[gdb] Fix more typos in comments (2)
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* The target stack. */
114
115 static target_stack g_target_stack;
116
117 /* Top of target stack. */
118 /* The target structure we are currently using to talk to a process
119 or file or whatever "inferior" we have. */
120
121 target_ops *
122 current_top_target ()
123 {
124 return g_target_stack.top ();
125 }
126
127 /* Command list for target. */
128
129 static struct cmd_list_element *targetlist = NULL;
130
131 /* True if we should trust readonly sections from the
132 executable when reading memory. */
133
134 static bool trust_readonly = false;
135
136 /* Nonzero if we should show true memory content including
137 memory breakpoint inserted by gdb. */
138
139 static int show_memory_breakpoints = 0;
140
141 /* These globals control whether GDB attempts to perform these
142 operations; they are useful for targets that need to prevent
143 inadvertent disruption, such as in non-stop mode. */
144
145 bool may_write_registers = true;
146
147 bool may_write_memory = true;
148
149 bool may_insert_breakpoints = true;
150
151 bool may_insert_tracepoints = true;
152
153 bool may_insert_fast_tracepoints = true;
154
155 bool may_stop = true;
156
157 /* Non-zero if we want to see trace of target level stuff. */
158
159 static unsigned int targetdebug = 0;
160
161 static void
162 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
163 {
164 if (targetdebug)
165 push_target (the_debug_target);
166 else
167 unpush_target (the_debug_target);
168 }
169
170 static void
171 show_targetdebug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
175 }
176
177 /* The user just typed 'target' without the name of a target. */
178
179 static void
180 target_command (const char *arg, int from_tty)
181 {
182 fputs_filtered ("Argument required (target name). Try `help target'\n",
183 gdb_stdout);
184 }
185
186 int
187 target_has_all_memory_1 (void)
188 {
189 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
190 if (t->has_all_memory ())
191 return 1;
192
193 return 0;
194 }
195
196 int
197 target_has_memory_1 (void)
198 {
199 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
200 if (t->has_memory ())
201 return 1;
202
203 return 0;
204 }
205
206 int
207 target_has_stack_1 (void)
208 {
209 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
210 if (t->has_stack ())
211 return 1;
212
213 return 0;
214 }
215
216 int
217 target_has_registers_1 (void)
218 {
219 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
220 if (t->has_registers ())
221 return 1;
222
223 return 0;
224 }
225
226 int
227 target_has_execution_1 (ptid_t the_ptid)
228 {
229 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
230 if (t->has_execution (the_ptid))
231 return 1;
232
233 return 0;
234 }
235
236 int
237 target_has_execution_current (void)
238 {
239 return target_has_execution_1 (inferior_ptid);
240 }
241
242 /* This is used to implement the various target commands. */
243
244 static void
245 open_target (const char *args, int from_tty, struct cmd_list_element *command)
246 {
247 auto *ti = static_cast<target_info *> (get_cmd_context (command));
248 target_open_ftype *func = target_factories[ti];
249
250 if (targetdebug)
251 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
252 ti->shortname);
253
254 func (args, from_tty);
255
256 if (targetdebug)
257 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
258 ti->shortname, args, from_tty);
259 }
260
261 /* See target.h. */
262
263 void
264 add_target (const target_info &t, target_open_ftype *func,
265 completer_ftype *completer)
266 {
267 struct cmd_list_element *c;
268
269 auto &func_slot = target_factories[&t];
270 if (func_slot != nullptr)
271 internal_error (__FILE__, __LINE__,
272 _("target already added (\"%s\")."), t.shortname);
273 func_slot = func;
274
275 if (targetlist == NULL)
276 add_prefix_cmd ("target", class_run, target_command, _("\
277 Connect to a target machine or process.\n\
278 The first argument is the type or protocol of the target machine.\n\
279 Remaining arguments are interpreted by the target protocol. For more\n\
280 information on the arguments for a particular protocol, type\n\
281 `help target ' followed by the protocol name."),
282 &targetlist, "target ", 0, &cmdlist);
283 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
284 set_cmd_context (c, (void *) &t);
285 set_cmd_sfunc (c, open_target);
286 if (completer != NULL)
287 set_cmd_completer (c, completer);
288 }
289
290 /* See target.h. */
291
292 void
293 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
294 {
295 struct cmd_list_element *c;
296 char *alt;
297
298 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
299 see PR cli/15104. */
300 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
301 set_cmd_sfunc (c, open_target);
302 set_cmd_context (c, (void *) &tinfo);
303 alt = xstrprintf ("target %s", tinfo.shortname);
304 deprecate_cmd (c, alt);
305 }
306
307 /* Stub functions */
308
309 void
310 target_kill (void)
311 {
312 current_top_target ()->kill ();
313 }
314
315 void
316 target_load (const char *arg, int from_tty)
317 {
318 target_dcache_invalidate ();
319 current_top_target ()->load (arg, from_tty);
320 }
321
322 /* Define it. */
323
324 target_terminal_state target_terminal::m_terminal_state
325 = target_terminal_state::is_ours;
326
327 /* See target/target.h. */
328
329 void
330 target_terminal::init (void)
331 {
332 current_top_target ()->terminal_init ();
333
334 m_terminal_state = target_terminal_state::is_ours;
335 }
336
337 /* See target/target.h. */
338
339 void
340 target_terminal::inferior (void)
341 {
342 struct ui *ui = current_ui;
343
344 /* A background resume (``run&'') should leave GDB in control of the
345 terminal. */
346 if (ui->prompt_state != PROMPT_BLOCKED)
347 return;
348
349 /* Since we always run the inferior in the main console (unless "set
350 inferior-tty" is in effect), when some UI other than the main one
351 calls target_terminal::inferior, then we leave the main UI's
352 terminal settings as is. */
353 if (ui != main_ui)
354 return;
355
356 /* If GDB is resuming the inferior in the foreground, install
357 inferior's terminal modes. */
358
359 struct inferior *inf = current_inferior ();
360
361 if (inf->terminal_state != target_terminal_state::is_inferior)
362 {
363 current_top_target ()->terminal_inferior ();
364 inf->terminal_state = target_terminal_state::is_inferior;
365 }
366
367 m_terminal_state = target_terminal_state::is_inferior;
368
369 /* If the user hit C-c before, pretend that it was hit right
370 here. */
371 if (check_quit_flag ())
372 target_pass_ctrlc ();
373 }
374
375 /* See target/target.h. */
376
377 void
378 target_terminal::restore_inferior (void)
379 {
380 struct ui *ui = current_ui;
381
382 /* See target_terminal::inferior(). */
383 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
384 return;
385
386 /* Restore the terminal settings of inferiors that were in the
387 foreground but are now ours_for_output due to a temporary
388 target_target::ours_for_output() call. */
389
390 {
391 scoped_restore_current_inferior restore_inferior;
392
393 for (::inferior *inf : all_inferiors ())
394 {
395 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
396 {
397 set_current_inferior (inf);
398 current_top_target ()->terminal_inferior ();
399 inf->terminal_state = target_terminal_state::is_inferior;
400 }
401 }
402 }
403
404 m_terminal_state = target_terminal_state::is_inferior;
405
406 /* If the user hit C-c before, pretend that it was hit right
407 here. */
408 if (check_quit_flag ())
409 target_pass_ctrlc ();
410 }
411
412 /* Switch terminal state to DESIRED_STATE, either is_ours, or
413 is_ours_for_output. */
414
415 static void
416 target_terminal_is_ours_kind (target_terminal_state desired_state)
417 {
418 scoped_restore_current_inferior restore_inferior;
419
420 /* Must do this in two passes. First, have all inferiors save the
421 current terminal settings. Then, after all inferiors have add a
422 chance to safely save the terminal settings, restore GDB's
423 terminal settings. */
424
425 for (inferior *inf : all_inferiors ())
426 {
427 if (inf->terminal_state == target_terminal_state::is_inferior)
428 {
429 set_current_inferior (inf);
430 current_top_target ()->terminal_save_inferior ();
431 }
432 }
433
434 for (inferior *inf : all_inferiors ())
435 {
436 /* Note we don't check is_inferior here like above because we
437 need to handle 'is_ours_for_output -> is_ours' too. Careful
438 to never transition from 'is_ours' to 'is_ours_for_output',
439 though. */
440 if (inf->terminal_state != target_terminal_state::is_ours
441 && inf->terminal_state != desired_state)
442 {
443 set_current_inferior (inf);
444 if (desired_state == target_terminal_state::is_ours)
445 current_top_target ()->terminal_ours ();
446 else if (desired_state == target_terminal_state::is_ours_for_output)
447 current_top_target ()->terminal_ours_for_output ();
448 else
449 gdb_assert_not_reached ("unhandled desired state");
450 inf->terminal_state = desired_state;
451 }
452 }
453 }
454
455 /* See target/target.h. */
456
457 void
458 target_terminal::ours ()
459 {
460 struct ui *ui = current_ui;
461
462 /* See target_terminal::inferior. */
463 if (ui != main_ui)
464 return;
465
466 if (m_terminal_state == target_terminal_state::is_ours)
467 return;
468
469 target_terminal_is_ours_kind (target_terminal_state::is_ours);
470 m_terminal_state = target_terminal_state::is_ours;
471 }
472
473 /* See target/target.h. */
474
475 void
476 target_terminal::ours_for_output ()
477 {
478 struct ui *ui = current_ui;
479
480 /* See target_terminal::inferior. */
481 if (ui != main_ui)
482 return;
483
484 if (!target_terminal::is_inferior ())
485 return;
486
487 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
488 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
489 }
490
491 /* See target/target.h. */
492
493 void
494 target_terminal::info (const char *arg, int from_tty)
495 {
496 current_top_target ()->terminal_info (arg, from_tty);
497 }
498
499 /* See target.h. */
500
501 bool
502 target_supports_terminal_ours (void)
503 {
504 /* This can be called before there is any target, so we must check
505 for nullptr here. */
506 target_ops *top = current_top_target ();
507
508 if (top == nullptr)
509 return false;
510 return top->supports_terminal_ours ();
511 }
512
513 static void
514 tcomplain (void)
515 {
516 error (_("You can't do that when your target is `%s'"),
517 current_top_target ()->shortname ());
518 }
519
520 void
521 noprocess (void)
522 {
523 error (_("You can't do that without a process to debug."));
524 }
525
526 static void
527 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
528 {
529 printf_unfiltered (_("No saved terminal information.\n"));
530 }
531
532 /* A default implementation for the to_get_ada_task_ptid target method.
