2841 int *target_errno)
2842 {
2843 struct target_ops *t;
2844
2845 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2846 {
2847 if (t->to_fileio_open != NULL)
2848 {
2849 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2850 warn_if_slow, target_errno);
2851
2852 if (fd < 0)
2853 fd = -1;
2854 else
2855 fd = acquire_fileio_fd (t, fd);
2856
2857 if (targetdebug)
2858 fprintf_unfiltered (gdb_stdlog,
2859 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2860 " = %d (%d)\n",
2861 inf == NULL ? 0 : inf->num,
2862 filename, flags, mode,
2863 warn_if_slow, fd,
2864 fd != -1 ? 0 : *target_errno);
2865 return fd;
2866 }
2867 }
2868
2869 *target_errno = FILEIO_ENOSYS;
2870 return -1;
2871 }
2872
2873 /* See target.h. */
2874
2875 int
2876 target_fileio_open (struct inferior *inf, const char *filename,
2877 int flags, int mode, int *target_errno)
2878 {
2879 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2880 target_errno);
2881 }
2882
2883 /* See target.h. */
2884
2885 int
2886 target_fileio_open_warn_if_slow (struct inferior *inf,
2887 const char *filename,
2888 int flags, int mode, int *target_errno)
2889 {
2890 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2891 target_errno);
2892 }
2893
2894 /* See target.h. */
2895
2896 int
2897 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2898 ULONGEST offset, int *target_errno)
2899 {
2900 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2901 int ret = -1;
2902
2903 if (is_closed_fileio_fh (fh->fd))
2904 *target_errno = EBADF;
2905 else
2906 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2907 len, offset, target_errno);
2908
2909 if (targetdebug)
2910 fprintf_unfiltered (gdb_stdlog,
2911 "target_fileio_pwrite (%d,...,%d,%s) "
2912 "= %d (%d)\n",
2913 fd, len, pulongest (offset),
2914 ret, ret != -1 ? 0 : *target_errno);
2915 return ret;
2916 }
2917
2918 /* See target.h. */
2919
2920 int
2921 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2922 ULONGEST offset, int *target_errno)
2923 {
2924 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2925 int ret = -1;
2926
2927 if (is_closed_fileio_fh (fh->fd))
2928 *target_errno = EBADF;
2929 else
2930 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2931 len, offset, target_errno);
2932
2933 if (targetdebug)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "target_fileio_pread (%d,...,%d,%s) "
2936 "= %d (%d)\n",
2937 fd, len, pulongest (offset),
2938 ret, ret != -1 ? 0 : *target_errno);
2939 return ret;
2940 }
2941
2942 /* See target.h. */
2943
2944 int
2945 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2946 {
2947 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2948 int ret = -1;
2949
2950 if (is_closed_fileio_fh (fh->fd))
2951 *target_errno = EBADF;
2952 else
2953 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2954
2955 if (targetdebug)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "target_fileio_fstat (%d) = %d (%d)\n",
2958 fd, ret, ret != -1 ? 0 : *target_errno);
2959 return ret;
2960 }
2961
2962 /* See target.h. */
2963
2964 int
2965 target_fileio_close (int fd, int *target_errno)
2966 {
2967 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2968 int ret = -1;
2969
2970 if (is_closed_fileio_fh (fh->fd))
2971 *target_errno = EBADF;
2972 else
2973 {
2974 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2975 release_fileio_fd (fd, fh);
2976 }
2977
2978 if (targetdebug)
2979 fprintf_unfiltered (gdb_stdlog,
2980 "target_fileio_close (%d) = %d (%d)\n",
2981 fd, ret, ret != -1 ? 0 : *target_errno);
2982 return ret;
2983 }
2984
2985 /* See target.h. */
2986
2987 int
2988 target_fileio_unlink (struct inferior *inf, const char *filename,
2989 int *target_errno)
2990 {
2991 struct target_ops *t;
2992
2993 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2994 {
2995 if (t->to_fileio_unlink != NULL)
2996 {
2997 int ret = t->to_fileio_unlink (t, inf, filename,
2998 target_errno);
2999
3000 if (targetdebug)
3001 fprintf_unfiltered (gdb_stdlog,
3002 "target_fileio_unlink (%d,%s)"
3003 " = %d (%d)\n",
3004 inf == NULL ? 0 : inf->num, filename,
3005 ret, ret != -1 ? 0 : *target_errno);
3006 return ret;
3007 }
3008 }
3009
3010 *target_errno = FILEIO_ENOSYS;
3011 return -1;
3012 }
3013
3014 /* See target.h. */
3015
3016 char *
3017 target_fileio_readlink (struct inferior *inf, const char *filename,
