Introduce process_stratum_target
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static struct target_ops *find_default_run_target (const char *);
88
89 static int dummy_find_memory_regions (struct target_ops *self,
90 find_memory_region_ftype ignore1,
91 void *ignore2);
92
93 static char *dummy_make_corefile_notes (struct target_ops *self,
94 bfd *ignore1, int *ignore2);
95
96 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
97
98 static enum exec_direction_kind default_execution_direction
99 (struct target_ops *self);
100
101 /* Mapping between target_info objects (which have address identity)
102 and corresponding open/factory function/callback. Each add_target
103 call adds one entry to this map, and registers a "target
104 TARGET_NAME" command that when invoked calls the factory registered
105 here. The target_info object is associated with the command via
106 the command's context. */
107 static std::unordered_map<const target_info *, target_open_ftype *>
108 target_factories;
109
110 /* The initial current target, so that there is always a semi-valid
111 current target. */
112
113 static struct target_ops *the_dummy_target;
114 static struct target_ops *the_debug_target;
115
116 /* The target stack. */
117
118 static target_stack g_target_stack;
119
120 /* Top of target stack. */
121 /* The target structure we are currently using to talk to a process
122 or file or whatever "inferior" we have. */
123
124 target_ops *
125 current_top_target ()
126 {
127 return g_target_stack.top ();
128 }
129
130 /* Command list for target. */
131
132 static struct cmd_list_element *targetlist = NULL;
133
134 /* Nonzero if we should trust readonly sections from the
135 executable when reading memory. */
136
137 static int trust_readonly = 0;
138
139 /* Nonzero if we should show true memory content including
140 memory breakpoint inserted by gdb. */
141
142 static int show_memory_breakpoints = 0;
143
144 /* These globals control whether GDB attempts to perform these
145 operations; they are useful for targets that need to prevent
146 inadvertant disruption, such as in non-stop mode. */
147
148 int may_write_registers = 1;
149
150 int may_write_memory = 1;
151
152 int may_insert_breakpoints = 1;
153
154 int may_insert_tracepoints = 1;
155
156 int may_insert_fast_tracepoints = 1;
157
158 int may_stop = 1;
159
160 /* Non-zero if we want to see trace of target level stuff. */
161
162 static unsigned int targetdebug = 0;
163
164 static void
165 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
166 {
167 if (targetdebug)
168 push_target (the_debug_target);
169 else
170 unpush_target (the_debug_target);
171 }
172
173 static void
174 show_targetdebug (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
178 }
179
180 /* The user just typed 'target' without the name of a target. */
181
182 static void
183 target_command (const char *arg, int from_tty)
184 {
185 fputs_filtered ("Argument required (target name). Try `help target'\n",
186 gdb_stdout);
187 }
188
189 /* Default target_has_* methods for process_stratum targets. */
190
191 int
192 default_child_has_all_memory ()
193 {
194 /* If no inferior selected, then we can't read memory here. */
195 if (inferior_ptid == null_ptid)
196 return 0;
197
198 return 1;
199 }
200
201 int
202 default_child_has_memory ()
203 {
204 /* If no inferior selected, then we can't read memory here. */
205 if (inferior_ptid == null_ptid)
206 return 0;
207
208 return 1;
209 }
210
211 int
212 default_child_has_stack ()
213 {
214 /* If no inferior selected, there's no stack. */
215 if (inferior_ptid == null_ptid)
216 return 0;
217
218 return 1;
219 }
220
221 int
222 default_child_has_registers ()
223 {
224 /* Can't read registers from no inferior. */
225 if (inferior_ptid == null_ptid)
226 return 0;
227
228 return 1;
229 }
230
231 int
232 default_child_has_execution (ptid_t the_ptid)
233 {
234 /* If there's no thread selected, then we can't make it run through
235 hoops. */
236 if (the_ptid == null_ptid)
237 return 0;
238
239 return 1;
240 }
241
242
243 int
244 target_has_all_memory_1 (void)
245 {
246 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
247 if (t->has_all_memory ())
248 return 1;
249
250 return 0;
251 }
252
253 int
254 target_has_memory_1 (void)
255 {
256 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
257 if (t->has_memory ())
258 return 1;
259
260 return 0;
261 }
262
263 int
264 target_has_stack_1 (void)
265 {
266 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
267 if (t->has_stack ())
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_registers_1 (void)
275 {
276 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
277 if (t->has_registers ())
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_execution_1 (ptid_t the_ptid)
285 {
286 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
287 if (t->has_execution (the_ptid))
288 return 1;
289
290 return 0;
291 }
292
293 int
294 target_has_execution_current (void)
295 {
296 return target_has_execution_1 (inferior_ptid);
297 }
298
299 /* This is used to implement the various target commands. */
300
301 static void
302 open_target (const char *args, int from_tty, struct cmd_list_element *command)
303 {
304 auto *ti = static_cast<target_info *> (get_cmd_context (command));
305 target_open_ftype *func = target_factories[ti];
306
307 if (targetdebug)
308 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
309 ti->shortname);
310
311 func (args, from_tty);
312
313 if (targetdebug)
314 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
315 ti->shortname, args, from_tty);
316 }
317
318 /* See target.h. */
319
320 void
321 add_target (const target_info &t, target_open_ftype *func,
322 completer_ftype *completer)
323 {
324 struct cmd_list_element *c;
325
326 auto &func_slot = target_factories[&t];
327 if (func_slot != nullptr)
328 internal_error (__FILE__, __LINE__,
329 _("target already added (\"%s\")."), t.shortname);
330 func_slot = func;
331
332 if (targetlist == NULL)
333 add_prefix_cmd ("target", class_run, target_command, _("\
334 Connect to a target machine or process.\n\
335 The first argument is the type or protocol of the target machine.\n\
336 Remaining arguments are interpreted by the target protocol. For more\n\
337 information on the arguments for a particular protocol, type\n\
338 `help target ' followed by the protocol name."),
339 &targetlist, "target ", 0, &cmdlist);
340 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
341 set_cmd_context (c, (void *) &t);
342 set_cmd_sfunc (c, open_target);
343 if (completer != NULL)
344 set_cmd_completer (c, completer);
345 }
346
347 /* See target.h. */
348
349 void
350 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
351 {
352 struct cmd_list_element *c;
353 char *alt;
354
355 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
356 see PR cli/15104. */
357 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
358 set_cmd_sfunc (c, open_target);
359 set_cmd_context (c, (void *) &tinfo);
360 alt = xstrprintf ("target %s", tinfo.shortname);
361 deprecate_cmd (c, alt);
362 }
363
364 /* Stub functions */
365
366 void
367 target_kill (void)
368 {
369 current_top_target ()->kill ();
370 }
371
372 void
373 target_load (const char *arg, int from_tty)
374 {
375 target_dcache_invalidate ();
376 current_top_target ()->load (arg, from_tty);
377 }
378
379 /* Define it. */
380
381 target_terminal_state target_terminal::m_terminal_state
382 = target_terminal_state::is_ours;
383
384 /* See target/target.h. */
385
386 void
387 target_terminal::init (void)
388 {
389 current_top_target ()->terminal_init ();
390
391 m_terminal_state = target_terminal_state::is_ours;
392 }
393
394 /* See target/target.h. */
395
396 void
397 target_terminal::inferior (void)
398 {
399 struct ui *ui = current_ui;
400
401 /* A background resume (``run&'') should leave GDB in control of the
402 terminal. */
403 if (ui->prompt_state != PROMPT_BLOCKED)
404 return;
405
406 /* Since we always run the inferior in the main console (unless "set
407 inferior-tty" is in effect), when some UI other than the main one
408 calls target_terminal::inferior, then we leave the main UI's
409 terminal settings as is. */
410 if (ui != main_ui)
411 return;
412
413 /* If GDB is resuming the inferior in the foreground, install
414 inferior's terminal modes. */
415
416 struct inferior *inf = current_inferior ();
417
418 if (inf->terminal_state != target_terminal_state::is_inferior)
419 {
420 current_top_target ()->terminal_inferior ();
421 inf->terminal_state = target_terminal_state::is_inferior;
422 }
423
424 m_terminal_state = target_terminal_state::is_inferior;
425
426 /* If the user hit C-c before, pretend that it was hit right
427 here. */
428 if (check_quit_flag ())
429 target_pass_ctrlc ();
430 }
431
432 /* See target/target.h. */
433
434 void
435 target_terminal::restore_inferior (void)
436 {
437 struct ui *ui = current_ui;
438
439 /* See target_terminal::inferior(). */
440 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
441 return;
442
443 /* Restore the terminal settings of inferiors that were in the
444 foreground but are now ours_for_output due to a temporary
445 target_target::ours_for_output() call. */
446
447 {
448 scoped_restore_current_inferior restore_inferior;
449
450 for (struct inferior *inf : all_inferiors ())
451 {
452 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
453 {
454 set_current_inferior (inf);
455 current_top_target ()->terminal_inferior ();
456 inf->terminal_state = target_terminal_state::is_inferior;
457 }
458 }
459 }
460
461 m_terminal_state = target_terminal_state::is_inferior;
462
463 /* If the user hit C-c before, pretend that it was hit right
464 here. */
465 if (check_quit_flag ())
466 target_pass_ctrlc ();
467 }
468
469 /* Switch terminal state to DESIRED_STATE, either is_ours, or
470 is_ours_for_output. */
471
472 static void
473 target_terminal_is_ours_kind (target_terminal_state desired_state)
474 {
475 scoped_restore_current_inferior restore_inferior;
476
477 /* Must do this in two passes. First, have all inferiors save the
478 current terminal settings. Then, after all inferiors have add a
479 chance to safely save the terminal settings, restore GDB's
480 terminal settings. */
481
482 for (inferior *inf : all_inferiors ())
483 {
484 if (inf->terminal_state == target_terminal_state::is_inferior)
485 {
486 set_current_inferior (inf);
487 current_top_target ()->terminal_save_inferior ();
488 }
489 }
490
491 for (inferior *inf : all_inferiors ())
492 {
493 /* Note we don't check is_inferior here like above because we
494 need to handle 'is_ours_for_output -> is_ours' too. Careful
495 to never transition from 'is_ours' to 'is_ours_for_output',
496 though. */
497 if (inf->terminal_state != target_terminal_state::is_ours
498 && inf->terminal_state != desired_state)
499 {
500 set_current_inferior (inf);
501 if (desired_state == target_terminal_state::is_ours)
502 current_top_target ()->terminal_ours ();
503 else if (desired_state == target_terminal_state::is_ours_for_output)
504 current_top_target ()->terminal_ours_for_output ();
505 else
506 gdb_assert_not_reached ("unhandled desired state");
507 inf->terminal_state = desired_state;
508 }
509 }
510 }
511
512 /* See target/target.h. */
513
514 void
515 target_terminal::ours ()
516 {
517 struct ui *ui = current_ui;
518
519 /* See target_terminal::inferior. */
520 if (ui != main_ui)
521 return;
522
523 if (m_terminal_state == target_terminal_state::is_ours)
524 return;
525
526 target_terminal_is_ours_kind (target_terminal_state::is_ours);
527 m_terminal_state = target_terminal_state::is_ours;
528 }
529
530 /* See target/target.h. */
531
532 void
533 target_terminal::ours_for_output ()
534 {
535 struct ui *ui = current_ui;
536
537 /* See target_terminal::inferior. */
538 if (ui != main_ui)
539 return;
540
541 if (!target_terminal::is_inferior ())
542 return;
543
544 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
545 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
546 }
547
548 /* See target/target.h. */
549
550 void
551 target_terminal::info (const char *arg, int from_tty)
552 {
553 current_top_target ()->terminal_info (arg, from_tty);
554 }
555
556 /* See target.h. */
557
558 bool
559 target_supports_terminal_ours (void)
560 {
561 /* This can be called before there is any target, so we must check
562 for nullptr here. */
563 target_ops *top = current_top_target ();
564
565 if (top == nullptr)
566 return false;
567 return top->supports_terminal_ours ();
568 }
569
570 static void
571 tcomplain (void)
572 {
573 error (_("You can't do that when your target is `%s'"),
574 current_top_target ()->shortname ());
575 }
576
577 void
578 noprocess (void)
579 {
580 error (_("You can't do that without a process to debug."));
581 }
582
583 static void
584 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
585 {
586 printf_unfiltered (_("No saved terminal information.\n"));
587 }
588
589 /* A default implementation for the to_get_ada_task_ptid target method.