533
534 This function builds the PTID by using both LWP and TID as part of
535 the PTID lwp and tid elements. The pid used is the pid of the
536 inferior_ptid. */
537
538 static ptid_t
539 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
540 {
541 return ptid_t (inferior_ptid.pid (), lwp, tid);
542 }
543
544 static enum exec_direction_kind
545 default_execution_direction (struct target_ops *self)
546 {
547 if (!target_can_execute_reverse)
548 return EXEC_FORWARD;
549 else if (!target_can_async_p ())
550 return EXEC_FORWARD;
551 else
552 gdb_assert_not_reached ("\
553 to_execution_direction must be implemented for reverse async");
554 }
555
556 /* See target.h. */
557
558 void
559 target_stack::push (target_ops *t)
560 {
561 /* If there's already a target at this stratum, remove it. */
562 strata stratum = t->stratum ();
563
564 if (m_stack[stratum] != NULL)
565 {
566 target_ops *prev = m_stack[stratum];
567 m_stack[stratum] = NULL;
568 target_close (prev);
569 }
570
571 /* Now add the new one. */
572 m_stack[stratum] = t;
573
574 if (m_top < stratum)
575 m_top = stratum;
576 }
577
578 /* See target.h. */
579
580 void
581 push_target (struct target_ops *t)
582 {
583 g_target_stack.push (t);
584 }
585
586 /* See target.h */
587
588 void
589 push_target (target_ops_up &&t)
590 {
591 g_target_stack.push (t.get ());
592 t.release ();
593 }
594
595 /* See target.h. */
596
597 int
598 unpush_target (struct target_ops *t)
599 {
600 return g_target_stack.unpush (t);
601 }
602
603 /* See target.h. */
604
605 bool
606 target_stack::unpush (target_ops *t)
607 {
608 gdb_assert (t != NULL);
609
610 strata stratum = t->stratum ();
611
612 if (stratum == dummy_stratum)
613 internal_error (__FILE__, __LINE__,
614 _("Attempt to unpush the dummy target"));
615
616 /* Look for the specified target. Note that a target can only occur
617 once in the target stack. */
618
619 if (m_stack[stratum] != t)
620 {
621 /* If T wasn't pushed, quit. Only open targets should be
622 closed. */
623 return false;
624 }
625
626 /* Unchain the target. */
627 m_stack[stratum] = NULL;
628
629 if (m_top == stratum)
630 m_top = t->beneath ()->stratum ();
631
632 /* Finally close the target. Note we do this after unchaining, so
633 any target method calls from within the target_close
634 implementation don't end up in T anymore. */
635 target_close (t);
636
637 return true;
638 }
639
640 /* Unpush TARGET and assert that it worked. */
641
642 static void
643 unpush_target_and_assert (struct target_ops *target)
644 {
645 if (!unpush_target (target))
646 {
647 fprintf_unfiltered (gdb_stderr,
648 "pop_all_targets couldn't find target %s\n",
649 target->shortname ());
650 internal_error (__FILE__, __LINE__,
651 _("failed internal consistency check"));
652 }
653 }
654
655 void
656 pop_all_targets_above (enum strata above_stratum)
657 {
658 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
659 unpush_target_and_assert (current_top_target ());
660 }
661
662 /* See target.h. */
663
664 void
665 pop_all_targets_at_and_above (enum strata stratum)
666 {
667 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
668 unpush_target_and_assert (current_top_target ());
669 }
670
671 void
672 pop_all_targets (void)
673 {
674 pop_all_targets_above (dummy_stratum);
675 }
676
677 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
678
679 int
680 target_is_pushed (struct target_ops *t)
681 {
682 return g_target_stack.is_pushed (t);
683 }
684
685 /* Default implementation of to_get_thread_local_address. */
686
687 static void
688 generic_tls_error (void)
689 {
690 throw_error (TLS_GENERIC_ERROR,
691 _("Cannot find thread-local variables on this target"));
692 }
693
694 /* Using the objfile specified in OBJFILE, find the address for the
695 current thread's thread-local storage with offset OFFSET. */
696 CORE_ADDR
697 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
698 {
699 volatile CORE_ADDR addr = 0;
700 struct target_ops *target = current_top_target ();
701 struct gdbarch *gdbarch = target_gdbarch ();
702
703 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
704 {
705 ptid_t ptid = inferior_ptid;
706
707 try
708 {
709 CORE_ADDR lm_addr;
710
711 /* Fetch the load module address for this objfile. */
712 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
713 objfile);
714
715 if (gdbarch_get_thread_local_address_p (gdbarch))
716 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
717 offset);
718 else
719 addr = target->get_thread_local_address (ptid, lm_addr, offset);
720 }
721 /* If an error occurred, print TLS related messages here. Otherwise,
722 throw the error to some higher catcher. */
723 catch (const gdb_exception &ex)
724 {
725 int objfile_is_library = (objfile->flags & OBJF_SHARED);
726
727 switch (ex.error)
728 {
729 case TLS_NO_LIBRARY_SUPPORT_ERROR:
730 error (_("Cannot find thread-local variables "
731 "in this thread library."));
732 break;
733 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
734 if (objfile_is_library)
735 error (_("Cannot find shared library `%s' in dynamic"
736 " linker's load module list"), objfile_name (objfile));
737 else
738 error (_("Cannot find executable file `%s' in dynamic"
739 " linker's load module list"), objfile_name (objfile));
740 break;
741 case TLS_NOT_ALLOCATED_YET_ERROR:
742 if (objfile_is_library)
743 error (_("The inferior has not yet allocated storage for"
744 " thread-local variables in\n"
745 "the shared library `%s'\n"
746 "for %s"),
747 objfile_name (objfile),
748 target_pid_to_str (ptid).c_str ());
749 else
750 error (_("The inferior has not yet allocated storage for"
751 " thread-local variables in\n"
752 "the executable `%s'\n"
753 "for %s"),
754 objfile_name (objfile),
755 target_pid_to_str (ptid).c_str ());
756 break;
757 case TLS_GENERIC_ERROR:
758 if (objfile_is_library)
759 error (_("Cannot find thread-local storage for %s, "
760 "shared library %s:\n%s"),
761 target_pid_to_str (ptid).c_str (),
762 objfile_name (objfile), ex.what ());
763 else
764 error (_("Cannot find thread-local storage for %s, "
765 "executable file %s:\n%s"),
766 target_pid_to_str (ptid).c_str (),
767 objfile_name (objfile), ex.what ());
768 break;
769 default:
770 throw;
771 break;
772 }
773 }
774 }
775 else
776 error (_("Cannot find thread-local variables on this target"));
777
778 return addr;
779 }
780
781 const char *
782 target_xfer_status_to_string (enum target_xfer_status status)
783 {
784 #define CASE(X) case X: return #X
785 switch (status)
786 {
787 CASE(TARGET_XFER_E_IO);
788 CASE(TARGET_XFER_UNAVAILABLE);
789 default:
790 return "<unknown>";
791 }
792 #undef CASE
793 };
794
795
796 #undef MIN
797 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
798
799 /* target_read_string -- read a null terminated string, up to LEN bytes,
800 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
801 Set *STRING to a pointer to malloc'd memory containing the data; the caller
802 is responsible for freeing it. Return the number of bytes successfully
803 read. */
804
805 int
806 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
807 int len, int *errnop)
808 {
809 int tlen, offset, i;
810 gdb_byte buf[4];
811 int errcode = 0;
812 char *buffer;
813 int buffer_allocated;
814 char *bufptr;
815 unsigned int nbytes_read = 0;
816
817 gdb_assert (string);
818
819 /* Small for testing. */
820 buffer_allocated = 4;
821 buffer = (char *) xmalloc (buffer_allocated);
822 bufptr = buffer;
823
824 while (len > 0)
825 {
826 tlen = MIN (len, 4 - (memaddr & 3));
827 offset = memaddr & 3;
828
829 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
830 if (errcode != 0)
831 {
832 /* The transfer request might have crossed the boundary to an
833 unallocated region of memory. Retry the transfer, requesting
834 a single byte. */
835 tlen = 1;
836 offset = 0;
837 errcode = target_read_memory (memaddr, buf, 1);
838 if (errcode != 0)
839 goto done;
840 }
841
842 if (bufptr - buffer + tlen > buffer_allocated)
843 {
844 unsigned int bytes;
845
846 bytes = bufptr - buffer;
847 buffer_allocated *= 2;
848 buffer = (char *) xrealloc (buffer, buffer_allocated);
849 bufptr = buffer + bytes;
850 }
851
852 for (i = 0; i < tlen; i++)
853 {
854 *bufptr++ = buf[i + offset];
855 if (buf[i + offset] == '\000')
856 {
857 nbytes_read += i + 1;
858 goto done;
859 }
860 }
861
862 memaddr += tlen;
863 len -= tlen;
864 nbytes_read += tlen;
865 }
866 done:
867 string->reset (buffer);
868 if (errnop != NULL)
869 *errnop = errcode;
870 return nbytes_read;
871 }
872
873 struct target_section_table *
874 target_get_section_table (struct target_ops *target)
875 {
876 return target->get_section_table ();
877 }
878
879 /* Find a section containing ADDR. */
880
881 struct target_section *
882 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
883 {
884 struct target_section_table *table = target_get_section_table (target);
885 struct target_section *secp;
886
887 if (table == NULL)
888 return NULL;
889
890 for (secp = table->sections; secp < table->sections_end; secp++)
891 {
892 if (addr >= secp->addr && addr < secp->endaddr)
893 return secp;
894 }
895 return NULL;
896 }
897
898
899 /* Helper for the memory xfer routines. Checks the attributes of the
900 memory region of MEMADDR against the read or write being attempted.
901 If the access is permitted returns true, otherwise returns false.
902 REGION_P is an optional output parameter. If not-NULL, it is
903 filled with a pointer to the memory region of MEMADDR. REG_LEN
904 returns LEN trimmed to the end of the region. This is how much the
905 caller can continue requesting, if the access is permitted. A
906 single xfer request must not straddle memory region boundaries. */
907
908 static int
909 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
910 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
911 struct mem_region **region_p)
912 {
913 struct mem_region *region;
914
915 region = lookup_mem_region (memaddr);
916
917 if (region_p != NULL)
918 *region_p = region;
919
920 switch (region->attrib.mode)
921 {
922 case MEM_RO:
923 if (writebuf != NULL)
924 return 0;
925 break;
926
927 case MEM_WO:
928 if (readbuf != NULL)
929 return 0;
930 break;
931
932 case MEM_FLASH:
933 /* We only support writing to flash during "load" for now. */
934 if (writebuf != NULL)
935 error (_("Writing to flash memory forbidden in this context"));
936 break;
937
938 case MEM_NONE:
939 return 0;
940 }
941
942 /* region->hi == 0 means there's no upper bound. */
943 if (memaddr + len < region->hi || region->hi == 0)
944 *reg_len = len;
945 else
946 *reg_len = region->hi - memaddr;
947
948 return 1;
949 }
950
951 /* Read memory from more than one valid target. A core file, for
952 instance, could have some of memory but delegate other bits to
953 the target below it. So, we must manually try all targets. */
954
955 enum target_xfer_status
956 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
957 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
958 ULONGEST *xfered_len)
959 {
960 enum target_xfer_status res;
961
962 do
963 {
964 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
965 readbuf, writebuf, memaddr, len,
966 xfered_len);
967 if (res == TARGET_XFER_OK)
968 break;
969
970 /* Stop if the target reports that the memory is not available. */
971 if (res == TARGET_XFER_UNAVAILABLE)
972 break;
973
974 /* We want to continue past core files to executables, but not
975 past a running target's memory. */
976 if (ops->has_all_memory ())
977 break;
978
979 ops = ops->beneath ();
980 }
981 while (ops != NULL);
982
983 /* The cache works at the raw memory level. Make sure the cache
984 gets updated with raw contents no matter what kind of memory
985 object was originally being written. Note we do write-through
986 first, so that if it fails, we don't write to the cache contents
987 that never made it to the target. */
988 if (writebuf != NULL
989 && inferior_ptid != null_ptid
990 && target_dcache_init_p ()
991 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
992 {
993 DCACHE *dcache = target_dcache_get ();
994
995 /* Note that writing to an area of memory which wasn't present
996 in the cache doesn't cause it to be loaded in. */
997 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
998 }
999
1000 return res;
1001 }
1002
1003 /* Perform a partial memory transfer.
1004 For docs see target.h, to_xfer_partial. */
1005
1006 static enum target_xfer_status
1007 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1008 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1009 ULONGEST len, ULONGEST *xfered_len)
1010 {
1011 enum target_xfer_status res;
1012 ULONGEST reg_len;
1013 struct mem_region *region;
1014 struct inferior *inf;
1015
1016 /* For accesses to unmapped overlay sections, read directly from
1017 files. Must do this first, as MEMADDR may need adjustment. */
1018 if (readbuf != NULL && overlay_debugging)
1019 {
1020 struct obj_section *section = find_pc_overlay (memaddr);
1021
1022 if (pc_in_unmapped_range (memaddr, section))
1023 {
1024 struct target_section_table *table
1025 = target_get_section_table (ops);
1026 const char *section_name = section->the_bfd_section->name;
1027
1028 memaddr = overlay_mapped_address (memaddr, section);
1029 return section_table_xfer_memory_partial (readbuf, writebuf,
1030 memaddr, len, xfered_len,
1031 table->sections,
1032 table->sections_end,
1033 section_name);
1034 }
1035 }
1036
1037 /* Try the executable files, if "trust-readonly-sections" is set. */
1038 if (readbuf != NULL && trust_readonly)
1039 {
1040 struct target_section *secp;
1041 struct target_section_table *table;
1042
1043 secp = target_section_by_addr (ops, memaddr);
1044 if (secp != NULL
1045 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1046 {
1047 table = target_get_section_table (ops);
1048 return section_table_xfer_memory_partial (readbuf, writebuf,
1049 memaddr, len, xfered_len,
1050 table->sections,
1051 table->sections_end,
1052 NULL);
1053 }
1054 }
1055
1056 /* Try GDB's internal data cache. */
1057
1058 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1059 &region))
1060 return TARGET_XFER_E_IO;
1061
1062 if (inferior_ptid != null_ptid)
1063 inf = current_inferior ();
1064 else
1065 inf = NULL;
1066
1067 if (inf != NULL
1068 && readbuf != NULL
1069 /* The dcache reads whole cache lines; that doesn't play well
1070 with reading from a trace buffer, because reading outside of
1071 the collected memory range fails. */
1072 && get_traceframe_number () == -1
1073 && (region->attrib.cache
1074 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1075 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1076 {
1077 DCACHE *dcache = target_dcache_get_or_init ();
1078
1079 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1080 reg_len, xfered_len);
1081 }
1082
1083 /* If none of those methods found the memory we wanted, fall back
1084 to a target partial transfer. Normally a single call to
1085 to_xfer_partial is enough; if it doesn't recognize an object
1086 it will call the to_xfer_partial of the next target down.
1087 But for memory this won't do. Memory is the only target
1088 object which can be read from more than one valid target.
