update copyright year range in GDB files
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49
50 static void target_info (char *, int);
51
52 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53
54 static void default_terminal_info (struct target_ops *, const char *, int);
55
56 static int default_watchpoint_addr_within_range (struct target_ops *,
57 CORE_ADDR, CORE_ADDR, int);
58
59 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
60 CORE_ADDR, int);
61
62 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
63
64 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
65 long lwp, long tid);
66
67 static int default_follow_fork (struct target_ops *self, int follow_child,
68 int detach_fork);
69
70 static void default_mourn_inferior (struct target_ops *self);
71
72 static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79 static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83 static struct address_space *default_thread_address_space
84 (struct target_ops *self, ptid_t ptid);
85
86 static void tcomplain (void) ATTRIBUTE_NORETURN;
87
88 static int return_zero (struct target_ops *);
89
90 static int return_zero_has_execution (struct target_ops *, ptid_t);
91
92 static void target_command (char *, int);
93
94 static struct target_ops *find_default_run_target (char *);
95
96 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
97 ptid_t ptid);
98
99 static int dummy_find_memory_regions (struct target_ops *self,
100 find_memory_region_ftype ignore1,
101 void *ignore2);
102
103 static char *dummy_make_corefile_notes (struct target_ops *self,
104 bfd *ignore1, int *ignore2);
105
106 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
107
108 static enum exec_direction_kind default_execution_direction
109 (struct target_ops *self);
110
111 static struct target_ops debug_target;
112
113 #include "target-delegates.c"
114
115 static void init_dummy_target (void);
116
117 static void update_current_target (void);
118
119 /* Vector of existing target structures. */
120 typedef struct target_ops *target_ops_p;
121 DEF_VEC_P (target_ops_p);
122 static VEC (target_ops_p) *target_structs;
123
124 /* The initial current target, so that there is always a semi-valid
125 current target. */
126
127 static struct target_ops dummy_target;
128
129 /* Top of target stack. */
130
131 static struct target_ops *target_stack;
132
133 /* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
135
136 struct target_ops current_target;
137
138 /* Command list for target. */
139
140 static struct cmd_list_element *targetlist = NULL;
141
142 /* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
144
145 static int trust_readonly = 0;
146
147 /* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
149
150 static int show_memory_breakpoints = 0;
151
152 /* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
155
156 int may_write_registers = 1;
157
158 int may_write_memory = 1;
159
160 int may_insert_breakpoints = 1;
161
162 int may_insert_tracepoints = 1;
163
164 int may_insert_fast_tracepoints = 1;
165
166 int may_stop = 1;
167
168 /* Non-zero if we want to see trace of target level stuff. */
169
170 static unsigned int targetdebug = 0;
171
172 static void
173 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174 {
175 update_current_target ();
176 }
177
178 static void
179 show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183 }
184
185 static void setup_target_debug (void);
186
187 /* The user just typed 'target' without the name of a target. */
188
189 static void
190 target_command (char *arg, int from_tty)
191 {
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194 }
195
196 /* Default target_has_* methods for process_stratum targets. */
197
198 int
199 default_child_has_all_memory (struct target_ops *ops)
200 {
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206 }
207
208 int
209 default_child_has_memory (struct target_ops *ops)
210 {
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216 }
217
218 int
219 default_child_has_stack (struct target_ops *ops)
220 {
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_registers (struct target_ops *ops)
230 {
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 {
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
243 if (ptid_equal (the_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249
250 int
251 target_has_all_memory_1 (void)