3018 int *target_errno)
3019 {
3020 struct target_ops *t;
3021
3022 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3023 {
3024 if (t->to_fileio_readlink != NULL)
3025 {
3026 char *ret = t->to_fileio_readlink (t, inf, filename,
3027 target_errno);
3028
3029 if (targetdebug)
3030 fprintf_unfiltered (gdb_stdlog,
3031 "target_fileio_readlink (%d,%s)"
3032 " = %s (%d)\n",
3033 inf == NULL ? 0 : inf->num,
3034 filename, ret? ret : "(nil)",
3035 ret? 0 : *target_errno);
3036 return ret;
3037 }
3038 }
3039
3040 *target_errno = FILEIO_ENOSYS;
3041 return NULL;
3042 }
3043
3044 static void
3045 target_fileio_close_cleanup (void *opaque)
3046 {
3047 int fd = *(int *) opaque;
3048 int target_errno;
3049
3050 target_fileio_close (fd, &target_errno);
3051 }
3052
3053 /* Read target file FILENAME, in the filesystem as seen by INF. If
3054 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3055 remote targets, the remote stub). Store the result in *BUF_P and
3056 return the size of the transferred data. PADDING additional bytes
3057 are available in *BUF_P. This is a helper function for
3058 target_fileio_read_alloc; see the declaration of that function for
3059 more information. */
3060
3061 static LONGEST
3062 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3063 gdb_byte **buf_p, int padding)
3064 {
3065 struct cleanup *close_cleanup;
3066 size_t buf_alloc, buf_pos;
3067 gdb_byte *buf;
3068 LONGEST n;
3069 int fd;
3070 int target_errno;
3071
3072 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3073 &target_errno);
3074 if (fd == -1)
3075 return -1;
3076
3077 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3078
3079 /* Start by reading up to 4K at a time. The target will throttle
3080 this number down if necessary. */
3081 buf_alloc = 4096;
3082 buf = (gdb_byte *) xmalloc (buf_alloc);
3083 buf_pos = 0;
3084 while (1)
3085 {
3086 n = target_fileio_pread (fd, &buf[buf_pos],
3087 buf_alloc - buf_pos - padding, buf_pos,
3088 &target_errno);
3089 if (n < 0)
3090 {
3091 /* An error occurred. */
3092 do_cleanups (close_cleanup);
3093 xfree (buf);
3094 return -1;
3095 }
3096 else if (n == 0)
3097 {
3098 /* Read all there was. */
3099 do_cleanups (close_cleanup);
3100 if (buf_pos == 0)
3101 xfree (buf);
3102 else
3103 *buf_p = buf;
3104 return buf_pos;
3105 }
3106
3107 buf_pos += n;
3108
3109 /* If the buffer is filling up, expand it. */
3110 if (buf_alloc < buf_pos * 2)
3111 {
3112 buf_alloc *= 2;
3113 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3114 }
3115
3116 QUIT;
3117 }
3118 }
3119
3120 /* See target.h. */
3121
3122 LONGEST
3123 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3124 gdb_byte **buf_p)
3125 {
3126 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3127 }
3128
3129 /* See target.h. */
3130
3131 char *
3132 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3133 {
3134 gdb_byte *buffer;
3135 char *bufstr;
3136 LONGEST i, transferred;
3137
3138 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3139 bufstr = (char *) buffer;
3140
3141 if (transferred < 0)
3142 return NULL;
3143
3144 if (transferred == 0)
3145 return xstrdup ("");
3146
3147 bufstr[transferred] = 0;
3148
3149 /* Check for embedded NUL bytes; but allow trailing NULs. */
3150 for (i = strlen (bufstr); i < transferred; i++)
3151 if (bufstr[i] != 0)
3152 {
3153 warning (_("target file %s "
3154 "contained unexpected null characters"),
3155 filename);
3156 break;
3157 }
3158
3159 return bufstr;
3160 }
3161
3162
3163 static int
3164 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3165 CORE_ADDR addr, int len)
3166 {
3167 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3168 }
3169
3170 static int
3171 default_watchpoint_addr_within_range (struct target_ops *target,
3172 CORE_ADDR addr,
3173 CORE_ADDR start, int length)
3174 {
3175 return addr >= start && addr < start + length;
3176 }
3177
3178 static struct gdbarch *
3179 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3180 {
3181 return target_gdbarch ();
3182 }
3183
3184 static int
3185 return_zero (struct target_ops *ignore)
3186 {
3187 return 0;
3188 }
3189
3190 static int
3191 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3192 {
3193 return 0;
3194 }
3195
3196 /*
3197 * Find the next target down the stack from the specified target.