590
591 This function builds the PTID by using both LWP and TID as part of
592 the PTID lwp and tid elements. The pid used is the pid of the
593 inferior_ptid. */
594
595 static ptid_t
596 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
597 {
598 return ptid_t (inferior_ptid.pid (), lwp, tid);
599 }
600
601 static enum exec_direction_kind
602 default_execution_direction (struct target_ops *self)
603 {
604 if (!target_can_execute_reverse)
605 return EXEC_FORWARD;
606 else if (!target_can_async_p ())
607 return EXEC_FORWARD;
608 else
609 gdb_assert_not_reached ("\
610 to_execution_direction must be implemented for reverse async");
611 }
612
613 /* See target.h. */
614
615 void
616 target_stack::push (target_ops *t)
617 {
618 /* If there's already a target at this stratum, remove it. */
619 if (m_stack[t->to_stratum] != NULL)
620 {
621 target_ops *prev = m_stack[t->to_stratum];
622 m_stack[t->to_stratum] = NULL;
623 target_close (prev);
624 }
625
626 /* Now add the new one. */
627 m_stack[t->to_stratum] = t;
628
629 if (m_top < t->to_stratum)
630 m_top = t->to_stratum;
631 }
632
633 /* See target.h. */
634
635 void
636 push_target (struct target_ops *t)
637 {
638 g_target_stack.push (t);
639 }
640
641 /* See target.h. */
642
643 int
644 unpush_target (struct target_ops *t)
645 {
646 return g_target_stack.unpush (t);
647 }
648
649 /* See target.h. */
650
651 bool
652 target_stack::unpush (target_ops *t)
653 {
654 if (t->to_stratum == dummy_stratum)
655 internal_error (__FILE__, __LINE__,
656 _("Attempt to unpush the dummy target"));
657
658 gdb_assert (t != NULL);
659
660 /* Look for the specified target. Note that a target can only occur
661 once in the target stack. */
662
663 if (m_stack[t->to_stratum] != t)
664 {
665 /* If T wasn't pushed, quit. Only open targets should be
666 closed. */
667 return false;
668 }
669
670 /* Unchain the target. */
671 m_stack[t->to_stratum] = NULL;
672
673 if (m_top == t->to_stratum)
674 m_top = t->beneath ()->to_stratum;
675
676 /* Finally close the target. Note we do this after unchaining, so
677 any target method calls from within the target_close
678 implementation don't end up in T anymore. */
679 target_close (t);
680
681 return true;
682 }
683
684 /* Unpush TARGET and assert that it worked. */
685
686 static void
687 unpush_target_and_assert (struct target_ops *target)
688 {
689 if (!unpush_target (target))
690 {
691 fprintf_unfiltered (gdb_stderr,
692 "pop_all_targets couldn't find target %s\n",
693 target->shortname ());
694 internal_error (__FILE__, __LINE__,
695 _("failed internal consistency check"));
696 }
697 }
698
699 void
700 pop_all_targets_above (enum strata above_stratum)
701 {
702 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
703 unpush_target_and_assert (current_top_target ());
704 }
705
706 /* See target.h. */
707
708 void
709 pop_all_targets_at_and_above (enum strata stratum)
710 {
711 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
712 unpush_target_and_assert (current_top_target ());
713 }
714
715 void
716 pop_all_targets (void)
717 {
718 pop_all_targets_above (dummy_stratum);
719 }
720
721 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
722
723 int
724 target_is_pushed (struct target_ops *t)
725 {
726 return g_target_stack.is_pushed (t);
727 }
728
729 /* Default implementation of to_get_thread_local_address. */
730
731 static void
732 generic_tls_error (void)
733 {
734 throw_error (TLS_GENERIC_ERROR,
735 _("Cannot find thread-local variables on this target"));
736 }
737
738 /* Using the objfile specified in OBJFILE, find the address for the
739 current thread's thread-local storage with offset OFFSET. */
740 CORE_ADDR
741 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
742 {
743 volatile CORE_ADDR addr = 0;
744 struct target_ops *target = current_top_target ();
745
746 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
747 {
748 ptid_t ptid = inferior_ptid;
749
750 TRY
751 {
752 CORE_ADDR lm_addr;
753
754 /* Fetch the load module address for this objfile. */
755 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
756 objfile);
757
758 addr = target->get_thread_local_address (ptid, lm_addr, offset);
759 }
760 /* If an error occurred, print TLS related messages here. Otherwise,
761 throw the error to some higher catcher. */
762 CATCH (ex, RETURN_MASK_ALL)
763 {
764 int objfile_is_library = (objfile->flags & OBJF_SHARED);
765
766 switch (ex.error)
767 {
768 case TLS_NO_LIBRARY_SUPPORT_ERROR:
769 error (_("Cannot find thread-local variables "
770 "in this thread library."));
771 break;
772 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
773 if (objfile_is_library)
774 error (_("Cannot find shared library `%s' in dynamic"
775 " linker's load module list"), objfile_name (objfile));
776 else
777 error (_("Cannot find executable file `%s' in dynamic"
778 " linker's load module list"), objfile_name (objfile));
779 break;
780 case TLS_NOT_ALLOCATED_YET_ERROR:
781 if (objfile_is_library)
782 error (_("The inferior has not yet allocated storage for"
783 " thread-local variables in\n"
784 "the shared library `%s'\n"
785 "for %s"),
786 objfile_name (objfile), target_pid_to_str (ptid));
787 else
788 error (_("The inferior has not yet allocated storage for"
789 " thread-local variables in\n"
790 "the executable `%s'\n"
791 "for %s"),
792 objfile_name (objfile), target_pid_to_str (ptid));
793 break;
794 case TLS_GENERIC_ERROR:
795 if (objfile_is_library)
796 error (_("Cannot find thread-local storage for %s, "
797 "shared library %s:\n%s"),
798 target_pid_to_str (ptid),
799 objfile_name (objfile), ex.message);
800 else
801 error (_("Cannot find thread-local storage for %s, "
802 "executable file %s:\n%s"),
803 target_pid_to_str (ptid),
804 objfile_name (objfile), ex.message);
805 break;
806 default:
807 throw_exception (ex);
808 break;
809 }
810 }
811 END_CATCH
812 }
813 /* It wouldn't be wrong here to try a gdbarch method, too; finding
814 TLS is an ABI-specific thing. But we don't do that yet. */
815 else
816 error (_("Cannot find thread-local variables on this target"));
817
818 return addr;
819 }
820
821 const char *
822 target_xfer_status_to_string (enum target_xfer_status status)
823 {
824 #define CASE(X) case X: return #X
825 switch (status)
826 {
827 CASE(TARGET_XFER_E_IO);
828 CASE(TARGET_XFER_UNAVAILABLE);
829 default:
830 return "<unknown>";
831 }
832 #undef CASE
833 };
834
835
836 #undef MIN
837 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
838
839 /* target_read_string -- read a null terminated string, up to LEN bytes,
840 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
841 Set *STRING to a pointer to malloc'd memory containing the data; the caller
842 is responsible for freeing it. Return the number of bytes successfully
843 read. */
844
845 int
846 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
847 int len, int *errnop)
848 {
849 int tlen, offset, i;
850 gdb_byte buf[4];
851 int errcode = 0;
852 char *buffer;
853 int buffer_allocated;
854 char *bufptr;
855 unsigned int nbytes_read = 0;
856
857 gdb_assert (string);
858
859 /* Small for testing. */
860 buffer_allocated = 4;
861 buffer = (char *) xmalloc (buffer_allocated);
862 bufptr = buffer;
863
864 while (len > 0)
865 {
866 tlen = MIN (len, 4 - (memaddr & 3));
867 offset = memaddr & 3;
868
869 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
870 if (errcode != 0)
871 {
872 /* The transfer request might have crossed the boundary to an
873 unallocated region of memory. Retry the transfer, requesting
874 a single byte. */
875 tlen = 1;
876 offset = 0;
877 errcode = target_read_memory (memaddr, buf, 1);
878 if (errcode != 0)
879 goto done;
880 }
881
882 if (bufptr - buffer + tlen > buffer_allocated)
883 {
884 unsigned int bytes;
885
886 bytes = bufptr - buffer;
887 buffer_allocated *= 2;
888 buffer = (char *) xrealloc (buffer, buffer_allocated);
889 bufptr = buffer + bytes;
890 }
891
892 for (i = 0; i < tlen; i++)
893 {
894 *bufptr++ = buf[i + offset];
895 if (buf[i + offset] == '\000')
896 {
897 nbytes_read += i + 1;
898 goto done;
899 }
900 }
901
902 memaddr += tlen;
903 len -= tlen;
904 nbytes_read += tlen;
905 }
906 done:
907 string->reset (buffer);
908 if (errnop != NULL)
909 *errnop = errcode;
910 return nbytes_read;
911 }
912
913 struct target_section_table *
914 target_get_section_table (struct target_ops *target)
915 {
916 return target->get_section_table ();
917 }
918
919 /* Find a section containing ADDR. */
920
921 struct target_section *
922 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
923 {
924 struct target_section_table *table = target_get_section_table (target);
925 struct target_section *secp;
926
927 if (table == NULL)
928 return NULL;
929
930 for (secp = table->sections; secp < table->sections_end; secp++)
931 {
932 if (addr >= secp->addr && addr < secp->endaddr)
933 return secp;
934 }
935 return NULL;
936 }
937
938
939 /* Helper for the memory xfer routines. Checks the attributes of the
940 memory region of MEMADDR against the read or write being attempted.
941 If the access is permitted returns true, otherwise returns false.
942 REGION_P is an optional output parameter. If not-NULL, it is
943 filled with a pointer to the memory region of MEMADDR. REG_LEN
944 returns LEN trimmed to the end of the region. This is how much the
945 caller can continue requesting, if the access is permitted. A
946 single xfer request must not straddle memory region boundaries. */
947
948 static int
949 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
950 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
951 struct mem_region **region_p)
952 {
953 struct mem_region *region;
954
955 region = lookup_mem_region (memaddr);
956
957 if (region_p != NULL)
958 *region_p = region;
959
960 switch (region->attrib.mode)
961 {
962 case MEM_RO:
963 if (writebuf != NULL)
964 return 0;
965 break;
966
967 case MEM_WO:
968 if (readbuf != NULL)
969 return 0;
970 break;
971
972 case MEM_FLASH:
973 /* We only support writing to flash during "load" for now. */
974 if (writebuf != NULL)
975 error (_("Writing to flash memory forbidden in this context"));
976 break;
977
978 case MEM_NONE:
979 return 0;
980 }
981
982 /* region->hi == 0 means there's no upper bound. */
983 if (memaddr + len < region->hi || region->hi == 0)
984 *reg_len = len;
985 else
986 *reg_len = region->hi - memaddr;
987
988 return 1;
989 }
990
991 /* Read memory from more than one valid target. A core file, for
992 instance, could have some of memory but delegate other bits to
993 the target below it. So, we must manually try all targets. */
994
995 enum target_xfer_status
996 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
997 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
998 ULONGEST *xfered_len)
999 {
1000 enum target_xfer_status res;
1001
1002 do
1003 {
1004 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1005 readbuf, writebuf, memaddr, len,
1006 xfered_len);
1007 if (res == TARGET_XFER_OK)
1008 break;
1009
1010 /* Stop if the target reports that the memory is not available. */
1011 if (res == TARGET_XFER_UNAVAILABLE)
1012 break;
1013
1014 /* We want to continue past core files to executables, but not
1015 past a running target's memory. */
1016 if (ops->has_all_memory ())
1017 break;
1018
1019 ops = ops->beneath ();
1020 }
1021 while (ops != NULL);
1022
1023 /* The cache works at the raw memory level. Make sure the cache
1024 gets updated with raw contents no matter what kind of memory
1025 object was originally being written. Note we do write-through
1026 first, so that if it fails, we don't write to the cache contents
1027 that never made it to the target. */
1028 if (writebuf != NULL
1029 && inferior_ptid != null_ptid
1030 && target_dcache_init_p ()
1031 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1032 {
1033 DCACHE *dcache = target_dcache_get ();
1034
1035 /* Note that writing to an area of memory which wasn't present
1036 in the cache doesn't cause it to be loaded in. */
1037 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1038 }
1039
1040 return res;
1041 }
1042
1043 /* Perform a partial memory transfer.
1044 For docs see target.h, to_xfer_partial. */
1045
1046 static enum target_xfer_status
1047 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1048 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1049 ULONGEST len, ULONGEST *xfered_len)
1050 {
1051 enum target_xfer_status res;
1052 ULONGEST reg_len;
1053 struct mem_region *region;
1054 struct inferior *inf;
1055
1056 /* For accesses to unmapped overlay sections, read directly from
1057 files. Must do this first, as MEMADDR may need adjustment. */
1058 if (readbuf != NULL && overlay_debugging)
1059 {
1060 struct obj_section *section = find_pc_overlay (memaddr);
1061
1062 if (pc_in_unmapped_range (memaddr, section))
1063 {
1064 struct target_section_table *table
1065 = target_get_section_table (ops);
1066 const char *section_name = section->the_bfd_section->name;
1067
1068 memaddr = overlay_mapped_address (memaddr, section);
1069 return section_table_xfer_memory_partial (readbuf, writebuf,
1070 memaddr, len, xfered_len,
1071 table->sections,
1072 table->sections_end,
1073 section_name);
1074 }
1075 }
1076
1077 /* Try the executable files, if "trust-readonly-sections" is set. */
1078 if (readbuf != NULL && trust_readonly)
1079 {
1080 struct target_section *secp;
1081 struct target_section_table *table;
1082
1083 secp = target_section_by_addr (ops, memaddr);
1084 if (secp != NULL
1085 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1086 secp->the_bfd_section)
1087 & SEC_READONLY))
1088 {
1089 table = target_get_section_table (ops);
1090 return section_table_xfer_memory_partial (readbuf, writebuf,
1091 memaddr, len, xfered_len,
1092 table->sections,
1093 table->sections_end,
1094 NULL);
1095 }
1096 }
1097
1098 /* Try GDB's internal data cache. */
1099
1100 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1101 &region))
1102 return TARGET_XFER_E_IO;
1103
1104 if (inferior_ptid != null_ptid)
1105 inf = current_inferior ();
1106 else
1107 inf = NULL;
1108
1109 if (inf != NULL
1110 && readbuf != NULL
1111 /* The dcache reads whole cache lines; that doesn't play well
1112 with reading from a trace buffer, because reading outside of
1113 the collected memory range fails. */
1114 && get_traceframe_number () == -1
1115 && (region->attrib.cache
1116 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1117 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1118 {
1119 DCACHE *dcache = target_dcache_get_or_init ();
1120
1121 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1122 reg_len, xfered_len);
1123 }
1124
1125 /* If none of those methods found the memory we wanted, fall back
1126 to a target partial transfer. Normally a single call to
1127 to_xfer_partial is enough; if it doesn't recognize an object
1128 it will call the to_xfer_partial of the next target down.
1129 But for memory this won't do. Memory is the only target
1130 object which can be read from more than one valid target.