252 {
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260 }
261
262 int
263 target_has_memory_1 (void)
264 {
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272 }
273
274 int
275 target_has_stack_1 (void)
276 {
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284 }
285
286 int
287 target_has_registers_1 (void)
288 {
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296 }
297
298 int
299 target_has_execution_1 (ptid_t the_ptid)
300 {
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
304 if (t->to_has_execution (t, the_ptid))
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_current (void)
312 {
313 return target_has_execution_1 (inferior_ptid);
314 }
315
316 /* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
318
319 void
320 complete_target_initialization (struct target_ops *t)
321 {
322 /* Provide default values for all "must have" methods. */
323
324 if (t->to_has_all_memory == NULL)
325 t->to_has_all_memory = return_zero;
326
327 if (t->to_has_memory == NULL)
328 t->to_has_memory = return_zero;
329
330 if (t->to_has_stack == NULL)
331 t->to_has_stack = return_zero;
332
333 if (t->to_has_registers == NULL)
334 t->to_has_registers = return_zero;
335
336 if (t->to_has_execution == NULL)
337 t->to_has_execution = return_zero_has_execution;
338
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
345 install_delegators (t);
346 }
347
348 /* This is used to implement the various target commands. */
349
350 static void
351 open_target (char *args, int from_tty, struct cmd_list_element *command)
352 {
353 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
354
355 if (targetdebug)
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 ops->to_shortname);
358
359 ops->to_open (args, from_tty);
360
361 if (targetdebug)
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
364 }
365
366 /* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
369
370 void
371 add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
373 {
374 struct cmd_list_element *c;
375
376 complete_target_initialization (t);
377
378 VEC_safe_push (target_ops_p, target_structs, t);
379
380 if (targetlist == NULL)
381 add_prefix_cmd ("target", class_run, target_command, _("\
382 Connect to a target machine or process.\n\
383 The first argument is the type or protocol of the target machine.\n\
384 Remaining arguments are interpreted by the target protocol. For more\n\
385 information on the arguments for a particular protocol, type\n\
386 `help target ' followed by the protocol name."),
387 &targetlist, "target ", 0, &cmdlist);
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
393 }
394
395 /* Add a possible target architecture to the list. */
396
397 void
398 add_target (struct target_ops *t)
399 {
400 add_target_with_completer (t, NULL);
401 }
402
403 /* See target.h. */
404
405 void
406 add_deprecated_target_alias (struct target_ops *t, char *alias)
407 {
408 struct cmd_list_element *c;
409 char *alt;
410
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 see PR cli/15104. */
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
418 }
419
420 /* Stub functions */
421
422 void
423 target_kill (void)
424 {
425 current_target.to_kill (&current_target);
426 }
427
428 void
429 target_load (const char *arg, int from_tty)
430 {
431 target_dcache_invalidate ();
432 (*current_target.to_load) (&current_target, arg, from_tty);
433 }
434
435 /* Possible terminal states. */
436
437 enum terminal_state
438 {
439 /* The inferior's terminal settings are in effect. */
440 terminal_is_inferior = 0,
441
442 /* Some of our terminal settings are in effect, enough to get
443 proper output. */
444 terminal_is_ours_for_output = 1,
445
446 /* Our terminal settings are in effect, for output and input. */
447 terminal_is_ours = 2
448 };
449
450 static enum terminal_state terminal_state = terminal_is_ours;
451
452 /* See target.h. */
453
454 void
455 target_terminal_init (void)
456 {
457 (*current_target.to_terminal_init) (&current_target);
458
459 terminal_state = terminal_is_ours;
460 }
461
462 /* See target.h. */
463
464 int
465 target_terminal_is_inferior (void)
466 {
467 return (terminal_state == terminal_is_inferior);
468 }
469
470 /* See target.h. */
471
472 int
473 target_terminal_is_ours (void)
474 {
475 return (terminal_state == terminal_is_ours);
476 }
477
478 /* See target.h. */
479
480 void
481 target_terminal_inferior (void)
