Remove make_cleanup_restore_target_terminal
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void info_target_command (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static void target_command (char *, int);
94
95 static struct target_ops *find_default_run_target (const char *);
96
97 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
100 static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
104 static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
107 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
109 static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
112 static struct target_ops debug_target;
113
114 #include "target-delegates.c"
115
116 static void init_dummy_target (void);
117
118 static void update_current_target (void);
119
120 /* Vector of existing target structures. */
121 typedef struct target_ops *target_ops_p;
122 DEF_VEC_P (target_ops_p);
123 static VEC (target_ops_p) *target_structs;
124
125 /* The initial current target, so that there is always a semi-valid
126 current target. */
127
128 static struct target_ops dummy_target;
129
130 /* Top of target stack. */
131
132 static struct target_ops *target_stack;
133
134 /* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137 struct target_ops current_target;
138
139 /* Command list for target. */
140
141 static struct cmd_list_element *targetlist = NULL;
142
143 /* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146 static int trust_readonly = 0;
147
148 /* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151 static int show_memory_breakpoints = 0;
152
153 /* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157 int may_write_registers = 1;
158
159 int may_write_memory = 1;
160
161 int may_insert_breakpoints = 1;
162
163 int may_insert_tracepoints = 1;
164
165 int may_insert_fast_tracepoints = 1;
166
167 int may_stop = 1;
168
169 /* Non-zero if we want to see trace of target level stuff. */
170
171 static unsigned int targetdebug = 0;
172
173 static void
174 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175 {
176 update_current_target ();
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 static void setup_target_debug (void);
187
188 /* The user just typed 'target' without the name of a target. */
189
190 static void
191 target_command (char *arg, int from_tty)
192 {
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195 }
196
197 /* Default target_has_* methods for process_stratum targets. */
198
199 int
200 default_child_has_all_memory (struct target_ops *ops)
201 {
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207 }
208
209 int
210 default_child_has_memory (struct target_ops *ops)
211 {
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217 }
218
219 int
220 default_child_has_stack (struct target_ops *ops)
221 {
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227 }
228
229 int
230 default_child_has_registers (struct target_ops *ops)
231 {
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237 }
238
239 int
240 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241 {
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
244 if (ptid_equal (the_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250
251 int
252 target_has_all_memory_1 (void)
253 {
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261 }
262
263 int
264 target_has_memory_1 (void)
265 {
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273 }
274
275 int
276 target_has_stack_1 (void)
277 {
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285 }
286
287 int
288 target_has_registers_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_execution_1 (ptid_t the_ptid)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_execution (t, the_ptid))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_execution_current (void)
313 {
314 return target_has_execution_1 (inferior_ptid);
315 }
316
317 /* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
319
320 void
321 complete_target_initialization (struct target_ops *t)
322 {
323 /* Provide default values for all "must have" methods. */
324
325 if (t->to_has_all_memory == NULL)
326 t->to_has_all_memory = return_zero;
327
328 if (t->to_has_memory == NULL)
329 t->to_has_memory = return_zero;
330
331 if (t->to_has_stack == NULL)
332 t->to_has_stack = return_zero;
333
334 if (t->to_has_registers == NULL)
335 t->to_has_registers = return_zero;
336
337 if (t->to_has_execution == NULL)
338 t->to_has_execution = return_zero_has_execution;
339
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
346 install_delegators (t);
347 }
348
349 /* This is used to implement the various target commands. */
350
351 static void
352 open_target (char *args, int from_tty, struct cmd_list_element *command)
353 {
354 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365 }
366
367 /* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371 void
372 add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374 {
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
378
379 VEC_safe_push (target_ops_p, target_structs, t);
380
381 if (targetlist == NULL)
382 add_prefix_cmd ("target", class_run, target_command, _("\
383 Connect to a target machine or process.\n\
384 The first argument is the type or protocol of the target machine.\n\
385 Remaining arguments are interpreted by the target protocol. For more\n\
386 information on the arguments for a particular protocol, type\n\
387 `help target ' followed by the protocol name."),
388 &targetlist, "target ", 0, &cmdlist);
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394 }
395
396 /* Add a possible target architecture to the list. */
397
398 void
399 add_target (struct target_ops *t)
400 {
401 add_target_with_completer (t, NULL);
402 }
403
404 /* See target.h. */
405
406 void
407 add_deprecated_target_alias (struct target_ops *t, const char *alias)
408 {
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419 }
420
421 /* Stub functions */
422
423 void
424 target_kill (void)
425 {
426 current_target.to_kill (&current_target);
427 }
428
429 void
430 target_load (const char *arg, int from_tty)
431 {
432 target_dcache_invalidate ();
433 (*current_target.to_load) (&current_target, arg, from_tty);
434 }
435
436 /* Define it. */
437
438 enum target_terminal::terminal_state target_terminal::terminal_state
439 = target_terminal::terminal_is_ours;
440
441 /* See target/target.h. */
442
443 void
444 target_terminal::init (void)
445 {
446 (*current_target.to_terminal_init) (&current_target);
447
448 terminal_state = terminal_is_ours;
449 }
450
451 /* See target/target.h. */
452
453 void
454 target_terminal::inferior (void)
455 {
456 struct ui *ui = current_ui;
457
458 /* A background resume (``run&'') should leave GDB in control of the
459 terminal. */
460 if (ui->prompt_state != PROMPT_BLOCKED)
461 return;
462
463 /* Since we always run the inferior in the main console (unless "set
464 inferior-tty" is in effect), when some UI other than the main one
465 calls target_terminal::inferior, then we leave the main UI's
466 terminal settings as is. */
467 if (ui != main_ui)
468 return;
469
470 if (terminal_state == terminal_is_inferior)
471 return;
472
473 /* If GDB is resuming the inferior in the foreground, install
474 inferior's terminal modes. */
475 (*current_target.to_terminal_inferior) (&current_target);
476 terminal_state = terminal_is_inferior;
477
478 /* If the user hit C-c before, pretend that it was hit right
479 here. */
480 if (check_quit_flag ())
481 target_pass_ctrlc ();
482 }
483
484 /* See target/target.h. */
485
486 void
487 target_terminal::ours ()
488 {
489 struct ui *ui = current_ui;
490
491 /* See target_terminal::inferior. */
492 if (ui != main_ui)
493 return;
494
495 if (terminal_state == terminal_is_ours)
496 return;
497
498 (*current_target.to_terminal_ours) (&current_target);
499 terminal_state = terminal_is_ours;
500 }
501
502 /* See target/target.h. */
503
504 void
505 target_terminal::ours_for_output ()
506 {
507 struct ui *ui = current_ui;
508
509 /* See target_terminal::inferior. */
510 if (ui != main_ui)
511 return;
512
513 if (terminal_state != terminal_is_inferior)
514 return;
515 (*current_target.to_terminal_ours_for_output) (&current_target);
516 terminal_state = terminal_is_ours_for_output;
517 }
518
519 /* See target/target.h. */
520
521 void
522 target_terminal::info (const char *arg, int from_tty)
523 {
524 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
525 }
526
527 /* See target.h. */
528
529 int
530 target_supports_terminal_ours (void)
531 {
532 struct target_ops *t;
533
534 for (t = current_target.beneath; t != NULL; t = t->beneath)
535 {
536 if (t->to_terminal_ours != delegate_terminal_ours
537 && t->to_terminal_ours != tdefault_terminal_ours)
538 return 1;
539 }
540
541 return 0;
542 }
543
544 static void
545 tcomplain (void)
546 {
547 error (_("You can't do that when your target is `%s'"),
548 current_target.to_shortname);
549 }
550
551 void
552 noprocess (void)
553 {
554 error (_("You can't do that without a process to debug."));
555 }
556
557 static void
558 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
559 {
560 printf_unfiltered (_("No saved terminal information.\n"));
561 }
562
563 /* A default implementation for the to_get_ada_task_ptid target method.
564
565 This function builds the PTID by using both LWP and TID as part of
566 the PTID lwp and tid elements. The pid used is the pid of the
567 inferior_ptid. */
568
569 static ptid_t
570 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
571 {
572 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
573 }
574
575 static enum exec_direction_kind
576 default_execution_direction (struct target_ops *self)
577 {
578 if (!target_can_execute_reverse)
579 return EXEC_FORWARD;
580 else if (!target_can_async_p ())
581 return EXEC_FORWARD;
582 else
583 gdb_assert_not_reached ("\
584 to_execution_direction must be implemented for reverse async");
585 }
586
587 /* Go through the target stack from top to bottom, copying over zero
588 entries in current_target, then filling in still empty entries. In
589 effect, we are doing class inheritance through the pushed target
590 vectors.
591
592 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
593 is currently implemented, is that it discards any knowledge of
594 which target an inherited method originally belonged to.
595 Consequently, new new target methods should instead explicitly and
596 locally search the target stack for the target that can handle the
597 request. */
598
599 static void
600 update_current_target (void)
601 {
602 struct target_ops *t;
603
604 /* First, reset current's contents. */
605 memset (&current_target, 0, sizeof (current_target));
606
607 /* Install the delegators. */
608 install_delegators (&current_target);
609
610 current_target.to_stratum = target_stack->to_stratum;
611
612 #define INHERIT(FIELD, TARGET) \
613 if (!current_target.FIELD) \
614 current_target.FIELD = (TARGET)->FIELD
615
616 /* Do not add any new INHERITs here. Instead, use the delegation
617 mechanism provided by make-target-delegates. */
618 for (t = target_stack; t; t = t->beneath)
619 {
620 INHERIT (to_shortname, t);
621 INHERIT (to_longname, t);
622 INHERIT (to_attach_no_wait, t);
623 INHERIT (to_have_steppable_watchpoint, t);
624 INHERIT (to_have_continuable_watchpoint, t);
625 INHERIT (to_has_thread_control, t);
626 }
627 #undef INHERIT
628
629 /* Finally, position the target-stack beneath the squashed
630 "current_target". That way code looking for a non-inherited
631 target method can quickly and simply find it. */
632 current_target.beneath = target_stack;
633
634 if (targetdebug)
635 setup_target_debug ();
636 }
637
638 /* Push a new target type into the stack of the existing target accessors,
639 possibly superseding some of the existing accessors.
640
641 Rather than allow an empty stack, we always have the dummy target at
642 the bottom stratum, so we can call the function vectors without
643 checking them. */
644
645 void
646 push_target (struct target_ops *t)
647 {
648 struct target_ops **cur;
649
650 /* Check magic number. If wrong, it probably means someone changed
651 the struct definition, but not all the places that initialize one. */
652 if (t->to_magic != OPS_MAGIC)
653 {
654 fprintf_unfiltered (gdb_stderr,
655 "Magic number of %s target struct wrong\n",
656 t->to_shortname);
657 internal_error (__FILE__, __LINE__,
658 _("failed internal consistency check"));
659 }
660
661 /* Find the proper stratum to install this target in. */
662 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
663 {
664 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
665 break;
666 }
667
668 /* If there's already targets at this stratum, remove them. */
669 /* FIXME: cagney/2003-10-15: I think this should be popping all
670 targets to CUR, and not just those at this stratum level. */
671 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
672 {
673 /* There's already something at this stratum level. Close it,
674 and un-hook it from the stack. */
675 struct target_ops *tmp = (*cur);
676
677 (*cur) = (*cur)->beneath;
678 tmp->beneath = NULL;
679 target_close (tmp);
680 }
681
682 /* We have removed all targets in our stratum, now add the new one. */
683 t->beneath = (*cur);
684 (*cur) = t;
685
686 update_current_target ();
687 }
688
689 /* Remove a target_ops vector from the stack, wherever it may be.