1131 A core file, for instance, could have some of memory but
1132 delegate other bits to the target below it. So, we must
1133 manually try all targets. */
1134
1135 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1136 xfered_len);
1137
1138 /* If we still haven't got anything, return the last error. We
1139 give up. */
1140 return res;
1141 }
1142
1143 /* Perform a partial memory transfer. For docs see target.h,
1144 to_xfer_partial. */
1145
1146 static enum target_xfer_status
1147 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1148 gdb_byte *readbuf, const gdb_byte *writebuf,
1149 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1150 {
1151 enum target_xfer_status res;
1152
1153 /* Zero length requests are ok and require no work. */
1154 if (len == 0)
1155 return TARGET_XFER_EOF;
1156
1157 memaddr = address_significant (target_gdbarch (), memaddr);
1158
1159 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1160 breakpoint insns, thus hiding out from higher layers whether
1161 there are software breakpoints inserted in the code stream. */
1162 if (readbuf != NULL)
1163 {
1164 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1165 xfered_len);
1166
1167 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1168 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1169 }
1170 else
1171 {
1172 /* A large write request is likely to be partially satisfied
1173 by memory_xfer_partial_1. We will continually malloc
1174 and free a copy of the entire write request for breakpoint
1175 shadow handling even though we only end up writing a small
1176 subset of it. Cap writes to a limit specified by the target
1177 to mitigate this. */
1178 len = std::min (ops->get_memory_xfer_limit (), len);
1179
1180 gdb::byte_vector buf (writebuf, writebuf + len);
1181 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1182 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1183 xfered_len);
1184 }
1185
1186 return res;
1187 }
1188
1189 scoped_restore_tmpl<int>
1190 make_scoped_restore_show_memory_breakpoints (int show)
1191 {
1192 return make_scoped_restore (&show_memory_breakpoints, show);
1193 }
1194
1195 /* For docs see target.h, to_xfer_partial. */
1196
1197 enum target_xfer_status
1198 target_xfer_partial (struct target_ops *ops,
1199 enum target_object object, const char *annex,
1200 gdb_byte *readbuf, const gdb_byte *writebuf,
1201 ULONGEST offset, ULONGEST len,
1202 ULONGEST *xfered_len)
1203 {
1204 enum target_xfer_status retval;
1205
1206 /* Transfer is done when LEN is zero. */
1207 if (len == 0)
1208 return TARGET_XFER_EOF;
1209
1210 if (writebuf && !may_write_memory)
1211 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1212 core_addr_to_string_nz (offset), plongest (len));
1213
1214 *xfered_len = 0;
1215
1216 /* If this is a memory transfer, let the memory-specific code
1217 have a look at it instead. Memory transfers are more
1218 complicated. */
1219 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1220 || object == TARGET_OBJECT_CODE_MEMORY)
1221 retval = memory_xfer_partial (ops, object, readbuf,
1222 writebuf, offset, len, xfered_len);
1223 else if (object == TARGET_OBJECT_RAW_MEMORY)
1224 {
1225 /* Skip/avoid accessing the target if the memory region
1226 attributes block the access. Check this here instead of in
1227 raw_memory_xfer_partial as otherwise we'd end up checking
1228 this twice in the case of the memory_xfer_partial path is
1229 taken; once before checking the dcache, and another in the
1230 tail call to raw_memory_xfer_partial. */
1231 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1232 NULL))
1233 return TARGET_XFER_E_IO;
1234
1235 /* Request the normal memory object from other layers. */
1236 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1237 xfered_len);
1238 }
1239 else
1240 retval = ops->xfer_partial (object, annex, readbuf,
1241 writebuf, offset, len, xfered_len);
1242
1243 if (targetdebug)
1244 {
1245 const unsigned char *myaddr = NULL;
1246
1247 fprintf_unfiltered (gdb_stdlog,
1248 "%s:target_xfer_partial "
1249 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1250 ops->shortname (),
1251 (int) object,
1252 (annex ? annex : "(null)"),
1253 host_address_to_string (readbuf),
1254 host_address_to_string (writebuf),
1255 core_addr_to_string_nz (offset),
1256 pulongest (len), retval,
1257 pulongest (*xfered_len));
1258
1259 if (readbuf)
1260 myaddr = readbuf;
1261 if (writebuf)
1262 myaddr = writebuf;
1263 if (retval == TARGET_XFER_OK && myaddr != NULL)
1264 {
1265 int i;
1266
1267 fputs_unfiltered (", bytes =", gdb_stdlog);
1268 for (i = 0; i < *xfered_len; i++)
1269 {
1270 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1271 {
1272 if (targetdebug < 2 && i > 0)
1273 {
1274 fprintf_unfiltered (gdb_stdlog, " ...");
1275 break;
1276 }
1277 fprintf_unfiltered (gdb_stdlog, "\n");
1278 }
1279
1280 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1281 }
1282 }
1283
1284 fputc_unfiltered ('\n', gdb_stdlog);
1285 }
1286
1287 /* Check implementations of to_xfer_partial update *XFERED_LEN
1288 properly. Do assertion after printing debug messages, so that we
1289 can find more clues on assertion failure from debugging messages. */
1290 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1291 gdb_assert (*xfered_len > 0);
1292
1293 return retval;
1294 }
1295
1296 /* Read LEN bytes of target memory at address MEMADDR, placing the
1297 results in GDB's memory at MYADDR. Returns either 0 for success or
1298 -1 if any error occurs.
1299
1300 If an error occurs, no guarantee is made about the contents of the data at
1301 MYADDR. In particular, the caller should not depend upon partial reads
1302 filling the buffer with good data. There is no way for the caller to know
1303 how much good data might have been transfered anyway. Callers that can
1304 deal with partial reads should call target_read (which will retry until
1305 it makes no progress, and then return how much was transferred). */
1306
1307 int
1308 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1309 {
1310 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1311 myaddr, memaddr, len) == len)
1312 return 0;
1313 else
1314 return -1;
1315 }
1316
1317 /* See target/target.h. */
1318
1319 int
1320 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1321 {
1322 gdb_byte buf[4];
1323 int r;
1324
1325 r = target_read_memory (memaddr, buf, sizeof buf);
1326 if (r != 0)
1327 return r;
1328 *result = extract_unsigned_integer (buf, sizeof buf,
1329 gdbarch_byte_order (target_gdbarch ()));
1330 return 0;
1331 }
1332
1333 /* Like target_read_memory, but specify explicitly that this is a read
1334 from the target's raw memory. That is, this read bypasses the
1335 dcache, breakpoint shadowing, etc. */
1336
1337 int
1338 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1339 {
1340 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1341 myaddr, memaddr, len) == len)
1342 return 0;
1343 else
1344 return -1;
1345 }
1346
1347 /* Like target_read_memory, but specify explicitly that this is a read from
1348 the target's stack. This may trigger different cache behavior. */
1349
1350 int
1351 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1352 {
1353 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1354 myaddr, memaddr, len) == len)
1355 return 0;
1356 else
1357 return -1;
1358 }
1359
1360 /* Like target_read_memory, but specify explicitly that this is a read from
1361 the target's code. This may trigger different cache behavior. */
1362
1363 int
1364 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1365 {
1366 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return -1;
1371 }
1372
1373 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1374 Returns either 0 for success or -1 if any error occurs. If an
1375 error occurs, no guarantee is made about how much data got written.
1376 Callers that can deal with partial writes should call
1377 target_write. */
1378
1379 int
1380 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1381 {
1382 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1383 myaddr, memaddr, len) == len)
1384 return 0;
1385 else
1386 return -1;
1387 }
1388
1389 /* Write LEN bytes from MYADDR to target raw memory at address
1390 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1391 If an error occurs, no guarantee is made about how much data got
1392 written. Callers that can deal with partial writes should call
1393 target_write. */
1394
1395 int
1396 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1397 {
1398 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1399 myaddr, memaddr, len) == len)
1400 return 0;
1401 else
1402 return -1;
1403 }
1404
1405 /* Fetch the target's memory map. */
1406
1407 std::vector<mem_region>
1408 target_memory_map (void)
1409 {
1410 std::vector<mem_region> result = current_top_target ()->memory_map ();
1411 if (result.empty ())
1412 return result;
1413
1414 std::sort (result.begin (), result.end ());
1415
1416 /* Check that regions do not overlap. Simultaneously assign
1417 a numbering for the "mem" commands to use to refer to
1418 each region. */
1419 mem_region *last_one = NULL;
1420 for (size_t ix = 0; ix < result.size (); ix++)
1421 {
1422 mem_region *this_one = &result[ix];
1423 this_one->number = ix;
1424
1425 if (last_one != NULL && last_one->hi > this_one->lo)
1426 {
1427 warning (_("Overlapping regions in memory map: ignoring"));
1428 return std::vector<mem_region> ();
1429 }
1430
1431 last_one = this_one;
1432 }
1433
1434 return result;
1435 }
1436
1437 void
1438 target_flash_erase (ULONGEST address, LONGEST length)
1439 {
1440 current_top_target ()->flash_erase (address, length);
1441 }
1442
1443 void
1444 target_flash_done (void)
1445 {
1446 current_top_target ()->flash_done ();
1447 }
1448
1449 static void
1450 show_trust_readonly (struct ui_file *file, int from_tty,
1451 struct cmd_list_element *c, const char *value)
1452 {
1453 fprintf_filtered (file,
1454 _("Mode for reading from readonly sections is %s.\n"),
1455 value);
1456 }
1457
1458 /* Target vector read/write partial wrapper functions. */
1459
1460 static enum target_xfer_status
1461 target_read_partial (struct target_ops *ops,
1462 enum target_object object,
1463 const char *annex, gdb_byte *buf,
1464 ULONGEST offset, ULONGEST len,
1465 ULONGEST *xfered_len)
1466 {
1467 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1468 xfered_len);
1469 }
1470
1471 static enum target_xfer_status
1472 target_write_partial (struct target_ops *ops,
1473 enum target_object object,
1474 const char *annex, const gdb_byte *buf,
1475 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1476 {
1477 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1478 xfered_len);
1479 }
1480
1481 /* Wrappers to perform the full transfer. */
1482
1483 /* For docs on target_read see target.h. */
1484
1485 LONGEST
1486 target_read (struct target_ops *ops,
1487 enum target_object object,
1488 const char *annex, gdb_byte *buf,
1489 ULONGEST offset, LONGEST len)
1490 {
1491 LONGEST xfered_total = 0;
1492 int unit_size = 1;
1493
1494 /* If we are reading from a memory object, find the length of an addressable
1495 unit for that architecture. */
1496 if (object == TARGET_OBJECT_MEMORY
1497 || object == TARGET_OBJECT_STACK_MEMORY
1498 || object == TARGET_OBJECT_CODE_MEMORY
1499 || object == TARGET_OBJECT_RAW_MEMORY)
1500 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1501
1502 while (xfered_total < len)
1503 {
1504 ULONGEST xfered_partial;
1505 enum target_xfer_status status;
1506
1507 status = target_read_partial (ops, object, annex,
1508 buf + xfered_total * unit_size,
1509 offset + xfered_total, len - xfered_total,
1510 &xfered_partial);
1511
1512 /* Call an observer, notifying them of the xfer progress? */
1513 if (status == TARGET_XFER_EOF)
1514 return xfered_total;
1515 else if (status == TARGET_XFER_OK)
1516 {
1517 xfered_total += xfered_partial;
1518 QUIT;
1519 }
1520 else
1521 return TARGET_XFER_E_IO;
1522
1523 }
1524 return len;
1525 }
1526
1527 /* Assuming that the entire [begin, end) range of memory cannot be
1528 read, try to read whatever subrange is possible to read.
1529
1530 The function returns, in RESULT, either zero or one memory block.
1531 If there's a readable subrange at the beginning, it is completely
1532 read and returned. Any further readable subrange will not be read.
1533 Otherwise, if there's a readable subrange at the end, it will be
1534 completely read and returned. Any readable subranges before it
1535 (obviously, not starting at the beginning), will be ignored. In
1536 other cases -- either no readable subrange, or readable subrange(s)
1537 that is neither at the beginning, or end, nothing is returned.
1538
1539 The purpose of this function is to handle a read across a boundary
1540 of accessible memory in a case when memory map is not available.
1541 The above restrictions are fine for this case, but will give
1542 incorrect results if the memory is 'patchy'. However, supporting
1543 'patchy' memory would require trying to read every single byte,
1544 and it seems unacceptable solution. Explicit memory map is
1545 recommended for this case -- and target_read_memory_robust will
1546 take care of reading multiple ranges then. */
1547
1548 static void
1549 read_whatever_is_readable (struct target_ops *ops,
1550 const ULONGEST begin, const ULONGEST end,
1551 int unit_size,
1552 std::vector<memory_read_result> *result)
1553 {
1554 ULONGEST current_begin = begin;
1555 ULONGEST current_end = end;
1556 int forward;
1557 ULONGEST xfered_len;
1558
1559 /* If we previously failed to read 1 byte, nothing can be done here. */
1560 if (end - begin <= 1)
1561 return;
1562
1563 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1564
1565 /* Check that either first or the last byte is readable, and give up
1566 if not. This heuristic is meant to permit reading accessible memory
1567 at the boundary of accessible region. */
1568 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1569 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1570 {
1571 forward = 1;
1572 ++current_begin;
1573 }
1574 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1575 buf.get () + (end - begin) - 1, end - 1, 1,
1576 &xfered_len) == TARGET_XFER_OK)
1577 {
1578 forward = 0;
1579 --current_end;
1580 }
1581 else
1582 return;
1583
1584 /* Loop invariant is that the [current_begin, current_end) was previously
1585 found to be not readable as a whole.
1586
1587 Note loop condition -- if the range has 1 byte, we can't divide the range
1588 so there's no point trying further. */
1589 while (current_end - current_begin > 1)
1590 {
1591 ULONGEST first_half_begin, first_half_end;
1592 ULONGEST second_half_begin, second_half_end;
1593 LONGEST xfer;
1594 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1595
1596 if (forward)
1597 {
1598 first_half_begin = current_begin;
1599 first_half_end = middle;
1600 second_half_begin = middle;
1601 second_half_end = current_end;
1602 }
1603 else
1604 {
1605 first_half_begin = middle;
1606 first_half_end = current_end;
1607 second_half_begin = current_begin;
1608 second_half_end = middle;
1609 }
1610
1611 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1612 buf.get () + (first_half_begin - begin) * unit_size,
1613 first_half_begin,
1614 first_half_end - first_half_begin);
1615
1616 if (xfer == first_half_end - first_half_begin)
1617 {
1618 /* This half reads up fine. So, the error must be in the
1619 other half. */
1620 current_begin = second_half_begin;
1621 current_end = second_half_end;
1622 }
1623 else
1624 {
1625 /* This half is not readable. Because we've tried one byte, we
1626 know some part of this half if actually readable. Go to the next
1627 iteration to divide again and try to read.
