Rename some command functions
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void info_target_command (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static void target_command (char *, int);
94
95 static struct target_ops *find_default_run_target (const char *);
96
97 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
100 static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
104 static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
107 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
109 static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
112 static struct target_ops debug_target;
113
114 #include "target-delegates.c"
115
116 static void init_dummy_target (void);
117
118 static void update_current_target (void);
119
120 /* Vector of existing target structures. */
121 typedef struct target_ops *target_ops_p;
122 DEF_VEC_P (target_ops_p);
123 static VEC (target_ops_p) *target_structs;
124
125 /* The initial current target, so that there is always a semi-valid
126 current target. */
127
128 static struct target_ops dummy_target;
129
130 /* Top of target stack. */
131
132 static struct target_ops *target_stack;
133
134 /* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137 struct target_ops current_target;
138
139 /* Command list for target. */
140
141 static struct cmd_list_element *targetlist = NULL;
142
143 /* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146 static int trust_readonly = 0;
147
148 /* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151 static int show_memory_breakpoints = 0;
152
153 /* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157 int may_write_registers = 1;
158
159 int may_write_memory = 1;
160
161 int may_insert_breakpoints = 1;
162
163 int may_insert_tracepoints = 1;
164
165 int may_insert_fast_tracepoints = 1;
166
167 int may_stop = 1;
168
169 /* Non-zero if we want to see trace of target level stuff. */
170
171 static unsigned int targetdebug = 0;
172
173 static void
174 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175 {
176 update_current_target ();
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 static void setup_target_debug (void);
187
188 /* The user just typed 'target' without the name of a target. */
189
190 static void
191 target_command (char *arg, int from_tty)
192 {
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195 }
196
197 /* Default target_has_* methods for process_stratum targets. */
198
199 int
200 default_child_has_all_memory (struct target_ops *ops)
201 {
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207 }
208
209 int
210 default_child_has_memory (struct target_ops *ops)
211 {
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217 }
218
219 int
220 default_child_has_stack (struct target_ops *ops)
221 {
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227 }
228
229 int
230 default_child_has_registers (struct target_ops *ops)
231 {
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237 }
238
239 int
240 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241 {
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
244 if (ptid_equal (the_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250
251 int
252 target_has_all_memory_1 (void)
253 {
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261 }
262
263 int
264 target_has_memory_1 (void)
265 {
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273 }
274
275 int
276 target_has_stack_1 (void)
277 {
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285 }
286
287 int
288 target_has_registers_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_execution_1 (ptid_t the_ptid)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_execution (t, the_ptid))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_execution_current (void)
313 {
314 return target_has_execution_1 (inferior_ptid);
315 }
316
317 /* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
319
320 void
321 complete_target_initialization (struct target_ops *t)
322 {
323 /* Provide default values for all "must have" methods. */
324
325 if (t->to_has_all_memory == NULL)
326 t->to_has_all_memory = return_zero;
327
328 if (t->to_has_memory == NULL)
329 t->to_has_memory = return_zero;
330
331 if (t->to_has_stack == NULL)
332 t->to_has_stack = return_zero;
333
334 if (t->to_has_registers == NULL)
335 t->to_has_registers = return_zero;
336
337 if (t->to_has_execution == NULL)
338 t->to_has_execution = return_zero_has_execution;
339
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
346 install_delegators (t);
347 }
348
349 /* This is used to implement the various target commands. */
350
351 static void
352 open_target (char *args, int from_tty, struct cmd_list_element *command)
353 {
354 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365 }
366
367 /* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371 void
372 add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374 {
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
378
379 VEC_safe_push (target_ops_p, target_structs, t);
380
381 if (targetlist == NULL)
382 add_prefix_cmd ("target", class_run, target_command, _("\
383 Connect to a target machine or process.\n\
384 The first argument is the type or protocol of the target machine.\n\
385 Remaining arguments are interpreted by the target protocol. For more\n\
386 information on the arguments for a particular protocol, type\n\
387 `help target ' followed by the protocol name."),
388 &targetlist, "target ", 0, &cmdlist);
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394 }
395
396 /* Add a possible target architecture to the list. */
397
398 void
399 add_target (struct target_ops *t)
400 {
401 add_target_with_completer (t, NULL);
402 }
403
404 /* See target.h. */
405
406 void
407 add_deprecated_target_alias (struct target_ops *t, const char *alias)
408 {
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419 }
420
421 /* Stub functions */
422
423 void
424 target_kill (void)
425 {
426 current_target.to_kill (&current_target);
427 }
428
429 void
430 target_load (const char *arg, int from_tty)
431 {
432 target_dcache_invalidate ();
433 (*current_target.to_load) (&current_target, arg, from_tty);
434 }
435
436 /* Possible terminal states. */
437
438 enum terminal_state
439 {
440 /* The inferior's terminal settings are in effect. */
441 terminal_is_inferior = 0,
442
443 /* Some of our terminal settings are in effect, enough to get
444 proper output. */
445 terminal_is_ours_for_output = 1,
446
447 /* Our terminal settings are in effect, for output and input. */
448 terminal_is_ours = 2
449 };
450
451 static enum terminal_state terminal_state = terminal_is_ours;
452
453 /* See target.h. */
454
455 void
456 target_terminal_init (void)
457 {
458 (*current_target.to_terminal_init) (&current_target);
459
460 terminal_state = terminal_is_ours;
461 }
462
463 /* See target.h. */
464
465 int
466 target_terminal_is_inferior (void)
467 {
468 return (terminal_state == terminal_is_inferior);
469 }
470
471 /* See target.h. */
472
473 int
474 target_terminal_is_ours (void)
475 {
476 return (terminal_state == terminal_is_ours);
477 }
478
479 /* See target.h. */
480
481 void
482 target_terminal_inferior (void)
483 {
484 struct ui *ui = current_ui;
485
486 /* A background resume (``run&'') should leave GDB in control of the
487 terminal. */
488 if (ui->prompt_state != PROMPT_BLOCKED)
489 return;
490
491 /* Since we always run the inferior in the main console (unless "set
492 inferior-tty" is in effect), when some UI other than the main one
493 calls target_terminal_inferior/target_terminal_inferior, then we
494 leave the main UI's terminal settings as is. */
495 if (ui != main_ui)
496 return;
497
498 if (terminal_state == terminal_is_inferior)
499 return;
500
501 /* If GDB is resuming the inferior in the foreground, install
502 inferior's terminal modes. */
503 (*current_target.to_terminal_inferior) (&current_target);
504 terminal_state = terminal_is_inferior;
505
506 /* If the user hit C-c before, pretend that it was hit right
507 here. */
508 if (check_quit_flag ())
509 target_pass_ctrlc ();
510 }
511
512 /* See target.h. */
513
514 void
515 target_terminal_ours (void)
516 {
517 struct ui *ui = current_ui;
518
519 /* See target_terminal_inferior. */
520 if (ui != main_ui)
521 return;
522
523 if (terminal_state == terminal_is_ours)
524 return;
525
526 (*current_target.to_terminal_ours) (&current_target);
527 terminal_state = terminal_is_ours;
528 }
529
530 /* See target.h. */
531
532 void
533 target_terminal_ours_for_output (void)
534 {
535 struct ui *ui = current_ui;
536
537 /* See target_terminal_inferior. */
538 if (ui != main_ui)
539 return;
540
541 if (terminal_state != terminal_is_inferior)
542 return;
543 (*current_target.to_terminal_ours_for_output) (&current_target);
544 terminal_state = terminal_is_ours_for_output;
545 }
546
547 /* See target.h. */
548
549 int
550 target_supports_terminal_ours (void)
551 {
552 struct target_ops *t;
553
554 for (t = current_target.beneath; t != NULL; t = t->beneath)
555 {
556 if (t->to_terminal_ours != delegate_terminal_ours
557 && t->to_terminal_ours != tdefault_terminal_ours)
558 return 1;
559 }
560
561 return 0;
562 }
563
564 /* Restore the terminal to its previous state (helper for
565 make_cleanup_restore_target_terminal). */
566
567 static void
568 cleanup_restore_target_terminal (void *arg)
569 {
570 enum terminal_state *previous_state = (enum terminal_state *) arg;
571
572 switch (*previous_state)
573 {
574 case terminal_is_ours:
575 target_terminal_ours ();
576 break;
577 case terminal_is_ours_for_output:
578 target_terminal_ours_for_output ();
579 break;
580 case terminal_is_inferior:
581 target_terminal_inferior ();
582 break;
583 }
584 }
585
586 /* See target.h. */
587
588 struct cleanup *
589 make_cleanup_restore_target_terminal (void)
590 {
591 enum terminal_state *ts = XNEW (enum terminal_state);
592
593 *ts = terminal_state;
594
595 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
596 }
597
598 static void
599 tcomplain (void)
600 {
601 error (_("You can't do that when your target is `%s'"),
602 current_target.to_shortname);
603 }
604
605 void
606 noprocess (void)
607 {
608 error (_("You can't do that without a process to debug."));
609 }
610
611 static void
612 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
613 {
614 printf_unfiltered (_("No saved terminal information.\n"));
615 }
616
617 /* A default implementation for the to_get_ada_task_ptid target method.
618
619 This function builds the PTID by using both LWP and TID as part of
620 the PTID lwp and tid elements. The pid used is the pid of the
621 inferior_ptid. */
622
623 static ptid_t
624 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
625 {
626 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
627 }
628
629 static enum exec_direction_kind
630 default_execution_direction (struct target_ops *self)
631 {
632 if (!target_can_execute_reverse)
633 return EXEC_FORWARD;
634 else if (!target_can_async_p ())
635 return EXEC_FORWARD;
636 else
637 gdb_assert_not_reached ("\
638 to_execution_direction must be implemented for reverse async");
639 }
640
641 /* Go through the target stack from top to bottom, copying over zero
642 entries in current_target, then filling in still empty entries. In
643 effect, we are doing class inheritance through the pushed target
644 vectors.
645
646 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
647 is currently implemented, is that it discards any knowledge of
648 which target an inherited method originally belonged to.
649 Consequently, new new target methods should instead explicitly and
650 locally search the target stack for the target that can handle the
651 request. */
652
653 static void
654 update_current_target (void)
655 {
656 struct target_ops *t;
657
658 /* First, reset current's contents. */
659 memset (&current_target, 0, sizeof (current_target));
660
661 /* Install the delegators. */
662 install_delegators (&current_target);
663
664 current_target.to_stratum = target_stack->to_stratum;
665
666 #define INHERIT(FIELD, TARGET) \
667 if (!current_target.FIELD) \
668 current_target.FIELD = (TARGET)->FIELD
669
670 /* Do not add any new INHERITs here. Instead, use the delegation
671 mechanism provided by make-target-delegates. */
672 for (t = target_stack; t; t = t->beneath)
673 {
674 INHERIT (to_shortname, t);
675 INHERIT (to_longname, t);
676 INHERIT (to_attach_no_wait, t);
677 INHERIT (to_have_steppable_watchpoint, t);
678 INHERIT (to_have_continuable_watchpoint, t);
679 INHERIT (to_has_thread_control, t);
680 }
681 #undef INHERIT
682
683 /* Finally, position the target-stack beneath the squashed
684 "current_target". That way code looking for a non-inherited
685 target method can quickly and simply find it. */
686 current_target.beneath = target_stack;
687
688 if (targetdebug)
689 setup_target_debug ();
690 }
691
692 /* Push a new target type into the stack of the existing target accessors,
693 possibly superseding some of the existing accessors.
694
695 Rather than allow an empty stack, we always have the dummy target at
696 the bottom stratum, so we can call the function vectors without
697 checking them. */
698
699 void
700 push_target (struct target_ops *t)
701 {
702 struct target_ops **cur;
703
704 /* Check magic number. If wrong, it probably means someone changed
705 the struct definition, but not all the places that initialize one. */
706 if (t->to_magic != OPS_MAGIC)
707 {
708 fprintf_unfiltered (gdb_stderr,
709 "Magic number of %s target struct wrong\n",
710 t->to_shortname);
711 internal_error (__FILE__, __LINE__,
712 _("failed internal consistency check"));
713 }
714
715 /* Find the proper stratum to install this target in. */
716 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
717 {
718 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
719 break;
720 }
721
722 /* If there's already targets at this stratum, remove them. */
723 /* FIXME: cagney/2003-10-15: I think this should be popping all
724 targets to CUR, and not just those at this stratum level. */
725 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
726 {
727 /* There's already something at this stratum level. Close it,
728 and un-hook it from the stack. */
729 struct target_ops *tmp = (*cur);
730
731 (*cur) = (*cur)->beneath;
732 tmp->beneath = NULL;
733 target_close (tmp);
734 }
735
736 /* We have removed all targets in our stratum, now add the new one. */
737 t->beneath = (*cur);
738 (*cur) = t;
739
740 update_current_target ();
741 }
742
743 /* Remove a target_ops vector from the stack, wherever it may be.
