File I/O file handles after target closes
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static struct target_ops *find_default_run_target (const char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (const char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, const char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Define it. */
435
436 target_terminal_state target_terminal::m_terminal_state
437 = target_terminal_state::is_ours;
438
439 /* See target/target.h. */
440
441 void
442 target_terminal::init (void)
443 {
444 (*current_target.to_terminal_init) (&current_target);
445
446 m_terminal_state = target_terminal_state::is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::inferior (void)
453 {
454 struct ui *ui = current_ui;
455
456 /* A background resume (``run&'') should leave GDB in control of the
457 terminal. */
458 if (ui->prompt_state != PROMPT_BLOCKED)
459 return;
460
461 /* Since we always run the inferior in the main console (unless "set
462 inferior-tty" is in effect), when some UI other than the main one
463 calls target_terminal::inferior, then we leave the main UI's
464 terminal settings as is. */
465 if (ui != main_ui)
466 return;
467
468 /* If GDB is resuming the inferior in the foreground, install
469 inferior's terminal modes. */
470
471 struct inferior *inf = current_inferior ();
472
473 if (inf->terminal_state != target_terminal_state::is_inferior)
474 {
475 (*current_target.to_terminal_inferior) (&current_target);
476 inf->terminal_state = target_terminal_state::is_inferior;
477 }
478
479 m_terminal_state = target_terminal_state::is_inferior;
480
481 /* If the user hit C-c before, pretend that it was hit right
482 here. */
483 if (check_quit_flag ())
484 target_pass_ctrlc ();
485 }
486
487 /* See target/target.h. */
488
489 void
490 target_terminal::restore_inferior (void)
491 {
492 struct ui *ui = current_ui;
493
494 /* See target_terminal::inferior(). */
495 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
496 return;
497
498 /* Restore the terminal settings of inferiors that were in the
499 foreground but are now ours_for_output due to a temporary
500 target_target::ours_for_output() call. */
501
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 ALL_INFERIORS (inf)
507 {
508 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
509 {
510 set_current_inferior (inf);
511 (*current_target.to_terminal_inferior) (&current_target);
512 inf->terminal_state = target_terminal_state::is_inferior;
513 }
514 }
515 }
516
517 m_terminal_state = target_terminal_state::is_inferior;
518
519 /* If the user hit C-c before, pretend that it was hit right
520 here. */
521 if (check_quit_flag ())
522 target_pass_ctrlc ();
523 }
524
525 /* Switch terminal state to DESIRED_STATE, either is_ours, or
526 is_ours_for_output. */
527
528 static void
529 target_terminal_is_ours_kind (target_terminal_state desired_state)
530 {
531 scoped_restore_current_inferior restore_inferior;
532 struct inferior *inf;
533
534 /* Must do this in two passes. First, have all inferiors save the
535 current terminal settings. Then, after all inferiors have add a
536 chance to safely save the terminal settings, restore GDB's
537 terminal settings. */
538
539 ALL_INFERIORS (inf)
540 {
541 if (inf->terminal_state == target_terminal_state::is_inferior)
542 {
543 set_current_inferior (inf);
544 (*current_target.to_terminal_save_inferior) (&current_target);
545 }
546 }
547
548 ALL_INFERIORS (inf)
549 {
550 /* Note we don't check is_inferior here like above because we
551 need to handle 'is_ours_for_output -> is_ours' too. Careful
552 to never transition from 'is_ours' to 'is_ours_for_output',
553 though. */
554 if (inf->terminal_state != target_terminal_state::is_ours
555 && inf->terminal_state != desired_state)
556 {
557 set_current_inferior (inf);
558 if (desired_state == target_terminal_state::is_ours)
559 (*current_target.to_terminal_ours) (&current_target);
560 else if (desired_state == target_terminal_state::is_ours_for_output)
561 (*current_target.to_terminal_ours_for_output) (&current_target);
562 else
563 gdb_assert_not_reached ("unhandled desired state");
564 inf->terminal_state = desired_state;
565 }
566 }
567 }
568
569 /* See target/target.h. */
570
571 void
572 target_terminal::ours ()
573 {
574 struct ui *ui = current_ui;
575
576 /* See target_terminal::inferior. */
577 if (ui != main_ui)
578 return;
579
580 if (m_terminal_state == target_terminal_state::is_ours)
581 return;
582
583 target_terminal_is_ours_kind (target_terminal_state::is_ours);
584 m_terminal_state = target_terminal_state::is_ours;
585 }
586
587 /* See target/target.h. */
588
589 void
590 target_terminal::ours_for_output ()
591 {
592 struct ui *ui = current_ui;
593
594 /* See target_terminal::inferior. */
595 if (ui != main_ui)
596 return;
597
598 if (!target_terminal::is_inferior ())
599 return;
600
601 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
602 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
603 }
604
605 /* See target/target.h. */
606
607 void
608 target_terminal::info (const char *arg, int from_tty)
609 {
610 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
611 }
612
613 /* See target.h. */
614
615 int
616 target_supports_terminal_ours (void)
617 {
618 struct target_ops *t;
619
620 for (t = current_target.beneath; t != NULL; t = t->beneath)
621 {
622 if (t->to_terminal_ours != delegate_terminal_ours
623 && t->to_terminal_ours != tdefault_terminal_ours)
624 return 1;
625 }
626
627 return 0;
628 }
629
630 static void
631 tcomplain (void)
632 {
633 error (_("You can't do that when your target is `%s'"),
634 current_target.to_shortname);
635 }
636
637 void
638 noprocess (void)
639 {
640 error (_("You can't do that without a process to debug."));
641 }
642
643 static void
644 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
645 {
646 printf_unfiltered (_("No saved terminal information.\n"));
647 }
648
649 /* A default implementation for the to_get_ada_task_ptid target method.
650
651 This function builds the PTID by using both LWP and TID as part of
652 the PTID lwp and tid elements. The pid used is the pid of the
653 inferior_ptid. */
654
655 static ptid_t
656 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
657 {
658 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
659 }
660
661 static enum exec_direction_kind
662 default_execution_direction (struct target_ops *self)
663 {
664 if (!target_can_execute_reverse)
665 return EXEC_FORWARD;
666 else if (!target_can_async_p ())
667 return EXEC_FORWARD;
668 else
669 gdb_assert_not_reached ("\
670 to_execution_direction must be implemented for reverse async");
671 }
672
673 /* Go through the target stack from top to bottom, copying over zero
674 entries in current_target, then filling in still empty entries. In
675 effect, we are doing class inheritance through the pushed target
676 vectors.
677
678 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
679 is currently implemented, is that it discards any knowledge of
680 which target an inherited method originally belonged to.
681 Consequently, new new target methods should instead explicitly and
682 locally search the target stack for the target that can handle the
683 request. */
684
685 static void
686 update_current_target (void)
687 {
688 struct target_ops *t;
689
690 /* First, reset current's contents. */
691 memset (&current_target, 0, sizeof (current_target));
692
693 /* Install the delegators. */
694 install_delegators (&current_target);
695
696 current_target.to_stratum = target_stack->to_stratum;
697
698 #define INHERIT(FIELD, TARGET) \
699 if (!current_target.FIELD) \
700 current_target.FIELD = (TARGET)->FIELD
701
702 /* Do not add any new INHERITs here. Instead, use the delegation
703 mechanism provided by make-target-delegates. */
704 for (t = target_stack; t; t = t->beneath)
705 {
706 INHERIT (to_shortname, t);
707 INHERIT (to_longname, t);
708 INHERIT (to_attach_no_wait, t);
709 INHERIT (to_have_steppable_watchpoint, t);
710 INHERIT (to_have_continuable_watchpoint, t);
711 INHERIT (to_has_thread_control, t);
712 }
713 #undef INHERIT
714
715 /* Finally, position the target-stack beneath the squashed
716 "current_target". That way code looking for a non-inherited
717 target method can quickly and simply find it. */
718 current_target.beneath = target_stack;
719
720 if (targetdebug)
721 setup_target_debug ();
722 }
723
724 /* Push a new target type into the stack of the existing target accessors,
725 possibly superseding some of the existing accessors.
726
727 Rather than allow an empty stack, we always have the dummy target at
728 the bottom stratum, so we can call the function vectors without
729 checking them. */
730
731 void
732 push_target (struct target_ops *t)
733 {
734 struct target_ops **cur;
735
736 /* Check magic number. If wrong, it probably means someone changed
737 the struct definition, but not all the places that initialize one. */
738 if (t->to_magic != OPS_MAGIC)
739 {
740 fprintf_unfiltered (gdb_stderr,
741 "Magic number of %s target struct wrong\n",
742 t->to_shortname);
743 internal_error (__FILE__, __LINE__,
744 _("failed internal consistency check"));
745 }
746
747 /* Find the proper stratum to install this target in. */
748 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
749 {
750 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
751 break;
752 }
753
754 /* If there's already targets at this stratum, remove them. */
755 /* FIXME: cagney/2003-10-15: I think this should be popping all
756 targets to CUR, and not just those at this stratum level. */
757 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
758 {
759 /* There's already something at this stratum level. Close it,
760 and un-hook it from the stack. */
761 struct target_ops *tmp = (*cur);
762
763 (*cur) = (*cur)->beneath;
764 tmp->beneath = NULL;
765 target_close (tmp);
766 }
767
768 /* We have removed all targets in our stratum, now add the new one. */
769 t->beneath = (*cur);
770 (*cur) = t;
771
772 update_current_target ();
773 }
774
775 /* Remove a target_ops vector from the stack, wherever it may be.
776 Return how many times it was removed (0 or 1). */
777
778 int
779 unpush_target (struct target_ops *t)
780 {
781 struct target_ops **cur;
782 struct target_ops *tmp;
783
784 if (t->to_stratum == dummy_stratum)
785 internal_error (__FILE__, __LINE__,
786 _("Attempt to unpush the dummy target"));
787
788 /* Look for the specified target. Note that we assume that a target
789 can only occur once in the target stack. */
790
791 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
792 {
793 if ((*cur) == t)
794 break;
795 }
796
797 /* If we don't find target_ops, quit. Only open targets should be
798 closed. */
799 if ((*cur) == NULL)
800 return 0;
801
802 /* Unchain the target. */
803 tmp = (*cur);
804 (*cur) = (*cur)->beneath;
805 tmp->beneath = NULL;
806
807 update_current_target ();
808
809 /* Finally close the target. Note we do this after unchaining, so
810 any target method calls from within the target_close
811 implementation don't end up in T anymore. */
812 target_close (t);
813
814 return 1;
815 }
816
817 /* Unpush TARGET and assert that it worked. */
818
819 static void
820 unpush_target_and_assert (struct target_ops *target)
821 {
822 if (!unpush_target (target))
823 {
824 fprintf_unfiltered (gdb_stderr,
825 "pop_all_targets couldn't find target %s\n",
826 target->to_shortname);
827 internal_error (__FILE__, __LINE__,
828 _("failed internal consistency check"));
829 }
830 }
831
832 void
833 pop_all_targets_above (enum strata above_stratum)
834 {
835 while ((int) (current_target.to_stratum) > (int) above_stratum)
836 unpush_target_and_assert (target_stack);
837 }
838
839 /* See target.h. */
840
841 void
842 pop_all_targets_at_and_above (enum strata stratum)
843 {
844 while ((int) (current_target.to_stratum) >= (int) stratum)
845 unpush_target_and_assert (target_stack);
846 }
847
848 void
849 pop_all_targets (void)
850 {
851 pop_all_targets_above (dummy_stratum);
852 }
853
854 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
855
856 int
857 target_is_pushed (struct target_ops *t)
858 {
859 struct target_ops *cur;
860
861 /* Check magic number. If wrong, it probably means someone changed
862 the struct definition, but not all the places that initialize one. */
863 if (t->to_magic != OPS_MAGIC)
864 {
865 fprintf_unfiltered (gdb_stderr,
866 "Magic number of %s target struct wrong\n",
867 t->to_shortname);
868 internal_error (__FILE__, __LINE__,
869 _("failed internal consistency check"));
870 }
871
872 for (cur = target_stack; cur != NULL; cur = cur->beneath)
873 if (cur == t)
874 return 1;
875
876 return 0;
877 }
878
879 /* Default implementation of to_get_thread_local_address. */
880
881 static void
882 generic_tls_error (void)
883 {
884 throw_error (TLS_GENERIC_ERROR,
885 _("Cannot find thread-local variables on this target"));
886 }
887
888 /* Using the objfile specified in OBJFILE, find the address for the
889 current thread's thread-local storage with offset OFFSET. */
890 CORE_ADDR
891 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
892 {
893 volatile CORE_ADDR addr = 0;
894 struct target_ops *target = &current_target;
895
896 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
897 {
898 ptid_t ptid = inferior_ptid;
899
900 TRY
901 {
902 CORE_ADDR lm_addr;
903
904 /* Fetch the load module address for this objfile. */
905 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
906 objfile);
907
908 addr = target->to_get_thread_local_address (target, ptid,
909 lm_addr, offset);
910 }
911 /* If an error occurred, print TLS related messages here. Otherwise,
912 throw the error to some higher catcher. */
913 CATCH (ex, RETURN_MASK_ALL)
914 {
915 int objfile_is_library = (objfile->flags & OBJF_SHARED);
916
917 switch (ex.error)
918 {
919 case TLS_NO_LIBRARY_SUPPORT_ERROR:
920 error (_("Cannot find thread-local variables "
921 "in this thread library."));
922 break;
923 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
924 if (objfile_is_library)
925 error (_("Cannot find shared library `%s' in dynamic"
926 " linker's load module list"), objfile_name (objfile));
927 else
928 error (_("Cannot find executable file `%s' in dynamic"
929 " linker's load module list"), objfile_name (objfile));
930 break;
931 case TLS_NOT_ALLOCATED_YET_ERROR:
932 if (objfile_is_library)
933 error (_("The inferior has not yet allocated storage for"
934 " thread-local variables in\n"
935 "the shared library `%s'\n"
936 "for %s"),
937 objfile_name (objfile), target_pid_to_str (ptid));
938 else
939 error (_("The inferior has not yet allocated storage for"
940 " thread-local variables in\n"
941 "the executable `%s'\n"
942 "for %s"),
943 objfile_name (objfile), target_pid_to_str (ptid));
944 break;
945 case TLS_GENERIC_ERROR:
946 if (objfile_is_library)
947 error (_("Cannot find thread-local storage for %s, "
948 "shared library %s:\n%s"),
949 target_pid_to_str (ptid),
950 objfile_name (objfile), ex.message);
951 else
952 error (_("Cannot find thread-local storage for %s, "