1628
1629 We don't handle the other half, because this function only tries
1630 to read a single readable subrange. */
1631 current_begin = first_half_begin;
1632 current_end = first_half_end;
1633 }
1634 }
1635
1636 if (forward)
1637 {
1638 /* The [begin, current_begin) range has been read. */
1639 result->emplace_back (begin, current_end, std::move (buf));
1640 }
1641 else
1642 {
1643 /* The [current_end, end) range has been read. */
1644 LONGEST region_len = end - current_end;
1645
1646 gdb::unique_xmalloc_ptr<gdb_byte> data
1647 ((gdb_byte *) xmalloc (region_len * unit_size));
1648 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1649 region_len * unit_size);
1650 result->emplace_back (current_end, end, std::move (data));
1651 }
1652 }
1653
1654 std::vector<memory_read_result>
1655 read_memory_robust (struct target_ops *ops,
1656 const ULONGEST offset, const LONGEST len)
1657 {
1658 std::vector<memory_read_result> result;
1659 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1660
1661 LONGEST xfered_total = 0;
1662 while (xfered_total < len)
1663 {
1664 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1665 LONGEST region_len;
1666
1667 /* If there is no explicit region, a fake one should be created. */
1668 gdb_assert (region);
1669
1670 if (region->hi == 0)
1671 region_len = len - xfered_total;
1672 else
1673 region_len = region->hi - offset;
1674
1675 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1676 {
1677 /* Cannot read this region. Note that we can end up here only
1678 if the region is explicitly marked inaccessible, or
1679 'inaccessible-by-default' is in effect. */
1680 xfered_total += region_len;
1681 }
1682 else
1683 {
1684 LONGEST to_read = std::min (len - xfered_total, region_len);
1685 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1686 ((gdb_byte *) xmalloc (to_read * unit_size));
1687
1688 LONGEST xfered_partial =
1689 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1690 offset + xfered_total, to_read);
1691 /* Call an observer, notifying them of the xfer progress? */
1692 if (xfered_partial <= 0)
1693 {
1694 /* Got an error reading full chunk. See if maybe we can read
1695 some subrange. */
1696 read_whatever_is_readable (ops, offset + xfered_total,
1697 offset + xfered_total + to_read,
1698 unit_size, &result);
1699 xfered_total += to_read;
1700 }
1701 else
1702 {
1703 result.emplace_back (offset + xfered_total,
1704 offset + xfered_total + xfered_partial,
1705 std::move (buffer));
1706 xfered_total += xfered_partial;
1707 }
1708 QUIT;
1709 }
1710 }
1711
1712 return result;
1713 }
1714
1715
1716 /* An alternative to target_write with progress callbacks. */
1717
1718 LONGEST
1719 target_write_with_progress (struct target_ops *ops,
1720 enum target_object object,
1721 const char *annex, const gdb_byte *buf,
1722 ULONGEST offset, LONGEST len,
1723 void (*progress) (ULONGEST, void *), void *baton)
1724 {
1725 LONGEST xfered_total = 0;
1726 int unit_size = 1;
1727
1728 /* If we are writing to a memory object, find the length of an addressable
1729 unit for that architecture. */
1730 if (object == TARGET_OBJECT_MEMORY
1731 || object == TARGET_OBJECT_STACK_MEMORY
1732 || object == TARGET_OBJECT_CODE_MEMORY
1733 || object == TARGET_OBJECT_RAW_MEMORY)
1734 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1735
1736 /* Give the progress callback a chance to set up. */
1737 if (progress)
1738 (*progress) (0, baton);
1739
1740 while (xfered_total < len)
1741 {
1742 ULONGEST xfered_partial;
1743 enum target_xfer_status status;
1744
1745 status = target_write_partial (ops, object, annex,
1746 buf + xfered_total * unit_size,
1747 offset + xfered_total, len - xfered_total,
1748 &xfered_partial);
1749
1750 if (status != TARGET_XFER_OK)
1751 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1752
1753 if (progress)
1754 (*progress) (xfered_partial, baton);
1755
1756 xfered_total += xfered_partial;
1757 QUIT;
1758 }
1759 return len;
1760 }
1761
1762 /* For docs on target_write see target.h. */
1763
1764 LONGEST
1765 target_write (struct target_ops *ops,
1766 enum target_object object,
1767 const char *annex, const gdb_byte *buf,
1768 ULONGEST offset, LONGEST len)
1769 {
1770 return target_write_with_progress (ops, object, annex, buf, offset, len,
1771 NULL, NULL);
1772 }
1773
1774 /* Help for target_read_alloc and target_read_stralloc. See their comments
1775 for details. */
1776
1777 template <typename T>
1778 gdb::optional<gdb::def_vector<T>>
1779 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1780 const char *annex)
1781 {
1782 gdb::def_vector<T> buf;
1783 size_t buf_pos = 0;
1784 const int chunk = 4096;
1785
1786 /* This function does not have a length parameter; it reads the
1787 entire OBJECT). Also, it doesn't support objects fetched partly
1788 from one target and partly from another (in a different stratum,
1789 e.g. a core file and an executable). Both reasons make it
1790 unsuitable for reading memory. */
1791 gdb_assert (object != TARGET_OBJECT_MEMORY);
1792
1793 /* Start by reading up to 4K at a time. The target will throttle
1794 this number down if necessary. */
1795 while (1)
1796 {
1797 ULONGEST xfered_len;
1798 enum target_xfer_status status;
1799
1800 buf.resize (buf_pos + chunk);
1801
1802 status = target_read_partial (ops, object, annex,
1803 (gdb_byte *) &buf[buf_pos],
1804 buf_pos, chunk,
1805 &xfered_len);
1806
1807 if (status == TARGET_XFER_EOF)
1808 {
1809 /* Read all there was. */
1810 buf.resize (buf_pos);
1811 return buf;
1812 }
1813 else if (status != TARGET_XFER_OK)
1814 {
1815 /* An error occurred. */
1816 return {};
1817 }
1818
1819 buf_pos += xfered_len;
1820
1821 QUIT;
1822 }
1823 }
1824
1825 /* See target.h */
1826
1827 gdb::optional<gdb::byte_vector>
1828 target_read_alloc (struct target_ops *ops, enum target_object object,
1829 const char *annex)
1830 {
1831 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1832 }
1833
1834 /* See target.h. */
1835
1836 gdb::optional<gdb::char_vector>
1837 target_read_stralloc (struct target_ops *ops, enum target_object object,
1838 const char *annex)
1839 {
1840 gdb::optional<gdb::char_vector> buf
1841 = target_read_alloc_1<char> (ops, object, annex);
1842
1843 if (!buf)
1844 return {};
1845
1846 if (buf->back () != '\0')
1847 buf->push_back ('\0');
1848
1849 /* Check for embedded NUL bytes; but allow trailing NULs. */
1850 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1851 it != buf->end (); it++)
1852 if (*it != '\0')
1853 {
1854 warning (_("target object %d, annex %s, "
1855 "contained unexpected null characters"),
1856 (int) object, annex ? annex : "(none)");
1857 break;
1858 }
1859
1860 return buf;
1861 }
1862
1863 /* Memory transfer methods. */
1864
1865 void
1866 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1867 LONGEST len)
1868 {
1869 /* This method is used to read from an alternate, non-current
1870 target. This read must bypass the overlay support (as symbols
1871 don't match this target), and GDB's internal cache (wrong cache
1872 for this target). */
1873 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1874 != len)
1875 memory_error (TARGET_XFER_E_IO, addr);
1876 }
1877
1878 ULONGEST
1879 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1880 int len, enum bfd_endian byte_order)
1881 {
1882 gdb_byte buf[sizeof (ULONGEST)];
1883
1884 gdb_assert (len <= sizeof (buf));
1885 get_target_memory (ops, addr, buf, len);
1886 return extract_unsigned_integer (buf, len, byte_order);
1887 }
1888
1889 /* See target.h. */
1890
1891 int
1892 target_insert_breakpoint (struct gdbarch *gdbarch,
1893 struct bp_target_info *bp_tgt)
1894 {
1895 if (!may_insert_breakpoints)
1896 {
1897 warning (_("May not insert breakpoints"));
1898 return 1;
1899 }
1900
1901 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1902 }
1903
1904 /* See target.h. */
1905
1906 int
1907 target_remove_breakpoint (struct gdbarch *gdbarch,
1908 struct bp_target_info *bp_tgt,
1909 enum remove_bp_reason reason)
1910 {
1911 /* This is kind of a weird case to handle, but the permission might
1912 have been changed after breakpoints were inserted - in which case
1913 we should just take the user literally and assume that any
1914 breakpoints should be left in place. */
1915 if (!may_insert_breakpoints)
1916 {
1917 warning (_("May not remove breakpoints"));
1918 return 1;
1919 }
1920
1921 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1922 }
1923
1924 static void
1925 info_target_command (const char *args, int from_tty)
1926 {
1927 int has_all_mem = 0;
1928
1929 if (symfile_objfile != NULL)
1930 printf_unfiltered (_("Symbols from \"%s\".\n"),
1931 objfile_name (symfile_objfile));
1932
1933 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1934 {
1935 if (!t->has_memory ())
1936 continue;
1937
1938 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1939 continue;
1940 if (has_all_mem)
1941 printf_unfiltered (_("\tWhile running this, "
1942 "GDB does not access memory from...\n"));
1943 printf_unfiltered ("%s:\n", t->longname ());
1944 t->files_info ();
1945 has_all_mem = t->has_all_memory ();
1946 }
1947 }
1948
1949 /* This function is called before any new inferior is created, e.g.
1950 by running a program, attaching, or connecting to a target.
1951 It cleans up any state from previous invocations which might
1952 change between runs. This is a subset of what target_preopen
1953 resets (things which might change between targets). */
1954
1955 void
1956 target_pre_inferior (int from_tty)
1957 {
1958 /* Clear out solib state. Otherwise the solib state of the previous
1959 inferior might have survived and is entirely wrong for the new
1960 target. This has been observed on GNU/Linux using glibc 2.3. How
1961 to reproduce:
1962
1963 bash$ ./foo&
1964 [1] 4711
1965 bash$ ./foo&
1966 [1] 4712
1967 bash$ gdb ./foo
1968 [...]
1969 (gdb) attach 4711
1970 (gdb) detach
1971 (gdb) attach 4712
1972 Cannot access memory at address 0xdeadbeef
1973 */
1974
1975 /* In some OSs, the shared library list is the same/global/shared
1976 across inferiors. If code is shared between processes, so are
1977 memory regions and features. */
1978 if (!gdbarch_has_global_solist (target_gdbarch ()))
1979 {
1980 no_shared_libraries (NULL, from_tty);
1981
1982 invalidate_target_mem_regions ();
1983
1984 target_clear_description ();
1985 }
1986
1987 /* attach_flag may be set if the previous process associated with
1988 the inferior was attached to. */
1989 current_inferior ()->attach_flag = 0;
1990
1991 current_inferior ()->highest_thread_num = 0;
1992
1993 agent_capability_invalidate ();
1994 }
1995
1996 /* Callback for iterate_over_inferiors. Gets rid of the given
1997 inferior. */
1998
1999 static int
2000 dispose_inferior (struct inferior *inf, void *args)
2001 {
2002 /* Not all killed inferiors can, or will ever be, removed from the
2003 inferior list. Killed inferiors clearly don't need to be killed
2004 again, so, we're done. */
2005 if (inf->pid == 0)
2006 return 0;
2007
2008 thread_info *thread = any_thread_of_inferior (inf);
2009 if (thread != NULL)
2010 {
2011 switch_to_thread (thread);
2012
2013 /* Core inferiors actually should be detached, not killed. */
2014 if (target_has_execution)
2015 target_kill ();
2016 else
2017 target_detach (inf, 0);
2018 }
2019
2020 return 0;
2021 }
2022
2023 /* This is to be called by the open routine before it does
2024 anything. */
2025
2026 void
2027 target_preopen (int from_tty)
2028 {
2029 dont_repeat ();
2030
2031 if (have_inferiors ())
2032 {
2033 if (!from_tty
2034 || !have_live_inferiors ()
2035 || query (_("A program is being debugged already. Kill it? ")))
2036 iterate_over_inferiors (dispose_inferior, NULL);
2037 else
2038 error (_("Program not killed."));
2039 }
2040
2041 /* Calling target_kill may remove the target from the stack. But if
2042 it doesn't (which seems like a win for UDI), remove it now. */
2043 /* Leave the exec target, though. The user may be switching from a
2044 live process to a core of the same program. */
2045 pop_all_targets_above (file_stratum);
2046
2047 target_pre_inferior (from_tty);
2048 }
2049
2050 /* See target.h. */
2051
2052 void
2053 target_detach (inferior *inf, int from_tty)
2054 {
2055 /* As long as some to_detach implementations rely on the current_inferior
2056 (either directly, or indirectly, like through target_gdbarch or by
2057 reading memory), INF needs to be the current inferior. When that
2058 requirement will become no longer true, then we can remove this
2059 assertion. */
2060 gdb_assert (inf == current_inferior ());
2061
2062 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2063 /* Don't remove global breakpoints here. They're removed on
2064 disconnection from the target. */
2065 ;
2066 else
2067 /* If we're in breakpoints-always-inserted mode, have to remove
2068 breakpoints before detaching. */
2069 remove_breakpoints_inf (current_inferior ());
2070
2071 prepare_for_detach ();
2072
2073 current_top_target ()->detach (inf, from_tty);
2074 }
2075
2076 void
2077 target_disconnect (const char *args, int from_tty)
2078 {
2079 /* If we're in breakpoints-always-inserted mode or if breakpoints
2080 are global across processes, we have to remove them before
2081 disconnecting. */
2082 remove_breakpoints ();
2083
2084 current_top_target ()->disconnect (args, from_tty);
2085 }
2086
2087 /* See target/target.h. */
2088
2089 ptid_t
2090 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2091 {
2092 return current_top_target ()->wait (ptid, status, options);
2093 }
2094
2095 /* See target.h. */
2096
2097 ptid_t
2098 default_target_wait (struct target_ops *ops,
2099 ptid_t ptid, struct target_waitstatus *status,
2100 int options)
2101 {
2102 status->kind = TARGET_WAITKIND_IGNORE;
2103 return minus_one_ptid;
2104 }
2105
2106 const char *
2107 target_pid_to_str (ptid_t ptid)
2108 {
2109 return current_top_target ()->pid_to_str (ptid);
2110 }
2111
2112 const char *
2113 target_thread_name (struct thread_info *info)
2114 {
2115 return current_top_target ()->thread_name (info);
2116 }
2117
2118 struct thread_info *
2119 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2120 int handle_len,
2121 struct inferior *inf)
2122 {
2123 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2124 handle_len, inf);
2125 }
2126
2127 void
2128 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2129 {
2130 target_dcache_invalidate ();
2131
2132 current_top_target ()->resume (ptid, step, signal);
2133
2134 registers_changed_ptid (ptid);
2135 /* We only set the internal executing state here. The user/frontend
2136 running state is set at a higher level. This also clears the
2137 thread's stop_pc as side effect. */
2138 set_executing (ptid, 1);
2139 clear_inline_frame_state (ptid);
2140 }
2141
2142 /* If true, target_commit_resume is a nop. */
2143 static int defer_target_commit_resume;
2144
2145 /* See target.h. */
2146
2147 void
2148 target_commit_resume (void)
2149 {
2150 if (defer_target_commit_resume)
2151 return;
2152
2153 current_top_target ()->commit_resume ();
2154 }
2155
2156 /* See target.h. */
2157
2158 scoped_restore_tmpl<int>
2159 make_scoped_defer_target_commit_resume ()
2160 {
2161 return make_scoped_restore (&defer_target_commit_resume, 1);
2162 }
2163
2164 void
2165 target_pass_signals (int numsigs, unsigned char *pass_signals)
2166 {
2167 current_top_target ()->pass_signals (numsigs, pass_signals);
2168 }
2169
2170 void
2171 target_program_signals (int numsigs, unsigned char *program_signals)
2172 {
2173 current_top_target ()->program_signals (numsigs, program_signals);
2174 }
2175
2176 static int
2177 default_follow_fork (struct target_ops *self, int follow_child,
2178 int detach_fork)
2179 {
2180 /* Some target returned a fork event, but did not know how to follow it. */
2181 internal_error (__FILE__, __LINE__,
2182 _("could not find a target to follow fork"));
2183 }
2184
2185 /* Look through the list of possible targets for a target that can
2186 follow forks. */
2187
2188 int
2189 target_follow_fork (int follow_child, int detach_fork)
2190 {
2191 return current_top_target ()->follow_fork (follow_child, detach_fork);
2192 }
2193
2194 /* Target wrapper for follow exec hook. */
2195
2196 void
2197 target_follow_exec (struct inferior *inf, char *execd_pathname)
2198 {
2199 current_top_target ()->follow_exec (inf, execd_pathname);
2200 }
2201
2202 static void
2203 default_mourn_inferior (struct target_ops *self)
2204 {
2205 internal_error (__FILE__, __LINE__,
2206 _("could not find a target to follow mourn inferior"));
2207 }
2208
2209 void
2210 target_mourn_inferior (ptid_t ptid)
2211 {
2212 gdb_assert (ptid == inferior_ptid);
2213 current_top_target ()->mourn_inferior ();
2214
2215 /* We no longer need to keep handles on any of the object files.