690 Return how many times it was removed (0 or 1). */
691
692 int
693 unpush_target (struct target_ops *t)
694 {
695 struct target_ops **cur;
696 struct target_ops *tmp;
697
698 if (t->to_stratum == dummy_stratum)
699 internal_error (__FILE__, __LINE__,
700 _("Attempt to unpush the dummy target"));
701
702 /* Look for the specified target. Note that we assume that a target
703 can only occur once in the target stack. */
704
705 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
706 {
707 if ((*cur) == t)
708 break;
709 }
710
711 /* If we don't find target_ops, quit. Only open targets should be
712 closed. */
713 if ((*cur) == NULL)
714 return 0;
715
716 /* Unchain the target. */
717 tmp = (*cur);
718 (*cur) = (*cur)->beneath;
719 tmp->beneath = NULL;
720
721 update_current_target ();
722
723 /* Finally close the target. Note we do this after unchaining, so
724 any target method calls from within the target_close
725 implementation don't end up in T anymore. */
726 target_close (t);
727
728 return 1;
729 }
730
731 /* Unpush TARGET and assert that it worked. */
732
733 static void
734 unpush_target_and_assert (struct target_ops *target)
735 {
736 if (!unpush_target (target))
737 {
738 fprintf_unfiltered (gdb_stderr,
739 "pop_all_targets couldn't find target %s\n",
740 target->to_shortname);
741 internal_error (__FILE__, __LINE__,
742 _("failed internal consistency check"));
743 }
744 }
745
746 void
747 pop_all_targets_above (enum strata above_stratum)
748 {
749 while ((int) (current_target.to_stratum) > (int) above_stratum)
750 unpush_target_and_assert (target_stack);
751 }
752
753 /* See target.h. */
754
755 void
756 pop_all_targets_at_and_above (enum strata stratum)
757 {
758 while ((int) (current_target.to_stratum) >= (int) stratum)
759 unpush_target_and_assert (target_stack);
760 }
761
762 void
763 pop_all_targets (void)
764 {
765 pop_all_targets_above (dummy_stratum);
766 }
767
768 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
769
770 int
771 target_is_pushed (struct target_ops *t)
772 {
773 struct target_ops *cur;
774
775 /* Check magic number. If wrong, it probably means someone changed
776 the struct definition, but not all the places that initialize one. */
777 if (t->to_magic != OPS_MAGIC)
778 {
779 fprintf_unfiltered (gdb_stderr,
780 "Magic number of %s target struct wrong\n",
781 t->to_shortname);
782 internal_error (__FILE__, __LINE__,
783 _("failed internal consistency check"));
784 }
785
786 for (cur = target_stack; cur != NULL; cur = cur->beneath)
787 if (cur == t)
788 return 1;
789
790 return 0;
791 }
792
793 /* Default implementation of to_get_thread_local_address. */
794
795 static void
796 generic_tls_error (void)
797 {
798 throw_error (TLS_GENERIC_ERROR,
799 _("Cannot find thread-local variables on this target"));
800 }
801
802 /* Using the objfile specified in OBJFILE, find the address for the
803 current thread's thread-local storage with offset OFFSET. */
804 CORE_ADDR
805 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
806 {
807 volatile CORE_ADDR addr = 0;
808 struct target_ops *target = &current_target;
809
810 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
811 {
812 ptid_t ptid = inferior_ptid;
813
814 TRY
815 {
816 CORE_ADDR lm_addr;
817
818 /* Fetch the load module address for this objfile. */
819 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
820 objfile);
821
822 addr = target->to_get_thread_local_address (target, ptid,
823 lm_addr, offset);
824 }
825 /* If an error occurred, print TLS related messages here. Otherwise,
826 throw the error to some higher catcher. */
827 CATCH (ex, RETURN_MASK_ALL)
828 {
829 int objfile_is_library = (objfile->flags & OBJF_SHARED);
830
831 switch (ex.error)
832 {
833 case TLS_NO_LIBRARY_SUPPORT_ERROR:
834 error (_("Cannot find thread-local variables "
835 "in this thread library."));
836 break;
837 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
838 if (objfile_is_library)
839 error (_("Cannot find shared library `%s' in dynamic"
840 " linker's load module list"), objfile_name (objfile));
841 else
842 error (_("Cannot find executable file `%s' in dynamic"
843 " linker's load module list"), objfile_name (objfile));
844 break;
845 case TLS_NOT_ALLOCATED_YET_ERROR:
846 if (objfile_is_library)
847 error (_("The inferior has not yet allocated storage for"
848 " thread-local variables in\n"
849 "the shared library `%s'\n"
850 "for %s"),
851 objfile_name (objfile), target_pid_to_str (ptid));
852 else
853 error (_("The inferior has not yet allocated storage for"
854 " thread-local variables in\n"
855 "the executable `%s'\n"
856 "for %s"),
857 objfile_name (objfile), target_pid_to_str (ptid));
858 break;
859 case TLS_GENERIC_ERROR:
860 if (objfile_is_library)
861 error (_("Cannot find thread-local storage for %s, "
862 "shared library %s:\n%s"),
863 target_pid_to_str (ptid),
864 objfile_name (objfile), ex.message);
865 else
866 error (_("Cannot find thread-local storage for %s, "
867 "executable file %s:\n%s"),
868 target_pid_to_str (ptid),
869 objfile_name (objfile), ex.message);
870 break;
871 default:
872 throw_exception (ex);
873 break;
874 }
875 }
876 END_CATCH
877 }
878 /* It wouldn't be wrong here to try a gdbarch method, too; finding
879 TLS is an ABI-specific thing. But we don't do that yet. */
880 else
881 error (_("Cannot find thread-local variables on this target"));
882
883 return addr;
884 }
885
886 const char *
887 target_xfer_status_to_string (enum target_xfer_status status)
888 {
889 #define CASE(X) case X: return #X
890 switch (status)
891 {
892 CASE(TARGET_XFER_E_IO);
893 CASE(TARGET_XFER_UNAVAILABLE);
894 default:
895 return "<unknown>";
896 }
897 #undef CASE
898 };
899
900
901 #undef MIN
902 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
903
904 /* target_read_string -- read a null terminated string, up to LEN bytes,
905 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
906 Set *STRING to a pointer to malloc'd memory containing the data; the caller
907 is responsible for freeing it. Return the number of bytes successfully
908 read. */
909
910 int
911 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
912 {
913 int tlen, offset, i;
914 gdb_byte buf[4];
915 int errcode = 0;
916 char *buffer;
917 int buffer_allocated;
918 char *bufptr;
919 unsigned int nbytes_read = 0;
920
921 gdb_assert (string);
922
923 /* Small for testing. */
924 buffer_allocated = 4;
925 buffer = (char *) xmalloc (buffer_allocated);
926 bufptr = buffer;
927
928 while (len > 0)
929 {
930 tlen = MIN (len, 4 - (memaddr & 3));
931 offset = memaddr & 3;
932
933 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
934 if (errcode != 0)
935 {
936 /* The transfer request might have crossed the boundary to an
937 unallocated region of memory. Retry the transfer, requesting
938 a single byte. */
939 tlen = 1;
940 offset = 0;
941 errcode = target_read_memory (memaddr, buf, 1);
942 if (errcode != 0)
943 goto done;
944 }
945
946 if (bufptr - buffer + tlen > buffer_allocated)
947 {
948 unsigned int bytes;
949
950 bytes = bufptr - buffer;
951 buffer_allocated *= 2;
952 buffer = (char *) xrealloc (buffer, buffer_allocated);
953 bufptr = buffer + bytes;
954 }
955
956 for (i = 0; i < tlen; i++)
957 {
958 *bufptr++ = buf[i + offset];
959 if (buf[i + offset] == '\000')
960 {
961 nbytes_read += i + 1;
962 goto done;
963 }
964 }
965
966 memaddr += tlen;
967 len -= tlen;
968 nbytes_read += tlen;
969 }
970 done:
971 *string = buffer;
972 if (errnop != NULL)
973 *errnop = errcode;
974 return nbytes_read;
975 }
976
977 struct target_section_table *
978 target_get_section_table (struct target_ops *target)
979 {
980 return (*target->to_get_section_table) (target);
981 }
982
983 /* Find a section containing ADDR. */
984
985 struct target_section *
986 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
987 {
988 struct target_section_table *table = target_get_section_table (target);
989 struct target_section *secp;
990
991 if (table == NULL)
992 return NULL;
993
994 for (secp = table->sections; secp < table->sections_end; secp++)
995 {
996 if (addr >= secp->addr && addr < secp->endaddr)
997 return secp;
998 }
999 return NULL;
1000 }
1001
1002
1003 /* Helper for the memory xfer routines. Checks the attributes of the
1004 memory region of MEMADDR against the read or write being attempted.
1005 If the access is permitted returns true, otherwise returns false.
1006 REGION_P is an optional output parameter. If not-NULL, it is
1007 filled with a pointer to the memory region of MEMADDR. REG_LEN
1008 returns LEN trimmed to the end of the region. This is how much the
1009 caller can continue requesting, if the access is permitted. A
1010 single xfer request must not straddle memory region boundaries. */
1011
1012 static int
1013 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1014 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1015 struct mem_region **region_p)
1016 {
1017 struct mem_region *region;
1018
1019 region = lookup_mem_region (memaddr);
1020
1021 if (region_p != NULL)
1022 *region_p = region;
1023
1024 switch (region->attrib.mode)
1025 {
1026 case MEM_RO:
1027 if (writebuf != NULL)
1028 return 0;
1029 break;
1030
1031 case MEM_WO:
1032 if (readbuf != NULL)
1033 return 0;
1034 break;
1035
1036 case MEM_FLASH:
1037 /* We only support writing to flash during "load" for now. */
1038 if (writebuf != NULL)
1039 error (_("Writing to flash memory forbidden in this context"));
1040 break;
1041
1042 case MEM_NONE:
1043 return 0;
1044 }
1045
1046 /* region->hi == 0 means there's no upper bound. */
1047 if (memaddr + len < region->hi || region->hi == 0)
1048 *reg_len = len;
1049 else
1050 *reg_len = region->hi - memaddr;
1051
1052 return 1;
1053 }
1054
1055 /* Read memory from more than one valid target. A core file, for
1056 instance, could have some of memory but delegate other bits to
1057 the target below it. So, we must manually try all targets. */
1058
1059 enum target_xfer_status
1060 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1061 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1062 ULONGEST *xfered_len)
1063 {
1064 enum target_xfer_status res;
1065
1066 do
1067 {
1068 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1069 readbuf, writebuf, memaddr, len,
1070 xfered_len);
1071 if (res == TARGET_XFER_OK)
1072 break;
1073
1074 /* Stop if the target reports that the memory is not available. */
1075 if (res == TARGET_XFER_UNAVAILABLE)
1076 break;
1077
1078 /* We want to continue past core files to executables, but not
1079 past a running target's memory. */
1080 if (ops->to_has_all_memory (ops))
1081 break;
1082
1083 ops = ops->beneath;
1084 }
1085 while (ops != NULL);
1086
1087 /* The cache works at the raw memory level. Make sure the cache
1088 gets updated with raw contents no matter what kind of memory
1089 object was originally being written. Note we do write-through
1090 first, so that if it fails, we don't write to the cache contents
1091 that never made it to the target. */
1092 if (writebuf != NULL
1093 && !ptid_equal (inferior_ptid, null_ptid)
1094 && target_dcache_init_p ()
1095 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1096 {
1097 DCACHE *dcache = target_dcache_get ();
1098
1099 /* Note that writing to an area of memory which wasn't present
1100 in the cache doesn't cause it to be loaded in. */
1101 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1102 }
1103
1104 return res;
1105 }
1106
1107 /* Perform a partial memory transfer.
1108 For docs see target.h, to_xfer_partial. */
1109
1110 static enum target_xfer_status
1111 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1112 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1113 ULONGEST len, ULONGEST *xfered_len)
1114 {
1115 enum target_xfer_status res;
1116 ULONGEST reg_len;
1117 struct mem_region *region;
1118 struct inferior *inf;
1119
1120 /* For accesses to unmapped overlay sections, read directly from
1121 files. Must do this first, as MEMADDR may need adjustment. */
1122 if (readbuf != NULL && overlay_debugging)
1123 {
1124 struct obj_section *section = find_pc_overlay (memaddr);
1125
1126 if (pc_in_unmapped_range (memaddr, section))
1127 {
1128 struct target_section_table *table
1129 = target_get_section_table (ops);
1130 const char *section_name = section->the_bfd_section->name;
1131
1132 memaddr = overlay_mapped_address (memaddr, section);
1133 return section_table_xfer_memory_partial (readbuf, writebuf,
1134 memaddr, len, xfered_len,
1135 table->sections,
1136 table->sections_end,
1137 section_name);
1138 }
1139 }
1140
1141 /* Try the executable files, if "trust-readonly-sections" is set. */
1142 if (readbuf != NULL && trust_readonly)
1143 {
1144 struct target_section *secp;
1145 struct target_section_table *table;
1146
1147 secp = target_section_by_addr (ops, memaddr);
1148 if (secp != NULL
1149 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1150 secp->the_bfd_section)
1151 & SEC_READONLY))
1152 {
1153 table = target_get_section_table (ops);
1154 return section_table_xfer_memory_partial (readbuf, writebuf,
1155 memaddr, len, xfered_len,
1156 table->sections,
1157 table->sections_end,
1158 NULL);
1159 }
1160 }
1161
1162 /* Try GDB's internal data cache. */
1163
1164 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1165 &region))
1166 return TARGET_XFER_E_IO;
1167
1168 if (!ptid_equal (inferior_ptid, null_ptid))
1169 inf = find_inferior_ptid (inferior_ptid);
1170 else
1171 inf = NULL;
1172
1173 if (inf != NULL
1174 && readbuf != NULL
1175 /* The dcache reads whole cache lines; that doesn't play well
1176 with reading from a trace buffer, because reading outside of
1177 the collected memory range fails. */
1178 && get_traceframe_number () == -1
1179 && (region->attrib.cache
1180 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1181 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1182 {
1183 DCACHE *dcache = target_dcache_get_or_init ();
1184
1185 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1186 reg_len, xfered_len);
1187 }
1188
1189 /* If none of those methods found the memory we wanted, fall back
1190 to a target partial transfer. Normally a single call to
1191 to_xfer_partial is enough; if it doesn't recognize an object
1192 it will call the to_xfer_partial of the next target down.
1193 But for memory this won't do. Memory is the only target
1194 object which can be read from more than one valid target.