953 "executable file %s:\n%s"),
954 target_pid_to_str (ptid),
955 objfile_name (objfile), ex.message);
956 break;
957 default:
958 throw_exception (ex);
959 break;
960 }
961 }
962 END_CATCH
963 }
964 /* It wouldn't be wrong here to try a gdbarch method, too; finding
965 TLS is an ABI-specific thing. But we don't do that yet. */
966 else
967 error (_("Cannot find thread-local variables on this target"));
968
969 return addr;
970 }
971
972 const char *
973 target_xfer_status_to_string (enum target_xfer_status status)
974 {
975 #define CASE(X) case X: return #X
976 switch (status)
977 {
978 CASE(TARGET_XFER_E_IO);
979 CASE(TARGET_XFER_UNAVAILABLE);
980 default:
981 return "<unknown>";
982 }
983 #undef CASE
984 };
985
986
987 #undef MIN
988 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
989
990 /* target_read_string -- read a null terminated string, up to LEN bytes,
991 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
992 Set *STRING to a pointer to malloc'd memory containing the data; the caller
993 is responsible for freeing it. Return the number of bytes successfully
994 read. */
995
996 int
997 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
998 int len, int *errnop)
999 {
1000 int tlen, offset, i;
1001 gdb_byte buf[4];
1002 int errcode = 0;
1003 char *buffer;
1004 int buffer_allocated;
1005 char *bufptr;
1006 unsigned int nbytes_read = 0;
1007
1008 gdb_assert (string);
1009
1010 /* Small for testing. */
1011 buffer_allocated = 4;
1012 buffer = (char *) xmalloc (buffer_allocated);
1013 bufptr = buffer;
1014
1015 while (len > 0)
1016 {
1017 tlen = MIN (len, 4 - (memaddr & 3));
1018 offset = memaddr & 3;
1019
1020 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1021 if (errcode != 0)
1022 {
1023 /* The transfer request might have crossed the boundary to an
1024 unallocated region of memory. Retry the transfer, requesting
1025 a single byte. */
1026 tlen = 1;
1027 offset = 0;
1028 errcode = target_read_memory (memaddr, buf, 1);
1029 if (errcode != 0)
1030 goto done;
1031 }
1032
1033 if (bufptr - buffer + tlen > buffer_allocated)
1034 {
1035 unsigned int bytes;
1036
1037 bytes = bufptr - buffer;
1038 buffer_allocated *= 2;
1039 buffer = (char *) xrealloc (buffer, buffer_allocated);
1040 bufptr = buffer + bytes;
1041 }
1042
1043 for (i = 0; i < tlen; i++)
1044 {
1045 *bufptr++ = buf[i + offset];
1046 if (buf[i + offset] == '\000')
1047 {
1048 nbytes_read += i + 1;
1049 goto done;
1050 }
1051 }
1052
1053 memaddr += tlen;
1054 len -= tlen;
1055 nbytes_read += tlen;
1056 }
1057 done:
1058 string->reset (buffer);
1059 if (errnop != NULL)
1060 *errnop = errcode;
1061 return nbytes_read;
1062 }
1063
1064 struct target_section_table *
1065 target_get_section_table (struct target_ops *target)
1066 {
1067 return (*target->to_get_section_table) (target);
1068 }
1069
1070 /* Find a section containing ADDR. */
1071
1072 struct target_section *
1073 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1074 {
1075 struct target_section_table *table = target_get_section_table (target);
1076 struct target_section *secp;
1077
1078 if (table == NULL)
1079 return NULL;
1080
1081 for (secp = table->sections; secp < table->sections_end; secp++)
1082 {
1083 if (addr >= secp->addr && addr < secp->endaddr)
1084 return secp;
1085 }
1086 return NULL;
1087 }
1088
1089
1090 /* Helper for the memory xfer routines. Checks the attributes of the
1091 memory region of MEMADDR against the read or write being attempted.
1092 If the access is permitted returns true, otherwise returns false.
1093 REGION_P is an optional output parameter. If not-NULL, it is
1094 filled with a pointer to the memory region of MEMADDR. REG_LEN
1095 returns LEN trimmed to the end of the region. This is how much the
1096 caller can continue requesting, if the access is permitted. A
1097 single xfer request must not straddle memory region boundaries. */
1098
1099 static int
1100 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1101 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1102 struct mem_region **region_p)
1103 {
1104 struct mem_region *region;
1105
1106 region = lookup_mem_region (memaddr);
1107
1108 if (region_p != NULL)
1109 *region_p = region;
1110
1111 switch (region->attrib.mode)
1112 {
1113 case MEM_RO:
1114 if (writebuf != NULL)
1115 return 0;
1116 break;
1117
1118 case MEM_WO:
1119 if (readbuf != NULL)
1120 return 0;
1121 break;
1122
1123 case MEM_FLASH:
1124 /* We only support writing to flash during "load" for now. */
1125 if (writebuf != NULL)
1126 error (_("Writing to flash memory forbidden in this context"));
1127 break;
1128
1129 case MEM_NONE:
1130 return 0;
1131 }
1132
1133 /* region->hi == 0 means there's no upper bound. */
1134 if (memaddr + len < region->hi || region->hi == 0)
1135 *reg_len = len;
1136 else
1137 *reg_len = region->hi - memaddr;
1138
1139 return 1;
1140 }
1141
1142 /* Read memory from more than one valid target. A core file, for
1143 instance, could have some of memory but delegate other bits to
1144 the target below it. So, we must manually try all targets. */
1145
1146 enum target_xfer_status
1147 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1148 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1149 ULONGEST *xfered_len)
1150 {
1151 enum target_xfer_status res;
1152
1153 do
1154 {
1155 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1156 readbuf, writebuf, memaddr, len,
1157 xfered_len);
1158 if (res == TARGET_XFER_OK)
1159 break;
1160
1161 /* Stop if the target reports that the memory is not available. */
1162 if (res == TARGET_XFER_UNAVAILABLE)
1163 break;
1164
1165 /* We want to continue past core files to executables, but not
1166 past a running target's memory. */
1167 if (ops->to_has_all_memory (ops))
1168 break;
1169
1170 ops = ops->beneath;
1171 }
1172 while (ops != NULL);
1173
1174 /* The cache works at the raw memory level. Make sure the cache
1175 gets updated with raw contents no matter what kind of memory
1176 object was originally being written. Note we do write-through
1177 first, so that if it fails, we don't write to the cache contents
1178 that never made it to the target. */
1179 if (writebuf != NULL
1180 && !ptid_equal (inferior_ptid, null_ptid)
1181 && target_dcache_init_p ()
1182 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1183 {
1184 DCACHE *dcache = target_dcache_get ();
1185
1186 /* Note that writing to an area of memory which wasn't present
1187 in the cache doesn't cause it to be loaded in. */
1188 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1189 }
1190
1191 return res;
1192 }
1193
1194 /* Perform a partial memory transfer.
1195 For docs see target.h, to_xfer_partial. */
1196
1197 static enum target_xfer_status
1198 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1199 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1200 ULONGEST len, ULONGEST *xfered_len)
1201 {
1202 enum target_xfer_status res;
1203 ULONGEST reg_len;
1204 struct mem_region *region;
1205 struct inferior *inf;
1206
1207 /* For accesses to unmapped overlay sections, read directly from
1208 files. Must do this first, as MEMADDR may need adjustment. */
1209 if (readbuf != NULL && overlay_debugging)
1210 {
1211 struct obj_section *section = find_pc_overlay (memaddr);
1212
1213 if (pc_in_unmapped_range (memaddr, section))
1214 {
1215 struct target_section_table *table
1216 = target_get_section_table (ops);
1217 const char *section_name = section->the_bfd_section->name;
1218
1219 memaddr = overlay_mapped_address (memaddr, section);
1220 return section_table_xfer_memory_partial (readbuf, writebuf,
1221 memaddr, len, xfered_len,
1222 table->sections,
1223 table->sections_end,
1224 section_name);
1225 }
1226 }
1227
1228 /* Try the executable files, if "trust-readonly-sections" is set. */
1229 if (readbuf != NULL && trust_readonly)
1230 {
1231 struct target_section *secp;
1232 struct target_section_table *table;
1233
1234 secp = target_section_by_addr (ops, memaddr);
1235 if (secp != NULL
1236 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1237 secp->the_bfd_section)
1238 & SEC_READONLY))
1239 {
1240 table = target_get_section_table (ops);
1241 return section_table_xfer_memory_partial (readbuf, writebuf,
1242 memaddr, len, xfered_len,
1243 table->sections,
1244 table->sections_end,
1245 NULL);
1246 }
1247 }
1248
1249 /* Try GDB's internal data cache. */
1250
1251 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1252 &region))
1253 return TARGET_XFER_E_IO;
1254
1255 if (!ptid_equal (inferior_ptid, null_ptid))
1256 inf = find_inferior_ptid (inferior_ptid);
1257 else
1258 inf = NULL;
1259
1260 if (inf != NULL
1261 && readbuf != NULL
1262 /* The dcache reads whole cache lines; that doesn't play well
1263 with reading from a trace buffer, because reading outside of
1264 the collected memory range fails. */
1265 && get_traceframe_number () == -1
1266 && (region->attrib.cache
1267 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1268 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1269 {
1270 DCACHE *dcache = target_dcache_get_or_init ();
1271
1272 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1273 reg_len, xfered_len);
1274 }
1275
1276 /* If none of those methods found the memory we wanted, fall back
1277 to a target partial transfer. Normally a single call to
1278 to_xfer_partial is enough; if it doesn't recognize an object
1279 it will call the to_xfer_partial of the next target down.
1280 But for memory this won't do. Memory is the only target
1281 object which can be read from more than one valid target.
1282 A core file, for instance, could have some of memory but
1283 delegate other bits to the target below it. So, we must
1284 manually try all targets. */
1285
1286 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1287 xfered_len);
1288
1289 /* If we still haven't got anything, return the last error. We
1290 give up. */
1291 return res;
1292 }
1293
1294 /* Perform a partial memory transfer. For docs see target.h,
1295 to_xfer_partial. */
1296
1297 static enum target_xfer_status
1298 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1299 gdb_byte *readbuf, const gdb_byte *writebuf,
1300 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1301 {
1302 enum target_xfer_status res;
1303
1304 /* Zero length requests are ok and require no work. */
1305 if (len == 0)
1306 return TARGET_XFER_EOF;
1307
1308 memaddr = address_significant (target_gdbarch (), memaddr);
1309
1310 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1311 breakpoint insns, thus hiding out from higher layers whether
1312 there are software breakpoints inserted in the code stream. */
1313 if (readbuf != NULL)
1314 {
1315 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1316 xfered_len);
1317
1318 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1319 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1320 }
1321 else
1322 {
1323 /* A large write request is likely to be partially satisfied
1324 by memory_xfer_partial_1. We will continually malloc
1325 and free a copy of the entire write request for breakpoint
1326 shadow handling even though we only end up writing a small
1327 subset of it. Cap writes to a limit specified by the target
1328 to mitigate this. */
1329 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1330
1331 gdb::byte_vector buf (writebuf, writebuf + len);
1332 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1333 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1334 xfered_len);
1335 }
1336
1337 return res;
1338 }
1339
1340 scoped_restore_tmpl<int>
1341 make_scoped_restore_show_memory_breakpoints (int show)
1342 {
1343 return make_scoped_restore (&show_memory_breakpoints, show);
1344 }
1345
1346 /* For docs see target.h, to_xfer_partial. */
1347
1348 enum target_xfer_status
1349 target_xfer_partial (struct target_ops *ops,
1350 enum target_object object, const char *annex,
1351 gdb_byte *readbuf, const gdb_byte *writebuf,
1352 ULONGEST offset, ULONGEST len,
1353 ULONGEST *xfered_len)
1354 {
1355 enum target_xfer_status retval;
1356
1357 gdb_assert (ops->to_xfer_partial != NULL);
1358
1359 /* Transfer is done when LEN is zero. */
1360 if (len == 0)
1361 return TARGET_XFER_EOF;
1362
1363 if (writebuf && !may_write_memory)
1364 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1365 core_addr_to_string_nz (offset), plongest (len));
1366
1367 *xfered_len = 0;
1368
1369 /* If this is a memory transfer, let the memory-specific code
1370 have a look at it instead. Memory transfers are more
1371 complicated. */
1372 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1373 || object == TARGET_OBJECT_CODE_MEMORY)
1374 retval = memory_xfer_partial (ops, object, readbuf,
1375 writebuf, offset, len, xfered_len);
1376 else if (object == TARGET_OBJECT_RAW_MEMORY)
1377 {
1378 /* Skip/avoid accessing the target if the memory region
1379 attributes block the access. Check this here instead of in
1380 raw_memory_xfer_partial as otherwise we'd end up checking
1381 this twice in the case of the memory_xfer_partial path is
1382 taken; once before checking the dcache, and another in the
1383 tail call to raw_memory_xfer_partial. */
1384 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1385 NULL))
1386 return TARGET_XFER_E_IO;
1387
1388 /* Request the normal memory object from other layers. */
1389 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1390 xfered_len);
1391 }
1392 else
1393 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1394 writebuf, offset, len, xfered_len);
1395
1396 if (targetdebug)
1397 {
1398 const unsigned char *myaddr = NULL;
1399
1400 fprintf_unfiltered (gdb_stdlog,
1401 "%s:target_xfer_partial "
1402 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1403 ops->to_shortname,
1404 (int) object,
1405 (annex ? annex : "(null)"),
1406 host_address_to_string (readbuf),
1407 host_address_to_string (writebuf),
1408 core_addr_to_string_nz (offset),
1409 pulongest (len), retval,
1410 pulongest (*xfered_len));
1411
1412 if (readbuf)
1413 myaddr = readbuf;
1414 if (writebuf)
1415 myaddr = writebuf;
1416 if (retval == TARGET_XFER_OK && myaddr != NULL)
1417 {
1418 int i;
1419
1420 fputs_unfiltered (", bytes =", gdb_stdlog);
1421 for (i = 0; i < *xfered_len; i++)
1422 {
1423 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1424 {
1425 if (targetdebug < 2 && i > 0)
1426 {
1427 fprintf_unfiltered (gdb_stdlog, " ...");
1428 break;
1429 }
1430 fprintf_unfiltered (gdb_stdlog, "\n");
1431 }
1432
1433 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1434 }
1435 }
1436
1437 fputc_unfiltered ('\n', gdb_stdlog);
1438 }
1439
1440 /* Check implementations of to_xfer_partial update *XFERED_LEN
1441 properly. Do assertion after printing debug messages, so that we
1442 can find more clues on assertion failure from debugging messages. */
1443 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1444 gdb_assert (*xfered_len > 0);
1445
1446 return retval;
1447 }
1448
1449 /* Read LEN bytes of target memory at address MEMADDR, placing the
1450 results in GDB's memory at MYADDR. Returns either 0 for success or
1451 -1 if any error occurs.
