target_ops: Use bool throughout
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static struct target_ops *find_default_run_target (const char *);
90
91 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
92 ptid_t ptid);
93
94 static int dummy_find_memory_regions (struct target_ops *self,
95 find_memory_region_ftype ignore1,
96 void *ignore2);
97
98 static char *dummy_make_corefile_notes (struct target_ops *self,
99 bfd *ignore1, int *ignore2);
100
101 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
102
103 static enum exec_direction_kind default_execution_direction
104 (struct target_ops *self);
105
106 /* Vector of existing target structures. */
107 typedef struct target_ops *target_ops_p;
108 DEF_VEC_P (target_ops_p);
109 static VEC (target_ops_p) *target_structs;
110
111 /* The initial current target, so that there is always a semi-valid
112 current target. */
113
114 static struct target_ops *the_dummy_target;
115 static struct target_ops *the_debug_target;
116
117 /* Top of target stack. */
118 /* The target structure we are currently using to talk to a process
119 or file or whatever "inferior" we have. */
120
121 struct target_ops *target_stack;
122
123 /* Command list for target. */
124
125 static struct cmd_list_element *targetlist = NULL;
126
127 /* Nonzero if we should trust readonly sections from the
128 executable when reading memory. */
129
130 static int trust_readonly = 0;
131
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
134
135 static int show_memory_breakpoints = 0;
136
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertant disruption, such as in non-stop mode. */
140
141 int may_write_registers = 1;
142
143 int may_write_memory = 1;
144
145 int may_insert_breakpoints = 1;
146
147 int may_insert_tracepoints = 1;
148
149 int may_insert_fast_tracepoints = 1;
150
151 int may_stop = 1;
152
153 /* Non-zero if we want to see trace of target level stuff. */
154
155 static unsigned int targetdebug = 0;
156
157 static void
158 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
159 {
160 if (targetdebug)
161 push_target (the_debug_target);
162 else
163 unpush_target (the_debug_target);
164 }
165
166 static void
167 show_targetdebug (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
171 }
172
173 /* The user just typed 'target' without the name of a target. */
174
175 static void
176 target_command (const char *arg, int from_tty)
177 {
178 fputs_filtered ("Argument required (target name). Try `help target'\n",
179 gdb_stdout);
180 }
181
182 /* Default target_has_* methods for process_stratum targets. */
183
184 int
185 default_child_has_all_memory ()
186 {
187 /* If no inferior selected, then we can't read memory here. */
188 if (ptid_equal (inferior_ptid, null_ptid))
189 return 0;
190
191 return 1;
192 }
193
194 int
195 default_child_has_memory ()
196 {
197 /* If no inferior selected, then we can't read memory here. */
198 if (ptid_equal (inferior_ptid, null_ptid))
199 return 0;
200
201 return 1;
202 }
203
204 int
205 default_child_has_stack ()
206 {
207 /* If no inferior selected, there's no stack. */
208 if (ptid_equal (inferior_ptid, null_ptid))
209 return 0;
210
211 return 1;
212 }
213
214 int
215 default_child_has_registers ()
216 {
217 /* Can't read registers from no inferior. */
218 if (ptid_equal (inferior_ptid, null_ptid))
219 return 0;
220
221 return 1;
222 }
223
224 int
225 default_child_has_execution (ptid_t the_ptid)
226 {
227 /* If there's no thread selected, then we can't make it run through
228 hoops. */
229 if (ptid_equal (the_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235
236 int
237 target_has_all_memory_1 (void)
238 {
239 struct target_ops *t;
240
241 for (t = target_stack; t != NULL; t = t->beneath)
242 if (t->has_all_memory ())
243 return 1;
244
245 return 0;
246 }
247
248 int
249 target_has_memory_1 (void)
250 {
251 struct target_ops *t;
252
253 for (t = target_stack; t != NULL; t = t->beneath)
254 if (t->has_memory ())
255 return 1;
256
257 return 0;
258 }
259
260 int
261 target_has_stack_1 (void)
262 {
263 struct target_ops *t;
264
265 for (t = target_stack; t != NULL; t = t->beneath)
266 if (t->has_stack ())
267 return 1;
268
269 return 0;
270 }
271
272 int
273 target_has_registers_1 (void)
274 {
275 struct target_ops *t;
276
277 for (t = target_stack; t != NULL; t = t->beneath)
278 if (t->has_registers ())
279 return 1;
280
281 return 0;
282 }
283
284 int
285 target_has_execution_1 (ptid_t the_ptid)
286 {
287 struct target_ops *t;
288
289 for (t = target_stack; t != NULL; t = t->beneath)
290 if (t->has_execution (the_ptid))
291 return 1;
292
293 return 0;
294 }
295
296 int
297 target_has_execution_current (void)
298 {
299 return target_has_execution_1 (inferior_ptid);
300 }
301
302 /* This is used to implement the various target commands. */
303
304 static void
305 open_target (const char *args, int from_tty, struct cmd_list_element *command)
306 {
307 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
308
309 if (targetdebug)
310 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
311 ops->shortname ());
312
313 ops->open (args, from_tty);
314
315 if (targetdebug)
316 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
317 ops->shortname (), args, from_tty);
318 }
319
320 /* Add possible target architecture T to the list and add a new
321 command 'target T->shortname ()'. Set COMPLETER as the command's
322 completer if not NULL. */
323
324 void
325 add_target_with_completer (struct target_ops *t,
326 completer_ftype *completer)
327 {
328 struct cmd_list_element *c;
329
330 VEC_safe_push (target_ops_p, target_structs, t);
331
332 if (targetlist == NULL)
333 add_prefix_cmd ("target", class_run, target_command, _("\
334 Connect to a target machine or process.\n\
335 The first argument is the type or protocol of the target machine.\n\
336 Remaining arguments are interpreted by the target protocol. For more\n\
337 information on the arguments for a particular protocol, type\n\
338 `help target ' followed by the protocol name."),
339 &targetlist, "target ", 0, &cmdlist);
340 c = add_cmd (t->shortname (), no_class, t->doc (), &targetlist);
341 set_cmd_sfunc (c, open_target);
342 set_cmd_context (c, t);
343 if (completer != NULL)
344 set_cmd_completer (c, completer);
345 }
346
347 /* Add a possible target architecture to the list. */
348
349 void
350 add_target (struct target_ops *t)
351 {
352 add_target_with_completer (t, NULL);
353 }
354
355 /* See target.h. */
356
357 void
358 add_deprecated_target_alias (struct target_ops *t, const char *alias)
359 {
360 struct cmd_list_element *c;
361 char *alt;
362
363 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
364 see PR cli/15104. */
365 c = add_cmd (alias, no_class, t->doc (), &targetlist);
366 set_cmd_sfunc (c, open_target);
367 set_cmd_context (c, t);
368 alt = xstrprintf ("target %s", t->shortname ());
369 deprecate_cmd (c, alt);
370 }
371
372 /* Stub functions */
373
374 void
375 target_kill (void)
376 {
377 target_stack->kill ();
378 }
379
380 void
381 target_load (const char *arg, int from_tty)
382 {
383 target_dcache_invalidate ();
384 target_stack->load (arg, from_tty);
385 }
386
387 /* Define it. */
388
389 target_terminal_state target_terminal::m_terminal_state
390 = target_terminal_state::is_ours;
391
392 /* See target/target.h. */
393
394 void
395 target_terminal::init (void)
396 {
397 target_stack->terminal_init ();
398
399 m_terminal_state = target_terminal_state::is_ours;
400 }
401
402 /* See target/target.h. */
403
404 void
405 target_terminal::inferior (void)
406 {
407 struct ui *ui = current_ui;
408
409 /* A background resume (``run&'') should leave GDB in control of the
410 terminal. */
411 if (ui->prompt_state != PROMPT_BLOCKED)
412 return;
413
414 /* Since we always run the inferior in the main console (unless "set
415 inferior-tty" is in effect), when some UI other than the main one
416 calls target_terminal::inferior, then we leave the main UI's
417 terminal settings as is. */
418 if (ui != main_ui)
419 return;
420
421 /* If GDB is resuming the inferior in the foreground, install
422 inferior's terminal modes. */
423
424 struct inferior *inf = current_inferior ();
425
426 if (inf->terminal_state != target_terminal_state::is_inferior)
427 {
428 target_stack->terminal_inferior ();
429 inf->terminal_state = target_terminal_state::is_inferior;
430 }
431
432 m_terminal_state = target_terminal_state::is_inferior;
433
434 /* If the user hit C-c before, pretend that it was hit right
435 here. */
436 if (check_quit_flag ())
437 target_pass_ctrlc ();
438 }
439
440 /* See target/target.h. */
441
442 void
443 target_terminal::restore_inferior (void)
444 {
445 struct ui *ui = current_ui;
446
447 /* See target_terminal::inferior(). */
448 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
449 return;
450
451 /* Restore the terminal settings of inferiors that were in the
452 foreground but are now ours_for_output due to a temporary
453 target_target::ours_for_output() call. */
454
455 {
456 scoped_restore_current_inferior restore_inferior;
457 struct inferior *inf;
458
459 ALL_INFERIORS (inf)
460 {
461 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
462 {
463 set_current_inferior (inf);
464 target_stack->terminal_inferior ();
465 inf->terminal_state = target_terminal_state::is_inferior;
466 }
467 }
468 }
469
470 m_terminal_state = target_terminal_state::is_inferior;
471
472 /* If the user hit C-c before, pretend that it was hit right
473 here. */
474 if (check_quit_flag ())
475 target_pass_ctrlc ();
476 }
477
478 /* Switch terminal state to DESIRED_STATE, either is_ours, or
479 is_ours_for_output. */
480
481 static void
482 target_terminal_is_ours_kind (target_terminal_state desired_state)
483 {
484 scoped_restore_current_inferior restore_inferior;
485 struct inferior *inf;
486
487 /* Must do this in two passes. First, have all inferiors save the
488 current terminal settings. Then, after all inferiors have add a
489 chance to safely save the terminal settings, restore GDB's
490 terminal settings. */
491
492 ALL_INFERIORS (inf)
493 {
494 if (inf->terminal_state == target_terminal_state::is_inferior)
495 {
496 set_current_inferior (inf);
497 target_stack->terminal_save_inferior ();
498 }
499 }
500
501 ALL_INFERIORS (inf)
502 {
503 /* Note we don't check is_inferior here like above because we
504 need to handle 'is_ours_for_output -> is_ours' too. Careful
505 to never transition from 'is_ours' to 'is_ours_for_output',
506 though. */
507 if (inf->terminal_state != target_terminal_state::is_ours
508 && inf->terminal_state != desired_state)
509 {
510 set_current_inferior (inf);
511 if (desired_state == target_terminal_state::is_ours)
512 target_stack->terminal_ours ();
513 else if (desired_state == target_terminal_state::is_ours_for_output)
514 target_stack->terminal_ours_for_output ();
515 else
516 gdb_assert_not_reached ("unhandled desired state");
517 inf->terminal_state = desired_state;
518 }
519 }
520 }
521
522 /* See target/target.h. */
523
524 void
525 target_terminal::ours ()
526 {
527 struct ui *ui = current_ui;
528
529 /* See target_terminal::inferior. */
530 if (ui != main_ui)
531 return;
532
533 if (m_terminal_state == target_terminal_state::is_ours)
534 return;
535
536 target_terminal_is_ours_kind (target_terminal_state::is_ours);
537 m_terminal_state = target_terminal_state::is_ours;
538 }
539
540 /* See target/target.h. */
541
542 void
543 target_terminal::ours_for_output ()
544 {
545 struct ui *ui = current_ui;
546
547 /* See target_terminal::inferior. */
548 if (ui != main_ui)
549 return;
550
551 if (!target_terminal::is_inferior ())
552 return;
553
554 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
555 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
556 }
557
558 /* See target/target.h. */
559
560 void
561 target_terminal::info (const char *arg, int from_tty)
562 {
563 target_stack->terminal_info (arg, from_tty);
564 }
565
566 /* See target.h. */
567
568 int
569 target_supports_terminal_ours (void)
570 {
571 return target_stack->supports_terminal_ours ();
572 }
573
574 static void
575 tcomplain (void)
576 {
577 error (_("You can't do that when your target is `%s'"),
578 target_stack->shortname ());
579 }
580
581 void
582 noprocess (void)
583 {
584 error (_("You can't do that without a process to debug."));
585 }
586
587 static void
588 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
589 {
590 printf_unfiltered (_("No saved terminal information.\n"));
591 }
592
593 /* A default implementation for the to_get_ada_task_ptid target method.
594
595 This function builds the PTID by using both LWP and TID as part of
596 the PTID lwp and tid elements. The pid used is the pid of the
597 inferior_ptid. */
598
599 static ptid_t
600 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
601 {
602 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
603 }
604
605 static enum exec_direction_kind
606 default_execution_direction (struct target_ops *self)
607 {
608 if (!target_can_execute_reverse)
609 return EXEC_FORWARD;
610 else if (!target_can_async_p ())
611 return EXEC_FORWARD;
612 else
613 gdb_assert_not_reached ("\
614 to_execution_direction must be implemented for reverse async");
615 }
616
617 /* Push a new target type into the stack of the existing target accessors,
618 possibly superseding some of the existing accessors.
619
620 Rather than allow an empty stack, we always have the dummy target at
621 the bottom stratum, so we can call the function vectors without
622 checking them. */
623
624 void
625 push_target (struct target_ops *t)
626 {
627 struct target_ops **cur;
628
629 /* Find the proper stratum to install this target in. */
630 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
631 {
632 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
633 break;
634 }
635
636 /* If there's already targets at this stratum, remove them. */
637 /* FIXME: cagney/2003-10-15: I think this should be popping all
638 targets to CUR, and not just those at this stratum level. */
639 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
640 {
641 /* There's already something at this stratum level. Close it,
642 and un-hook it from the stack. */
643 struct target_ops *tmp = (*cur);
644
645 (*cur) = (*cur)->beneath;
646 tmp->beneath = NULL;
647 target_close (tmp);
648 }
649
650 /* We have removed all targets in our stratum, now add the new one. */
651 t->beneath = (*cur);
652 (*cur) = t;
653 }
654
655 /* Remove a target_ops vector from the stack, wherever it may be.