1089 A core file, for instance, could have some of memory but
1090 delegate other bits to the target below it. So, we must
1091 manually try all targets. */
1092
1093 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1094 xfered_len);
1095
1096 /* If we still haven't got anything, return the last error. We
1097 give up. */
1098 return res;
1099 }
1100
1101 /* Perform a partial memory transfer. For docs see target.h,
1102 to_xfer_partial. */
1103
1104 static enum target_xfer_status
1105 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1106 gdb_byte *readbuf, const gdb_byte *writebuf,
1107 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1108 {
1109 enum target_xfer_status res;
1110
1111 /* Zero length requests are ok and require no work. */
1112 if (len == 0)
1113 return TARGET_XFER_EOF;
1114
1115 memaddr = address_significant (target_gdbarch (), memaddr);
1116
1117 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1118 breakpoint insns, thus hiding out from higher layers whether
1119 there are software breakpoints inserted in the code stream. */
1120 if (readbuf != NULL)
1121 {
1122 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1123 xfered_len);
1124
1125 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1126 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1127 }
1128 else
1129 {
1130 /* A large write request is likely to be partially satisfied
1131 by memory_xfer_partial_1. We will continually malloc
1132 and free a copy of the entire write request for breakpoint
1133 shadow handling even though we only end up writing a small
1134 subset of it. Cap writes to a limit specified by the target
1135 to mitigate this. */
1136 len = std::min (ops->get_memory_xfer_limit (), len);
1137
1138 gdb::byte_vector buf (writebuf, writebuf + len);
1139 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1140 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1141 xfered_len);
1142 }
1143
1144 return res;
1145 }
1146
1147 scoped_restore_tmpl<int>
1148 make_scoped_restore_show_memory_breakpoints (int show)
1149 {
1150 return make_scoped_restore (&show_memory_breakpoints, show);
1151 }
1152
1153 /* For docs see target.h, to_xfer_partial. */
1154
1155 enum target_xfer_status
1156 target_xfer_partial (struct target_ops *ops,
1157 enum target_object object, const char *annex,
1158 gdb_byte *readbuf, const gdb_byte *writebuf,
1159 ULONGEST offset, ULONGEST len,
1160 ULONGEST *xfered_len)
1161 {
1162 enum target_xfer_status retval;
1163
1164 /* Transfer is done when LEN is zero. */
1165 if (len == 0)
1166 return TARGET_XFER_EOF;
1167
1168 if (writebuf && !may_write_memory)
1169 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1170 core_addr_to_string_nz (offset), plongest (len));
1171
1172 *xfered_len = 0;
1173
1174 /* If this is a memory transfer, let the memory-specific code
1175 have a look at it instead. Memory transfers are more
1176 complicated. */
1177 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1178 || object == TARGET_OBJECT_CODE_MEMORY)
1179 retval = memory_xfer_partial (ops, object, readbuf,
1180 writebuf, offset, len, xfered_len);
1181 else if (object == TARGET_OBJECT_RAW_MEMORY)
1182 {
1183 /* Skip/avoid accessing the target if the memory region
1184 attributes block the access. Check this here instead of in
1185 raw_memory_xfer_partial as otherwise we'd end up checking
1186 this twice in the case of the memory_xfer_partial path is
1187 taken; once before checking the dcache, and another in the
1188 tail call to raw_memory_xfer_partial. */
1189 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1190 NULL))
1191 return TARGET_XFER_E_IO;
1192
1193 /* Request the normal memory object from other layers. */
1194 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1195 xfered_len);
1196 }
1197 else
1198 retval = ops->xfer_partial (object, annex, readbuf,
1199 writebuf, offset, len, xfered_len);
1200
1201 if (targetdebug)
1202 {
1203 const unsigned char *myaddr = NULL;
1204
1205 fprintf_unfiltered (gdb_stdlog,
1206 "%s:target_xfer_partial "
1207 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1208 ops->shortname (),
1209 (int) object,
1210 (annex ? annex : "(null)"),
1211 host_address_to_string (readbuf),
1212 host_address_to_string (writebuf),
1213 core_addr_to_string_nz (offset),
1214 pulongest (len), retval,
1215 pulongest (*xfered_len));
1216
1217 if (readbuf)
1218 myaddr = readbuf;
1219 if (writebuf)
1220 myaddr = writebuf;
1221 if (retval == TARGET_XFER_OK && myaddr != NULL)
1222 {
1223 int i;
1224
1225 fputs_unfiltered (", bytes =", gdb_stdlog);
1226 for (i = 0; i < *xfered_len; i++)
1227 {
1228 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1229 {
1230 if (targetdebug < 2 && i > 0)
1231 {
1232 fprintf_unfiltered (gdb_stdlog, " ...");
1233 break;
1234 }
1235 fprintf_unfiltered (gdb_stdlog, "\n");
1236 }
1237
1238 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1239 }
1240 }
1241
1242 fputc_unfiltered ('\n', gdb_stdlog);
1243 }
1244
1245 /* Check implementations of to_xfer_partial update *XFERED_LEN
1246 properly. Do assertion after printing debug messages, so that we
1247 can find more clues on assertion failure from debugging messages. */
1248 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1249 gdb_assert (*xfered_len > 0);
1250
1251 return retval;
1252 }
1253
1254 /* Read LEN bytes of target memory at address MEMADDR, placing the
1255 results in GDB's memory at MYADDR. Returns either 0 for success or
1256 -1 if any error occurs.
1257
1258 If an error occurs, no guarantee is made about the contents of the data at
1259 MYADDR. In particular, the caller should not depend upon partial reads
1260 filling the buffer with good data. There is no way for the caller to know
1261 how much good data might have been transfered anyway. Callers that can
1262 deal with partial reads should call target_read (which will retry until
1263 it makes no progress, and then return how much was transferred). */
1264
1265 int
1266 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1267 {
1268 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1269 myaddr, memaddr, len) == len)
1270 return 0;
1271 else
1272 return -1;
1273 }
1274
1275 /* See target/target.h. */
1276
1277 int
1278 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1279 {
1280 gdb_byte buf[4];
1281 int r;
1282
1283 r = target_read_memory (memaddr, buf, sizeof buf);
1284 if (r != 0)
1285 return r;
1286 *result = extract_unsigned_integer (buf, sizeof buf,
1287 gdbarch_byte_order (target_gdbarch ()));
1288 return 0;
1289 }
1290
1291 /* Like target_read_memory, but specify explicitly that this is a read
1292 from the target's raw memory. That is, this read bypasses the
1293 dcache, breakpoint shadowing, etc. */
1294
1295 int
1296 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1297 {
1298 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1299 myaddr, memaddr, len) == len)
1300 return 0;
1301 else
1302 return -1;
1303 }
1304
1305 /* Like target_read_memory, but specify explicitly that this is a read from
1306 the target's stack. This may trigger different cache behavior. */
1307
1308 int
1309 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1310 {
1311 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1312 myaddr, memaddr, len) == len)
1313 return 0;
1314 else
1315 return -1;
1316 }
1317
1318 /* Like target_read_memory, but specify explicitly that this is a read from
1319 the target's code. This may trigger different cache behavior. */
1320
1321 int
1322 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1323 {
1324 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1325 myaddr, memaddr, len) == len)
1326 return 0;
1327 else
1328 return -1;
1329 }
1330
1331 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1332 Returns either 0 for success or -1 if any error occurs. If an
1333 error occurs, no guarantee is made about how much data got written.
1334 Callers that can deal with partial writes should call
1335 target_write. */
1336
1337 int
1338 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1339 {
1340 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1341 myaddr, memaddr, len) == len)
1342 return 0;
1343 else
1344 return -1;
1345 }
1346
1347 /* Write LEN bytes from MYADDR to target raw memory at address
1348 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1349 If an error occurs, no guarantee is made about how much data got
1350 written. Callers that can deal with partial writes should call
1351 target_write. */
1352
1353 int
1354 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1355 {
1356 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1357 myaddr, memaddr, len) == len)
1358 return 0;
1359 else
1360 return -1;
1361 }
1362
1363 /* Fetch the target's memory map. */
1364
1365 std::vector<mem_region>
1366 target_memory_map (void)
1367 {
1368 std::vector<mem_region> result = current_top_target ()->memory_map ();
1369 if (result.empty ())
1370 return result;
1371
1372 std::sort (result.begin (), result.end ());
1373
1374 /* Check that regions do not overlap. Simultaneously assign
1375 a numbering for the "mem" commands to use to refer to
1376 each region. */
1377 mem_region *last_one = NULL;
1378 for (size_t ix = 0; ix < result.size (); ix++)
1379 {
1380 mem_region *this_one = &result[ix];
1381 this_one->number = ix;
1382
1383 if (last_one != NULL && last_one->hi > this_one->lo)
1384 {
1385 warning (_("Overlapping regions in memory map: ignoring"));
1386 return std::vector<mem_region> ();
1387 }
1388
1389 last_one = this_one;
1390 }
1391
1392 return result;
1393 }
1394
1395 void
1396 target_flash_erase (ULONGEST address, LONGEST length)
1397 {
1398 current_top_target ()->flash_erase (address, length);
1399 }
1400
1401 void
1402 target_flash_done (void)
1403 {
1404 current_top_target ()->flash_done ();
1405 }
1406
1407 static void
1408 show_trust_readonly (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file,
1412 _("Mode for reading from readonly sections is %s.\n"),
1413 value);
1414 }
1415
1416 /* Target vector read/write partial wrapper functions. */
1417
1418 static enum target_xfer_status
1419 target_read_partial (struct target_ops *ops,
1420 enum target_object object,
1421 const char *annex, gdb_byte *buf,
1422 ULONGEST offset, ULONGEST len,
1423 ULONGEST *xfered_len)
1424 {
1425 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1426 xfered_len);
1427 }
1428
1429 static enum target_xfer_status
1430 target_write_partial (struct target_ops *ops,
1431 enum target_object object,
1432 const char *annex, const gdb_byte *buf,
1433 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1434 {
1435 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1436 xfered_len);
1437 }
1438
1439 /* Wrappers to perform the full transfer. */
1440
1441 /* For docs on target_read see target.h. */
1442
1443 LONGEST
1444 target_read (struct target_ops *ops,
1445 enum target_object object,
1446 const char *annex, gdb_byte *buf,
1447 ULONGEST offset, LONGEST len)
1448 {
1449 LONGEST xfered_total = 0;
1450 int unit_size = 1;
1451
1452 /* If we are reading from a memory object, find the length of an addressable
1453 unit for that architecture. */
1454 if (object == TARGET_OBJECT_MEMORY
1455 || object == TARGET_OBJECT_STACK_MEMORY
1456 || object == TARGET_OBJECT_CODE_MEMORY
1457 || object == TARGET_OBJECT_RAW_MEMORY)
1458 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1459
1460 while (xfered_total < len)
1461 {
1462 ULONGEST xfered_partial;
1463 enum target_xfer_status status;
1464
1465 status = target_read_partial (ops, object, annex,
1466 buf + xfered_total * unit_size,
1467 offset + xfered_total, len - xfered_total,
1468 &xfered_partial);
1469
1470 /* Call an observer, notifying them of the xfer progress? */
1471 if (status == TARGET_XFER_EOF)
1472 return xfered_total;
1473 else if (status == TARGET_XFER_OK)
1474 {
1475 xfered_total += xfered_partial;
1476 QUIT;
1477 }
1478 else
1479 return TARGET_XFER_E_IO;
1480
1481 }
1482 return len;
1483 }
1484
1485 /* Assuming that the entire [begin, end) range of memory cannot be
1486 read, try to read whatever subrange is possible to read.
1487
1488 The function returns, in RESULT, either zero or one memory block.
1489 If there's a readable subrange at the beginning, it is completely
1490 read and returned. Any further readable subrange will not be read.
1491 Otherwise, if there's a readable subrange at the end, it will be
1492 completely read and returned. Any readable subranges before it
1493 (obviously, not starting at the beginning), will be ignored. In
1494 other cases -- either no readable subrange, or readable subrange(s)
1495 that is neither at the beginning, or end, nothing is returned.
1496
1497 The purpose of this function is to handle a read across a boundary
1498 of accessible memory in a case when memory map is not available.
1499 The above restrictions are fine for this case, but will give
1500 incorrect results if the memory is 'patchy'. However, supporting
1501 'patchy' memory would require trying to read every single byte,
1502 and it seems unacceptable solution. Explicit memory map is
1503 recommended for this case -- and target_read_memory_robust will
1504 take care of reading multiple ranges then. */
1505
1506 static void
1507 read_whatever_is_readable (struct target_ops *ops,
1508 const ULONGEST begin, const ULONGEST end,
1509 int unit_size,
1510 std::vector<memory_read_result> *result)
1511 {
1512 ULONGEST current_begin = begin;
1513 ULONGEST current_end = end;
1514 int forward;
1515 ULONGEST xfered_len;
1516
1517 /* If we previously failed to read 1 byte, nothing can be done here. */
1518 if (end - begin <= 1)
1519 return;
1520
1521 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1522
1523 /* Check that either first or the last byte is readable, and give up
1524 if not. This heuristic is meant to permit reading accessible memory
1525 at the boundary of accessible region. */
1526 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1527 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1528 {
1529 forward = 1;
1530 ++current_begin;
1531 }
1532 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1533 buf.get () + (end - begin) - 1, end - 1, 1,
1534 &xfered_len) == TARGET_XFER_OK)
1535 {
1536 forward = 0;
1537 --current_end;
1538 }
1539 else
1540 return;
1541
1542 /* Loop invariant is that the [current_begin, current_end) was previously
1543 found to be not readable as a whole.
1544
1545 Note loop condition -- if the range has 1 byte, we can't divide the range
1546 so there's no point trying further. */
1547 while (current_end - current_begin > 1)
1548 {
1549 ULONGEST first_half_begin, first_half_end;
1550 ULONGEST second_half_begin, second_half_end;
1551 LONGEST xfer;
1552 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1553
1554 if (forward)
1555 {
1556 first_half_begin = current_begin;
1557 first_half_end = middle;
1558 second_half_begin = middle;
1559 second_half_end = current_end;
1560 }
1561 else
1562 {
1563 first_half_begin = middle;
1564 first_half_end = current_end;
1565 second_half_begin = current_begin;
1566 second_half_end = middle;
1567 }
1568
1569 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1570 buf.get () + (first_half_begin - begin) * unit_size,
1571 first_half_begin,
1572 first_half_end - first_half_begin);
1573
1574 if (xfer == first_half_end - first_half_begin)
1575 {
1576 /* This half reads up fine. So, the error must be in the
1577 other half. */
1578 current_begin = second_half_begin;
1579 current_end = second_half_end;
1580 }
1581 else
1582 {
1583 /* This half is not readable. Because we've tried one byte, we
1584 know some part of this half if actually readable. Go to the next
1585 iteration to divide again and try to read.