1452
1453 If an error occurs, no guarantee is made about the contents of the data at
1454 MYADDR. In particular, the caller should not depend upon partial reads
1455 filling the buffer with good data. There is no way for the caller to know
1456 how much good data might have been transfered anyway. Callers that can
1457 deal with partial reads should call target_read (which will retry until
1458 it makes no progress, and then return how much was transferred). */
1459
1460 int
1461 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1462 {
1463 /* Dispatch to the topmost target, not the flattened current_target.
1464 Memory accesses check target->to_has_(all_)memory, and the
1465 flattened target doesn't inherit those. */
1466 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1467 myaddr, memaddr, len) == len)
1468 return 0;
1469 else
1470 return -1;
1471 }
1472
1473 /* See target/target.h. */
1474
1475 int
1476 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1477 {
1478 gdb_byte buf[4];
1479 int r;
1480
1481 r = target_read_memory (memaddr, buf, sizeof buf);
1482 if (r != 0)
1483 return r;
1484 *result = extract_unsigned_integer (buf, sizeof buf,
1485 gdbarch_byte_order (target_gdbarch ()));
1486 return 0;
1487 }
1488
1489 /* Like target_read_memory, but specify explicitly that this is a read
1490 from the target's raw memory. That is, this read bypasses the
1491 dcache, breakpoint shadowing, etc. */
1492
1493 int
1494 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1495 {
1496 /* See comment in target_read_memory about why the request starts at
1497 current_target.beneath. */
1498 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1499 myaddr, memaddr, len) == len)
1500 return 0;
1501 else
1502 return -1;
1503 }
1504
1505 /* Like target_read_memory, but specify explicitly that this is a read from
1506 the target's stack. This may trigger different cache behavior. */
1507
1508 int
1509 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1510 {
1511 /* See comment in target_read_memory about why the request starts at
1512 current_target.beneath. */
1513 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1514 myaddr, memaddr, len) == len)
1515 return 0;
1516 else
1517 return -1;
1518 }
1519
1520 /* Like target_read_memory, but specify explicitly that this is a read from
1521 the target's code. This may trigger different cache behavior. */
1522
1523 int
1524 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1525 {
1526 /* See comment in target_read_memory about why the request starts at
1527 current_target.beneath. */
1528 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1529 myaddr, memaddr, len) == len)
1530 return 0;
1531 else
1532 return -1;
1533 }
1534
1535 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1536 Returns either 0 for success or -1 if any error occurs. If an
1537 error occurs, no guarantee is made about how much data got written.
1538 Callers that can deal with partial writes should call
1539 target_write. */
1540
1541 int
1542 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1543 {
1544 /* See comment in target_read_memory about why the request starts at
1545 current_target.beneath. */
1546 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1547 myaddr, memaddr, len) == len)
1548 return 0;
1549 else
1550 return -1;
1551 }
1552
1553 /* Write LEN bytes from MYADDR to target raw memory at address
1554 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1555 If an error occurs, no guarantee is made about how much data got
1556 written. Callers that can deal with partial writes should call
1557 target_write. */
1558
1559 int
1560 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1561 {
1562 /* See comment in target_read_memory about why the request starts at
1563 current_target.beneath. */
1564 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1565 myaddr, memaddr, len) == len)
1566 return 0;
1567 else
1568 return -1;
1569 }
1570
1571 /* Fetch the target's memory map. */
1572
1573 std::vector<mem_region>
1574 target_memory_map (void)
1575 {
1576 std::vector<mem_region> result
1577 = current_target.to_memory_map (&current_target);
1578 if (result.empty ())
1579 return result;
1580
1581 std::sort (result.begin (), result.end ());
1582
1583 /* Check that regions do not overlap. Simultaneously assign
1584 a numbering for the "mem" commands to use to refer to
1585 each region. */
1586 mem_region *last_one = NULL;
1587 for (size_t ix = 0; ix < result.size (); ix++)
1588 {
1589 mem_region *this_one = &result[ix];
1590 this_one->number = ix;
1591
1592 if (last_one != NULL && last_one->hi > this_one->lo)
1593 {
1594 warning (_("Overlapping regions in memory map: ignoring"));
1595 return std::vector<mem_region> ();
1596 }
1597
1598 last_one = this_one;
1599 }
1600
1601 return result;
1602 }
1603
1604 void
1605 target_flash_erase (ULONGEST address, LONGEST length)
1606 {
1607 current_target.to_flash_erase (&current_target, address, length);
1608 }
1609
1610 void
1611 target_flash_done (void)
1612 {
1613 current_target.to_flash_done (&current_target);
1614 }
1615
1616 static void
1617 show_trust_readonly (struct ui_file *file, int from_tty,
1618 struct cmd_list_element *c, const char *value)
1619 {
1620 fprintf_filtered (file,
1621 _("Mode for reading from readonly sections is %s.\n"),
1622 value);
1623 }
1624
1625 /* Target vector read/write partial wrapper functions. */
1626
1627 static enum target_xfer_status
1628 target_read_partial (struct target_ops *ops,
1629 enum target_object object,
1630 const char *annex, gdb_byte *buf,
1631 ULONGEST offset, ULONGEST len,
1632 ULONGEST *xfered_len)
1633 {
1634 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1635 xfered_len);
1636 }
1637
1638 static enum target_xfer_status
1639 target_write_partial (struct target_ops *ops,
1640 enum target_object object,
1641 const char *annex, const gdb_byte *buf,
1642 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1643 {
1644 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1645 xfered_len);
1646 }
1647
1648 /* Wrappers to perform the full transfer. */
1649
1650 /* For docs on target_read see target.h. */
1651
1652 LONGEST
1653 target_read (struct target_ops *ops,
1654 enum target_object object,
1655 const char *annex, gdb_byte *buf,
1656 ULONGEST offset, LONGEST len)
1657 {
1658 LONGEST xfered_total = 0;
1659 int unit_size = 1;
1660
1661 /* If we are reading from a memory object, find the length of an addressable
1662 unit for that architecture. */
1663 if (object == TARGET_OBJECT_MEMORY
1664 || object == TARGET_OBJECT_STACK_MEMORY
1665 || object == TARGET_OBJECT_CODE_MEMORY
1666 || object == TARGET_OBJECT_RAW_MEMORY)
1667 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1668
1669 while (xfered_total < len)
1670 {
1671 ULONGEST xfered_partial;
1672 enum target_xfer_status status;
1673
1674 status = target_read_partial (ops, object, annex,
1675 buf + xfered_total * unit_size,
1676 offset + xfered_total, len - xfered_total,
1677 &xfered_partial);
1678
1679 /* Call an observer, notifying them of the xfer progress? */
1680 if (status == TARGET_XFER_EOF)
1681 return xfered_total;
1682 else if (status == TARGET_XFER_OK)
1683 {
1684 xfered_total += xfered_partial;
1685 QUIT;
1686 }
1687 else
1688 return TARGET_XFER_E_IO;
1689
1690 }
1691 return len;
1692 }
1693
1694 /* Assuming that the entire [begin, end) range of memory cannot be
1695 read, try to read whatever subrange is possible to read.
1696
1697 The function returns, in RESULT, either zero or one memory block.
1698 If there's a readable subrange at the beginning, it is completely
1699 read and returned. Any further readable subrange will not be read.
1700 Otherwise, if there's a readable subrange at the end, it will be
1701 completely read and returned. Any readable subranges before it
1702 (obviously, not starting at the beginning), will be ignored. In
1703 other cases -- either no readable subrange, or readable subrange(s)
1704 that is neither at the beginning, or end, nothing is returned.
1705
1706 The purpose of this function is to handle a read across a boundary
1707 of accessible memory in a case when memory map is not available.
1708 The above restrictions are fine for this case, but will give
1709 incorrect results if the memory is 'patchy'. However, supporting
1710 'patchy' memory would require trying to read every single byte,
1711 and it seems unacceptable solution. Explicit memory map is
1712 recommended for this case -- and target_read_memory_robust will
1713 take care of reading multiple ranges then. */
1714
1715 static void
1716 read_whatever_is_readable (struct target_ops *ops,
1717 const ULONGEST begin, const ULONGEST end,
1718 int unit_size,
1719 std::vector<memory_read_result> *result)
1720 {
1721 ULONGEST current_begin = begin;
1722 ULONGEST current_end = end;
1723 int forward;
1724 ULONGEST xfered_len;
1725
1726 /* If we previously failed to read 1 byte, nothing can be done here. */
1727 if (end - begin <= 1)
1728 return;
1729
1730 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1731
1732 /* Check that either first or the last byte is readable, and give up
1733 if not. This heuristic is meant to permit reading accessible memory
1734 at the boundary of accessible region. */
1735 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1736 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1737 {
1738 forward = 1;
1739 ++current_begin;
1740 }
1741 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1742 buf.get () + (end - begin) - 1, end - 1, 1,
1743 &xfered_len) == TARGET_XFER_OK)
1744 {
1745 forward = 0;
1746 --current_end;
1747 }
1748 else
1749 return;
1750
1751 /* Loop invariant is that the [current_begin, current_end) was previously
1752 found to be not readable as a whole.
1753
1754 Note loop condition -- if the range has 1 byte, we can't divide the range
1755 so there's no point trying further. */
1756 while (current_end - current_begin > 1)
1757 {
1758 ULONGEST first_half_begin, first_half_end;
1759 ULONGEST second_half_begin, second_half_end;
1760 LONGEST xfer;
1761 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1762
1763 if (forward)
1764 {
1765 first_half_begin = current_begin;
1766 first_half_end = middle;
1767 second_half_begin = middle;
1768 second_half_end = current_end;
1769 }
1770 else
1771 {
1772 first_half_begin = middle;
1773 first_half_end = current_end;
1774 second_half_begin = current_begin;
1775 second_half_end = middle;
1776 }
1777
1778 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1779 buf.get () + (first_half_begin - begin) * unit_size,
1780 first_half_begin,
1781 first_half_end - first_half_begin);
1782
1783 if (xfer == first_half_end - first_half_begin)
1784 {
1785 /* This half reads up fine. So, the error must be in the
1786 other half. */
1787 current_begin = second_half_begin;
1788 current_end = second_half_end;
1789 }
1790 else
1791 {
1792 /* This half is not readable. Because we've tried one byte, we
1793 know some part of this half if actually readable. Go to the next
1794 iteration to divide again and try to read.