2216 Make sure to release them to avoid unnecessarily locking any
2217 of them while we're not actually debugging. */
2218 bfd_cache_close_all ();
2219 }
2220
2221 /* Look for a target which can describe architectural features, starting
2222 from TARGET. If we find one, return its description. */
2223
2224 const struct target_desc *
2225 target_read_description (struct target_ops *target)
2226 {
2227 return target->read_description ();
2228 }
2229
2230 /* This implements a basic search of memory, reading target memory and
2231 performing the search here (as opposed to performing the search in on the
2232 target side with, for example, gdbserver). */
2233
2234 int
2235 simple_search_memory (struct target_ops *ops,
2236 CORE_ADDR start_addr, ULONGEST search_space_len,
2237 const gdb_byte *pattern, ULONGEST pattern_len,
2238 CORE_ADDR *found_addrp)
2239 {
2240 /* NOTE: also defined in find.c testcase. */
2241 #define SEARCH_CHUNK_SIZE 16000
2242 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2243 /* Buffer to hold memory contents for searching. */
2244 unsigned search_buf_size;
2245
2246 search_buf_size = chunk_size + pattern_len - 1;
2247
2248 /* No point in trying to allocate a buffer larger than the search space. */
2249 if (search_space_len < search_buf_size)
2250 search_buf_size = search_space_len;
2251
2252 gdb::byte_vector search_buf (search_buf_size);
2253
2254 /* Prime the search buffer. */
2255
2256 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2257 search_buf.data (), start_addr, search_buf_size)
2258 != search_buf_size)
2259 {
2260 warning (_("Unable to access %s bytes of target "
2261 "memory at %s, halting search."),
2262 pulongest (search_buf_size), hex_string (start_addr));
2263 return -1;
2264 }
2265
2266 /* Perform the search.
2267
2268 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2269 When we've scanned N bytes we copy the trailing bytes to the start and
2270 read in another N bytes. */
2271
2272 while (search_space_len >= pattern_len)
2273 {
2274 gdb_byte *found_ptr;
2275 unsigned nr_search_bytes
2276 = std::min (search_space_len, (ULONGEST) search_buf_size);
2277
2278 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2279 pattern, pattern_len);
2280
2281 if (found_ptr != NULL)
2282 {
2283 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2284
2285 *found_addrp = found_addr;
2286 return 1;
2287 }
2288
2289 /* Not found in this chunk, skip to next chunk. */
2290
2291 /* Don't let search_space_len wrap here, it's unsigned. */
2292 if (search_space_len >= chunk_size)
2293 search_space_len -= chunk_size;
2294 else
2295 search_space_len = 0;
2296
2297 if (search_space_len >= pattern_len)
2298 {
2299 unsigned keep_len = search_buf_size - chunk_size;
2300 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2301 int nr_to_read;
2302
2303 /* Copy the trailing part of the previous iteration to the front
2304 of the buffer for the next iteration. */
2305 gdb_assert (keep_len == pattern_len - 1);
2306 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2307
2308 nr_to_read = std::min (search_space_len - keep_len,
2309 (ULONGEST) chunk_size);
2310
2311 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2312 &search_buf[keep_len], read_addr,
2313 nr_to_read) != nr_to_read)
2314 {
2315 warning (_("Unable to access %s bytes of target "
2316 "memory at %s, halting search."),
2317 plongest (nr_to_read),
2318 hex_string (read_addr));
2319 return -1;
2320 }
2321
2322 start_addr += chunk_size;
2323 }
2324 }
2325
2326 /* Not found. */
2327
2328 return 0;
2329 }
2330
2331 /* Default implementation of memory-searching. */
2332
2333 static int
2334 default_search_memory (struct target_ops *self,
2335 CORE_ADDR start_addr, ULONGEST search_space_len,
2336 const gdb_byte *pattern, ULONGEST pattern_len,
2337 CORE_ADDR *found_addrp)
2338 {
2339 /* Start over from the top of the target stack. */
2340 return simple_search_memory (current_top_target (),
2341 start_addr, search_space_len,
2342 pattern, pattern_len, found_addrp);
2343 }
2344
2345 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2346 sequence of bytes in PATTERN with length PATTERN_LEN.
2347
2348 The result is 1 if found, 0 if not found, and -1 if there was an error
2349 requiring halting of the search (e.g. memory read error).
2350 If the pattern is found the address is recorded in FOUND_ADDRP. */
2351
2352 int
2353 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2354 const gdb_byte *pattern, ULONGEST pattern_len,
2355 CORE_ADDR *found_addrp)
2356 {
2357 return current_top_target ()->search_memory (start_addr, search_space_len,
2358 pattern, pattern_len, found_addrp);
2359 }
2360
2361 /* Look through the currently pushed targets. If none of them will
2362 be able to restart the currently running process, issue an error
2363 message. */
2364
2365 void
2366 target_require_runnable (void)
2367 {
2368 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2369 {
2370 /* If this target knows how to create a new program, then
2371 assume we will still be able to after killing the current
2372 one. Either killing and mourning will not pop T, or else
2373 find_default_run_target will find it again. */
2374 if (t->can_create_inferior ())
2375 return;
2376
2377 /* Do not worry about targets at certain strata that can not
2378 create inferiors. Assume they will be pushed again if
2379 necessary, and continue to the process_stratum. */
2380 if (t->to_stratum > process_stratum)
2381 continue;
2382
2383 error (_("The \"%s\" target does not support \"run\". "
2384 "Try \"help target\" or \"continue\"."),
2385 t->shortname ());
2386 }
2387
2388 /* This function is only called if the target is running. In that
2389 case there should have been a process_stratum target and it
2390 should either know how to create inferiors, or not... */
2391 internal_error (__FILE__, __LINE__, _("No targets found"));
2392 }
2393
2394 /* Whether GDB is allowed to fall back to the default run target for
2395 "run", "attach", etc. when no target is connected yet. */
2396 static int auto_connect_native_target = 1;
2397
2398 static void
2399 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2400 struct cmd_list_element *c, const char *value)
2401 {
2402 fprintf_filtered (file,
2403 _("Whether GDB may automatically connect to the "
2404 "native target is %s.\n"),
2405 value);
2406 }
2407
2408 /* A pointer to the target that can respond to "run" or "attach".
2409 Native targets are always singletons and instantiated early at GDB
2410 startup. */
2411 static target_ops *the_native_target;
2412
2413 /* See target.h. */
2414
2415 void
2416 set_native_target (target_ops *target)
2417 {
2418 if (the_native_target != NULL)
2419 internal_error (__FILE__, __LINE__,
2420 _("native target already set (\"%s\")."),
2421 the_native_target->longname ());
2422
2423 the_native_target = target;
2424 }
2425
2426 /* See target.h. */
2427
2428 target_ops *
2429 get_native_target ()
2430 {
2431 return the_native_target;
2432 }
2433
2434 /* Look through the list of possible targets for a target that can
2435 execute a run or attach command without any other data. This is
2436 used to locate the default process stratum.