744 Return how many times it was removed (0 or 1). */
745
746 int
747 unpush_target (struct target_ops *t)
748 {
749 struct target_ops **cur;
750 struct target_ops *tmp;
751
752 if (t->to_stratum == dummy_stratum)
753 internal_error (__FILE__, __LINE__,
754 _("Attempt to unpush the dummy target"));
755
756 /* Look for the specified target. Note that we assume that a target
757 can only occur once in the target stack. */
758
759 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
760 {
761 if ((*cur) == t)
762 break;
763 }
764
765 /* If we don't find target_ops, quit. Only open targets should be
766 closed. */
767 if ((*cur) == NULL)
768 return 0;
769
770 /* Unchain the target. */
771 tmp = (*cur);
772 (*cur) = (*cur)->beneath;
773 tmp->beneath = NULL;
774
775 update_current_target ();
776
777 /* Finally close the target. Note we do this after unchaining, so
778 any target method calls from within the target_close
779 implementation don't end up in T anymore. */
780 target_close (t);
781
782 return 1;
783 }
784
785 /* Unpush TARGET and assert that it worked. */
786
787 static void
788 unpush_target_and_assert (struct target_ops *target)
789 {
790 if (!unpush_target (target))
791 {
792 fprintf_unfiltered (gdb_stderr,
793 "pop_all_targets couldn't find target %s\n",
794 target->to_shortname);
795 internal_error (__FILE__, __LINE__,
796 _("failed internal consistency check"));
797 }
798 }
799
800 void
801 pop_all_targets_above (enum strata above_stratum)
802 {
803 while ((int) (current_target.to_stratum) > (int) above_stratum)
804 unpush_target_and_assert (target_stack);
805 }
806
807 /* See target.h. */
808
809 void
810 pop_all_targets_at_and_above (enum strata stratum)
811 {
812 while ((int) (current_target.to_stratum) >= (int) stratum)
813 unpush_target_and_assert (target_stack);
814 }
815
816 void
817 pop_all_targets (void)
818 {
819 pop_all_targets_above (dummy_stratum);
820 }
821
822 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
823
824 int
825 target_is_pushed (struct target_ops *t)
826 {
827 struct target_ops *cur;
828
829 /* Check magic number. If wrong, it probably means someone changed
830 the struct definition, but not all the places that initialize one. */
831 if (t->to_magic != OPS_MAGIC)
832 {
833 fprintf_unfiltered (gdb_stderr,
834 "Magic number of %s target struct wrong\n",
835 t->to_shortname);
836 internal_error (__FILE__, __LINE__,
837 _("failed internal consistency check"));
838 }
839
840 for (cur = target_stack; cur != NULL; cur = cur->beneath)
841 if (cur == t)
842 return 1;
843
844 return 0;
845 }
846
847 /* Default implementation of to_get_thread_local_address. */
848
849 static void
850 generic_tls_error (void)
851 {
852 throw_error (TLS_GENERIC_ERROR,
853 _("Cannot find thread-local variables on this target"));
854 }
855
856 /* Using the objfile specified in OBJFILE, find the address for the
857 current thread's thread-local storage with offset OFFSET. */
858 CORE_ADDR
859 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
860 {
861 volatile CORE_ADDR addr = 0;
862 struct target_ops *target = &current_target;
863
864 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
865 {
866 ptid_t ptid = inferior_ptid;
867
868 TRY
869 {
870 CORE_ADDR lm_addr;
871
872 /* Fetch the load module address for this objfile. */
873 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
874 objfile);
875
876 addr = target->to_get_thread_local_address (target, ptid,
877 lm_addr, offset);
878 }
879 /* If an error occurred, print TLS related messages here. Otherwise,
880 throw the error to some higher catcher. */
881 CATCH (ex, RETURN_MASK_ALL)
882 {
883 int objfile_is_library = (objfile->flags & OBJF_SHARED);
884
885 switch (ex.error)
886 {
887 case TLS_NO_LIBRARY_SUPPORT_ERROR:
888 error (_("Cannot find thread-local variables "
889 "in this thread library."));
890 break;
891 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
892 if (objfile_is_library)
893 error (_("Cannot find shared library `%s' in dynamic"
894 " linker's load module list"), objfile_name (objfile));
895 else
896 error (_("Cannot find executable file `%s' in dynamic"
897 " linker's load module list"), objfile_name (objfile));
898 break;
899 case TLS_NOT_ALLOCATED_YET_ERROR:
900 if (objfile_is_library)
901 error (_("The inferior has not yet allocated storage for"
902 " thread-local variables in\n"
903 "the shared library `%s'\n"
904 "for %s"),
905 objfile_name (objfile), target_pid_to_str (ptid));
906 else
907 error (_("The inferior has not yet allocated storage for"
908 " thread-local variables in\n"
909 "the executable `%s'\n"
910 "for %s"),
911 objfile_name (objfile), target_pid_to_str (ptid));
912 break;
913 case TLS_GENERIC_ERROR:
914 if (objfile_is_library)
915 error (_("Cannot find thread-local storage for %s, "
916 "shared library %s:\n%s"),
917 target_pid_to_str (ptid),
918 objfile_name (objfile), ex.message);
919 else
920 error (_("Cannot find thread-local storage for %s, "
921 "executable file %s:\n%s"),
922 target_pid_to_str (ptid),
923 objfile_name (objfile), ex.message);
924 break;
925 default:
926 throw_exception (ex);
927 break;
928 }
929 }
930 END_CATCH
931 }
932 /* It wouldn't be wrong here to try a gdbarch method, too; finding
933 TLS is an ABI-specific thing. But we don't do that yet. */
934 else
935 error (_("Cannot find thread-local variables on this target"));
936
937 return addr;
938 }
939
940 const char *
941 target_xfer_status_to_string (enum target_xfer_status status)
942 {
943 #define CASE(X) case X: return #X
944 switch (status)
945 {
946 CASE(TARGET_XFER_E_IO);
947 CASE(TARGET_XFER_UNAVAILABLE);
948 default:
949 return "<unknown>";
950 }
951 #undef CASE
952 };
953
954
955 #undef MIN
956 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
957
958 /* target_read_string -- read a null terminated string, up to LEN bytes,
959 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
960 Set *STRING to a pointer to malloc'd memory containing the data; the caller
961 is responsible for freeing it. Return the number of bytes successfully
962 read. */
963
964 int
965 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
966 {
967 int tlen, offset, i;
968 gdb_byte buf[4];
969 int errcode = 0;
970 char *buffer;
971 int buffer_allocated;
972 char *bufptr;
973 unsigned int nbytes_read = 0;
974
975 gdb_assert (string);
976
977 /* Small for testing. */
978 buffer_allocated = 4;
979 buffer = (char *) xmalloc (buffer_allocated);
980 bufptr = buffer;
981
982 while (len > 0)
983 {
984 tlen = MIN (len, 4 - (memaddr & 3));
985 offset = memaddr & 3;
986
987 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
988 if (errcode != 0)
989 {
990 /* The transfer request might have crossed the boundary to an
991 unallocated region of memory. Retry the transfer, requesting
992 a single byte. */
993 tlen = 1;
994 offset = 0;
995 errcode = target_read_memory (memaddr, buf, 1);
996 if (errcode != 0)
997 goto done;
998 }
999
1000 if (bufptr - buffer + tlen > buffer_allocated)
1001 {
1002 unsigned int bytes;
1003
1004 bytes = bufptr - buffer;
1005 buffer_allocated *= 2;
1006 buffer = (char *) xrealloc (buffer, buffer_allocated);
1007 bufptr = buffer + bytes;
1008 }
1009
1010 for (i = 0; i < tlen; i++)
1011 {
1012 *bufptr++ = buf[i + offset];
1013 if (buf[i + offset] == '\000')
1014 {
1015 nbytes_read += i + 1;
1016 goto done;
1017 }
1018 }
1019
1020 memaddr += tlen;
1021 len -= tlen;
1022 nbytes_read += tlen;
1023 }
1024 done:
1025 *string = buffer;
1026 if (errnop != NULL)
1027 *errnop = errcode;
1028 return nbytes_read;
1029 }
1030
1031 struct target_section_table *
1032 target_get_section_table (struct target_ops *target)
1033 {
1034 return (*target->to_get_section_table) (target);
1035 }
1036
1037 /* Find a section containing ADDR. */
1038
1039 struct target_section *
1040 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1041 {
1042 struct target_section_table *table = target_get_section_table (target);
1043 struct target_section *secp;
1044
1045 if (table == NULL)
1046 return NULL;
1047
1048 for (secp = table->sections; secp < table->sections_end; secp++)
1049 {
1050 if (addr >= secp->addr && addr < secp->endaddr)
1051 return secp;
1052 }
1053 return NULL;
1054 }
1055
1056
1057 /* Helper for the memory xfer routines. Checks the attributes of the
1058 memory region of MEMADDR against the read or write being attempted.
1059 If the access is permitted returns true, otherwise returns false.
1060 REGION_P is an optional output parameter. If not-NULL, it is
1061 filled with a pointer to the memory region of MEMADDR. REG_LEN
1062 returns LEN trimmed to the end of the region. This is how much the
1063 caller can continue requesting, if the access is permitted. A
1064 single xfer request must not straddle memory region boundaries. */
1065
1066 static int
1067 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1068 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1069 struct mem_region **region_p)
1070 {
1071 struct mem_region *region;
1072
1073 region = lookup_mem_region (memaddr);
1074
1075 if (region_p != NULL)
1076 *region_p = region;
1077
1078 switch (region->attrib.mode)
1079 {
1080 case MEM_RO:
1081 if (writebuf != NULL)
1082 return 0;
1083 break;
1084
1085 case MEM_WO:
1086 if (readbuf != NULL)
1087 return 0;
1088 break;
1089
1090 case MEM_FLASH:
1091 /* We only support writing to flash during "load" for now. */
1092 if (writebuf != NULL)
1093 error (_("Writing to flash memory forbidden in this context"));
1094 break;
1095
1096 case MEM_NONE:
1097 return 0;
1098 }
1099
1100 /* region->hi == 0 means there's no upper bound. */
1101 if (memaddr + len < region->hi || region->hi == 0)
1102 *reg_len = len;
1103 else
1104 *reg_len = region->hi - memaddr;
1105
1106 return 1;
1107 }
1108
1109 /* Read memory from more than one valid target. A core file, for
1110 instance, could have some of memory but delegate other bits to
1111 the target below it. So, we must manually try all targets. */
1112
1113 enum target_xfer_status
1114 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1115 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1116 ULONGEST *xfered_len)
1117 {
1118 enum target_xfer_status res;
1119
1120 do
1121 {
1122 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1123 readbuf, writebuf, memaddr, len,
1124 xfered_len);
1125 if (res == TARGET_XFER_OK)
1126 break;
1127
1128 /* Stop if the target reports that the memory is not available. */
1129 if (res == TARGET_XFER_UNAVAILABLE)
1130 break;
1131
1132 /* We want to continue past core files to executables, but not
1133 past a running target's memory. */
1134 if (ops->to_has_all_memory (ops))
1135 break;
1136
1137 ops = ops->beneath;
1138 }
1139 while (ops != NULL);
1140
1141 /* The cache works at the raw memory level. Make sure the cache
1142 gets updated with raw contents no matter what kind of memory
1143 object was originally being written. Note we do write-through
1144 first, so that if it fails, we don't write to the cache contents
1145 that never made it to the target. */
1146 if (writebuf != NULL
1147 && !ptid_equal (inferior_ptid, null_ptid)
1148 && target_dcache_init_p ()
1149 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1150 {
1151 DCACHE *dcache = target_dcache_get ();
1152
1153 /* Note that writing to an area of memory which wasn't present
1154 in the cache doesn't cause it to be loaded in. */
1155 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1156 }
1157
1158 return res;
1159 }
1160
1161 /* Perform a partial memory transfer.
1162 For docs see target.h, to_xfer_partial. */
1163
1164 static enum target_xfer_status
1165 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1166 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1167 ULONGEST len, ULONGEST *xfered_len)
1168 {
1169 enum target_xfer_status res;
1170 ULONGEST reg_len;
1171 struct mem_region *region;
1172 struct inferior *inf;
1173
1174 /* For accesses to unmapped overlay sections, read directly from
1175 files. Must do this first, as MEMADDR may need adjustment. */
1176 if (readbuf != NULL && overlay_debugging)
1177 {
1178 struct obj_section *section = find_pc_overlay (memaddr);
1179
1180 if (pc_in_unmapped_range (memaddr, section))
1181 {
1182 struct target_section_table *table
1183 = target_get_section_table (ops);
1184 const char *section_name = section->the_bfd_section->name;
1185
1186 memaddr = overlay_mapped_address (memaddr, section);
1187 return section_table_xfer_memory_partial (readbuf, writebuf,
1188 memaddr, len, xfered_len,
1189 table->sections,
1190 table->sections_end,
1191 section_name);
1192 }
1193 }
1194
1195 /* Try the executable files, if "trust-readonly-sections" is set. */
1196 if (readbuf != NULL && trust_readonly)
1197 {
1198 struct target_section *secp;
1199 struct target_section_table *table;
1200
1201 secp = target_section_by_addr (ops, memaddr);
1202 if (secp != NULL
1203 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1204 secp->the_bfd_section)
1205 & SEC_READONLY))
1206 {
1207 table = target_get_section_table (ops);
1208 return section_table_xfer_memory_partial (readbuf, writebuf,
1209 memaddr, len, xfered_len,
1210 table->sections,
1211 table->sections_end,
1212 NULL);
1213 }
1214 }
1215
1216 /* Try GDB's internal data cache. */
1217
1218 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1219 &region))
1220 return TARGET_XFER_E_IO;
1221
1222 if (!ptid_equal (inferior_ptid, null_ptid))
1223 inf = find_inferior_ptid (inferior_ptid);
1224 else
1225 inf = NULL;
1226
1227 if (inf != NULL
1228 && readbuf != NULL
1229 /* The dcache reads whole cache lines; that doesn't play well
1230 with reading from a trace buffer, because reading outside of
1231 the collected memory range fails. */
1232 && get_traceframe_number () == -1
1233 && (region->attrib.cache
1234 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1235 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1236 {
1237 DCACHE *dcache = target_dcache_get_or_init ();
1238
1239 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1240 reg_len, xfered_len);
1241 }
1242
1243 /* If none of those methods found the memory we wanted, fall back
1244 to a target partial transfer. Normally a single call to
1245 to_xfer_partial is enough; if it doesn't recognize an object
1246 it will call the to_xfer_partial of the next target down.
1247 But for memory this won't do. Memory is the only target
1248 object which can be read from more than one valid target.