3198 */
3199
3200 struct target_ops *
3201 find_target_beneath (struct target_ops *t)
3202 {
3203 return t->beneath;
3204 }
3205
3206 /* See target.h. */
3207
3208 struct target_ops *
3209 find_target_at (enum strata stratum)
3210 {
3211 struct target_ops *t;
3212
3213 for (t = current_target.beneath; t != NULL; t = t->beneath)
3214 if (t->to_stratum == stratum)
3215 return t;
3216
3217 return NULL;
3218 }
3219
3220 \f
3221 /* The inferior process has died. Long live the inferior! */
3222
3223 void
3224 generic_mourn_inferior (void)
3225 {
3226 ptid_t ptid;
3227
3228 ptid = inferior_ptid;
3229 inferior_ptid = null_ptid;
3230
3231 /* Mark breakpoints uninserted in case something tries to delete a
3232 breakpoint while we delete the inferior's threads (which would
3233 fail, since the inferior is long gone). */
3234 mark_breakpoints_out ();
3235
3236 if (!ptid_equal (ptid, null_ptid))
3237 {
3238 int pid = ptid_get_pid (ptid);
3239 exit_inferior (pid);
3240 }
3241
3242 /* Note this wipes step-resume breakpoints, so needs to be done
3243 after exit_inferior, which ends up referencing the step-resume
3244 breakpoints through clear_thread_inferior_resources. */
3245 breakpoint_init_inferior (inf_exited);
3246
3247 registers_changed ();
3248
3249 reopen_exec_file ();
3250 reinit_frame_cache ();
3251
3252 if (deprecated_detach_hook)
3253 deprecated_detach_hook ();
3254 }
3255 \f
3256 /* Convert a normal process ID to a string. Returns the string in a
3257 static buffer. */
3258
3259 char *
3260 normal_pid_to_str (ptid_t ptid)
3261 {
3262 static char buf[32];
3263
3264 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3265 return buf;
3266 }
3267
3268 static char *
3269 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3270 {
3271 return normal_pid_to_str (ptid);
3272 }
3273
3274 /* Error-catcher for target_find_memory_regions. */
3275 static int
3276 dummy_find_memory_regions (struct target_ops *self,
3277 find_memory_region_ftype ignore1, void *ignore2)
3278 {
3279 error (_("Command not implemented for this target."));
3280 return 0;
3281 }
3282
3283 /* Error-catcher for target_make_corefile_notes. */
3284 static char *
3285 dummy_make_corefile_notes (struct target_ops *self,
3286 bfd *ignore1, int *ignore2)
3287 {
3288 error (_("Command not implemented for this target."));
3289 return NULL;
3290 }
3291
3292 /* Set up the handful of non-empty slots needed by the dummy target
3293 vector. */
3294
3295 static void
3296 init_dummy_target (void)
3297 {
3298 dummy_target.to_shortname = "None";
3299 dummy_target.to_longname = "None";
3300 dummy_target.to_doc = "";
3301 dummy_target.to_supports_disable_randomization
3302 = find_default_supports_disable_randomization;
3303 dummy_target.to_stratum = dummy_stratum;
3304 dummy_target.to_has_all_memory = return_zero;
3305 dummy_target.to_has_memory = return_zero;
3306 dummy_target.to_has_stack = return_zero;
3307 dummy_target.to_has_registers = return_zero;
3308 dummy_target.to_has_execution = return_zero_has_execution;
3309 dummy_target.to_magic = OPS_MAGIC;
3310
3311 install_dummy_methods (&dummy_target);
3312 }
3313 \f
3314
3315 void
3316 target_close (struct target_ops *targ)
3317 {
3318 gdb_assert (!target_is_pushed (targ));
3319
3320 if (targ->to_xclose != NULL)
3321 targ->to_xclose (targ);
3322 else if (targ->to_close != NULL)
3323 targ->to_close (targ);
3324
3325 if (targetdebug)
3326 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3327 }
3328
3329 int
3330 target_thread_alive (ptid_t ptid)
3331 {
3332 return current_target.to_thread_alive (&current_target, ptid);
3333 }
3334
3335 void
3336 target_update_thread_list (void)
3337 {
3338 current_target.to_update_thread_list (&current_target);
3339 }
3340
3341 void
3342 target_stop (ptid_t ptid)
3343 {
3344 if (!may_stop)
3345 {
3346 warning (_("May not interrupt or stop the target, ignoring attempt"));
3347 return;
3348 }
3349
3350 (*current_target.to_stop) (&current_target, ptid);
3351 }
3352
3353 void
3354 target_interrupt (ptid_t ptid)
3355 {
3356 if (!may_stop)
3357 {
3358 warning (_("May not interrupt or stop the target, ignoring attempt"));
3359 return;
3360 }
3361
3362 (*current_target.to_interrupt) (&current_target, ptid);
3363 }
3364
3365 /* See target.h. */
3366
3367 void
3368 target_pass_ctrlc (void)
3369 {
3370 (*current_target.to_pass_ctrlc) (&current_target);
3371 }
3372
3373 /* See target.h. */
3374
3375 void
3376 default_target_pass_ctrlc (struct target_ops *ops)
3377 {
3378 target_interrupt (inferior_ptid);
3379 }
3380
3381 /* See target.h. */
3382
3383 void