1586
1587 We don't handle the other half, because this function only tries
1588 to read a single readable subrange. */
1589 current_begin = first_half_begin;
1590 current_end = first_half_end;
1591 }
1592 }
1593
1594 if (forward)
1595 {
1596 /* The [begin, current_begin) range has been read. */
1597 result->emplace_back (begin, current_end, std::move (buf));
1598 }
1599 else
1600 {
1601 /* The [current_end, end) range has been read. */
1602 LONGEST region_len = end - current_end;
1603
1604 gdb::unique_xmalloc_ptr<gdb_byte> data
1605 ((gdb_byte *) xmalloc (region_len * unit_size));
1606 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1607 region_len * unit_size);
1608 result->emplace_back (current_end, end, std::move (data));
1609 }
1610 }
1611
1612 std::vector<memory_read_result>
1613 read_memory_robust (struct target_ops *ops,
1614 const ULONGEST offset, const LONGEST len)
1615 {
1616 std::vector<memory_read_result> result;
1617 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1618
1619 LONGEST xfered_total = 0;
1620 while (xfered_total < len)
1621 {
1622 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1623 LONGEST region_len;
1624
1625 /* If there is no explicit region, a fake one should be created. */
1626 gdb_assert (region);
1627
1628 if (region->hi == 0)
1629 region_len = len - xfered_total;
1630 else
1631 region_len = region->hi - offset;
1632
1633 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1634 {
1635 /* Cannot read this region. Note that we can end up here only
1636 if the region is explicitly marked inaccessible, or
1637 'inaccessible-by-default' is in effect. */
1638 xfered_total += region_len;
1639 }
1640 else
1641 {
1642 LONGEST to_read = std::min (len - xfered_total, region_len);
1643 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1644 ((gdb_byte *) xmalloc (to_read * unit_size));
1645
1646 LONGEST xfered_partial =
1647 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1648 offset + xfered_total, to_read);
1649 /* Call an observer, notifying them of the xfer progress? */
1650 if (xfered_partial <= 0)
1651 {
1652 /* Got an error reading full chunk. See if maybe we can read
1653 some subrange. */
1654 read_whatever_is_readable (ops, offset + xfered_total,
1655 offset + xfered_total + to_read,
1656 unit_size, &result);
1657 xfered_total += to_read;
1658 }
1659 else
1660 {
1661 result.emplace_back (offset + xfered_total,
1662 offset + xfered_total + xfered_partial,
1663 std::move (buffer));
1664 xfered_total += xfered_partial;
1665 }
1666 QUIT;
1667 }
1668 }
1669
1670 return result;
1671 }
1672
1673
1674 /* An alternative to target_write with progress callbacks. */
1675
1676 LONGEST
1677 target_write_with_progress (struct target_ops *ops,
1678 enum target_object object,
1679 const char *annex, const gdb_byte *buf,
1680 ULONGEST offset, LONGEST len,
1681 void (*progress) (ULONGEST, void *), void *baton)
1682 {
1683 LONGEST xfered_total = 0;
1684 int unit_size = 1;
1685
1686 /* If we are writing to a memory object, find the length of an addressable
1687 unit for that architecture. */
1688 if (object == TARGET_OBJECT_MEMORY
1689 || object == TARGET_OBJECT_STACK_MEMORY
1690 || object == TARGET_OBJECT_CODE_MEMORY
1691 || object == TARGET_OBJECT_RAW_MEMORY)
1692 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1693
1694 /* Give the progress callback a chance to set up. */
1695 if (progress)
1696 (*progress) (0, baton);
1697
1698 while (xfered_total < len)
1699 {
1700 ULONGEST xfered_partial;
1701 enum target_xfer_status status;
1702
1703 status = target_write_partial (ops, object, annex,
1704 buf + xfered_total * unit_size,
1705 offset + xfered_total, len - xfered_total,
1706 &xfered_partial);
1707
1708 if (status != TARGET_XFER_OK)
1709 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1710
1711 if (progress)
1712 (*progress) (xfered_partial, baton);
1713
1714 xfered_total += xfered_partial;
1715 QUIT;
1716 }
1717 return len;
1718 }
1719
1720 /* For docs on target_write see target.h. */
1721
1722 LONGEST
1723 target_write (struct target_ops *ops,
1724 enum target_object object,
1725 const char *annex, const gdb_byte *buf,
1726 ULONGEST offset, LONGEST len)
1727 {
1728 return target_write_with_progress (ops, object, annex, buf, offset, len,
1729 NULL, NULL);
1730 }
1731
1732 /* Help for target_read_alloc and target_read_stralloc. See their comments
1733 for details. */
1734
1735 template <typename T>
1736 gdb::optional<gdb::def_vector<T>>
1737 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1738 const char *annex)
1739 {
1740 gdb::def_vector<T> buf;
1741 size_t buf_pos = 0;
1742 const int chunk = 4096;
1743
1744 /* This function does not have a length parameter; it reads the
1745 entire OBJECT). Also, it doesn't support objects fetched partly
1746 from one target and partly from another (in a different stratum,
1747 e.g. a core file and an executable). Both reasons make it
1748 unsuitable for reading memory. */
1749 gdb_assert (object != TARGET_OBJECT_MEMORY);
1750
1751 /* Start by reading up to 4K at a time. The target will throttle
1752 this number down if necessary. */
1753 while (1)
1754 {
1755 ULONGEST xfered_len;
1756 enum target_xfer_status status;
1757
1758 buf.resize (buf_pos + chunk);
1759
1760 status = target_read_partial (ops, object, annex,
1761 (gdb_byte *) &buf[buf_pos],
1762 buf_pos, chunk,
1763 &xfered_len);
1764
1765 if (status == TARGET_XFER_EOF)
1766 {
1767 /* Read all there was. */
1768 buf.resize (buf_pos);
1769 return buf;
1770 }
1771 else if (status != TARGET_XFER_OK)
1772 {
1773 /* An error occurred. */
1774 return {};
1775 }
1776
1777 buf_pos += xfered_len;
1778
1779 QUIT;
1780 }
1781 }
1782
1783 /* See target.h */
1784
1785 gdb::optional<gdb::byte_vector>
1786 target_read_alloc (struct target_ops *ops, enum target_object object,
1787 const char *annex)
1788 {
1789 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1790 }
1791
1792 /* See target.h. */
1793
1794 gdb::optional<gdb::char_vector>
1795 target_read_stralloc (struct target_ops *ops, enum target_object object,
1796 const char *annex)
1797 {
1798 gdb::optional<gdb::char_vector> buf
1799 = target_read_alloc_1<char> (ops, object, annex);
1800
1801 if (!buf)
1802 return {};
1803
1804 if (buf->empty () || buf->back () != '\0')
1805 buf->push_back ('\0');
1806
1807 /* Check for embedded NUL bytes; but allow trailing NULs. */
1808 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1809 it != buf->end (); it++)
1810 if (*it != '\0')
1811 {
1812 warning (_("target object %d, annex %s, "
1813 "contained unexpected null characters"),
1814 (int) object, annex ? annex : "(none)");
1815 break;
1816 }
1817
1818 return buf;
1819 }
1820
1821 /* Memory transfer methods. */
1822
1823 void
1824 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1825 LONGEST len)
1826 {
1827 /* This method is used to read from an alternate, non-current
1828 target. This read must bypass the overlay support (as symbols
1829 don't match this target), and GDB's internal cache (wrong cache
1830 for this target). */
1831 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1832 != len)
1833 memory_error (TARGET_XFER_E_IO, addr);
1834 }
1835
1836 ULONGEST
1837 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1838 int len, enum bfd_endian byte_order)
1839 {
1840 gdb_byte buf[sizeof (ULONGEST)];
1841
1842 gdb_assert (len <= sizeof (buf));
1843 get_target_memory (ops, addr, buf, len);
1844 return extract_unsigned_integer (buf, len, byte_order);
1845 }
1846
1847 /* See target.h. */
1848
1849 int
1850 target_insert_breakpoint (struct gdbarch *gdbarch,
1851 struct bp_target_info *bp_tgt)
1852 {
1853 if (!may_insert_breakpoints)
1854 {
1855 warning (_("May not insert breakpoints"));
1856 return 1;
1857 }
1858
1859 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1860 }
1861
1862 /* See target.h. */
1863
1864 int
1865 target_remove_breakpoint (struct gdbarch *gdbarch,
1866 struct bp_target_info *bp_tgt,
1867 enum remove_bp_reason reason)
1868 {
1869 /* This is kind of a weird case to handle, but the permission might
1870 have been changed after breakpoints were inserted - in which case
1871 we should just take the user literally and assume that any
1872 breakpoints should be left in place. */
1873 if (!may_insert_breakpoints)
1874 {
1875 warning (_("May not remove breakpoints"));
1876 return 1;
1877 }
1878
1879 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1880 }
1881
1882 static void
1883 info_target_command (const char *args, int from_tty)
1884 {
1885 int has_all_mem = 0;
1886
1887 if (symfile_objfile != NULL)
1888 printf_unfiltered (_("Symbols from \"%s\".\n"),
1889 objfile_name (symfile_objfile));
1890
1891 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1892 {
1893 if (!t->has_memory ())
1894 continue;
1895
1896 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1897 continue;
1898 if (has_all_mem)
1899 printf_unfiltered (_("\tWhile running this, "
1900 "GDB does not access memory from...\n"));
1901 printf_unfiltered ("%s:\n", t->longname ());
1902 t->files_info ();
1903 has_all_mem = t->has_all_memory ();
1904 }
1905 }
1906
1907 /* This function is called before any new inferior is created, e.g.
1908 by running a program, attaching, or connecting to a target.
1909 It cleans up any state from previous invocations which might
1910 change between runs. This is a subset of what target_preopen
1911 resets (things which might change between targets). */
1912
1913 void
1914 target_pre_inferior (int from_tty)
1915 {
1916 /* Clear out solib state. Otherwise the solib state of the previous
1917 inferior might have survived and is entirely wrong for the new
1918 target. This has been observed on GNU/Linux using glibc 2.3. How
1919 to reproduce:
1920
1921 bash$ ./foo&
1922 [1] 4711
1923 bash$ ./foo&
1924 [1] 4712
1925 bash$ gdb ./foo
1926 [...]
1927 (gdb) attach 4711
1928 (gdb) detach
1929 (gdb) attach 4712
1930 Cannot access memory at address 0xdeadbeef
1931 */
1932
1933 /* In some OSs, the shared library list is the same/global/shared
1934 across inferiors. If code is shared between processes, so are
1935 memory regions and features. */
1936 if (!gdbarch_has_global_solist (target_gdbarch ()))
1937 {
1938 no_shared_libraries (NULL, from_tty);
1939
1940 invalidate_target_mem_regions ();
1941
1942 target_clear_description ();
1943 }
1944
1945 /* attach_flag may be set if the previous process associated with
1946 the inferior was attached to. */
1947 current_inferior ()->attach_flag = 0;
1948
1949 current_inferior ()->highest_thread_num = 0;
1950
1951 agent_capability_invalidate ();
1952 }
1953
1954 /* Callback for iterate_over_inferiors. Gets rid of the given
1955 inferior. */
1956
1957 static int
1958 dispose_inferior (struct inferior *inf, void *args)
1959 {
1960 /* Not all killed inferiors can, or will ever be, removed from the
1961 inferior list. Killed inferiors clearly don't need to be killed
1962 again, so, we're done. */
1963 if (inf->pid == 0)
1964 return 0;
1965
1966 thread_info *thread = any_thread_of_inferior (inf);
1967 if (thread != NULL)
1968 {
1969 switch_to_thread (thread);
1970
1971 /* Core inferiors actually should be detached, not killed. */
1972 if (target_has_execution)
1973 target_kill ();
1974 else
1975 target_detach (inf, 0);
1976 }
1977
1978 return 0;
1979 }
1980
1981 /* This is to be called by the open routine before it does
1982 anything. */
1983
1984 void
1985 target_preopen (int from_tty)
1986 {
1987 dont_repeat ();
1988
1989 if (have_inferiors ())
1990 {
1991 if (!from_tty
1992 || !have_live_inferiors ()
1993 || query (_("A program is being debugged already. Kill it? ")))
1994 iterate_over_inferiors (dispose_inferior, NULL);
1995 else
1996 error (_("Program not killed."));
1997 }
1998
1999 /* Calling target_kill may remove the target from the stack. But if
2000 it doesn't (which seems like a win for UDI), remove it now. */
2001 /* Leave the exec target, though. The user may be switching from a
2002 live process to a core of the same program. */
2003 pop_all_targets_above (file_stratum);
2004
2005 target_pre_inferior (from_tty);
2006 }
2007
2008 /* See target.h. */
2009
2010 void
2011 target_detach (inferior *inf, int from_tty)
2012 {
2013 /* After we have detached, we will clear the register cache for this inferior
2014 by calling registers_changed_ptid. We must save the pid_ptid before
2015 detaching, as the target detach method will clear inf->pid. */
2016 ptid_t save_pid_ptid = ptid_t (inf->pid);
2017
2018 /* As long as some to_detach implementations rely on the current_inferior
2019 (either directly, or indirectly, like through target_gdbarch or by
2020 reading memory), INF needs to be the current inferior. When that
2021 requirement will become no longer true, then we can remove this
2022 assertion. */
2023 gdb_assert (inf == current_inferior ());
2024
2025 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2026 /* Don't remove global breakpoints here. They're removed on
2027 disconnection from the target. */
2028 ;
2029 else
2030 /* If we're in breakpoints-always-inserted mode, have to remove
2031 breakpoints before detaching. */
2032 remove_breakpoints_inf (current_inferior ());
2033
2034 prepare_for_detach ();
2035
2036 current_top_target ()->detach (inf, from_tty);
2037
2038 registers_changed_ptid (save_pid_ptid);
2039
2040 /* We have to ensure we have no frame cache left. Normally,
2041 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2042 inferior_ptid matches save_pid_ptid, but in our case, it does not
2043 call it, as inferior_ptid has been reset. */
2044 reinit_frame_cache ();
2045 }
2046
2047 void
2048 target_disconnect (const char *args, int from_tty)
2049 {
2050 /* If we're in breakpoints-always-inserted mode or if breakpoints
2051 are global across processes, we have to remove them before
2052 disconnecting. */
2053 remove_breakpoints ();
2054
2055 current_top_target ()->disconnect (args, from_tty);
2056 }
2057
2058 /* See target/target.h. */
2059
2060 ptid_t
2061 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2062 {
2063 return current_top_target ()->wait (ptid, status, options);
2064 }
2065
2066 /* See target.h. */
2067
2068 ptid_t
2069 default_target_wait (struct target_ops *ops,
2070 ptid_t ptid, struct target_waitstatus *status,
2071 int options)
2072 {
2073 status->kind = TARGET_WAITKIND_IGNORE;
2074 return minus_one_ptid;
2075 }
2076
2077 std::string
2078 target_pid_to_str (ptid_t ptid)
2079 {
2080 return current_top_target ()->pid_to_str (ptid);
2081 }
2082
2083 const char *
2084 target_thread_name (struct thread_info *info)
2085 {
2086 return current_top_target ()->thread_name (info);
2087 }
2088
2089 struct thread_info *
2090 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2091 int handle_len,
2092 struct inferior *inf)
2093 {
2094 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2095 handle_len, inf);
2096 }
2097
2098 /* See target.h. */
2099
2100 gdb::byte_vector
2101 target_thread_info_to_thread_handle (struct thread_info *tip)
2102 {
2103 return current_top_target ()->thread_info_to_thread_handle (tip);
2104 }
2105
2106 void
2107 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2108 {
2109 target_dcache_invalidate ();
2110
2111 current_top_target ()->resume (ptid, step, signal);
2112
2113 registers_changed_ptid (ptid);
2114 /* We only set the internal executing state here. The user/frontend
2115 running state is set at a higher level. This also clears the
2116 thread's stop_pc as side effect. */
2117 set_executing (ptid, 1);
2118 clear_inline_frame_state (ptid);
2119 }
2120
2121 /* If true, target_commit_resume is a nop. */
2122 static int defer_target_commit_resume;
2123
2124 /* See target.h. */
2125
2126 void
2127 target_commit_resume (void)
2128 {
2129 if (defer_target_commit_resume)
2130 return;
2131
2132 current_top_target ()->commit_resume ();
2133 }
2134
2135 /* See target.h. */
2136
2137 scoped_restore_tmpl<int>
2138 make_scoped_defer_target_commit_resume ()
2139 {
2140 return make_scoped_restore (&defer_target_commit_resume, 1);
2141 }
2142
2143 void
2144 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2145 {
2146 current_top_target ()->pass_signals (pass_signals);
2147 }
2148
2149 void
2150 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2151 {
2152 current_top_target ()->program_signals (program_signals);
2153 }
2154
2155 static int
2156 default_follow_fork (struct target_ops *self, int follow_child,
2157 int detach_fork)
2158 {
2159 /* Some target returned a fork event, but did not know how to follow it. */
2160 internal_error (__FILE__, __LINE__,
2161 _("could not find a target to follow fork"));
2162 }
2163
2164 /* Look through the list of possible targets for a target that can
2165 follow forks. */
2166
2167 int
2168 target_follow_fork (int follow_child, int detach_fork)
2169 {
2170 return current_top_target ()->follow_fork (follow_child, detach_fork);
2171 }
2172
2173 /* Target wrapper for follow exec hook. */
2174
2175 void
2176 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2177 {
2178 current_top_target ()->follow_exec (inf, execd_pathname);
2179 }
2180
2181 static void
2182 default_mourn_inferior (struct target_ops *self)
2183 {
2184 internal_error (__FILE__, __LINE__,
2185 _("could not find a target to follow mourn inferior"));
2186 }
2187
2188 void
2189 target_mourn_inferior (ptid_t ptid)
2190 {
2191 gdb_assert (ptid == inferior_ptid);
2192 current_top_target ()->mourn_inferior ();
2193
2194 /* We no longer need to keep handles on any of the object files.