1195 A core file, for instance, could have some of memory but
1196 delegate other bits to the target below it. So, we must
1197 manually try all targets. */
1198
1199 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1200 xfered_len);
1201
1202 /* If we still haven't got anything, return the last error. We
1203 give up. */
1204 return res;
1205 }
1206
1207 /* Perform a partial memory transfer. For docs see target.h,
1208 to_xfer_partial. */
1209
1210 static enum target_xfer_status
1211 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1212 gdb_byte *readbuf, const gdb_byte *writebuf,
1213 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1214 {
1215 enum target_xfer_status res;
1216
1217 /* Zero length requests are ok and require no work. */
1218 if (len == 0)
1219 return TARGET_XFER_EOF;
1220
1221 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1222 breakpoint insns, thus hiding out from higher layers whether
1223 there are software breakpoints inserted in the code stream. */
1224 if (readbuf != NULL)
1225 {
1226 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1227 xfered_len);
1228
1229 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1230 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1231 }
1232 else
1233 {
1234 /* A large write request is likely to be partially satisfied
1235 by memory_xfer_partial_1. We will continually malloc
1236 and free a copy of the entire write request for breakpoint
1237 shadow handling even though we only end up writing a small
1238 subset of it. Cap writes to a limit specified by the target
1239 to mitigate this. */
1240 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1241
1242 gdb::byte_vector buf (writebuf, writebuf + len);
1243 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1244 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1245 xfered_len);
1246 }
1247
1248 return res;
1249 }
1250
1251 scoped_restore_tmpl<int>
1252 make_scoped_restore_show_memory_breakpoints (int show)
1253 {
1254 return make_scoped_restore (&show_memory_breakpoints, show);
1255 }
1256
1257 /* For docs see target.h, to_xfer_partial. */
1258
1259 enum target_xfer_status
1260 target_xfer_partial (struct target_ops *ops,
1261 enum target_object object, const char *annex,
1262 gdb_byte *readbuf, const gdb_byte *writebuf,
1263 ULONGEST offset, ULONGEST len,
1264 ULONGEST *xfered_len)
1265 {
1266 enum target_xfer_status retval;
1267
1268 gdb_assert (ops->to_xfer_partial != NULL);
1269
1270 /* Transfer is done when LEN is zero. */
1271 if (len == 0)
1272 return TARGET_XFER_EOF;
1273
1274 if (writebuf && !may_write_memory)
1275 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1276 core_addr_to_string_nz (offset), plongest (len));
1277
1278 *xfered_len = 0;
1279
1280 /* If this is a memory transfer, let the memory-specific code
1281 have a look at it instead. Memory transfers are more
1282 complicated. */
1283 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1284 || object == TARGET_OBJECT_CODE_MEMORY)
1285 retval = memory_xfer_partial (ops, object, readbuf,
1286 writebuf, offset, len, xfered_len);
1287 else if (object == TARGET_OBJECT_RAW_MEMORY)
1288 {
1289 /* Skip/avoid accessing the target if the memory region
1290 attributes block the access. Check this here instead of in
1291 raw_memory_xfer_partial as otherwise we'd end up checking
1292 this twice in the case of the memory_xfer_partial path is
1293 taken; once before checking the dcache, and another in the
1294 tail call to raw_memory_xfer_partial. */
1295 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1296 NULL))
1297 return TARGET_XFER_E_IO;
1298
1299 /* Request the normal memory object from other layers. */
1300 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1301 xfered_len);
1302 }
1303 else
1304 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1305 writebuf, offset, len, xfered_len);
1306
1307 if (targetdebug)
1308 {
1309 const unsigned char *myaddr = NULL;
1310
1311 fprintf_unfiltered (gdb_stdlog,
1312 "%s:target_xfer_partial "
1313 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1314 ops->to_shortname,
1315 (int) object,
1316 (annex ? annex : "(null)"),
1317 host_address_to_string (readbuf),
1318 host_address_to_string (writebuf),
1319 core_addr_to_string_nz (offset),
1320 pulongest (len), retval,
1321 pulongest (*xfered_len));
1322
1323 if (readbuf)
1324 myaddr = readbuf;
1325 if (writebuf)
1326 myaddr = writebuf;
1327 if (retval == TARGET_XFER_OK && myaddr != NULL)
1328 {
1329 int i;
1330
1331 fputs_unfiltered (", bytes =", gdb_stdlog);
1332 for (i = 0; i < *xfered_len; i++)
1333 {
1334 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1335 {
1336 if (targetdebug < 2 && i > 0)
1337 {
1338 fprintf_unfiltered (gdb_stdlog, " ...");
1339 break;
1340 }
1341 fprintf_unfiltered (gdb_stdlog, "\n");
1342 }
1343
1344 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1345 }
1346 }
1347
1348 fputc_unfiltered ('\n', gdb_stdlog);
1349 }
1350
1351 /* Check implementations of to_xfer_partial update *XFERED_LEN
1352 properly. Do assertion after printing debug messages, so that we
1353 can find more clues on assertion failure from debugging messages. */
1354 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1355 gdb_assert (*xfered_len > 0);
1356
1357 return retval;
1358 }
1359
1360 /* Read LEN bytes of target memory at address MEMADDR, placing the
1361 results in GDB's memory at MYADDR. Returns either 0 for success or
1362 -1 if any error occurs.
1363
1364 If an error occurs, no guarantee is made about the contents of the data at
1365 MYADDR. In particular, the caller should not depend upon partial reads
1366 filling the buffer with good data. There is no way for the caller to know
1367 how much good data might have been transfered anyway. Callers that can
1368 deal with partial reads should call target_read (which will retry until
1369 it makes no progress, and then return how much was transferred). */
1370
1371 int
1372 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1373 {
1374 /* Dispatch to the topmost target, not the flattened current_target.
1375 Memory accesses check target->to_has_(all_)memory, and the
1376 flattened target doesn't inherit those. */
1377 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1378 myaddr, memaddr, len) == len)
1379 return 0;
1380 else
1381 return -1;
1382 }
1383
1384 /* See target/target.h. */
1385
1386 int
1387 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1388 {
1389 gdb_byte buf[4];
1390 int r;
1391
1392 r = target_read_memory (memaddr, buf, sizeof buf);
1393 if (r != 0)
1394 return r;
1395 *result = extract_unsigned_integer (buf, sizeof buf,
1396 gdbarch_byte_order (target_gdbarch ()));
1397 return 0;
1398 }
1399
1400 /* Like target_read_memory, but specify explicitly that this is a read
1401 from the target's raw memory. That is, this read bypasses the
1402 dcache, breakpoint shadowing, etc. */
1403
1404 int
1405 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1406 {
1407 /* See comment in target_read_memory about why the request starts at
1408 current_target.beneath. */
1409 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1410 myaddr, memaddr, len) == len)
1411 return 0;
1412 else
1413 return -1;
1414 }
1415
1416 /* Like target_read_memory, but specify explicitly that this is a read from
1417 the target's stack. This may trigger different cache behavior. */
1418
1419 int
1420 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1421 {
1422 /* See comment in target_read_memory about why the request starts at
1423 current_target.beneath. */
1424 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1425 myaddr, memaddr, len) == len)
1426 return 0;
1427 else
1428 return -1;
1429 }
1430
1431 /* Like target_read_memory, but specify explicitly that this is a read from
1432 the target's code. This may trigger different cache behavior. */
1433
1434 int
1435 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1436 {
1437 /* See comment in target_read_memory about why the request starts at
1438 current_target.beneath. */
1439 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1440 myaddr, memaddr, len) == len)
1441 return 0;
1442 else
1443 return -1;
1444 }
1445
1446 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1447 Returns either 0 for success or -1 if any error occurs. If an
1448 error occurs, no guarantee is made about how much data got written.
1449 Callers that can deal with partial writes should call
1450 target_write. */
1451
1452 int
1453 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1454 {
1455 /* See comment in target_read_memory about why the request starts at
1456 current_target.beneath. */
1457 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
1461 return -1;
1462 }
1463
1464 /* Write LEN bytes from MYADDR to target raw memory at address
1465 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1466 If an error occurs, no guarantee is made about how much data got
1467 written. Callers that can deal with partial writes should call
1468 target_write. */
1469
1470 int
1471 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1472 {
1473 /* See comment in target_read_memory about why the request starts at
1474 current_target.beneath. */
1475 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1476 myaddr, memaddr, len) == len)
1477 return 0;
1478 else
1479 return -1;
1480 }
1481
1482 /* Fetch the target's memory map. */
1483
1484 VEC(mem_region_s) *
1485 target_memory_map (void)
1486 {
1487 VEC(mem_region_s) *result;
1488 struct mem_region *last_one, *this_one;
1489 int ix;
1490 result = current_target.to_memory_map (&current_target);
1491 if (result == NULL)
1492 return NULL;
1493
1494 qsort (VEC_address (mem_region_s, result),
1495 VEC_length (mem_region_s, result),
1496 sizeof (struct mem_region), mem_region_cmp);
1497
1498 /* Check that regions do not overlap. Simultaneously assign
1499 a numbering for the "mem" commands to use to refer to
1500 each region. */
1501 last_one = NULL;
1502 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1503 {
1504 this_one->number = ix;
1505
1506 if (last_one && last_one->hi > this_one->lo)
1507 {
1508 warning (_("Overlapping regions in memory map: ignoring"));
1509 VEC_free (mem_region_s, result);
1510 return NULL;
1511 }
1512 last_one = this_one;
1513 }
1514
1515 return result;
1516 }
1517
1518 void
1519 target_flash_erase (ULONGEST address, LONGEST length)
1520 {
1521 current_target.to_flash_erase (&current_target, address, length);
1522 }
1523
1524 void
1525 target_flash_done (void)
1526 {
1527 current_target.to_flash_done (&current_target);
1528 }
1529
1530 static void
1531 show_trust_readonly (struct ui_file *file, int from_tty,
1532 struct cmd_list_element *c, const char *value)
1533 {
1534 fprintf_filtered (file,
1535 _("Mode for reading from readonly sections is %s.\n"),
1536 value);
1537 }
1538
1539 /* Target vector read/write partial wrapper functions. */
1540
1541 static enum target_xfer_status
1542 target_read_partial (struct target_ops *ops,
1543 enum target_object object,
1544 const char *annex, gdb_byte *buf,
1545 ULONGEST offset, ULONGEST len,
1546 ULONGEST *xfered_len)
1547 {
1548 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1549 xfered_len);
1550 }
1551
1552 static enum target_xfer_status
1553 target_write_partial (struct target_ops *ops,
1554 enum target_object object,
1555 const char *annex, const gdb_byte *buf,
1556 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1557 {
1558 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1559 xfered_len);
1560 }
1561
1562 /* Wrappers to perform the full transfer. */
1563
1564 /* For docs on target_read see target.h. */
1565
1566 LONGEST
1567 target_read (struct target_ops *ops,
1568 enum target_object object,
1569 const char *annex, gdb_byte *buf,
1570 ULONGEST offset, LONGEST len)
1571 {
1572 LONGEST xfered_total = 0;
1573 int unit_size = 1;
1574
1575 /* If we are reading from a memory object, find the length of an addressable
1576 unit for that architecture. */
1577 if (object == TARGET_OBJECT_MEMORY
1578 || object == TARGET_OBJECT_STACK_MEMORY
1579 || object == TARGET_OBJECT_CODE_MEMORY
1580 || object == TARGET_OBJECT_RAW_MEMORY)
1581 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1582
1583 while (xfered_total < len)
1584 {
1585 ULONGEST xfered_partial;
1586 enum target_xfer_status status;
1587
1588 status = target_read_partial (ops, object, annex,
1589 buf + xfered_total * unit_size,
1590 offset + xfered_total, len - xfered_total,
1591 &xfered_partial);
1592
1593 /* Call an observer, notifying them of the xfer progress? */
1594 if (status == TARGET_XFER_EOF)
1595 return xfered_total;
1596 else if (status == TARGET_XFER_OK)
1597 {
1598 xfered_total += xfered_partial;
1599 QUIT;
1600 }
1601 else
1602 return TARGET_XFER_E_IO;
1603
1604 }
1605 return len;
1606 }
1607
1608 /* Assuming that the entire [begin, end) range of memory cannot be
1609 read, try to read whatever subrange is possible to read.
1610
1611 The function returns, in RESULT, either zero or one memory block.
1612 If there's a readable subrange at the beginning, it is completely
1613 read and returned. Any further readable subrange will not be read.
1614 Otherwise, if there's a readable subrange at the end, it will be
1615 completely read and returned. Any readable subranges before it
1616 (obviously, not starting at the beginning), will be ignored. In
1617 other cases -- either no readable subrange, or readable subrange(s)
1618 that is neither at the beginning, or end, nothing is returned.
1619
1620 The purpose of this function is to handle a read across a boundary
1621 of accessible memory in a case when memory map is not available.
1622 The above restrictions are fine for this case, but will give
1623 incorrect results if the memory is 'patchy'. However, supporting
1624 'patchy' memory would require trying to read every single byte,
1625 and it seems unacceptable solution. Explicit memory map is
1626 recommended for this case -- and target_read_memory_robust will
1627 take care of reading multiple ranges then. */
1628
1629 static void
1630 read_whatever_is_readable (struct target_ops *ops,
1631 const ULONGEST begin, const ULONGEST end,
1632 int unit_size,
1633 VEC(memory_read_result_s) **result)
1634 {
1635 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1636 ULONGEST current_begin = begin;
1637 ULONGEST current_end = end;
1638 int forward;
1639 memory_read_result_s r;
1640 ULONGEST xfered_len;
1641
1642 /* If we previously failed to read 1 byte, nothing can be done here. */
1643 if (end - begin <= 1)
1644 {
1645 xfree (buf);
1646 return;
1647 }
1648
1649 /* Check that either first or the last byte is readable, and give up
1650 if not. This heuristic is meant to permit reading accessible memory
1651 at the boundary of accessible region. */
1652 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1653 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1654 {
1655 forward = 1;
1656 ++current_begin;
1657 }
1658 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1659 buf + (end - begin) - 1, end - 1, 1,
1660 &xfered_len) == TARGET_XFER_OK)
1661 {
1662 forward = 0;
1663 --current_end;
1664 }
1665 else
1666 {
1667 xfree (buf);
1668 return;
1669 }
1670
1671 /* Loop invariant is that the [current_begin, current_end) was previously
1672 found to be not readable as a whole.
1673
1674 Note loop condition -- if the range has 1 byte, we can't divide the range
1675 so there's no point trying further. */
1676 while (current_end - current_begin > 1)
1677 {
1678 ULONGEST first_half_begin, first_half_end;
1679 ULONGEST second_half_begin, second_half_end;
1680 LONGEST xfer;
1681 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1682
1683 if (forward)
1684 {
1685 first_half_begin = current_begin;
1686 first_half_end = middle;
1687 second_half_begin = middle;
1688 second_half_end = current_end;
1689 }
1690 else
1691 {
1692 first_half_begin = middle;
1693 first_half_end = current_end;
1694 second_half_begin = current_begin;
1695 second_half_end = middle;
1696 }
1697
1698 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1699 buf + (first_half_begin - begin) * unit_size,
1700 first_half_begin,
1701 first_half_end - first_half_begin);
1702
1703 if (xfer == first_half_end - first_half_begin)
1704 {
1705 /* This half reads up fine. So, the error must be in the
1706 other half. */
1707 current_begin = second_half_begin;
1708 current_end = second_half_end;
1709 }
1710 else
1711 {
1712 /* This half is not readable. Because we've tried one byte, we
1713 know some part of this half if actually readable. Go to the next
1714 iteration to divide again and try to read.