2437
2438 If DO_MESG is not NULL, the result is always valid (error() is
2439 called for errors); else, return NULL on error. */
2440
2441 static struct target_ops *
2442 find_default_run_target (const char *do_mesg)
2443 {
2444 if (auto_connect_native_target && the_native_target != NULL)
2445 return the_native_target;
2446
2447 if (do_mesg != NULL)
2448 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2449 return NULL;
2450 }
2451
2452 /* See target.h. */
2453
2454 struct target_ops *
2455 find_attach_target (void)
2456 {
2457 /* If a target on the current stack can attach, use it. */
2458 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2459 {
2460 if (t->can_attach ())
2461 return t;
2462 }
2463
2464 /* Otherwise, use the default run target for attaching. */
2465 return find_default_run_target ("attach");
2466 }
2467
2468 /* See target.h. */
2469
2470 struct target_ops *
2471 find_run_target (void)
2472 {
2473 /* If a target on the current stack can run, use it. */
2474 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2475 {
2476 if (t->can_create_inferior ())
2477 return t;
2478 }
2479
2480 /* Otherwise, use the default run target. */
2481 return find_default_run_target ("run");
2482 }
2483
2484 bool
2485 target_ops::info_proc (const char *args, enum info_proc_what what)
2486 {
2487 return false;
2488 }
2489
2490 /* Implement the "info proc" command. */
2491
2492 int
2493 target_info_proc (const char *args, enum info_proc_what what)
2494 {
2495 struct target_ops *t;
2496
2497 /* If we're already connected to something that can get us OS
2498 related data, use it. Otherwise, try using the native
2499 target. */
2500 t = find_target_at (process_stratum);
2501 if (t == NULL)
2502 t = find_default_run_target (NULL);
2503
2504 for (; t != NULL; t = t->beneath ())
2505 {
2506 if (t->info_proc (args, what))
2507 {
2508 if (targetdebug)
2509 fprintf_unfiltered (gdb_stdlog,
2510 "target_info_proc (\"%s\", %d)\n", args, what);
2511
2512 return 1;
2513 }
2514 }
2515
2516 return 0;
2517 }
2518
2519 static int
2520 find_default_supports_disable_randomization (struct target_ops *self)
2521 {
2522 struct target_ops *t;
2523
2524 t = find_default_run_target (NULL);
2525 if (t != NULL)
2526 return t->supports_disable_randomization ();
2527 return 0;
2528 }
2529
2530 int
2531 target_supports_disable_randomization (void)
2532 {
2533 return current_top_target ()->supports_disable_randomization ();
2534 }
2535
2536 /* See target/target.h. */
2537
2538 int
2539 target_supports_multi_process (void)
2540 {
2541 return current_top_target ()->supports_multi_process ();
2542 }
2543
2544 /* See target.h. */
2545
2546 gdb::optional<gdb::char_vector>
2547 target_get_osdata (const char *type)
2548 {
2549 struct target_ops *t;
2550
2551 /* If we're already connected to something that can get us OS
2552 related data, use it. Otherwise, try using the native
2553 target. */
2554 t = find_target_at (process_stratum);
2555 if (t == NULL)
2556 t = find_default_run_target ("get OS data");
2557
2558 if (!t)
2559 return {};
2560
2561 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2562 }
2563
2564
2565 /* Determine the current address space of thread PTID. */
2566
2567 struct address_space *
2568 target_thread_address_space (ptid_t ptid)
2569 {
2570 struct address_space *aspace;
2571
2572 aspace = current_top_target ()->thread_address_space (ptid);
2573 gdb_assert (aspace != NULL);
2574
2575 return aspace;
2576 }
2577
2578 /* See target.h. */
2579
2580 target_ops *
2581 target_ops::beneath () const
2582 {
2583 return g_target_stack.find_beneath (this);
2584 }
2585
2586 void
2587 target_ops::close ()
2588 {
2589 }
2590
2591 bool
2592 target_ops::can_attach ()
2593 {
2594 return 0;
2595 }
2596
2597 void
2598 target_ops::attach (const char *, int)
2599 {
2600 gdb_assert_not_reached ("target_ops::attach called");
2601 }
2602
2603 bool
2604 target_ops::can_create_inferior ()
2605 {
2606 return 0;
2607 }
2608
2609 void
2610 target_ops::create_inferior (const char *, const std::string &,
2611 char **, int)
2612 {
2613 gdb_assert_not_reached ("target_ops::create_inferior called");
2614 }
2615
2616 bool
2617 target_ops::can_run ()
2618 {
2619 return false;
2620 }
2621
2622 int
2623 target_can_run ()
2624 {
2625 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2626 {
2627 if (t->can_run ())
2628 return 1;
2629 }
2630
2631 return 0;
2632 }
2633
2634 /* Target file operations. */
2635
2636 static struct target_ops *
2637 default_fileio_target (void)
2638 {
2639 struct target_ops *t;
2640
2641 /* If we're already connected to something that can perform
2642 file I/O, use it. Otherwise, try using the native target. */
2643 t = find_target_at (process_stratum);
2644 if (t != NULL)
2645 return t;
2646 return find_default_run_target ("file I/O");
2647 }
2648
2649 /* File handle for target file operations. */
2650
2651 struct fileio_fh_t
2652 {
2653 /* The target on which this file is open. NULL if the target is
2654 meanwhile closed while the handle is open. */
2655 target_ops *target;
2656
2657 /* The file descriptor on the target. */
2658 int target_fd;
2659
2660 /* Check whether this fileio_fh_t represents a closed file. */
2661 bool is_closed ()
2662 {
2663 return target_fd < 0;
2664 }
2665 };
2666
2667 /* Vector of currently open file handles. The value returned by
2668 target_fileio_open and passed as the FD argument to other
2669 target_fileio_* functions is an index into this vector. This
2670 vector's entries are never freed; instead, files are marked as
2671 closed, and the handle becomes available for reuse. */
2672 static std::vector<fileio_fh_t> fileio_fhandles;
2673
2674 /* Index into fileio_fhandles of the lowest handle that might be
2675 closed. This permits handle reuse without searching the whole
2676 list each time a new file is opened. */
2677 static int lowest_closed_fd;
2678
2679 /* Invalidate the target associated with open handles that were open
2680 on target TARG, since we're about to close (and maybe destroy) the
2681 target. The handles remain open from the client's perspective, but
2682 trying to do anything with them other than closing them will fail
2683 with EIO. */
2684
2685 static void
2686 fileio_handles_invalidate_target (target_ops *targ)
2687 {
2688 for (fileio_fh_t &fh : fileio_fhandles)
2689 if (fh.target == targ)
2690 fh.target = NULL;
2691 }
2692
2693 /* Acquire a target fileio file descriptor. */
2694
2695 static int
2696 acquire_fileio_fd (target_ops *target, int target_fd)
2697 {
2698 /* Search for closed handles to reuse. */
2699 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2700 {
2701 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2702
2703 if (fh.is_closed ())
2704 break;
2705 }
2706
2707 /* Push a new handle if no closed handles were found. */
2708 if (lowest_closed_fd == fileio_fhandles.size ())
2709 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2710 else
2711 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2712
2713 /* Should no longer be marked closed. */
2714 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2715
2716 /* Return its index, and start the next lookup at
2717 the next index. */
2718 return lowest_closed_fd++;
2719 }
2720
2721 /* Release a target fileio file descriptor. */
2722
2723 static void
2724 release_fileio_fd (int fd, fileio_fh_t *fh)
2725 {
2726 fh->target_fd = -1;
2727 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2728 }
2729
2730 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2731
2732 static fileio_fh_t *
2733 fileio_fd_to_fh (int fd)
2734 {
2735 return &fileio_fhandles[fd];
2736 }
2737
2738
2739 /* Default implementations of file i/o methods. We don't want these
2740 to delegate automatically, because we need to know which target
2741 supported the method, in order to call it directly from within
2742 pread/pwrite, etc. */
2743
2744 int
2745 target_ops::fileio_open (struct inferior *inf, const char *filename,
2746 int flags, int mode, int warn_if_slow,
2747 int *target_errno)
2748 {
2749 *target_errno = FILEIO_ENOSYS;
2750 return -1;
2751 }
2752
2753 int
2754 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2755 ULONGEST offset, int *target_errno)
2756 {
2757 *target_errno = FILEIO_ENOSYS;
2758 return -1;
2759 }
2760
2761 int
2762 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2763 ULONGEST offset, int *target_errno)
2764 {
2765 *target_errno = FILEIO_ENOSYS;
2766 return -1;
2767 }
2768
2769 int
2770 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2771 {
2772 *target_errno = FILEIO_ENOSYS;
2773 return -1;
2774 }
2775
2776 int
2777 target_ops::fileio_close (int fd, int *target_errno)
2778 {
2779 *target_errno = FILEIO_ENOSYS;
2780 return -1;
2781 }
2782
2783 int
2784 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2785 int *target_errno)
2786 {
2787 *target_errno = FILEIO_ENOSYS;
2788 return -1;
2789 }
2790
2791 gdb::optional<std::string>
2792 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2793 int *target_errno)
2794 {
2795 *target_errno = FILEIO_ENOSYS;
2796 return {};
2797 }
2798
2799 /* Helper for target_fileio_open and
2800 target_fileio_open_warn_if_slow. */
2801
2802 static int
2803 target_fileio_open_1 (struct inferior *inf, const char *filename,
2804 int flags, int mode, int warn_if_slow,
2805 int *target_errno)
2806 {
2807 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2808 {
2809 int fd = t->fileio_open (inf, filename, flags, mode,
2810 warn_if_slow, target_errno);
2811
2812 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2813 continue;
2814
2815 if (fd < 0)
2816 fd = -1;
2817 else
2818 fd = acquire_fileio_fd (t, fd);
2819
2820 if (targetdebug)
2821 fprintf_unfiltered (gdb_stdlog,
2822 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2823 " = %d (%d)\n",
2824 inf == NULL ? 0 : inf->num,
2825 filename, flags, mode,
2826 warn_if_slow, fd,
2827 fd != -1 ? 0 : *target_errno);
2828 return fd;
2829 }
2830
2831 *target_errno = FILEIO_ENOSYS;
2832 return -1;
2833 }
2834
2835 /* See target.h. */
2836
2837 int
2838 target_fileio_open (struct inferior *inf, const char *filename,
2839 int flags, int mode, int *target_errno)
2840 {
2841 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2842 target_errno);
2843 }
2844
2845 /* See target.h. */
2846
2847 int
2848 target_fileio_open_warn_if_slow (struct inferior *inf,
2849 const char *filename,
2850 int flags, int mode, int *target_errno)
2851 {
2852 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2853 target_errno);
2854 }
2855
2856 /* See target.h. */
2857
2858 int
2859 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2860 ULONGEST offset, int *target_errno)
2861 {
2862 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2863 int ret = -1;
2864
2865 if (fh->is_closed ())
2866 *target_errno = EBADF;
2867 else if (fh->target == NULL)
2868 *target_errno = EIO;
2869 else
2870 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2871 len, offset, target_errno);
2872
2873 if (targetdebug)
2874 fprintf_unfiltered (gdb_stdlog,
2875 "target_fileio_pwrite (%d,...,%d,%s) "
2876 "= %d (%d)\n",
2877 fd, len, pulongest (offset),
2878 ret, ret != -1 ? 0 : *target_errno);
2879 return ret;
2880 }
2881
2882 /* See target.h. */
2883
2884 int
2885 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2886 ULONGEST offset, int *target_errno)
2887 {
2888 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2889 int ret = -1;
2890
2891 if (fh->is_closed ())
2892 *target_errno = EBADF;
2893 else if (fh->target == NULL)
2894 *target_errno = EIO;
2895 else
2896 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2897 len, offset, target_errno);
2898
2899 if (targetdebug)
2900 fprintf_unfiltered (gdb_stdlog,
2901 "target_fileio_pread (%d,...,%d,%s) "
2902 "= %d (%d)\n",
2903 fd, len, pulongest (offset),
2904 ret, ret != -1 ? 0 : *target_errno);
2905 return ret;
2906 }
2907
2908 /* See target.h. */
2909
2910 int
2911 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2912 {
2913 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2914 int ret = -1;
2915
2916 if (fh->is_closed ())
2917 *target_errno = EBADF;
2918 else if (fh->target == NULL)
2919 *target_errno = EIO;
2920 else
2921 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2922
2923 if (targetdebug)
2924 fprintf_unfiltered (gdb_stdlog,
2925 "target_fileio_fstat (%d) = %d (%d)\n",
2926 fd, ret, ret != -1 ? 0 : *target_errno);
2927 return ret;
2928 }
2929
2930 /* See target.h. */
2931
2932 int
2933 target_fileio_close (int fd, int *target_errno)
2934 {
2935 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2936 int ret = -1;
2937
2938 if (fh->is_closed ())
2939 *target_errno = EBADF;
2940 else
2941 {
2942 if (fh->target != NULL)
2943 ret = fh->target->fileio_close (fh->target_fd,
2944 target_errno);
2945 else
2946 ret = 0;
2947 release_fileio_fd (fd, fh);
2948 }
2949
2950 if (targetdebug)
2951 fprintf_unfiltered (gdb_stdlog,
2952 "target_fileio_close (%d) = %d (%d)\n",
2953 fd, ret, ret != -1 ? 0 : *target_errno);
2954 return ret;
2955 }
2956
2957 /* See target.h. */
2958
2959 int
2960 target_fileio_unlink (struct inferior *inf, const char *filename,
2961 int *target_errno)
2962 {
2963 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2964 {
2965 int ret = t->fileio_unlink (inf, filename, target_errno);
2966
2967 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2968 continue;
2969
2970 if (targetdebug)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "target_fileio_unlink (%d,%s)"
2973 " = %d (%d)\n",
2974 inf == NULL ? 0 : inf->num, filename,
2975 ret, ret != -1 ? 0 : *target_errno);
2976 return ret;
2977 }
2978
2979 *target_errno = FILEIO_ENOSYS;
2980 return -1;
2981 }
2982
2983 /* See target.h. */
2984
2985 gdb::optional<std::string>
2986 target_fileio_readlink (struct inferior *inf, const char *filename,
2987 int *target_errno)
2988 {
2989 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2990 {
2991 gdb::optional<std::string> ret
2992 = t->fileio_readlink (inf, filename, target_errno);
2993
2994 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2995 continue;
2996
2997 if (targetdebug)
2998 fprintf_unfiltered (gdb_stdlog,
2999 "target_fileio_readlink (%d,%s)"
3000 " = %s (%d)\n",
3001 inf == NULL ? 0 : inf->num,
3002 filename, ret ? ret->c_str () : "(nil)",
3003 ret ? 0 : *target_errno);
3004 return ret;
3005 }
3006
3007 *target_errno = FILEIO_ENOSYS;
3008 return {};
3009 }
3010
3011 /* Like scoped_fd, but specific to target fileio. */
3012
3013 class scoped_target_fd
3014 {
3015 public:
3016 explicit scoped_target_fd (int fd) noexcept
3017 : m_fd (fd)
3018 {
3019 }
3020
3021 ~scoped_target_fd ()
3022 {
3023 if (m_fd >= 0)
3024 {
3025 int target_errno;
3026
3027 target_fileio_close (m_fd, &target_errno);
3028 }
3029 }
3030
3031 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3032
3033 int get () const noexcept
3034 {
3035 return m_fd;
3036 }
3037
3038 private:
3039 int m_fd;
3040 };
3041