2195 Make sure to release them to avoid unnecessarily locking any
2196 of them while we're not actually debugging. */
2197 bfd_cache_close_all ();
2198 }
2199
2200 /* Look for a target which can describe architectural features, starting
2201 from TARGET. If we find one, return its description. */
2202
2203 const struct target_desc *
2204 target_read_description (struct target_ops *target)
2205 {
2206 return target->read_description ();
2207 }
2208
2209 /* This implements a basic search of memory, reading target memory and
2210 performing the search here (as opposed to performing the search in on the
2211 target side with, for example, gdbserver). */
2212
2213 int
2214 simple_search_memory (struct target_ops *ops,
2215 CORE_ADDR start_addr, ULONGEST search_space_len,
2216 const gdb_byte *pattern, ULONGEST pattern_len,
2217 CORE_ADDR *found_addrp)
2218 {
2219 /* NOTE: also defined in find.c testcase. */
2220 #define SEARCH_CHUNK_SIZE 16000
2221 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2222 /* Buffer to hold memory contents for searching. */
2223 unsigned search_buf_size;
2224
2225 search_buf_size = chunk_size + pattern_len - 1;
2226
2227 /* No point in trying to allocate a buffer larger than the search space. */
2228 if (search_space_len < search_buf_size)
2229 search_buf_size = search_space_len;
2230
2231 gdb::byte_vector search_buf (search_buf_size);
2232
2233 /* Prime the search buffer. */
2234
2235 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2236 search_buf.data (), start_addr, search_buf_size)
2237 != search_buf_size)
2238 {
2239 warning (_("Unable to access %s bytes of target "
2240 "memory at %s, halting search."),
2241 pulongest (search_buf_size), hex_string (start_addr));
2242 return -1;
2243 }
2244
2245 /* Perform the search.
2246
2247 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2248 When we've scanned N bytes we copy the trailing bytes to the start and
2249 read in another N bytes. */
2250
2251 while (search_space_len >= pattern_len)
2252 {
2253 gdb_byte *found_ptr;
2254 unsigned nr_search_bytes
2255 = std::min (search_space_len, (ULONGEST) search_buf_size);
2256
2257 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2258 pattern, pattern_len);
2259
2260 if (found_ptr != NULL)
2261 {
2262 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2263
2264 *found_addrp = found_addr;
2265 return 1;
2266 }
2267
2268 /* Not found in this chunk, skip to next chunk. */
2269
2270 /* Don't let search_space_len wrap here, it's unsigned. */
2271 if (search_space_len >= chunk_size)
2272 search_space_len -= chunk_size;
2273 else
2274 search_space_len = 0;
2275
2276 if (search_space_len >= pattern_len)
2277 {
2278 unsigned keep_len = search_buf_size - chunk_size;
2279 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2280 int nr_to_read;
2281
2282 /* Copy the trailing part of the previous iteration to the front
2283 of the buffer for the next iteration. */
2284 gdb_assert (keep_len == pattern_len - 1);
2285 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2286
2287 nr_to_read = std::min (search_space_len - keep_len,
2288 (ULONGEST) chunk_size);
2289
2290 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2291 &search_buf[keep_len], read_addr,
2292 nr_to_read) != nr_to_read)
2293 {
2294 warning (_("Unable to access %s bytes of target "
2295 "memory at %s, halting search."),
2296 plongest (nr_to_read),
2297 hex_string (read_addr));
2298 return -1;
2299 }
2300
2301 start_addr += chunk_size;
2302 }
2303 }
2304
2305 /* Not found. */
2306
2307 return 0;
2308 }
2309
2310 /* Default implementation of memory-searching. */
2311
2312 static int
2313 default_search_memory (struct target_ops *self,
2314 CORE_ADDR start_addr, ULONGEST search_space_len,
2315 const gdb_byte *pattern, ULONGEST pattern_len,
2316 CORE_ADDR *found_addrp)
2317 {
2318 /* Start over from the top of the target stack. */
2319 return simple_search_memory (current_top_target (),
2320 start_addr, search_space_len,
2321 pattern, pattern_len, found_addrp);
2322 }
2323
2324 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2325 sequence of bytes in PATTERN with length PATTERN_LEN.
2326
2327 The result is 1 if found, 0 if not found, and -1 if there was an error
2328 requiring halting of the search (e.g. memory read error).
2329 If the pattern is found the address is recorded in FOUND_ADDRP. */
2330
2331 int
2332 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2333 const gdb_byte *pattern, ULONGEST pattern_len,
2334 CORE_ADDR *found_addrp)
2335 {
2336 return current_top_target ()->search_memory (start_addr, search_space_len,
2337 pattern, pattern_len, found_addrp);
2338 }
2339
2340 /* Look through the currently pushed targets. If none of them will
2341 be able to restart the currently running process, issue an error
2342 message. */
2343
2344 void
2345 target_require_runnable (void)
2346 {
2347 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2348 {
2349 /* If this target knows how to create a new program, then
2350 assume we will still be able to after killing the current
2351 one. Either killing and mourning will not pop T, or else
2352 find_default_run_target will find it again. */
2353 if (t->can_create_inferior ())
2354 return;
2355
2356 /* Do not worry about targets at certain strata that can not
2357 create inferiors. Assume they will be pushed again if
2358 necessary, and continue to the process_stratum. */
2359 if (t->stratum () > process_stratum)
2360 continue;
2361
2362 error (_("The \"%s\" target does not support \"run\". "
2363 "Try \"help target\" or \"continue\"."),
2364 t->shortname ());
2365 }
2366
2367 /* This function is only called if the target is running. In that
2368 case there should have been a process_stratum target and it
2369 should either know how to create inferiors, or not... */
2370 internal_error (__FILE__, __LINE__, _("No targets found"));
2371 }
2372
2373 /* Whether GDB is allowed to fall back to the default run target for
2374 "run", "attach", etc. when no target is connected yet. */
2375 static bool auto_connect_native_target = true;
2376
2377 static void
2378 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2379 struct cmd_list_element *c, const char *value)
2380 {
2381 fprintf_filtered (file,
2382 _("Whether GDB may automatically connect to the "
2383 "native target is %s.\n"),
2384 value);
2385 }
2386
2387 /* A pointer to the target that can respond to "run" or "attach".
2388 Native targets are always singletons and instantiated early at GDB
2389 startup. */
2390 static target_ops *the_native_target;
2391
2392 /* See target.h. */
2393
2394 void
2395 set_native_target (target_ops *target)
2396 {
2397 if (the_native_target != NULL)
2398 internal_error (__FILE__, __LINE__,
2399 _("native target already set (\"%s\")."),
2400 the_native_target->longname ());
2401
2402 the_native_target = target;
2403 }
2404
2405 /* See target.h. */
2406
2407 target_ops *
2408 get_native_target ()
2409 {
2410 return the_native_target;
2411 }
2412
2413 /* Look through the list of possible targets for a target that can
2414 execute a run or attach command without any other data. This is
2415 used to locate the default process stratum.
2416
2417 If DO_MESG is not NULL, the result is always valid (error() is
2418 called for errors); else, return NULL on error. */
2419
2420 static struct target_ops *
2421 find_default_run_target (const char *do_mesg)
2422 {
2423 if (auto_connect_native_target && the_native_target != NULL)
2424 return the_native_target;
2425
2426 if (do_mesg != NULL)
2427 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2428 return NULL;
2429 }
2430
2431 /* See target.h. */
2432
2433 struct target_ops *
2434 find_attach_target (void)
2435 {
2436 /* If a target on the current stack can attach, use it. */
2437 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2438 {
2439 if (t->can_attach ())
2440 return t;
2441 }
2442
2443 /* Otherwise, use the default run target for attaching. */
2444 return find_default_run_target ("attach");
2445 }
2446
2447 /* See target.h. */
2448
2449 struct target_ops *
2450 find_run_target (void)
2451 {
2452 /* If a target on the current stack can run, use it. */
2453 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2454 {
2455 if (t->can_create_inferior ())
2456 return t;
2457 }
2458
2459 /* Otherwise, use the default run target. */
2460 return find_default_run_target ("run");
2461 }
2462
2463 bool
2464 target_ops::info_proc (const char *args, enum info_proc_what what)
2465 {
2466 return false;
2467 }
2468
2469 /* Implement the "info proc" command. */
2470
2471 int
2472 target_info_proc (const char *args, enum info_proc_what what)
2473 {
2474 struct target_ops *t;
2475
2476 /* If we're already connected to something that can get us OS
2477 related data, use it. Otherwise, try using the native
2478 target. */
2479 t = find_target_at (process_stratum);
2480 if (t == NULL)
2481 t = find_default_run_target (NULL);
2482
2483 for (; t != NULL; t = t->beneath ())
2484 {
2485 if (t->info_proc (args, what))
2486 {
2487 if (targetdebug)
2488 fprintf_unfiltered (gdb_stdlog,
2489 "target_info_proc (\"%s\", %d)\n", args, what);
2490
2491 return 1;
2492 }
2493 }
2494
2495 return 0;
2496 }
2497
2498 static int
2499 find_default_supports_disable_randomization (struct target_ops *self)
2500 {
2501 struct target_ops *t;
2502
2503 t = find_default_run_target (NULL);
2504 if (t != NULL)
2505 return t->supports_disable_randomization ();
2506 return 0;
2507 }
2508
2509 int
2510 target_supports_disable_randomization (void)
2511 {
2512 return current_top_target ()->supports_disable_randomization ();
2513 }
2514
2515 /* See target/target.h. */
2516
2517 int
2518 target_supports_multi_process (void)
2519 {
2520 return current_top_target ()->supports_multi_process ();
2521 }
2522
2523 /* See target.h. */
2524
2525 gdb::optional<gdb::char_vector>
2526 target_get_osdata (const char *type)
2527 {
2528 struct target_ops *t;
2529
2530 /* If we're already connected to something that can get us OS
2531 related data, use it. Otherwise, try using the native
2532 target. */
2533 t = find_target_at (process_stratum);
2534 if (t == NULL)
2535 t = find_default_run_target ("get OS data");
2536
2537 if (!t)
2538 return {};
2539
2540 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2541 }
2542
2543
2544 /* Determine the current address space of thread PTID. */
2545
2546 struct address_space *
2547 target_thread_address_space (ptid_t ptid)
2548 {
2549 struct address_space *aspace;
2550
2551 aspace = current_top_target ()->thread_address_space (ptid);
2552 gdb_assert (aspace != NULL);
2553
2554 return aspace;
2555 }
2556
2557 /* See target.h. */
2558
2559 target_ops *
2560 target_ops::beneath () const
2561 {
2562 return g_target_stack.find_beneath (this);
2563 }
2564
2565 void
2566 target_ops::close ()
2567 {
2568 }
2569
2570 bool
2571 target_ops::can_attach ()
2572 {
2573 return 0;
2574 }
2575
2576 void
2577 target_ops::attach (const char *, int)
2578 {
2579 gdb_assert_not_reached ("target_ops::attach called");
2580 }
2581
2582 bool
2583 target_ops::can_create_inferior ()
2584 {
2585 return 0;
2586 }
2587
2588 void
2589 target_ops::create_inferior (const char *, const std::string &,
2590 char **, int)
2591 {
2592 gdb_assert_not_reached ("target_ops::create_inferior called");
2593 }
2594
2595 bool
2596 target_ops::can_run ()
2597 {
2598 return false;
2599 }
2600
2601 int
2602 target_can_run ()
2603 {
2604 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2605 {
2606 if (t->can_run ())
2607 return 1;
2608 }
2609
2610 return 0;
2611 }
2612
2613 /* Target file operations. */
2614
2615 static struct target_ops *
2616 default_fileio_target (void)
2617 {
2618 struct target_ops *t;
2619
2620 /* If we're already connected to something that can perform
2621 file I/O, use it. Otherwise, try using the native target. */
2622 t = find_target_at (process_stratum);
2623 if (t != NULL)
2624 return t;
2625 return find_default_run_target ("file I/O");
2626 }
2627
2628 /* File handle for target file operations. */
2629
2630 struct fileio_fh_t
2631 {
2632 /* The target on which this file is open. NULL if the target is
2633 meanwhile closed while the handle is open. */
2634 target_ops *target;
2635
2636 /* The file descriptor on the target. */
2637 int target_fd;
2638
2639 /* Check whether this fileio_fh_t represents a closed file. */
2640 bool is_closed ()
2641 {
2642 return target_fd < 0;
2643 }
2644 };
2645
2646 /* Vector of currently open file handles. The value returned by
2647 target_fileio_open and passed as the FD argument to other
2648 target_fileio_* functions is an index into this vector. This
2649 vector's entries are never freed; instead, files are marked as
2650 closed, and the handle becomes available for reuse. */
2651 static std::vector<fileio_fh_t> fileio_fhandles;
2652
2653 /* Index into fileio_fhandles of the lowest handle that might be
2654 closed. This permits handle reuse without searching the whole