3384 target_check_pending_interrupt (void)
3385 {
3386 (*current_target.to_check_pending_interrupt) (&current_target);
3387 }
3388
3389 /* See target/target.h. */
3390
3391 void
3392 target_stop_and_wait (ptid_t ptid)
3393 {
3394 struct target_waitstatus status;
3395 int was_non_stop = non_stop;
3396
3397 non_stop = 1;
3398 target_stop (ptid);
3399
3400 memset (&status, 0, sizeof (status));
3401 target_wait (ptid, &status, 0);
3402
3403 non_stop = was_non_stop;
3404 }
3405
3406 /* See target/target.h. */
3407
3408 void
3409 target_continue_no_signal (ptid_t ptid)
3410 {
3411 target_resume (ptid, 0, GDB_SIGNAL_0);
3412 }
3413
3414 /* Concatenate ELEM to LIST, a comma separate list, and return the
3415 result. The LIST incoming argument is released. */
3416
3417 static char *
3418 str_comma_list_concat_elem (char *list, const char *elem)
3419 {
3420 if (list == NULL)
3421 return xstrdup (elem);
3422 else
3423 return reconcat (list, list, ", ", elem, (char *) NULL);
3424 }
3425
3426 /* Helper for target_options_to_string. If OPT is present in
3427 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3428 Returns the new resulting string. OPT is removed from
3429 TARGET_OPTIONS. */
3430
3431 static char *
3432 do_option (int *target_options, char *ret,
3433 int opt, char *opt_str)
3434 {
3435 if ((*target_options & opt) != 0)
3436 {
3437 ret = str_comma_list_concat_elem (ret, opt_str);
3438 *target_options &= ~opt;
3439 }
3440
3441 return ret;
3442 }
3443
3444 char *
3445 target_options_to_string (int target_options)
3446 {
3447 char *ret = NULL;
3448
3449 #define DO_TARG_OPTION(OPT) \
3450 ret = do_option (&target_options, ret, OPT, #OPT)
3451
3452 DO_TARG_OPTION (TARGET_WNOHANG);
3453
3454 if (target_options != 0)
3455 ret = str_comma_list_concat_elem (ret, "unknown???");
3456
3457 if (ret == NULL)
3458 ret = xstrdup ("");
3459 return ret;
3460 }
3461
3462 static void
3463 debug_print_register (const char * func,
3464 struct regcache *regcache, int regno)
3465 {
3466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3467
3468 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3469 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3470 && gdbarch_register_name (gdbarch, regno) != NULL
3471 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3472 fprintf_unfiltered (gdb_stdlog, "(%s)",
3473 gdbarch_register_name (gdbarch, regno));
3474 else
3475 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3476 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3477 {
3478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3479 int i, size = register_size (gdbarch, regno);
3480 gdb_byte buf[MAX_REGISTER_SIZE];
3481
3482 regcache_raw_collect (regcache, regno, buf);
3483 fprintf_unfiltered (gdb_stdlog, " = ");
3484 for (i = 0; i < size; i++)
3485 {
3486 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3487 }
3488 if (size <= sizeof (LONGEST))
3489 {
3490 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3491
3492 fprintf_unfiltered (gdb_stdlog, " %s %s",
3493 core_addr_to_string_nz (val), plongest (val));
3494 }
3495 }
3496 fprintf_unfiltered (gdb_stdlog, "\n");
3497 }
3498
3499 void
3500 target_fetch_registers (struct regcache *regcache, int regno)
3501 {
3502 current_target.to_fetch_registers (&current_target, regcache, regno);
3503 if (targetdebug)
3504 debug_print_register ("target_fetch_registers", regcache, regno);
3505 }
3506
3507 void
3508 target_store_registers (struct regcache *regcache, int regno)
3509 {
3510 struct target_ops *t;
3511
3512 if (!may_write_registers)
3513 error (_("Writing to registers is not allowed (regno %d)"), regno);
3514
3515 current_target.to_store_registers (&current_target, regcache, regno);
3516 if (targetdebug)
3517 {
3518 debug_print_register ("target_store_registers", regcache, regno);
3519 }
3520 }
3521
3522 int
3523 target_core_of_thread (ptid_t ptid)
3524 {
3525 return current_target.to_core_of_thread (&current_target, ptid);
3526 }
3527
3528 int
3529 simple_verify_memory (struct target_ops *ops,
3530 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3531 {
3532 LONGEST total_xfered = 0;
3533
3534 while (total_xfered < size)
3535 {
3536 ULONGEST xfered_len;
3537 enum target_xfer_status status;
3538 gdb_byte buf[1024];
3539 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3540
3541 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3542 buf, NULL, lma + total_xfered, howmuch,
3543 &xfered_len);
3544 if (status == TARGET_XFER_OK
3545 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3546 {
3547 total_xfered += xfered_len;