1795
1796 We don't handle the other half, because this function only tries
1797 to read a single readable subrange. */
1798 current_begin = first_half_begin;
1799 current_end = first_half_end;
1800 }
1801 }
1802
1803 if (forward)
1804 {
1805 /* The [begin, current_begin) range has been read. */
1806 result->emplace_back (begin, current_end, std::move (buf));
1807 }
1808 else
1809 {
1810 /* The [current_end, end) range has been read. */
1811 LONGEST region_len = end - current_end;
1812
1813 gdb::unique_xmalloc_ptr<gdb_byte> data
1814 ((gdb_byte *) xmalloc (region_len * unit_size));
1815 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1816 region_len * unit_size);
1817 result->emplace_back (current_end, end, std::move (data));
1818 }
1819 }
1820
1821 std::vector<memory_read_result>
1822 read_memory_robust (struct target_ops *ops,
1823 const ULONGEST offset, const LONGEST len)
1824 {
1825 std::vector<memory_read_result> result;
1826 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1827
1828 LONGEST xfered_total = 0;
1829 while (xfered_total < len)
1830 {
1831 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1832 LONGEST region_len;
1833
1834 /* If there is no explicit region, a fake one should be created. */
1835 gdb_assert (region);
1836
1837 if (region->hi == 0)
1838 region_len = len - xfered_total;
1839 else
1840 region_len = region->hi - offset;
1841
1842 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1843 {
1844 /* Cannot read this region. Note that we can end up here only
1845 if the region is explicitly marked inaccessible, or
1846 'inaccessible-by-default' is in effect. */
1847 xfered_total += region_len;
1848 }
1849 else
1850 {
1851 LONGEST to_read = std::min (len - xfered_total, region_len);
1852 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1853 ((gdb_byte *) xmalloc (to_read * unit_size));
1854
1855 LONGEST xfered_partial =
1856 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1857 offset + xfered_total, to_read);
1858 /* Call an observer, notifying them of the xfer progress? */
1859 if (xfered_partial <= 0)
1860 {
1861 /* Got an error reading full chunk. See if maybe we can read
1862 some subrange. */
1863 read_whatever_is_readable (ops, offset + xfered_total,
1864 offset + xfered_total + to_read,
1865 unit_size, &result);
1866 xfered_total += to_read;
1867 }
1868 else
1869 {
1870 result.emplace_back (offset + xfered_total,
1871 offset + xfered_total + xfered_partial,
1872 std::move (buffer));
1873 xfered_total += xfered_partial;
1874 }
1875 QUIT;
1876 }
1877 }
1878
1879 return result;
1880 }
1881
1882
1883 /* An alternative to target_write with progress callbacks. */
1884
1885 LONGEST
1886 target_write_with_progress (struct target_ops *ops,
1887 enum target_object object,
1888 const char *annex, const gdb_byte *buf,
1889 ULONGEST offset, LONGEST len,
1890 void (*progress) (ULONGEST, void *), void *baton)
1891 {
1892 LONGEST xfered_total = 0;
1893 int unit_size = 1;
1894
1895 /* If we are writing to a memory object, find the length of an addressable
1896 unit for that architecture. */
1897 if (object == TARGET_OBJECT_MEMORY
1898 || object == TARGET_OBJECT_STACK_MEMORY
1899 || object == TARGET_OBJECT_CODE_MEMORY
1900 || object == TARGET_OBJECT_RAW_MEMORY)
1901 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1902
1903 /* Give the progress callback a chance to set up. */
1904 if (progress)
1905 (*progress) (0, baton);
1906
1907 while (xfered_total < len)
1908 {
1909 ULONGEST xfered_partial;
1910 enum target_xfer_status status;
1911
1912 status = target_write_partial (ops, object, annex,
1913 buf + xfered_total * unit_size,
1914 offset + xfered_total, len - xfered_total,
1915 &xfered_partial);
1916
1917 if (status != TARGET_XFER_OK)
1918 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1919
1920 if (progress)
1921 (*progress) (xfered_partial, baton);
1922
1923 xfered_total += xfered_partial;
1924 QUIT;
1925 }
1926 return len;
1927 }
1928
1929 /* For docs on target_write see target.h. */
1930
1931 LONGEST
1932 target_write (struct target_ops *ops,
1933 enum target_object object,
1934 const char *annex, const gdb_byte *buf,
1935 ULONGEST offset, LONGEST len)
1936 {
1937 return target_write_with_progress (ops, object, annex, buf, offset, len,
1938 NULL, NULL);
1939 }
1940
1941 /* Help for target_read_alloc and target_read_stralloc. See their comments
1942 for details. */
1943
1944 template <typename T>
1945 gdb::optional<gdb::def_vector<T>>
1946 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1947 const char *annex)
1948 {
1949 gdb::def_vector<T> buf;
1950 size_t buf_pos = 0;
1951 const int chunk = 4096;
1952
1953 /* This function does not have a length parameter; it reads the
1954 entire OBJECT). Also, it doesn't support objects fetched partly
1955 from one target and partly from another (in a different stratum,
1956 e.g. a core file and an executable). Both reasons make it
1957 unsuitable for reading memory. */
1958 gdb_assert (object != TARGET_OBJECT_MEMORY);
1959
1960 /* Start by reading up to 4K at a time. The target will throttle
1961 this number down if necessary. */
1962 while (1)
1963 {
1964 ULONGEST xfered_len;
1965 enum target_xfer_status status;
1966
1967 buf.resize (buf_pos + chunk);
1968
1969 status = target_read_partial (ops, object, annex,
1970 (gdb_byte *) &buf[buf_pos],
1971 buf_pos, chunk,
1972 &xfered_len);
1973
1974 if (status == TARGET_XFER_EOF)
1975 {
1976 /* Read all there was. */
1977 buf.resize (buf_pos);
1978 return buf;
1979 }
1980 else if (status != TARGET_XFER_OK)
1981 {
1982 /* An error occurred. */
1983 return {};
1984 }
1985
1986 buf_pos += xfered_len;
1987
1988 QUIT;
1989 }
1990 }
1991
1992 /* See target.h */
1993
1994 gdb::optional<gdb::byte_vector>
1995 target_read_alloc (struct target_ops *ops, enum target_object object,
1996 const char *annex)
1997 {
1998 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1999 }
2000
2001 /* See target.h. */
2002
2003 gdb::optional<gdb::char_vector>
2004 target_read_stralloc (struct target_ops *ops, enum target_object object,
2005 const char *annex)
2006 {
2007 gdb::optional<gdb::char_vector> buf
2008 = target_read_alloc_1<char> (ops, object, annex);
2009
2010 if (!buf)
2011 return {};
2012
2013 if (buf->back () != '\0')
2014 buf->push_back ('\0');
2015
2016 /* Check for embedded NUL bytes; but allow trailing NULs. */
2017 for (auto it = std::find (buf->begin (), buf->end (), '\0');
2018 it != buf->end (); it++)
2019 if (*it != '\0')
2020 {
2021 warning (_("target object %d, annex %s, "
2022 "contained unexpected null characters"),
2023 (int) object, annex ? annex : "(none)");
2024 break;
2025 }
2026
2027 return buf;
2028 }
2029
2030 /* Memory transfer methods. */
2031
2032 void
2033 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2034 LONGEST len)
2035 {
2036 /* This method is used to read from an alternate, non-current
2037 target. This read must bypass the overlay support (as symbols
2038 don't match this target), and GDB's internal cache (wrong cache
2039 for this target). */
2040 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2041 != len)
2042 memory_error (TARGET_XFER_E_IO, addr);
2043 }
2044
2045 ULONGEST
2046 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2047 int len, enum bfd_endian byte_order)
2048 {
2049 gdb_byte buf[sizeof (ULONGEST)];
2050
2051 gdb_assert (len <= sizeof (buf));
2052 get_target_memory (ops, addr, buf, len);
2053 return extract_unsigned_integer (buf, len, byte_order);
2054 }
2055
2056 /* See target.h. */
2057
2058 int
2059 target_insert_breakpoint (struct gdbarch *gdbarch,
2060 struct bp_target_info *bp_tgt)
2061 {
2062 if (!may_insert_breakpoints)
2063 {
2064 warning (_("May not insert breakpoints"));
2065 return 1;
2066 }
2067
2068 return current_target.to_insert_breakpoint (&current_target,
2069 gdbarch, bp_tgt);
2070 }
2071
2072 /* See target.h. */
2073
2074 int
2075 target_remove_breakpoint (struct gdbarch *gdbarch,
2076 struct bp_target_info *bp_tgt,
2077 enum remove_bp_reason reason)
2078 {
2079 /* This is kind of a weird case to handle, but the permission might
2080 have been changed after breakpoints were inserted - in which case
2081 we should just take the user literally and assume that any
2082 breakpoints should be left in place. */
2083 if (!may_insert_breakpoints)
2084 {
2085 warning (_("May not remove breakpoints"));
2086 return 1;
2087 }
2088
2089 return current_target.to_remove_breakpoint (&current_target,
2090 gdbarch, bp_tgt, reason);
2091 }
2092
2093 static void
2094 info_target_command (const char *args, int from_tty)
2095 {
2096 struct target_ops *t;
2097 int has_all_mem = 0;
2098
2099 if (symfile_objfile != NULL)
2100 printf_unfiltered (_("Symbols from \"%s\".\n"),
2101 objfile_name (symfile_objfile));
2102
2103 for (t = target_stack; t != NULL; t = t->beneath)
2104 {
2105 if (!(*t->to_has_memory) (t))
2106 continue;
2107
2108 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2109 continue;
2110 if (has_all_mem)
2111 printf_unfiltered (_("\tWhile running this, "
2112 "GDB does not access memory from...\n"));
2113 printf_unfiltered ("%s:\n", t->to_longname);
2114 (t->to_files_info) (t);
2115 has_all_mem = (*t->to_has_all_memory) (t);
2116 }
2117 }
2118
2119 /* This function is called before any new inferior is created, e.g.
2120 by running a program, attaching, or connecting to a target.
2121 It cleans up any state from previous invocations which might
2122 change between runs. This is a subset of what target_preopen
2123 resets (things which might change between targets). */
2124
2125 void
2126 target_pre_inferior (int from_tty)
2127 {
2128 /* Clear out solib state. Otherwise the solib state of the previous
2129 inferior might have survived and is entirely wrong for the new
2130 target. This has been observed on GNU/Linux using glibc 2.3. How
2131 to reproduce:
2132
2133 bash$ ./foo&
2134 [1] 4711
2135 bash$ ./foo&
2136 [1] 4712
2137 bash$ gdb ./foo
2138 [...]
2139 (gdb) attach 4711
2140 (gdb) detach
2141 (gdb) attach 4712
2142 Cannot access memory at address 0xdeadbeef
2143 */
2144
2145 /* In some OSs, the shared library list is the same/global/shared
2146 across inferiors. If code is shared between processes, so are
2147 memory regions and features. */
2148 if (!gdbarch_has_global_solist (target_gdbarch ()))
2149 {
2150 no_shared_libraries (NULL, from_tty);
2151
2152 invalidate_target_mem_regions ();
2153
2154 target_clear_description ();
2155 }
2156
2157 /* attach_flag may be set if the previous process associated with
2158 the inferior was attached to. */
2159 current_inferior ()->attach_flag = 0;
2160
2161 current_inferior ()->highest_thread_num = 0;
2162
2163 agent_capability_invalidate ();
2164 }
2165
2166 /* Callback for iterate_over_inferiors. Gets rid of the given
2167 inferior. */
2168
2169 static int
2170 dispose_inferior (struct inferior *inf, void *args)
2171 {
2172 struct thread_info *thread;
2173
2174 thread = any_thread_of_process (inf->pid);
2175 if (thread)
2176 {
2177 switch_to_thread (thread->ptid);
2178
2179 /* Core inferiors actually should be detached, not killed. */
2180 if (target_has_execution)
2181 target_kill ();
2182 else
2183 target_detach (inf, 0);
2184 }
2185
2186 return 0;
2187 }
2188
2189 /* This is to be called by the open routine before it does
2190 anything. */
2191
2192 void
2193 target_preopen (int from_tty)
2194 {
2195 dont_repeat ();
2196
2197 if (have_inferiors ())
2198 {
2199 if (!from_tty
2200 || !have_live_inferiors ()
2201 || query (_("A program is being debugged already. Kill it? ")))
2202 iterate_over_inferiors (dispose_inferior, NULL);
2203 else
2204 error (_("Program not killed."));
2205 }
2206
2207 /* Calling target_kill may remove the target from the stack. But if
2208 it doesn't (which seems like a win for UDI), remove it now. */
2209 /* Leave the exec target, though. The user may be switching from a
2210 live process to a core of the same program. */
2211 pop_all_targets_above (file_stratum);
2212
2213 target_pre_inferior (from_tty);
2214 }
2215
2216 /* See target.h. */
2217
2218 void
2219 target_detach (inferior *inf, int from_tty)
2220 {
2221 /* As long as some to_detach implementations rely on the current_inferior
2222 (either directly, or indirectly, like through target_gdbarch or by
2223 reading memory), INF needs to be the current inferior. When that
2224 requirement will become no longer true, then we can remove this
2225 assertion. */
2226 gdb_assert (inf == current_inferior ());
2227
2228 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2229 /* Don't remove global breakpoints here. They're removed on
2230 disconnection from the target. */
2231 ;
2232 else
2233 /* If we're in breakpoints-always-inserted mode, have to remove
2234 them before detaching. */
2235 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2236
2237 prepare_for_detach ();
2238
2239 current_target.to_detach (&current_target, inf, from_tty);
2240 }
2241
2242 void
2243 target_disconnect (const char *args, int from_tty)
2244 {
2245 /* If we're in breakpoints-always-inserted mode or if breakpoints
2246 are global across processes, we have to remove them before
2247 disconnecting. */
2248 remove_breakpoints ();
2249
2250 current_target.to_disconnect (&current_target, args, from_tty);
2251 }
2252
2253 /* See target/target.h. */
2254
2255 ptid_t
2256 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2257 {
2258 return (current_target.to_wait) (&current_target, ptid, status, options);
2259 }
2260
2261 /* See target.h. */
2262
2263 ptid_t
2264 default_target_wait (struct target_ops *ops,
2265 ptid_t ptid, struct target_waitstatus *status,
2266 int options)
2267 {
2268 status->kind = TARGET_WAITKIND_IGNORE;
2269 return minus_one_ptid;
2270 }
2271
2272 const char *
2273 target_pid_to_str (ptid_t ptid)
2274 {
2275 return (*current_target.to_pid_to_str) (&current_target, ptid);
2276 }
2277
2278 const char *
2279 target_thread_name (struct thread_info *info)
2280 {
2281 return current_target.to_thread_name (&current_target, info);
2282 }
2283
2284 struct thread_info *
2285 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2286 int handle_len,
2287 struct inferior *inf)
2288 {
2289 return current_target.to_thread_handle_to_thread_info
2290 (&current_target, thread_handle, handle_len, inf);
2291 }
2292
2293 void
2294 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2295 {
2296 target_dcache_invalidate ();
2297
2298 current_target.to_resume (&current_target, ptid, step, signal);
2299
2300 registers_changed_ptid (ptid);
2301 /* We only set the internal executing state here. The user/frontend
2302 running state is set at a higher level. */
2303 set_executing (ptid, 1);
2304 clear_inline_frame_state (ptid);
2305 }
2306
2307 /* If true, target_commit_resume is a nop. */
2308 static int defer_target_commit_resume;
2309
2310 /* See target.h. */
2311
2312 void
2313 target_commit_resume (void)
2314 {
2315 if (defer_target_commit_resume)
2316 return;
2317
2318 current_target.to_commit_resume (&current_target);
2319 }
2320
2321 /* See target.h. */
2322
2323 scoped_restore_tmpl<int>
2324 make_scoped_defer_target_commit_resume ()
2325 {
2326 return make_scoped_restore (&defer_target_commit_resume, 1);
2327 }
2328
2329 void
2330 target_pass_signals (int numsigs, unsigned char *pass_signals)
2331 {
2332 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2333 }
2334
2335 void
2336 target_program_signals (int numsigs, unsigned char *program_signals)
2337 {
2338 (*current_target.to_program_signals) (&current_target,
2339 numsigs, program_signals);
2340 }
2341
2342 static int
2343 default_follow_fork (struct target_ops *self, int follow_child,
2344 int detach_fork)
2345 {
2346 /* Some target returned a fork event, but did not know how to follow it. */
2347 internal_error (__FILE__, __LINE__,
2348 _("could not find a target to follow fork"));
2349 }
2350
2351 /* Look through the list of possible targets for a target that can
2352 follow forks. */
2353
2354 int
2355 target_follow_fork (int follow_child, int detach_fork)
2356 {
2357 return current_target.to_follow_fork (&current_target,
2358 follow_child, detach_fork);
2359 }
2360
2361 /* Target wrapper for follow exec hook. */
2362
2363 void
2364 target_follow_exec (struct inferior *inf, char *execd_pathname)
2365 {
2366 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2367 }
2368
2369 static void
2370 default_mourn_inferior (struct target_ops *self)
2371 {
2372 internal_error (__FILE__, __LINE__,
2373 _("could not find a target to follow mourn inferior"));
2374 }
2375
2376 void
2377 target_mourn_inferior (ptid_t ptid)
2378 {
2379 gdb_assert (ptid_equal (ptid, inferior_ptid));
2380 current_target.to_mourn_inferior (&current_target);
2381
2382 /* We no longer need to keep handles on any of the object files.