2655 list each time a new file is opened. */
2656 static int lowest_closed_fd;
2657
2658 /* Invalidate the target associated with open handles that were open
2659 on target TARG, since we're about to close (and maybe destroy) the
2660 target. The handles remain open from the client's perspective, but
2661 trying to do anything with them other than closing them will fail
2662 with EIO. */
2663
2664 static void
2665 fileio_handles_invalidate_target (target_ops *targ)
2666 {
2667 for (fileio_fh_t &fh : fileio_fhandles)
2668 if (fh.target == targ)
2669 fh.target = NULL;
2670 }
2671
2672 /* Acquire a target fileio file descriptor. */
2673
2674 static int
2675 acquire_fileio_fd (target_ops *target, int target_fd)
2676 {
2677 /* Search for closed handles to reuse. */
2678 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2679 {
2680 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2681
2682 if (fh.is_closed ())
2683 break;
2684 }
2685
2686 /* Push a new handle if no closed handles were found. */
2687 if (lowest_closed_fd == fileio_fhandles.size ())
2688 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2689 else
2690 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2691
2692 /* Should no longer be marked closed. */
2693 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2694
2695 /* Return its index, and start the next lookup at
2696 the next index. */
2697 return lowest_closed_fd++;
2698 }
2699
2700 /* Release a target fileio file descriptor. */
2701
2702 static void
2703 release_fileio_fd (int fd, fileio_fh_t *fh)
2704 {
2705 fh->target_fd = -1;
2706 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2707 }
2708
2709 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2710
2711 static fileio_fh_t *
2712 fileio_fd_to_fh (int fd)
2713 {
2714 return &fileio_fhandles[fd];
2715 }
2716
2717
2718 /* Default implementations of file i/o methods. We don't want these
2719 to delegate automatically, because we need to know which target
2720 supported the method, in order to call it directly from within
2721 pread/pwrite, etc. */
2722
2723 int
2724 target_ops::fileio_open (struct inferior *inf, const char *filename,
2725 int flags, int mode, int warn_if_slow,
2726 int *target_errno)
2727 {
2728 *target_errno = FILEIO_ENOSYS;
2729 return -1;
2730 }
2731
2732 int
2733 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2734 ULONGEST offset, int *target_errno)
2735 {
2736 *target_errno = FILEIO_ENOSYS;
2737 return -1;
2738 }
2739
2740 int
2741 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2742 ULONGEST offset, int *target_errno)
2743 {
2744 *target_errno = FILEIO_ENOSYS;
2745 return -1;
2746 }
2747
2748 int
2749 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2750 {
2751 *target_errno = FILEIO_ENOSYS;
2752 return -1;
2753 }
2754
2755 int
2756 target_ops::fileio_close (int fd, int *target_errno)
2757 {
2758 *target_errno = FILEIO_ENOSYS;
2759 return -1;
2760 }
2761
2762 int
2763 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2764 int *target_errno)
2765 {
2766 *target_errno = FILEIO_ENOSYS;
2767 return -1;
2768 }
2769
2770 gdb::optional<std::string>
2771 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2772 int *target_errno)
2773 {
2774 *target_errno = FILEIO_ENOSYS;
2775 return {};
2776 }
2777
2778 /* Helper for target_fileio_open and
2779 target_fileio_open_warn_if_slow. */
2780
2781 static int
2782 target_fileio_open_1 (struct inferior *inf, const char *filename,
2783 int flags, int mode, int warn_if_slow,
2784 int *target_errno)
2785 {
2786 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2787 {
2788 int fd = t->fileio_open (inf, filename, flags, mode,
2789 warn_if_slow, target_errno);
2790
2791 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2792 continue;
2793
2794 if (fd < 0)
2795 fd = -1;
2796 else
2797 fd = acquire_fileio_fd (t, fd);
2798
2799 if (targetdebug)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2802 " = %d (%d)\n",
2803 inf == NULL ? 0 : inf->num,
2804 filename, flags, mode,
2805 warn_if_slow, fd,
2806 fd != -1 ? 0 : *target_errno);
2807 return fd;
2808 }
2809
2810 *target_errno = FILEIO_ENOSYS;
2811 return -1;
2812 }
2813
2814 /* See target.h. */
2815
2816 int
2817 target_fileio_open (struct inferior *inf, const char *filename,
2818 int flags, int mode, int *target_errno)
2819 {
2820 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2821 target_errno);
2822 }
2823
2824 /* See target.h. */
2825
2826 int
2827 target_fileio_open_warn_if_slow (struct inferior *inf,
2828 const char *filename,
2829 int flags, int mode, int *target_errno)
2830 {
2831 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2832 target_errno);
2833 }
2834
2835 /* See target.h. */
2836
2837 int
2838 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2839 ULONGEST offset, int *target_errno)
2840 {
2841 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2842 int ret = -1;
2843
2844 if (fh->is_closed ())
2845 *target_errno = EBADF;
2846 else if (fh->target == NULL)
2847 *target_errno = EIO;
2848 else
2849 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2850 len, offset, target_errno);
2851
2852 if (targetdebug)
2853 fprintf_unfiltered (gdb_stdlog,
2854 "target_fileio_pwrite (%d,...,%d,%s) "
2855 "= %d (%d)\n",
2856 fd, len, pulongest (offset),
2857 ret, ret != -1 ? 0 : *target_errno);
2858 return ret;
2859 }
2860
2861 /* See target.h. */
2862
2863 int
2864 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2865 ULONGEST offset, int *target_errno)
2866 {
2867 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2868 int ret = -1;
2869
2870 if (fh->is_closed ())
2871 *target_errno = EBADF;
2872 else if (fh->target == NULL)
2873 *target_errno = EIO;
2874 else
2875 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2876 len, offset, target_errno);
2877
2878 if (targetdebug)
2879 fprintf_unfiltered (gdb_stdlog,
2880 "target_fileio_pread (%d,...,%d,%s) "
2881 "= %d (%d)\n",
2882 fd, len, pulongest (offset),
2883 ret, ret != -1 ? 0 : *target_errno);
2884 return ret;
2885 }
2886
2887 /* See target.h. */
2888
2889 int
2890 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2891 {
2892 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2893 int ret = -1;
2894
2895 if (fh->is_closed ())
2896 *target_errno = EBADF;
2897 else if (fh->target == NULL)
2898 *target_errno = EIO;
2899 else
2900 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2901
2902 if (targetdebug)
2903 fprintf_unfiltered (gdb_stdlog,
2904 "target_fileio_fstat (%d) = %d (%d)\n",
2905 fd, ret, ret != -1 ? 0 : *target_errno);
2906 return ret;
2907 }
2908
2909 /* See target.h. */
2910
2911 int
2912 target_fileio_close (int fd, int *target_errno)
2913 {
2914 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2915 int ret = -1;
2916
2917 if (fh->is_closed ())
2918 *target_errno = EBADF;
2919 else
2920 {
2921 if (fh->target != NULL)
2922 ret = fh->target->fileio_close (fh->target_fd,
2923 target_errno);
2924 else
2925 ret = 0;
2926 release_fileio_fd (fd, fh);
2927 }
2928
2929 if (targetdebug)
2930 fprintf_unfiltered (gdb_stdlog,
2931 "target_fileio_close (%d) = %d (%d)\n",
2932 fd, ret, ret != -1 ? 0 : *target_errno);
2933 return ret;
2934 }
2935
2936 /* See target.h. */
2937
2938 int
2939 target_fileio_unlink (struct inferior *inf, const char *filename,
2940 int *target_errno)
2941 {
2942 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2943 {
2944 int ret = t->fileio_unlink (inf, filename, target_errno);
2945
2946 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2947 continue;
2948
2949 if (targetdebug)
2950 fprintf_unfiltered (gdb_stdlog,
2951 "target_fileio_unlink (%d,%s)"
2952 " = %d (%d)\n",
2953 inf == NULL ? 0 : inf->num, filename,
2954 ret, ret != -1 ? 0 : *target_errno);
2955 return ret;
2956 }
2957
2958 *target_errno = FILEIO_ENOSYS;
2959 return -1;
2960 }
2961
2962 /* See target.h. */
2963
2964 gdb::optional<std::string>
2965 target_fileio_readlink (struct inferior *inf, const char *filename,
2966 int *target_errno)
2967 {
2968 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2969 {
2970 gdb::optional<std::string> ret
2971 = t->fileio_readlink (inf, filename, target_errno);
2972
2973 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2974 continue;
2975
2976 if (targetdebug)
2977 fprintf_unfiltered (gdb_stdlog,
2978 "target_fileio_readlink (%d,%s)"
2979 " = %s (%d)\n",
2980 inf == NULL ? 0 : inf->num,
2981 filename, ret ? ret->c_str () : "(nil)",
2982 ret ? 0 : *target_errno);
2983 return ret;
2984 }
2985
2986 *target_errno = FILEIO_ENOSYS;
2987 return {};
2988 }
2989
2990 /* Like scoped_fd, but specific to target fileio. */
2991
2992 class scoped_target_fd
2993 {
2994 public:
2995 explicit scoped_target_fd (int fd) noexcept
2996 : m_fd (fd)
2997 {
2998 }
2999
3000 ~scoped_target_fd ()
3001 {
3002 if (m_fd >= 0)
3003 {
3004 int target_errno;
3005
3006 target_fileio_close (m_fd, &target_errno);
3007 }
3008 }
3009
3010 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3011
3012 int get () const noexcept
3013 {
3014 return m_fd;
3015 }
3016
3017 private:
3018 int m_fd;
3019 };
3020
3021 /* Read target file FILENAME, in the filesystem as seen by INF. If
3022 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3023 remote targets, the remote stub). Store the result in *BUF_P and
3024 return the size of the transferred data. PADDING additional bytes
3025 are available in *BUF_P. This is a helper function for
3026 target_fileio_read_alloc; see the declaration of that function for
3027 more information. */
3028
3029 static LONGEST
3030 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3031 gdb_byte **buf_p, int padding)
3032 {
3033 size_t buf_alloc, buf_pos;
3034 gdb_byte *buf;
3035 LONGEST n;
3036 int target_errno;
3037
3038 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3039 0700, &target_errno));
3040 if (fd.get () == -1)
3041 return -1;
3042
3043 /* Start by reading up to 4K at a time. The target will throttle
3044 this number down if necessary. */
3045 buf_alloc = 4096;
3046 buf = (gdb_byte *) xmalloc (buf_alloc);
3047 buf_pos = 0;
3048 while (1)
3049 {
3050 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3051 buf_alloc - buf_pos - padding, buf_pos,
3052 &target_errno);
3053 if (n < 0)
3054 {
3055 /* An error occurred. */
3056 xfree (buf);
3057 return -1;
3058 }
3059 else if (n == 0)
3060 {
3061 /* Read all there was. */
3062 if (buf_pos == 0)
3063 xfree (buf);
3064 else
3065 *buf_p = buf;
3066 return buf_pos;
3067 }
3068
3069 buf_pos += n;
3070
3071 /* If the buffer is filling up, expand it. */
3072 if (buf_alloc < buf_pos * 2)
3073 {
3074 buf_alloc *= 2;
3075 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3076 }
3077
3078 QUIT;
3079 }
3080 }
3081
3082 /* See target.h. */
3083
3084 LONGEST
3085 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3086 gdb_byte **buf_p)
3087 {
3088 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3089 }
3090
3091 /* See target.h. */
3092
3093 gdb::unique_xmalloc_ptr<char>
3094 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3095 {
3096 gdb_byte *buffer;
3097 char *bufstr;
3098 LONGEST i, transferred;
3099
3100 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3101 bufstr = (char *) buffer;
3102
3103 if (transferred < 0)
3104 return gdb::unique_xmalloc_ptr<char> (nullptr);
3105
3106 if (transferred == 0)
3107 return make_unique_xstrdup ("");
3108
3109 bufstr[transferred] = 0;
3110
3111 /* Check for embedded NUL bytes; but allow trailing NULs. */
3112 for (i = strlen (bufstr); i < transferred; i++)
3113 if (bufstr[i] != 0)
3114 {
3115 warning (_("target file %s "
3116 "contained unexpected null characters"),
3117 filename);
3118 break;
3119 }
3120
3121 return gdb::unique_xmalloc_ptr<char> (bufstr);
3122 }
3123
3124
3125 static int
3126 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3127 CORE_ADDR addr, int len)
3128 {
3129 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3130 }
3131
3132 static int
3133 default_watchpoint_addr_within_range (struct target_ops *target,
3134 CORE_ADDR addr,
3135 CORE_ADDR start, int length)
3136 {
3137 return addr >= start && addr < start + length;
3138 }
3139
3140 /* See target.h. */
3141
3142 target_ops *
3143 target_stack::find_beneath (const target_ops *t) const
3144 {
3145 /* Look for a non-empty slot at stratum levels beneath T's. */
3146 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3147 if (m_stack[stratum] != NULL)
3148 return m_stack[stratum];
3149
3150 return NULL;
3151 }
3152
3153 /* See target.h. */
3154
3155 struct target_ops *
3156 find_target_at (enum strata stratum)
3157 {
3158 return g_target_stack.at (stratum);
3159 }
3160
3161 \f
3162
3163 /* See target.h */
3164
3165 void
3166 target_announce_detach (int from_tty)
3167 {
3168 pid_t pid;
3169 const char *exec_file;
3170
3171 if (!from_tty)
3172 return;
3173
3174 exec_file = get_exec_file (0);
3175 if (exec_file == NULL)
3176 exec_file = "";
3177
3178 pid = inferior_ptid.pid ();
3179 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3180 target_pid_to_str (ptid_t (pid)).c_str ());