1715
1716 We don't handle the other half, because this function only tries
1717 to read a single readable subrange. */
1718 current_begin = first_half_begin;
1719 current_end = first_half_end;
1720 }
1721 }
1722
1723 if (forward)
1724 {
1725 /* The [begin, current_begin) range has been read. */
1726 r.begin = begin;
1727 r.end = current_begin;
1728 r.data = buf;
1729 }
1730 else
1731 {
1732 /* The [current_end, end) range has been read. */
1733 LONGEST region_len = end - current_end;
1734
1735 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1736 memcpy (r.data, buf + (current_end - begin) * unit_size,
1737 region_len * unit_size);
1738 r.begin = current_end;
1739 r.end = end;
1740 xfree (buf);
1741 }
1742 VEC_safe_push(memory_read_result_s, (*result), &r);
1743 }
1744
1745 void
1746 free_memory_read_result_vector (void *x)
1747 {
1748 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1749 memory_read_result_s *current;
1750 int ix;
1751
1752 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1753 {
1754 xfree (current->data);
1755 }
1756 VEC_free (memory_read_result_s, *v);
1757 }
1758
1759 VEC(memory_read_result_s) *
1760 read_memory_robust (struct target_ops *ops,
1761 const ULONGEST offset, const LONGEST len)
1762 {
1763 VEC(memory_read_result_s) *result = 0;
1764 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1765 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1766 &result);
1767
1768 LONGEST xfered_total = 0;
1769 while (xfered_total < len)
1770 {
1771 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1772 LONGEST region_len;
1773
1774 /* If there is no explicit region, a fake one should be created. */
1775 gdb_assert (region);
1776
1777 if (region->hi == 0)
1778 region_len = len - xfered_total;
1779 else
1780 region_len = region->hi - offset;
1781
1782 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1783 {
1784 /* Cannot read this region. Note that we can end up here only
1785 if the region is explicitly marked inaccessible, or
1786 'inaccessible-by-default' is in effect. */
1787 xfered_total += region_len;
1788 }
1789 else
1790 {
1791 LONGEST to_read = std::min (len - xfered_total, region_len);
1792 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1793 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1794
1795 LONGEST xfered_partial =
1796 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1797 (gdb_byte *) buffer,
1798 offset + xfered_total, to_read);
1799 /* Call an observer, notifying them of the xfer progress? */
1800 if (xfered_partial <= 0)
1801 {
1802 /* Got an error reading full chunk. See if maybe we can read
1803 some subrange. */
1804 do_cleanups (inner_cleanup);
1805 read_whatever_is_readable (ops, offset + xfered_total,
1806 offset + xfered_total + to_read,
1807 unit_size, &result);
1808 xfered_total += to_read;
1809 }
1810 else
1811 {
1812 struct memory_read_result r;
1813
1814 discard_cleanups (inner_cleanup);
1815 r.data = buffer;
1816 r.begin = offset + xfered_total;
1817 r.end = r.begin + xfered_partial;
1818 VEC_safe_push (memory_read_result_s, result, &r);
1819 xfered_total += xfered_partial;
1820 }
1821 QUIT;
1822 }
1823 }
1824
1825 discard_cleanups (cleanup);
1826 return result;
1827 }
1828
1829
1830 /* An alternative to target_write with progress callbacks. */
1831
1832 LONGEST
1833 target_write_with_progress (struct target_ops *ops,
1834 enum target_object object,
1835 const char *annex, const gdb_byte *buf,
1836 ULONGEST offset, LONGEST len,
1837 void (*progress) (ULONGEST, void *), void *baton)
1838 {
1839 LONGEST xfered_total = 0;
1840 int unit_size = 1;
1841
1842 /* If we are writing to a memory object, find the length of an addressable
1843 unit for that architecture. */
1844 if (object == TARGET_OBJECT_MEMORY
1845 || object == TARGET_OBJECT_STACK_MEMORY
1846 || object == TARGET_OBJECT_CODE_MEMORY
1847 || object == TARGET_OBJECT_RAW_MEMORY)
1848 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1849
1850 /* Give the progress callback a chance to set up. */
1851 if (progress)
1852 (*progress) (0, baton);
1853
1854 while (xfered_total < len)
1855 {
1856 ULONGEST xfered_partial;
1857 enum target_xfer_status status;
1858
1859 status = target_write_partial (ops, object, annex,
1860 buf + xfered_total * unit_size,
1861 offset + xfered_total, len - xfered_total,
1862 &xfered_partial);
1863
1864 if (status != TARGET_XFER_OK)
1865 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1866
1867 if (progress)
1868 (*progress) (xfered_partial, baton);
1869
1870 xfered_total += xfered_partial;
1871 QUIT;
1872 }
1873 return len;
1874 }
1875
1876 /* For docs on target_write see target.h. */
1877
1878 LONGEST
1879 target_write (struct target_ops *ops,
1880 enum target_object object,
1881 const char *annex, const gdb_byte *buf,
1882 ULONGEST offset, LONGEST len)
1883 {
1884 return target_write_with_progress (ops, object, annex, buf, offset, len,
1885 NULL, NULL);
1886 }
1887
1888 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1889 the size of the transferred data. PADDING additional bytes are
1890 available in *BUF_P. This is a helper function for
1891 target_read_alloc; see the declaration of that function for more
1892 information. */
1893
1894 static LONGEST
1895 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1896 const char *annex, gdb_byte **buf_p, int padding)
1897 {
1898 size_t buf_alloc, buf_pos;
1899 gdb_byte *buf;
1900
1901 /* This function does not have a length parameter; it reads the
1902 entire OBJECT). Also, it doesn't support objects fetched partly
1903 from one target and partly from another (in a different stratum,
1904 e.g. a core file and an executable). Both reasons make it
1905 unsuitable for reading memory. */
1906 gdb_assert (object != TARGET_OBJECT_MEMORY);
1907
1908 /* Start by reading up to 4K at a time. The target will throttle
1909 this number down if necessary. */
1910 buf_alloc = 4096;
1911 buf = (gdb_byte *) xmalloc (buf_alloc);
1912 buf_pos = 0;
1913 while (1)
1914 {
1915 ULONGEST xfered_len;
1916 enum target_xfer_status status;
1917
1918 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1919 buf_pos, buf_alloc - buf_pos - padding,
1920 &xfered_len);
1921
1922 if (status == TARGET_XFER_EOF)
1923 {
1924 /* Read all there was. */
1925 if (buf_pos == 0)
1926 xfree (buf);
1927 else
1928 *buf_p = buf;
1929 return buf_pos;
1930 }
1931 else if (status != TARGET_XFER_OK)
1932 {
1933 /* An error occurred. */
1934 xfree (buf);
1935 return TARGET_XFER_E_IO;
1936 }
1937
1938 buf_pos += xfered_len;
1939
1940 /* If the buffer is filling up, expand it. */
1941 if (buf_alloc < buf_pos * 2)
1942 {
1943 buf_alloc *= 2;
1944 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1945 }
1946
1947 QUIT;
1948 }
1949 }
1950
1951 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1952 the size of the transferred data. See the declaration in "target.h"
1953 function for more information about the return value. */
1954
1955 LONGEST
1956 target_read_alloc (struct target_ops *ops, enum target_object object,
1957 const char *annex, gdb_byte **buf_p)
1958 {
1959 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1960 }
1961
1962 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1963 returned as a string, allocated using xmalloc. If an error occurs
1964 or the transfer is unsupported, NULL is returned. Empty objects
1965 are returned as allocated but empty strings. A warning is issued
1966 if the result contains any embedded NUL bytes. */
1967
1968 char *
1969 target_read_stralloc (struct target_ops *ops, enum target_object object,
1970 const char *annex)
1971 {
1972 gdb_byte *buffer;
1973 char *bufstr;
1974 LONGEST i, transferred;
1975
1976 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1977 bufstr = (char *) buffer;
1978
1979 if (transferred < 0)
1980 return NULL;
1981
1982 if (transferred == 0)
1983 return xstrdup ("");
1984
1985 bufstr[transferred] = 0;
1986
1987 /* Check for embedded NUL bytes; but allow trailing NULs. */
1988 for (i = strlen (bufstr); i < transferred; i++)
1989 if (bufstr[i] != 0)
1990 {
1991 warning (_("target object %d, annex %s, "
1992 "contained unexpected null characters"),
1993 (int) object, annex ? annex : "(none)");
1994 break;
1995 }
1996
1997 return bufstr;
1998 }
1999
2000 /* Memory transfer methods. */
2001
2002 void
2003 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2004 LONGEST len)
2005 {
2006 /* This method is used to read from an alternate, non-current
2007 target. This read must bypass the overlay support (as symbols
2008 don't match this target), and GDB's internal cache (wrong cache
2009 for this target). */
2010 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2011 != len)
2012 memory_error (TARGET_XFER_E_IO, addr);
2013 }
2014
2015 ULONGEST
2016 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2017 int len, enum bfd_endian byte_order)
2018 {
2019 gdb_byte buf[sizeof (ULONGEST)];
2020
2021 gdb_assert (len <= sizeof (buf));
2022 get_target_memory (ops, addr, buf, len);
2023 return extract_unsigned_integer (buf, len, byte_order);
2024 }
2025
2026 /* See target.h. */
2027
2028 int
2029 target_insert_breakpoint (struct gdbarch *gdbarch,
2030 struct bp_target_info *bp_tgt)
2031 {
2032 if (!may_insert_breakpoints)
2033 {
2034 warning (_("May not insert breakpoints"));
2035 return 1;
2036 }
2037
2038 return current_target.to_insert_breakpoint (&current_target,
2039 gdbarch, bp_tgt);
2040 }
2041
2042 /* See target.h. */
2043
2044 int
2045 target_remove_breakpoint (struct gdbarch *gdbarch,
2046 struct bp_target_info *bp_tgt,
2047 enum remove_bp_reason reason)
2048 {
2049 /* This is kind of a weird case to handle, but the permission might
2050 have been changed after breakpoints were inserted - in which case
2051 we should just take the user literally and assume that any
2052 breakpoints should be left in place. */
2053 if (!may_insert_breakpoints)
2054 {
2055 warning (_("May not remove breakpoints"));
2056 return 1;
2057 }
2058
2059 return current_target.to_remove_breakpoint (&current_target,
2060 gdbarch, bp_tgt, reason);
2061 }
2062
2063 static void
2064 info_target_command (char *args, int from_tty)
2065 {
2066 struct target_ops *t;
2067 int has_all_mem = 0;
2068
2069 if (symfile_objfile != NULL)
2070 printf_unfiltered (_("Symbols from \"%s\".\n"),
2071 objfile_name (symfile_objfile));
2072
2073 for (t = target_stack; t != NULL; t = t->beneath)
2074 {
2075 if (!(*t->to_has_memory) (t))
2076 continue;
2077
2078 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2079 continue;
2080 if (has_all_mem)
2081 printf_unfiltered (_("\tWhile running this, "
2082 "GDB does not access memory from...\n"));
2083 printf_unfiltered ("%s:\n", t->to_longname);
2084 (t->to_files_info) (t);
2085 has_all_mem = (*t->to_has_all_memory) (t);
2086 }
2087 }
2088
2089 /* This function is called before any new inferior is created, e.g.
2090 by running a program, attaching, or connecting to a target.
2091 It cleans up any state from previous invocations which might
2092 change between runs. This is a subset of what target_preopen
2093 resets (things which might change between targets). */
2094
2095 void
2096 target_pre_inferior (int from_tty)
2097 {
2098 /* Clear out solib state. Otherwise the solib state of the previous
2099 inferior might have survived and is entirely wrong for the new
2100 target. This has been observed on GNU/Linux using glibc 2.3. How
2101 to reproduce:
2102
2103 bash$ ./foo&
2104 [1] 4711
2105 bash$ ./foo&
2106 [1] 4712
2107 bash$ gdb ./foo
2108 [...]