1249 A core file, for instance, could have some of memory but
1250 delegate other bits to the target below it. So, we must
1251 manually try all targets. */
1252
1253 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1254 xfered_len);
1255
1256 /* If we still haven't got anything, return the last error. We
1257 give up. */
1258 return res;
1259 }
1260
1261 /* Perform a partial memory transfer. For docs see target.h,
1262 to_xfer_partial. */
1263
1264 static enum target_xfer_status
1265 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1266 gdb_byte *readbuf, const gdb_byte *writebuf,
1267 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1268 {
1269 enum target_xfer_status res;
1270
1271 /* Zero length requests are ok and require no work. */
1272 if (len == 0)
1273 return TARGET_XFER_EOF;
1274
1275 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1276 breakpoint insns, thus hiding out from higher layers whether
1277 there are software breakpoints inserted in the code stream. */
1278 if (readbuf != NULL)
1279 {
1280 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1281 xfered_len);
1282
1283 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1284 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1285 }
1286 else
1287 {
1288 /* A large write request is likely to be partially satisfied
1289 by memory_xfer_partial_1. We will continually malloc
1290 and free a copy of the entire write request for breakpoint
1291 shadow handling even though we only end up writing a small
1292 subset of it. Cap writes to a limit specified by the target
1293 to mitigate this. */
1294 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1295
1296 gdb::byte_vector buf (writebuf, writebuf + len);
1297 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1298 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1299 xfered_len);
1300 }
1301
1302 return res;
1303 }
1304
1305 static void
1306 restore_show_memory_breakpoints (void *arg)
1307 {
1308 show_memory_breakpoints = (uintptr_t) arg;
1309 }
1310
1311 struct cleanup *
1312 make_show_memory_breakpoints_cleanup (int show)
1313 {
1314 int current = show_memory_breakpoints;
1315
1316 show_memory_breakpoints = show;
1317 return make_cleanup (restore_show_memory_breakpoints,
1318 (void *) (uintptr_t) current);
1319 }
1320
1321 /* For docs see target.h, to_xfer_partial. */
1322
1323 enum target_xfer_status
1324 target_xfer_partial (struct target_ops *ops,
1325 enum target_object object, const char *annex,
1326 gdb_byte *readbuf, const gdb_byte *writebuf,
1327 ULONGEST offset, ULONGEST len,
1328 ULONGEST *xfered_len)
1329 {
1330 enum target_xfer_status retval;
1331
1332 gdb_assert (ops->to_xfer_partial != NULL);
1333
1334 /* Transfer is done when LEN is zero. */
1335 if (len == 0)
1336 return TARGET_XFER_EOF;
1337
1338 if (writebuf && !may_write_memory)
1339 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1340 core_addr_to_string_nz (offset), plongest (len));
1341
1342 *xfered_len = 0;
1343
1344 /* If this is a memory transfer, let the memory-specific code
1345 have a look at it instead. Memory transfers are more
1346 complicated. */
1347 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1348 || object == TARGET_OBJECT_CODE_MEMORY)
1349 retval = memory_xfer_partial (ops, object, readbuf,
1350 writebuf, offset, len, xfered_len);
1351 else if (object == TARGET_OBJECT_RAW_MEMORY)
1352 {
1353 /* Skip/avoid accessing the target if the memory region
1354 attributes block the access. Check this here instead of in
1355 raw_memory_xfer_partial as otherwise we'd end up checking
1356 this twice in the case of the memory_xfer_partial path is
1357 taken; once before checking the dcache, and another in the
1358 tail call to raw_memory_xfer_partial. */
1359 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1360 NULL))
1361 return TARGET_XFER_E_IO;
1362
1363 /* Request the normal memory object from other layers. */
1364 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1365 xfered_len);
1366 }
1367 else
1368 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1369 writebuf, offset, len, xfered_len);
1370
1371 if (targetdebug)
1372 {
1373 const unsigned char *myaddr = NULL;
1374
1375 fprintf_unfiltered (gdb_stdlog,
1376 "%s:target_xfer_partial "
1377 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1378 ops->to_shortname,
1379 (int) object,
1380 (annex ? annex : "(null)"),
1381 host_address_to_string (readbuf),
1382 host_address_to_string (writebuf),
1383 core_addr_to_string_nz (offset),
1384 pulongest (len), retval,
1385 pulongest (*xfered_len));
1386
1387 if (readbuf)
1388 myaddr = readbuf;
1389 if (writebuf)
1390 myaddr = writebuf;
1391 if (retval == TARGET_XFER_OK && myaddr != NULL)
1392 {
1393 int i;
1394
1395 fputs_unfiltered (", bytes =", gdb_stdlog);
1396 for (i = 0; i < *xfered_len; i++)
1397 {
1398 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1399 {
1400 if (targetdebug < 2 && i > 0)
1401 {
1402 fprintf_unfiltered (gdb_stdlog, " ...");
1403 break;
1404 }
1405 fprintf_unfiltered (gdb_stdlog, "\n");
1406 }
1407
1408 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1409 }
1410 }
1411
1412 fputc_unfiltered ('\n', gdb_stdlog);
1413 }
1414
1415 /* Check implementations of to_xfer_partial update *XFERED_LEN
1416 properly. Do assertion after printing debug messages, so that we
1417 can find more clues on assertion failure from debugging messages. */
1418 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1419 gdb_assert (*xfered_len > 0);
1420
1421 return retval;
1422 }
1423
1424 /* Read LEN bytes of target memory at address MEMADDR, placing the
1425 results in GDB's memory at MYADDR. Returns either 0 for success or
1426 -1 if any error occurs.
1427
1428 If an error occurs, no guarantee is made about the contents of the data at
1429 MYADDR. In particular, the caller should not depend upon partial reads
1430 filling the buffer with good data. There is no way for the caller to know
1431 how much good data might have been transfered anyway. Callers that can
1432 deal with partial reads should call target_read (which will retry until
1433 it makes no progress, and then return how much was transferred). */
1434
1435 int
1436 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1437 {
1438 /* Dispatch to the topmost target, not the flattened current_target.
1439 Memory accesses check target->to_has_(all_)memory, and the
1440 flattened target doesn't inherit those. */
1441 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1442 myaddr, memaddr, len) == len)
1443 return 0;
1444 else
1445 return -1;
1446 }
1447
1448 /* See target/target.h. */
1449
1450 int
1451 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1452 {
1453 gdb_byte buf[4];
1454 int r;
1455
1456 r = target_read_memory (memaddr, buf, sizeof buf);
1457 if (r != 0)
1458 return r;
1459 *result = extract_unsigned_integer (buf, sizeof buf,
1460 gdbarch_byte_order (target_gdbarch ()));
1461 return 0;
1462 }
1463
1464 /* Like target_read_memory, but specify explicitly that this is a read
1465 from the target's raw memory. That is, this read bypasses the
1466 dcache, breakpoint shadowing, etc. */
1467
1468 int
1469 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1470 {
1471 /* See comment in target_read_memory about why the request starts at
1472 current_target.beneath. */
1473 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1474 myaddr, memaddr, len) == len)
1475 return 0;
1476 else
1477 return -1;
1478 }
1479
1480 /* Like target_read_memory, but specify explicitly that this is a read from
1481 the target's stack. This may trigger different cache behavior. */
1482
1483 int
1484 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1485 {
1486 /* See comment in target_read_memory about why the request starts at
1487 current_target.beneath. */
1488 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1489 myaddr, memaddr, len) == len)
1490 return 0;
1491 else
1492 return -1;
1493 }
1494
1495 /* Like target_read_memory, but specify explicitly that this is a read from
1496 the target's code. This may trigger different cache behavior. */
1497
1498 int
1499 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1500 {
1501 /* See comment in target_read_memory about why the request starts at
1502 current_target.beneath. */
1503 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1504 myaddr, memaddr, len) == len)
1505 return 0;
1506 else
1507 return -1;
1508 }
1509
1510 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1511 Returns either 0 for success or -1 if any error occurs. If an
1512 error occurs, no guarantee is made about how much data got written.
1513 Callers that can deal with partial writes should call
1514 target_write. */
1515
1516 int
1517 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1518 {
1519 /* See comment in target_read_memory about why the request starts at
1520 current_target.beneath. */
1521 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1522 myaddr, memaddr, len) == len)
1523 return 0;
1524 else
1525 return -1;
1526 }
1527
1528 /* Write LEN bytes from MYADDR to target raw memory at address
1529 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1530 If an error occurs, no guarantee is made about how much data got
1531 written. Callers that can deal with partial writes should call
1532 target_write. */
1533
1534 int
1535 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1536 {
1537 /* See comment in target_read_memory about why the request starts at
1538 current_target.beneath. */
1539 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1540 myaddr, memaddr, len) == len)
1541 return 0;
1542 else
1543 return -1;
1544 }
1545
1546 /* Fetch the target's memory map. */
1547
1548 VEC(mem_region_s) *
1549 target_memory_map (void)
1550 {
1551 VEC(mem_region_s) *result;
1552 struct mem_region *last_one, *this_one;
1553 int ix;
1554 result = current_target.to_memory_map (&current_target);
1555 if (result == NULL)
1556 return NULL;
1557
1558 qsort (VEC_address (mem_region_s, result),
1559 VEC_length (mem_region_s, result),
1560 sizeof (struct mem_region), mem_region_cmp);
1561
1562 /* Check that regions do not overlap. Simultaneously assign
1563 a numbering for the "mem" commands to use to refer to
1564 each region. */
1565 last_one = NULL;
1566 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1567 {
1568 this_one->number = ix;
1569
1570 if (last_one && last_one->hi > this_one->lo)
1571 {
1572 warning (_("Overlapping regions in memory map: ignoring"));
1573 VEC_free (mem_region_s, result);
1574 return NULL;
1575 }
1576 last_one = this_one;
1577 }
1578
1579 return result;
1580 }
1581
1582 void
1583 target_flash_erase (ULONGEST address, LONGEST length)
1584 {
1585 current_target.to_flash_erase (&current_target, address, length);
1586 }
1587
1588 void
1589 target_flash_done (void)
1590 {
1591 current_target.to_flash_done (&current_target);
1592 }
1593
1594 static void
1595 show_trust_readonly (struct ui_file *file, int from_tty,
1596 struct cmd_list_element *c, const char *value)
1597 {
1598 fprintf_filtered (file,
1599 _("Mode for reading from readonly sections is %s.\n"),
1600 value);
1601 }
1602
1603 /* Target vector read/write partial wrapper functions. */
1604
1605 static enum target_xfer_status
1606 target_read_partial (struct target_ops *ops,
1607 enum target_object object,
1608 const char *annex, gdb_byte *buf,
1609 ULONGEST offset, ULONGEST len,
1610 ULONGEST *xfered_len)
1611 {
1612 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1613 xfered_len);
1614 }
1615
1616 static enum target_xfer_status
1617 target_write_partial (struct target_ops *ops,
1618 enum target_object object,
1619 const char *annex, const gdb_byte *buf,
1620 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1621 {
1622 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1623 xfered_len);
1624 }
1625
1626 /* Wrappers to perform the full transfer. */
1627
1628 /* For docs on target_read see target.h. */
1629
1630 LONGEST
1631 target_read (struct target_ops *ops,
1632 enum target_object object,
1633 const char *annex, gdb_byte *buf,
1634 ULONGEST offset, LONGEST len)
1635 {
1636 LONGEST xfered_total = 0;
1637 int unit_size = 1;
1638
1639 /* If we are reading from a memory object, find the length of an addressable
1640 unit for that architecture. */
1641 if (object == TARGET_OBJECT_MEMORY
1642 || object == TARGET_OBJECT_STACK_MEMORY
1643 || object == TARGET_OBJECT_CODE_MEMORY
1644 || object == TARGET_OBJECT_RAW_MEMORY)
1645 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1646
1647 while (xfered_total < len)
1648 {
1649 ULONGEST xfered_partial;
1650 enum target_xfer_status status;
1651
1652 status = target_read_partial (ops, object, annex,
1653 buf + xfered_total * unit_size,
1654 offset + xfered_total, len - xfered_total,
1655 &xfered_partial);
1656
1657 /* Call an observer, notifying them of the xfer progress? */
1658 if (status == TARGET_XFER_EOF)
1659 return xfered_total;
1660 else if (status == TARGET_XFER_OK)
1661 {
1662 xfered_total += xfered_partial;
1663 QUIT;
1664 }
1665 else
1666 return TARGET_XFER_E_IO;
1667
1668 }
1669 return len;
1670 }
1671
1672 /* Assuming that the entire [begin, end) range of memory cannot be
1673 read, try to read whatever subrange is possible to read.
1674
1675 The function returns, in RESULT, either zero or one memory block.
1676 If there's a readable subrange at the beginning, it is completely
1677 read and returned. Any further readable subrange will not be read.
1678 Otherwise, if there's a readable subrange at the end, it will be
1679 completely read and returned. Any readable subranges before it
1680 (obviously, not starting at the beginning), will be ignored. In
1681 other cases -- either no readable subrange, or readable subrange(s)
1682 that is neither at the beginning, or end, nothing is returned.
1683
1684 The purpose of this function is to handle a read across a boundary
1685 of accessible memory in a case when memory map is not available.
1686 The above restrictions are fine for this case, but will give
1687 incorrect results if the memory is 'patchy'. However, supporting
1688 'patchy' memory would require trying to read every single byte,
1689 and it seems unacceptable solution. Explicit memory map is
1690 recommended for this case -- and target_read_memory_robust will
1691 take care of reading multiple ranges then. */
1692
1693 static void
1694 read_whatever_is_readable (struct target_ops *ops,
1695 const ULONGEST begin, const ULONGEST end,
1696 int unit_size,
1697 VEC(memory_read_result_s) **result)
1698 {
1699 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1700 ULONGEST current_begin = begin;
1701 ULONGEST current_end = end;
1702 int forward;
1703 memory_read_result_s r;
1704 ULONGEST xfered_len;
1705
1706 /* If we previously failed to read 1 byte, nothing can be done here. */
1707 if (end - begin <= 1)
1708 {
1709 xfree (buf);
1710 return;
1711 }
1712
1713 /* Check that either first or the last byte is readable, and give up
1714 if not. This heuristic is meant to permit reading accessible memory
1715 at the boundary of accessible region. */
1716 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1717 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1718 {
1719 forward = 1;
1720 ++current_begin;
1721 }
1722 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1723 buf + (end - begin) - 1, end - 1, 1,
1724 &xfered_len) == TARGET_XFER_OK)
1725 {
1726 forward = 0;
1727 --current_end;
1728 }
1729 else
1730 {
1731 xfree (buf);
1732 return;
1733 }
1734
1735 /* Loop invariant is that the [current_begin, current_end) was previously
1736 found to be not readable as a whole.
1737
1738 Note loop condition -- if the range has 1 byte, we can't divide the range
1739 so there's no point trying further. */
1740 while (current_end - current_begin > 1)
1741 {
1742 ULONGEST first_half_begin, first_half_end;
1743 ULONGEST second_half_begin, second_half_end;
1744 LONGEST xfer;
1745 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1746
1747 if (forward)
1748 {
1749 first_half_begin = current_begin;
1750 first_half_end = middle;
1751 second_half_begin = middle;
1752 second_half_end = current_end;
1753 }
1754 else
1755 {
1756 first_half_begin = middle;
1757 first_half_end = current_end;
1758 second_half_begin = current_begin;
1759 second_half_end = middle;
1760 }
1761
1762 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1763 buf + (first_half_begin - begin) * unit_size,
1764 first_half_begin,
1765 first_half_end - first_half_begin);
1766
1767 if (xfer == first_half_end - first_half_begin)
1768 {
1769 /* This half reads up fine. So, the error must be in the
1770 other half. */
1771 current_begin = second_half_begin;
1772 current_end = second_half_end;
1773 }
1774 else
1775 {
1776 /* This half is not readable. Because we've tried one byte, we
1777 know some part of this half if actually readable. Go to the next
1778 iteration to divide again and try to read.