3181 }
3182
3183 /* The inferior process has died. Long live the inferior! */
3184
3185 void
3186 generic_mourn_inferior (void)
3187 {
3188 inferior *inf = current_inferior ();
3189
3190 inferior_ptid = null_ptid;
3191
3192 /* Mark breakpoints uninserted in case something tries to delete a
3193 breakpoint while we delete the inferior's threads (which would
3194 fail, since the inferior is long gone). */
3195 mark_breakpoints_out ();
3196
3197 if (inf->pid != 0)
3198 exit_inferior (inf);
3199
3200 /* Note this wipes step-resume breakpoints, so needs to be done
3201 after exit_inferior, which ends up referencing the step-resume
3202 breakpoints through clear_thread_inferior_resources. */
3203 breakpoint_init_inferior (inf_exited);
3204
3205 registers_changed ();
3206
3207 reopen_exec_file ();
3208 reinit_frame_cache ();
3209
3210 if (deprecated_detach_hook)
3211 deprecated_detach_hook ();
3212 }
3213 \f
3214 /* Convert a normal process ID to a string. Returns the string in a
3215 static buffer. */
3216
3217 std::string
3218 normal_pid_to_str (ptid_t ptid)
3219 {
3220 return string_printf ("process %d", ptid.pid ());
3221 }
3222
3223 static std::string
3224 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3225 {
3226 return normal_pid_to_str (ptid);
3227 }
3228
3229 /* Error-catcher for target_find_memory_regions. */
3230 static int
3231 dummy_find_memory_regions (struct target_ops *self,
3232 find_memory_region_ftype ignore1, void *ignore2)
3233 {
3234 error (_("Command not implemented for this target."));
3235 return 0;
3236 }
3237
3238 /* Error-catcher for target_make_corefile_notes. */
3239 static char *
3240 dummy_make_corefile_notes (struct target_ops *self,
3241 bfd *ignore1, int *ignore2)
3242 {
3243 error (_("Command not implemented for this target."));
3244 return NULL;
3245 }
3246
3247 #include "target-delegates.c"
3248
3249 /* The initial current target, so that there is always a semi-valid
3250 current target. */
3251
3252 static dummy_target the_dummy_target;
3253
3254 static const target_info dummy_target_info = {
3255 "None",
3256 N_("None"),
3257 ""
3258 };
3259
3260 strata
3261 dummy_target::stratum () const
3262 {
3263 return dummy_stratum;
3264 }
3265
3266 strata
3267 debug_target::stratum () const
3268 {
3269 return debug_stratum;
3270 }
3271
3272 const target_info &
3273 dummy_target::info () const
3274 {
3275 return dummy_target_info;
3276 }
3277
3278 const target_info &
3279 debug_target::info () const
3280 {
3281 return beneath ()->info ();
3282 }
3283
3284 \f
3285
3286 void
3287 target_close (struct target_ops *targ)
3288 {
3289 gdb_assert (!target_is_pushed (targ));
3290
3291 fileio_handles_invalidate_target (targ);
3292
3293 targ->close ();
3294
3295 if (targetdebug)
3296 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3297 }
3298
3299 int
3300 target_thread_alive (ptid_t ptid)
3301 {
3302 return current_top_target ()->thread_alive (ptid);
3303 }
3304
3305 void
3306 target_update_thread_list (void)
3307 {
3308 current_top_target ()->update_thread_list ();
3309 }
3310
3311 void
3312 target_stop (ptid_t ptid)
3313 {
3314 if (!may_stop)
3315 {
3316 warning (_("May not interrupt or stop the target, ignoring attempt"));
3317 return;
3318 }
3319
3320 current_top_target ()->stop (ptid);
3321 }
3322
3323 void
3324 target_interrupt ()
3325 {
3326 if (!may_stop)
3327 {
3328 warning (_("May not interrupt or stop the target, ignoring attempt"));
3329 return;
3330 }
3331
3332 current_top_target ()->interrupt ();
3333 }
3334
3335 /* See target.h. */
3336
3337 void
3338 target_pass_ctrlc (void)
3339 {
3340 current_top_target ()->pass_ctrlc ();
3341 }
3342
3343 /* See target.h. */
3344
3345 void
3346 default_target_pass_ctrlc (struct target_ops *ops)
3347 {
3348 target_interrupt ();
3349 }
3350
3351 /* See target/target.h. */
3352
3353 void
3354 target_stop_and_wait (ptid_t ptid)
3355 {
3356 struct target_waitstatus status;
3357 bool was_non_stop = non_stop;
3358
3359 non_stop = true;
3360 target_stop (ptid);
3361
3362 memset (&status, 0, sizeof (status));
3363 target_wait (ptid, &status, 0);
3364
3365 non_stop = was_non_stop;
3366 }
3367
3368 /* See target/target.h. */
3369
3370 void
3371 target_continue_no_signal (ptid_t ptid)
3372 {
3373 target_resume (ptid, 0, GDB_SIGNAL_0);
3374 }
3375
3376 /* See target/target.h. */
3377
3378 void
3379 target_continue (ptid_t ptid, enum gdb_signal signal)
3380 {
3381 target_resume (ptid, 0, signal);
3382 }
3383
3384 /* Concatenate ELEM to LIST, a comma-separated list. */
3385
3386 static void
3387 str_comma_list_concat_elem (std::string *list, const char *elem)
3388 {
3389 if (!list->empty ())
3390 list->append (", ");
3391
3392 list->append (elem);
3393 }
3394
3395 /* Helper for target_options_to_string. If OPT is present in
3396 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3397 OPT is removed from TARGET_OPTIONS. */
3398
3399 static void
3400 do_option (int *target_options, std::string *ret,
3401 int opt, const char *opt_str)
3402 {
3403 if ((*target_options & opt) != 0)
3404 {
3405 str_comma_list_concat_elem (ret, opt_str);
3406 *target_options &= ~opt;
3407 }
3408 }
3409
3410 /* See target.h. */
3411
3412 std::string
3413 target_options_to_string (int target_options)
3414 {
3415 std::string ret;
3416
3417 #define DO_TARG_OPTION(OPT) \
3418 do_option (&target_options, &ret, OPT, #OPT)
3419
3420 DO_TARG_OPTION (TARGET_WNOHANG);
3421
3422 if (target_options != 0)
3423 str_comma_list_concat_elem (&ret, "unknown???");
3424
3425 return ret;
3426 }
3427
3428 void
3429 target_fetch_registers (struct regcache *regcache, int regno)
3430 {
3431 current_top_target ()->fetch_registers (regcache, regno);
3432 if (targetdebug)
3433 regcache->debug_print_register ("target_fetch_registers", regno);
3434 }
3435
3436 void
3437 target_store_registers (struct regcache *regcache, int regno)
3438 {
3439 if (!may_write_registers)
3440 error (_("Writing to registers is not allowed (regno %d)"), regno);
3441
3442 current_top_target ()->store_registers (regcache, regno);
3443 if (targetdebug)
3444 {
3445 regcache->debug_print_register ("target_store_registers", regno);
3446 }
3447 }
3448
3449 int
3450 target_core_of_thread (ptid_t ptid)
3451 {
3452 return current_top_target ()->core_of_thread (ptid);
3453 }
3454
3455 int
3456 simple_verify_memory (struct target_ops *ops,
3457 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3458 {
3459 LONGEST total_xfered = 0;
3460
3461 while (total_xfered < size)
3462 {
3463 ULONGEST xfered_len;
3464 enum target_xfer_status status;
3465 gdb_byte buf[1024];
3466 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3467
3468 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3469 buf, NULL, lma + total_xfered, howmuch,
3470 &xfered_len);
3471 if (status == TARGET_XFER_OK
3472 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3473 {
3474 total_xfered += xfered_len;
3475 QUIT;
3476 }
3477 else
3478 return 0;
3479 }
3480 return 1;
3481 }
3482
3483 /* Default implementation of memory verification. */
3484
3485 static int
3486 default_verify_memory (struct target_ops *self,
3487 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3488 {
3489 /* Start over from the top of the target stack. */
3490 return simple_verify_memory (current_top_target (),
3491 data, memaddr, size);
3492 }
3493
3494 int
3495 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3496 {
3497 return current_top_target ()->verify_memory (data, memaddr, size);
3498 }
3499
3500 /* The documentation for this function is in its prototype declaration in
3501 target.h. */
3502
3503 int
3504 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3505 enum target_hw_bp_type rw)
3506 {
3507 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3508 }
3509
3510 /* The documentation for this function is in its prototype declaration in
3511 target.h. */
3512
3513 int
3514 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3515 enum target_hw_bp_type rw)
3516 {
3517 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3518 }
3519
3520 /* The documentation for this function is in its prototype declaration
3521 in target.h. */
3522
3523 int
3524 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3525 {
3526 return current_top_target ()->masked_watch_num_registers (addr, mask);
3527 }
3528
3529 /* The documentation for this function is in its prototype declaration
3530 in target.h. */
3531
3532 int
3533 target_ranged_break_num_registers (void)
3534 {
3535 return current_top_target ()->ranged_break_num_registers ();
3536 }
3537
3538 /* See target.h. */
3539
3540 struct btrace_target_info *
3541 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3542 {
3543 return current_top_target ()->enable_btrace (ptid, conf);
3544 }
3545
3546 /* See target.h. */
3547
3548 void
3549 target_disable_btrace (struct btrace_target_info *btinfo)
3550 {
3551 current_top_target ()->disable_btrace (btinfo);
3552 }
3553
3554 /* See target.h. */
3555
3556 void
3557 target_teardown_btrace (struct btrace_target_info *btinfo)
3558 {
3559 current_top_target ()->teardown_btrace (btinfo);
3560 }
3561
3562 /* See target.h. */
3563
3564 enum btrace_error
3565 target_read_btrace (struct btrace_data *btrace,
3566 struct btrace_target_info *btinfo,
3567 enum btrace_read_type type)
3568 {
3569 return current_top_target ()->read_btrace (btrace, btinfo, type);
3570 }
3571
3572 /* See target.h. */
3573
3574 const struct btrace_config *
3575 target_btrace_conf (const struct btrace_target_info *btinfo)
3576 {
3577 return current_top_target ()->btrace_conf (btinfo);
3578 }
3579
3580 /* See target.h. */
3581
3582 void
3583 target_stop_recording (void)
3584 {
3585 current_top_target ()->stop_recording ();
3586 }
3587
3588 /* See target.h. */
3589
3590 void
3591 target_save_record (const char *filename)
3592 {
3593 current_top_target ()->save_record (filename);
3594 }
3595
3596 /* See target.h. */
3597
3598 int
3599 target_supports_delete_record ()
3600 {
3601 return current_top_target ()->supports_delete_record ();
3602 }
3603
3604 /* See target.h. */
3605
3606 void
3607 target_delete_record (void)
3608 {
3609 current_top_target ()->delete_record ();
3610 }
3611
3612 /* See target.h. */
3613
3614 enum record_method
3615 target_record_method (ptid_t ptid)
3616 {
3617 return current_top_target ()->record_method (ptid);
3618 }
3619
3620 /* See target.h. */
3621
3622 int
3623 target_record_is_replaying (ptid_t ptid)
3624 {
3625 return current_top_target ()->record_is_replaying (ptid);
3626 }
3627
3628 /* See target.h. */
3629
3630 int
3631 target_record_will_replay (ptid_t ptid, int dir)
3632 {
3633 return current_top_target ()->record_will_replay (ptid, dir);
3634 }
3635
3636 /* See target.h. */
3637
3638 void
3639 target_record_stop_replaying (void)
3640 {
3641 current_top_target ()->record_stop_replaying ();
3642 }
3643
3644 /* See target.h. */
3645
3646 void
3647 target_goto_record_begin (void)
3648 {
3649 current_top_target ()->goto_record_begin ();
3650 }
3651
3652 /* See target.h. */
3653
3654 void
3655 target_goto_record_end (void)
3656 {
3657 current_top_target ()->goto_record_end ();
3658 }
3659
3660 /* See target.h. */
3661
3662 void
3663 target_goto_record (ULONGEST insn)
3664 {
3665 current_top_target ()->goto_record (insn);
3666 }
3667
3668 /* See target.h. */
3669
3670 void
3671 target_insn_history (int size, gdb_disassembly_flags flags)
3672 {
3673 current_top_target ()->insn_history (size, flags);
3674 }
3675
3676 /* See target.h. */
3677
3678 void
3679 target_insn_history_from (ULONGEST from, int size,
3680 gdb_disassembly_flags flags)
3681 {
3682 current_top_target ()->insn_history_from (from, size, flags);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_insn_history_range (ULONGEST begin, ULONGEST end,
3689 gdb_disassembly_flags flags)
3690 {
3691 current_top_target ()->insn_history_range (begin, end, flags);
3692 }
3693
3694 /* See target.h. */
3695
3696 void
3697 target_call_history (int size, record_print_flags flags)
3698 {
3699 current_top_target ()->call_history (size, flags);
3700 }
3701
3702 /* See target.h. */
3703
3704 void
3705 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3706 {
3707 current_top_target ()->call_history_from (begin, size, flags);
3708 }
3709
3710 /* See target.h. */
3711
3712 void
3713 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3714 {
3715 current_top_target ()->call_history_range (begin, end, flags);
3716 }
3717
3718 /* See target.h. */
3719
3720 const struct frame_unwind *
3721 target_get_unwinder (void)
3722 {
3723 return current_top_target ()->get_unwinder ();
3724 }
3725
3726 /* See target.h. */
3727
3728 const struct frame_unwind *
3729 target_get_tailcall_unwinder (void)
3730 {
3731 return current_top_target ()->get_tailcall_unwinder ();
3732 }
3733
3734 /* See target.h. */
3735
3736 void
3737 target_prepare_to_generate_core (void)
3738 {
3739 current_top_target ()->prepare_to_generate_core ();
3740 }
3741
3742 /* See target.h. */
3743