2109 (gdb) attach 4711
2110 (gdb) detach
2111 (gdb) attach 4712
2112 Cannot access memory at address 0xdeadbeef
2113 */
2114
2115 /* In some OSs, the shared library list is the same/global/shared
2116 across inferiors. If code is shared between processes, so are
2117 memory regions and features. */
2118 if (!gdbarch_has_global_solist (target_gdbarch ()))
2119 {
2120 no_shared_libraries (NULL, from_tty);
2121
2122 invalidate_target_mem_regions ();
2123
2124 target_clear_description ();
2125 }
2126
2127 /* attach_flag may be set if the previous process associated with
2128 the inferior was attached to. */
2129 current_inferior ()->attach_flag = 0;
2130
2131 current_inferior ()->highest_thread_num = 0;
2132
2133 agent_capability_invalidate ();
2134 }
2135
2136 /* Callback for iterate_over_inferiors. Gets rid of the given
2137 inferior. */
2138
2139 static int
2140 dispose_inferior (struct inferior *inf, void *args)
2141 {
2142 struct thread_info *thread;
2143
2144 thread = any_thread_of_process (inf->pid);
2145 if (thread)
2146 {
2147 switch_to_thread (thread->ptid);
2148
2149 /* Core inferiors actually should be detached, not killed. */
2150 if (target_has_execution)
2151 target_kill ();
2152 else
2153 target_detach (NULL, 0);
2154 }
2155
2156 return 0;
2157 }
2158
2159 /* This is to be called by the open routine before it does
2160 anything. */
2161
2162 void
2163 target_preopen (int from_tty)
2164 {
2165 dont_repeat ();
2166
2167 if (have_inferiors ())
2168 {
2169 if (!from_tty
2170 || !have_live_inferiors ()
2171 || query (_("A program is being debugged already. Kill it? ")))
2172 iterate_over_inferiors (dispose_inferior, NULL);
2173 else
2174 error (_("Program not killed."));
2175 }
2176
2177 /* Calling target_kill may remove the target from the stack. But if
2178 it doesn't (which seems like a win for UDI), remove it now. */
2179 /* Leave the exec target, though. The user may be switching from a
2180 live process to a core of the same program. */
2181 pop_all_targets_above (file_stratum);
2182
2183 target_pre_inferior (from_tty);
2184 }
2185
2186 /* Detach a target after doing deferred register stores. */
2187
2188 void
2189 target_detach (const char *args, int from_tty)
2190 {
2191 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2192 /* Don't remove global breakpoints here. They're removed on
2193 disconnection from the target. */
2194 ;
2195 else
2196 /* If we're in breakpoints-always-inserted mode, have to remove
2197 them before detaching. */
2198 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2199
2200 prepare_for_detach ();
2201
2202 current_target.to_detach (&current_target, args, from_tty);
2203 }
2204
2205 void
2206 target_disconnect (const char *args, int from_tty)
2207 {
2208 /* If we're in breakpoints-always-inserted mode or if breakpoints
2209 are global across processes, we have to remove them before
2210 disconnecting. */
2211 remove_breakpoints ();
2212
2213 current_target.to_disconnect (&current_target, args, from_tty);
2214 }
2215
2216 /* See target/target.h. */
2217
2218 ptid_t
2219 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2220 {
2221 return (current_target.to_wait) (&current_target, ptid, status, options);
2222 }
2223
2224 /* See target.h. */
2225
2226 ptid_t
2227 default_target_wait (struct target_ops *ops,
2228 ptid_t ptid, struct target_waitstatus *status,
2229 int options)
2230 {
2231 status->kind = TARGET_WAITKIND_IGNORE;
2232 return minus_one_ptid;
2233 }
2234
2235 const char *
2236 target_pid_to_str (ptid_t ptid)
2237 {
2238 return (*current_target.to_pid_to_str) (&current_target, ptid);
2239 }
2240
2241 const char *
2242 target_thread_name (struct thread_info *info)
2243 {
2244 return current_target.to_thread_name (&current_target, info);
2245 }
2246
2247 void
2248 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2249 {
2250 target_dcache_invalidate ();
2251
2252 current_target.to_resume (&current_target, ptid, step, signal);
2253
2254 registers_changed_ptid (ptid);
2255 /* We only set the internal executing state here. The user/frontend
2256 running state is set at a higher level. */
2257 set_executing (ptid, 1);
2258 clear_inline_frame_state (ptid);
2259 }
2260
2261 /* If true, target_commit_resume is a nop. */
2262 static int defer_target_commit_resume;
2263
2264 /* See target.h. */
2265
2266 void
2267 target_commit_resume (void)
2268 {
2269 struct target_ops *t;
2270
2271 if (defer_target_commit_resume)
2272 return;
2273
2274 current_target.to_commit_resume (&current_target);
2275 }
2276
2277 /* See target.h. */
2278
2279 struct cleanup *
2280 make_cleanup_defer_target_commit_resume (void)
2281 {
2282 struct cleanup *old_chain;
2283
2284 old_chain = make_cleanup_restore_integer (&defer_target_commit_resume);
2285 defer_target_commit_resume = 1;
2286 return old_chain;
2287 }
2288
2289 void
2290 target_pass_signals (int numsigs, unsigned char *pass_signals)
2291 {
2292 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2293 }
2294
2295 void
2296 target_program_signals (int numsigs, unsigned char *program_signals)
2297 {
2298 (*current_target.to_program_signals) (&current_target,
2299 numsigs, program_signals);
2300 }
2301
2302 static int
2303 default_follow_fork (struct target_ops *self, int follow_child,
2304 int detach_fork)
2305 {
2306 /* Some target returned a fork event, but did not know how to follow it. */
2307 internal_error (__FILE__, __LINE__,
2308 _("could not find a target to follow fork"));
2309 }
2310
2311 /* Look through the list of possible targets for a target that can
2312 follow forks. */
2313
2314 int
2315 target_follow_fork (int follow_child, int detach_fork)
2316 {
2317 return current_target.to_follow_fork (&current_target,
2318 follow_child, detach_fork);
2319 }
2320
2321 /* Target wrapper for follow exec hook. */
2322
2323 void
2324 target_follow_exec (struct inferior *inf, char *execd_pathname)
2325 {
2326 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2327 }
2328
2329 static void
2330 default_mourn_inferior (struct target_ops *self)
2331 {
2332 internal_error (__FILE__, __LINE__,
2333 _("could not find a target to follow mourn inferior"));
2334 }
2335
2336 void
2337 target_mourn_inferior (ptid_t ptid)
2338 {
2339 gdb_assert (ptid_equal (ptid, inferior_ptid));
2340 current_target.to_mourn_inferior (&current_target);
2341
2342 /* We no longer need to keep handles on any of the object files.
2343 Make sure to release them to avoid unnecessarily locking any
2344 of them while we're not actually debugging. */
2345 bfd_cache_close_all ();
2346 }
2347
2348 /* Look for a target which can describe architectural features, starting
2349 from TARGET. If we find one, return its description. */
2350
2351 const struct target_desc *
2352 target_read_description (struct target_ops *target)
2353 {
2354 return target->to_read_description (target);
2355 }
2356
2357 /* This implements a basic search of memory, reading target memory and
2358 performing the search here (as opposed to performing the search in on the
2359 target side with, for example, gdbserver). */
2360
2361 int
2362 simple_search_memory (struct target_ops *ops,
2363 CORE_ADDR start_addr, ULONGEST search_space_len,
2364 const gdb_byte *pattern, ULONGEST pattern_len,
2365 CORE_ADDR *found_addrp)
2366 {
2367 /* NOTE: also defined in find.c testcase. */
2368 #define SEARCH_CHUNK_SIZE 16000
2369 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2370 /* Buffer to hold memory contents for searching. */
2371 unsigned search_buf_size;
2372
2373 search_buf_size = chunk_size + pattern_len - 1;
2374
2375 /* No point in trying to allocate a buffer larger than the search space. */
2376 if (search_space_len < search_buf_size)
2377 search_buf_size = search_space_len;
2378
2379 gdb::byte_vector search_buf (search_buf_size);
2380
2381 /* Prime the search buffer. */
2382
2383 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2384 search_buf.data (), start_addr, search_buf_size)
2385 != search_buf_size)
2386 {
2387 warning (_("Unable to access %s bytes of target "
2388 "memory at %s, halting search."),
2389 pulongest (search_buf_size), hex_string (start_addr));
2390 return -1;
2391 }
2392
2393 /* Perform the search.
2394
2395 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2396 When we've scanned N bytes we copy the trailing bytes to the start and
2397 read in another N bytes. */
2398
2399 while (search_space_len >= pattern_len)
2400 {
2401 gdb_byte *found_ptr;
2402 unsigned nr_search_bytes
2403 = std::min (search_space_len, (ULONGEST) search_buf_size);
2404
2405 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2406 pattern, pattern_len);
2407
2408 if (found_ptr != NULL)
2409 {
2410 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2411
2412 *found_addrp = found_addr;
2413 return 1;
2414 }
2415
2416 /* Not found in this chunk, skip to next chunk. */
2417
2418 /* Don't let search_space_len wrap here, it's unsigned. */
2419 if (search_space_len >= chunk_size)
2420 search_space_len -= chunk_size;
2421 else
2422 search_space_len = 0;
2423
2424 if (search_space_len >= pattern_len)
2425 {
2426 unsigned keep_len = search_buf_size - chunk_size;
2427 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2428 int nr_to_read;
2429
2430 /* Copy the trailing part of the previous iteration to the front
2431 of the buffer for the next iteration. */
2432 gdb_assert (keep_len == pattern_len - 1);
2433 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2434
2435 nr_to_read = std::min (search_space_len - keep_len,
2436 (ULONGEST) chunk_size);
2437
2438 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2439 &search_buf[keep_len], read_addr,
2440 nr_to_read) != nr_to_read)
2441 {
2442 warning (_("Unable to access %s bytes of target "
2443 "memory at %s, halting search."),
2444 plongest (nr_to_read),
2445 hex_string (read_addr));
2446 return -1;
2447 }
2448
2449 start_addr += chunk_size;
2450 }
2451 }
2452
2453 /* Not found. */
2454
2455 return 0;
2456 }
2457
2458 /* Default implementation of memory-searching. */
2459
2460 static int
2461 default_search_memory (struct target_ops *self,
2462 CORE_ADDR start_addr, ULONGEST search_space_len,
2463 const gdb_byte *pattern, ULONGEST pattern_len,
2464 CORE_ADDR *found_addrp)
2465 {
2466 /* Start over from the top of the target stack. */
2467 return simple_search_memory (current_target.beneath,
2468 start_addr, search_space_len,
2469 pattern, pattern_len, found_addrp);
2470 }
2471
2472 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2473 sequence of bytes in PATTERN with length PATTERN_LEN.
2474
2475 The result is 1 if found, 0 if not found, and -1 if there was an error
2476 requiring halting of the search (e.g. memory read error).
2477 If the pattern is found the address is recorded in FOUND_ADDRP. */
2478
2479 int
2480 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2481 const gdb_byte *pattern, ULONGEST pattern_len,
2482 CORE_ADDR *found_addrp)
2483 {
2484 return current_target.to_search_memory (&current_target, start_addr,
2485 search_space_len,
2486 pattern, pattern_len, found_addrp);
2487 }
2488
2489 /* Look through the currently pushed targets. If none of them will
2490 be able to restart the currently running process, issue an error
2491 message. */
2492
2493 void
2494 target_require_runnable (void)
2495 {
2496 struct target_ops *t;
2497
2498 for (t = target_stack; t != NULL; t = t->beneath)
2499 {
2500 /* If this target knows how to create a new program, then
2501 assume we will still be able to after killing the current
2502 one. Either killing and mourning will not pop T, or else
2503 find_default_run_target will find it again. */
2504 if (t->to_create_inferior != NULL)
2505 return;
2506
2507 /* Do not worry about targets at certain strata that can not
2508 create inferiors. Assume they will be pushed again if
2509 necessary, and continue to the process_stratum. */
2510 if (t->to_stratum == thread_stratum
2511 || t->to_stratum == record_stratum
2512 || t->to_stratum == arch_stratum)
2513 continue;
2514
2515 error (_("The \"%s\" target does not support \"run\". "
2516 "Try \"help target\" or \"continue\"."),
2517 t->to_shortname);
2518 }
2519
2520 /* This function is only called if the target is running. In that
2521 case there should have been a process_stratum target and it
2522 should either know how to create inferiors, or not... */
2523 internal_error (__FILE__, __LINE__, _("No targets found"));
2524 }
2525
2526 /* Whether GDB is allowed to fall back to the default run target for
2527 "run", "attach", etc. when no target is connected yet. */
2528 static int auto_connect_native_target = 1;
2529
2530 static void
2531 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2532 struct cmd_list_element *c, const char *value)
2533 {
2534 fprintf_filtered (file,
2535 _("Whether GDB may automatically connect to the "
2536 "native target is %s.\n"),
2537 value);
2538 }
2539
2540 /* Look through the list of possible targets for a target that can
2541 execute a run or attach command without any other data. This is
2542 used to locate the default process stratum.