2383 Make sure to release them to avoid unnecessarily locking any
2384 of them while we're not actually debugging. */
2385 bfd_cache_close_all ();
2386 }
2387
2388 /* Look for a target which can describe architectural features, starting
2389 from TARGET. If we find one, return its description. */
2390
2391 const struct target_desc *
2392 target_read_description (struct target_ops *target)
2393 {
2394 return target->to_read_description (target);
2395 }
2396
2397 /* This implements a basic search of memory, reading target memory and
2398 performing the search here (as opposed to performing the search in on the
2399 target side with, for example, gdbserver). */
2400
2401 int
2402 simple_search_memory (struct target_ops *ops,
2403 CORE_ADDR start_addr, ULONGEST search_space_len,
2404 const gdb_byte *pattern, ULONGEST pattern_len,
2405 CORE_ADDR *found_addrp)
2406 {
2407 /* NOTE: also defined in find.c testcase. */
2408 #define SEARCH_CHUNK_SIZE 16000
2409 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2410 /* Buffer to hold memory contents for searching. */
2411 unsigned search_buf_size;
2412
2413 search_buf_size = chunk_size + pattern_len - 1;
2414
2415 /* No point in trying to allocate a buffer larger than the search space. */
2416 if (search_space_len < search_buf_size)
2417 search_buf_size = search_space_len;
2418
2419 gdb::byte_vector search_buf (search_buf_size);
2420
2421 /* Prime the search buffer. */
2422
2423 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2424 search_buf.data (), start_addr, search_buf_size)
2425 != search_buf_size)
2426 {
2427 warning (_("Unable to access %s bytes of target "
2428 "memory at %s, halting search."),
2429 pulongest (search_buf_size), hex_string (start_addr));
2430 return -1;
2431 }
2432
2433 /* Perform the search.
2434
2435 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2436 When we've scanned N bytes we copy the trailing bytes to the start and
2437 read in another N bytes. */
2438
2439 while (search_space_len >= pattern_len)
2440 {
2441 gdb_byte *found_ptr;
2442 unsigned nr_search_bytes
2443 = std::min (search_space_len, (ULONGEST) search_buf_size);
2444
2445 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2446 pattern, pattern_len);
2447
2448 if (found_ptr != NULL)
2449 {
2450 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2451
2452 *found_addrp = found_addr;
2453 return 1;
2454 }
2455
2456 /* Not found in this chunk, skip to next chunk. */
2457
2458 /* Don't let search_space_len wrap here, it's unsigned. */
2459 if (search_space_len >= chunk_size)
2460 search_space_len -= chunk_size;
2461 else
2462 search_space_len = 0;
2463
2464 if (search_space_len >= pattern_len)
2465 {
2466 unsigned keep_len = search_buf_size - chunk_size;
2467 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2468 int nr_to_read;
2469
2470 /* Copy the trailing part of the previous iteration to the front
2471 of the buffer for the next iteration. */
2472 gdb_assert (keep_len == pattern_len - 1);
2473 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2474
2475 nr_to_read = std::min (search_space_len - keep_len,
2476 (ULONGEST) chunk_size);
2477
2478 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2479 &search_buf[keep_len], read_addr,
2480 nr_to_read) != nr_to_read)
2481 {
2482 warning (_("Unable to access %s bytes of target "
2483 "memory at %s, halting search."),
2484 plongest (nr_to_read),
2485 hex_string (read_addr));
2486 return -1;
2487 }
2488
2489 start_addr += chunk_size;
2490 }
2491 }
2492
2493 /* Not found. */
2494
2495 return 0;
2496 }
2497
2498 /* Default implementation of memory-searching. */
2499
2500 static int
2501 default_search_memory (struct target_ops *self,
2502 CORE_ADDR start_addr, ULONGEST search_space_len,
2503 const gdb_byte *pattern, ULONGEST pattern_len,
2504 CORE_ADDR *found_addrp)
2505 {
2506 /* Start over from the top of the target stack. */
2507 return simple_search_memory (current_target.beneath,
2508 start_addr, search_space_len,
2509 pattern, pattern_len, found_addrp);
2510 }
2511
2512 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2513 sequence of bytes in PATTERN with length PATTERN_LEN.
2514
2515 The result is 1 if found, 0 if not found, and -1 if there was an error
2516 requiring halting of the search (e.g. memory read error).
2517 If the pattern is found the address is recorded in FOUND_ADDRP. */
2518
2519 int
2520 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2521 const gdb_byte *pattern, ULONGEST pattern_len,
2522 CORE_ADDR *found_addrp)
2523 {
2524 return current_target.to_search_memory (&current_target, start_addr,
2525 search_space_len,
2526 pattern, pattern_len, found_addrp);
2527 }
2528
2529 /* Look through the currently pushed targets. If none of them will
2530 be able to restart the currently running process, issue an error
2531 message. */
2532
2533 void
2534 target_require_runnable (void)
2535 {
2536 struct target_ops *t;
2537
2538 for (t = target_stack; t != NULL; t = t->beneath)
2539 {
2540 /* If this target knows how to create a new program, then
2541 assume we will still be able to after killing the current
2542 one. Either killing and mourning will not pop T, or else
2543 find_default_run_target will find it again. */
2544 if (t->to_create_inferior != NULL)
2545 return;
2546
2547 /* Do not worry about targets at certain strata that can not
2548 create inferiors. Assume they will be pushed again if
2549 necessary, and continue to the process_stratum. */
2550 if (t->to_stratum == thread_stratum
2551 || t->to_stratum == record_stratum
2552 || t->to_stratum == arch_stratum)
2553 continue;
2554
2555 error (_("The \"%s\" target does not support \"run\". "
2556 "Try \"help target\" or \"continue\"."),
2557 t->to_shortname);
2558 }
2559
2560 /* This function is only called if the target is running. In that
2561 case there should have been a process_stratum target and it
2562 should either know how to create inferiors, or not... */
2563 internal_error (__FILE__, __LINE__, _("No targets found"));
2564 }
2565
2566 /* Whether GDB is allowed to fall back to the default run target for
2567 "run", "attach", etc. when no target is connected yet. */
2568 static int auto_connect_native_target = 1;
2569
2570 static void
2571 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2573 {
2574 fprintf_filtered (file,
2575 _("Whether GDB may automatically connect to the "
2576 "native target is %s.\n"),
2577 value);
2578 }
2579
2580 /* Look through the list of possible targets for a target that can
2581 execute a run or attach command without any other data. This is
2582 used to locate the default process stratum.
2583
2584 If DO_MESG is not NULL, the result is always valid (error() is
2585 called for errors); else, return NULL on error. */
2586
2587 static struct target_ops *
2588 find_default_run_target (const char *do_mesg)
2589 {
2590 struct target_ops *runable = NULL;
2591
2592 if (auto_connect_native_target)
2593 {
2594 struct target_ops *t;
2595 int count = 0;
2596 int i;
2597
2598 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2599 {
2600 if (t->to_can_run != delegate_can_run && target_can_run (t))
2601 {
2602 runable = t;
2603 ++count;
2604 }
2605 }
2606
2607 if (count != 1)
2608 runable = NULL;
2609 }
2610
2611 if (runable == NULL)
2612 {
2613 if (do_mesg)
2614 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2615 else
2616 return NULL;
2617 }
2618
2619 return runable;
2620 }
2621
2622 /* See target.h. */
2623
2624 struct target_ops *
2625 find_attach_target (void)
2626 {
2627 struct target_ops *t;
2628
2629 /* If a target on the current stack can attach, use it. */
2630 for (t = current_target.beneath; t != NULL; t = t->beneath)
2631 {
2632 if (t->to_attach != NULL)
2633 break;
2634 }
2635
2636 /* Otherwise, use the default run target for attaching. */
2637 if (t == NULL)
2638 t = find_default_run_target ("attach");
2639
2640 return t;
2641 }
2642
2643 /* See target.h. */
2644
2645 struct target_ops *
2646 find_run_target (void)
2647 {
2648 struct target_ops *t;
2649
2650 /* If a target on the current stack can attach, use it. */
2651 for (t = current_target.beneath; t != NULL; t = t->beneath)
2652 {
2653 if (t->to_create_inferior != NULL)
2654 break;
2655 }
2656
2657 /* Otherwise, use the default run target. */
2658 if (t == NULL)
2659 t = find_default_run_target ("run");
2660
2661 return t;
2662 }
2663
2664 /* Implement the "info proc" command. */
2665
2666 int
2667 target_info_proc (const char *args, enum info_proc_what what)
2668 {
2669 struct target_ops *t;
2670
2671 /* If we're already connected to something that can get us OS
2672 related data, use it. Otherwise, try using the native
2673 target. */
2674 if (current_target.to_stratum >= process_stratum)
2675 t = current_target.beneath;
2676 else
2677 t = find_default_run_target (NULL);
2678
2679 for (; t != NULL; t = t->beneath)
2680 {
2681 if (t->to_info_proc != NULL)
2682 {
2683 t->to_info_proc (t, args, what);
2684
2685 if (targetdebug)
2686 fprintf_unfiltered (gdb_stdlog,
2687 "target_info_proc (\"%s\", %d)\n", args, what);
2688
2689 return 1;
2690 }
2691 }
2692
2693 return 0;
2694 }
2695
2696 static int
2697 find_default_supports_disable_randomization (struct target_ops *self)
2698 {
2699 struct target_ops *t;
2700
2701 t = find_default_run_target (NULL);
2702 if (t && t->to_supports_disable_randomization)
2703 return (t->to_supports_disable_randomization) (t);
2704 return 0;
2705 }
2706
2707 int
2708 target_supports_disable_randomization (void)
2709 {
2710 struct target_ops *t;
2711
2712 for (t = &current_target; t != NULL; t = t->beneath)
2713 if (t->to_supports_disable_randomization)
2714 return t->to_supports_disable_randomization (t);
2715
2716 return 0;
2717 }
2718
2719 /* See target/target.h. */
2720
2721 int
2722 target_supports_multi_process (void)
2723 {
2724 return (*current_target.to_supports_multi_process) (&current_target);
2725 }
2726
2727 /* See target.h. */
2728
2729 gdb::optional<gdb::char_vector>
2730 target_get_osdata (const char *type)
2731 {
2732 struct target_ops *t;
2733
2734 /* If we're already connected to something that can get us OS
2735 related data, use it. Otherwise, try using the native
2736 target. */
2737 if (current_target.to_stratum >= process_stratum)
2738 t = current_target.beneath;
2739 else
2740 t = find_default_run_target ("get OS data");
2741
2742 if (!t)
2743 return {};
2744
2745 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2746 }
2747
2748 static struct address_space *
2749 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2750 {
2751 struct inferior *inf;
2752
2753 /* Fall-back to the "main" address space of the inferior. */
2754 inf = find_inferior_ptid (ptid);
2755
2756 if (inf == NULL || inf->aspace == NULL)
2757 internal_error (__FILE__, __LINE__,
2758 _("Can't determine the current "
2759 "address space of thread %s\n"),
2760 target_pid_to_str (ptid));
2761
2762 return inf->aspace;
2763 }
2764
2765 /* Determine the current address space of thread PTID. */
2766
2767 struct address_space *
2768 target_thread_address_space (ptid_t ptid)
2769 {
2770 struct address_space *aspace;
2771
2772 aspace = current_target.to_thread_address_space (&current_target, ptid);
2773 gdb_assert (aspace != NULL);
2774
2775 return aspace;
2776 }
2777
2778
2779 /* Target file operations. */
2780
2781 static struct target_ops *
2782 default_fileio_target (void)
2783 {
2784 /* If we're already connected to something that can perform
2785 file I/O, use it. Otherwise, try using the native target. */
2786 if (current_target.to_stratum >= process_stratum)
2787 return current_target.beneath;
2788 else
2789 return find_default_run_target ("file I/O");
2790 }
2791
2792 /* File handle for target file operations. */
2793
2794 struct fileio_fh_t
2795 {
2796 /* The target on which this file is open. NULL if the target is
2797 meanwhile closed while the handle is open. */
2798 target_ops *target;
2799
2800 /* The file descriptor on the target. */
2801 int target_fd;