3548 QUIT;
3549 }
3550 else
3551 return 0;
3552 }
3553 return 1;
3554 }
3555
3556 /* Default implementation of memory verification. */
3557
3558 static int
3559 default_verify_memory (struct target_ops *self,
3560 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3561 {
3562 /* Start over from the top of the target stack. */
3563 return simple_verify_memory (current_target.beneath,
3564 data, memaddr, size);
3565 }
3566
3567 int
3568 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3569 {
3570 return current_target.to_verify_memory (&current_target,
3571 data, memaddr, size);
3572 }
3573
3574 /* The documentation for this function is in its prototype declaration in
3575 target.h. */
3576
3577 int
3578 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3579 enum target_hw_bp_type rw)
3580 {
3581 return current_target.to_insert_mask_watchpoint (&current_target,
3582 addr, mask, rw);
3583 }
3584
3585 /* The documentation for this function is in its prototype declaration in
3586 target.h. */
3587
3588 int
3589 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3590 enum target_hw_bp_type rw)
3591 {
3592 return current_target.to_remove_mask_watchpoint (&current_target,
3593 addr, mask, rw);
3594 }
3595
3596 /* The documentation for this function is in its prototype declaration
3597 in target.h. */
3598
3599 int
3600 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3601 {
3602 return current_target.to_masked_watch_num_registers (&current_target,
3603 addr, mask);
3604 }
3605
3606 /* The documentation for this function is in its prototype declaration
3607 in target.h. */
3608
3609 int
3610 target_ranged_break_num_registers (void)
3611 {
3612 return current_target.to_ranged_break_num_registers (&current_target);
3613 }
3614
3615 /* See target.h. */
3616
3617 int
3618 target_supports_btrace (enum btrace_format format)
3619 {
3620 return current_target.to_supports_btrace (&current_target, format);
3621 }
3622
3623 /* See target.h. */
3624
3625 struct btrace_target_info *
3626 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3627 {
3628 return current_target.to_enable_btrace (&current_target, ptid, conf);
3629 }
3630
3631 /* See target.h. */
3632
3633 void
3634 target_disable_btrace (struct btrace_target_info *btinfo)
3635 {
3636 current_target.to_disable_btrace (&current_target, btinfo);
3637 }
3638
3639 /* See target.h. */
3640
3641 void
3642 target_teardown_btrace (struct btrace_target_info *btinfo)
3643 {
3644 current_target.to_teardown_btrace (&current_target, btinfo);
3645 }
3646
3647 /* See target.h. */
3648
3649 enum btrace_error
3650 target_read_btrace (struct btrace_data *btrace,
3651 struct btrace_target_info *btinfo,
3652 enum btrace_read_type type)
3653 {
3654 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3655 }
3656
3657 /* See target.h. */
3658
3659 const struct btrace_config *
3660 target_btrace_conf (const struct btrace_target_info *btinfo)
3661 {
3662 return current_target.to_btrace_conf (&current_target, btinfo);
3663 }
3664
3665 /* See target.h. */
3666
3667 void
3668 target_stop_recording (void)
3669 {
3670 current_target.to_stop_recording (&current_target);
3671 }
3672
3673 /* See target.h. */
3674
3675 void
3676 target_save_record (const char *filename)
3677 {
3678 current_target.to_save_record (&current_target, filename);
3679 }
3680
3681 /* See target.h. */
3682
3683 int
3684 target_supports_delete_record (void)
3685 {
3686 struct target_ops *t;
3687
3688 for (t = current_target.beneath; t != NULL; t = t->beneath)
3689 if (t->to_delete_record != delegate_delete_record
3690 && t->to_delete_record != tdefault_delete_record)
3691 return 1;
3692
3693 return 0;
3694 }
3695
3696 /* See target.h. */
3697
3698 void
3699 target_delete_record (void)
3700 {
3701 current_target.to_delete_record (&current_target);
3702 }
3703
3704 /* See target.h. */
3705
3706 int
3707 target_record_is_replaying (ptid_t ptid)
3708 {
3709 return current_target.to_record_is_replaying (&current_target, ptid);
3710 }
3711
3712 /* See target.h. */
3713
3714 int
3715 target_record_will_replay (ptid_t ptid, int dir)
3716 {
3717 return current_target.to_record_will_replay (&current_target, ptid, dir);
3718 }
3719
3720 /* See target.h. */
3721
3722 void
3723 target_record_stop_replaying (void)
3724 {
3725 current_target.to_record_stop_replaying (&current_target);
3726 }
3727
3728 /* See target.h. */
3729
3730 void
3731 target_goto_record_begin (void)
3732 {
3733 current_target.to_goto_record_begin (&current_target);
3734 }
3735
3736 /* See target.h. */
3737
3738 void