1779
1780 We don't handle the other half, because this function only tries
1781 to read a single readable subrange. */
1782 current_begin = first_half_begin;
1783 current_end = first_half_end;
1784 }
1785 }
1786
1787 if (forward)
1788 {
1789 /* The [begin, current_begin) range has been read. */
1790 r.begin = begin;
1791 r.end = current_begin;
1792 r.data = buf;
1793 }
1794 else
1795 {
1796 /* The [current_end, end) range has been read. */
1797 LONGEST region_len = end - current_end;
1798
1799 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1800 memcpy (r.data, buf + (current_end - begin) * unit_size,
1801 region_len * unit_size);
1802 r.begin = current_end;
1803 r.end = end;
1804 xfree (buf);
1805 }
1806 VEC_safe_push(memory_read_result_s, (*result), &r);
1807 }
1808
1809 void
1810 free_memory_read_result_vector (void *x)
1811 {
1812 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1813 memory_read_result_s *current;
1814 int ix;
1815
1816 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1817 {
1818 xfree (current->data);
1819 }
1820 VEC_free (memory_read_result_s, *v);
1821 }
1822
1823 VEC(memory_read_result_s) *
1824 read_memory_robust (struct target_ops *ops,
1825 const ULONGEST offset, const LONGEST len)
1826 {
1827 VEC(memory_read_result_s) *result = 0;
1828 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1829 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1830 &result);
1831
1832 LONGEST xfered_total = 0;
1833 while (xfered_total < len)
1834 {
1835 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1836 LONGEST region_len;
1837
1838 /* If there is no explicit region, a fake one should be created. */
1839 gdb_assert (region);
1840
1841 if (region->hi == 0)
1842 region_len = len - xfered_total;
1843 else
1844 region_len = region->hi - offset;
1845
1846 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1847 {
1848 /* Cannot read this region. Note that we can end up here only
1849 if the region is explicitly marked inaccessible, or
1850 'inaccessible-by-default' is in effect. */
1851 xfered_total += region_len;
1852 }
1853 else
1854 {
1855 LONGEST to_read = std::min (len - xfered_total, region_len);
1856 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1857 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1858
1859 LONGEST xfered_partial =
1860 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1861 (gdb_byte *) buffer,
1862 offset + xfered_total, to_read);
1863 /* Call an observer, notifying them of the xfer progress? */
1864 if (xfered_partial <= 0)
1865 {
1866 /* Got an error reading full chunk. See if maybe we can read
1867 some subrange. */
1868 do_cleanups (inner_cleanup);
1869 read_whatever_is_readable (ops, offset + xfered_total,
1870 offset + xfered_total + to_read,
1871 unit_size, &result);
1872 xfered_total += to_read;
1873 }
1874 else
1875 {
1876 struct memory_read_result r;
1877
1878 discard_cleanups (inner_cleanup);
1879 r.data = buffer;
1880 r.begin = offset + xfered_total;
1881 r.end = r.begin + xfered_partial;
1882 VEC_safe_push (memory_read_result_s, result, &r);
1883 xfered_total += xfered_partial;
1884 }
1885 QUIT;
1886 }
1887 }
1888
1889 discard_cleanups (cleanup);
1890 return result;
1891 }
1892
1893
1894 /* An alternative to target_write with progress callbacks. */
1895
1896 LONGEST
1897 target_write_with_progress (struct target_ops *ops,
1898 enum target_object object,
1899 const char *annex, const gdb_byte *buf,
1900 ULONGEST offset, LONGEST len,
1901 void (*progress) (ULONGEST, void *), void *baton)
1902 {
1903 LONGEST xfered_total = 0;
1904 int unit_size = 1;
1905
1906 /* If we are writing to a memory object, find the length of an addressable
1907 unit for that architecture. */
1908 if (object == TARGET_OBJECT_MEMORY
1909 || object == TARGET_OBJECT_STACK_MEMORY
1910 || object == TARGET_OBJECT_CODE_MEMORY
1911 || object == TARGET_OBJECT_RAW_MEMORY)
1912 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1913
1914 /* Give the progress callback a chance to set up. */
1915 if (progress)
1916 (*progress) (0, baton);
1917
1918 while (xfered_total < len)
1919 {
1920 ULONGEST xfered_partial;
1921 enum target_xfer_status status;
1922
1923 status = target_write_partial (ops, object, annex,
1924 buf + xfered_total * unit_size,
1925 offset + xfered_total, len - xfered_total,
1926 &xfered_partial);
1927
1928 if (status != TARGET_XFER_OK)
1929 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1930
1931 if (progress)
1932 (*progress) (xfered_partial, baton);
1933
1934 xfered_total += xfered_partial;
1935 QUIT;
1936 }
1937 return len;
1938 }
1939
1940 /* For docs on target_write see target.h. */
1941
1942 LONGEST
1943 target_write (struct target_ops *ops,
1944 enum target_object object,
1945 const char *annex, const gdb_byte *buf,
1946 ULONGEST offset, LONGEST len)
1947 {
1948 return target_write_with_progress (ops, object, annex, buf, offset, len,
1949 NULL, NULL);
1950 }
1951
1952 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1953 the size of the transferred data. PADDING additional bytes are
1954 available in *BUF_P. This is a helper function for
1955 target_read_alloc; see the declaration of that function for more
1956 information. */
1957
1958 static LONGEST
1959 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1960 const char *annex, gdb_byte **buf_p, int padding)
1961 {
1962 size_t buf_alloc, buf_pos;
1963 gdb_byte *buf;
1964
1965 /* This function does not have a length parameter; it reads the
1966 entire OBJECT). Also, it doesn't support objects fetched partly
1967 from one target and partly from another (in a different stratum,
1968 e.g. a core file and an executable). Both reasons make it
1969 unsuitable for reading memory. */
1970 gdb_assert (object != TARGET_OBJECT_MEMORY);
1971
1972 /* Start by reading up to 4K at a time. The target will throttle
1973 this number down if necessary. */
1974 buf_alloc = 4096;
1975 buf = (gdb_byte *) xmalloc (buf_alloc);
1976 buf_pos = 0;
1977 while (1)
1978 {
1979 ULONGEST xfered_len;
1980 enum target_xfer_status status;
1981
1982 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1983 buf_pos, buf_alloc - buf_pos - padding,
1984 &xfered_len);
1985
1986 if (status == TARGET_XFER_EOF)
1987 {
1988 /* Read all there was. */
1989 if (buf_pos == 0)
1990 xfree (buf);
1991 else
1992 *buf_p = buf;
1993 return buf_pos;
1994 }
1995 else if (status != TARGET_XFER_OK)
1996 {
1997 /* An error occurred. */
1998 xfree (buf);
1999 return TARGET_XFER_E_IO;
2000 }
2001
2002 buf_pos += xfered_len;
2003
2004 /* If the buffer is filling up, expand it. */
2005 if (buf_alloc < buf_pos * 2)
2006 {
2007 buf_alloc *= 2;
2008 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2009 }
2010
2011 QUIT;
2012 }
2013 }
2014
2015 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2016 the size of the transferred data. See the declaration in "target.h"
2017 function for more information about the return value. */
2018
2019 LONGEST
2020 target_read_alloc (struct target_ops *ops, enum target_object object,
2021 const char *annex, gdb_byte **buf_p)
2022 {
2023 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2024 }
2025
2026 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2027 returned as a string, allocated using xmalloc. If an error occurs
2028 or the transfer is unsupported, NULL is returned. Empty objects
2029 are returned as allocated but empty strings. A warning is issued
2030 if the result contains any embedded NUL bytes. */
2031
2032 char *
2033 target_read_stralloc (struct target_ops *ops, enum target_object object,
2034 const char *annex)
2035 {
2036 gdb_byte *buffer;
2037 char *bufstr;
2038 LONGEST i, transferred;
2039
2040 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2041 bufstr = (char *) buffer;
2042
2043 if (transferred < 0)
2044 return NULL;
2045
2046 if (transferred == 0)
2047 return xstrdup ("");
2048
2049 bufstr[transferred] = 0;
2050
2051 /* Check for embedded NUL bytes; but allow trailing NULs. */
2052 for (i = strlen (bufstr); i < transferred; i++)
2053 if (bufstr[i] != 0)
2054 {
2055 warning (_("target object %d, annex %s, "
2056 "contained unexpected null characters"),
2057 (int) object, annex ? annex : "(none)");
2058 break;
2059 }
2060
2061 return bufstr;
2062 }
2063
2064 /* Memory transfer methods. */
2065
2066 void
2067 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2068 LONGEST len)
2069 {
2070 /* This method is used to read from an alternate, non-current
2071 target. This read must bypass the overlay support (as symbols
2072 don't match this target), and GDB's internal cache (wrong cache
2073 for this target). */
2074 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2075 != len)
2076 memory_error (TARGET_XFER_E_IO, addr);
2077 }
2078
2079 ULONGEST
2080 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2081 int len, enum bfd_endian byte_order)
2082 {
2083 gdb_byte buf[sizeof (ULONGEST)];
2084
2085 gdb_assert (len <= sizeof (buf));
2086 get_target_memory (ops, addr, buf, len);
2087 return extract_unsigned_integer (buf, len, byte_order);
2088 }
2089
2090 /* See target.h. */
2091
2092 int
2093 target_insert_breakpoint (struct gdbarch *gdbarch,
2094 struct bp_target_info *bp_tgt)
2095 {
2096 if (!may_insert_breakpoints)
2097 {
2098 warning (_("May not insert breakpoints"));
2099 return 1;
2100 }
2101
2102 return current_target.to_insert_breakpoint (&current_target,
2103 gdbarch, bp_tgt);
2104 }
2105
2106 /* See target.h. */
2107
2108 int
2109 target_remove_breakpoint (struct gdbarch *gdbarch,
2110 struct bp_target_info *bp_tgt,
2111 enum remove_bp_reason reason)
2112 {
2113 /* This is kind of a weird case to handle, but the permission might
2114 have been changed after breakpoints were inserted - in which case
2115 we should just take the user literally and assume that any
2116 breakpoints should be left in place. */
2117 if (!may_insert_breakpoints)
2118 {
2119 warning (_("May not remove breakpoints"));
2120 return 1;
2121 }
2122
2123 return current_target.to_remove_breakpoint (&current_target,
2124 gdbarch, bp_tgt, reason);
2125 }
2126
2127 static void
2128 info_target_command (char *args, int from_tty)
2129 {
2130 struct target_ops *t;
2131 int has_all_mem = 0;
2132
2133 if (symfile_objfile != NULL)
2134 printf_unfiltered (_("Symbols from \"%s\".\n"),
2135 objfile_name (symfile_objfile));
2136
2137 for (t = target_stack; t != NULL; t = t->beneath)
2138 {
2139 if (!(*t->to_has_memory) (t))
2140 continue;
2141
2142 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2143 continue;
2144 if (has_all_mem)
2145 printf_unfiltered (_("\tWhile running this, "
2146 "GDB does not access memory from...\n"));
2147 printf_unfiltered ("%s:\n", t->to_longname);
2148 (t->to_files_info) (t);
2149 has_all_mem = (*t->to_has_all_memory) (t);
2150 }
2151 }
2152
2153 /* This function is called before any new inferior is created, e.g.
2154 by running a program, attaching, or connecting to a target.
2155 It cleans up any state from previous invocations which might
2156 change between runs. This is a subset of what target_preopen
2157 resets (things which might change between targets). */
2158
2159 void
2160 target_pre_inferior (int from_tty)
2161 {
2162 /* Clear out solib state. Otherwise the solib state of the previous
2163 inferior might have survived and is entirely wrong for the new
2164 target. This has been observed on GNU/Linux using glibc 2.3. How
2165 to reproduce:
2166
2167 bash$ ./foo&
2168 [1] 4711
2169 bash$ ./foo&
2170 [1] 4712
2171 bash$ gdb ./foo
2172 [...]