482 {
483 struct ui *ui = current_ui;
484
485 /* A background resume (``run&'') should leave GDB in control of the
486 terminal. */
487 if (ui->prompt_state != PROMPT_BLOCKED)
488 return;
489
490 /* Since we always run the inferior in the main console (unless "set
491 inferior-tty" is in effect), when some UI other than the main one
492 calls target_terminal_inferior/target_terminal_inferior, then we
493 leave the main UI's terminal settings as is. */
494 if (ui != main_ui)
495 return;
496
497 if (terminal_state == terminal_is_inferior)
498 return;
499
500 /* If GDB is resuming the inferior in the foreground, install
501 inferior's terminal modes. */
502 (*current_target.to_terminal_inferior) (&current_target);
503 terminal_state = terminal_is_inferior;
504
505 /* If the user hit C-c before, pretend that it was hit right
506 here. */
507 if (check_quit_flag ())
508 target_pass_ctrlc ();
509 }
510
511 /* See target.h. */
512
513 void
514 target_terminal_ours (void)
515 {
516 struct ui *ui = current_ui;
517
518 /* See target_terminal_inferior. */
519 if (ui != main_ui)
520 return;
521
522 if (terminal_state == terminal_is_ours)
523 return;
524
525 (*current_target.to_terminal_ours) (&current_target);
526 terminal_state = terminal_is_ours;
527 }
528
529 /* See target.h. */
530
531 void
532 target_terminal_ours_for_output (void)
533 {
534 struct ui *ui = current_ui;
535
536 /* See target_terminal_inferior. */
537 if (ui != main_ui)
538 return;
539
540 if (terminal_state != terminal_is_inferior)
541 return;
542 (*current_target.to_terminal_ours_for_output) (&current_target);
543 terminal_state = terminal_is_ours_for_output;
544 }
545
546 /* See target.h. */
547
548 int
549 target_supports_terminal_ours (void)
550 {
551 struct target_ops *t;
552
553 for (t = current_target.beneath; t != NULL; t = t->beneath)
554 {
555 if (t->to_terminal_ours != delegate_terminal_ours
556 && t->to_terminal_ours != tdefault_terminal_ours)
557 return 1;
558 }
559
560 return 0;
561 }
562
563 /* Restore the terminal to its previous state (helper for
564 make_cleanup_restore_target_terminal). */
565
566 static void
567 cleanup_restore_target_terminal (void *arg)
568 {
569 enum terminal_state *previous_state = (enum terminal_state *) arg;
570
571 switch (*previous_state)
572 {
573 case terminal_is_ours:
574 target_terminal_ours ();
575 break;
576 case terminal_is_ours_for_output:
577 target_terminal_ours_for_output ();
578 break;
579 case terminal_is_inferior:
580 target_terminal_inferior ();
581 break;
582 }
583 }
584
585 /* See target.h. */
586
587 struct cleanup *
588 make_cleanup_restore_target_terminal (void)
589 {
590 enum terminal_state *ts = XNEW (enum terminal_state);
591
592 *ts = terminal_state;
593
594 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
595 }
596
597 static void
598 tcomplain (void)
599 {
600 error (_("You can't do that when your target is `%s'"),
601 current_target.to_shortname);
602 }
603
604 void
605 noprocess (void)
606 {
607 error (_("You can't do that without a process to debug."));
608 }
609
610 static void
611 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
612 {
613 printf_unfiltered (_("No saved terminal information.\n"));
614 }
615
616 /* A default implementation for the to_get_ada_task_ptid target method.
617
618 This function builds the PTID by using both LWP and TID as part of
619 the PTID lwp and tid elements. The pid used is the pid of the
620 inferior_ptid. */
621
622 static ptid_t
623 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
624 {
625 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
626 }
627
628 static enum exec_direction_kind
629 default_execution_direction (struct target_ops *self)
630 {
631 if (!target_can_execute_reverse)
632 return EXEC_FORWARD;
633 else if (!target_can_async_p ())
634 return EXEC_FORWARD;
635 else
636 gdb_assert_not_reached ("\
637 to_execution_direction must be implemented for reverse async");
638 }
639
640 /* Go through the target stack from top to bottom, copying over zero
641 entries in current_target, then filling in still empty entries. In
642 effect, we are doing class inheritance through the pushed target
643 vectors.
644
645 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
646 is currently implemented, is that it discards any knowledge of
647 which target an inherited method originally belonged to.