3739 target_goto_record_end (void)
3740 {
3741 current_target.to_goto_record_end (&current_target);
3742 }
3743
3744 /* See target.h. */
3745
3746 void
3747 target_goto_record (ULONGEST insn)
3748 {
3749 current_target.to_goto_record (&current_target, insn);
3750 }
3751
3752 /* See target.h. */
3753
3754 void
3755 target_insn_history (int size, int flags)
3756 {
3757 current_target.to_insn_history (&current_target, size, flags);
3758 }
3759
3760 /* See target.h. */
3761
3762 void
3763 target_insn_history_from (ULONGEST from, int size, int flags)
3764 {
3765 current_target.to_insn_history_from (&current_target, from, size, flags);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3772 {
3773 current_target.to_insn_history_range (&current_target, begin, end, flags);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_call_history (int size, int flags)
3780 {
3781 current_target.to_call_history (&current_target, size, flags);
3782 }
3783
3784 /* See target.h. */
3785
3786 void
3787 target_call_history_from (ULONGEST begin, int size, int flags)
3788 {
3789 current_target.to_call_history_from (&current_target, begin, size, flags);
3790 }
3791
3792 /* See target.h. */
3793
3794 void
3795 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3796 {
3797 current_target.to_call_history_range (&current_target, begin, end, flags);
3798 }
3799
3800 /* See target.h. */
3801
3802 const struct frame_unwind *
3803 target_get_unwinder (void)
3804 {
3805 return current_target.to_get_unwinder (&current_target);
3806 }
3807
3808 /* See target.h. */
3809
3810 const struct frame_unwind *
3811 target_get_tailcall_unwinder (void)
3812 {
3813 return current_target.to_get_tailcall_unwinder (&current_target);
3814 }
3815
3816 /* See target.h. */
3817
3818 void
3819 target_prepare_to_generate_core (void)
3820 {
3821 current_target.to_prepare_to_generate_core (&current_target);
3822 }
3823
3824 /* See target.h. */
3825
3826 void
3827 target_done_generating_core (void)
3828 {
3829 current_target.to_done_generating_core (&current_target);
3830 }
3831
3832 static void
3833 setup_target_debug (void)
3834 {
3835 memcpy (&debug_target, &current_target, sizeof debug_target);
3836
3837 init_debug_target (&current_target);
3838 }
3839 \f
3840
3841 static char targ_desc[] =
3842 "Names of targets and files being debugged.\nShows the entire \
3843 stack of targets currently in use (including the exec-file,\n\
3844 core-file, and process, if any), as well as the symbol file name.";
3845
3846 static void
3847 default_rcmd (struct target_ops *self, const char *command,
3848 struct ui_file *output)
3849 {
3850 error (_("\"monitor\" command not supported by this target."));
3851 }
3852
3853 static void
3854 do_monitor_command (char *cmd,
3855 int from_tty)
3856 {
3857 target_rcmd (cmd, gdb_stdtarg);
3858 }
3859
3860 /* Print the name of each layers of our target stack. */
3861
3862 static void
3863 maintenance_print_target_stack (char *cmd, int from_tty)
3864 {
3865 struct target_ops *t;
3866
3867 printf_filtered (_("The current target stack is:\n"));
3868
3869 for (t = target_stack; t != NULL; t = t->beneath)
3870 {
3871 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3872 }
3873 }
3874
3875 /* See target.h. */
3876
3877 void
3878 target_async (int enable)
3879 {
3880 infrun_async (enable);
3881 current_target.to_async (&current_target, enable);
3882 }
3883
3884 /* See target.h. */
3885
3886 void
3887 target_thread_events (int enable)
3888 {
3889 current_target.to_thread_events (&current_target, enable);
3890 }
3891
3892 /* Controls if targets can report that they can/are async. This is
3893 just for maintainers to use when debugging gdb. */
3894 int target_async_permitted = 1;
3895
3896 /* The set command writes to this variable. If the inferior is
3897 executing, target_async_permitted is *not* updated. */
3898 static int target_async_permitted_1 = 1;
3899
3900 static void
3901 maint_set_target_async_command (char *args, int from_tty,
3902 struct cmd_list_element *c)
3903 {
3904 if (have_live_inferiors ())
3905 {
3906 target_async_permitted_1 = target_async_permitted;
3907 error (_("Cannot change this setting while the inferior is running."));
3908 }
3909
3910 target_async_permitted = target_async_permitted_1;
3911 }
3912
3913 static void
3914 maint_show_target_async_command (struct ui_file *file, int from_tty,
3915 struct cmd_list_element *c,
3916 const char *value)
3917 {
3918 fprintf_filtered (file,
3919 _("Controlling the inferior in "
3920 "asynchronous mode is %s.\n"), value);
3921 }
3922