656 Return how many times it was removed (0 or 1). */
657
658 int
659 unpush_target (struct target_ops *t)
660 {
661 struct target_ops **cur;
662 struct target_ops *tmp;
663
664 if (t->to_stratum == dummy_stratum)
665 internal_error (__FILE__, __LINE__,
666 _("Attempt to unpush the dummy target"));
667
668 /* Look for the specified target. Note that we assume that a target
669 can only occur once in the target stack. */
670
671 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
672 {
673 if ((*cur) == t)
674 break;
675 }
676
677 /* If we don't find target_ops, quit. Only open targets should be
678 closed. */
679 if ((*cur) == NULL)
680 return 0;
681
682 /* Unchain the target. */
683 tmp = (*cur);
684 (*cur) = (*cur)->beneath;
685 tmp->beneath = NULL;
686
687 /* Finally close the target. Note we do this after unchaining, so
688 any target method calls from within the target_close
689 implementation don't end up in T anymore. */
690 target_close (t);
691
692 return 1;
693 }
694
695 /* Unpush TARGET and assert that it worked. */
696
697 static void
698 unpush_target_and_assert (struct target_ops *target)
699 {
700 if (!unpush_target (target))
701 {
702 fprintf_unfiltered (gdb_stderr,
703 "pop_all_targets couldn't find target %s\n",
704 target->shortname ());
705 internal_error (__FILE__, __LINE__,
706 _("failed internal consistency check"));
707 }
708 }
709
710 void
711 pop_all_targets_above (enum strata above_stratum)
712 {
713 while ((int) (target_stack->to_stratum) > (int) above_stratum)
714 unpush_target_and_assert (target_stack);
715 }
716
717 /* See target.h. */
718
719 void
720 pop_all_targets_at_and_above (enum strata stratum)
721 {
722 while ((int) (target_stack->to_stratum) >= (int) stratum)
723 unpush_target_and_assert (target_stack);
724 }
725
726 void
727 pop_all_targets (void)
728 {
729 pop_all_targets_above (dummy_stratum);
730 }
731
732 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
733
734 int
735 target_is_pushed (struct target_ops *t)
736 {
737 struct target_ops *cur;
738
739 for (cur = target_stack; cur != NULL; cur = cur->beneath)
740 if (cur == t)
741 return 1;
742
743 return 0;
744 }
745
746 /* Default implementation of to_get_thread_local_address. */
747
748 static void
749 generic_tls_error (void)
750 {
751 throw_error (TLS_GENERIC_ERROR,
752 _("Cannot find thread-local variables on this target"));
753 }
754
755 /* Using the objfile specified in OBJFILE, find the address for the
756 current thread's thread-local storage with offset OFFSET. */
757 CORE_ADDR
758 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
759 {
760 volatile CORE_ADDR addr = 0;
761 struct target_ops *target = target_stack;
762
763 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
764 {
765 ptid_t ptid = inferior_ptid;
766
767 TRY
768 {
769 CORE_ADDR lm_addr;
770
771 /* Fetch the load module address for this objfile. */
772 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
773 objfile);
774
775 addr = target->get_thread_local_address (ptid, lm_addr, offset);
776 }
777 /* If an error occurred, print TLS related messages here. Otherwise,
778 throw the error to some higher catcher. */
779 CATCH (ex, RETURN_MASK_ALL)
780 {
781 int objfile_is_library = (objfile->flags & OBJF_SHARED);
782
783 switch (ex.error)
784 {
785 case TLS_NO_LIBRARY_SUPPORT_ERROR:
786 error (_("Cannot find thread-local variables "
787 "in this thread library."));
788 break;
789 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
790 if (objfile_is_library)
791 error (_("Cannot find shared library `%s' in dynamic"
792 " linker's load module list"), objfile_name (objfile));
793 else
794 error (_("Cannot find executable file `%s' in dynamic"
795 " linker's load module list"), objfile_name (objfile));
796 break;
797 case TLS_NOT_ALLOCATED_YET_ERROR:
798 if (objfile_is_library)
799 error (_("The inferior has not yet allocated storage for"
800 " thread-local variables in\n"
801 "the shared library `%s'\n"
802 "for %s"),
803 objfile_name (objfile), target_pid_to_str (ptid));
804 else
805 error (_("The inferior has not yet allocated storage for"
806 " thread-local variables in\n"
807 "the executable `%s'\n"
808 "for %s"),
809 objfile_name (objfile), target_pid_to_str (ptid));
810 break;
811 case TLS_GENERIC_ERROR:
812 if (objfile_is_library)
813 error (_("Cannot find thread-local storage for %s, "
814 "shared library %s:\n%s"),
815 target_pid_to_str (ptid),
816 objfile_name (objfile), ex.message);
817 else
818 error (_("Cannot find thread-local storage for %s, "
819 "executable file %s:\n%s"),
820 target_pid_to_str (ptid),
821 objfile_name (objfile), ex.message);
822 break;
823 default:
824 throw_exception (ex);
825 break;
826 }
827 }
828 END_CATCH
829 }
830 /* It wouldn't be wrong here to try a gdbarch method, too; finding
831 TLS is an ABI-specific thing. But we don't do that yet. */
832 else
833 error (_("Cannot find thread-local variables on this target"));
834
835 return addr;
836 }
837
838 const char *
839 target_xfer_status_to_string (enum target_xfer_status status)
840 {
841 #define CASE(X) case X: return #X
842 switch (status)
843 {
844 CASE(TARGET_XFER_E_IO);
845 CASE(TARGET_XFER_UNAVAILABLE);
846 default:
847 return "<unknown>";
848 }
849 #undef CASE
850 };
851
852
853 #undef MIN
854 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
855
856 /* target_read_string -- read a null terminated string, up to LEN bytes,
857 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
858 Set *STRING to a pointer to malloc'd memory containing the data; the caller
859 is responsible for freeing it. Return the number of bytes successfully
860 read. */
861
862 int
863 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
864 int len, int *errnop)
865 {
866 int tlen, offset, i;
867 gdb_byte buf[4];
868 int errcode = 0;
869 char *buffer;
870 int buffer_allocated;
871 char *bufptr;
872 unsigned int nbytes_read = 0;
873
874 gdb_assert (string);
875
876 /* Small for testing. */
877 buffer_allocated = 4;
878 buffer = (char *) xmalloc (buffer_allocated);
879 bufptr = buffer;
880
881 while (len > 0)
882 {
883 tlen = MIN (len, 4 - (memaddr & 3));
884 offset = memaddr & 3;
885
886 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
887 if (errcode != 0)
888 {
889 /* The transfer request might have crossed the boundary to an
890 unallocated region of memory. Retry the transfer, requesting
891 a single byte. */
892 tlen = 1;
893 offset = 0;
894 errcode = target_read_memory (memaddr, buf, 1);
895 if (errcode != 0)
896 goto done;
897 }
898
899 if (bufptr - buffer + tlen > buffer_allocated)
900 {
901 unsigned int bytes;
902
903 bytes = bufptr - buffer;
904 buffer_allocated *= 2;
905 buffer = (char *) xrealloc (buffer, buffer_allocated);
906 bufptr = buffer + bytes;
907 }
908
909 for (i = 0; i < tlen; i++)
910 {
911 *bufptr++ = buf[i + offset];
912 if (buf[i + offset] == '\000')
913 {
914 nbytes_read += i + 1;
915 goto done;
916 }
917 }
918
919 memaddr += tlen;
920 len -= tlen;
921 nbytes_read += tlen;
922 }
923 done:
924 string->reset (buffer);
925 if (errnop != NULL)
926 *errnop = errcode;
927 return nbytes_read;
928 }
929
930 struct target_section_table *
931 target_get_section_table (struct target_ops *target)
932 {
933 return target->get_section_table ();
934 }
935
936 /* Find a section containing ADDR. */
937
938 struct target_section *
939 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
940 {
941 struct target_section_table *table = target_get_section_table (target);
942 struct target_section *secp;
943
944 if (table == NULL)
945 return NULL;
946
947 for (secp = table->sections; secp < table->sections_end; secp++)
948 {
949 if (addr >= secp->addr && addr < secp->endaddr)
950 return secp;
951 }
952 return NULL;
953 }
954
955
956 /* Helper for the memory xfer routines. Checks the attributes of the
957 memory region of MEMADDR against the read or write being attempted.
958 If the access is permitted returns true, otherwise returns false.
959 REGION_P is an optional output parameter. If not-NULL, it is
960 filled with a pointer to the memory region of MEMADDR. REG_LEN
961 returns LEN trimmed to the end of the region. This is how much the
962 caller can continue requesting, if the access is permitted. A
963 single xfer request must not straddle memory region boundaries. */
964
965 static int
966 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
967 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
968 struct mem_region **region_p)
969 {
970 struct mem_region *region;
971
972 region = lookup_mem_region (memaddr);
973
974 if (region_p != NULL)
975 *region_p = region;
976
977 switch (region->attrib.mode)
978 {
979 case MEM_RO:
980 if (writebuf != NULL)
981 return 0;
982 break;
983
984 case MEM_WO:
985 if (readbuf != NULL)
986 return 0;
987 break;
988
989 case MEM_FLASH:
990 /* We only support writing to flash during "load" for now. */
991 if (writebuf != NULL)
992 error (_("Writing to flash memory forbidden in this context"));
993 break;
994
995 case MEM_NONE:
996 return 0;
997 }
998
999 /* region->hi == 0 means there's no upper bound. */
1000 if (memaddr + len < region->hi || region->hi == 0)
1001 *reg_len = len;
1002 else
1003 *reg_len = region->hi - memaddr;
1004
1005 return 1;
1006 }
1007
1008 /* Read memory from more than one valid target. A core file, for
1009 instance, could have some of memory but delegate other bits to
1010 the target below it. So, we must manually try all targets. */
1011
1012 enum target_xfer_status
1013 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1014 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1015 ULONGEST *xfered_len)
1016 {
1017 enum target_xfer_status res;
1018
1019 do
1020 {
1021 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1022 readbuf, writebuf, memaddr, len,
1023 xfered_len);
1024 if (res == TARGET_XFER_OK)
1025 break;
1026
1027 /* Stop if the target reports that the memory is not available. */
1028 if (res == TARGET_XFER_UNAVAILABLE)
1029 break;
1030
1031 /* We want to continue past core files to executables, but not
1032 past a running target's memory. */
1033 if (ops->has_all_memory ())
1034 break;
1035
1036 ops = ops->beneath;
1037 }
1038 while (ops != NULL);
1039
1040 /* The cache works at the raw memory level. Make sure the cache
1041 gets updated with raw contents no matter what kind of memory
1042 object was originally being written. Note we do write-through
1043 first, so that if it fails, we don't write to the cache contents
1044 that never made it to the target. */
1045 if (writebuf != NULL
1046 && !ptid_equal (inferior_ptid, null_ptid)
1047 && target_dcache_init_p ()
1048 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1049 {
1050 DCACHE *dcache = target_dcache_get ();
1051
1052 /* Note that writing to an area of memory which wasn't present
1053 in the cache doesn't cause it to be loaded in. */
1054 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1055 }
1056
1057 return res;
1058 }
1059
1060 /* Perform a partial memory transfer.
1061 For docs see target.h, to_xfer_partial. */
1062
1063 static enum target_xfer_status
1064 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1065 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1066 ULONGEST len, ULONGEST *xfered_len)
1067 {
1068 enum target_xfer_status res;
1069 ULONGEST reg_len;
1070 struct mem_region *region;
1071 struct inferior *inf;
1072
1073 /* For accesses to unmapped overlay sections, read directly from
1074 files. Must do this first, as MEMADDR may need adjustment. */
1075 if (readbuf != NULL && overlay_debugging)
1076 {
1077 struct obj_section *section = find_pc_overlay (memaddr);
1078
1079 if (pc_in_unmapped_range (memaddr, section))
1080 {
1081 struct target_section_table *table
1082 = target_get_section_table (ops);
1083 const char *section_name = section->the_bfd_section->name;
1084
1085 memaddr = overlay_mapped_address (memaddr, section);
1086 return section_table_xfer_memory_partial (readbuf, writebuf,
1087 memaddr, len, xfered_len,
1088 table->sections,
1089 table->sections_end,
1090 section_name);
1091 }
1092 }
1093
1094 /* Try the executable files, if "trust-readonly-sections" is set. */
1095 if (readbuf != NULL && trust_readonly)
1096 {
1097 struct target_section *secp;
1098 struct target_section_table *table;
1099
1100 secp = target_section_by_addr (ops, memaddr);
1101 if (secp != NULL
1102 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1103 secp->the_bfd_section)
1104 & SEC_READONLY))
1105 {
1106 table = target_get_section_table (ops);
1107 return section_table_xfer_memory_partial (readbuf, writebuf,
1108 memaddr, len, xfered_len,
1109 table->sections,
1110 table->sections_end,
1111 NULL);
1112 }
1113 }
1114
1115 /* Try GDB's internal data cache. */
1116
1117 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1118 &region))
1119 return TARGET_XFER_E_IO;
1120
1121 if (!ptid_equal (inferior_ptid, null_ptid))
1122 inf = find_inferior_ptid (inferior_ptid);
1123 else
1124 inf = NULL;
1125
1126 if (inf != NULL
1127 && readbuf != NULL
1128 /* The dcache reads whole cache lines; that doesn't play well
1129 with reading from a trace buffer, because reading outside of
1130 the collected memory range fails. */
1131 && get_traceframe_number () == -1
1132 && (region->attrib.cache
1133 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1134 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1135 {
1136 DCACHE *dcache = target_dcache_get_or_init ();
1137
1138 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1139 reg_len, xfered_len);
1140 }
1141
1142 /* If none of those methods found the memory we wanted, fall back
1143 to a target partial transfer. Normally a single call to
1144 to_xfer_partial is enough; if it doesn't recognize an object
1145 it will call the to_xfer_partial of the next target down.
1146 But for memory this won't do. Memory is the only target
1147 object which can be read from more than one valid target.