2543
2544 If DO_MESG is not NULL, the result is always valid (error() is
2545 called for errors); else, return NULL on error. */
2546
2547 static struct target_ops *
2548 find_default_run_target (const char *do_mesg)
2549 {
2550 struct target_ops *runable = NULL;
2551
2552 if (auto_connect_native_target)
2553 {
2554 struct target_ops *t;
2555 int count = 0;
2556 int i;
2557
2558 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2559 {
2560 if (t->to_can_run != delegate_can_run && target_can_run (t))
2561 {
2562 runable = t;
2563 ++count;
2564 }
2565 }
2566
2567 if (count != 1)
2568 runable = NULL;
2569 }
2570
2571 if (runable == NULL)
2572 {
2573 if (do_mesg)
2574 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2575 else
2576 return NULL;
2577 }
2578
2579 return runable;
2580 }
2581
2582 /* See target.h. */
2583
2584 struct target_ops *
2585 find_attach_target (void)
2586 {
2587 struct target_ops *t;
2588
2589 /* If a target on the current stack can attach, use it. */
2590 for (t = current_target.beneath; t != NULL; t = t->beneath)
2591 {
2592 if (t->to_attach != NULL)
2593 break;
2594 }
2595
2596 /* Otherwise, use the default run target for attaching. */
2597 if (t == NULL)
2598 t = find_default_run_target ("attach");
2599
2600 return t;
2601 }
2602
2603 /* See target.h. */
2604
2605 struct target_ops *
2606 find_run_target (void)
2607 {
2608 struct target_ops *t;
2609
2610 /* If a target on the current stack can attach, use it. */
2611 for (t = current_target.beneath; t != NULL; t = t->beneath)
2612 {
2613 if (t->to_create_inferior != NULL)
2614 break;
2615 }
2616
2617 /* Otherwise, use the default run target. */
2618 if (t == NULL)
2619 t = find_default_run_target ("run");
2620
2621 return t;
2622 }
2623
2624 /* Implement the "info proc" command. */
2625
2626 int
2627 target_info_proc (const char *args, enum info_proc_what what)
2628 {
2629 struct target_ops *t;
2630
2631 /* If we're already connected to something that can get us OS
2632 related data, use it. Otherwise, try using the native
2633 target. */
2634 if (current_target.to_stratum >= process_stratum)
2635 t = current_target.beneath;
2636 else
2637 t = find_default_run_target (NULL);
2638
2639 for (; t != NULL; t = t->beneath)
2640 {
2641 if (t->to_info_proc != NULL)
2642 {
2643 t->to_info_proc (t, args, what);
2644
2645 if (targetdebug)
2646 fprintf_unfiltered (gdb_stdlog,
2647 "target_info_proc (\"%s\", %d)\n", args, what);
2648
2649 return 1;
2650 }
2651 }
2652
2653 return 0;
2654 }
2655
2656 static int
2657 find_default_supports_disable_randomization (struct target_ops *self)
2658 {
2659 struct target_ops *t;
2660
2661 t = find_default_run_target (NULL);
2662 if (t && t->to_supports_disable_randomization)
2663 return (t->to_supports_disable_randomization) (t);
2664 return 0;
2665 }
2666
2667 int
2668 target_supports_disable_randomization (void)
2669 {
2670 struct target_ops *t;
2671
2672 for (t = &current_target; t != NULL; t = t->beneath)
2673 if (t->to_supports_disable_randomization)
2674 return t->to_supports_disable_randomization (t);
2675
2676 return 0;
2677 }
2678
2679 /* See target/target.h. */
2680
2681 int
2682 target_supports_multi_process (void)
2683 {
2684 return (*current_target.to_supports_multi_process) (&current_target);
2685 }
2686
2687 char *
2688 target_get_osdata (const char *type)
2689 {
2690 struct target_ops *t;
2691
2692 /* If we're already connected to something that can get us OS
2693 related data, use it. Otherwise, try using the native
2694 target. */
2695 if (current_target.to_stratum >= process_stratum)
2696 t = current_target.beneath;
2697 else
2698 t = find_default_run_target ("get OS data");
2699
2700 if (!t)
2701 return NULL;
2702
2703 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2704 }
2705
2706 static struct address_space *
2707 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2708 {
2709 struct inferior *inf;
2710
2711 /* Fall-back to the "main" address space of the inferior. */
2712 inf = find_inferior_ptid (ptid);
2713
2714 if (inf == NULL || inf->aspace == NULL)
2715 internal_error (__FILE__, __LINE__,
2716 _("Can't determine the current "
2717 "address space of thread %s\n"),
2718 target_pid_to_str (ptid));
2719
2720 return inf->aspace;
2721 }
2722
2723 /* Determine the current address space of thread PTID. */
2724
2725 struct address_space *
2726 target_thread_address_space (ptid_t ptid)
2727 {
2728 struct address_space *aspace;
2729
2730 aspace = current_target.to_thread_address_space (&current_target, ptid);
2731 gdb_assert (aspace != NULL);
2732
2733 return aspace;
2734 }
2735
2736
2737 /* Target file operations. */
2738
2739 static struct target_ops *
2740 default_fileio_target (void)
2741 {
2742 /* If we're already connected to something that can perform
2743 file I/O, use it. Otherwise, try using the native target. */
2744 if (current_target.to_stratum >= process_stratum)
2745 return current_target.beneath;
2746 else
2747 return find_default_run_target ("file I/O");
2748 }
2749
2750 /* File handle for target file operations. */
2751
2752 typedef struct
2753 {
2754 /* The target on which this file is open. */
2755 struct target_ops *t;
2756
2757 /* The file descriptor on the target. */
2758 int fd;
2759 } fileio_fh_t;
2760
2761 DEF_VEC_O (fileio_fh_t);
2762
2763 /* Vector of currently open file handles. The value returned by
2764 target_fileio_open and passed as the FD argument to other
2765 target_fileio_* functions is an index into this vector. This
2766 vector's entries are never freed; instead, files are marked as
2767 closed, and the handle becomes available for reuse. */
2768 static VEC (fileio_fh_t) *fileio_fhandles;
2769
2770 /* Macro to check whether a fileio_fh_t represents a closed file. */
2771 #define is_closed_fileio_fh(fd) ((fd) < 0)
2772
2773 /* Index into fileio_fhandles of the lowest handle that might be
2774 closed. This permits handle reuse without searching the whole
2775 list each time a new file is opened. */
2776 static int lowest_closed_fd;
2777
2778 /* Acquire a target fileio file descriptor. */
2779
2780 static int
2781 acquire_fileio_fd (struct target_ops *t, int fd)
2782 {
2783 fileio_fh_t *fh;
2784
2785 gdb_assert (!is_closed_fileio_fh (fd));
2786
2787 /* Search for closed handles to reuse. */
2788 for (;
2789 VEC_iterate (fileio_fh_t, fileio_fhandles,
2790 lowest_closed_fd, fh);
2791 lowest_closed_fd++)
2792 if (is_closed_fileio_fh (fh->fd))
2793 break;
2794
2795 /* Push a new handle if no closed handles were found. */
2796 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2797 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2798
2799 /* Fill in the handle. */
2800 fh->t = t;
2801 fh->fd = fd;
2802
2803 /* Return its index, and start the next lookup at
2804 the next index. */
2805 return lowest_closed_fd++;
2806 }
2807
2808 /* Release a target fileio file descriptor. */
2809
2810 static void
2811 release_fileio_fd (int fd, fileio_fh_t *fh)
2812 {
2813 fh->fd = -1;
2814 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2815 }
2816
2817 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2818
2819 #define fileio_fd_to_fh(fd) \
2820 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2821
2822 /* Helper for target_fileio_open and
2823 target_fileio_open_warn_if_slow. */
2824
2825 static int
2826 target_fileio_open_1 (struct inferior *inf, const char *filename,
2827 int flags, int mode, int warn_if_slow,
2828 int *target_errno)
2829 {
2830 struct target_ops *t;
2831
2832 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2833 {
2834 if (t->to_fileio_open != NULL)
2835 {
2836 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2837 warn_if_slow, target_errno);
2838
2839 if (fd < 0)
2840 fd = -1;
2841 else
2842 fd = acquire_fileio_fd (t, fd);
2843
2844 if (targetdebug)
2845 fprintf_unfiltered (gdb_stdlog,
2846 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2847 " = %d (%d)\n",
2848 inf == NULL ? 0 : inf->num,
2849 filename, flags, mode,
2850 warn_if_slow, fd,
2851 fd != -1 ? 0 : *target_errno);
2852 return fd;
2853 }
2854 }
2855
2856 *target_errno = FILEIO_ENOSYS;
2857 return -1;
2858 }
2859
2860 /* See target.h. */
2861
2862 int
2863 target_fileio_open (struct inferior *inf, const char *filename,
2864 int flags, int mode, int *target_errno)
2865 {
2866 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2867 target_errno);
2868 }
2869
2870 /* See target.h. */
2871
2872 int
2873 target_fileio_open_warn_if_slow (struct inferior *inf,
2874 const char *filename,
2875 int flags, int mode, int *target_errno)
2876 {
2877 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2878 target_errno);
2879 }
2880
2881 /* See target.h. */
2882
2883 int
2884 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2885 ULONGEST offset, int *target_errno)
2886 {
2887 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2888 int ret = -1;
2889
2890 if (is_closed_fileio_fh (fh->fd))
2891 *target_errno = EBADF;
2892 else
2893 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2894 len, offset, target_errno);
2895
2896 if (targetdebug)
2897 fprintf_unfiltered (gdb_stdlog,
2898 "target_fileio_pwrite (%d,...,%d,%s) "
2899 "= %d (%d)\n",
2900 fd, len, pulongest (offset),
2901 ret, ret != -1 ? 0 : *target_errno);
2902 return ret;
2903 }
2904
2905 /* See target.h. */
2906
2907 int
2908 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2909 ULONGEST offset, int *target_errno)
2910 {
2911 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2912 int ret = -1;
2913
2914 if (is_closed_fileio_fh (fh->fd))
2915 *target_errno = EBADF;
2916 else
2917 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2918 len, offset, target_errno);
2919
2920 if (targetdebug)
2921 fprintf_unfiltered (gdb_stdlog,
2922 "target_fileio_pread (%d,...,%d,%s) "
2923 "= %d (%d)\n",
2924 fd, len, pulongest (offset),
2925 ret, ret != -1 ? 0 : *target_errno);
2926 return ret;
2927 }
2928
2929 /* See target.h. */
2930
2931 int
2932 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2933 {
2934 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2935 int ret = -1;
2936
2937 if (is_closed_fileio_fh (fh->fd))
2938 *target_errno = EBADF;
2939 else
2940 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2941
2942 if (targetdebug)
2943 fprintf_unfiltered (gdb_stdlog,
2944 "target_fileio_fstat (%d) = %d (%d)\n",
2945 fd, ret, ret != -1 ? 0 : *target_errno);
2946 return ret;
2947 }
2948
2949 /* See target.h. */
2950
2951 int
2952 target_fileio_close (int fd, int *target_errno)
2953 {
2954 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2955 int ret = -1;
2956
2957 if (is_closed_fileio_fh (fh->fd))
2958 *target_errno = EBADF;
2959 else
2960 {
2961 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2962 release_fileio_fd (fd, fh);
2963 }
2964
2965 if (targetdebug)
2966 fprintf_unfiltered (gdb_stdlog,
2967 "target_fileio_close (%d) = %d (%d)\n",
2968 fd, ret, ret != -1 ? 0 : *target_errno);
2969 return ret;
2970 }
2971
2972 /* See target.h. */
2973
2974 int
2975 target_fileio_unlink (struct inferior *inf, const char *filename,
2976 int *target_errno)
2977 {
2978 struct target_ops *t;
2979
2980 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2981 {
2982 if (t->to_fileio_unlink != NULL)
2983 {
2984 int ret = t->to_fileio_unlink (t, inf, filename,
2985 target_errno);
2986
2987 if (targetdebug)
2988 fprintf_unfiltered (gdb_stdlog,
2989 "target_fileio_unlink (%d,%s)"
2990 " = %d (%d)\n",
2991 inf == NULL ? 0 : inf->num, filename,
2992 ret, ret != -1 ? 0 : *target_errno);
2993 return ret;
2994 }
2995 }
2996
2997 *target_errno = FILEIO_ENOSYS;
2998 return -1;
2999 }
3000
3001 /* See target.h. */
3002
3003 char *
3004 target_fileio_readlink (struct inferior *inf, const char *filename,
3005 int *target_errno)
3006 {
3007 struct target_ops *t;
3008
3009 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3010 {
3011 if (t->to_fileio_readlink != NULL)
3012 {
3013 char *ret = t->to_fileio_readlink (t, inf, filename,
3014 target_errno);
3015
3016 if (targetdebug)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "target_fileio_readlink (%d,%s)"
3019 " = %s (%d)\n",
3020 inf == NULL ? 0 : inf->num,
3021 filename, ret? ret : "(nil)",
3022 ret? 0 : *target_errno);
3023 return ret;
3024 }
3025 }
3026
3027 *target_errno = FILEIO_ENOSYS;
3028 return NULL;
3029 }
3030
3031 static void
3032 target_fileio_close_cleanup (void *opaque)
3033 {
3034 int fd = *(int *) opaque;
3035 int target_errno;
3036
3037 target_fileio_close (fd, &target_errno);
3038 }
3039
3040 /* Read target file FILENAME, in the filesystem as seen by INF. If
3041 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3042 remote targets, the remote stub). Store the result in *BUF_P and
3043 return the size of the transferred data. PADDING additional bytes
3044 are available in *BUF_P. This is a helper function for
3045 target_fileio_read_alloc; see the declaration of that function for
3046 more information. */
3047
3048 static LONGEST
3049 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3050 gdb_byte **buf_p, int padding)
3051 {
3052 struct cleanup *close_cleanup;
3053 size_t buf_alloc, buf_pos;
3054 gdb_byte *buf;
3055 LONGEST n;
3056 int fd;
3057 int target_errno;
3058
3059 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3060 &target_errno);
3061 if (fd == -1)
3062 return -1;
3063
3064 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3065
3066 /* Start by reading up to 4K at a time. The target will throttle
3067 this number down if necessary. */
3068 buf_alloc = 4096;
3069 buf = (gdb_byte *) xmalloc (buf_alloc);
3070 buf_pos = 0;
3071 while (1)
3072 {
3073 n = target_fileio_pread (fd, &buf[buf_pos],
3074 buf_alloc - buf_pos - padding, buf_pos,
3075 &target_errno);
3076 if (n < 0)
3077 {
3078 /* An error occurred. */
3079 do_cleanups (close_cleanup);
3080 xfree (buf);
3081 return -1;
3082 }
3083 else if (n == 0)
3084 {
3085 /* Read all there was. */
3086 do_cleanups (close_cleanup);
3087 if (buf_pos == 0)
3088 xfree (buf);
3089 else
3090 *buf_p = buf;
3091 return buf_pos;
3092 }
3093
3094 buf_pos += n;
3095
3096 /* If the buffer is filling up, expand it. */
3097 if (buf_alloc < buf_pos * 2)
3098 {
3099 buf_alloc *= 2;
3100 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3101 }
3102
3103 QUIT;
3104 }
3105 }
3106
3107 /* See target.h. */
3108
3109 LONGEST
3110 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3111 gdb_byte **buf_p)
3112 {
3113 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3114 }
3115
3116 /* See target.h. */
3117
3118 char *
3119 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3120 {
3121 gdb_byte *buffer;
3122 char *bufstr;
3123 LONGEST i, transferred;
3124
3125 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3126 bufstr = (char *) buffer;
3127
3128 if (transferred < 0)
3129 return NULL;
3130
3131 if (transferred == 0)
3132 return xstrdup ("");
3133
3134 bufstr[transferred] = 0;
3135
3136 /* Check for embedded NUL bytes; but allow trailing NULs. */
3137 for (i = strlen (bufstr); i < transferred; i++)
3138 if (bufstr[i] != 0)
3139 {
3140 warning (_("target file %s "
3141 "contained unexpected null characters"),
3142 filename);
3143 break;
3144 }
3145
3146 return bufstr;
3147 }
3148
3149
3150 static int
3151 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3152 CORE_ADDR addr, int len)
3153 {
3154 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3155 }
3156
3157 static int
3158 default_watchpoint_addr_within_range (struct target_ops *target,
3159 CORE_ADDR addr,
3160 CORE_ADDR start, int length)
3161 {
3162 return addr >= start && addr < start + length;
3163 }
3164
3165 static struct gdbarch *
3166 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3167 {
3168 return target_gdbarch ();
3169 }
3170
3171 static int
3172 return_zero (struct target_ops *ignore)
3173 {
3174 return 0;
3175 }
3176
3177 static int
3178 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3179 {
3180 return 0;
3181 }
3182
3183 /*
3184 * Find the next target down the stack from the specified target.