3923 /* Return true if the target operates in non-stop mode even with "set
3924 non-stop off". */
3925
3926 static int
3927 target_always_non_stop_p (void)
3928 {
3929 return current_target.to_always_non_stop_p (&current_target);
3930 }
3931
3932 /* See target.h. */
3933
3934 int
3935 target_is_non_stop_p (void)
3936 {
3937 return (non_stop
3938 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3939 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3940 && target_always_non_stop_p ()));
3941 }
3942
3943 /* Controls if targets can report that they always run in non-stop
3944 mode. This is just for maintainers to use when debugging gdb. */
3945 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3946
3947 /* The set command writes to this variable. If the inferior is
3948 executing, target_non_stop_enabled is *not* updated. */
3949 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3950
3951 /* Implementation of "maint set target-non-stop". */
3952
3953 static void
3954 maint_set_target_non_stop_command (char *args, int from_tty,
3955 struct cmd_list_element *c)
3956 {
3957 if (have_live_inferiors ())
3958 {
3959 target_non_stop_enabled_1 = target_non_stop_enabled;
3960 error (_("Cannot change this setting while the inferior is running."));
3961 }
3962
3963 target_non_stop_enabled = target_non_stop_enabled_1;
3964 }
3965
3966 /* Implementation of "maint show target-non-stop". */
3967
3968 static void
3969 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3970 struct cmd_list_element *c,
3971 const char *value)
3972 {
3973 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3974 fprintf_filtered (file,
3975 _("Whether the target is always in non-stop mode "
3976 "is %s (currently %s).\n"), value,
3977 target_always_non_stop_p () ? "on" : "off");
3978 else
3979 fprintf_filtered (file,
3980 _("Whether the target is always in non-stop mode "
3981 "is %s.\n"), value);
3982 }
3983
3984 /* Temporary copies of permission settings. */
3985
3986 static int may_write_registers_1 = 1;
3987 static int may_write_memory_1 = 1;
3988 static int may_insert_breakpoints_1 = 1;
3989 static int may_insert_tracepoints_1 = 1;
3990 static int may_insert_fast_tracepoints_1 = 1;
3991 static int may_stop_1 = 1;
3992
3993 /* Make the user-set values match the real values again. */
3994
3995 void
3996 update_target_permissions (void)
3997 {
3998 may_write_registers_1 = may_write_registers;
3999 may_write_memory_1 = may_write_memory;
4000 may_insert_breakpoints_1 = may_insert_breakpoints;
4001 may_insert_tracepoints_1 = may_insert_tracepoints;
4002 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4003 may_stop_1 = may_stop;
4004 }
4005
4006 /* The one function handles (most of) the permission flags in the same
4007 way. */
4008
4009 static void
4010 set_target_permissions (char *args, int from_tty,
4011 struct cmd_list_element *c)
4012 {
4013 if (target_has_execution)
4014 {
4015 update_target_permissions ();
4016 error (_("Cannot change this setting while the inferior is running."));
4017 }
4018
4019 /* Make the real values match the user-changed values. */
4020 may_write_registers = may_write_registers_1;
4021 may_insert_breakpoints = may_insert_breakpoints_1;
4022 may_insert_tracepoints = may_insert_tracepoints_1;
4023 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4024 may_stop = may_stop_1;
4025 update_observer_mode ();
4026 }
4027
4028 /* Set memory write permission independently of observer mode. */
4029
4030 static void
4031 set_write_memory_permission (char *args, int from_tty,
4032 struct cmd_list_element *c)
4033 {
4034 /* Make the real values match the user-changed values. */
4035 may_write_memory = may_write_memory_1;
4036 update_observer_mode ();
4037 }
4038
4039
4040 void
4041 initialize_targets (void)
4042 {
4043 init_dummy_target ();
4044 push_target (&dummy_target);
4045
4046 add_info ("target", target_info, targ_desc);
4047 add_info ("files", target_info, targ_desc);
4048
4049 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4050 Set target debugging."), _("\
4051 Show target debugging."), _("\
4052 When non-zero, target debugging is enabled. Higher numbers are more\n\
4053 verbose."),
4054 set_targetdebug,
4055 show_targetdebug,
4056 &setdebuglist, &showdebuglist);
4057
4058 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4059 &trust_readonly, _("\
4060 Set mode for reading from readonly sections."), _("\
4061 Show mode for reading from readonly sections."), _("\
4062 When this mode is on, memory reads from readonly sections (such as .text)\n\