1148 A core file, for instance, could have some of memory but
1149 delegate other bits to the target below it. So, we must
1150 manually try all targets. */
1151
1152 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1153 xfered_len);
1154
1155 /* If we still haven't got anything, return the last error. We
1156 give up. */
1157 return res;
1158 }
1159
1160 /* Perform a partial memory transfer. For docs see target.h,
1161 to_xfer_partial. */
1162
1163 static enum target_xfer_status
1164 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1165 gdb_byte *readbuf, const gdb_byte *writebuf,
1166 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1167 {
1168 enum target_xfer_status res;
1169
1170 /* Zero length requests are ok and require no work. */
1171 if (len == 0)
1172 return TARGET_XFER_EOF;
1173
1174 memaddr = address_significant (target_gdbarch (), memaddr);
1175
1176 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1177 breakpoint insns, thus hiding out from higher layers whether
1178 there are software breakpoints inserted in the code stream. */
1179 if (readbuf != NULL)
1180 {
1181 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1182 xfered_len);
1183
1184 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1185 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1186 }
1187 else
1188 {
1189 /* A large write request is likely to be partially satisfied
1190 by memory_xfer_partial_1. We will continually malloc
1191 and free a copy of the entire write request for breakpoint
1192 shadow handling even though we only end up writing a small
1193 subset of it. Cap writes to a limit specified by the target
1194 to mitigate this. */
1195 len = std::min (ops->get_memory_xfer_limit (), len);
1196
1197 gdb::byte_vector buf (writebuf, writebuf + len);
1198 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1199 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1200 xfered_len);
1201 }
1202
1203 return res;
1204 }
1205
1206 scoped_restore_tmpl<int>
1207 make_scoped_restore_show_memory_breakpoints (int show)
1208 {
1209 return make_scoped_restore (&show_memory_breakpoints, show);
1210 }
1211
1212 /* For docs see target.h, to_xfer_partial. */
1213
1214 enum target_xfer_status
1215 target_xfer_partial (struct target_ops *ops,
1216 enum target_object object, const char *annex,
1217 gdb_byte *readbuf, const gdb_byte *writebuf,
1218 ULONGEST offset, ULONGEST len,
1219 ULONGEST *xfered_len)
1220 {
1221 enum target_xfer_status retval;
1222
1223 /* Transfer is done when LEN is zero. */
1224 if (len == 0)
1225 return TARGET_XFER_EOF;
1226
1227 if (writebuf && !may_write_memory)
1228 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1229 core_addr_to_string_nz (offset), plongest (len));
1230
1231 *xfered_len = 0;
1232
1233 /* If this is a memory transfer, let the memory-specific code
1234 have a look at it instead. Memory transfers are more
1235 complicated. */
1236 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1237 || object == TARGET_OBJECT_CODE_MEMORY)
1238 retval = memory_xfer_partial (ops, object, readbuf,
1239 writebuf, offset, len, xfered_len);
1240 else if (object == TARGET_OBJECT_RAW_MEMORY)
1241 {
1242 /* Skip/avoid accessing the target if the memory region
1243 attributes block the access. Check this here instead of in
1244 raw_memory_xfer_partial as otherwise we'd end up checking
1245 this twice in the case of the memory_xfer_partial path is
1246 taken; once before checking the dcache, and another in the
1247 tail call to raw_memory_xfer_partial. */
1248 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1249 NULL))
1250 return TARGET_XFER_E_IO;
1251
1252 /* Request the normal memory object from other layers. */
1253 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1254 xfered_len);
1255 }
1256 else
1257 retval = ops->xfer_partial (object, annex, readbuf,
1258 writebuf, offset, len, xfered_len);
1259
1260 if (targetdebug)
1261 {
1262 const unsigned char *myaddr = NULL;
1263
1264 fprintf_unfiltered (gdb_stdlog,
1265 "%s:target_xfer_partial "
1266 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1267 ops->shortname (),
1268 (int) object,
1269 (annex ? annex : "(null)"),
1270 host_address_to_string (readbuf),
1271 host_address_to_string (writebuf),
1272 core_addr_to_string_nz (offset),
1273 pulongest (len), retval,
1274 pulongest (*xfered_len));
1275
1276 if (readbuf)
1277 myaddr = readbuf;
1278 if (writebuf)
1279 myaddr = writebuf;
1280 if (retval == TARGET_XFER_OK && myaddr != NULL)
1281 {
1282 int i;
1283
1284 fputs_unfiltered (", bytes =", gdb_stdlog);
1285 for (i = 0; i < *xfered_len; i++)
1286 {
1287 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1288 {
1289 if (targetdebug < 2 && i > 0)
1290 {
1291 fprintf_unfiltered (gdb_stdlog, " ...");
1292 break;
1293 }
1294 fprintf_unfiltered (gdb_stdlog, "\n");
1295 }
1296
1297 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1298 }
1299 }
1300
1301 fputc_unfiltered ('\n', gdb_stdlog);
1302 }
1303
1304 /* Check implementations of to_xfer_partial update *XFERED_LEN
1305 properly. Do assertion after printing debug messages, so that we
1306 can find more clues on assertion failure from debugging messages. */
1307 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1308 gdb_assert (*xfered_len > 0);
1309
1310 return retval;
1311 }
1312
1313 /* Read LEN bytes of target memory at address MEMADDR, placing the
1314 results in GDB's memory at MYADDR. Returns either 0 for success or
1315 -1 if any error occurs.
1316
1317 If an error occurs, no guarantee is made about the contents of the data at
1318 MYADDR. In particular, the caller should not depend upon partial reads
1319 filling the buffer with good data. There is no way for the caller to know
1320 how much good data might have been transfered anyway. Callers that can
1321 deal with partial reads should call target_read (which will retry until
1322 it makes no progress, and then return how much was transferred). */
1323
1324 int
1325 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1326 {
1327 if (target_read (target_stack, TARGET_OBJECT_MEMORY, NULL,
1328 myaddr, memaddr, len) == len)
1329 return 0;
1330 else
1331 return -1;
1332 }
1333
1334 /* See target/target.h. */
1335
1336 int
1337 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1338 {
1339 gdb_byte buf[4];
1340 int r;
1341
1342 r = target_read_memory (memaddr, buf, sizeof buf);
1343 if (r != 0)
1344 return r;
1345 *result = extract_unsigned_integer (buf, sizeof buf,
1346 gdbarch_byte_order (target_gdbarch ()));
1347 return 0;
1348 }
1349
1350 /* Like target_read_memory, but specify explicitly that this is a read
1351 from the target's raw memory. That is, this read bypasses the
1352 dcache, breakpoint shadowing, etc. */
1353
1354 int
1355 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1356 {
1357 if (target_read (target_stack, TARGET_OBJECT_RAW_MEMORY, NULL,
1358 myaddr, memaddr, len) == len)
1359 return 0;
1360 else
1361 return -1;
1362 }
1363
1364 /* Like target_read_memory, but specify explicitly that this is a read from
1365 the target's stack. This may trigger different cache behavior. */
1366
1367 int
1368 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1369 {
1370 if (target_read (target_stack, TARGET_OBJECT_STACK_MEMORY, NULL,
1371 myaddr, memaddr, len) == len)
1372 return 0;
1373 else
1374 return -1;
1375 }
1376
1377 /* Like target_read_memory, but specify explicitly that this is a read from
1378 the target's code. This may trigger different cache behavior. */
1379
1380 int
1381 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1382 {
1383 if (target_read (target_stack, TARGET_OBJECT_CODE_MEMORY, NULL,
1384 myaddr, memaddr, len) == len)
1385 return 0;
1386 else
1387 return -1;
1388 }
1389
1390 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1391 Returns either 0 for success or -1 if any error occurs. If an
1392 error occurs, no guarantee is made about how much data got written.
1393 Callers that can deal with partial writes should call
1394 target_write. */
1395
1396 int
1397 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1398 {
1399 if (target_write (target_stack, TARGET_OBJECT_MEMORY, NULL,
1400 myaddr, memaddr, len) == len)
1401 return 0;
1402 else
1403 return -1;
1404 }
1405
1406 /* Write LEN bytes from MYADDR to target raw memory at address
1407 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1408 If an error occurs, no guarantee is made about how much data got
1409 written. Callers that can deal with partial writes should call
1410 target_write. */
1411
1412 int
1413 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1414 {
1415 if (target_write (target_stack, TARGET_OBJECT_RAW_MEMORY, NULL,
1416 myaddr, memaddr, len) == len)
1417 return 0;
1418 else
1419 return -1;
1420 }
1421
1422 /* Fetch the target's memory map. */
1423
1424 std::vector<mem_region>
1425 target_memory_map (void)
1426 {
1427 std::vector<mem_region> result = target_stack->memory_map ();
1428 if (result.empty ())
1429 return result;
1430
1431 std::sort (result.begin (), result.end ());
1432
1433 /* Check that regions do not overlap. Simultaneously assign
1434 a numbering for the "mem" commands to use to refer to
1435 each region. */
1436 mem_region *last_one = NULL;
1437 for (size_t ix = 0; ix < result.size (); ix++)
1438 {
1439 mem_region *this_one = &result[ix];
1440 this_one->number = ix;
1441
1442 if (last_one != NULL && last_one->hi > this_one->lo)
1443 {
1444 warning (_("Overlapping regions in memory map: ignoring"));
1445 return std::vector<mem_region> ();
1446 }
1447
1448 last_one = this_one;
1449 }
1450
1451 return result;
1452 }
1453
1454 void
1455 target_flash_erase (ULONGEST address, LONGEST length)
1456 {
1457 target_stack->flash_erase (address, length);
1458 }
1459
1460 void
1461 target_flash_done (void)
1462 {
1463 target_stack->flash_done ();
1464 }
1465
1466 static void
1467 show_trust_readonly (struct ui_file *file, int from_tty,
1468 struct cmd_list_element *c, const char *value)
1469 {
1470 fprintf_filtered (file,
1471 _("Mode for reading from readonly sections is %s.\n"),
1472 value);
1473 }
1474
1475 /* Target vector read/write partial wrapper functions. */
1476
1477 static enum target_xfer_status
1478 target_read_partial (struct target_ops *ops,
1479 enum target_object object,
1480 const char *annex, gdb_byte *buf,
1481 ULONGEST offset, ULONGEST len,
1482 ULONGEST *xfered_len)
1483 {
1484 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1485 xfered_len);
1486 }
1487
1488 static enum target_xfer_status
1489 target_write_partial (struct target_ops *ops,
1490 enum target_object object,
1491 const char *annex, const gdb_byte *buf,
1492 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1493 {
1494 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1495 xfered_len);
1496 }
1497
1498 /* Wrappers to perform the full transfer. */
1499
1500 /* For docs on target_read see target.h. */
1501
1502 LONGEST
1503 target_read (struct target_ops *ops,
1504 enum target_object object,
1505 const char *annex, gdb_byte *buf,
1506 ULONGEST offset, LONGEST len)
1507 {
1508 LONGEST xfered_total = 0;
1509 int unit_size = 1;
1510
1511 /* If we are reading from a memory object, find the length of an addressable
1512 unit for that architecture. */
1513 if (object == TARGET_OBJECT_MEMORY
1514 || object == TARGET_OBJECT_STACK_MEMORY
1515 || object == TARGET_OBJECT_CODE_MEMORY
1516 || object == TARGET_OBJECT_RAW_MEMORY)
1517 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1518
1519 while (xfered_total < len)
1520 {
1521 ULONGEST xfered_partial;
1522 enum target_xfer_status status;
1523
1524 status = target_read_partial (ops, object, annex,
1525 buf + xfered_total * unit_size,
1526 offset + xfered_total, len - xfered_total,
1527 &xfered_partial);
1528
1529 /* Call an observer, notifying them of the xfer progress? */
1530 if (status == TARGET_XFER_EOF)
1531 return xfered_total;
1532 else if (status == TARGET_XFER_OK)
1533 {
1534 xfered_total += xfered_partial;
1535 QUIT;
1536 }
1537 else
1538 return TARGET_XFER_E_IO;
1539
1540 }
1541 return len;
1542 }
1543
1544 /* Assuming that the entire [begin, end) range of memory cannot be
1545 read, try to read whatever subrange is possible to read.
1546
1547 The function returns, in RESULT, either zero or one memory block.
1548 If there's a readable subrange at the beginning, it is completely
1549 read and returned. Any further readable subrange will not be read.
1550 Otherwise, if there's a readable subrange at the end, it will be
1551 completely read and returned. Any readable subranges before it
1552 (obviously, not starting at the beginning), will be ignored. In
1553 other cases -- either no readable subrange, or readable subrange(s)
1554 that is neither at the beginning, or end, nothing is returned.
1555
1556 The purpose of this function is to handle a read across a boundary
1557 of accessible memory in a case when memory map is not available.
1558 The above restrictions are fine for this case, but will give
1559 incorrect results if the memory is 'patchy'. However, supporting
1560 'patchy' memory would require trying to read every single byte,
1561 and it seems unacceptable solution. Explicit memory map is
1562 recommended for this case -- and target_read_memory_robust will
1563 take care of reading multiple ranges then. */
1564
1565 static void
1566 read_whatever_is_readable (struct target_ops *ops,
1567 const ULONGEST begin, const ULONGEST end,
1568 int unit_size,
1569 std::vector<memory_read_result> *result)
1570 {
1571 ULONGEST current_begin = begin;
1572 ULONGEST current_end = end;
1573 int forward;
1574 ULONGEST xfered_len;
1575
1576 /* If we previously failed to read 1 byte, nothing can be done here. */
1577 if (end - begin <= 1)
1578 return;
1579
1580 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1581
1582 /* Check that either first or the last byte is readable, and give up
1583 if not. This heuristic is meant to permit reading accessible memory
1584 at the boundary of accessible region. */
1585 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1586 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1587 {
1588 forward = 1;
1589 ++current_begin;
1590 }
1591 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1592 buf.get () + (end - begin) - 1, end - 1, 1,
1593 &xfered_len) == TARGET_XFER_OK)
1594 {
1595 forward = 0;
1596 --current_end;
1597 }
1598 else
1599 return;
1600
1601 /* Loop invariant is that the [current_begin, current_end) was previously
1602 found to be not readable as a whole.
1603
1604 Note loop condition -- if the range has 1 byte, we can't divide the range
1605 so there's no point trying further. */
1606 while (current_end - current_begin > 1)
1607 {
1608 ULONGEST first_half_begin, first_half_end;
1609 ULONGEST second_half_begin, second_half_end;
1610 LONGEST xfer;
1611 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1612
1613 if (forward)
1614 {
1615 first_half_begin = current_begin;
1616 first_half_end = middle;
1617 second_half_begin = middle;
1618 second_half_end = current_end;
1619 }
1620 else
1621 {
1622 first_half_begin = middle;
1623 first_half_end = current_end;
1624 second_half_begin = current_begin;
1625 second_half_end = middle;
1626 }
1627
1628 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1629 buf.get () + (first_half_begin - begin) * unit_size,
1630 first_half_begin,
1631 first_half_end - first_half_begin);
1632
1633 if (xfer == first_half_end - first_half_begin)
1634 {
1635 /* This half reads up fine. So, the error must be in the
1636 other half. */
1637 current_begin = second_half_begin;
1638 current_end = second_half_end;
1639 }
1640 else
1641 {
1642 /* This half is not readable. Because we've tried one byte, we
1643 know some part of this half if actually readable. Go to the next
1644 iteration to divide again and try to read.