3185 */
3186
3187 struct target_ops *
3188 find_target_beneath (struct target_ops *t)
3189 {
3190 return t->beneath;
3191 }
3192
3193 /* See target.h. */
3194
3195 struct target_ops *
3196 find_target_at (enum strata stratum)
3197 {
3198 struct target_ops *t;
3199
3200 for (t = current_target.beneath; t != NULL; t = t->beneath)
3201 if (t->to_stratum == stratum)
3202 return t;
3203
3204 return NULL;
3205 }
3206
3207 \f
3208
3209 /* See target.h */
3210
3211 void
3212 target_announce_detach (int from_tty)
3213 {
3214 pid_t pid;
3215 const char *exec_file;
3216
3217 if (!from_tty)
3218 return;
3219
3220 exec_file = get_exec_file (0);
3221 if (exec_file == NULL)
3222 exec_file = "";
3223
3224 pid = ptid_get_pid (inferior_ptid);
3225 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3226 target_pid_to_str (pid_to_ptid (pid)));
3227 gdb_flush (gdb_stdout);
3228 }
3229
3230 /* The inferior process has died. Long live the inferior! */
3231
3232 void
3233 generic_mourn_inferior (void)
3234 {
3235 ptid_t ptid;
3236
3237 ptid = inferior_ptid;
3238 inferior_ptid = null_ptid;
3239
3240 /* Mark breakpoints uninserted in case something tries to delete a
3241 breakpoint while we delete the inferior's threads (which would
3242 fail, since the inferior is long gone). */
3243 mark_breakpoints_out ();
3244
3245 if (!ptid_equal (ptid, null_ptid))
3246 {
3247 int pid = ptid_get_pid (ptid);
3248 exit_inferior (pid);
3249 }
3250
3251 /* Note this wipes step-resume breakpoints, so needs to be done
3252 after exit_inferior, which ends up referencing the step-resume
3253 breakpoints through clear_thread_inferior_resources. */
3254 breakpoint_init_inferior (inf_exited);
3255
3256 registers_changed ();
3257
3258 reopen_exec_file ();
3259 reinit_frame_cache ();
3260
3261 if (deprecated_detach_hook)
3262 deprecated_detach_hook ();
3263 }
3264 \f
3265 /* Convert a normal process ID to a string. Returns the string in a
3266 static buffer. */
3267
3268 const char *
3269 normal_pid_to_str (ptid_t ptid)
3270 {
3271 static char buf[32];
3272
3273 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3274 return buf;
3275 }
3276
3277 static const char *
3278 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3279 {
3280 return normal_pid_to_str (ptid);
3281 }
3282
3283 /* Error-catcher for target_find_memory_regions. */
3284 static int
3285 dummy_find_memory_regions (struct target_ops *self,
3286 find_memory_region_ftype ignore1, void *ignore2)
3287 {
3288 error (_("Command not implemented for this target."));
3289 return 0;
3290 }
3291
3292 /* Error-catcher for target_make_corefile_notes. */
3293 static char *
3294 dummy_make_corefile_notes (struct target_ops *self,
3295 bfd *ignore1, int *ignore2)
3296 {
3297 error (_("Command not implemented for this target."));
3298 return NULL;
3299 }
3300
3301 /* Set up the handful of non-empty slots needed by the dummy target
3302 vector. */
3303
3304 static void
3305 init_dummy_target (void)
3306 {
3307 dummy_target.to_shortname = "None";
3308 dummy_target.to_longname = "None";
3309 dummy_target.to_doc = "";
3310 dummy_target.to_supports_disable_randomization
3311 = find_default_supports_disable_randomization;
3312 dummy_target.to_stratum = dummy_stratum;
3313 dummy_target.to_has_all_memory = return_zero;
3314 dummy_target.to_has_memory = return_zero;
3315 dummy_target.to_has_stack = return_zero;
3316 dummy_target.to_has_registers = return_zero;
3317 dummy_target.to_has_execution = return_zero_has_execution;
3318 dummy_target.to_magic = OPS_MAGIC;
3319
3320 install_dummy_methods (&dummy_target);
3321 }
3322 \f
3323
3324 void
3325 target_close (struct target_ops *targ)
3326 {
3327 gdb_assert (!target_is_pushed (targ));
3328
3329 if (targ->to_xclose != NULL)
3330 targ->to_xclose (targ);
3331 else if (targ->to_close != NULL)
3332 targ->to_close (targ);
3333
3334 if (targetdebug)
3335 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3336 }
3337
3338 int
3339 target_thread_alive (ptid_t ptid)
3340 {
3341 return current_target.to_thread_alive (&current_target, ptid);
3342 }
3343
3344 void
3345 target_update_thread_list (void)
3346 {
3347 current_target.to_update_thread_list (&current_target);
3348 }
3349
3350 void
3351 target_stop (ptid_t ptid)
3352 {
3353 if (!may_stop)
3354 {
3355 warning (_("May not interrupt or stop the target, ignoring attempt"));
3356 return;
3357 }
3358
3359 (*current_target.to_stop) (&current_target, ptid);
3360 }
3361
3362 void
3363 target_interrupt (ptid_t ptid)
3364 {
3365 if (!may_stop)
3366 {
3367 warning (_("May not interrupt or stop the target, ignoring attempt"));
3368 return;
3369 }
3370
3371 (*current_target.to_interrupt) (&current_target, ptid);
3372 }
3373
3374 /* See target.h. */
3375
3376 void
3377 target_pass_ctrlc (void)
3378 {
3379 (*current_target.to_pass_ctrlc) (&current_target);
3380 }
3381
3382 /* See target.h. */
3383
3384 void
3385 default_target_pass_ctrlc (struct target_ops *ops)
3386 {
3387 target_interrupt (inferior_ptid);
3388 }
3389
3390 /* See target/target.h. */
3391
3392 void
3393 target_stop_and_wait (ptid_t ptid)
3394 {
3395 struct target_waitstatus status;
3396 int was_non_stop = non_stop;
3397
3398 non_stop = 1;
3399 target_stop (ptid);
3400
3401 memset (&status, 0, sizeof (status));
3402 target_wait (ptid, &status, 0);
3403
3404 non_stop = was_non_stop;
3405 }
3406
3407 /* See target/target.h. */
3408
3409 void
3410 target_continue_no_signal (ptid_t ptid)
3411 {
3412 target_resume (ptid, 0, GDB_SIGNAL_0);
3413 }
3414
3415 /* See target/target.h. */
3416
3417 void
3418 target_continue (ptid_t ptid, enum gdb_signal signal)
3419 {
3420 target_resume (ptid, 0, signal);
3421 }
3422
3423 /* Concatenate ELEM to LIST, a comma separate list, and return the
3424 result. The LIST incoming argument is released. */
3425
3426 static char *
3427 str_comma_list_concat_elem (char *list, const char *elem)
3428 {
3429 if (list == NULL)
3430 return xstrdup (elem);
3431 else
3432 return reconcat (list, list, ", ", elem, (char *) NULL);
3433 }
3434
3435 /* Helper for target_options_to_string. If OPT is present in
3436 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3437 Returns the new resulting string. OPT is removed from
3438 TARGET_OPTIONS. */
3439
3440 static char *
3441 do_option (int *target_options, char *ret,
3442 int opt, const char *opt_str)
3443 {
3444 if ((*target_options & opt) != 0)
3445 {
3446 ret = str_comma_list_concat_elem (ret, opt_str);
3447 *target_options &= ~opt;
3448 }
3449
3450 return ret;
3451 }
3452
3453 char *
3454 target_options_to_string (int target_options)
3455 {
3456 char *ret = NULL;
3457
3458 #define DO_TARG_OPTION(OPT) \
3459 ret = do_option (&target_options, ret, OPT, #OPT)
3460
3461 DO_TARG_OPTION (TARGET_WNOHANG);
3462
3463 if (target_options != 0)
3464 ret = str_comma_list_concat_elem (ret, "unknown???");
3465
3466 if (ret == NULL)
3467 ret = xstrdup ("");
3468 return ret;
3469 }
3470
3471 void
3472 target_fetch_registers (struct regcache *regcache, int regno)
3473 {
3474 current_target.to_fetch_registers (&current_target, regcache, regno);
3475 if (targetdebug)
3476 regcache->debug_print_register ("target_fetch_registers", regno);
3477 }
3478
3479 void
3480 target_store_registers (struct regcache *regcache, int regno)
3481 {
3482 if (!may_write_registers)
3483 error (_("Writing to registers is not allowed (regno %d)"), regno);
3484
3485 current_target.to_store_registers (&current_target, regcache, regno);
3486 if (targetdebug)
3487 {
3488 regcache->debug_print_register ("target_store_registers", regno);
3489 }
3490 }
3491
3492 int
3493 target_core_of_thread (ptid_t ptid)
3494 {
3495 return current_target.to_core_of_thread (&current_target, ptid);
3496 }
3497
3498 int
3499 simple_verify_memory (struct target_ops *ops,
3500 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3501 {
3502 LONGEST total_xfered = 0;
3503
3504 while (total_xfered < size)
3505 {
3506 ULONGEST xfered_len;
3507 enum target_xfer_status status;
3508 gdb_byte buf[1024];
3509 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3510
3511 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3512 buf, NULL, lma + total_xfered, howmuch,
3513 &xfered_len);
3514 if (status == TARGET_XFER_OK
3515 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3516 {
3517 total_xfered += xfered_len;
3518 QUIT;
3519 }
3520 else
3521 return 0;
3522 }
3523 return 1;
3524 }
3525
3526 /* Default implementation of memory verification. */
3527
3528 static int
3529 default_verify_memory (struct target_ops *self,
3530 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3531 {
3532 /* Start over from the top of the target stack. */
3533 return simple_verify_memory (current_target.beneath,
3534 data, memaddr, size);
3535 }
3536
3537 int
3538 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3539 {
3540 return current_target.to_verify_memory (&current_target,
3541 data, memaddr, size);
3542 }
3543
3544 /* The documentation for this function is in its prototype declaration in
3545 target.h. */
3546
3547 int
3548 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3549 enum target_hw_bp_type rw)
3550 {
3551 return current_target.to_insert_mask_watchpoint (&current_target,
3552 addr, mask, rw);
3553 }
3554
3555 /* The documentation for this function is in its prototype declaration in
3556 target.h. */
3557
3558 int
3559 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3560 enum target_hw_bp_type rw)
3561 {
3562 return current_target.to_remove_mask_watchpoint (&current_target,
3563 addr, mask, rw);
3564 }
3565
3566 /* The documentation for this function is in its prototype declaration
3567 in target.h. */
3568
3569 int
3570 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3571 {
3572 return current_target.to_masked_watch_num_registers (&current_target,
3573 addr, mask);
3574 }
3575
3576 /* The documentation for this function is in its prototype declaration
3577 in target.h. */
3578
3579 int
3580 target_ranged_break_num_registers (void)
3581 {
3582 return current_target.to_ranged_break_num_registers (&current_target);
3583 }
3584
3585 /* See target.h. */
3586
3587 int
3588 target_supports_btrace (enum btrace_format format)
3589 {
3590 return current_target.to_supports_btrace (&current_target, format);
3591 }
3592
3593 /* See target.h. */
3594
3595 struct btrace_target_info *
3596 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3597 {
3598 return current_target.to_enable_btrace (&current_target, ptid, conf);
3599 }
3600
3601 /* See target.h. */
3602
3603 void
3604 target_disable_btrace (struct btrace_target_info *btinfo)
3605 {
3606 current_target.to_disable_btrace (&current_target, btinfo);
3607 }
3608
3609 /* See target.h. */
3610
3611 void
3612 target_teardown_btrace (struct btrace_target_info *btinfo)
3613 {
3614 current_target.to_teardown_btrace (&current_target, btinfo);
3615 }
3616
3617 /* See target.h. */
3618
3619 enum btrace_error
3620 target_read_btrace (struct btrace_data *btrace,
3621 struct btrace_target_info *btinfo,
3622 enum btrace_read_type type)
3623 {
3624 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3625 }
3626
3627 /* See target.h. */
3628
3629 const struct btrace_config *
3630 target_btrace_conf (const struct btrace_target_info *btinfo)
3631 {
3632 return current_target.to_btrace_conf (&current_target, btinfo);
3633 }
3634
3635 /* See target.h. */
3636
3637 void
3638 target_stop_recording (void)
3639 {
3640 current_target.to_stop_recording (&current_target);
3641 }
3642
3643 /* See target.h. */
3644
3645 void
3646 target_save_record (const char *filename)
3647 {
3648 current_target.to_save_record (&current_target, filename);
3649 }
3650
3651 /* See target.h. */
3652
3653 int
3654 target_supports_delete_record (void)
3655 {
3656 struct target_ops *t;
3657
3658 for (t = current_target.beneath; t != NULL; t = t->beneath)
3659 if (t->to_delete_record != delegate_delete_record
3660 && t->to_delete_record != tdefault_delete_record)
3661 return 1;
3662
3663 return 0;
3664 }
3665
3666 /* See target.h. */
3667
3668 void
3669 target_delete_record (void)
3670 {
3671 current_target.to_delete_record (&current_target);
3672 }
3673
3674 /* See target.h. */
3675
3676 enum record_method
3677 target_record_method (ptid_t ptid)
3678 {
3679 return current_target.to_record_method (&current_target, ptid);
3680 }
3681
3682 /* See target.h. */
3683
3684 int
3685 target_record_is_replaying (ptid_t ptid)
3686 {
3687 return current_target.to_record_is_replaying (&current_target, ptid);
3688 }
3689
3690 /* See target.h. */
3691
3692 int
3693 target_record_will_replay (ptid_t ptid, int dir)
3694 {
3695 return current_target.to_record_will_replay (&current_target, ptid, dir);
3696 }
3697
3698 /* See target.h. */
3699
3700 void
3701 target_record_stop_replaying (void)
3702 {
3703 current_target.to_record_stop_replaying (&current_target);
3704 }
3705
3706 /* See target.h. */
3707
3708 void
3709 target_goto_record_begin (void)
3710 {
3711 current_target.to_goto_record_begin (&current_target);
3712 }
3713
3714 /* See target.h. */
3715
3716 void
3717 target_goto_record_end (void)
3718 {
3719 current_target.to_goto_record_end (&current_target);
3720 }
3721
3722 /* See target.h. */
3723
3724 void
3725 target_goto_record (ULONGEST insn)
3726 {
3727 current_target.to_goto_record (&current_target, insn);
3728 }
3729
3730 /* See target.h. */
3731
3732 void
3733 target_insn_history (int size, gdb_disassembly_flags flags)
3734 {
3735 current_target.to_insn_history (&current_target, size, flags);
3736 }
3737
3738 /* See target.h. */
3739
3740 void
3741 target_insn_history_from (ULONGEST from, int size,
3742 gdb_disassembly_flags flags)
3743 {
3744 current_target.to_insn_history_from (&current_target, from, size, flags);
3745 }
3746
3747 /* See target.h. */
3748
3749 void
3750 target_insn_history_range (ULONGEST begin, ULONGEST end,
3751 gdb_disassembly_flags flags)
3752 {
3753 current_target.to_insn_history_range (&current_target, begin, end, flags);
3754 }
3755
3756 /* See target.h. */
3757
3758 void
3759 target_call_history (int size, int flags)
3760 {
3761 current_target.to_call_history (&current_target, size, flags);
3762 }
3763
3764 /* See target.h. */
3765
3766 void