648 Consequently, new new target methods should instead explicitly and
649 locally search the target stack for the target that can handle the
650 request. */
651
652 static void
653 update_current_target (void)
654 {
655 struct target_ops *t;
656
657 /* First, reset current's contents. */
658 memset (&current_target, 0, sizeof (current_target));
659
660 /* Install the delegators. */
661 install_delegators (&current_target);
662
663 current_target.to_stratum = target_stack->to_stratum;
664
665 #define INHERIT(FIELD, TARGET) \
666 if (!current_target.FIELD) \
667 current_target.FIELD = (TARGET)->FIELD
668
669 /* Do not add any new INHERITs here. Instead, use the delegation
670 mechanism provided by make-target-delegates. */
671 for (t = target_stack; t; t = t->beneath)
672 {
673 INHERIT (to_shortname, t);
674 INHERIT (to_longname, t);
675 INHERIT (to_attach_no_wait, t);
676 INHERIT (to_have_steppable_watchpoint, t);
677 INHERIT (to_have_continuable_watchpoint, t);
678 INHERIT (to_has_thread_control, t);
679 }
680 #undef INHERIT
681
682 /* Finally, position the target-stack beneath the squashed
683 "current_target". That way code looking for a non-inherited
684 target method can quickly and simply find it. */
685 current_target.beneath = target_stack;
686
687 if (targetdebug)
688 setup_target_debug ();
689 }
690
691 /* Push a new target type into the stack of the existing target accessors,
692 possibly superseding some of the existing accessors.
693
694 Rather than allow an empty stack, we always have the dummy target at
695 the bottom stratum, so we can call the function vectors without
696 checking them. */
697
698 void
699 push_target (struct target_ops *t)
700 {
701 struct target_ops **cur;
702
703 /* Check magic number. If wrong, it probably means someone changed
704 the struct definition, but not all the places that initialize one. */
705 if (t->to_magic != OPS_MAGIC)
706 {
707 fprintf_unfiltered (gdb_stderr,
708 "Magic number of %s target struct wrong\n",
709 t->to_shortname);
710 internal_error (__FILE__, __LINE__,
711 _("failed internal consistency check"));
712 }
713
714 /* Find the proper stratum to install this target in. */
715 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
716 {
717 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
718 break;
719 }
720
721 /* If there's already targets at this stratum, remove them. */
722 /* FIXME: cagney/2003-10-15: I think this should be popping all
723 targets to CUR, and not just those at this stratum level. */
724 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
725 {
726 /* There's already something at this stratum level. Close it,
727 and un-hook it from the stack. */
728 struct target_ops *tmp = (*cur);
729
730 (*cur) = (*cur)->beneath;
731 tmp->beneath = NULL;
732 target_close (tmp);
733 }
734
735 /* We have removed all targets in our stratum, now add the new one. */
736 t->beneath = (*cur);
737 (*cur) = t;
738
739 update_current_target ();
740 }
741
742 /* Remove a target_ops vector from the stack, wherever it may be.
743 Return how many times it was removed (0 or 1). */
744
745 int
746 unpush_target (struct target_ops *t)
747 {
748 struct target_ops **cur;
749 struct target_ops *tmp;
750
751 if (t->to_stratum == dummy_stratum)
752 internal_error (__FILE__, __LINE__,
753 _("Attempt to unpush the dummy target"));
754
755 /* Look for the specified target. Note that we assume that a target
756 can only occur once in the target stack. */
757
758 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
759 {
760 if ((*cur) == t)
761 break;
762 }
763
764 /* If we don't find target_ops, quit. Only open targets should be
765 closed. */
766 if ((*cur) == NULL)
767 return 0;
768
769 /* Unchain the target. */
770 tmp = (*cur);
771 (*cur) = (*cur)->beneath;
772 tmp->beneath = NULL;
773
774 update_current_target ();
775
776 /* Finally close the target. Note we do this after unchaining, so
777 any target method calls from within the target_close
778 implementation don't end up in T anymore. */
779 target_close (t);
780
781 return 1;