1645
1646 We don't handle the other half, because this function only tries
1647 to read a single readable subrange. */
1648 current_begin = first_half_begin;
1649 current_end = first_half_end;
1650 }
1651 }
1652
1653 if (forward)
1654 {
1655 /* The [begin, current_begin) range has been read. */
1656 result->emplace_back (begin, current_end, std::move (buf));
1657 }
1658 else
1659 {
1660 /* The [current_end, end) range has been read. */
1661 LONGEST region_len = end - current_end;
1662
1663 gdb::unique_xmalloc_ptr<gdb_byte> data
1664 ((gdb_byte *) xmalloc (region_len * unit_size));
1665 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1666 region_len * unit_size);
1667 result->emplace_back (current_end, end, std::move (data));
1668 }
1669 }
1670
1671 std::vector<memory_read_result>
1672 read_memory_robust (struct target_ops *ops,
1673 const ULONGEST offset, const LONGEST len)
1674 {
1675 std::vector<memory_read_result> result;
1676 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1677
1678 LONGEST xfered_total = 0;
1679 while (xfered_total < len)
1680 {
1681 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1682 LONGEST region_len;
1683
1684 /* If there is no explicit region, a fake one should be created. */
1685 gdb_assert (region);
1686
1687 if (region->hi == 0)
1688 region_len = len - xfered_total;
1689 else
1690 region_len = region->hi - offset;
1691
1692 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1693 {
1694 /* Cannot read this region. Note that we can end up here only
1695 if the region is explicitly marked inaccessible, or
1696 'inaccessible-by-default' is in effect. */
1697 xfered_total += region_len;
1698 }
1699 else
1700 {
1701 LONGEST to_read = std::min (len - xfered_total, region_len);
1702 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1703 ((gdb_byte *) xmalloc (to_read * unit_size));
1704
1705 LONGEST xfered_partial =
1706 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1707 offset + xfered_total, to_read);
1708 /* Call an observer, notifying them of the xfer progress? */
1709 if (xfered_partial <= 0)
1710 {
1711 /* Got an error reading full chunk. See if maybe we can read
1712 some subrange. */
1713 read_whatever_is_readable (ops, offset + xfered_total,
1714 offset + xfered_total + to_read,
1715 unit_size, &result);
1716 xfered_total += to_read;
1717 }
1718 else
1719 {
1720 result.emplace_back (offset + xfered_total,
1721 offset + xfered_total + xfered_partial,
1722 std::move (buffer));
1723 xfered_total += xfered_partial;
1724 }
1725 QUIT;
1726 }
1727 }
1728
1729 return result;
1730 }
1731
1732
1733 /* An alternative to target_write with progress callbacks. */
1734
1735 LONGEST
1736 target_write_with_progress (struct target_ops *ops,
1737 enum target_object object,
1738 const char *annex, const gdb_byte *buf,
1739 ULONGEST offset, LONGEST len,
1740 void (*progress) (ULONGEST, void *), void *baton)
1741 {
1742 LONGEST xfered_total = 0;
1743 int unit_size = 1;
1744
1745 /* If we are writing to a memory object, find the length of an addressable
1746 unit for that architecture. */
1747 if (object == TARGET_OBJECT_MEMORY
1748 || object == TARGET_OBJECT_STACK_MEMORY
1749 || object == TARGET_OBJECT_CODE_MEMORY
1750 || object == TARGET_OBJECT_RAW_MEMORY)
1751 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1752
1753 /* Give the progress callback a chance to set up. */
1754 if (progress)
1755 (*progress) (0, baton);
1756
1757 while (xfered_total < len)
1758 {
1759 ULONGEST xfered_partial;
1760 enum target_xfer_status status;
1761
1762 status = target_write_partial (ops, object, annex,
1763 buf + xfered_total * unit_size,
1764 offset + xfered_total, len - xfered_total,
1765 &xfered_partial);
1766
1767 if (status != TARGET_XFER_OK)
1768 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1769
1770 if (progress)
1771 (*progress) (xfered_partial, baton);
1772
1773 xfered_total += xfered_partial;
1774 QUIT;
1775 }
1776 return len;
1777 }
1778
1779 /* For docs on target_write see target.h. */
1780
1781 LONGEST
1782 target_write (struct target_ops *ops,
1783 enum target_object object,
1784 const char *annex, const gdb_byte *buf,
1785 ULONGEST offset, LONGEST len)
1786 {
1787 return target_write_with_progress (ops, object, annex, buf, offset, len,
1788 NULL, NULL);
1789 }
1790
1791 /* Help for target_read_alloc and target_read_stralloc. See their comments
1792 for details. */
1793
1794 template <typename T>
1795 gdb::optional<gdb::def_vector<T>>
1796 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1797 const char *annex)
1798 {
1799 gdb::def_vector<T> buf;
1800 size_t buf_pos = 0;
1801 const int chunk = 4096;
1802
1803 /* This function does not have a length parameter; it reads the
1804 entire OBJECT). Also, it doesn't support objects fetched partly
1805 from one target and partly from another (in a different stratum,
1806 e.g. a core file and an executable). Both reasons make it
1807 unsuitable for reading memory. */
1808 gdb_assert (object != TARGET_OBJECT_MEMORY);
1809
1810 /* Start by reading up to 4K at a time. The target will throttle
1811 this number down if necessary. */
1812 while (1)
1813 {
1814 ULONGEST xfered_len;
1815 enum target_xfer_status status;
1816
1817 buf.resize (buf_pos + chunk);
1818
1819 status = target_read_partial (ops, object, annex,
1820 (gdb_byte *) &buf[buf_pos],
1821 buf_pos, chunk,
1822 &xfered_len);
1823
1824 if (status == TARGET_XFER_EOF)
1825 {
1826 /* Read all there was. */
1827 buf.resize (buf_pos);
1828 return buf;
1829 }
1830 else if (status != TARGET_XFER_OK)
1831 {
1832 /* An error occurred. */
1833 return {};
1834 }
1835
1836 buf_pos += xfered_len;
1837
1838 QUIT;
1839 }
1840 }
1841
1842 /* See target.h */
1843
1844 gdb::optional<gdb::byte_vector>
1845 target_read_alloc (struct target_ops *ops, enum target_object object,
1846 const char *annex)
1847 {
1848 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1849 }
1850
1851 /* See target.h. */
1852
1853 gdb::optional<gdb::char_vector>
1854 target_read_stralloc (struct target_ops *ops, enum target_object object,
1855 const char *annex)
1856 {
1857 gdb::optional<gdb::char_vector> buf
1858 = target_read_alloc_1<char> (ops, object, annex);
1859
1860 if (!buf)
1861 return {};
1862
1863 if (buf->back () != '\0')
1864 buf->push_back ('\0');
1865
1866 /* Check for embedded NUL bytes; but allow trailing NULs. */
1867 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1868 it != buf->end (); it++)
1869 if (*it != '\0')
1870 {
1871 warning (_("target object %d, annex %s, "
1872 "contained unexpected null characters"),
1873 (int) object, annex ? annex : "(none)");
1874 break;
1875 }
1876
1877 return buf;
1878 }
1879
1880 /* Memory transfer methods. */
1881
1882 void
1883 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1884 LONGEST len)
1885 {
1886 /* This method is used to read from an alternate, non-current
1887 target. This read must bypass the overlay support (as symbols
1888 don't match this target), and GDB's internal cache (wrong cache
1889 for this target). */
1890 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1891 != len)
1892 memory_error (TARGET_XFER_E_IO, addr);
1893 }
1894
1895 ULONGEST
1896 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1897 int len, enum bfd_endian byte_order)
1898 {
1899 gdb_byte buf[sizeof (ULONGEST)];
1900
1901 gdb_assert (len <= sizeof (buf));
1902 get_target_memory (ops, addr, buf, len);
1903 return extract_unsigned_integer (buf, len, byte_order);
1904 }
1905
1906 /* See target.h. */
1907
1908 int
1909 target_insert_breakpoint (struct gdbarch *gdbarch,
1910 struct bp_target_info *bp_tgt)
1911 {
1912 if (!may_insert_breakpoints)
1913 {
1914 warning (_("May not insert breakpoints"));
1915 return 1;
1916 }
1917
1918 return target_stack->insert_breakpoint (gdbarch, bp_tgt);
1919 }
1920
1921 /* See target.h. */
1922
1923 int
1924 target_remove_breakpoint (struct gdbarch *gdbarch,
1925 struct bp_target_info *bp_tgt,
1926 enum remove_bp_reason reason)
1927 {
1928 /* This is kind of a weird case to handle, but the permission might
1929 have been changed after breakpoints were inserted - in which case
1930 we should just take the user literally and assume that any
1931 breakpoints should be left in place. */
1932 if (!may_insert_breakpoints)
1933 {
1934 warning (_("May not remove breakpoints"));
1935 return 1;
1936 }
1937
1938 return target_stack->remove_breakpoint (gdbarch, bp_tgt, reason);
1939 }
1940
1941 static void
1942 info_target_command (const char *args, int from_tty)
1943 {
1944 struct target_ops *t;
1945 int has_all_mem = 0;
1946
1947 if (symfile_objfile != NULL)
1948 printf_unfiltered (_("Symbols from \"%s\".\n"),
1949 objfile_name (symfile_objfile));
1950
1951 for (t = target_stack; t != NULL; t = t->beneath)
1952 {
1953 if (!t->has_memory ())
1954 continue;
1955
1956 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1957 continue;
1958 if (has_all_mem)
1959 printf_unfiltered (_("\tWhile running this, "
1960 "GDB does not access memory from...\n"));
1961 printf_unfiltered ("%s:\n", t->longname ());
1962 t->files_info ();
1963 has_all_mem = t->has_all_memory ();
1964 }
1965 }
1966
1967 /* This function is called before any new inferior is created, e.g.
1968 by running a program, attaching, or connecting to a target.
1969 It cleans up any state from previous invocations which might
1970 change between runs. This is a subset of what target_preopen
1971 resets (things which might change between targets). */
1972
1973 void
1974 target_pre_inferior (int from_tty)
1975 {
1976 /* Clear out solib state. Otherwise the solib state of the previous
1977 inferior might have survived and is entirely wrong for the new
1978 target. This has been observed on GNU/Linux using glibc 2.3. How
1979 to reproduce:
1980
1981 bash$ ./foo&
1982 [1] 4711
1983 bash$ ./foo&
1984 [1] 4712
1985 bash$ gdb ./foo
1986 [...]
1987 (gdb) attach 4711
1988 (gdb) detach
1989 (gdb) attach 4712
1990 Cannot access memory at address 0xdeadbeef
1991 */
1992
1993 /* In some OSs, the shared library list is the same/global/shared
1994 across inferiors. If code is shared between processes, so are
1995 memory regions and features. */
1996 if (!gdbarch_has_global_solist (target_gdbarch ()))
1997 {
1998 no_shared_libraries (NULL, from_tty);
1999
2000 invalidate_target_mem_regions ();
2001
2002 target_clear_description ();
2003 }
2004
2005 /* attach_flag may be set if the previous process associated with
2006 the inferior was attached to. */
2007 current_inferior ()->attach_flag = 0;
2008
2009 current_inferior ()->highest_thread_num = 0;
2010
2011 agent_capability_invalidate ();
2012 }
2013
2014 /* Callback for iterate_over_inferiors. Gets rid of the given
2015 inferior. */
2016
2017 static int
2018 dispose_inferior (struct inferior *inf, void *args)
2019 {
2020 struct thread_info *thread;
2021
2022 thread = any_thread_of_process (inf->pid);
2023 if (thread)
2024 {
2025 switch_to_thread (thread->ptid);
2026
2027 /* Core inferiors actually should be detached, not killed. */
2028 if (target_has_execution)
2029 target_kill ();
2030 else
2031 target_detach (inf, 0);
2032 }
2033
2034 return 0;
2035 }
2036
2037 /* This is to be called by the open routine before it does
2038 anything. */
2039
2040 void
2041 target_preopen (int from_tty)
2042 {
2043 dont_repeat ();
2044
2045 if (have_inferiors ())
2046 {
2047 if (!from_tty
2048 || !have_live_inferiors ()
2049 || query (_("A program is being debugged already. Kill it? ")))
2050 iterate_over_inferiors (dispose_inferior, NULL);
2051 else
2052 error (_("Program not killed."));
2053 }
2054
2055 /* Calling target_kill may remove the target from the stack. But if
2056 it doesn't (which seems like a win for UDI), remove it now. */
2057 /* Leave the exec target, though. The user may be switching from a
2058 live process to a core of the same program. */
2059 pop_all_targets_above (file_stratum);
2060
2061 target_pre_inferior (from_tty);
2062 }
2063
2064 /* See target.h. */
2065
2066 void
2067 target_detach (inferior *inf, int from_tty)
2068 {
2069 /* As long as some to_detach implementations rely on the current_inferior
2070 (either directly, or indirectly, like through target_gdbarch or by
2071 reading memory), INF needs to be the current inferior. When that
2072 requirement will become no longer true, then we can remove this
2073 assertion. */
2074 gdb_assert (inf == current_inferior ());
2075
2076 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2077 /* Don't remove global breakpoints here. They're removed on
2078 disconnection from the target. */
2079 ;
2080 else
2081 /* If we're in breakpoints-always-inserted mode, have to remove
2082 them before detaching. */
2083 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2084
2085 prepare_for_detach ();
2086
2087 target_stack->detach (inf, from_tty);
2088 }
2089
2090 void
2091 target_disconnect (const char *args, int from_tty)
2092 {
2093 /* If we're in breakpoints-always-inserted mode or if breakpoints
2094 are global across processes, we have to remove them before
2095 disconnecting. */
2096 remove_breakpoints ();
2097
2098 target_stack->disconnect (args, from_tty);
2099 }
2100
2101 /* See target/target.h. */
2102
2103 ptid_t
2104 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2105 {
2106 return target_stack->wait (ptid, status, options);
2107 }
2108
2109 /* See target.h. */
2110
2111 ptid_t
2112 default_target_wait (struct target_ops *ops,
2113 ptid_t ptid, struct target_waitstatus *status,
2114 int options)
2115 {
2116 status->kind = TARGET_WAITKIND_IGNORE;
2117 return minus_one_ptid;
2118 }
2119
2120 const char *
2121 target_pid_to_str (ptid_t ptid)
2122 {
2123 return target_stack->pid_to_str (ptid);
2124 }
2125
2126 const char *
2127 target_thread_name (struct thread_info *info)
2128 {
2129 return target_stack->thread_name (info);
2130 }
2131
2132 struct thread_info *
2133 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2134 int handle_len,
2135 struct inferior *inf)
2136 {
2137 return target_stack->thread_handle_to_thread_info (thread_handle,
2138 handle_len, inf);
2139 }
2140
2141 void
2142 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2143 {
2144 target_dcache_invalidate ();
2145
2146 target_stack->resume (ptid, step, signal);
2147
2148 registers_changed_ptid (ptid);
2149 /* We only set the internal executing state here. The user/frontend
2150 running state is set at a higher level. */
2151 set_executing (ptid, 1);
2152 clear_inline_frame_state (ptid);
2153 }
2154
2155 /* If true, target_commit_resume is a nop. */
2156 static int defer_target_commit_resume;
2157
2158 /* See target.h. */
2159
2160 void
2161 target_commit_resume (void)
2162 {
2163 if (defer_target_commit_resume)
2164 return;
2165
2166 target_stack->commit_resume ();
2167 }
2168
2169 /* See target.h. */
2170
2171 scoped_restore_tmpl<int>
2172 make_scoped_defer_target_commit_resume ()
2173 {
2174 return make_scoped_restore (&defer_target_commit_resume, 1);
2175 }
2176
2177 void
2178 target_pass_signals (int numsigs, unsigned char *pass_signals)
2179 {
2180 target_stack->pass_signals (numsigs, pass_signals);
2181 }
2182
2183 void
2184 target_program_signals (int numsigs, unsigned char *program_signals)
2185 {
2186 target_stack->program_signals (numsigs, program_signals);
2187 }
2188
2189 static int
2190 default_follow_fork (struct target_ops *self, int follow_child,
2191 int detach_fork)
2192 {
2193 /* Some target returned a fork event, but did not know how to follow it. */
2194 internal_error (__FILE__, __LINE__,
2195 _("could not find a target to follow fork"));
2196 }
2197
2198 /* Look through the list of possible targets for a target that can
2199 follow forks. */
2200
2201 int
2202 target_follow_fork (int follow_child, int detach_fork)
2203 {
2204 return target_stack->follow_fork (follow_child, detach_fork);
2205 }
2206
2207 /* Target wrapper for follow exec hook. */
2208
2209 void
2210 target_follow_exec (struct inferior *inf, char *execd_pathname)
2211 {
2212 target_stack->follow_exec (inf, execd_pathname);
2213 }
2214
2215 static void
2216 default_mourn_inferior (struct target_ops *self)
2217 {
2218 internal_error (__FILE__, __LINE__,
2219 _("could not find a target to follow mourn inferior"));
2220 }
2221
2222 void
2223 target_mourn_inferior (ptid_t ptid)
2224 {
2225 gdb_assert (ptid_equal (ptid, inferior_ptid));
2226 target_stack->mourn_inferior ();
2227
2228 /* We no longer need to keep handles on any of the object files.