2173 (gdb) attach 4711
2174 (gdb) detach
2175 (gdb) attach 4712
2176 Cannot access memory at address 0xdeadbeef
2177 */
2178
2179 /* In some OSs, the shared library list is the same/global/shared
2180 across inferiors. If code is shared between processes, so are
2181 memory regions and features. */
2182 if (!gdbarch_has_global_solist (target_gdbarch ()))
2183 {
2184 no_shared_libraries (NULL, from_tty);
2185
2186 invalidate_target_mem_regions ();
2187
2188 target_clear_description ();
2189 }
2190
2191 /* attach_flag may be set if the previous process associated with
2192 the inferior was attached to. */
2193 current_inferior ()->attach_flag = 0;
2194
2195 current_inferior ()->highest_thread_num = 0;
2196
2197 agent_capability_invalidate ();
2198 }
2199
2200 /* Callback for iterate_over_inferiors. Gets rid of the given
2201 inferior. */
2202
2203 static int
2204 dispose_inferior (struct inferior *inf, void *args)
2205 {
2206 struct thread_info *thread;
2207
2208 thread = any_thread_of_process (inf->pid);
2209 if (thread)
2210 {
2211 switch_to_thread (thread->ptid);
2212
2213 /* Core inferiors actually should be detached, not killed. */
2214 if (target_has_execution)
2215 target_kill ();
2216 else
2217 target_detach (NULL, 0);
2218 }
2219
2220 return 0;
2221 }
2222
2223 /* This is to be called by the open routine before it does
2224 anything. */
2225
2226 void
2227 target_preopen (int from_tty)
2228 {
2229 dont_repeat ();
2230
2231 if (have_inferiors ())
2232 {
2233 if (!from_tty
2234 || !have_live_inferiors ()
2235 || query (_("A program is being debugged already. Kill it? ")))
2236 iterate_over_inferiors (dispose_inferior, NULL);
2237 else
2238 error (_("Program not killed."));
2239 }
2240
2241 /* Calling target_kill may remove the target from the stack. But if
2242 it doesn't (which seems like a win for UDI), remove it now. */
2243 /* Leave the exec target, though. The user may be switching from a
2244 live process to a core of the same program. */
2245 pop_all_targets_above (file_stratum);
2246
2247 target_pre_inferior (from_tty);
2248 }
2249
2250 /* Detach a target after doing deferred register stores. */
2251
2252 void
2253 target_detach (const char *args, int from_tty)
2254 {
2255 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2256 /* Don't remove global breakpoints here. They're removed on
2257 disconnection from the target. */
2258 ;
2259 else
2260 /* If we're in breakpoints-always-inserted mode, have to remove
2261 them before detaching. */
2262 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2263
2264 prepare_for_detach ();
2265
2266 current_target.to_detach (&current_target, args, from_tty);
2267 }
2268
2269 void
2270 target_disconnect (const char *args, int from_tty)
2271 {
2272 /* If we're in breakpoints-always-inserted mode or if breakpoints
2273 are global across processes, we have to remove them before
2274 disconnecting. */
2275 remove_breakpoints ();
2276
2277 current_target.to_disconnect (&current_target, args, from_tty);
2278 }
2279
2280 /* See target/target.h. */
2281
2282 ptid_t
2283 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2284 {
2285 return (current_target.to_wait) (&current_target, ptid, status, options);
2286 }
2287
2288 /* See target.h. */
2289
2290 ptid_t
2291 default_target_wait (struct target_ops *ops,
2292 ptid_t ptid, struct target_waitstatus *status,
2293 int options)
2294 {
2295 status->kind = TARGET_WAITKIND_IGNORE;
2296 return minus_one_ptid;
2297 }
2298
2299 const char *
2300 target_pid_to_str (ptid_t ptid)
2301 {
2302 return (*current_target.to_pid_to_str) (&current_target, ptid);
2303 }
2304
2305 const char *
2306 target_thread_name (struct thread_info *info)
2307 {
2308 return current_target.to_thread_name (&current_target, info);
2309 }
2310
2311 void
2312 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2313 {
2314 target_dcache_invalidate ();
2315
2316 current_target.to_resume (&current_target, ptid, step, signal);
2317
2318 registers_changed_ptid (ptid);
2319 /* We only set the internal executing state here. The user/frontend
2320 running state is set at a higher level. */
2321 set_executing (ptid, 1);
2322 clear_inline_frame_state (ptid);
2323 }
2324
2325 /* If true, target_commit_resume is a nop. */
2326 static int defer_target_commit_resume;
2327
2328 /* See target.h. */
2329
2330 void
2331 target_commit_resume (void)
2332 {
2333 struct target_ops *t;
2334
2335 if (defer_target_commit_resume)
2336 return;
2337
2338 current_target.to_commit_resume (&current_target);
2339 }
2340
2341 /* See target.h. */
2342
2343 struct cleanup *
2344 make_cleanup_defer_target_commit_resume (void)
2345 {
2346 struct cleanup *old_chain;
2347
2348 old_chain = make_cleanup_restore_integer (&defer_target_commit_resume);
2349 defer_target_commit_resume = 1;
2350 return old_chain;
2351 }
2352
2353 void
2354 target_pass_signals (int numsigs, unsigned char *pass_signals)
2355 {
2356 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2357 }
2358
2359 void
2360 target_program_signals (int numsigs, unsigned char *program_signals)
2361 {
2362 (*current_target.to_program_signals) (&current_target,
2363 numsigs, program_signals);
2364 }
2365
2366 static int
2367 default_follow_fork (struct target_ops *self, int follow_child,
2368 int detach_fork)
2369 {
2370 /* Some target returned a fork event, but did not know how to follow it. */
2371 internal_error (__FILE__, __LINE__,
2372 _("could not find a target to follow fork"));
2373 }
2374
2375 /* Look through the list of possible targets for a target that can
2376 follow forks. */
2377
2378 int
2379 target_follow_fork (int follow_child, int detach_fork)
2380 {
2381 return current_target.to_follow_fork (&current_target,
2382 follow_child, detach_fork);
2383 }
2384
2385 /* Target wrapper for follow exec hook. */
2386
2387 void
2388 target_follow_exec (struct inferior *inf, char *execd_pathname)
2389 {
2390 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2391 }
2392
2393 static void
2394 default_mourn_inferior (struct target_ops *self)
2395 {
2396 internal_error (__FILE__, __LINE__,
2397 _("could not find a target to follow mourn inferior"));
2398 }
2399
2400 void
2401 target_mourn_inferior (ptid_t ptid)
2402 {
2403 gdb_assert (ptid_equal (ptid, inferior_ptid));
2404 current_target.to_mourn_inferior (&current_target);
2405
2406 /* We no longer need to keep handles on any of the object files.
2407 Make sure to release them to avoid unnecessarily locking any
2408 of them while we're not actually debugging. */
2409 bfd_cache_close_all ();
2410 }
2411
2412 /* Look for a target which can describe architectural features, starting
2413 from TARGET. If we find one, return its description. */
2414
2415 const struct target_desc *
2416 target_read_description (struct target_ops *target)
2417 {
2418 return target->to_read_description (target);
2419 }
2420
2421 /* This implements a basic search of memory, reading target memory and
2422 performing the search here (as opposed to performing the search in on the
2423 target side with, for example, gdbserver). */
2424
2425 int
2426 simple_search_memory (struct target_ops *ops,
2427 CORE_ADDR start_addr, ULONGEST search_space_len,
2428 const gdb_byte *pattern, ULONGEST pattern_len,
2429 CORE_ADDR *found_addrp)
2430 {
2431 /* NOTE: also defined in find.c testcase. */
2432 #define SEARCH_CHUNK_SIZE 16000
2433 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2434 /* Buffer to hold memory contents for searching. */
2435 unsigned search_buf_size;
2436
2437 search_buf_size = chunk_size + pattern_len - 1;
2438
2439 /* No point in trying to allocate a buffer larger than the search space. */
2440 if (search_space_len < search_buf_size)
2441 search_buf_size = search_space_len;
2442
2443 gdb::byte_vector search_buf (search_buf_size);
2444
2445 /* Prime the search buffer. */
2446
2447 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2448 search_buf.data (), start_addr, search_buf_size)
2449 != search_buf_size)
2450 {
2451 warning (_("Unable to access %s bytes of target "
2452 "memory at %s, halting search."),
2453 pulongest (search_buf_size), hex_string (start_addr));
2454 return -1;
2455 }
2456
2457 /* Perform the search.
2458
2459 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2460 When we've scanned N bytes we copy the trailing bytes to the start and
2461 read in another N bytes. */
2462
2463 while (search_space_len >= pattern_len)
2464 {
2465 gdb_byte *found_ptr;
2466 unsigned nr_search_bytes
2467 = std::min (search_space_len, (ULONGEST) search_buf_size);
2468
2469 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2470 pattern, pattern_len);
2471
2472 if (found_ptr != NULL)
2473 {
2474 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2475
2476 *found_addrp = found_addr;
2477 return 1;
2478 }
2479
2480 /* Not found in this chunk, skip to next chunk. */
2481
2482 /* Don't let search_space_len wrap here, it's unsigned. */
2483 if (search_space_len >= chunk_size)
2484 search_space_len -= chunk_size;
2485 else
2486 search_space_len = 0;
2487
2488 if (search_space_len >= pattern_len)
2489 {
2490 unsigned keep_len = search_buf_size - chunk_size;
2491 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2492 int nr_to_read;
2493
2494 /* Copy the trailing part of the previous iteration to the front
2495 of the buffer for the next iteration. */
2496 gdb_assert (keep_len == pattern_len - 1);
2497 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2498
2499 nr_to_read = std::min (search_space_len - keep_len,
2500 (ULONGEST) chunk_size);
2501
2502 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2503 &search_buf[keep_len], read_addr,
2504 nr_to_read) != nr_to_read)
2505 {
2506 warning (_("Unable to access %s bytes of target "
2507 "memory at %s, halting search."),
2508 plongest (nr_to_read),
2509 hex_string (read_addr));
2510 return -1;
2511 }
2512
2513 start_addr += chunk_size;
2514 }
2515 }
2516
2517 /* Not found. */
2518
2519 return 0;
2520 }
2521
2522 /* Default implementation of memory-searching. */
2523
2524 static int
2525 default_search_memory (struct target_ops *self,
2526 CORE_ADDR start_addr, ULONGEST search_space_len,
2527 const gdb_byte *pattern, ULONGEST pattern_len,
2528 CORE_ADDR *found_addrp)
2529 {
2530 /* Start over from the top of the target stack. */
2531 return simple_search_memory (current_target.beneath,
2532 start_addr, search_space_len,
2533 pattern, pattern_len, found_addrp);
2534 }
2535
2536 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2537 sequence of bytes in PATTERN with length PATTERN_LEN.
2538
2539 The result is 1 if found, 0 if not found, and -1 if there was an error
2540 requiring halting of the search (e.g. memory read error).
2541 If the pattern is found the address is recorded in FOUND_ADDRP. */
2542
2543 int
2544 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2545 const gdb_byte *pattern, ULONGEST pattern_len,
2546 CORE_ADDR *found_addrp)
2547 {
2548 return current_target.to_search_memory (&current_target, start_addr,
2549 search_space_len,
2550 pattern, pattern_len, found_addrp);
2551 }
2552
2553 /* Look through the currently pushed targets. If none of them will
2554 be able to restart the currently running process, issue an error
2555 message. */
2556
2557 void
2558 target_require_runnable (void)
2559 {
2560 struct target_ops *t;
2561
2562 for (t = target_stack; t != NULL; t = t->beneath)
2563 {
2564 /* If this target knows how to create a new program, then
2565 assume we will still be able to after killing the current
2566 one. Either killing and mourning will not pop T, or else
2567 find_default_run_target will find it again. */
2568 if (t->to_create_inferior != NULL)
2569 return;
2570
2571 /* Do not worry about targets at certain strata that can not
2572 create inferiors. Assume they will be pushed again if
2573 necessary, and continue to the process_stratum. */
2574 if (t->to_stratum == thread_stratum
2575 || t->to_stratum == record_stratum
2576 || t->to_stratum == arch_stratum)
2577 continue;
2578
2579 error (_("The \"%s\" target does not support \"run\". "
2580 "Try \"help target\" or \"continue\"."),
2581 t->to_shortname);
2582 }
2583
2584 /* This function is only called if the target is running. In that
2585 case there should have been a process_stratum target and it
2586 should either know how to create inferiors, or not... */
2587 internal_error (__FILE__, __LINE__, _("No targets found"));
2588 }
2589
2590 /* Whether GDB is allowed to fall back to the default run target for
2591 "run", "attach", etc. when no target is connected yet. */
2592 static int auto_connect_native_target = 1;
2593
2594 static void
2595 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2596 struct cmd_list_element *c, const char *value)
2597 {
2598 fprintf_filtered (file,
2599 _("Whether GDB may automatically connect to the "
2600 "native target is %s.\n"),
2601 value);
2602 }
2603
2604 /* Look through the list of possible targets for a target that can
2605 execute a run or attach command without any other data. This is
2606 used to locate the default process stratum.