4063 will be read from the object file instead of from the target. This will\n\
4064 result in significant performance improvement for remote targets."),
4065 NULL,
4066 show_trust_readonly,
4067 &setlist, &showlist);
4068
4069 add_com ("monitor", class_obscure, do_monitor_command,
4070 _("Send a command to the remote monitor (remote targets only)."));
4071
4072 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4073 _("Print the name of each layer of the internal target stack."),
4074 &maintenanceprintlist);
4075
4076 add_setshow_boolean_cmd ("target-async", no_class,
4077 &target_async_permitted_1, _("\
4078 Set whether gdb controls the inferior in asynchronous mode."), _("\
4079 Show whether gdb controls the inferior in asynchronous mode."), _("\
4080 Tells gdb whether to control the inferior in asynchronous mode."),
4081 maint_set_target_async_command,
4082 maint_show_target_async_command,
4083 &maintenance_set_cmdlist,
4084 &maintenance_show_cmdlist);
4085
4086 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4087 &target_non_stop_enabled_1, _("\
4088 Set whether gdb always controls the inferior in non-stop mode."), _("\
4089 Show whether gdb always controls the inferior in non-stop mode."), _("\
4090 Tells gdb whether to control the inferior in non-stop mode."),
4091 maint_set_target_non_stop_command,
4092 maint_show_target_non_stop_command,
4093 &maintenance_set_cmdlist,
4094 &maintenance_show_cmdlist);
4095
4096 add_setshow_boolean_cmd ("may-write-registers", class_support,
4097 &may_write_registers_1, _("\
4098 Set permission to write into registers."), _("\
4099 Show permission to write into registers."), _("\
4100 When this permission is on, GDB may write into the target's registers.\n\
4101 Otherwise, any sort of write attempt will result in an error."),
4102 set_target_permissions, NULL,
4103 &setlist, &showlist);
4104
4105 add_setshow_boolean_cmd ("may-write-memory", class_support,
4106 &may_write_memory_1, _("\
4107 Set permission to write into target memory."), _("\
4108 Show permission to write into target memory."), _("\
4109 When this permission is on, GDB may write into the target's memory.\n\
4110 Otherwise, any sort of write attempt will result in an error."),
4111 set_write_memory_permission, NULL,
4112 &setlist, &showlist);
4113
4114 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4115 &may_insert_breakpoints_1, _("\
4116 Set permission to insert breakpoints in the target."), _("\
4117 Show permission to insert breakpoints in the target."), _("\
4118 When this permission is on, GDB may insert breakpoints in the program.\n\
4119 Otherwise, any sort of insertion attempt will result in an error."),
4120 set_target_permissions, NULL,
4121 &setlist, &showlist);
4122
4123 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4124 &may_insert_tracepoints_1, _("\
4125 Set permission to insert tracepoints in the target."), _("\
4126 Show permission to insert tracepoints in the target."), _("\
4127 When this permission is on, GDB may insert tracepoints in the program.\n\
4128 Otherwise, any sort of insertion attempt will result in an error."),
4129 set_target_permissions, NULL,
4130 &setlist, &showlist);
4131
4132 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4133 &may_insert_fast_tracepoints_1, _("\
4134 Set permission to insert fast tracepoints in the target."), _("\
4135 Show permission to insert fast tracepoints in the target."), _("\
4136 When this permission is on, GDB may insert fast tracepoints.\n\
4137 Otherwise, any sort of insertion attempt will result in an error."),
4138 set_target_permissions, NULL,
4139 &setlist, &showlist);
4140
4141 add_setshow_boolean_cmd ("may-interrupt", class_support,
4142 &may_stop_1, _("\
4143 Set permission to interrupt or signal the target."), _("\
4144 Show permission to interrupt or signal the target."), _("\
4145 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4146 Otherwise, any attempt to interrupt or stop will be ignored."),
4147 set_target_permissions, NULL,
4148 &setlist, &showlist);
4149
4150 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4151 &auto_connect_native_target, _("\
4152 Set whether GDB may automatically connect to the native target."), _("\
4153 Show whether GDB may automatically connect to the native target."), _("\
4154 When on, and GDB is not connected to a target yet, GDB\n\
4155 attempts \"run\" and other commands with the native target."),
4156 NULL, show_auto_connect_native_target,
4157 &setlist, &showlist);
4158 }
This page took 0.133691 seconds and 4 git commands to generate.