2229 Make sure to release them to avoid unnecessarily locking any
2230 of them while we're not actually debugging. */
2231 bfd_cache_close_all ();
2232 }
2233
2234 /* Look for a target which can describe architectural features, starting
2235 from TARGET. If we find one, return its description. */
2236
2237 const struct target_desc *
2238 target_read_description (struct target_ops *target)
2239 {
2240 return target->read_description ();
2241 }
2242
2243 /* This implements a basic search of memory, reading target memory and
2244 performing the search here (as opposed to performing the search in on the
2245 target side with, for example, gdbserver). */
2246
2247 int
2248 simple_search_memory (struct target_ops *ops,
2249 CORE_ADDR start_addr, ULONGEST search_space_len,
2250 const gdb_byte *pattern, ULONGEST pattern_len,
2251 CORE_ADDR *found_addrp)
2252 {
2253 /* NOTE: also defined in find.c testcase. */
2254 #define SEARCH_CHUNK_SIZE 16000
2255 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2256 /* Buffer to hold memory contents for searching. */
2257 unsigned search_buf_size;
2258
2259 search_buf_size = chunk_size + pattern_len - 1;
2260
2261 /* No point in trying to allocate a buffer larger than the search space. */
2262 if (search_space_len < search_buf_size)
2263 search_buf_size = search_space_len;
2264
2265 gdb::byte_vector search_buf (search_buf_size);
2266
2267 /* Prime the search buffer. */
2268
2269 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2270 search_buf.data (), start_addr, search_buf_size)
2271 != search_buf_size)
2272 {
2273 warning (_("Unable to access %s bytes of target "
2274 "memory at %s, halting search."),
2275 pulongest (search_buf_size), hex_string (start_addr));
2276 return -1;
2277 }
2278
2279 /* Perform the search.
2280
2281 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2282 When we've scanned N bytes we copy the trailing bytes to the start and
2283 read in another N bytes. */
2284
2285 while (search_space_len >= pattern_len)
2286 {
2287 gdb_byte *found_ptr;
2288 unsigned nr_search_bytes
2289 = std::min (search_space_len, (ULONGEST) search_buf_size);
2290
2291 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2292 pattern, pattern_len);
2293
2294 if (found_ptr != NULL)
2295 {
2296 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2297
2298 *found_addrp = found_addr;
2299 return 1;
2300 }
2301
2302 /* Not found in this chunk, skip to next chunk. */
2303
2304 /* Don't let search_space_len wrap here, it's unsigned. */
2305 if (search_space_len >= chunk_size)
2306 search_space_len -= chunk_size;
2307 else
2308 search_space_len = 0;
2309
2310 if (search_space_len >= pattern_len)
2311 {
2312 unsigned keep_len = search_buf_size - chunk_size;
2313 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2314 int nr_to_read;
2315
2316 /* Copy the trailing part of the previous iteration to the front
2317 of the buffer for the next iteration. */
2318 gdb_assert (keep_len == pattern_len - 1);
2319 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2320
2321 nr_to_read = std::min (search_space_len - keep_len,
2322 (ULONGEST) chunk_size);
2323
2324 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2325 &search_buf[keep_len], read_addr,
2326 nr_to_read) != nr_to_read)
2327 {
2328 warning (_("Unable to access %s bytes of target "
2329 "memory at %s, halting search."),
2330 plongest (nr_to_read),
2331 hex_string (read_addr));
2332 return -1;
2333 }
2334
2335 start_addr += chunk_size;
2336 }
2337 }
2338
2339 /* Not found. */
2340
2341 return 0;
2342 }
2343
2344 /* Default implementation of memory-searching. */
2345
2346 static int
2347 default_search_memory (struct target_ops *self,
2348 CORE_ADDR start_addr, ULONGEST search_space_len,
2349 const gdb_byte *pattern, ULONGEST pattern_len,
2350 CORE_ADDR *found_addrp)
2351 {
2352 /* Start over from the top of the target stack. */
2353 return simple_search_memory (target_stack,
2354 start_addr, search_space_len,
2355 pattern, pattern_len, found_addrp);
2356 }
2357
2358 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2359 sequence of bytes in PATTERN with length PATTERN_LEN.
2360
2361 The result is 1 if found, 0 if not found, and -1 if there was an error
2362 requiring halting of the search (e.g. memory read error).
2363 If the pattern is found the address is recorded in FOUND_ADDRP. */
2364
2365 int
2366 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2367 const gdb_byte *pattern, ULONGEST pattern_len,
2368 CORE_ADDR *found_addrp)
2369 {
2370 return target_stack->search_memory (start_addr, search_space_len,
2371 pattern, pattern_len, found_addrp);
2372 }
2373
2374 /* Look through the currently pushed targets. If none of them will
2375 be able to restart the currently running process, issue an error
2376 message. */
2377
2378 void
2379 target_require_runnable (void)
2380 {
2381 struct target_ops *t;
2382
2383 for (t = target_stack; t != NULL; t = t->beneath)
2384 {
2385 /* If this target knows how to create a new program, then
2386 assume we will still be able to after killing the current
2387 one. Either killing and mourning will not pop T, or else
2388 find_default_run_target will find it again. */
2389 if (t->can_create_inferior ())
2390 return;
2391
2392 /* Do not worry about targets at certain strata that can not
2393 create inferiors. Assume they will be pushed again if
2394 necessary, and continue to the process_stratum. */
2395 if (t->to_stratum > process_stratum)
2396 continue;
2397
2398 error (_("The \"%s\" target does not support \"run\". "
2399 "Try \"help target\" or \"continue\"."),
2400 t->shortname ());
2401 }
2402
2403 /* This function is only called if the target is running. In that
2404 case there should have been a process_stratum target and it
2405 should either know how to create inferiors, or not... */
2406 internal_error (__FILE__, __LINE__, _("No targets found"));
2407 }
2408
2409 /* Whether GDB is allowed to fall back to the default run target for
2410 "run", "attach", etc. when no target is connected yet. */
2411 static int auto_connect_native_target = 1;
2412
2413 static void
2414 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2415 struct cmd_list_element *c, const char *value)
2416 {
2417 fprintf_filtered (file,
2418 _("Whether GDB may automatically connect to the "
2419 "native target is %s.\n"),
2420 value);
2421 }
2422
2423 /* Look through the list of possible targets for a target that can
2424 execute a run or attach command without any other data. This is
2425 used to locate the default process stratum.
2426
2427 If DO_MESG is not NULL, the result is always valid (error() is
2428 called for errors); else, return NULL on error. */
2429
2430 static struct target_ops *
2431 find_default_run_target (const char *do_mesg)
2432 {
2433 struct target_ops *runable = NULL;
2434
2435 if (auto_connect_native_target)
2436 {
2437 struct target_ops *t;
2438 int count = 0;
2439 int i;
2440
2441 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2442 {
2443 if (t->can_run ())
2444 {
2445 runable = t;
2446 ++count;
2447 }
2448 }
2449
2450 if (count != 1)
2451 runable = NULL;
2452 }
2453
2454 if (runable == NULL)
2455 {
2456 if (do_mesg)
2457 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2458 else
2459 return NULL;
2460 }
2461
2462 return runable;
2463 }
2464
2465 /* See target.h. */
2466
2467 struct target_ops *
2468 find_attach_target (void)
2469 {
2470 struct target_ops *t;
2471
2472 /* If a target on the current stack can attach, use it. */
2473 for (t = target_stack; t != NULL; t = t->beneath)
2474 {
2475 if (t->can_attach ())
2476 break;
2477 }
2478
2479 /* Otherwise, use the default run target for attaching. */
2480 if (t == NULL)
2481 t = find_default_run_target ("attach");
2482
2483 return t;
2484 }
2485
2486 /* See target.h. */
2487
2488 struct target_ops *
2489 find_run_target (void)
2490 {
2491 struct target_ops *t;
2492
2493 /* If a target on the current stack can run, use it. */
2494 for (t = target_stack; t != NULL; t = t->beneath)
2495 {
2496 if (t->can_create_inferior ())
2497 break;
2498 }
2499
2500 /* Otherwise, use the default run target. */
2501 if (t == NULL)
2502 t = find_default_run_target ("run");
2503
2504 return t;
2505 }
2506
2507 bool
2508 target_ops::info_proc (const char *args, enum info_proc_what what)
2509 {
2510 return false;
2511 }
2512
2513 /* Implement the "info proc" command. */
2514
2515 int
2516 target_info_proc (const char *args, enum info_proc_what what)
2517 {
2518 struct target_ops *t;
2519
2520 /* If we're already connected to something that can get us OS
2521 related data, use it. Otherwise, try using the native
2522 target. */
2523 t = find_target_at (process_stratum);
2524 if (t == NULL)
2525 t = find_default_run_target (NULL);
2526
2527 for (; t != NULL; t = t->beneath)
2528 {
2529 if (t->info_proc (args, what))
2530 {
2531 if (targetdebug)
2532 fprintf_unfiltered (gdb_stdlog,
2533 "target_info_proc (\"%s\", %d)\n", args, what);
2534
2535 return 1;
2536 }
2537 }
2538
2539 return 0;
2540 }
2541
2542 static int
2543 find_default_supports_disable_randomization (struct target_ops *self)
2544 {
2545 struct target_ops *t;
2546
2547 t = find_default_run_target (NULL);
2548 if (t != NULL)
2549 return t->supports_disable_randomization ();
2550 return 0;
2551 }
2552
2553 int
2554 target_supports_disable_randomization (void)
2555 {
2556 return target_stack->supports_disable_randomization ();
2557 }
2558
2559 /* See target/target.h. */
2560
2561 int
2562 target_supports_multi_process (void)
2563 {
2564 return target_stack->supports_multi_process ();
2565 }
2566
2567 /* See target.h. */
2568
2569 gdb::optional<gdb::char_vector>
2570 target_get_osdata (const char *type)
2571 {
2572 struct target_ops *t;
2573
2574 /* If we're already connected to something that can get us OS
2575 related data, use it. Otherwise, try using the native
2576 target. */
2577 t = find_target_at (process_stratum);
2578 if (t == NULL)
2579 t = find_default_run_target ("get OS data");
2580
2581 if (!t)
2582 return {};
2583
2584 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2585 }
2586
2587 static struct address_space *
2588 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2589 {
2590 struct inferior *inf;
2591
2592 /* Fall-back to the "main" address space of the inferior. */
2593 inf = find_inferior_ptid (ptid);
2594
2595 if (inf == NULL || inf->aspace == NULL)
2596 internal_error (__FILE__, __LINE__,
2597 _("Can't determine the current "
2598 "address space of thread %s\n"),
2599 target_pid_to_str (ptid));
2600
2601 return inf->aspace;
2602 }
2603
2604 /* Determine the current address space of thread PTID. */
2605
2606 struct address_space *
2607 target_thread_address_space (ptid_t ptid)
2608 {
2609 struct address_space *aspace;
2610
2611 aspace = target_stack->thread_address_space (ptid);
2612 gdb_assert (aspace != NULL);
2613
2614 return aspace;
2615 }
2616
2617 void
2618 target_ops::open (const char *, int)
2619 {
2620 gdb_assert_not_reached ("target_ops::open called");
2621 }
2622
2623 void
2624 target_ops::close ()
2625 {
2626 }
2627
2628 bool
2629 target_ops::can_attach ()
2630 {
2631 return 0;
2632 }
2633
2634 void
2635 target_ops::attach (const char *, int)
2636 {
2637 gdb_assert_not_reached ("target_ops::attach called");
2638 }
2639
2640 bool
2641 target_ops::can_create_inferior ()
2642 {
2643 return 0;
2644 }
2645
2646 void
2647 target_ops::create_inferior (const char *, const std::string &,
2648 char **, int)
2649 {
2650 gdb_assert_not_reached ("target_ops::create_inferior called");
2651 }
2652
2653 bool
2654 target_ops::can_run ()
2655 {
2656 return false;
2657 }
2658
2659 int
2660 target_can_run ()
2661 {
2662 struct target_ops *t;
2663
2664 for (t = target_stack; t != NULL; t = t->beneath)
2665 {
2666 if (t->can_run ())
2667 return 1;
2668 }
2669
2670 return 0;
2671 }
2672
2673 /* Target file operations. */
2674
2675 static struct target_ops *
2676 default_fileio_target (void)
2677 {
2678 struct target_ops *t;
2679
2680 /* If we're already connected to something that can perform
2681 file I/O, use it. Otherwise, try using the native target. */
2682 t = find_target_at (process_stratum);
2683 if (t != NULL)
2684 return t;
2685 return find_default_run_target ("file I/O");
2686 }
2687
2688 /* File handle for target file operations. */
2689
2690 struct fileio_fh_t
2691 {
2692 /* The target on which this file is open. NULL if the target is
2693 meanwhile closed while the handle is open. */
2694 target_ops *target;
2695
2696 /* The file descriptor on the target. */
2697 int target_fd;
2698
2699 /* Check whether this fileio_fh_t represents a closed file. */
2700 bool is_closed ()
2701 {
2702 return target_fd < 0;
2703 }
2704 };
2705
2706 /* Vector of currently open file handles. The value returned by
2707 target_fileio_open and passed as the FD argument to other
2708 target_fileio_* functions is an index into this vector. This