2607
2608 If DO_MESG is not NULL, the result is always valid (error() is
2609 called for errors); else, return NULL on error. */
2610
2611 static struct target_ops *
2612 find_default_run_target (const char *do_mesg)
2613 {
2614 struct target_ops *runable = NULL;
2615
2616 if (auto_connect_native_target)
2617 {
2618 struct target_ops *t;
2619 int count = 0;
2620 int i;
2621
2622 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2623 {
2624 if (t->to_can_run != delegate_can_run && target_can_run (t))
2625 {
2626 runable = t;
2627 ++count;
2628 }
2629 }
2630
2631 if (count != 1)
2632 runable = NULL;
2633 }
2634
2635 if (runable == NULL)
2636 {
2637 if (do_mesg)
2638 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2639 else
2640 return NULL;
2641 }
2642
2643 return runable;
2644 }
2645
2646 /* See target.h. */
2647
2648 struct target_ops *
2649 find_attach_target (void)
2650 {
2651 struct target_ops *t;
2652
2653 /* If a target on the current stack can attach, use it. */
2654 for (t = current_target.beneath; t != NULL; t = t->beneath)
2655 {
2656 if (t->to_attach != NULL)
2657 break;
2658 }
2659
2660 /* Otherwise, use the default run target for attaching. */
2661 if (t == NULL)
2662 t = find_default_run_target ("attach");
2663
2664 return t;
2665 }
2666
2667 /* See target.h. */
2668
2669 struct target_ops *
2670 find_run_target (void)
2671 {
2672 struct target_ops *t;
2673
2674 /* If a target on the current stack can attach, use it. */
2675 for (t = current_target.beneath; t != NULL; t = t->beneath)
2676 {
2677 if (t->to_create_inferior != NULL)
2678 break;
2679 }
2680
2681 /* Otherwise, use the default run target. */
2682 if (t == NULL)
2683 t = find_default_run_target ("run");
2684
2685 return t;
2686 }
2687
2688 /* Implement the "info proc" command. */
2689
2690 int
2691 target_info_proc (const char *args, enum info_proc_what what)
2692 {
2693 struct target_ops *t;
2694
2695 /* If we're already connected to something that can get us OS
2696 related data, use it. Otherwise, try using the native
2697 target. */
2698 if (current_target.to_stratum >= process_stratum)
2699 t = current_target.beneath;
2700 else
2701 t = find_default_run_target (NULL);
2702
2703 for (; t != NULL; t = t->beneath)
2704 {
2705 if (t->to_info_proc != NULL)
2706 {
2707 t->to_info_proc (t, args, what);
2708
2709 if (targetdebug)
2710 fprintf_unfiltered (gdb_stdlog,
2711 "target_info_proc (\"%s\", %d)\n", args, what);
2712
2713 return 1;
2714 }
2715 }
2716
2717 return 0;
2718 }
2719
2720 static int
2721 find_default_supports_disable_randomization (struct target_ops *self)
2722 {
2723 struct target_ops *t;
2724
2725 t = find_default_run_target (NULL);
2726 if (t && t->to_supports_disable_randomization)
2727 return (t->to_supports_disable_randomization) (t);
2728 return 0;
2729 }
2730
2731 int
2732 target_supports_disable_randomization (void)
2733 {
2734 struct target_ops *t;
2735
2736 for (t = &current_target; t != NULL; t = t->beneath)
2737 if (t->to_supports_disable_randomization)
2738 return t->to_supports_disable_randomization (t);
2739
2740 return 0;
2741 }
2742
2743 /* See target/target.h. */
2744
2745 int
2746 target_supports_multi_process (void)
2747 {
2748 return (*current_target.to_supports_multi_process) (&current_target);
2749 }
2750
2751 char *
2752 target_get_osdata (const char *type)
2753 {
2754 struct target_ops *t;
2755
2756 /* If we're already connected to something that can get us OS
2757 related data, use it. Otherwise, try using the native
2758 target. */
2759 if (current_target.to_stratum >= process_stratum)
2760 t = current_target.beneath;
2761 else
2762 t = find_default_run_target ("get OS data");
2763
2764 if (!t)
2765 return NULL;
2766
2767 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2768 }
2769
2770 static struct address_space *
2771 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2772 {
2773 struct inferior *inf;
2774
2775 /* Fall-back to the "main" address space of the inferior. */
2776 inf = find_inferior_ptid (ptid);
2777
2778 if (inf == NULL || inf->aspace == NULL)
2779 internal_error (__FILE__, __LINE__,
2780 _("Can't determine the current "
2781 "address space of thread %s\n"),
2782 target_pid_to_str (ptid));
2783
2784 return inf->aspace;
2785 }
2786
2787 /* Determine the current address space of thread PTID. */
2788
2789 struct address_space *
2790 target_thread_address_space (ptid_t ptid)
2791 {
2792 struct address_space *aspace;
2793
2794 aspace = current_target.to_thread_address_space (&current_target, ptid);
2795 gdb_assert (aspace != NULL);
2796
2797 return aspace;
2798 }
2799
2800
2801 /* Target file operations. */
2802
2803 static struct target_ops *
2804 default_fileio_target (void)
2805 {
2806 /* If we're already connected to something that can perform
2807 file I/O, use it. Otherwise, try using the native target. */
2808 if (current_target.to_stratum >= process_stratum)
2809 return current_target.beneath;
2810 else
2811 return find_default_run_target ("file I/O");
2812 }
2813
2814 /* File handle for target file operations. */
2815
2816 typedef struct
2817 {
2818 /* The target on which this file is open. */
2819 struct target_ops *t;
2820
2821 /* The file descriptor on the target. */
2822 int fd;
2823 } fileio_fh_t;
2824
2825 DEF_VEC_O (fileio_fh_t);
2826
2827 /* Vector of currently open file handles. The value returned by
2828 target_fileio_open and passed as the FD argument to other
2829 target_fileio_* functions is an index into this vector. This
2830 vector's entries are never freed; instead, files are marked as
2831 closed, and the handle becomes available for reuse. */
2832 static VEC (fileio_fh_t) *fileio_fhandles;
2833
2834 /* Macro to check whether a fileio_fh_t represents a closed file. */
2835 #define is_closed_fileio_fh(fd) ((fd) < 0)
2836
2837 /* Index into fileio_fhandles of the lowest handle that might be
2838 closed. This permits handle reuse without searching the whole
2839 list each time a new file is opened. */
2840 static int lowest_closed_fd;
2841
2842 /* Acquire a target fileio file descriptor. */
2843
2844 static int
2845 acquire_fileio_fd (struct target_ops *t, int fd)
2846 {
2847 fileio_fh_t *fh;
2848
2849 gdb_assert (!is_closed_fileio_fh (fd));
2850
2851 /* Search for closed handles to reuse. */
2852 for (;
2853 VEC_iterate (fileio_fh_t, fileio_fhandles,
2854 lowest_closed_fd, fh);
2855 lowest_closed_fd++)
2856 if (is_closed_fileio_fh (fh->fd))
2857 break;
2858
2859 /* Push a new handle if no closed handles were found. */
2860 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2861 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2862
2863 /* Fill in the handle. */
2864 fh->t = t;
2865 fh->fd = fd;
2866
2867 /* Return its index, and start the next lookup at
2868 the next index. */
2869 return lowest_closed_fd++;
2870 }
2871
2872 /* Release a target fileio file descriptor. */
2873
2874 static void
2875 release_fileio_fd (int fd, fileio_fh_t *fh)
2876 {
2877 fh->fd = -1;
2878 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2879 }
2880
2881 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2882
2883 #define fileio_fd_to_fh(fd) \
2884 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2885
2886 /* Helper for target_fileio_open and
2887 target_fileio_open_warn_if_slow. */
2888
2889 static int
2890 target_fileio_open_1 (struct inferior *inf, const char *filename,
2891 int flags, int mode, int warn_if_slow,
2892 int *target_errno)
2893 {
2894 struct target_ops *t;
2895
2896 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2897 {
2898 if (t->to_fileio_open != NULL)
2899 {
2900 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2901 warn_if_slow, target_errno);
2902
2903 if (fd < 0)
2904 fd = -1;
2905 else
2906 fd = acquire_fileio_fd (t, fd);
2907
2908 if (targetdebug)
2909 fprintf_unfiltered (gdb_stdlog,
2910 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2911 " = %d (%d)\n",
2912 inf == NULL ? 0 : inf->num,
2913 filename, flags, mode,
2914 warn_if_slow, fd,
2915 fd != -1 ? 0 : *target_errno);
2916 return fd;
2917 }
2918 }
2919
2920 *target_errno = FILEIO_ENOSYS;
2921 return -1;
2922 }
2923
2924 /* See target.h. */
2925
2926 int
2927 target_fileio_open (struct inferior *inf, const char *filename,
2928 int flags, int mode, int *target_errno)
2929 {
2930 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2931 target_errno);
2932 }
2933
2934 /* See target.h. */
2935
2936 int
2937 target_fileio_open_warn_if_slow (struct inferior *inf,
2938 const char *filename,
2939 int flags, int mode, int *target_errno)
2940 {
2941 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2942 target_errno);
2943 }
2944
2945 /* See target.h. */
2946
2947 int
2948 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2949 ULONGEST offset, int *target_errno)
2950 {
2951 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2952 int ret = -1;
2953
2954 if (is_closed_fileio_fh (fh->fd))
2955 *target_errno = EBADF;
2956 else
2957 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2958 len, offset, target_errno);
2959
2960 if (targetdebug)
2961 fprintf_unfiltered (gdb_stdlog,
2962 "target_fileio_pwrite (%d,...,%d,%s) "
2963 "= %d (%d)\n",
2964 fd, len, pulongest (offset),
2965 ret, ret != -1 ? 0 : *target_errno);
2966 return ret;
2967 }
2968
2969 /* See target.h. */
2970
2971 int
2972 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2973 ULONGEST offset, int *target_errno)
2974 {
2975 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2976 int ret = -1;
2977
2978 if (is_closed_fileio_fh (fh->fd))
2979 *target_errno = EBADF;
2980 else
2981 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2982 len, offset, target_errno);
2983
2984 if (targetdebug)
2985 fprintf_unfiltered (gdb_stdlog,
2986 "target_fileio_pread (%d,...,%d,%s) "
2987 "= %d (%d)\n",
2988 fd, len, pulongest (offset),
2989 ret, ret != -1 ? 0 : *target_errno);
2990 return ret;
2991 }
2992
2993 /* See target.h. */
2994
2995 int
2996 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2997 {
2998 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2999 int ret = -1;
3000
3001 if (is_closed_fileio_fh (fh->fd))
3002 *target_errno = EBADF;
3003 else
3004 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
3005
3006 if (targetdebug)
3007 fprintf_unfiltered (gdb_stdlog,
3008 "target_fileio_fstat (%d) = %d (%d)\n",
3009 fd, ret, ret != -1 ? 0 : *target_errno);
3010 return ret;
3011 }
3012
3013 /* See target.h. */
3014
3015 int
3016 target_fileio_close (int fd, int *target_errno)
3017 {
3018 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3019 int ret = -1;
3020
3021 if (is_closed_fileio_fh (fh->fd))
3022 *target_errno = EBADF;
3023 else
3024 {
3025 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3026 release_fileio_fd (fd, fh);
3027 }
3028
3029 if (targetdebug)
3030 fprintf_unfiltered (gdb_stdlog,
3031 "target_fileio_close (%d) = %d (%d)\n",
3032 fd, ret, ret != -1 ? 0 : *target_errno);
3033 return ret;
3034 }
3035
3036 /* See target.h. */
3037
3038 int
3039 target_fileio_unlink (struct inferior *inf, const char *filename,
3040 int *target_errno)
3041 {
3042 struct target_ops *t;
3043
3044 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3045 {
3046 if (t->to_fileio_unlink != NULL)
3047 {
3048 int ret = t->to_fileio_unlink (t, inf, filename,
3049 target_errno);
3050
3051 if (targetdebug)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "target_fileio_unlink (%d,%s)"
3054 " = %d (%d)\n",
3055 inf == NULL ? 0 : inf->num, filename,
3056 ret, ret != -1 ? 0 : *target_errno);
3057 return ret;
3058 }
3059 }
3060
3061 *target_errno = FILEIO_ENOSYS;
3062 return -1;
3063 }
3064
3065 /* See target.h. */
3066
3067 char *
3068 target_fileio_readlink (struct inferior *inf, const char *filename,
3069 int *target_errno)
3070 {
3071 struct target_ops *t;
3072
3073 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3074 {
3075 if (t->to_fileio_readlink != NULL)
3076 {
3077 char *ret = t->to_fileio_readlink (t, inf, filename,
3078 target_errno);
3079
3080 if (targetdebug)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "target_fileio_readlink (%d,%s)"
3083 " = %s (%d)\n",
3084 inf == NULL ? 0 : inf->num,
3085 filename, ret? ret : "(nil)",
3086 ret? 0 : *target_errno);
3087 return ret;
3088 }
3089 }
3090
3091 *target_errno = FILEIO_ENOSYS;
3092 return NULL;
3093 }
3094
3095 static void
3096 target_fileio_close_cleanup (void *opaque)
3097 {
3098 int fd = *(int *) opaque;
3099 int target_errno;
3100
3101 target_fileio_close (fd, &target_errno);
3102 }
3103
3104 /* Read target file FILENAME, in the filesystem as seen by INF. If
3105 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3106 remote targets, the remote stub). Store the result in *BUF_P and
3107 return the size of the transferred data. PADDING additional bytes
3108 are available in *BUF_P. This is a helper function for
3109 target_fileio_read_alloc; see the declaration of that function for
3110 more information. */
3111
3112 static LONGEST
3113 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3114 gdb_byte **buf_p, int padding)
3115 {
3116 struct cleanup *close_cleanup;
3117 size_t buf_alloc, buf_pos;
3118 gdb_byte *buf;
3119 LONGEST n;
3120 int fd;
3121 int target_errno;
3122
3123 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3124 &target_errno);
3125 if (fd == -1)
3126 return -1;
3127
3128 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3129
3130 /* Start by reading up to 4K at a time. The target will throttle
3131 this number down if necessary. */
3132 buf_alloc = 4096;
3133 buf = (gdb_byte *) xmalloc (buf_alloc);
3134 buf_pos = 0;
3135 while (1)
3136 {
3137 n = target_fileio_pread (fd, &buf[buf_pos],
3138 buf_alloc - buf_pos - padding, buf_pos,
3139 &target_errno);
3140 if (n < 0)
3141 {
3142 /* An error occurred. */
3143 do_cleanups (close_cleanup);
3144 xfree (buf);
3145 return -1;
3146 }
3147 else if (n == 0)
3148 {
3149 /* Read all there was. */
3150 do_cleanups (close_cleanup);
3151 if (buf_pos == 0)
3152 xfree (buf);
3153 else
3154 *buf_p = buf;
3155 return buf_pos;
3156 }
3157
3158 buf_pos += n;
3159
3160 /* If the buffer is filling up, expand it. */
3161 if (buf_alloc < buf_pos * 2)
3162 {
3163 buf_alloc *= 2;
3164 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3165 }
3166
3167 QUIT;
3168 }
3169 }
3170
3171 /* See target.h. */
3172
3173 LONGEST
3174 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3175 gdb_byte **buf_p)
3176 {
3177 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3178 }
3179
3180 /* See target.h. */
3181
3182 char *
3183 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3184 {
3185 gdb_byte *buffer;
3186 char *bufstr;
3187 LONGEST i, transferred;
3188
3189 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3190 bufstr = (char *) buffer;
3191
3192 if (transferred < 0)
3193 return NULL;
3194
3195 if (transferred == 0)
3196 return xstrdup ("");
3197
3198 bufstr[transferred] = 0;
3199
3200 /* Check for embedded NUL bytes; but allow trailing NULs. */
3201 for (i = strlen (bufstr); i < transferred; i++)
3202 if (bufstr[i] != 0)
3203 {
3204 warning (_("target file %s "
3205 "contained unexpected null characters"),
3206 filename);
3207 break;
3208 }
3209
3210 return bufstr;
3211 }
3212
3213
3214 static int
3215 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3216 CORE_ADDR addr, int len)
3217 {
3218 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3219 }
3220
3221 static int
3222 default_watchpoint_addr_within_range (struct target_ops *target,
3223 CORE_ADDR addr,
3224 CORE_ADDR start, int length)
3225 {
3226 return addr >= start && addr < start + length;
3227 }
3228
3229 static struct gdbarch *
3230 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3231 {
3232 return target_gdbarch ();
3233 }
3234
3235 static int
3236 return_zero (struct target_ops *ignore)
3237 {
3238 return 0;
3239 }
3240
3241 static int
3242 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3243 {
3244 return 0;
3245 }
3246
3247 /*
3248 * Find the next target down the stack from the specified target.