3767 target_call_history_from (ULONGEST begin, int size, int flags)
3768 {
3769 current_target.to_call_history_from (&current_target, begin, size, flags);
3770 }
3771
3772 /* See target.h. */
3773
3774 void
3775 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3776 {
3777 current_target.to_call_history_range (&current_target, begin, end, flags);
3778 }
3779
3780 /* See target.h. */
3781
3782 const struct frame_unwind *
3783 target_get_unwinder (void)
3784 {
3785 return current_target.to_get_unwinder (&current_target);
3786 }
3787
3788 /* See target.h. */
3789
3790 const struct frame_unwind *
3791 target_get_tailcall_unwinder (void)
3792 {
3793 return current_target.to_get_tailcall_unwinder (&current_target);
3794 }
3795
3796 /* See target.h. */
3797
3798 void
3799 target_prepare_to_generate_core (void)
3800 {
3801 current_target.to_prepare_to_generate_core (&current_target);
3802 }
3803
3804 /* See target.h. */
3805
3806 void
3807 target_done_generating_core (void)
3808 {
3809 current_target.to_done_generating_core (&current_target);
3810 }
3811
3812 static void
3813 setup_target_debug (void)
3814 {
3815 memcpy (&debug_target, &current_target, sizeof debug_target);
3816
3817 init_debug_target (&current_target);
3818 }
3819 \f
3820
3821 static char targ_desc[] =
3822 "Names of targets and files being debugged.\nShows the entire \
3823 stack of targets currently in use (including the exec-file,\n\
3824 core-file, and process, if any), as well as the symbol file name.";
3825
3826 static void
3827 default_rcmd (struct target_ops *self, const char *command,
3828 struct ui_file *output)
3829 {
3830 error (_("\"monitor\" command not supported by this target."));
3831 }
3832
3833 static void
3834 do_monitor_command (char *cmd,
3835 int from_tty)
3836 {
3837 target_rcmd (cmd, gdb_stdtarg);
3838 }
3839
3840 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3841 ignored. */
3842
3843 void
3844 flash_erase_command (char *cmd, int from_tty)
3845 {
3846 /* Used to communicate termination of flash operations to the target. */
3847 bool found_flash_region = false;
3848 struct mem_region *m;
3849 struct gdbarch *gdbarch = target_gdbarch ();
3850
3851 VEC(mem_region_s) *mem_regions = target_memory_map ();
3852
3853 /* Iterate over all memory regions. */
3854 for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3855 {
3856 /* Fetch the memory attribute. */
3857 struct mem_attrib *attrib = &m->attrib;
3858
3859 /* Is this a flash memory region? */
3860 if (attrib->mode == MEM_FLASH)
3861 {
3862 found_flash_region = true;
3863 target_flash_erase (m->lo, m->hi - m->lo);
3864
3865 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3866
3867 current_uiout->message (_("Erasing flash memory region at address "));
3868 current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3869 m->lo));
3870 current_uiout->message (", size = ");
3871 current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3872 current_uiout->message ("\n");
3873 }
3874 }
3875
3876 /* Did we do any flash operations? If so, we need to finalize them. */
3877 if (found_flash_region)
3878 target_flash_done ();
3879 else
3880 current_uiout->message (_("No flash memory regions found.\n"));
3881 }
3882
3883 /* Print the name of each layers of our target stack. */
3884
3885 static void
3886 maintenance_print_target_stack (char *cmd, int from_tty)
3887 {
3888 struct target_ops *t;
3889
3890 printf_filtered (_("The current target stack is:\n"));
3891
3892 for (t = target_stack; t != NULL; t = t->beneath)
3893 {
3894 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3895 }
3896 }
3897
3898 /* See target.h. */
3899
3900 void
3901 target_async (int enable)
3902 {
3903 infrun_async (enable);
3904 current_target.to_async (&current_target, enable);
3905 }
3906
3907 /* See target.h. */
3908
3909 void
3910 target_thread_events (int enable)
3911 {
3912 current_target.to_thread_events (&current_target, enable);
3913 }
3914
3915 /* Controls if targets can report that they can/are async. This is
3916 just for maintainers to use when debugging gdb. */
3917 int target_async_permitted = 1;
3918
3919 /* The set command writes to this variable. If the inferior is
3920 executing, target_async_permitted is *not* updated. */
3921 static int target_async_permitted_1 = 1;
3922
3923 static void
3924 maint_set_target_async_command (char *args, int from_tty,
3925 struct cmd_list_element *c)
3926 {
3927 if (have_live_inferiors ())
3928 {
3929 target_async_permitted_1 = target_async_permitted;
3930 error (_("Cannot change this setting while the inferior is running."));
3931 }
3932
3933 target_async_permitted = target_async_permitted_1;
3934 }
3935
3936 static void
3937 maint_show_target_async_command (struct ui_file *file, int from_tty,
3938 struct cmd_list_element *c,
3939 const char *value)
3940 {
3941 fprintf_filtered (file,
3942 _("Controlling the inferior in "
3943 "asynchronous mode is %s.\n"), value);
3944 }
3945
3946 /* Return true if the target operates in non-stop mode even with "set
3947 non-stop off". */
3948
3949 static int
3950 target_always_non_stop_p (void)
3951 {
3952 return current_target.to_always_non_stop_p (&current_target);
3953 }
3954
3955 /* See target.h. */
3956
3957 int
3958 target_is_non_stop_p (void)
3959 {
3960 return (non_stop
3961 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3962 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3963 && target_always_non_stop_p ()));
3964 }
3965
3966 /* Controls if targets can report that they always run in non-stop
3967 mode. This is just for maintainers to use when debugging gdb. */
3968 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3969
3970 /* The set command writes to this variable. If the inferior is
3971 executing, target_non_stop_enabled is *not* updated. */
3972 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3973
3974 /* Implementation of "maint set target-non-stop". */
3975
3976 static void
3977 maint_set_target_non_stop_command (char *args, int from_tty,
3978 struct cmd_list_element *c)
3979 {
3980 if (have_live_inferiors ())
3981 {
3982 target_non_stop_enabled_1 = target_non_stop_enabled;
3983 error (_("Cannot change this setting while the inferior is running."));
3984 }
3985
3986 target_non_stop_enabled = target_non_stop_enabled_1;
3987 }
3988
3989 /* Implementation of "maint show target-non-stop". */
3990
3991 static void
3992 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3993 struct cmd_list_element *c,
3994 const char *value)
3995 {
3996 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3997 fprintf_filtered (file,
3998 _("Whether the target is always in non-stop mode "
3999 "is %s (currently %s).\n"), value,
4000 target_always_non_stop_p () ? "on" : "off");
4001 else
4002 fprintf_filtered (file,
4003 _("Whether the target is always in non-stop mode "
4004 "is %s.\n"), value);
4005 }
4006
4007 /* Temporary copies of permission settings. */
4008
4009 static int may_write_registers_1 = 1;
4010 static int may_write_memory_1 = 1;
4011 static int may_insert_breakpoints_1 = 1;
4012 static int may_insert_tracepoints_1 = 1;
4013 static int may_insert_fast_tracepoints_1 = 1;
4014 static int may_stop_1 = 1;
4015
4016 /* Make the user-set values match the real values again. */
4017
4018 void
4019 update_target_permissions (void)
4020 {
4021 may_write_registers_1 = may_write_registers;
4022 may_write_memory_1 = may_write_memory;
4023 may_insert_breakpoints_1 = may_insert_breakpoints;
4024 may_insert_tracepoints_1 = may_insert_tracepoints;
4025 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4026 may_stop_1 = may_stop;
4027 }
4028
4029 /* The one function handles (most of) the permission flags in the same
4030 way. */
4031
4032 static void
4033 set_target_permissions (char *args, int from_tty,
4034 struct cmd_list_element *c)
4035 {
4036 if (target_has_execution)
4037 {
4038 update_target_permissions ();
4039 error (_("Cannot change this setting while the inferior is running."));
4040 }
4041
4042 /* Make the real values match the user-changed values. */
4043 may_write_registers = may_write_registers_1;
4044 may_insert_breakpoints = may_insert_breakpoints_1;
4045 may_insert_tracepoints = may_insert_tracepoints_1;
4046 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4047 may_stop = may_stop_1;
4048 update_observer_mode ();
4049 }
4050
4051 /* Set memory write permission independently of observer mode. */
4052
4053 static void
4054 set_write_memory_permission (char *args, int from_tty,
4055 struct cmd_list_element *c)
4056 {
4057 /* Make the real values match the user-changed values. */
4058 may_write_memory = may_write_memory_1;
4059 update_observer_mode ();
4060 }
4061
4062
4063 void
4064 initialize_targets (void)
4065 {
4066 init_dummy_target ();
4067 push_target (&dummy_target);
4068
4069 add_info ("target", info_target_command, targ_desc);
4070 add_info ("files", info_target_command, targ_desc);
4071
4072 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4073 Set target debugging."), _("\
4074 Show target debugging."), _("\
4075 When non-zero, target debugging is enabled. Higher numbers are more\n\
4076 verbose."),
4077 set_targetdebug,
4078 show_targetdebug,
4079 &setdebuglist, &showdebuglist);
4080
4081 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4082 &trust_readonly, _("\
4083 Set mode for reading from readonly sections."), _("\
4084 Show mode for reading from readonly sections."), _("\
4085 When this mode is on, memory reads from readonly sections (such as .text)\n\
4086 will be read from the object file instead of from the target. This will\n\
4087 result in significant performance improvement for remote targets."),
4088 NULL,
4089 show_trust_readonly,
4090 &setlist, &showlist);
4091
4092 add_com ("monitor", class_obscure, do_monitor_command,
4093 _("Send a command to the remote monitor (remote targets only)."));
4094
4095 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4096 _("Print the name of each layer of the internal target stack."),
4097 &maintenanceprintlist);
4098
4099 add_setshow_boolean_cmd ("target-async", no_class,
4100 &target_async_permitted_1, _("\
4101 Set whether gdb controls the inferior in asynchronous mode."), _("\
4102 Show whether gdb controls the inferior in asynchronous mode."), _("\
4103 Tells gdb whether to control the inferior in asynchronous mode."),
4104 maint_set_target_async_command,
4105 maint_show_target_async_command,
4106 &maintenance_set_cmdlist,
4107 &maintenance_show_cmdlist);
4108
4109 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4110 &target_non_stop_enabled_1, _("\
4111 Set whether gdb always controls the inferior in non-stop mode."), _("\
4112 Show whether gdb always controls the inferior in non-stop mode."), _("\
4113 Tells gdb whether to control the inferior in non-stop mode."),
4114 maint_set_target_non_stop_command,
4115 maint_show_target_non_stop_command,
4116 &maintenance_set_cmdlist,
4117 &maintenance_show_cmdlist);
4118
4119 add_setshow_boolean_cmd ("may-write-registers", class_support,
4120 &may_write_registers_1, _("\
4121 Set permission to write into registers."), _("\
4122 Show permission to write into registers."), _("\
4123 When this permission is on, GDB may write into the target's registers.\n\
4124 Otherwise, any sort of write attempt will result in an error."),
4125 set_target_permissions, NULL,
4126 &setlist, &showlist);
4127
4128 add_setshow_boolean_cmd ("may-write-memory", class_support,
4129 &may_write_memory_1, _("\
4130 Set permission to write into target memory."), _("\
4131 Show permission to write into target memory."), _("\
4132 When this permission is on, GDB may write into the target's memory.\n\
4133 Otherwise, any sort of write attempt will result in an error."),
4134 set_write_memory_permission, NULL,
4135 &setlist, &showlist);
4136
4137 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4138 &may_insert_breakpoints_1, _("\
4139 Set permission to insert breakpoints in the target."), _("\
4140 Show permission to insert breakpoints in the target."), _("\
4141 When this permission is on, GDB may insert breakpoints in the program.\n\
4142 Otherwise, any sort of insertion attempt will result in an error."),
4143 set_target_permissions, NULL,
4144 &setlist, &showlist);
4145
4146 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4147 &may_insert_tracepoints_1, _("\
4148 Set permission to insert tracepoints in the target."), _("\
4149 Show permission to insert tracepoints in the target."), _("\
4150 When this permission is on, GDB may insert tracepoints in the program.\n\
4151 Otherwise, any sort of insertion attempt will result in an error."),
4152 set_target_permissions, NULL,
4153 &setlist, &showlist);
4154
4155 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4156 &may_insert_fast_tracepoints_1, _("\
4157 Set permission to insert fast tracepoints in the target."), _("\
4158 Show permission to insert fast tracepoints in the target."), _("\
4159 When this permission is on, GDB may insert fast tracepoints.\n\
4160 Otherwise, any sort of insertion attempt will result in an error."),
4161 set_target_permissions, NULL,
4162 &setlist, &showlist);
4163
4164 add_setshow_boolean_cmd ("may-interrupt", class_support,
4165 &may_stop_1, _("\
4166 Set permission to interrupt or signal the target."), _("\
4167 Show permission to interrupt or signal the target."), _("\
4168 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4169 Otherwise, any attempt to interrupt or stop will be ignored."),
4170 set_target_permissions, NULL,
4171 &setlist, &showlist);
4172
4173 add_com ("flash-erase", no_class, flash_erase_command,
4174 _("Erase all flash memory regions."));
4175
4176 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4177 &auto_connect_native_target, _("\
4178 Set whether GDB may automatically connect to the native target."), _("\
4179 Show whether GDB may automatically connect to the native target."), _("\
4180 When on, and GDB is not connected to a target yet, GDB\n\
4181 attempts \"run\" and other commands with the native target."),
4182 NULL, show_auto_connect_native_target,
4183 &setlist, &showlist);
4184 }
This page took 0.144875 seconds and 5 git commands to generate.