3042 /* Read target file FILENAME, in the filesystem as seen by INF. If
3043 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3044 remote targets, the remote stub). Store the result in *BUF_P and
3045 return the size of the transferred data. PADDING additional bytes
3046 are available in *BUF_P. This is a helper function for
3047 target_fileio_read_alloc; see the declaration of that function for
3048 more information. */
3049
3050 static LONGEST
3051 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3052 gdb_byte **buf_p, int padding)
3053 {
3054 size_t buf_alloc, buf_pos;
3055 gdb_byte *buf;
3056 LONGEST n;
3057 int target_errno;
3058
3059 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3060 0700, &target_errno));
3061 if (fd.get () == -1)
3062 return -1;
3063
3064 /* Start by reading up to 4K at a time. The target will throttle
3065 this number down if necessary. */
3066 buf_alloc = 4096;
3067 buf = (gdb_byte *) xmalloc (buf_alloc);
3068 buf_pos = 0;
3069 while (1)
3070 {
3071 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3072 buf_alloc - buf_pos - padding, buf_pos,
3073 &target_errno);
3074 if (n < 0)
3075 {
3076 /* An error occurred. */
3077 xfree (buf);
3078 return -1;
3079 }
3080 else if (n == 0)
3081 {
3082 /* Read all there was. */
3083 if (buf_pos == 0)
3084 xfree (buf);
3085 else
3086 *buf_p = buf;
3087 return buf_pos;
3088 }
3089
3090 buf_pos += n;
3091
3092 /* If the buffer is filling up, expand it. */
3093 if (buf_alloc < buf_pos * 2)
3094 {
3095 buf_alloc *= 2;
3096 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3097 }
3098
3099 QUIT;
3100 }
3101 }
3102
3103 /* See target.h. */
3104
3105 LONGEST
3106 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3107 gdb_byte **buf_p)
3108 {
3109 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3110 }
3111
3112 /* See target.h. */
3113
3114 gdb::unique_xmalloc_ptr<char>
3115 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3116 {
3117 gdb_byte *buffer;
3118 char *bufstr;
3119 LONGEST i, transferred;
3120
3121 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3122 bufstr = (char *) buffer;
3123
3124 if (transferred < 0)
3125 return gdb::unique_xmalloc_ptr<char> (nullptr);
3126
3127 if (transferred == 0)
3128 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3129
3130 bufstr[transferred] = 0;
3131
3132 /* Check for embedded NUL bytes; but allow trailing NULs. */
3133 for (i = strlen (bufstr); i < transferred; i++)
3134 if (bufstr[i] != 0)
3135 {
3136 warning (_("target file %s "
3137 "contained unexpected null characters"),
3138 filename);
3139 break;
3140 }
3141
3142 return gdb::unique_xmalloc_ptr<char> (bufstr);
3143 }
3144
3145
3146 static int
3147 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3148 CORE_ADDR addr, int len)
3149 {
3150 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3151 }
3152
3153 static int
3154 default_watchpoint_addr_within_range (struct target_ops *target,
3155 CORE_ADDR addr,
3156 CORE_ADDR start, int length)
3157 {
3158 return addr >= start && addr < start + length;
3159 }
3160
3161 /* See target.h. */
3162
3163 target_ops *
3164 target_stack::find_beneath (const target_ops *t) const
3165 {
3166 /* Look for a non-empty slot at stratum levels beneath T's. */
3167 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3168 if (m_stack[stratum] != NULL)
3169 return m_stack[stratum];
3170
3171 return NULL;
3172 }
3173
3174 /* See target.h. */
3175
3176 struct target_ops *
3177 find_target_at (enum strata stratum)
3178 {
3179 return g_target_stack.at (stratum);
3180 }
3181
3182 \f
3183
3184 /* See target.h */
3185
3186 void
3187 target_announce_detach (int from_tty)
3188 {
3189 pid_t pid;
3190 const char *exec_file;
3191
3192 if (!from_tty)
3193 return;
3194
3195 exec_file = get_exec_file (0);
3196 if (exec_file == NULL)
3197 exec_file = "";
3198
3199 pid = inferior_ptid.pid ();
3200 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3201 target_pid_to_str (ptid_t (pid)));
3202 gdb_flush (gdb_stdout);
3203 }
3204
3205 /* The inferior process has died. Long live the inferior! */
3206
3207 void
3208 generic_mourn_inferior (void)
3209 {
3210 inferior *inf = current_inferior ();
3211
3212 inferior_ptid = null_ptid;
3213
3214 /* Mark breakpoints uninserted in case something tries to delete a
3215 breakpoint while we delete the inferior's threads (which would
3216 fail, since the inferior is long gone). */
3217 mark_breakpoints_out ();
3218
3219 if (inf->pid != 0)
3220 exit_inferior (inf);
3221
3222 /* Note this wipes step-resume breakpoints, so needs to be done
3223 after exit_inferior, which ends up referencing the step-resume
3224 breakpoints through clear_thread_inferior_resources. */
3225 breakpoint_init_inferior (inf_exited);
3226
3227 registers_changed ();
3228
3229 reopen_exec_file ();
3230 reinit_frame_cache ();
3231
3232 if (deprecated_detach_hook)
3233 deprecated_detach_hook ();
3234 }
3235 \f
3236 /* Convert a normal process ID to a string. Returns the string in a
3237 static buffer. */
3238
3239 const char *
3240 normal_pid_to_str (ptid_t ptid)
3241 {
3242 static char buf[32];
3243
3244 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3245 return buf;
3246 }
3247
3248 static const char *
3249 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3250 {
3251 return normal_pid_to_str (ptid);
3252 }
3253
3254 /* Error-catcher for target_find_memory_regions. */
3255 static int
3256 dummy_find_memory_regions (struct target_ops *self,
3257 find_memory_region_ftype ignore1, void *ignore2)
3258 {
3259 error (_("Command not implemented for this target."));
3260 return 0;
3261 }
3262
3263 /* Error-catcher for target_make_corefile_notes. */
3264 static char *
3265 dummy_make_corefile_notes (struct target_ops *self,
3266 bfd *ignore1, int *ignore2)
3267 {
3268 error (_("Command not implemented for this target."));
3269 return NULL;
3270 }
3271
3272 #include "target-delegates.c"
3273
3274
3275 static const target_info dummy_target_info = {
3276 "None",
3277 N_("None"),
3278 ""
3279 };
3280
3281 dummy_target::dummy_target ()
3282 {
3283 to_stratum = dummy_stratum;
3284 }
3285
3286 debug_target::debug_target ()
3287 {
3288 to_stratum = debug_stratum;
3289 }
3290
3291 const target_info &
3292 dummy_target::info () const
3293 {
3294 return dummy_target_info;
3295 }
3296
3297 const target_info &
3298 debug_target::info () const
3299 {
3300 return beneath ()->info ();
3301 }
3302
3303 \f
3304
3305 void
3306 target_close (struct target_ops *targ)
3307 {
3308 gdb_assert (!target_is_pushed (targ));
3309
3310 fileio_handles_invalidate_target (targ);
3311
3312 targ->close ();
3313
3314 if (targetdebug)
3315 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3316 }
3317
3318 int
3319 target_thread_alive (ptid_t ptid)
3320 {
3321 return current_top_target ()->thread_alive (ptid);
3322 }
3323
3324 void
3325 target_update_thread_list (void)
3326 {
3327 current_top_target ()->update_thread_list ();
3328 }
3329
3330 void
3331 target_stop (ptid_t ptid)
3332 {
3333 if (!may_stop)
3334 {
3335 warning (_("May not interrupt or stop the target, ignoring attempt"));
3336 return;
3337 }
3338
3339 current_top_target ()->stop (ptid);
3340 }
3341
3342 void
3343 target_interrupt ()
3344 {
3345 if (!may_stop)
3346 {
3347 warning (_("May not interrupt or stop the target, ignoring attempt"));
3348 return;
3349 }
3350
3351 current_top_target ()->interrupt ();
3352 }
3353
3354 /* See target.h. */
3355
3356 void
3357 target_pass_ctrlc (void)
3358 {
3359 current_top_target ()->pass_ctrlc ();
3360 }
3361
3362 /* See target.h. */
3363
3364 void
3365 default_target_pass_ctrlc (struct target_ops *ops)
3366 {
3367 target_interrupt ();
3368 }
3369
3370 /* See target/target.h. */
3371
3372 void
3373 target_stop_and_wait (ptid_t ptid)
3374 {
3375 struct target_waitstatus status;
3376 int was_non_stop = non_stop;
3377
3378 non_stop = 1;
3379 target_stop (ptid);
3380
3381 memset (&status, 0, sizeof (status));
3382 target_wait (ptid, &status, 0);
3383
3384 non_stop = was_non_stop;
3385 }
3386
3387 /* See target/target.h. */
3388
3389 void
3390 target_continue_no_signal (ptid_t ptid)
3391 {
3392 target_resume (ptid, 0, GDB_SIGNAL_0);
3393 }
3394
3395 /* See target/target.h. */
3396
3397 void
3398 target_continue (ptid_t ptid, enum gdb_signal signal)
3399 {
3400 target_resume (ptid, 0, signal);
3401 }
3402
3403 /* Concatenate ELEM to LIST, a comma-separated list. */
3404
3405 static void
3406 str_comma_list_concat_elem (std::string *list, const char *elem)
3407 {
3408 if (!list->empty ())
3409 list->append (", ");
3410
3411 list->append (elem);
3412 }
3413
3414 /* Helper for target_options_to_string. If OPT is present in
3415 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3416 OPT is removed from TARGET_OPTIONS. */
3417
3418 static void
3419 do_option (int *target_options, std::string *ret,
3420 int opt, const char *opt_str)
3421 {
3422 if ((*target_options & opt) != 0)
3423 {
3424 str_comma_list_concat_elem (ret, opt_str);
3425 *target_options &= ~opt;
3426 }
3427 }
3428
3429 /* See target.h. */
3430
3431 std::string
3432 target_options_to_string (int target_options)
3433 {
3434 std::string ret;
3435
3436 #define DO_TARG_OPTION(OPT) \
3437 do_option (&target_options, &ret, OPT, #OPT)
3438
3439 DO_TARG_OPTION (TARGET_WNOHANG);
3440
3441 if (target_options != 0)
3442 str_comma_list_concat_elem (&ret, "unknown???");
3443
3444 return ret;
3445 }
3446
3447 void
3448 target_fetch_registers (struct regcache *regcache, int regno)
3449 {
3450 current_top_target ()->fetch_registers (regcache, regno);
3451 if (targetdebug)
3452 regcache->debug_print_register ("target_fetch_registers", regno);
3453 }
3454
3455 void
3456 target_store_registers (struct regcache *regcache, int regno)
3457 {
3458 if (!may_write_registers)
3459 error (_("Writing to registers is not allowed (regno %d)"), regno);
3460
3461 current_top_target ()->store_registers (regcache, regno);
3462 if (targetdebug)
3463 {
3464 regcache->debug_print_register ("target_store_registers", regno);
3465 }
3466 }
3467
3468 int
3469 target_core_of_thread (ptid_t ptid)
3470 {
3471 return current_top_target ()->core_of_thread (ptid);
3472 }
3473
3474 int
3475 simple_verify_memory (struct target_ops *ops,
3476 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3477 {
3478 LONGEST total_xfered = 0;
3479
3480 while (total_xfered < size)
3481 {
3482 ULONGEST xfered_len;
3483 enum target_xfer_status status;
3484 gdb_byte buf[1024];
3485 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3486
3487 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3488 buf, NULL, lma + total_xfered, howmuch,
3489 &xfered_len);
3490 if (status == TARGET_XFER_OK
3491 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3492 {
3493 total_xfered += xfered_len;
3494 QUIT;
3495 }
3496 else
3497 return 0;
3498 }
3499 return 1;
3500 }
3501
3502 /* Default implementation of memory verification. */
3503
3504 static int
3505 default_verify_memory (struct target_ops *self,
3506 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3507 {
3508 /* Start over from the top of the target stack. */
3509 return simple_verify_memory (current_top_target (),
3510 data, memaddr, size);
3511 }
3512
3513 int
3514 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3515 {
3516 return current_top_target ()->verify_memory (data, memaddr, size);
3517 }
3518
3519 /* The documentation for this function is in its prototype declaration in
3520 target.h. */
3521
3522 int
3523 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3524 enum target_hw_bp_type rw)
3525 {
3526 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3527 }
3528
3529 /* The documentation for this function is in its prototype declaration in
3530 target.h. */
3531
3532 int
3533 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3534 enum target_hw_bp_type rw)
3535 {
3536 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3537 }
3538
3539 /* The documentation for this function is in its prototype declaration
3540 in target.h. */
3541
3542 int
3543 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3544 {
3545 return current_top_target ()->masked_watch_num_registers (addr, mask);
3546 }
3547
3548 /* The documentation for this function is in its prototype declaration
3549 in target.h. */
3550
3551 int
3552 target_ranged_break_num_registers (void)
3553 {
3554 return current_top_target ()->ranged_break_num_registers ();
3555 }
3556
3557 /* See target.h. */
3558
3559 struct btrace_target_info *
3560 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3561 {
3562 return current_top_target ()->enable_btrace (ptid, conf);
3563 }
3564
3565 /* See target.h. */
3566
3567 void
3568 target_disable_btrace (struct btrace_target_info *btinfo)
3569 {
3570 current_top_target ()->disable_btrace (btinfo);
3571 }
3572
3573 /* See target.h. */
3574
3575 void
3576 target_teardown_btrace (struct btrace_target_info *btinfo)
3577 {
3578 current_top_target ()->teardown_btrace (btinfo);
3579 }
3580
3581 /* See target.h. */
3582
3583 enum btrace_error
3584 target_read_btrace (struct btrace_data *btrace,
3585 struct btrace_target_info *btinfo,
3586 enum btrace_read_type type)
3587 {
3588 return current_top_target ()->read_btrace (btrace, btinfo, type);
3589 }
3590
3591 /* See target.h. */
3592
3593 const struct btrace_config *
3594 target_btrace_conf (const struct btrace_target_info *btinfo)
3595 {
3596 return current_top_target ()->btrace_conf (btinfo);
3597 }
3598
3599 /* See target.h. */
3600
3601 void
3602 target_stop_recording (void)
3603 {
3604 current_top_target ()->stop_recording ();
3605 }
3606
3607 /* See target.h. */
3608
3609 void
3610 target_save_record (const char *filename)
3611 {
3612 current_top_target ()->save_record (filename);
3613 }
3614
3615 /* See target.h. */
3616
3617 int
3618 target_supports_delete_record ()
3619 {
3620 return current_top_target ()->supports_delete_record ();
3621 }
3622
3623 /* See target.h. */
3624
3625 void
3626 target_delete_record (void)
3627 {
3628 current_top_target ()->delete_record ();
3629 }
3630
3631 /* See target.h. */
3632
3633 enum record_method
3634 target_record_method (ptid_t ptid)
3635 {
3636 return current_top_target ()->record_method (ptid);
3637 }
3638
3639 /* See target.h. */
3640
3641 int
3642 target_record_is_replaying (ptid_t ptid)
3643 {
3644 return current_top_target ()->record_is_replaying (ptid);
3645 }
3646
3647 /* See target.h. */
3648
3649 int
3650 target_record_will_replay (ptid_t ptid, int dir)
3651 {
3652 return current_top_target ()->record_will_replay (ptid, dir);
3653 }
3654
3655 /* See target.h. */
3656
3657 void
3658 target_record_stop_replaying (void)
3659 {
3660 current_top_target ()->record_stop_replaying ();
3661 }
3662
3663 /* See target.h. */
3664
3665 void
3666 target_goto_record_begin (void)
3667 {
3668 current_top_target ()->goto_record_begin ();
3669 }
3670
3671 /* See target.h. */
3672
3673 void
3674 target_goto_record_end (void)