2709 vector's entries are never freed; instead, files are marked as
2710 closed, and the handle becomes available for reuse. */
2711 static std::vector<fileio_fh_t> fileio_fhandles;
2712
2713 /* Index into fileio_fhandles of the lowest handle that might be
2714 closed. This permits handle reuse without searching the whole
2715 list each time a new file is opened. */
2716 static int lowest_closed_fd;
2717
2718 /* Invalidate the target associated with open handles that were open
2719 on target TARG, since we're about to close (and maybe destroy) the
2720 target. The handles remain open from the client's perspective, but
2721 trying to do anything with them other than closing them will fail
2722 with EIO. */
2723
2724 static void
2725 fileio_handles_invalidate_target (target_ops *targ)
2726 {
2727 for (fileio_fh_t &fh : fileio_fhandles)
2728 if (fh.target == targ)
2729 fh.target = NULL;
2730 }
2731
2732 /* Acquire a target fileio file descriptor. */
2733
2734 static int
2735 acquire_fileio_fd (target_ops *target, int target_fd)
2736 {
2737 /* Search for closed handles to reuse. */
2738 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2739 {
2740 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2741
2742 if (fh.is_closed ())
2743 break;
2744 }
2745
2746 /* Push a new handle if no closed handles were found. */
2747 if (lowest_closed_fd == fileio_fhandles.size ())
2748 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2749 else
2750 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2751
2752 /* Should no longer be marked closed. */
2753 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2754
2755 /* Return its index, and start the next lookup at
2756 the next index. */
2757 return lowest_closed_fd++;
2758 }
2759
2760 /* Release a target fileio file descriptor. */
2761
2762 static void
2763 release_fileio_fd (int fd, fileio_fh_t *fh)
2764 {
2765 fh->target_fd = -1;
2766 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2767 }
2768
2769 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2770
2771 static fileio_fh_t *
2772 fileio_fd_to_fh (int fd)
2773 {
2774 return &fileio_fhandles[fd];
2775 }
2776
2777
2778 /* Default implementations of file i/o methods. We don't want these
2779 to delegate automatically, because we need to know which target
2780 supported the method, in order to call it directly from within
2781 pread/pwrite, etc. */
2782
2783 int
2784 target_ops::fileio_open (struct inferior *inf, const char *filename,
2785 int flags, int mode, int warn_if_slow,
2786 int *target_errno)
2787 {
2788 *target_errno = FILEIO_ENOSYS;
2789 return -1;
2790 }
2791
2792 int
2793 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2794 ULONGEST offset, int *target_errno)
2795 {
2796 *target_errno = FILEIO_ENOSYS;
2797 return -1;
2798 }
2799
2800 int
2801 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2802 ULONGEST offset, int *target_errno)
2803 {
2804 *target_errno = FILEIO_ENOSYS;
2805 return -1;
2806 }
2807
2808 int
2809 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2810 {
2811 *target_errno = FILEIO_ENOSYS;
2812 return -1;
2813 }
2814
2815 int
2816 target_ops::fileio_close (int fd, int *target_errno)
2817 {
2818 *target_errno = FILEIO_ENOSYS;
2819 return -1;
2820 }
2821
2822 int
2823 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2824 int *target_errno)
2825 {
2826 *target_errno = FILEIO_ENOSYS;
2827 return -1;
2828 }
2829
2830 gdb::optional<std::string>
2831 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2832 int *target_errno)
2833 {
2834 *target_errno = FILEIO_ENOSYS;
2835 return {};
2836 }
2837
2838 /* Helper for target_fileio_open and
2839 target_fileio_open_warn_if_slow. */
2840
2841 static int
2842 target_fileio_open_1 (struct inferior *inf, const char *filename,
2843 int flags, int mode, int warn_if_slow,
2844 int *target_errno)
2845 {
2846 struct target_ops *t;
2847
2848 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2849 {
2850 int fd = t->fileio_open (inf, filename, flags, mode,
2851 warn_if_slow, target_errno);
2852
2853 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2854 continue;
2855
2856 if (fd < 0)
2857 fd = -1;
2858 else
2859 fd = acquire_fileio_fd (t, fd);
2860
2861 if (targetdebug)
2862 fprintf_unfiltered (gdb_stdlog,
2863 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2864 " = %d (%d)\n",
2865 inf == NULL ? 0 : inf->num,
2866 filename, flags, mode,
2867 warn_if_slow, fd,
2868 fd != -1 ? 0 : *target_errno);
2869 return fd;
2870 }
2871
2872 *target_errno = FILEIO_ENOSYS;
2873 return -1;
2874 }
2875
2876 /* See target.h. */
2877
2878 int
2879 target_fileio_open (struct inferior *inf, const char *filename,
2880 int flags, int mode, int *target_errno)
2881 {
2882 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2883 target_errno);
2884 }
2885
2886 /* See target.h. */
2887
2888 int
2889 target_fileio_open_warn_if_slow (struct inferior *inf,
2890 const char *filename,
2891 int flags, int mode, int *target_errno)
2892 {
2893 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2894 target_errno);
2895 }
2896
2897 /* See target.h. */
2898
2899 int
2900 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2901 ULONGEST offset, int *target_errno)
2902 {
2903 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2904 int ret = -1;
2905
2906 if (fh->is_closed ())
2907 *target_errno = EBADF;
2908 else if (fh->target == NULL)
2909 *target_errno = EIO;
2910 else
2911 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2912 len, offset, target_errno);
2913
2914 if (targetdebug)
2915 fprintf_unfiltered (gdb_stdlog,
2916 "target_fileio_pwrite (%d,...,%d,%s) "
2917 "= %d (%d)\n",
2918 fd, len, pulongest (offset),
2919 ret, ret != -1 ? 0 : *target_errno);
2920 return ret;
2921 }
2922
2923 /* See target.h. */
2924
2925 int
2926 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2927 ULONGEST offset, int *target_errno)
2928 {
2929 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2930 int ret = -1;
2931
2932 if (fh->is_closed ())
2933 *target_errno = EBADF;
2934 else if (fh->target == NULL)
2935 *target_errno = EIO;
2936 else
2937 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2938 len, offset, target_errno);
2939
2940 if (targetdebug)
2941 fprintf_unfiltered (gdb_stdlog,
2942 "target_fileio_pread (%d,...,%d,%s) "
2943 "= %d (%d)\n",
2944 fd, len, pulongest (offset),
2945 ret, ret != -1 ? 0 : *target_errno);
2946 return ret;
2947 }
2948
2949 /* See target.h. */
2950
2951 int
2952 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2953 {
2954 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2955 int ret = -1;
2956
2957 if (fh->is_closed ())
2958 *target_errno = EBADF;
2959 else if (fh->target == NULL)
2960 *target_errno = EIO;
2961 else
2962 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2963
2964 if (targetdebug)
2965 fprintf_unfiltered (gdb_stdlog,
2966 "target_fileio_fstat (%d) = %d (%d)\n",
2967 fd, ret, ret != -1 ? 0 : *target_errno);
2968 return ret;
2969 }
2970
2971 /* See target.h. */
2972
2973 int
2974 target_fileio_close (int fd, int *target_errno)
2975 {
2976 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2977 int ret = -1;
2978
2979 if (fh->is_closed ())
2980 *target_errno = EBADF;
2981 else
2982 {
2983 if (fh->target != NULL)
2984 ret = fh->target->fileio_close (fh->target_fd,
2985 target_errno);
2986 else
2987 ret = 0;
2988 release_fileio_fd (fd, fh);
2989 }
2990
2991 if (targetdebug)
2992 fprintf_unfiltered (gdb_stdlog,
2993 "target_fileio_close (%d) = %d (%d)\n",
2994 fd, ret, ret != -1 ? 0 : *target_errno);
2995 return ret;
2996 }
2997
2998 /* See target.h. */
2999
3000 int
3001 target_fileio_unlink (struct inferior *inf, const char *filename,
3002 int *target_errno)
3003 {
3004 struct target_ops *t;
3005
3006 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3007 {
3008 int ret = t->fileio_unlink (inf, filename, target_errno);
3009
3010 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3011 continue;
3012
3013 if (targetdebug)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "target_fileio_unlink (%d,%s)"
3016 " = %d (%d)\n",
3017 inf == NULL ? 0 : inf->num, filename,
3018 ret, ret != -1 ? 0 : *target_errno);
3019 return ret;
3020 }
3021
3022 *target_errno = FILEIO_ENOSYS;
3023 return -1;
3024 }
3025
3026 /* See target.h. */
3027
3028 gdb::optional<std::string>
3029 target_fileio_readlink (struct inferior *inf, const char *filename,
3030 int *target_errno)
3031 {
3032 struct target_ops *t;
3033
3034 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3035 {
3036 gdb::optional<std::string> ret
3037 = t->fileio_readlink (inf, filename, target_errno);
3038
3039 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3040 continue;
3041
3042 if (targetdebug)
3043 fprintf_unfiltered (gdb_stdlog,
3044 "target_fileio_readlink (%d,%s)"
3045 " = %s (%d)\n",
3046 inf == NULL ? 0 : inf->num,
3047 filename, ret ? ret->c_str () : "(nil)",
3048 ret ? 0 : *target_errno);
3049 return ret;
3050 }
3051
3052 *target_errno = FILEIO_ENOSYS;
3053 return {};
3054 }
3055
3056 /* Like scoped_fd, but specific to target fileio. */
3057
3058 class scoped_target_fd
3059 {
3060 public:
3061 explicit scoped_target_fd (int fd) noexcept
3062 : m_fd (fd)
3063 {
3064 }
3065
3066 ~scoped_target_fd ()
3067 {
3068 if (m_fd >= 0)
3069 {
3070 int target_errno;
3071
3072 target_fileio_close (m_fd, &target_errno);
3073 }
3074 }
3075
3076 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3077
3078 int get () const noexcept
3079 {
3080 return m_fd;
3081 }
3082
3083 private:
3084 int m_fd;
3085 };
3086
3087 /* Read target file FILENAME, in the filesystem as seen by INF. If
3088 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3089 remote targets, the remote stub). Store the result in *BUF_P and
3090 return the size of the transferred data. PADDING additional bytes
3091 are available in *BUF_P. This is a helper function for
3092 target_fileio_read_alloc; see the declaration of that function for
3093 more information. */
3094
3095 static LONGEST
3096 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3097 gdb_byte **buf_p, int padding)
3098 {
3099 size_t buf_alloc, buf_pos;
3100 gdb_byte *buf;
3101 LONGEST n;
3102 int target_errno;
3103
3104 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3105 0700, &target_errno));
3106 if (fd.get () == -1)
3107 return -1;
3108
3109 /* Start by reading up to 4K at a time. The target will throttle
3110 this number down if necessary. */
3111 buf_alloc = 4096;
3112 buf = (gdb_byte *) xmalloc (buf_alloc);
3113 buf_pos = 0;
3114 while (1)
3115 {
3116 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3117 buf_alloc - buf_pos - padding, buf_pos,
3118 &target_errno);
3119 if (n < 0)
3120 {
3121 /* An error occurred. */
3122 xfree (buf);
3123 return -1;
3124 }
3125 else if (n == 0)
3126 {
3127 /* Read all there was. */
3128 if (buf_pos == 0)
3129 xfree (buf);
3130 else
3131 *buf_p = buf;
3132 return buf_pos;
3133 }
3134
3135 buf_pos += n;
3136
3137 /* If the buffer is filling up, expand it. */
3138 if (buf_alloc < buf_pos * 2)
3139 {
3140 buf_alloc *= 2;
3141 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3142 }
3143
3144 QUIT;
3145 }
3146 }
3147
3148 /* See target.h. */
3149
3150 LONGEST
3151 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3152 gdb_byte **buf_p)
3153 {
3154 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3155 }
3156
3157 /* See target.h. */
3158
3159 gdb::unique_xmalloc_ptr<char>
3160 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3161 {
3162 gdb_byte *buffer;
3163 char *bufstr;
3164 LONGEST i, transferred;
3165
3166 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3167 bufstr = (char *) buffer;
3168
3169 if (transferred < 0)
3170 return gdb::unique_xmalloc_ptr<char> (nullptr);
3171
3172 if (transferred == 0)
3173 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3174
3175 bufstr[transferred] = 0;
3176
3177 /* Check for embedded NUL bytes; but allow trailing NULs. */
3178 for (i = strlen (bufstr); i < transferred; i++)
3179 if (bufstr[i] != 0)
3180 {
3181 warning (_("target file %s "
3182 "contained unexpected null characters"),
3183 filename);
3184 break;
3185 }
3186
3187 return gdb::unique_xmalloc_ptr<char> (bufstr);
3188 }
3189
3190
3191 static int
3192 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3193 CORE_ADDR addr, int len)
3194 {
3195 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3196 }
3197
3198 static int
3199 default_watchpoint_addr_within_range (struct target_ops *target,
3200 CORE_ADDR addr,
3201 CORE_ADDR start, int length)
3202 {
3203 return addr >= start && addr < start + length;
3204 }
3205
3206 static struct gdbarch *
3207 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3208 {
3209 inferior *inf = find_inferior_ptid (ptid);
3210 gdb_assert (inf != NULL);
3211 return inf->gdbarch;
3212 }
3213
3214 /*
3215 * Find the next target down the stack from the specified target.