3249 */
3250
3251 struct target_ops *
3252 find_target_beneath (struct target_ops *t)
3253 {
3254 return t->beneath;
3255 }
3256
3257 /* See target.h. */
3258
3259 struct target_ops *
3260 find_target_at (enum strata stratum)
3261 {
3262 struct target_ops *t;
3263
3264 for (t = current_target.beneath; t != NULL; t = t->beneath)
3265 if (t->to_stratum == stratum)
3266 return t;
3267
3268 return NULL;
3269 }
3270
3271 \f
3272
3273 /* See target.h */
3274
3275 void
3276 target_announce_detach (int from_tty)
3277 {
3278 pid_t pid;
3279 const char *exec_file;
3280
3281 if (!from_tty)
3282 return;
3283
3284 exec_file = get_exec_file (0);
3285 if (exec_file == NULL)
3286 exec_file = "";
3287
3288 pid = ptid_get_pid (inferior_ptid);
3289 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3290 target_pid_to_str (pid_to_ptid (pid)));
3291 gdb_flush (gdb_stdout);
3292 }
3293
3294 /* The inferior process has died. Long live the inferior! */
3295
3296 void
3297 generic_mourn_inferior (void)
3298 {
3299 ptid_t ptid;
3300
3301 ptid = inferior_ptid;
3302 inferior_ptid = null_ptid;
3303
3304 /* Mark breakpoints uninserted in case something tries to delete a
3305 breakpoint while we delete the inferior's threads (which would
3306 fail, since the inferior is long gone). */
3307 mark_breakpoints_out ();
3308
3309 if (!ptid_equal (ptid, null_ptid))
3310 {
3311 int pid = ptid_get_pid (ptid);
3312 exit_inferior (pid);
3313 }
3314
3315 /* Note this wipes step-resume breakpoints, so needs to be done
3316 after exit_inferior, which ends up referencing the step-resume
3317 breakpoints through clear_thread_inferior_resources. */
3318 breakpoint_init_inferior (inf_exited);
3319
3320 registers_changed ();
3321
3322 reopen_exec_file ();
3323 reinit_frame_cache ();
3324
3325 if (deprecated_detach_hook)
3326 deprecated_detach_hook ();
3327 }
3328 \f
3329 /* Convert a normal process ID to a string. Returns the string in a
3330 static buffer. */
3331
3332 const char *
3333 normal_pid_to_str (ptid_t ptid)
3334 {
3335 static char buf[32];
3336
3337 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3338 return buf;
3339 }
3340
3341 static const char *
3342 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3343 {
3344 return normal_pid_to_str (ptid);
3345 }
3346
3347 /* Error-catcher for target_find_memory_regions. */
3348 static int
3349 dummy_find_memory_regions (struct target_ops *self,
3350 find_memory_region_ftype ignore1, void *ignore2)
3351 {
3352 error (_("Command not implemented for this target."));
3353 return 0;
3354 }
3355
3356 /* Error-catcher for target_make_corefile_notes. */
3357 static char *
3358 dummy_make_corefile_notes (struct target_ops *self,
3359 bfd *ignore1, int *ignore2)
3360 {
3361 error (_("Command not implemented for this target."));
3362 return NULL;
3363 }
3364
3365 /* Set up the handful of non-empty slots needed by the dummy target
3366 vector. */
3367
3368 static void
3369 init_dummy_target (void)
3370 {
3371 dummy_target.to_shortname = "None";
3372 dummy_target.to_longname = "None";
3373 dummy_target.to_doc = "";
3374 dummy_target.to_supports_disable_randomization
3375 = find_default_supports_disable_randomization;
3376 dummy_target.to_stratum = dummy_stratum;
3377 dummy_target.to_has_all_memory = return_zero;
3378 dummy_target.to_has_memory = return_zero;
3379 dummy_target.to_has_stack = return_zero;
3380 dummy_target.to_has_registers = return_zero;
3381 dummy_target.to_has_execution = return_zero_has_execution;
3382 dummy_target.to_magic = OPS_MAGIC;
3383
3384 install_dummy_methods (&dummy_target);
3385 }
3386 \f
3387
3388 void
3389 target_close (struct target_ops *targ)
3390 {
3391 gdb_assert (!target_is_pushed (targ));
3392
3393 if (targ->to_xclose != NULL)
3394 targ->to_xclose (targ);
3395 else if (targ->to_close != NULL)
3396 targ->to_close (targ);
3397
3398 if (targetdebug)
3399 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3400 }
3401
3402 int
3403 target_thread_alive (ptid_t ptid)
3404 {
3405 return current_target.to_thread_alive (&current_target, ptid);
3406 }
3407
3408 void
3409 target_update_thread_list (void)
3410 {
3411 current_target.to_update_thread_list (&current_target);
3412 }
3413
3414 void
3415 target_stop (ptid_t ptid)
3416 {
3417 if (!may_stop)
3418 {
3419 warning (_("May not interrupt or stop the target, ignoring attempt"));
3420 return;
3421 }
3422
3423 (*current_target.to_stop) (&current_target, ptid);
3424 }
3425
3426 void
3427 target_interrupt (ptid_t ptid)
3428 {
3429 if (!may_stop)
3430 {
3431 warning (_("May not interrupt or stop the target, ignoring attempt"));
3432 return;
3433 }
3434
3435 (*current_target.to_interrupt) (&current_target, ptid);
3436 }
3437
3438 /* See target.h. */
3439
3440 void
3441 target_pass_ctrlc (void)
3442 {
3443 (*current_target.to_pass_ctrlc) (&current_target);
3444 }
3445
3446 /* See target.h. */
3447
3448 void
3449 default_target_pass_ctrlc (struct target_ops *ops)
3450 {
3451 target_interrupt (inferior_ptid);
3452 }
3453
3454 /* See target/target.h. */
3455
3456 void
3457 target_stop_and_wait (ptid_t ptid)
3458 {
3459 struct target_waitstatus status;
3460 int was_non_stop = non_stop;
3461
3462 non_stop = 1;
3463 target_stop (ptid);
3464
3465 memset (&status, 0, sizeof (status));
3466 target_wait (ptid, &status, 0);
3467
3468 non_stop = was_non_stop;
3469 }
3470
3471 /* See target/target.h. */
3472
3473 void
3474 target_continue_no_signal (ptid_t ptid)
3475 {
3476 target_resume (ptid, 0, GDB_SIGNAL_0);
3477 }
3478
3479 /* See target/target.h. */
3480
3481 void
3482 target_continue (ptid_t ptid, enum gdb_signal signal)
3483 {
3484 target_resume (ptid, 0, signal);
3485 }
3486
3487 /* Concatenate ELEM to LIST, a comma separate list, and return the
3488 result. The LIST incoming argument is released. */
3489
3490 static char *
3491 str_comma_list_concat_elem (char *list, const char *elem)
3492 {
3493 if (list == NULL)
3494 return xstrdup (elem);
3495 else
3496 return reconcat (list, list, ", ", elem, (char *) NULL);
3497 }
3498
3499 /* Helper for target_options_to_string. If OPT is present in
3500 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3501 Returns the new resulting string. OPT is removed from
3502 TARGET_OPTIONS. */
3503
3504 static char *
3505 do_option (int *target_options, char *ret,
3506 int opt, const char *opt_str)
3507 {
3508 if ((*target_options & opt) != 0)
3509 {
3510 ret = str_comma_list_concat_elem (ret, opt_str);
3511 *target_options &= ~opt;
3512 }
3513
3514 return ret;
3515 }
3516
3517 char *
3518 target_options_to_string (int target_options)
3519 {
3520 char *ret = NULL;
3521
3522 #define DO_TARG_OPTION(OPT) \
3523 ret = do_option (&target_options, ret, OPT, #OPT)
3524
3525 DO_TARG_OPTION (TARGET_WNOHANG);
3526
3527 if (target_options != 0)
3528 ret = str_comma_list_concat_elem (ret, "unknown???");
3529
3530 if (ret == NULL)
3531 ret = xstrdup ("");
3532 return ret;
3533 }
3534
3535 void
3536 target_fetch_registers (struct regcache *regcache, int regno)
3537 {
3538 current_target.to_fetch_registers (&current_target, regcache, regno);
3539 if (targetdebug)
3540 regcache->debug_print_register ("target_fetch_registers", regno);
3541 }
3542
3543 void
3544 target_store_registers (struct regcache *regcache, int regno)
3545 {
3546 if (!may_write_registers)
3547 error (_("Writing to registers is not allowed (regno %d)"), regno);
3548
3549 current_target.to_store_registers (&current_target, regcache, regno);
3550 if (targetdebug)
3551 {
3552 regcache->debug_print_register ("target_store_registers", regno);
3553 }
3554 }
3555
3556 int
3557 target_core_of_thread (ptid_t ptid)
3558 {
3559 return current_target.to_core_of_thread (&current_target, ptid);
3560 }
3561
3562 int
3563 simple_verify_memory (struct target_ops *ops,
3564 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3565 {
3566 LONGEST total_xfered = 0;
3567
3568 while (total_xfered < size)
3569 {
3570 ULONGEST xfered_len;
3571 enum target_xfer_status status;
3572 gdb_byte buf[1024];
3573 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3574
3575 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3576 buf, NULL, lma + total_xfered, howmuch,
3577 &xfered_len);
3578 if (status == TARGET_XFER_OK
3579 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3580 {
3581 total_xfered += xfered_len;
3582 QUIT;
3583 }
3584 else
3585 return 0;
3586 }
3587 return 1;
3588 }
3589
3590 /* Default implementation of memory verification. */
3591
3592 static int
3593 default_verify_memory (struct target_ops *self,
3594 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3595 {
3596 /* Start over from the top of the target stack. */
3597 return simple_verify_memory (current_target.beneath,
3598 data, memaddr, size);
3599 }
3600
3601 int
3602 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3603 {
3604 return current_target.to_verify_memory (&current_target,
3605 data, memaddr, size);
3606 }
3607
3608 /* The documentation for this function is in its prototype declaration in
3609 target.h. */
3610
3611 int
3612 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3613 enum target_hw_bp_type rw)
3614 {
3615 return current_target.to_insert_mask_watchpoint (&current_target,
3616 addr, mask, rw);
3617 }
3618
3619 /* The documentation for this function is in its prototype declaration in
3620 target.h. */
3621
3622 int
3623 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3624 enum target_hw_bp_type rw)
3625 {
3626 return current_target.to_remove_mask_watchpoint (&current_target,
3627 addr, mask, rw);
3628 }
3629
3630 /* The documentation for this function is in its prototype declaration
3631 in target.h. */
3632
3633 int
3634 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3635 {
3636 return current_target.to_masked_watch_num_registers (&current_target,
3637 addr, mask);
3638 }
3639
3640 /* The documentation for this function is in its prototype declaration
3641 in target.h. */
3642
3643 int
3644 target_ranged_break_num_registers (void)
3645 {
3646 return current_target.to_ranged_break_num_registers (&current_target);
3647 }
3648
3649 /* See target.h. */
3650
3651 int
3652 target_supports_btrace (enum btrace_format format)
3653 {
3654 return current_target.to_supports_btrace (&current_target, format);
3655 }
3656
3657 /* See target.h. */
3658
3659 struct btrace_target_info *
3660 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3661 {
3662 return current_target.to_enable_btrace (&current_target, ptid, conf);
3663 }
3664
3665 /* See target.h. */
3666
3667 void
3668 target_disable_btrace (struct btrace_target_info *btinfo)
3669 {
3670 current_target.to_disable_btrace (&current_target, btinfo);
3671 }
3672
3673 /* See target.h. */
3674
3675 void
3676 target_teardown_btrace (struct btrace_target_info *btinfo)
3677 {
3678 current_target.to_teardown_btrace (&current_target, btinfo);
3679 }
3680
3681 /* See target.h. */
3682
3683 enum btrace_error
3684 target_read_btrace (struct btrace_data *btrace,
3685 struct btrace_target_info *btinfo,
3686 enum btrace_read_type type)
3687 {
3688 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3689 }
3690
3691 /* See target.h. */
3692
3693 const struct btrace_config *
3694 target_btrace_conf (const struct btrace_target_info *btinfo)
3695 {
3696 return current_target.to_btrace_conf (&current_target, btinfo);
3697 }
3698
3699 /* See target.h. */
3700
3701 void
3702 target_stop_recording (void)
3703 {
3704 current_target.to_stop_recording (&current_target);
3705 }
3706
3707 /* See target.h. */
3708
3709 void
3710 target_save_record (const char *filename)
3711 {
3712 current_target.to_save_record (&current_target, filename);
3713 }
3714
3715 /* See target.h. */
3716
3717 int
3718 target_supports_delete_record (void)
3719 {
3720 struct target_ops *t;
3721
3722 for (t = current_target.beneath; t != NULL; t = t->beneath)
3723 if (t->to_delete_record != delegate_delete_record
3724 && t->to_delete_record != tdefault_delete_record)
3725 return 1;
3726
3727 return 0;
3728 }
3729
3730 /* See target.h. */
3731
3732 void
3733 target_delete_record (void)
3734 {
3735 current_target.to_delete_record (&current_target);
3736 }
3737
3738 /* See target.h. */
3739
3740 enum record_method
3741 target_record_method (ptid_t ptid)
3742 {
3743 return current_target.to_record_method (&current_target, ptid);
3744 }
3745
3746 /* See target.h. */
3747
3748 int
3749 target_record_is_replaying (ptid_t ptid)
3750 {
3751 return current_target.to_record_is_replaying (&current_target, ptid);
3752 }
3753
3754 /* See target.h. */
3755
3756 int
3757 target_record_will_replay (ptid_t ptid, int dir)
3758 {
3759 return current_target.to_record_will_replay (&current_target, ptid, dir);
3760 }
3761
3762 /* See target.h. */
3763
3764 void
3765 target_record_stop_replaying (void)
3766 {
3767 current_target.to_record_stop_replaying (&current_target);
3768 }
3769
3770 /* See target.h. */
3771
3772 void
3773 target_goto_record_begin (void)
3774 {
3775 current_target.to_goto_record_begin (&current_target);
3776 }
3777
3778 /* See target.h. */
3779
3780 void
3781 target_goto_record_end (void)
3782 {
3783 current_target.to_goto_record_end (&current_target);
3784 }
3785
3786 /* See target.h. */
3787
3788 void
3789 target_goto_record (ULONGEST insn)
3790 {
3791 current_target.to_goto_record (&current_target, insn);
3792 }
3793
3794 /* See target.h. */
3795
3796 void
3797 target_insn_history (int size, int flags)
3798 {
3799 current_target.to_insn_history (&current_target, size, flags);
3800 }
3801
3802 /* See target.h. */
3803
3804 void
3805 target_insn_history_from (ULONGEST from, int size, int flags)
3806 {
3807 current_target.to_insn_history_from (&current_target, from, size, flags);
3808 }
3809
3810 /* See target.h. */
3811
3812 void
3813 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3814 {
3815 current_target.to_insn_history_range (&current_target, begin, end, flags);
3816 }
3817
3818 /* See target.h. */
3819
3820 void
3821 target_call_history (int size, int flags)
3822 {
3823 current_target.to_call_history (&current_target, size, flags);
3824 }
3825
3826 /* See target.h. */
3827
3828 void
3829 target_call_history_from (ULONGEST begin, int size, int flags)
3830 {