2802
2803 /* Check whether this fileio_fh_t represents a closed file. */
2804 bool is_closed ()
2805 {
2806 return target_fd < 0;
2807 }
2808 };
2809
2810 /* Vector of currently open file handles. The value returned by
2811 target_fileio_open and passed as the FD argument to other
2812 target_fileio_* functions is an index into this vector. This
2813 vector's entries are never freed; instead, files are marked as
2814 closed, and the handle becomes available for reuse. */
2815 static std::vector<fileio_fh_t> fileio_fhandles;
2816
2817 /* Index into fileio_fhandles of the lowest handle that might be
2818 closed. This permits handle reuse without searching the whole
2819 list each time a new file is opened. */
2820 static int lowest_closed_fd;
2821
2822 /* Invalidate the target associated with open handles that were open
2823 on target TARG, since we're about to close (and maybe destroy) the
2824 target. The handles remain open from the client's perspective, but
2825 trying to do anything with them other than closing them will fail
2826 with EIO. */
2827
2828 static void
2829 fileio_handles_invalidate_target (target_ops *targ)
2830 {
2831 for (fileio_fh_t &fh : fileio_fhandles)
2832 if (fh.target == targ)
2833 fh.target = NULL;
2834 }
2835
2836 /* Acquire a target fileio file descriptor. */
2837
2838 static int
2839 acquire_fileio_fd (target_ops *target, int target_fd)
2840 {
2841 /* Search for closed handles to reuse. */
2842 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2843 {
2844 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2845
2846 if (fh.is_closed ())
2847 break;
2848 }
2849
2850 /* Push a new handle if no closed handles were found. */
2851 if (lowest_closed_fd == fileio_fhandles.size ())
2852 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2853 else
2854 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2855
2856 /* Should no longer be marked closed. */
2857 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2858
2859 /* Return its index, and start the next lookup at
2860 the next index. */
2861 return lowest_closed_fd++;
2862 }
2863
2864 /* Release a target fileio file descriptor. */
2865
2866 static void
2867 release_fileio_fd (int fd, fileio_fh_t *fh)
2868 {
2869 fh->target_fd = -1;
2870 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2871 }
2872
2873 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2874
2875 static fileio_fh_t *
2876 fileio_fd_to_fh (int fd)
2877 {
2878 return &fileio_fhandles[fd];
2879 }
2880
2881 /* Helper for target_fileio_open and
2882 target_fileio_open_warn_if_slow. */
2883
2884 static int
2885 target_fileio_open_1 (struct inferior *inf, const char *filename,
2886 int flags, int mode, int warn_if_slow,
2887 int *target_errno)
2888 {
2889 struct target_ops *t;
2890
2891 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2892 {
2893 if (t->to_fileio_open != NULL)
2894 {
2895 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2896 warn_if_slow, target_errno);
2897
2898 if (fd < 0)
2899 fd = -1;
2900 else
2901 fd = acquire_fileio_fd (t, fd);
2902
2903 if (targetdebug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2906 " = %d (%d)\n",
2907 inf == NULL ? 0 : inf->num,
2908 filename, flags, mode,
2909 warn_if_slow, fd,
2910 fd != -1 ? 0 : *target_errno);
2911 return fd;
2912 }
2913 }
2914
2915 *target_errno = FILEIO_ENOSYS;
2916 return -1;
2917 }
2918
2919 /* See target.h. */
2920
2921 int
2922 target_fileio_open (struct inferior *inf, const char *filename,
2923 int flags, int mode, int *target_errno)
2924 {
2925 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2926 target_errno);
2927 }
2928
2929 /* See target.h. */
2930
2931 int
2932 target_fileio_open_warn_if_slow (struct inferior *inf,
2933 const char *filename,
2934 int flags, int mode, int *target_errno)
2935 {
2936 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2937 target_errno);
2938 }
2939
2940 /* See target.h. */
2941
2942 int
2943 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2944 ULONGEST offset, int *target_errno)
2945 {
2946 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2947 int ret = -1;
2948
2949 if (fh->is_closed ())
2950 *target_errno = EBADF;
2951 else if (fh->target == NULL)
2952 *target_errno = EIO;
2953 else
2954 ret = fh->target->to_fileio_pwrite (fh->target, fh->target_fd, write_buf,
2955 len, offset, target_errno);
2956
2957 if (targetdebug)
2958 fprintf_unfiltered (gdb_stdlog,
2959 "target_fileio_pwrite (%d,...,%d,%s) "
2960 "= %d (%d)\n",
2961 fd, len, pulongest (offset),
2962 ret, ret != -1 ? 0 : *target_errno);
2963 return ret;
2964 }
2965
2966 /* See target.h. */
2967
2968 int
2969 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2970 ULONGEST offset, int *target_errno)
2971 {
2972 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2973 int ret = -1;
2974
2975 if (fh->is_closed ())
2976 *target_errno = EBADF;
2977 else if (fh->target == NULL)
2978 *target_errno = EIO;
2979 else
2980 ret = fh->target->to_fileio_pread (fh->target, fh->target_fd, read_buf,
2981 len, offset, target_errno);
2982
2983 if (targetdebug)
2984 fprintf_unfiltered (gdb_stdlog,
2985 "target_fileio_pread (%d,...,%d,%s) "
2986 "= %d (%d)\n",
2987 fd, len, pulongest (offset),
2988 ret, ret != -1 ? 0 : *target_errno);
2989 return ret;
2990 }
2991
2992 /* See target.h. */
2993
2994 int
2995 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2996 {
2997 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2998 int ret = -1;
2999
3000 if (fh->is_closed ())
3001 *target_errno = EBADF;
3002 else if (fh->target == NULL)
3003 *target_errno = EIO;
3004 else
3005 ret = fh->target->to_fileio_fstat (fh->target, fh->target_fd,
3006 sb, target_errno);
3007
3008 if (targetdebug)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "target_fileio_fstat (%d) = %d (%d)\n",
3011 fd, ret, ret != -1 ? 0 : *target_errno);
3012 return ret;
3013 }
3014
3015 /* See target.h. */
3016
3017 int
3018 target_fileio_close (int fd, int *target_errno)
3019 {
3020 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3021 int ret = -1;
3022
3023 if (fh->is_closed ())
3024 *target_errno = EBADF;
3025 else
3026 {
3027 if (fh->target != NULL)
3028 ret = fh->target->to_fileio_close (fh->target, fh->target_fd,
3029 target_errno);
3030 else
3031 ret = 0;
3032 release_fileio_fd (fd, fh);
3033 }
3034
3035 if (targetdebug)
3036 fprintf_unfiltered (gdb_stdlog,
3037 "target_fileio_close (%d) = %d (%d)\n",
3038 fd, ret, ret != -1 ? 0 : *target_errno);
3039 return ret;
3040 }
3041
3042 /* See target.h. */
3043
3044 int
3045 target_fileio_unlink (struct inferior *inf, const char *filename,
3046 int *target_errno)
3047 {
3048 struct target_ops *t;
3049
3050 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3051 {
3052 if (t->to_fileio_unlink != NULL)
3053 {
3054 int ret = t->to_fileio_unlink (t, inf, filename,
3055 target_errno);
3056
3057 if (targetdebug)
3058 fprintf_unfiltered (gdb_stdlog,
3059 "target_fileio_unlink (%d,%s)"
3060 " = %d (%d)\n",
3061 inf == NULL ? 0 : inf->num, filename,
3062 ret, ret != -1 ? 0 : *target_errno);
3063 return ret;
3064 }
3065 }
3066
3067 *target_errno = FILEIO_ENOSYS;
3068 return -1;
3069 }
3070
3071 /* See target.h. */
3072
3073 gdb::optional<std::string>
3074 target_fileio_readlink (struct inferior *inf, const char *filename,
3075 int *target_errno)
3076 {
3077 struct target_ops *t;
3078
3079 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3080 {
3081 if (t->to_fileio_readlink != NULL)
3082 {
3083 gdb::optional<std::string> ret
3084 = t->to_fileio_readlink (t, inf, filename, target_errno);
3085
3086 if (targetdebug)
3087 fprintf_unfiltered (gdb_stdlog,
3088 "target_fileio_readlink (%d,%s)"
3089 " = %s (%d)\n",
3090 inf == NULL ? 0 : inf->num,
3091 filename, ret ? ret->c_str () : "(nil)",
3092 ret ? 0 : *target_errno);
3093 return ret;
3094 }
3095 }
3096
3097 *target_errno = FILEIO_ENOSYS;
3098 return {};
3099 }
3100
3101 /* Like scoped_fd, but specific to target fileio. */
3102
3103 class scoped_target_fd
3104 {
3105 public:
3106 explicit scoped_target_fd (int fd) noexcept
3107 : m_fd (fd)
3108 {
3109 }
3110
3111 ~scoped_target_fd ()
3112 {
3113 if (m_fd >= 0)
3114 {
3115 int target_errno;
3116
3117 target_fileio_close (m_fd, &target_errno);
3118 }
3119 }
3120
3121 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3122
3123 int get () const noexcept
3124 {
3125 return m_fd;
3126 }
3127
3128 private:
3129 int m_fd;
3130 };
3131
3132 /* Read target file FILENAME, in the filesystem as seen by INF. If
3133 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3134 remote targets, the remote stub). Store the result in *BUF_P and
3135 return the size of the transferred data. PADDING additional bytes
3136 are available in *BUF_P. This is a helper function for
3137 target_fileio_read_alloc; see the declaration of that function for
3138 more information. */
3139
3140 static LONGEST
3141 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3142 gdb_byte **buf_p, int padding)
3143 {
3144 size_t buf_alloc, buf_pos;
3145 gdb_byte *buf;
3146 LONGEST n;
3147 int target_errno;
3148
3149 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3150 0700, &target_errno));
3151 if (fd.get () == -1)
3152 return -1;
3153
3154 /* Start by reading up to 4K at a time. The target will throttle
3155 this number down if necessary. */
3156 buf_alloc = 4096;
3157 buf = (gdb_byte *) xmalloc (buf_alloc);
3158 buf_pos = 0;
3159 while (1)
3160 {
3161 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3162 buf_alloc - buf_pos - padding, buf_pos,
3163 &target_errno);
3164 if (n < 0)
3165 {
3166 /* An error occurred. */
3167 xfree (buf);
3168 return -1;
3169 }
3170 else if (n == 0)
3171 {
3172 /* Read all there was. */
3173 if (buf_pos == 0)
3174 xfree (buf);
3175 else
3176 *buf_p = buf;
3177 return buf_pos;
3178 }
3179
3180 buf_pos += n;
3181
3182 /* If the buffer is filling up, expand it. */
3183 if (buf_alloc < buf_pos * 2)
3184 {
3185 buf_alloc *= 2;
3186 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3187 }
3188
3189 QUIT;
3190 }
3191 }
3192
3193 /* See target.h. */
3194
3195 LONGEST
3196 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3197 gdb_byte **buf_p)
3198 {
3199 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3200 }
3201
3202 /* See target.h. */
3203
3204 gdb::unique_xmalloc_ptr<char>
3205 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3206 {
3207 gdb_byte *buffer;
3208 char *bufstr;
3209 LONGEST i, transferred;
3210
3211 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3212 bufstr = (char *) buffer;
3213
3214 if (transferred < 0)
3215 return gdb::unique_xmalloc_ptr<char> (nullptr);
3216
3217 if (transferred == 0)
3218 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3219
3220 bufstr[transferred] = 0;
3221
3222 /* Check for embedded NUL bytes; but allow trailing NULs. */
3223 for (i = strlen (bufstr); i < transferred; i++)
3224 if (bufstr[i] != 0)
3225 {
3226 warning (_("target file %s "
3227 "contained unexpected null characters"),
3228 filename);
3229 break;
3230 }
3231
3232 return gdb::unique_xmalloc_ptr<char> (bufstr);
3233 }
3234
3235
3236 static int
3237 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3238 CORE_ADDR addr, int len)
3239 {
3240 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3241 }
3242
3243 static int
3244 default_watchpoint_addr_within_range (struct target_ops *target,
3245 CORE_ADDR addr,
3246 CORE_ADDR start, int length)
3247 {
3248 return addr >= start && addr < start + length;
3249 }
3250
3251 static struct gdbarch *
3252 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3253 {
3254 inferior *inf = find_inferior_ptid (ptid);
3255 gdb_assert (inf != NULL);
3256 return inf->gdbarch;
3257 }
3258
3259 static int
3260 return_zero (struct target_ops *ignore)
3261 {
3262 return 0;
3263 }
3264
3265 static int
3266 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3267 {
3268 return 0;
3269 }
3270
3271 /*
3272 * Find the next target down the stack from the specified target.