3216 */
3217
3218 struct target_ops *
3219 find_target_beneath (struct target_ops *t)
3220 {
3221 return t->beneath;
3222 }
3223
3224 /* See target.h. */
3225
3226 struct target_ops *
3227 find_target_at (enum strata stratum)
3228 {
3229 struct target_ops *t;
3230
3231 for (t = target_stack; t != NULL; t = t->beneath)
3232 if (t->to_stratum == stratum)
3233 return t;
3234
3235 return NULL;
3236 }
3237
3238 \f
3239
3240 /* See target.h */
3241
3242 void
3243 target_announce_detach (int from_tty)
3244 {
3245 pid_t pid;
3246 const char *exec_file;
3247
3248 if (!from_tty)
3249 return;
3250
3251 exec_file = get_exec_file (0);
3252 if (exec_file == NULL)
3253 exec_file = "";
3254
3255 pid = ptid_get_pid (inferior_ptid);
3256 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3257 target_pid_to_str (pid_to_ptid (pid)));
3258 gdb_flush (gdb_stdout);
3259 }
3260
3261 /* The inferior process has died. Long live the inferior! */
3262
3263 void
3264 generic_mourn_inferior (void)
3265 {
3266 ptid_t ptid;
3267
3268 ptid = inferior_ptid;
3269 inferior_ptid = null_ptid;
3270
3271 /* Mark breakpoints uninserted in case something tries to delete a
3272 breakpoint while we delete the inferior's threads (which would
3273 fail, since the inferior is long gone). */
3274 mark_breakpoints_out ();
3275
3276 if (!ptid_equal (ptid, null_ptid))
3277 {
3278 int pid = ptid_get_pid (ptid);
3279 exit_inferior (pid);
3280 }
3281
3282 /* Note this wipes step-resume breakpoints, so needs to be done
3283 after exit_inferior, which ends up referencing the step-resume
3284 breakpoints through clear_thread_inferior_resources. */
3285 breakpoint_init_inferior (inf_exited);
3286
3287 registers_changed ();
3288
3289 reopen_exec_file ();
3290 reinit_frame_cache ();
3291
3292 if (deprecated_detach_hook)
3293 deprecated_detach_hook ();
3294 }
3295 \f
3296 /* Convert a normal process ID to a string. Returns the string in a
3297 static buffer. */
3298
3299 const char *
3300 normal_pid_to_str (ptid_t ptid)
3301 {
3302 static char buf[32];
3303
3304 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3305 return buf;
3306 }
3307
3308 static const char *
3309 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3310 {
3311 return normal_pid_to_str (ptid);
3312 }
3313
3314 /* Error-catcher for target_find_memory_regions. */
3315 static int
3316 dummy_find_memory_regions (struct target_ops *self,
3317 find_memory_region_ftype ignore1, void *ignore2)
3318 {
3319 error (_("Command not implemented for this target."));
3320 return 0;
3321 }
3322
3323 /* Error-catcher for target_make_corefile_notes. */
3324 static char *
3325 dummy_make_corefile_notes (struct target_ops *self,
3326 bfd *ignore1, int *ignore2)
3327 {
3328 error (_("Command not implemented for this target."));
3329 return NULL;
3330 }
3331
3332 #include "target-delegates.c"
3333
3334
3335 dummy_target::dummy_target ()
3336 {
3337 to_stratum = dummy_stratum;
3338 }
3339
3340 const char *
3341 dummy_target::shortname ()
3342 {
3343 return "None";
3344 }
3345
3346 const char *
3347 dummy_target::longname ()
3348 {
3349 return _("None");
3350 }
3351
3352 const char *
3353 dummy_target::doc ()
3354 {
3355 return "";
3356 }
3357
3358 debug_target::debug_target ()
3359 {
3360 to_stratum = debug_stratum;
3361 }
3362
3363 const char *
3364 debug_target::shortname ()
3365 {
3366 return beneath->shortname ();
3367 }
3368
3369 const char *
3370 debug_target::longname ()
3371 {
3372 return beneath->longname ();
3373 }
3374
3375 const char *
3376 debug_target::doc ()
3377 {
3378 return beneath->doc ();
3379 }
3380
3381 \f
3382
3383 void
3384 target_close (struct target_ops *targ)
3385 {
3386 gdb_assert (!target_is_pushed (targ));
3387
3388 fileio_handles_invalidate_target (targ);
3389
3390 targ->close ();
3391
3392 if (targetdebug)
3393 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3394 }
3395
3396 int
3397 target_thread_alive (ptid_t ptid)
3398 {
3399 return target_stack->thread_alive (ptid);
3400 }
3401
3402 void
3403 target_update_thread_list (void)
3404 {
3405 target_stack->update_thread_list ();
3406 }
3407
3408 void
3409 target_stop (ptid_t ptid)
3410 {
3411 if (!may_stop)
3412 {
3413 warning (_("May not interrupt or stop the target, ignoring attempt"));
3414 return;
3415 }
3416
3417 target_stack->stop (ptid);
3418 }
3419
3420 void
3421 target_interrupt ()
3422 {
3423 if (!may_stop)
3424 {
3425 warning (_("May not interrupt or stop the target, ignoring attempt"));
3426 return;
3427 }
3428
3429 target_stack->interrupt ();
3430 }
3431
3432 /* See target.h. */
3433
3434 void
3435 target_pass_ctrlc (void)
3436 {
3437 target_stack->pass_ctrlc ();
3438 }
3439
3440 /* See target.h. */
3441
3442 void
3443 default_target_pass_ctrlc (struct target_ops *ops)
3444 {
3445 target_interrupt ();
3446 }
3447
3448 /* See target/target.h. */
3449
3450 void
3451 target_stop_and_wait (ptid_t ptid)
3452 {
3453 struct target_waitstatus status;
3454 int was_non_stop = non_stop;
3455
3456 non_stop = 1;
3457 target_stop (ptid);
3458
3459 memset (&status, 0, sizeof (status));
3460 target_wait (ptid, &status, 0);
3461
3462 non_stop = was_non_stop;
3463 }
3464
3465 /* See target/target.h. */
3466
3467 void
3468 target_continue_no_signal (ptid_t ptid)
3469 {
3470 target_resume (ptid, 0, GDB_SIGNAL_0);
3471 }
3472
3473 /* See target/target.h. */
3474
3475 void
3476 target_continue (ptid_t ptid, enum gdb_signal signal)
3477 {
3478 target_resume (ptid, 0, signal);
3479 }
3480
3481 /* Concatenate ELEM to LIST, a comma separate list, and return the
3482 result. The LIST incoming argument is released. */
3483
3484 static char *
3485 str_comma_list_concat_elem (char *list, const char *elem)
3486 {
3487 if (list == NULL)
3488 return xstrdup (elem);
3489 else
3490 return reconcat (list, list, ", ", elem, (char *) NULL);
3491 }
3492
3493 /* Helper for target_options_to_string. If OPT is present in
3494 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3495 Returns the new resulting string. OPT is removed from
3496 TARGET_OPTIONS. */
3497
3498 static char *
3499 do_option (int *target_options, char *ret,
3500 int opt, const char *opt_str)
3501 {
3502 if ((*target_options & opt) != 0)
3503 {
3504 ret = str_comma_list_concat_elem (ret, opt_str);
3505 *target_options &= ~opt;
3506 }
3507
3508 return ret;
3509 }
3510
3511 char *
3512 target_options_to_string (int target_options)
3513 {
3514 char *ret = NULL;
3515
3516 #define DO_TARG_OPTION(OPT) \
3517 ret = do_option (&target_options, ret, OPT, #OPT)
3518
3519 DO_TARG_OPTION (TARGET_WNOHANG);
3520
3521 if (target_options != 0)
3522 ret = str_comma_list_concat_elem (ret, "unknown???");
3523
3524 if (ret == NULL)
3525 ret = xstrdup ("");
3526 return ret;
3527 }
3528
3529 void
3530 target_fetch_registers (struct regcache *regcache, int regno)
3531 {
3532 target_stack->fetch_registers (regcache, regno);
3533 if (targetdebug)
3534 regcache->debug_print_register ("target_fetch_registers", regno);
3535 }
3536
3537 void
3538 target_store_registers (struct regcache *regcache, int regno)
3539 {
3540 if (!may_write_registers)
3541 error (_("Writing to registers is not allowed (regno %d)"), regno);
3542
3543 target_stack->store_registers (regcache, regno);
3544 if (targetdebug)
3545 {
3546 regcache->debug_print_register ("target_store_registers", regno);
3547 }
3548 }
3549
3550 int
3551 target_core_of_thread (ptid_t ptid)
3552 {
3553 return target_stack->core_of_thread (ptid);
3554 }
3555
3556 int
3557 simple_verify_memory (struct target_ops *ops,
3558 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3559 {
3560 LONGEST total_xfered = 0;
3561
3562 while (total_xfered < size)
3563 {
3564 ULONGEST xfered_len;
3565 enum target_xfer_status status;
3566 gdb_byte buf[1024];
3567 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3568
3569 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3570 buf, NULL, lma + total_xfered, howmuch,
3571 &xfered_len);
3572 if (status == TARGET_XFER_OK
3573 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3574 {
3575 total_xfered += xfered_len;
3576 QUIT;
3577 }
3578 else
3579 return 0;
3580 }
3581 return 1;
3582 }
3583
3584 /* Default implementation of memory verification. */
3585
3586 static int
3587 default_verify_memory (struct target_ops *self,
3588 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3589 {
3590 /* Start over from the top of the target stack. */
3591 return simple_verify_memory (target_stack,
3592 data, memaddr, size);
3593 }
3594
3595 int
3596 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3597 {
3598 return target_stack->verify_memory (data, memaddr, size);
3599 }
3600
3601 /* The documentation for this function is in its prototype declaration in
3602 target.h. */
3603
3604 int
3605 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3606 enum target_hw_bp_type rw)
3607 {
3608 return target_stack->insert_mask_watchpoint (addr, mask, rw);
3609 }
3610
3611 /* The documentation for this function is in its prototype declaration in
3612 target.h. */
3613
3614 int
3615 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3616 enum target_hw_bp_type rw)
3617 {
3618 return target_stack->remove_mask_watchpoint (addr, mask, rw);
3619 }
3620
3621 /* The documentation for this function is in its prototype declaration
3622 in target.h. */
3623
3624 int
3625 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3626 {
3627 return target_stack->masked_watch_num_registers (addr, mask);
3628 }
3629
3630 /* The documentation for this function is in its prototype declaration
3631 in target.h. */
3632
3633 int
3634 target_ranged_break_num_registers (void)
3635 {
3636 return target_stack->ranged_break_num_registers ();
3637 }
3638
3639 /* See target.h. */
3640
3641 struct btrace_target_info *
3642 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3643 {
3644 return target_stack->enable_btrace (ptid, conf);
3645 }
3646
3647 /* See target.h. */
3648
3649 void
3650 target_disable_btrace (struct btrace_target_info *btinfo)
3651 {
3652 target_stack->disable_btrace (btinfo);
3653 }
3654
3655 /* See target.h. */
3656
3657 void
3658 target_teardown_btrace (struct btrace_target_info *btinfo)
3659 {
3660 target_stack->teardown_btrace (btinfo);
3661 }
3662
3663 /* See target.h. */
3664
3665 enum btrace_error
3666 target_read_btrace (struct btrace_data *btrace,
3667 struct btrace_target_info *btinfo,
3668 enum btrace_read_type type)
3669 {
3670 return target_stack->read_btrace (btrace, btinfo, type);
3671 }
3672
3673 /* See target.h. */
3674
3675 const struct btrace_config *
3676 target_btrace_conf (const struct btrace_target_info *btinfo)
3677 {
3678 return target_stack->btrace_conf (btinfo);
3679 }
3680
3681 /* See target.h. */
3682
3683 void
3684 target_stop_recording (void)
3685 {
3686 target_stack->stop_recording ();
3687 }
3688
3689 /* See target.h. */
3690
3691 void
3692 target_save_record (const char *filename)
3693 {
3694 target_stack->save_record (filename);
3695 }
3696
3697 /* See target.h. */
3698
3699 int
3700 target_supports_delete_record ()
3701 {
3702 return target_stack->supports_delete_record ();
3703 }
3704
3705 /* See target.h. */
3706
3707 void
3708 target_delete_record (void)
3709 {
3710 target_stack->delete_record ();
3711 }
3712
3713 /* See target.h. */
3714
3715 enum record_method
3716 target_record_method (ptid_t ptid)
3717 {
3718 return target_stack->record_method (ptid);
3719 }
3720
3721 /* See target.h. */
3722
3723 int
3724 target_record_is_replaying (ptid_t ptid)
3725 {
3726 return target_stack->record_is_replaying (ptid);
3727 }
3728
3729 /* See target.h. */
3730
3731 int
3732 target_record_will_replay (ptid_t ptid, int dir)
3733 {
3734 return target_stack->record_will_replay (ptid, dir);
3735 }
3736
3737 /* See target.h. */
3738
3739 void
3740 target_record_stop_replaying (void)
3741 {
3742 target_stack->record_stop_replaying ();
3743 }
3744
3745 /* See target.h. */
3746
3747 void
3748 target_goto_record_begin (void)
3749 {
3750 target_stack->goto_record_begin ();
3751 }
3752
3753 /* See target.h. */
3754
3755 void
3756 target_goto_record_end (void)
3757 {
3758 target_stack->goto_record_end ();
3759 }
3760
3761 /* See target.h. */
3762
3763 void
3764 target_goto_record (ULONGEST insn)
3765 {
3766 target_stack->goto_record (insn);
3767 }
3768
3769 /* See target.h. */
3770
3771 void
3772 target_insn_history (int size, gdb_disassembly_flags flags)
3773 {
3774 target_stack->insn_history (size, flags);
3775 }
3776
3777 /* See target.h. */
3778
3779 void
3780 target_insn_history_from (ULONGEST from, int size,
3781 gdb_disassembly_flags flags)
3782 {
3783 target_stack->insn_history_from (from, size, flags);
3784 }
3785
3786 /* See target.h. */
3787
3788 void
3789 target_insn_history_range (ULONGEST begin, ULONGEST end,
3790 gdb_disassembly_flags flags)
3791 {
3792 target_stack->insn_history_range (begin, end, flags);
3793 }
3794
3795 /* See target.h. */
3796
3797 void
3798 target_call_history (int size, record_print_flags flags)
3799 {
3800 target_stack->call_history (size, flags);
3801 }
3802
3803 /* See target.h. */
3804
3805 void
3806 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3807 {
3808 target_stack->call_history_from (begin, size, flags);
3809 }
3810
3811 /* See target.h. */
3812
3813 void
3814 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3815 {
3816 target_stack->call_history_range (begin, end, flags);
3817 }
3818
3819 /* See target.h. */
3820
3821 const struct frame_unwind *