3675 {
3676 current_top_target ()->goto_record_end ();
3677 }
3678
3679 /* See target.h. */
3680
3681 void
3682 target_goto_record (ULONGEST insn)
3683 {
3684 current_top_target ()->goto_record (insn);
3685 }
3686
3687 /* See target.h. */
3688
3689 void
3690 target_insn_history (int size, gdb_disassembly_flags flags)
3691 {
3692 current_top_target ()->insn_history (size, flags);
3693 }
3694
3695 /* See target.h. */
3696
3697 void
3698 target_insn_history_from (ULONGEST from, int size,
3699 gdb_disassembly_flags flags)
3700 {
3701 current_top_target ()->insn_history_from (from, size, flags);
3702 }
3703
3704 /* See target.h. */
3705
3706 void
3707 target_insn_history_range (ULONGEST begin, ULONGEST end,
3708 gdb_disassembly_flags flags)
3709 {
3710 current_top_target ()->insn_history_range (begin, end, flags);
3711 }
3712
3713 /* See target.h. */
3714
3715 void
3716 target_call_history (int size, record_print_flags flags)
3717 {
3718 current_top_target ()->call_history (size, flags);
3719 }
3720
3721 /* See target.h. */
3722
3723 void
3724 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3725 {
3726 current_top_target ()->call_history_from (begin, size, flags);
3727 }
3728
3729 /* See target.h. */
3730
3731 void
3732 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3733 {
3734 current_top_target ()->call_history_range (begin, end, flags);
3735 }
3736
3737 /* See target.h. */
3738
3739 const struct frame_unwind *
3740 target_get_unwinder (void)
3741 {
3742 return current_top_target ()->get_unwinder ();
3743 }
3744
3745 /* See target.h. */
3746
3747 const struct frame_unwind *
3748 target_get_tailcall_unwinder (void)
3749 {
3750 return current_top_target ()->get_tailcall_unwinder ();
3751 }
3752
3753 /* See target.h. */
3754
3755 void
3756 target_prepare_to_generate_core (void)
3757 {
3758 current_top_target ()->prepare_to_generate_core ();
3759 }
3760
3761 /* See target.h. */
3762
3763 void
3764 target_done_generating_core (void)
3765 {
3766 current_top_target ()->done_generating_core ();
3767 }
3768
3769 \f
3770
3771 static char targ_desc[] =
3772 "Names of targets and files being debugged.\nShows the entire \
3773 stack of targets currently in use (including the exec-file,\n\
3774 core-file, and process, if any), as well as the symbol file name.";
3775
3776 static void
3777 default_rcmd (struct target_ops *self, const char *command,
3778 struct ui_file *output)
3779 {
3780 error (_("\"monitor\" command not supported by this target."));
3781 }
3782
3783 static void
3784 do_monitor_command (const char *cmd, int from_tty)
3785 {
3786 target_rcmd (cmd, gdb_stdtarg);
3787 }
3788
3789 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3790 ignored. */
3791
3792 void
3793 flash_erase_command (const char *cmd, int from_tty)
3794 {
3795 /* Used to communicate termination of flash operations to the target. */
3796 bool found_flash_region = false;
3797 struct gdbarch *gdbarch = target_gdbarch ();
3798
3799 std::vector<mem_region> mem_regions = target_memory_map ();
3800
3801 /* Iterate over all memory regions. */
3802 for (const mem_region &m : mem_regions)
3803 {
3804 /* Is this a flash memory region? */
3805 if (m.attrib.mode == MEM_FLASH)
3806 {
3807 found_flash_region = true;
3808 target_flash_erase (m.lo, m.hi - m.lo);
3809
3810 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3811
3812 current_uiout->message (_("Erasing flash memory region at address "));
3813 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3814 current_uiout->message (", size = ");
3815 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3816 current_uiout->message ("\n");
3817 }
3818 }
3819
3820 /* Did we do any flash operations? If so, we need to finalize them. */
3821 if (found_flash_region)
3822 target_flash_done ();
3823 else
3824 current_uiout->message (_("No flash memory regions found.\n"));
3825 }
3826
3827 /* Print the name of each layers of our target stack. */
3828
3829 static void
3830 maintenance_print_target_stack (const char *cmd, int from_tty)
3831 {
3832 printf_filtered (_("The current target stack is:\n"));
3833
3834 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3835 {
3836 if (t->to_stratum == debug_stratum)
3837 continue;
3838 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3839 }
3840 }
3841
3842 /* See target.h. */
3843
3844 void
3845 target_async (int enable)
3846 {
3847 infrun_async (enable);
3848 current_top_target ()->async (enable);
3849 }
3850
3851 /* See target.h. */
3852
3853 void
3854 target_thread_events (int enable)
3855 {
3856 current_top_target ()->thread_events (enable);
3857 }
3858
3859 /* Controls if targets can report that they can/are async. This is
3860 just for maintainers to use when debugging gdb. */
3861 int target_async_permitted = 1;
3862
3863 /* The set command writes to this variable. If the inferior is
3864 executing, target_async_permitted is *not* updated. */
3865 static int target_async_permitted_1 = 1;
3866
3867 static void
3868 maint_set_target_async_command (const char *args, int from_tty,
3869 struct cmd_list_element *c)
3870 {
3871 if (have_live_inferiors ())
3872 {
3873 target_async_permitted_1 = target_async_permitted;
3874 error (_("Cannot change this setting while the inferior is running."));
3875 }
3876
3877 target_async_permitted = target_async_permitted_1;
3878 }
3879
3880 static void
3881 maint_show_target_async_command (struct ui_file *file, int from_tty,
3882 struct cmd_list_element *c,
3883 const char *value)
3884 {
3885 fprintf_filtered (file,
3886 _("Controlling the inferior in "
3887 "asynchronous mode is %s.\n"), value);
3888 }
3889
3890 /* Return true if the target operates in non-stop mode even with "set
3891 non-stop off". */
3892
3893 static int
3894 target_always_non_stop_p (void)
3895 {
3896 return current_top_target ()->always_non_stop_p ();
3897 }
3898
3899 /* See target.h. */
3900
3901 int
3902 target_is_non_stop_p (void)
3903 {
3904 return (non_stop
3905 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3906 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3907 && target_always_non_stop_p ()));
3908 }
3909
3910 /* Controls if targets can report that they always run in non-stop
3911 mode. This is just for maintainers to use when debugging gdb. */
3912 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3913
3914 /* The set command writes to this variable. If the inferior is
3915 executing, target_non_stop_enabled is *not* updated. */
3916 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3917
3918 /* Implementation of "maint set target-non-stop". */
3919
3920 static void
3921 maint_set_target_non_stop_command (const char *args, int from_tty,
3922 struct cmd_list_element *c)
3923 {
3924 if (have_live_inferiors ())
3925 {
3926 target_non_stop_enabled_1 = target_non_stop_enabled;
3927 error (_("Cannot change this setting while the inferior is running."));
3928 }
3929
3930 target_non_stop_enabled = target_non_stop_enabled_1;
3931 }
3932
3933 /* Implementation of "maint show target-non-stop". */
3934
3935 static void
3936 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3937 struct cmd_list_element *c,
3938 const char *value)
3939 {
3940 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3941 fprintf_filtered (file,
3942 _("Whether the target is always in non-stop mode "
3943 "is %s (currently %s).\n"), value,
3944 target_always_non_stop_p () ? "on" : "off");
3945 else
3946 fprintf_filtered (file,
3947 _("Whether the target is always in non-stop mode "
3948 "is %s.\n"), value);
3949 }
3950
3951 /* Temporary copies of permission settings. */
3952
3953 static int may_write_registers_1 = 1;
3954 static int may_write_memory_1 = 1;
3955 static int may_insert_breakpoints_1 = 1;
3956 static int may_insert_tracepoints_1 = 1;
3957 static int may_insert_fast_tracepoints_1 = 1;
3958 static int may_stop_1 = 1;
3959
3960 /* Make the user-set values match the real values again. */
3961
3962 void
3963 update_target_permissions (void)
3964 {
3965 may_write_registers_1 = may_write_registers;
3966 may_write_memory_1 = may_write_memory;
3967 may_insert_breakpoints_1 = may_insert_breakpoints;
3968 may_insert_tracepoints_1 = may_insert_tracepoints;
3969 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3970 may_stop_1 = may_stop;
3971 }
3972
3973 /* The one function handles (most of) the permission flags in the same
3974 way. */
3975
3976 static void
3977 set_target_permissions (const char *args, int from_tty,
3978 struct cmd_list_element *c)
3979 {
3980 if (target_has_execution)
3981 {
3982 update_target_permissions ();
3983 error (_("Cannot change this setting while the inferior is running."));
3984 }
3985
3986 /* Make the real values match the user-changed values. */
3987 may_write_registers = may_write_registers_1;
3988 may_insert_breakpoints = may_insert_breakpoints_1;
3989 may_insert_tracepoints = may_insert_tracepoints_1;
3990 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3991 may_stop = may_stop_1;
3992 update_observer_mode ();
3993 }
3994
3995 /* Set memory write permission independently of observer mode. */
3996
3997 static void
3998 set_write_memory_permission (const char *args, int from_tty,
3999 struct cmd_list_element *c)
4000 {
4001 /* Make the real values match the user-changed values. */
4002 may_write_memory = may_write_memory_1;
4003 update_observer_mode ();
4004 }
4005
4006 void
4007 initialize_targets (void)
4008 {
4009 the_dummy_target = new dummy_target ();
4010 push_target (the_dummy_target);
4011
4012 the_debug_target = new debug_target ();
4013
4014 add_info ("target", info_target_command, targ_desc);
4015 add_info ("files", info_target_command, targ_desc);
4016
4017 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4018 Set target debugging."), _("\
4019 Show target debugging."), _("\
4020 When non-zero, target debugging is enabled. Higher numbers are more\n\
4021 verbose."),
4022 set_targetdebug,
4023 show_targetdebug,
4024 &setdebuglist, &showdebuglist);
4025
4026 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4027 &trust_readonly, _("\
4028 Set mode for reading from readonly sections."), _("\
4029 Show mode for reading from readonly sections."), _("\
4030 When this mode is on, memory reads from readonly sections (such as .text)\n\
4031 will be read from the object file instead of from the target. This will\n\
4032 result in significant performance improvement for remote targets."),
4033 NULL,
4034 show_trust_readonly,
4035 &setlist, &showlist);
4036
4037 add_com ("monitor", class_obscure, do_monitor_command,
4038 _("Send a command to the remote monitor (remote targets only)."));
4039
4040 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4041 _("Print the name of each layer of the internal target stack."),
4042 &maintenanceprintlist);
4043
4044 add_setshow_boolean_cmd ("target-async", no_class,
4045 &target_async_permitted_1, _("\
4046 Set whether gdb controls the inferior in asynchronous mode."), _("\
4047 Show whether gdb controls the inferior in asynchronous mode."), _("\
4048 Tells gdb whether to control the inferior in asynchronous mode."),
4049 maint_set_target_async_command,
4050 maint_show_target_async_command,
4051 &maintenance_set_cmdlist,
4052 &maintenance_show_cmdlist);
4053
4054 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4055 &target_non_stop_enabled_1, _("\
4056 Set whether gdb always controls the inferior in non-stop mode."), _("\
4057 Show whether gdb always controls the inferior in non-stop mode."), _("\
4058 Tells gdb whether to control the inferior in non-stop mode."),
4059 maint_set_target_non_stop_command,
4060 maint_show_target_non_stop_command,
4061 &maintenance_set_cmdlist,
4062 &maintenance_show_cmdlist);
4063
4064 add_setshow_boolean_cmd ("may-write-registers", class_support,
4065 &may_write_registers_1, _("\
4066 Set permission to write into registers."), _("\
4067 Show permission to write into registers."), _("\
4068 When this permission is on, GDB may write into the target's registers.\n\
4069 Otherwise, any sort of write attempt will result in an error."),
4070 set_target_permissions, NULL,
4071 &setlist, &showlist);
4072
4073 add_setshow_boolean_cmd ("may-write-memory", class_support,
4074 &may_write_memory_1, _("\
4075 Set permission to write into target memory."), _("\
4076 Show permission to write into target memory."), _("\
4077 When this permission is on, GDB may write into the target's memory.\n\
4078 Otherwise, any sort of write attempt will result in an error."),
4079 set_write_memory_permission, NULL,
4080 &setlist, &showlist);
4081
4082 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4083 &may_insert_breakpoints_1, _("\
4084 Set permission to insert breakpoints in the target."), _("\
4085 Show permission to insert breakpoints in the target."), _("\
4086 When this permission is on, GDB may insert breakpoints in the program.\n\
4087 Otherwise, any sort of insertion attempt will result in an error."),
4088 set_target_permissions, NULL,
4089 &setlist, &showlist);
4090
4091 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4092 &may_insert_tracepoints_1, _("\
4093 Set permission to insert tracepoints in the target."), _("\
4094 Show permission to insert tracepoints in the target."), _("\
4095 When this permission is on, GDB may insert tracepoints in the program.\n\
4096 Otherwise, any sort of insertion attempt will result in an error."),
4097 set_target_permissions, NULL,
4098 &setlist, &showlist);
4099
4100 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4101 &may_insert_fast_tracepoints_1, _("\
4102 Set permission to insert fast tracepoints in the target."), _("\
4103 Show permission to insert fast tracepoints in the target."), _("\
4104 When this permission is on, GDB may insert fast tracepoints.\n\
4105 Otherwise, any sort of insertion attempt will result in an error."),
4106 set_target_permissions, NULL,
4107 &setlist, &showlist);
4108
4109 add_setshow_boolean_cmd ("may-interrupt", class_support,
4110 &may_stop_1, _("\
4111 Set permission to interrupt or signal the target."), _("\
4112 Show permission to interrupt or signal the target."), _("\
4113 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4114 Otherwise, any attempt to interrupt or stop will be ignored."),
4115 set_target_permissions, NULL,
4116 &setlist, &showlist);
4117
4118 add_com ("flash-erase", no_class, flash_erase_command,
4119 _("Erase all flash memory regions."));
4120
4121 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4122 &auto_connect_native_target, _("\
4123 Set whether GDB may automatically connect to the native target."), _("\
4124 Show whether GDB may automatically connect to the native target."), _("\
4125 When on, and GDB is not connected to a target yet, GDB\n\
4126 attempts \"run\" and other commands with the native target."),
4127 NULL, show_auto_connect_native_target,
4128 &setlist, &showlist);
4129 }
This page took 0.168595 seconds and 5 git commands to generate.