3273 */
3274
3275 struct target_ops *
3276 find_target_beneath (struct target_ops *t)
3277 {
3278 return t->beneath;
3279 }
3280
3281 /* See target.h. */
3282
3283 struct target_ops *
3284 find_target_at (enum strata stratum)
3285 {
3286 struct target_ops *t;
3287
3288 for (t = current_target.beneath; t != NULL; t = t->beneath)
3289 if (t->to_stratum == stratum)
3290 return t;
3291
3292 return NULL;
3293 }
3294
3295 \f
3296
3297 /* See target.h */
3298
3299 void
3300 target_announce_detach (int from_tty)
3301 {
3302 pid_t pid;
3303 const char *exec_file;
3304
3305 if (!from_tty)
3306 return;
3307
3308 exec_file = get_exec_file (0);
3309 if (exec_file == NULL)
3310 exec_file = "";
3311
3312 pid = ptid_get_pid (inferior_ptid);
3313 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3314 target_pid_to_str (pid_to_ptid (pid)));
3315 gdb_flush (gdb_stdout);
3316 }
3317
3318 /* The inferior process has died. Long live the inferior! */
3319
3320 void
3321 generic_mourn_inferior (void)
3322 {
3323 ptid_t ptid;
3324
3325 ptid = inferior_ptid;
3326 inferior_ptid = null_ptid;
3327
3328 /* Mark breakpoints uninserted in case something tries to delete a
3329 breakpoint while we delete the inferior's threads (which would
3330 fail, since the inferior is long gone). */
3331 mark_breakpoints_out ();
3332
3333 if (!ptid_equal (ptid, null_ptid))
3334 {
3335 int pid = ptid_get_pid (ptid);
3336 exit_inferior (pid);
3337 }
3338
3339 /* Note this wipes step-resume breakpoints, so needs to be done
3340 after exit_inferior, which ends up referencing the step-resume
3341 breakpoints through clear_thread_inferior_resources. */
3342 breakpoint_init_inferior (inf_exited);
3343
3344 registers_changed ();
3345
3346 reopen_exec_file ();
3347 reinit_frame_cache ();
3348
3349 if (deprecated_detach_hook)
3350 deprecated_detach_hook ();
3351 }
3352 \f
3353 /* Convert a normal process ID to a string. Returns the string in a
3354 static buffer. */
3355
3356 const char *
3357 normal_pid_to_str (ptid_t ptid)
3358 {
3359 static char buf[32];
3360
3361 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3362 return buf;
3363 }
3364
3365 static const char *
3366 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3367 {
3368 return normal_pid_to_str (ptid);
3369 }
3370
3371 /* Error-catcher for target_find_memory_regions. */
3372 static int
3373 dummy_find_memory_regions (struct target_ops *self,
3374 find_memory_region_ftype ignore1, void *ignore2)
3375 {
3376 error (_("Command not implemented for this target."));
3377 return 0;
3378 }
3379
3380 /* Error-catcher for target_make_corefile_notes. */
3381 static char *
3382 dummy_make_corefile_notes (struct target_ops *self,
3383 bfd *ignore1, int *ignore2)
3384 {
3385 error (_("Command not implemented for this target."));
3386 return NULL;
3387 }
3388
3389 /* Set up the handful of non-empty slots needed by the dummy target
3390 vector. */
3391
3392 static void
3393 init_dummy_target (void)
3394 {
3395 dummy_target.to_shortname = "None";
3396 dummy_target.to_longname = "None";
3397 dummy_target.to_doc = "";
3398 dummy_target.to_supports_disable_randomization
3399 = find_default_supports_disable_randomization;
3400 dummy_target.to_stratum = dummy_stratum;
3401 dummy_target.to_has_all_memory = return_zero;
3402 dummy_target.to_has_memory = return_zero;
3403 dummy_target.to_has_stack = return_zero;
3404 dummy_target.to_has_registers = return_zero;
3405 dummy_target.to_has_execution = return_zero_has_execution;
3406 dummy_target.to_magic = OPS_MAGIC;
3407
3408 install_dummy_methods (&dummy_target);
3409 }
3410 \f
3411
3412 void
3413 target_close (struct target_ops *targ)
3414 {
3415 gdb_assert (!target_is_pushed (targ));
3416
3417 fileio_handles_invalidate_target (targ);
3418
3419 if (targ->to_xclose != NULL)
3420 targ->to_xclose (targ);
3421 else if (targ->to_close != NULL)
3422 targ->to_close (targ);
3423
3424 if (targetdebug)
3425 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3426 }
3427
3428 int
3429 target_thread_alive (ptid_t ptid)
3430 {
3431 return current_target.to_thread_alive (&current_target, ptid);
3432 }
3433
3434 void
3435 target_update_thread_list (void)
3436 {
3437 current_target.to_update_thread_list (&current_target);
3438 }
3439
3440 void
3441 target_stop (ptid_t ptid)
3442 {
3443 if (!may_stop)
3444 {
3445 warning (_("May not interrupt or stop the target, ignoring attempt"));
3446 return;
3447 }
3448
3449 (*current_target.to_stop) (&current_target, ptid);
3450 }
3451
3452 void
3453 target_interrupt ()
3454 {
3455 if (!may_stop)
3456 {
3457 warning (_("May not interrupt or stop the target, ignoring attempt"));
3458 return;
3459 }
3460
3461 (*current_target.to_interrupt) (&current_target);
3462 }
3463
3464 /* See target.h. */
3465
3466 void
3467 target_pass_ctrlc (void)
3468 {
3469 (*current_target.to_pass_ctrlc) (&current_target);
3470 }
3471
3472 /* See target.h. */
3473
3474 void
3475 default_target_pass_ctrlc (struct target_ops *ops)
3476 {
3477 target_interrupt ();
3478 }
3479
3480 /* See target/target.h. */
3481
3482 void
3483 target_stop_and_wait (ptid_t ptid)
3484 {
3485 struct target_waitstatus status;
3486 int was_non_stop = non_stop;
3487
3488 non_stop = 1;
3489 target_stop (ptid);
3490
3491 memset (&status, 0, sizeof (status));
3492 target_wait (ptid, &status, 0);
3493
3494 non_stop = was_non_stop;
3495 }
3496
3497 /* See target/target.h. */
3498
3499 void
3500 target_continue_no_signal (ptid_t ptid)
3501 {
3502 target_resume (ptid, 0, GDB_SIGNAL_0);
3503 }
3504
3505 /* See target/target.h. */
3506
3507 void
3508 target_continue (ptid_t ptid, enum gdb_signal signal)
3509 {
3510 target_resume (ptid, 0, signal);
3511 }
3512
3513 /* Concatenate ELEM to LIST, a comma separate list, and return the
3514 result. The LIST incoming argument is released. */
3515
3516 static char *
3517 str_comma_list_concat_elem (char *list, const char *elem)
3518 {
3519 if (list == NULL)
3520 return xstrdup (elem);
3521 else
3522 return reconcat (list, list, ", ", elem, (char *) NULL);
3523 }
3524
3525 /* Helper for target_options_to_string. If OPT is present in
3526 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3527 Returns the new resulting string. OPT is removed from
3528 TARGET_OPTIONS. */
3529
3530 static char *
3531 do_option (int *target_options, char *ret,
3532 int opt, const char *opt_str)
3533 {
3534 if ((*target_options & opt) != 0)
3535 {
3536 ret = str_comma_list_concat_elem (ret, opt_str);
3537 *target_options &= ~opt;
3538 }
3539
3540 return ret;
3541 }
3542
3543 char *
3544 target_options_to_string (int target_options)
3545 {
3546 char *ret = NULL;
3547
3548 #define DO_TARG_OPTION(OPT) \
3549 ret = do_option (&target_options, ret, OPT, #OPT)
3550
3551 DO_TARG_OPTION (TARGET_WNOHANG);
3552
3553 if (target_options != 0)
3554 ret = str_comma_list_concat_elem (ret, "unknown???");
3555
3556 if (ret == NULL)
3557 ret = xstrdup ("");
3558 return ret;
3559 }
3560
3561 void
3562 target_fetch_registers (struct regcache *regcache, int regno)
3563 {
3564 current_target.to_fetch_registers (&current_target, regcache, regno);
3565 if (targetdebug)
3566 regcache->debug_print_register ("target_fetch_registers", regno);
3567 }
3568
3569 void
3570 target_store_registers (struct regcache *regcache, int regno)
3571 {
3572 if (!may_write_registers)
3573 error (_("Writing to registers is not allowed (regno %d)"), regno);
3574
3575 current_target.to_store_registers (&current_target, regcache, regno);
3576 if (targetdebug)
3577 {
3578 regcache->debug_print_register ("target_store_registers", regno);
3579 }
3580 }
3581
3582 int
3583 target_core_of_thread (ptid_t ptid)
3584 {
3585 return current_target.to_core_of_thread (&current_target, ptid);
3586 }
3587
3588 int
3589 simple_verify_memory (struct target_ops *ops,
3590 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3591 {
3592 LONGEST total_xfered = 0;
3593
3594 while (total_xfered < size)
3595 {
3596 ULONGEST xfered_len;
3597 enum target_xfer_status status;
3598 gdb_byte buf[1024];
3599 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3600
3601 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3602 buf, NULL, lma + total_xfered, howmuch,
3603 &xfered_len);
3604 if (status == TARGET_XFER_OK
3605 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3606 {
3607 total_xfered += xfered_len;
3608 QUIT;
3609 }
3610 else
3611 return 0;
3612 }
3613 return 1;
3614 }
3615
3616 /* Default implementation of memory verification. */
3617
3618 static int
3619 default_verify_memory (struct target_ops *self,
3620 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3621 {
3622 /* Start over from the top of the target stack. */
3623 return simple_verify_memory (current_target.beneath,
3624 data, memaddr, size);
3625 }
3626
3627 int
3628 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3629 {
3630 return current_target.to_verify_memory (&current_target,
3631 data, memaddr, size);
3632 }
3633
3634 /* The documentation for this function is in its prototype declaration in
3635 target.h. */
3636
3637 int
3638 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3639 enum target_hw_bp_type rw)
3640 {
3641 return current_target.to_insert_mask_watchpoint (&current_target,
3642 addr, mask, rw);
3643 }
3644
3645 /* The documentation for this function is in its prototype declaration in
3646 target.h. */
3647
3648 int
3649 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3650 enum target_hw_bp_type rw)
3651 {
3652 return current_target.to_remove_mask_watchpoint (&current_target,
3653 addr, mask, rw);
3654 }
3655
3656 /* The documentation for this function is in its prototype declaration
3657 in target.h. */
3658
3659 int
3660 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3661 {
3662 return current_target.to_masked_watch_num_registers (&current_target,
3663 addr, mask);
3664 }
3665
3666 /* The documentation for this function is in its prototype declaration
3667 in target.h. */
3668
3669 int
3670 target_ranged_break_num_registers (void)
3671 {
3672 return current_target.to_ranged_break_num_registers (&current_target);
3673 }
3674
3675 /* See target.h. */
3676
3677 struct btrace_target_info *
3678 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3679 {
3680 return current_target.to_enable_btrace (&current_target, ptid, conf);
3681 }
3682
3683 /* See target.h. */
3684
3685 void
3686 target_disable_btrace (struct btrace_target_info *btinfo)
3687 {
3688 current_target.to_disable_btrace (&current_target, btinfo);
3689 }
3690
3691 /* See target.h. */
3692
3693 void
3694 target_teardown_btrace (struct btrace_target_info *btinfo)
3695 {
3696 current_target.to_teardown_btrace (&current_target, btinfo);
3697 }
3698
3699 /* See target.h. */
3700
3701 enum btrace_error
3702 target_read_btrace (struct btrace_data *btrace,
3703 struct btrace_target_info *btinfo,
3704 enum btrace_read_type type)
3705 {
3706 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3707 }
3708
3709 /* See target.h. */
3710
3711 const struct btrace_config *
3712 target_btrace_conf (const struct btrace_target_info *btinfo)
3713 {
3714 return current_target.to_btrace_conf (&current_target, btinfo);
3715 }
3716
3717 /* See target.h. */
3718
3719 void
3720 target_stop_recording (void)
3721 {
3722 current_target.to_stop_recording (&current_target);
3723 }
3724
3725 /* See target.h. */
3726
3727 void
3728 target_save_record (const char *filename)
3729 {
3730 current_target.to_save_record (&current_target, filename);
3731 }
3732
3733 /* See target.h. */
3734
3735 int
3736 target_supports_delete_record (void)
3737 {
3738 struct target_ops *t;
3739
3740 for (t = current_target.beneath; t != NULL; t = t->beneath)
3741 if (t->to_delete_record != delegate_delete_record
3742 && t->to_delete_record != tdefault_delete_record)
3743 return 1;
3744
3745 return 0;
3746 }
3747
3748 /* See target.h. */
3749
3750 void
3751 target_delete_record (void)
3752 {
3753 current_target.to_delete_record (&current_target);
3754 }
3755
3756 /* See target.h. */
3757
3758 enum record_method
3759 target_record_method (ptid_t ptid)
3760 {
3761 return current_target.to_record_method (&current_target, ptid);
3762 }
3763
3764 /* See target.h. */
3765
3766 int
3767 target_record_is_replaying (ptid_t ptid)
3768 {
3769 return current_target.to_record_is_replaying (&current_target, ptid);
3770 }
3771
3772 /* See target.h. */
3773
3774 int
3775 target_record_will_replay (ptid_t ptid, int dir)
3776 {
3777 return current_target.to_record_will_replay (&current_target, ptid, dir);
3778 }
3779
3780 /* See target.h. */
3781
3782 void
3783 target_record_stop_replaying (void)
3784 {
3785 current_target.to_record_stop_replaying (&current_target);
3786 }
3787
3788 /* See target.h. */
3789
3790 void
3791 target_goto_record_begin (void)
3792 {
3793 current_target.to_goto_record_begin (&current_target);
3794 }
3795
3796 /* See target.h. */
3797
3798 void
3799 target_goto_record_end (void)
3800 {
3801 current_target.to_goto_record_end (&current_target);
3802 }
3803
3804 /* See target.h. */
3805
3806 void
3807 target_goto_record (ULONGEST insn)
3808 {
3809 current_target.to_goto_record (&current_target, insn);
3810 }
3811
3812 /* See target.h. */
3813
3814 void
3815 target_insn_history (int size, gdb_disassembly_flags flags)
3816 {
3817 current_target.to_insn_history (&current_target, size, flags);
3818 }
3819
3820 /* See target.h. */
3821
3822 void
3823 target_insn_history_from (ULONGEST from, int size,
3824 gdb_disassembly_flags flags)
3825 {
3826 current_target.to_insn_history_from (&current_target, from, size, flags);
3827 }
3828
3829 /* See target.h. */
3830
3831 void
3832 target_insn_history_range (ULONGEST begin, ULONGEST end,
3833 gdb_disassembly_flags flags)
3834 {
3835 current_target.to_insn_history_range (&current_target, begin, end, flags);
3836 }
3837
3838 /* See target.h. */
3839
3840 void
3841 target_call_history (int size, record_print_flags flags)
3842 {
3843 current_target.to_call_history (&current_target, size, flags);
3844 }
3845
3846 /* See target.h. */
3847
3848 void
3849 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3850 {
3851 current_target.to_call_history_from (&current_target, begin, size, flags);
3852 }
3853
3854 /* See target.h. */
3855
3856 void
3857 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3858 {
3859 current_target.to_call_history_range (&current_target, begin, end, flags);
3860 }
3861
3862 /* See target.h. */
3863
3864 const struct frame_unwind *
3865 target_get_unwinder (void)
3866 {
3867 return current_target.to_get_unwinder (&current_target);
3868 }
3869
3870 /* See target.h. */