3822 target_get_unwinder (void)
3823 {
3824 return target_stack->get_unwinder ();
3825 }
3826
3827 /* See target.h. */
3828
3829 const struct frame_unwind *
3830 target_get_tailcall_unwinder (void)
3831 {
3832 return target_stack->get_tailcall_unwinder ();
3833 }
3834
3835 /* See target.h. */
3836
3837 void
3838 target_prepare_to_generate_core (void)
3839 {
3840 target_stack->prepare_to_generate_core ();
3841 }
3842
3843 /* See target.h. */
3844
3845 void
3846 target_done_generating_core (void)
3847 {
3848 target_stack->done_generating_core ();
3849 }
3850
3851 \f
3852
3853 static char targ_desc[] =
3854 "Names of targets and files being debugged.\nShows the entire \
3855 stack of targets currently in use (including the exec-file,\n\
3856 core-file, and process, if any), as well as the symbol file name.";
3857
3858 static void
3859 default_rcmd (struct target_ops *self, const char *command,
3860 struct ui_file *output)
3861 {
3862 error (_("\"monitor\" command not supported by this target."));
3863 }
3864
3865 static void
3866 do_monitor_command (const char *cmd, int from_tty)
3867 {
3868 target_rcmd (cmd, gdb_stdtarg);
3869 }
3870
3871 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3872 ignored. */
3873
3874 void
3875 flash_erase_command (const char *cmd, int from_tty)
3876 {
3877 /* Used to communicate termination of flash operations to the target. */
3878 bool found_flash_region = false;
3879 struct gdbarch *gdbarch = target_gdbarch ();
3880
3881 std::vector<mem_region> mem_regions = target_memory_map ();
3882
3883 /* Iterate over all memory regions. */
3884 for (const mem_region &m : mem_regions)
3885 {
3886 /* Is this a flash memory region? */
3887 if (m.attrib.mode == MEM_FLASH)
3888 {
3889 found_flash_region = true;
3890 target_flash_erase (m.lo, m.hi - m.lo);
3891
3892 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3893
3894 current_uiout->message (_("Erasing flash memory region at address "));
3895 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3896 current_uiout->message (", size = ");
3897 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3898 current_uiout->message ("\n");
3899 }
3900 }
3901
3902 /* Did we do any flash operations? If so, we need to finalize them. */
3903 if (found_flash_region)
3904 target_flash_done ();
3905 else
3906 current_uiout->message (_("No flash memory regions found.\n"));
3907 }
3908
3909 /* Print the name of each layers of our target stack. */
3910
3911 static void
3912 maintenance_print_target_stack (const char *cmd, int from_tty)
3913 {
3914 struct target_ops *t;
3915
3916 printf_filtered (_("The current target stack is:\n"));
3917
3918 for (t = target_stack; t != NULL; t = t->beneath)
3919 {
3920 if (t->to_stratum == debug_stratum)
3921 continue;
3922 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3923 }
3924 }
3925
3926 /* See target.h. */
3927
3928 void
3929 target_async (int enable)
3930 {
3931 infrun_async (enable);
3932 target_stack->async (enable);
3933 }
3934
3935 /* See target.h. */
3936
3937 void
3938 target_thread_events (int enable)
3939 {
3940 target_stack->thread_events (enable);
3941 }
3942
3943 /* Controls if targets can report that they can/are async. This is
3944 just for maintainers to use when debugging gdb. */
3945 int target_async_permitted = 1;
3946
3947 /* The set command writes to this variable. If the inferior is
3948 executing, target_async_permitted is *not* updated. */
3949 static int target_async_permitted_1 = 1;
3950
3951 static void
3952 maint_set_target_async_command (const char *args, int from_tty,
3953 struct cmd_list_element *c)
3954 {
3955 if (have_live_inferiors ())
3956 {
3957 target_async_permitted_1 = target_async_permitted;
3958 error (_("Cannot change this setting while the inferior is running."));
3959 }
3960
3961 target_async_permitted = target_async_permitted_1;
3962 }
3963
3964 static void
3965 maint_show_target_async_command (struct ui_file *file, int from_tty,
3966 struct cmd_list_element *c,
3967 const char *value)
3968 {
3969 fprintf_filtered (file,
3970 _("Controlling the inferior in "
3971 "asynchronous mode is %s.\n"), value);
3972 }
3973
3974 /* Return true if the target operates in non-stop mode even with "set
3975 non-stop off". */
3976
3977 static int
3978 target_always_non_stop_p (void)
3979 {
3980 return target_stack->always_non_stop_p ();
3981 }
3982
3983 /* See target.h. */
3984
3985 int
3986 target_is_non_stop_p (void)
3987 {
3988 return (non_stop
3989 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3990 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3991 && target_always_non_stop_p ()));
3992 }
3993
3994 /* Controls if targets can report that they always run in non-stop
3995 mode. This is just for maintainers to use when debugging gdb. */
3996 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3997
3998 /* The set command writes to this variable. If the inferior is
3999 executing, target_non_stop_enabled is *not* updated. */
4000 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4001
4002 /* Implementation of "maint set target-non-stop". */
4003
4004 static void
4005 maint_set_target_non_stop_command (const char *args, int from_tty,
4006 struct cmd_list_element *c)
4007 {
4008 if (have_live_inferiors ())
4009 {
4010 target_non_stop_enabled_1 = target_non_stop_enabled;
4011 error (_("Cannot change this setting while the inferior is running."));
4012 }
4013
4014 target_non_stop_enabled = target_non_stop_enabled_1;
4015 }
4016
4017 /* Implementation of "maint show target-non-stop". */
4018
4019 static void
4020 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4021 struct cmd_list_element *c,
4022 const char *value)
4023 {
4024 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4025 fprintf_filtered (file,
4026 _("Whether the target is always in non-stop mode "
4027 "is %s (currently %s).\n"), value,
4028 target_always_non_stop_p () ? "on" : "off");
4029 else
4030 fprintf_filtered (file,
4031 _("Whether the target is always in non-stop mode "
4032 "is %s.\n"), value);
4033 }
4034
4035 /* Temporary copies of permission settings. */
4036
4037 static int may_write_registers_1 = 1;
4038 static int may_write_memory_1 = 1;
4039 static int may_insert_breakpoints_1 = 1;
4040 static int may_insert_tracepoints_1 = 1;
4041 static int may_insert_fast_tracepoints_1 = 1;
4042 static int may_stop_1 = 1;
4043
4044 /* Make the user-set values match the real values again. */
4045
4046 void
4047 update_target_permissions (void)
4048 {
4049 may_write_registers_1 = may_write_registers;
4050 may_write_memory_1 = may_write_memory;
4051 may_insert_breakpoints_1 = may_insert_breakpoints;
4052 may_insert_tracepoints_1 = may_insert_tracepoints;
4053 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4054 may_stop_1 = may_stop;
4055 }
4056
4057 /* The one function handles (most of) the permission flags in the same
4058 way. */
4059
4060 static void
4061 set_target_permissions (const char *args, int from_tty,
4062 struct cmd_list_element *c)
4063 {
4064 if (target_has_execution)
4065 {
4066 update_target_permissions ();
4067 error (_("Cannot change this setting while the inferior is running."));
4068 }
4069
4070 /* Make the real values match the user-changed values. */
4071 may_write_registers = may_write_registers_1;
4072 may_insert_breakpoints = may_insert_breakpoints_1;
4073 may_insert_tracepoints = may_insert_tracepoints_1;
4074 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4075 may_stop = may_stop_1;
4076 update_observer_mode ();
4077 }
4078
4079 /* Set memory write permission independently of observer mode. */
4080
4081 static void
4082 set_write_memory_permission (const char *args, int from_tty,
4083 struct cmd_list_element *c)
4084 {
4085 /* Make the real values match the user-changed values. */
4086 may_write_memory = may_write_memory_1;
4087 update_observer_mode ();
4088 }
4089
4090 void
4091 initialize_targets (void)
4092 {
4093 the_dummy_target = new dummy_target ();
4094 push_target (the_dummy_target);
4095
4096 the_debug_target = new debug_target ();
4097
4098 add_info ("target", info_target_command, targ_desc);
4099 add_info ("files", info_target_command, targ_desc);
4100
4101 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4102 Set target debugging."), _("\
4103 Show target debugging."), _("\
4104 When non-zero, target debugging is enabled. Higher numbers are more\n\
4105 verbose."),
4106 set_targetdebug,
4107 show_targetdebug,
4108 &setdebuglist, &showdebuglist);
4109
4110 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4111 &trust_readonly, _("\
4112 Set mode for reading from readonly sections."), _("\
4113 Show mode for reading from readonly sections."), _("\
4114 When this mode is on, memory reads from readonly sections (such as .text)\n\
4115 will be read from the object file instead of from the target. This will\n\
4116 result in significant performance improvement for remote targets."),
4117 NULL,
4118 show_trust_readonly,
4119 &setlist, &showlist);
4120
4121 add_com ("monitor", class_obscure, do_monitor_command,
4122 _("Send a command to the remote monitor (remote targets only)."));
4123
4124 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4125 _("Print the name of each layer of the internal target stack."),
4126 &maintenanceprintlist);
4127
4128 add_setshow_boolean_cmd ("target-async", no_class,
4129 &target_async_permitted_1, _("\
4130 Set whether gdb controls the inferior in asynchronous mode."), _("\
4131 Show whether gdb controls the inferior in asynchronous mode."), _("\
4132 Tells gdb whether to control the inferior in asynchronous mode."),
4133 maint_set_target_async_command,
4134 maint_show_target_async_command,
4135 &maintenance_set_cmdlist,
4136 &maintenance_show_cmdlist);
4137
4138 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4139 &target_non_stop_enabled_1, _("\
4140 Set whether gdb always controls the inferior in non-stop mode."), _("\
4141 Show whether gdb always controls the inferior in non-stop mode."), _("\
4142 Tells gdb whether to control the inferior in non-stop mode."),
4143 maint_set_target_non_stop_command,
4144 maint_show_target_non_stop_command,
4145 &maintenance_set_cmdlist,
4146 &maintenance_show_cmdlist);
4147
4148 add_setshow_boolean_cmd ("may-write-registers", class_support,
4149 &may_write_registers_1, _("\
4150 Set permission to write into registers."), _("\
4151 Show permission to write into registers."), _("\
4152 When this permission is on, GDB may write into the target's registers.\n\
4153 Otherwise, any sort of write attempt will result in an error."),
4154 set_target_permissions, NULL,
4155 &setlist, &showlist);
4156
4157 add_setshow_boolean_cmd ("may-write-memory", class_support,
4158 &may_write_memory_1, _("\
4159 Set permission to write into target memory."), _("\
4160 Show permission to write into target memory."), _("\
4161 When this permission is on, GDB may write into the target's memory.\n\
4162 Otherwise, any sort of write attempt will result in an error."),
4163 set_write_memory_permission, NULL,
4164 &setlist, &showlist);
4165
4166 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4167 &may_insert_breakpoints_1, _("\
4168 Set permission to insert breakpoints in the target."), _("\
4169 Show permission to insert breakpoints in the target."), _("\
4170 When this permission is on, GDB may insert breakpoints in the program.\n\
4171 Otherwise, any sort of insertion attempt will result in an error."),
4172 set_target_permissions, NULL,
4173 &setlist, &showlist);
4174
4175 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4176 &may_insert_tracepoints_1, _("\
4177 Set permission to insert tracepoints in the target."), _("\
4178 Show permission to insert tracepoints in the target."), _("\
4179 When this permission is on, GDB may insert tracepoints in the program.\n\
4180 Otherwise, any sort of insertion attempt will result in an error."),
4181 set_target_permissions, NULL,
4182 &setlist, &showlist);
4183
4184 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4185 &may_insert_fast_tracepoints_1, _("\
4186 Set permission to insert fast tracepoints in the target."), _("\
4187 Show permission to insert fast tracepoints in the target."), _("\
4188 When this permission is on, GDB may insert fast tracepoints.\n\
4189 Otherwise, any sort of insertion attempt will result in an error."),
4190 set_target_permissions, NULL,
4191 &setlist, &showlist);
4192
4193 add_setshow_boolean_cmd ("may-interrupt", class_support,
4194 &may_stop_1, _("\
4195 Set permission to interrupt or signal the target."), _("\
4196 Show permission to interrupt or signal the target."), _("\
4197 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4198 Otherwise, any attempt to interrupt or stop will be ignored."),
4199 set_target_permissions, NULL,
4200 &setlist, &showlist);
4201
4202 add_com ("flash-erase", no_class, flash_erase_command,
4203 _("Erase all flash memory regions."));
4204
4205 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4206 &auto_connect_native_target, _("\
4207 Set whether GDB may automatically connect to the native target."), _("\
4208 Show whether GDB may automatically connect to the native target."), _("\
4209 When on, and GDB is not connected to a target yet, GDB\n\
4210 attempts \"run\" and other commands with the native target."),
4211 NULL, show_auto_connect_native_target,
4212 &setlist, &showlist);
4213 }
This page took 0.112532 seconds and 5 git commands to generate.