3744 void
3745 target_done_generating_core (void)
3746 {
3747 current_top_target ()->done_generating_core ();
3748 }
3749
3750 \f
3751
3752 static char targ_desc[] =
3753 "Names of targets and files being debugged.\nShows the entire \
3754 stack of targets currently in use (including the exec-file,\n\
3755 core-file, and process, if any), as well as the symbol file name.";
3756
3757 static void
3758 default_rcmd (struct target_ops *self, const char *command,
3759 struct ui_file *output)
3760 {
3761 error (_("\"monitor\" command not supported by this target."));
3762 }
3763
3764 static void
3765 do_monitor_command (const char *cmd, int from_tty)
3766 {
3767 target_rcmd (cmd, gdb_stdtarg);
3768 }
3769
3770 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3771 ignored. */
3772
3773 void
3774 flash_erase_command (const char *cmd, int from_tty)
3775 {
3776 /* Used to communicate termination of flash operations to the target. */
3777 bool found_flash_region = false;
3778 struct gdbarch *gdbarch = target_gdbarch ();
3779
3780 std::vector<mem_region> mem_regions = target_memory_map ();
3781
3782 /* Iterate over all memory regions. */
3783 for (const mem_region &m : mem_regions)
3784 {
3785 /* Is this a flash memory region? */
3786 if (m.attrib.mode == MEM_FLASH)
3787 {
3788 found_flash_region = true;
3789 target_flash_erase (m.lo, m.hi - m.lo);
3790
3791 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3792
3793 current_uiout->message (_("Erasing flash memory region at address "));
3794 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3795 current_uiout->message (", size = ");
3796 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3797 current_uiout->message ("\n");
3798 }
3799 }
3800
3801 /* Did we do any flash operations? If so, we need to finalize them. */
3802 if (found_flash_region)
3803 target_flash_done ();
3804 else
3805 current_uiout->message (_("No flash memory regions found.\n"));
3806 }
3807
3808 /* Print the name of each layers of our target stack. */
3809
3810 static void
3811 maintenance_print_target_stack (const char *cmd, int from_tty)
3812 {
3813 printf_filtered (_("The current target stack is:\n"));
3814
3815 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3816 {
3817 if (t->stratum () == debug_stratum)
3818 continue;
3819 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3820 }
3821 }
3822
3823 /* See target.h. */
3824
3825 void
3826 target_async (int enable)
3827 {
3828 infrun_async (enable);
3829 current_top_target ()->async (enable);
3830 }
3831
3832 /* See target.h. */
3833
3834 void
3835 target_thread_events (int enable)
3836 {
3837 current_top_target ()->thread_events (enable);
3838 }
3839
3840 /* Controls if targets can report that they can/are async. This is
3841 just for maintainers to use when debugging gdb. */
3842 bool target_async_permitted = true;
3843
3844 /* The set command writes to this variable. If the inferior is
3845 executing, target_async_permitted is *not* updated. */
3846 static bool target_async_permitted_1 = true;
3847
3848 static void
3849 maint_set_target_async_command (const char *args, int from_tty,
3850 struct cmd_list_element *c)
3851 {
3852 if (have_live_inferiors ())
3853 {
3854 target_async_permitted_1 = target_async_permitted;
3855 error (_("Cannot change this setting while the inferior is running."));
3856 }
3857
3858 target_async_permitted = target_async_permitted_1;
3859 }
3860
3861 static void
3862 maint_show_target_async_command (struct ui_file *file, int from_tty,
3863 struct cmd_list_element *c,
3864 const char *value)
3865 {
3866 fprintf_filtered (file,
3867 _("Controlling the inferior in "
3868 "asynchronous mode is %s.\n"), value);
3869 }
3870
3871 /* Return true if the target operates in non-stop mode even with "set
3872 non-stop off". */
3873
3874 static int
3875 target_always_non_stop_p (void)
3876 {
3877 return current_top_target ()->always_non_stop_p ();
3878 }
3879
3880 /* See target.h. */
3881
3882 int
3883 target_is_non_stop_p (void)
3884 {
3885 return (non_stop
3886 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3887 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3888 && target_always_non_stop_p ()));
3889 }
3890
3891 /* Controls if targets can report that they always run in non-stop
3892 mode. This is just for maintainers to use when debugging gdb. */
3893 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3894
3895 /* The set command writes to this variable. If the inferior is
3896 executing, target_non_stop_enabled is *not* updated. */
3897 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3898
3899 /* Implementation of "maint set target-non-stop". */
3900
3901 static void
3902 maint_set_target_non_stop_command (const char *args, int from_tty,
3903 struct cmd_list_element *c)
3904 {
3905 if (have_live_inferiors ())
3906 {
3907 target_non_stop_enabled_1 = target_non_stop_enabled;
3908 error (_("Cannot change this setting while the inferior is running."));
3909 }
3910
3911 target_non_stop_enabled = target_non_stop_enabled_1;
3912 }
3913
3914 /* Implementation of "maint show target-non-stop". */
3915
3916 static void
3917 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3918 struct cmd_list_element *c,
3919 const char *value)
3920 {
3921 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3922 fprintf_filtered (file,
3923 _("Whether the target is always in non-stop mode "
3924 "is %s (currently %s).\n"), value,
3925 target_always_non_stop_p () ? "on" : "off");
3926 else
3927 fprintf_filtered (file,
3928 _("Whether the target is always in non-stop mode "
3929 "is %s.\n"), value);
3930 }
3931
3932 /* Temporary copies of permission settings. */
3933
3934 static bool may_write_registers_1 = true;
3935 static bool may_write_memory_1 = true;
3936 static bool may_insert_breakpoints_1 = true;
3937 static bool may_insert_tracepoints_1 = true;
3938 static bool may_insert_fast_tracepoints_1 = true;
3939 static bool may_stop_1 = true;
3940
3941 /* Make the user-set values match the real values again. */
3942
3943 void
3944 update_target_permissions (void)
3945 {
3946 may_write_registers_1 = may_write_registers;
3947 may_write_memory_1 = may_write_memory;
3948 may_insert_breakpoints_1 = may_insert_breakpoints;
3949 may_insert_tracepoints_1 = may_insert_tracepoints;
3950 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3951 may_stop_1 = may_stop;
3952 }
3953
3954 /* The one function handles (most of) the permission flags in the same
3955 way. */
3956
3957 static void
3958 set_target_permissions (const char *args, int from_tty,
3959 struct cmd_list_element *c)
3960 {
3961 if (target_has_execution)
3962 {
3963 update_target_permissions ();
3964 error (_("Cannot change this setting while the inferior is running."));
3965 }
3966
3967 /* Make the real values match the user-changed values. */
3968 may_write_registers = may_write_registers_1;
3969 may_insert_breakpoints = may_insert_breakpoints_1;
3970 may_insert_tracepoints = may_insert_tracepoints_1;
3971 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3972 may_stop = may_stop_1;
3973 update_observer_mode ();
3974 }
3975
3976 /* Set memory write permission independently of observer mode. */
3977
3978 static void
3979 set_write_memory_permission (const char *args, int from_tty,
3980 struct cmd_list_element *c)
3981 {
3982 /* Make the real values match the user-changed values. */
3983 may_write_memory = may_write_memory_1;
3984 update_observer_mode ();
3985 }
3986
3987 void
3988 initialize_targets (void)
3989 {
3990 push_target (&the_dummy_target);
3991
3992 the_debug_target = new debug_target ();
3993
3994 add_info ("target", info_target_command, targ_desc);
3995 add_info ("files", info_target_command, targ_desc);
3996
3997 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3998 Set target debugging."), _("\
3999 Show target debugging."), _("\
4000 When non-zero, target debugging is enabled. Higher numbers are more\n\
4001 verbose."),
4002 set_targetdebug,
4003 show_targetdebug,
4004 &setdebuglist, &showdebuglist);
4005
4006 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4007 &trust_readonly, _("\
4008 Set mode for reading from readonly sections."), _("\
4009 Show mode for reading from readonly sections."), _("\
4010 When this mode is on, memory reads from readonly sections (such as .text)\n\
4011 will be read from the object file instead of from the target. This will\n\
4012 result in significant performance improvement for remote targets."),
4013 NULL,
4014 show_trust_readonly,
4015 &setlist, &showlist);
4016
4017 add_com ("monitor", class_obscure, do_monitor_command,
4018 _("Send a command to the remote monitor (remote targets only)."));
4019
4020 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4021 _("Print the name of each layer of the internal target stack."),
4022 &maintenanceprintlist);
4023
4024 add_setshow_boolean_cmd ("target-async", no_class,
4025 &target_async_permitted_1, _("\
4026 Set whether gdb controls the inferior in asynchronous mode."), _("\
4027 Show whether gdb controls the inferior in asynchronous mode."), _("\
4028 Tells gdb whether to control the inferior in asynchronous mode."),
4029 maint_set_target_async_command,
4030 maint_show_target_async_command,
4031 &maintenance_set_cmdlist,
4032 &maintenance_show_cmdlist);
4033
4034 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4035 &target_non_stop_enabled_1, _("\
4036 Set whether gdb always controls the inferior in non-stop mode."), _("\
4037 Show whether gdb always controls the inferior in non-stop mode."), _("\
4038 Tells gdb whether to control the inferior in non-stop mode."),
4039 maint_set_target_non_stop_command,
4040 maint_show_target_non_stop_command,
4041 &maintenance_set_cmdlist,
4042 &maintenance_show_cmdlist);
4043
4044 add_setshow_boolean_cmd ("may-write-registers", class_support,
4045 &may_write_registers_1, _("\
4046 Set permission to write into registers."), _("\
4047 Show permission to write into registers."), _("\
4048 When this permission is on, GDB may write into the target's registers.\n\
4049 Otherwise, any sort of write attempt will result in an error."),
4050 set_target_permissions, NULL,
4051 &setlist, &showlist);
4052
4053 add_setshow_boolean_cmd ("may-write-memory", class_support,
4054 &may_write_memory_1, _("\
4055 Set permission to write into target memory."), _("\
4056 Show permission to write into target memory."), _("\
4057 When this permission is on, GDB may write into the target's memory.\n\
4058 Otherwise, any sort of write attempt will result in an error."),
4059 set_write_memory_permission, NULL,
4060 &setlist, &showlist);
4061
4062 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4063 &may_insert_breakpoints_1, _("\
4064 Set permission to insert breakpoints in the target."), _("\
4065 Show permission to insert breakpoints in the target."), _("\
4066 When this permission is on, GDB may insert breakpoints in the program.\n\
4067 Otherwise, any sort of insertion attempt will result in an error."),
4068 set_target_permissions, NULL,
4069 &setlist, &showlist);
4070
4071 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4072 &may_insert_tracepoints_1, _("\
4073 Set permission to insert tracepoints in the target."), _("\
4074 Show permission to insert tracepoints in the target."), _("\
4075 When this permission is on, GDB may insert tracepoints in the program.\n\
4076 Otherwise, any sort of insertion attempt will result in an error."),
4077 set_target_permissions, NULL,
4078 &setlist, &showlist);
4079
4080 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4081 &may_insert_fast_tracepoints_1, _("\
4082 Set permission to insert fast tracepoints in the target."), _("\
4083 Show permission to insert fast tracepoints in the target."), _("\
4084 When this permission is on, GDB may insert fast tracepoints.\n\
4085 Otherwise, any sort of insertion attempt will result in an error."),
4086 set_target_permissions, NULL,
4087 &setlist, &showlist);
4088
4089 add_setshow_boolean_cmd ("may-interrupt", class_support,
4090 &may_stop_1, _("\
4091 Set permission to interrupt or signal the target."), _("\
4092 Show permission to interrupt or signal the target."), _("\
4093 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4094 Otherwise, any attempt to interrupt or stop will be ignored."),
4095 set_target_permissions, NULL,
4096 &setlist, &showlist);
4097
4098 add_com ("flash-erase", no_class, flash_erase_command,
4099 _("Erase all flash memory regions."));
4100
4101 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4102 &auto_connect_native_target, _("\
4103 Set whether GDB may automatically connect to the native target."), _("\
4104 Show whether GDB may automatically connect to the native target."), _("\
4105 When on, and GDB is not connected to a target yet, GDB\n\
4106 attempts \"run\" and other commands with the native target."),
4107 NULL, show_auto_connect_native_target,
4108 &setlist, &showlist);
4109 }
This page took 0.122808 seconds and 5 git commands to generate.