3871
3872 const struct frame_unwind *
3873 target_get_tailcall_unwinder (void)
3874 {
3875 return current_target.to_get_tailcall_unwinder (&current_target);
3876 }
3877
3878 /* See target.h. */
3879
3880 void
3881 target_prepare_to_generate_core (void)
3882 {
3883 current_target.to_prepare_to_generate_core (&current_target);
3884 }
3885
3886 /* See target.h. */
3887
3888 void
3889 target_done_generating_core (void)
3890 {
3891 current_target.to_done_generating_core (&current_target);
3892 }
3893
3894 static void
3895 setup_target_debug (void)
3896 {
3897 memcpy (&debug_target, &current_target, sizeof debug_target);
3898
3899 init_debug_target (&current_target);
3900 }
3901 \f
3902
3903 static char targ_desc[] =
3904 "Names of targets and files being debugged.\nShows the entire \
3905 stack of targets currently in use (including the exec-file,\n\
3906 core-file, and process, if any), as well as the symbol file name.";
3907
3908 static void
3909 default_rcmd (struct target_ops *self, const char *command,
3910 struct ui_file *output)
3911 {
3912 error (_("\"monitor\" command not supported by this target."));
3913 }
3914
3915 static void
3916 do_monitor_command (const char *cmd, int from_tty)
3917 {
3918 target_rcmd (cmd, gdb_stdtarg);
3919 }
3920
3921 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3922 ignored. */
3923
3924 void
3925 flash_erase_command (const char *cmd, int from_tty)
3926 {
3927 /* Used to communicate termination of flash operations to the target. */
3928 bool found_flash_region = false;
3929 struct gdbarch *gdbarch = target_gdbarch ();
3930
3931 std::vector<mem_region> mem_regions = target_memory_map ();
3932
3933 /* Iterate over all memory regions. */
3934 for (const mem_region &m : mem_regions)
3935 {
3936 /* Is this a flash memory region? */
3937 if (m.attrib.mode == MEM_FLASH)
3938 {
3939 found_flash_region = true;
3940 target_flash_erase (m.lo, m.hi - m.lo);
3941
3942 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3943
3944 current_uiout->message (_("Erasing flash memory region at address "));
3945 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3946 current_uiout->message (", size = ");
3947 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3948 current_uiout->message ("\n");
3949 }
3950 }
3951
3952 /* Did we do any flash operations? If so, we need to finalize them. */
3953 if (found_flash_region)
3954 target_flash_done ();
3955 else
3956 current_uiout->message (_("No flash memory regions found.\n"));
3957 }
3958
3959 /* Print the name of each layers of our target stack. */
3960
3961 static void
3962 maintenance_print_target_stack (const char *cmd, int from_tty)
3963 {
3964 struct target_ops *t;
3965
3966 printf_filtered (_("The current target stack is:\n"));
3967
3968 for (t = target_stack; t != NULL; t = t->beneath)
3969 {
3970 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3971 }
3972 }
3973
3974 /* See target.h. */
3975
3976 void
3977 target_async (int enable)
3978 {
3979 infrun_async (enable);
3980 current_target.to_async (&current_target, enable);
3981 }
3982
3983 /* See target.h. */
3984
3985 void
3986 target_thread_events (int enable)
3987 {
3988 current_target.to_thread_events (&current_target, enable);
3989 }
3990
3991 /* Controls if targets can report that they can/are async. This is
3992 just for maintainers to use when debugging gdb. */
3993 int target_async_permitted = 1;
3994
3995 /* The set command writes to this variable. If the inferior is
3996 executing, target_async_permitted is *not* updated. */
3997 static int target_async_permitted_1 = 1;
3998
3999 static void
4000 maint_set_target_async_command (const char *args, int from_tty,
4001 struct cmd_list_element *c)
4002 {
4003 if (have_live_inferiors ())
4004 {
4005 target_async_permitted_1 = target_async_permitted;
4006 error (_("Cannot change this setting while the inferior is running."));
4007 }
4008
4009 target_async_permitted = target_async_permitted_1;
4010 }
4011
4012 static void
4013 maint_show_target_async_command (struct ui_file *file, int from_tty,
4014 struct cmd_list_element *c,
4015 const char *value)
4016 {
4017 fprintf_filtered (file,
4018 _("Controlling the inferior in "
4019 "asynchronous mode is %s.\n"), value);
4020 }
4021
4022 /* Return true if the target operates in non-stop mode even with "set
4023 non-stop off". */
4024
4025 static int
4026 target_always_non_stop_p (void)
4027 {
4028 return current_target.to_always_non_stop_p (&current_target);
4029 }
4030
4031 /* See target.h. */
4032
4033 int
4034 target_is_non_stop_p (void)
4035 {
4036 return (non_stop
4037 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4038 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4039 && target_always_non_stop_p ()));
4040 }
4041
4042 /* Controls if targets can report that they always run in non-stop
4043 mode. This is just for maintainers to use when debugging gdb. */
4044 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4045
4046 /* The set command writes to this variable. If the inferior is
4047 executing, target_non_stop_enabled is *not* updated. */
4048 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4049
4050 /* Implementation of "maint set target-non-stop". */
4051
4052 static void
4053 maint_set_target_non_stop_command (const char *args, int from_tty,
4054 struct cmd_list_element *c)
4055 {
4056 if (have_live_inferiors ())
4057 {
4058 target_non_stop_enabled_1 = target_non_stop_enabled;
4059 error (_("Cannot change this setting while the inferior is running."));
4060 }
4061
4062 target_non_stop_enabled = target_non_stop_enabled_1;
4063 }
4064
4065 /* Implementation of "maint show target-non-stop". */
4066
4067 static void
4068 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4069 struct cmd_list_element *c,
4070 const char *value)
4071 {
4072 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4073 fprintf_filtered (file,
4074 _("Whether the target is always in non-stop mode "
4075 "is %s (currently %s).\n"), value,
4076 target_always_non_stop_p () ? "on" : "off");
4077 else
4078 fprintf_filtered (file,
4079 _("Whether the target is always in non-stop mode "
4080 "is %s.\n"), value);
4081 }
4082
4083 /* Temporary copies of permission settings. */
4084
4085 static int may_write_registers_1 = 1;
4086 static int may_write_memory_1 = 1;
4087 static int may_insert_breakpoints_1 = 1;
4088 static int may_insert_tracepoints_1 = 1;
4089 static int may_insert_fast_tracepoints_1 = 1;
4090 static int may_stop_1 = 1;
4091
4092 /* Make the user-set values match the real values again. */
4093
4094 void
4095 update_target_permissions (void)
4096 {
4097 may_write_registers_1 = may_write_registers;
4098 may_write_memory_1 = may_write_memory;
4099 may_insert_breakpoints_1 = may_insert_breakpoints;
4100 may_insert_tracepoints_1 = may_insert_tracepoints;
4101 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4102 may_stop_1 = may_stop;
4103 }
4104
4105 /* The one function handles (most of) the permission flags in the same
4106 way. */
4107
4108 static void
4109 set_target_permissions (const char *args, int from_tty,
4110 struct cmd_list_element *c)
4111 {
4112 if (target_has_execution)
4113 {
4114 update_target_permissions ();
4115 error (_("Cannot change this setting while the inferior is running."));
4116 }
4117
4118 /* Make the real values match the user-changed values. */
4119 may_write_registers = may_write_registers_1;
4120 may_insert_breakpoints = may_insert_breakpoints_1;
4121 may_insert_tracepoints = may_insert_tracepoints_1;
4122 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4123 may_stop = may_stop_1;
4124 update_observer_mode ();
4125 }
4126
4127 /* Set memory write permission independently of observer mode. */
4128
4129 static void
4130 set_write_memory_permission (const char *args, int from_tty,
4131 struct cmd_list_element *c)
4132 {
4133 /* Make the real values match the user-changed values. */
4134 may_write_memory = may_write_memory_1;
4135 update_observer_mode ();
4136 }
4137
4138 #if GDB_SELF_TEST
4139 namespace selftests {
4140
4141 static int
4142 test_target_has_registers (target_ops *self)
4143 {
4144 return 1;
4145 }
4146
4147 static int
4148 test_target_has_stack (target_ops *self)
4149 {
4150 return 1;
4151 }
4152
4153 static int
4154 test_target_has_memory (target_ops *self)
4155 {
4156 return 1;
4157 }
4158
4159 static void
4160 test_target_prepare_to_store (target_ops *self, regcache *regs)
4161 {
4162 }
4163
4164 static void
4165 test_target_store_registers (target_ops *self, regcache *regs, int regno)
4166 {
4167 }
4168
4169 test_target_ops::test_target_ops ()
4170 : target_ops {}
4171 {
4172 to_magic = OPS_MAGIC;
4173 to_stratum = process_stratum;
4174 to_has_memory = test_target_has_memory;
4175 to_has_stack = test_target_has_stack;
4176 to_has_registers = test_target_has_registers;
4177 to_prepare_to_store = test_target_prepare_to_store;
4178 to_store_registers = test_target_store_registers;
4179
4180 complete_target_initialization (this);
4181 }
4182
4183 } // namespace selftests
4184 #endif /* GDB_SELF_TEST */
4185
4186 void
4187 initialize_targets (void)
4188 {
4189 init_dummy_target ();
4190 push_target (&dummy_target);
4191
4192 add_info ("target", info_target_command, targ_desc);
4193 add_info ("files", info_target_command, targ_desc);
4194
4195 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4196 Set target debugging."), _("\
4197 Show target debugging."), _("\
4198 When non-zero, target debugging is enabled. Higher numbers are more\n\
4199 verbose."),
4200 set_targetdebug,
4201 show_targetdebug,
4202 &setdebuglist, &showdebuglist);
4203
4204 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4205 &trust_readonly, _("\
4206 Set mode for reading from readonly sections."), _("\
4207 Show mode for reading from readonly sections."), _("\
4208 When this mode is on, memory reads from readonly sections (such as .text)\n\
4209 will be read from the object file instead of from the target. This will\n\
4210 result in significant performance improvement for remote targets."),
4211 NULL,
4212 show_trust_readonly,
4213 &setlist, &showlist);
4214
4215 add_com ("monitor", class_obscure, do_monitor_command,
4216 _("Send a command to the remote monitor (remote targets only)."));
4217
4218 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4219 _("Print the name of each layer of the internal target stack."),
4220 &maintenanceprintlist);
4221
4222 add_setshow_boolean_cmd ("target-async", no_class,
4223 &target_async_permitted_1, _("\
4224 Set whether gdb controls the inferior in asynchronous mode."), _("\
4225 Show whether gdb controls the inferior in asynchronous mode."), _("\
4226 Tells gdb whether to control the inferior in asynchronous mode."),
4227 maint_set_target_async_command,
4228 maint_show_target_async_command,
4229 &maintenance_set_cmdlist,
4230 &maintenance_show_cmdlist);
4231
4232 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4233 &target_non_stop_enabled_1, _("\
4234 Set whether gdb always controls the inferior in non-stop mode."), _("\
4235 Show whether gdb always controls the inferior in non-stop mode."), _("\
4236 Tells gdb whether to control the inferior in non-stop mode."),
4237 maint_set_target_non_stop_command,
4238 maint_show_target_non_stop_command,
4239 &maintenance_set_cmdlist,
4240 &maintenance_show_cmdlist);
4241
4242 add_setshow_boolean_cmd ("may-write-registers", class_support,
4243 &may_write_registers_1, _("\
4244 Set permission to write into registers."), _("\
4245 Show permission to write into registers."), _("\
4246 When this permission is on, GDB may write into the target's registers.\n\
4247 Otherwise, any sort of write attempt will result in an error."),
4248 set_target_permissions, NULL,
4249 &setlist, &showlist);
4250
4251 add_setshow_boolean_cmd ("may-write-memory", class_support,
4252 &may_write_memory_1, _("\
4253 Set permission to write into target memory."), _("\
4254 Show permission to write into target memory."), _("\
4255 When this permission is on, GDB may write into the target's memory.\n\
4256 Otherwise, any sort of write attempt will result in an error."),
4257 set_write_memory_permission, NULL,
4258 &setlist, &showlist);
4259
4260 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4261 &may_insert_breakpoints_1, _("\
4262 Set permission to insert breakpoints in the target."), _("\
4263 Show permission to insert breakpoints in the target."), _("\
4264 When this permission is on, GDB may insert breakpoints in the program.\n\
4265 Otherwise, any sort of insertion attempt will result in an error."),
4266 set_target_permissions, NULL,
4267 &setlist, &showlist);
4268
4269 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4270 &may_insert_tracepoints_1, _("\
4271 Set permission to insert tracepoints in the target."), _("\
4272 Show permission to insert tracepoints in the target."), _("\
4273 When this permission is on, GDB may insert tracepoints in the program.\n\
4274 Otherwise, any sort of insertion attempt will result in an error."),
4275 set_target_permissions, NULL,
4276 &setlist, &showlist);
4277
4278 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4279 &may_insert_fast_tracepoints_1, _("\
4280 Set permission to insert fast tracepoints in the target."), _("\
4281 Show permission to insert fast tracepoints in the target."), _("\
4282 When this permission is on, GDB may insert fast tracepoints.\n\
4283 Otherwise, any sort of insertion attempt will result in an error."),
4284 set_target_permissions, NULL,
4285 &setlist, &showlist);
4286
4287 add_setshow_boolean_cmd ("may-interrupt", class_support,
4288 &may_stop_1, _("\
4289 Set permission to interrupt or signal the target."), _("\
4290 Show permission to interrupt or signal the target."), _("\
4291 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4292 Otherwise, any attempt to interrupt or stop will be ignored."),
4293 set_target_permissions, NULL,
4294 &setlist, &showlist);
4295
4296 add_com ("flash-erase", no_class, flash_erase_command,
4297 _("Erase all flash memory regions."));
4298
4299 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4300 &auto_connect_native_target, _("\
4301 Set whether GDB may automatically connect to the native target."), _("\
4302 Show whether GDB may automatically connect to the native target."), _("\
4303 When on, and GDB is not connected to a target yet, GDB\n\
4304 attempts \"run\" and other commands with the native target."),
4305 NULL, show_auto_connect_native_target,
4306 &setlist, &showlist);
4307 }
This page took 0.180707 seconds and 5 git commands to generate.