3831 current_target.to_call_history_from (&current_target, begin, size, flags);
3832 }
3833
3834 /* See target.h. */
3835
3836 void
3837 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3838 {
3839 current_target.to_call_history_range (&current_target, begin, end, flags);
3840 }
3841
3842 /* See target.h. */
3843
3844 const struct frame_unwind *
3845 target_get_unwinder (void)
3846 {
3847 return current_target.to_get_unwinder (&current_target);
3848 }
3849
3850 /* See target.h. */
3851
3852 const struct frame_unwind *
3853 target_get_tailcall_unwinder (void)
3854 {
3855 return current_target.to_get_tailcall_unwinder (&current_target);
3856 }
3857
3858 /* See target.h. */
3859
3860 void
3861 target_prepare_to_generate_core (void)
3862 {
3863 current_target.to_prepare_to_generate_core (&current_target);
3864 }
3865
3866 /* See target.h. */
3867
3868 void
3869 target_done_generating_core (void)
3870 {
3871 current_target.to_done_generating_core (&current_target);
3872 }
3873
3874 static void
3875 setup_target_debug (void)
3876 {
3877 memcpy (&debug_target, &current_target, sizeof debug_target);
3878
3879 init_debug_target (&current_target);
3880 }
3881 \f
3882
3883 static char targ_desc[] =
3884 "Names of targets and files being debugged.\nShows the entire \
3885 stack of targets currently in use (including the exec-file,\n\
3886 core-file, and process, if any), as well as the symbol file name.";
3887
3888 static void
3889 default_rcmd (struct target_ops *self, const char *command,
3890 struct ui_file *output)
3891 {
3892 error (_("\"monitor\" command not supported by this target."));
3893 }
3894
3895 static void
3896 do_monitor_command (char *cmd,
3897 int from_tty)
3898 {
3899 target_rcmd (cmd, gdb_stdtarg);
3900 }
3901
3902 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3903 ignored. */
3904
3905 void
3906 flash_erase_command (char *cmd, int from_tty)
3907 {
3908 /* Used to communicate termination of flash operations to the target. */
3909 bool found_flash_region = false;
3910 struct mem_region *m;
3911 struct gdbarch *gdbarch = target_gdbarch ();
3912
3913 VEC(mem_region_s) *mem_regions = target_memory_map ();
3914
3915 /* Iterate over all memory regions. */
3916 for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3917 {
3918 /* Fetch the memory attribute. */
3919 struct mem_attrib *attrib = &m->attrib;
3920
3921 /* Is this a flash memory region? */
3922 if (attrib->mode == MEM_FLASH)
3923 {
3924 found_flash_region = true;
3925 target_flash_erase (m->lo, m->hi - m->lo);
3926
3927 struct cleanup *cleanup_tuple
3928 = make_cleanup_ui_out_tuple_begin_end (current_uiout,
3929 "erased-regions");
3930
3931 current_uiout->message (_("Erasing flash memory region at address "));
3932 current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3933 m->lo));
3934 current_uiout->message (", size = ");
3935 current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3936 current_uiout->message ("\n");
3937 do_cleanups (cleanup_tuple);
3938 }
3939 }
3940
3941 /* Did we do any flash operations? If so, we need to finalize them. */
3942 if (found_flash_region)
3943 target_flash_done ();
3944 else
3945 current_uiout->message (_("No flash memory regions found.\n"));
3946 }
3947
3948 /* Print the name of each layers of our target stack. */
3949
3950 static void
3951 maintenance_print_target_stack (char *cmd, int from_tty)
3952 {
3953 struct target_ops *t;
3954
3955 printf_filtered (_("The current target stack is:\n"));
3956
3957 for (t = target_stack; t != NULL; t = t->beneath)
3958 {
3959 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3960 }
3961 }
3962
3963 /* See target.h. */
3964
3965 void
3966 target_async (int enable)
3967 {
3968 infrun_async (enable);
3969 current_target.to_async (&current_target, enable);
3970 }
3971
3972 /* See target.h. */
3973
3974 void
3975 target_thread_events (int enable)
3976 {
3977 current_target.to_thread_events (&current_target, enable);
3978 }
3979
3980 /* Controls if targets can report that they can/are async. This is
3981 just for maintainers to use when debugging gdb. */
3982 int target_async_permitted = 1;
3983
3984 /* The set command writes to this variable. If the inferior is
3985 executing, target_async_permitted is *not* updated. */
3986 static int target_async_permitted_1 = 1;
3987
3988 static void
3989 maint_set_target_async_command (char *args, int from_tty,
3990 struct cmd_list_element *c)
3991 {
3992 if (have_live_inferiors ())
3993 {
3994 target_async_permitted_1 = target_async_permitted;
3995 error (_("Cannot change this setting while the inferior is running."));
3996 }
3997
3998 target_async_permitted = target_async_permitted_1;
3999 }
4000
4001 static void
4002 maint_show_target_async_command (struct ui_file *file, int from_tty,
4003 struct cmd_list_element *c,
4004 const char *value)
4005 {
4006 fprintf_filtered (file,
4007 _("Controlling the inferior in "
4008 "asynchronous mode is %s.\n"), value);
4009 }
4010
4011 /* Return true if the target operates in non-stop mode even with "set
4012 non-stop off". */
4013
4014 static int
4015 target_always_non_stop_p (void)
4016 {
4017 return current_target.to_always_non_stop_p (&current_target);
4018 }
4019
4020 /* See target.h. */
4021
4022 int
4023 target_is_non_stop_p (void)
4024 {
4025 return (non_stop
4026 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4027 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4028 && target_always_non_stop_p ()));
4029 }
4030
4031 /* Controls if targets can report that they always run in non-stop
4032 mode. This is just for maintainers to use when debugging gdb. */
4033 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4034
4035 /* The set command writes to this variable. If the inferior is
4036 executing, target_non_stop_enabled is *not* updated. */
4037 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4038
4039 /* Implementation of "maint set target-non-stop". */
4040
4041 static void
4042 maint_set_target_non_stop_command (char *args, int from_tty,
4043 struct cmd_list_element *c)
4044 {
4045 if (have_live_inferiors ())
4046 {
4047 target_non_stop_enabled_1 = target_non_stop_enabled;
4048 error (_("Cannot change this setting while the inferior is running."));
4049 }
4050
4051 target_non_stop_enabled = target_non_stop_enabled_1;
4052 }
4053
4054 /* Implementation of "maint show target-non-stop". */
4055
4056 static void
4057 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4058 struct cmd_list_element *c,
4059 const char *value)
4060 {
4061 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4062 fprintf_filtered (file,
4063 _("Whether the target is always in non-stop mode "
4064 "is %s (currently %s).\n"), value,
4065 target_always_non_stop_p () ? "on" : "off");
4066 else
4067 fprintf_filtered (file,
4068 _("Whether the target is always in non-stop mode "
4069 "is %s.\n"), value);
4070 }
4071
4072 /* Temporary copies of permission settings. */
4073
4074 static int may_write_registers_1 = 1;
4075 static int may_write_memory_1 = 1;
4076 static int may_insert_breakpoints_1 = 1;
4077 static int may_insert_tracepoints_1 = 1;
4078 static int may_insert_fast_tracepoints_1 = 1;
4079 static int may_stop_1 = 1;
4080
4081 /* Make the user-set values match the real values again. */
4082
4083 void
4084 update_target_permissions (void)
4085 {
4086 may_write_registers_1 = may_write_registers;
4087 may_write_memory_1 = may_write_memory;
4088 may_insert_breakpoints_1 = may_insert_breakpoints;
4089 may_insert_tracepoints_1 = may_insert_tracepoints;
4090 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4091 may_stop_1 = may_stop;
4092 }
4093
4094 /* The one function handles (most of) the permission flags in the same
4095 way. */
4096
4097 static void
4098 set_target_permissions (char *args, int from_tty,
4099 struct cmd_list_element *c)
4100 {
4101 if (target_has_execution)
4102 {
4103 update_target_permissions ();
4104 error (_("Cannot change this setting while the inferior is running."));
4105 }
4106
4107 /* Make the real values match the user-changed values. */
4108 may_write_registers = may_write_registers_1;
4109 may_insert_breakpoints = may_insert_breakpoints_1;
4110 may_insert_tracepoints = may_insert_tracepoints_1;
4111 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4112 may_stop = may_stop_1;
4113 update_observer_mode ();
4114 }
4115
4116 /* Set memory write permission independently of observer mode. */
4117
4118 static void
4119 set_write_memory_permission (char *args, int from_tty,
4120 struct cmd_list_element *c)
4121 {
4122 /* Make the real values match the user-changed values. */
4123 may_write_memory = may_write_memory_1;
4124 update_observer_mode ();
4125 }
4126
4127
4128 void
4129 initialize_targets (void)
4130 {
4131 init_dummy_target ();
4132 push_target (&dummy_target);
4133
4134 add_info ("target", info_target_command, targ_desc);
4135 add_info ("files", info_target_command, targ_desc);
4136
4137 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4138 Set target debugging."), _("\
4139 Show target debugging."), _("\
4140 When non-zero, target debugging is enabled. Higher numbers are more\n\
4141 verbose."),
4142 set_targetdebug,
4143 show_targetdebug,
4144 &setdebuglist, &showdebuglist);
4145
4146 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4147 &trust_readonly, _("\
4148 Set mode for reading from readonly sections."), _("\
4149 Show mode for reading from readonly sections."), _("\
4150 When this mode is on, memory reads from readonly sections (such as .text)\n\
4151 will be read from the object file instead of from the target. This will\n\
4152 result in significant performance improvement for remote targets."),
4153 NULL,
4154 show_trust_readonly,
4155 &setlist, &showlist);
4156
4157 add_com ("monitor", class_obscure, do_monitor_command,
4158 _("Send a command to the remote monitor (remote targets only)."));
4159
4160 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4161 _("Print the name of each layer of the internal target stack."),
4162 &maintenanceprintlist);
4163
4164 add_setshow_boolean_cmd ("target-async", no_class,
4165 &target_async_permitted_1, _("\
4166 Set whether gdb controls the inferior in asynchronous mode."), _("\
4167 Show whether gdb controls the inferior in asynchronous mode."), _("\
4168 Tells gdb whether to control the inferior in asynchronous mode."),
4169 maint_set_target_async_command,
4170 maint_show_target_async_command,
4171 &maintenance_set_cmdlist,
4172 &maintenance_show_cmdlist);
4173
4174 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4175 &target_non_stop_enabled_1, _("\
4176 Set whether gdb always controls the inferior in non-stop mode."), _("\
4177 Show whether gdb always controls the inferior in non-stop mode."), _("\
4178 Tells gdb whether to control the inferior in non-stop mode."),
4179 maint_set_target_non_stop_command,
4180 maint_show_target_non_stop_command,
4181 &maintenance_set_cmdlist,
4182 &maintenance_show_cmdlist);
4183
4184 add_setshow_boolean_cmd ("may-write-registers", class_support,
4185 &may_write_registers_1, _("\
4186 Set permission to write into registers."), _("\
4187 Show permission to write into registers."), _("\
4188 When this permission is on, GDB may write into the target's registers.\n\
4189 Otherwise, any sort of write attempt will result in an error."),
4190 set_target_permissions, NULL,
4191 &setlist, &showlist);
4192
4193 add_setshow_boolean_cmd ("may-write-memory", class_support,
4194 &may_write_memory_1, _("\
4195 Set permission to write into target memory."), _("\
4196 Show permission to write into target memory."), _("\
4197 When this permission is on, GDB may write into the target's memory.\n\
4198 Otherwise, any sort of write attempt will result in an error."),
4199 set_write_memory_permission, NULL,
4200 &setlist, &showlist);
4201
4202 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4203 &may_insert_breakpoints_1, _("\
4204 Set permission to insert breakpoints in the target."), _("\
4205 Show permission to insert breakpoints in the target."), _("\
4206 When this permission is on, GDB may insert breakpoints in the program.\n\
4207 Otherwise, any sort of insertion attempt will result in an error."),
4208 set_target_permissions, NULL,
4209 &setlist, &showlist);
4210
4211 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4212 &may_insert_tracepoints_1, _("\
4213 Set permission to insert tracepoints in the target."), _("\
4214 Show permission to insert tracepoints in the target."), _("\
4215 When this permission is on, GDB may insert tracepoints in the program.\n\
4216 Otherwise, any sort of insertion attempt will result in an error."),
4217 set_target_permissions, NULL,
4218 &setlist, &showlist);
4219
4220 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4221 &may_insert_fast_tracepoints_1, _("\
4222 Set permission to insert fast tracepoints in the target."), _("\
4223 Show permission to insert fast tracepoints in the target."), _("\
4224 When this permission is on, GDB may insert fast tracepoints.\n\
4225 Otherwise, any sort of insertion attempt will result in an error."),
4226 set_target_permissions, NULL,
4227 &setlist, &showlist);
4228
4229 add_setshow_boolean_cmd ("may-interrupt", class_support,
4230 &may_stop_1, _("\
4231 Set permission to interrupt or signal the target."), _("\
4232 Show permission to interrupt or signal the target."), _("\
4233 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4234 Otherwise, any attempt to interrupt or stop will be ignored."),
4235 set_target_permissions, NULL,
4236 &setlist, &showlist);
4237
4238 add_com ("flash-erase", no_class, flash_erase_command,
4239 _("Erase all flash memory regions."));
4240
4241 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4242 &auto_connect_native_target, _("\
4243 Set whether GDB may automatically connect to the native target."), _("\
4244 Show whether GDB may automatically connect to the native target."), _("\
4245 When on, and GDB is not connected to a target yet, GDB\n\
4246 attempts \"run\" and other commands with the native target."),
4247 NULL, show_auto_connect_native_target,
4248 &setlist, &showlist);
4249 }
This page took 0.116634 seconds and 5 git commands to generate.