782 }
783
784 /* Unpush TARGET and assert that it worked. */
785
786 static void
787 unpush_target_and_assert (struct target_ops *target)
788 {
789 if (!unpush_target (target))
790 {
791 fprintf_unfiltered (gdb_stderr,
792 "pop_all_targets couldn't find target %s\n",
793 target->to_shortname);
794 internal_error (__FILE__, __LINE__,
795 _("failed internal consistency check"));
796 }
797 }
798
799 void
800 pop_all_targets_above (enum strata above_stratum)
801 {
802 while ((int) (current_target.to_stratum) > (int) above_stratum)
803 unpush_target_and_assert (target_stack);
804 }
805
806 /* See target.h. */
807
808 void
809 pop_all_targets_at_and_above (enum strata stratum)
810 {
811 while ((int) (current_target.to_stratum) >= (int) stratum)
812 unpush_target_and_assert (target_stack);
813 }
814
815 void
816 pop_all_targets (void)
817 {
818 pop_all_targets_above (dummy_stratum);
819 }
820
821 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
822
823 int
824 target_is_pushed (struct target_ops *t)
825 {
826 struct target_ops *cur;
827
828 /* Check magic number. If wrong, it probably means someone changed
829 the struct definition, but not all the places that initialize one. */
830 if (t->to_magic != OPS_MAGIC)
831 {
832 fprintf_unfiltered (gdb_stderr,
833 "Magic number of %s target struct wrong\n",
834 t->to_shortname);
835 internal_error (__FILE__, __LINE__,
836 _("failed internal consistency check"));
837 }
838
839 for (cur = target_stack; cur != NULL; cur = cur->beneath)
840 if (cur == t)
841 return 1;
842
843 return 0;
844 }
845
846 /* Default implementation of to_get_thread_local_address. */
847
848 static void
849 generic_tls_error (void)
850 {
851 throw_error (TLS_GENERIC_ERROR,
852 _("Cannot find thread-local variables on this target"));
853 }
854
855 /* Using the objfile specified in OBJFILE, find the address for the
856 current thread's thread-local storage with offset OFFSET. */
857 CORE_ADDR
858 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
859 {
860 volatile CORE_ADDR addr = 0;
861 struct target_ops *target = &current_target;
862
863 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
864 {
865 ptid_t ptid = inferior_ptid;
866
867 TRY
868 {
869 CORE_ADDR lm_addr;
870
871 /* Fetch the load module address for this objfile. */
872 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
873 objfile);
874
875 addr = target->to_get_thread_local_address (target, ptid,
876 lm_addr, offset);
877 }
878 /* If an error occurred, print TLS related messages here. Otherwise,
879 throw the error to some higher catcher. */
880 CATCH (ex, RETURN_MASK_ALL)
881 {
882 int objfile_is_library = (objfile->flags & OBJF_SHARED);
883
884 switch (ex.error)
885 {
886 case TLS_NO_LIBRARY_SUPPORT_ERROR:
887 error (_("Cannot find thread-local variables "
888 "in this thread library."));
889 break;
890 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
891 if (objfile_is_library)
892 error (_("Cannot find shared library `%s' in dynamic"
893 " linker's load module list"), objfile_name (objfile));
894 else
895 error (_("Cannot find executable file `%s' in dynamic"
896 " linker's load module list"), objfile_name (objfile));
897 break;
898 case TLS_NOT_ALLOCATED_YET_ERROR:
899 if (objfile_is_library)
900 error (_("The inferior has not yet allocated storage for"
901 " thread-local variables in\n"
902 "the shared library `%s'\n"
903 "for %s"),
904 objfile_name (objfile), target_pid_to_str (ptid));
905 else
906 error (_("The inferior has not yet allocated storage for"
907 " thread-local variables in\n"
908 "the executable `%s'\n"
909 "for %s"),
910 objfile_name (objfile), target_pid_to_str (ptid));
911 break;
912 case TLS_GENERIC_ERROR:
913 if (objfile_is_library)
914 error (_("Cannot find thread-local storage for %s, "
915 "shared library %s:\n%s"),
916 target_pid_to_str (ptid),
917 objfile_name (objfile), ex.message);
918 else
919 error (_("Cannot find thread-local storage for %s, "
920 "executable file %s:\n%s"),
921 target_pid_to_str (ptid),
922 objfile_name (objfile), ex.message);
923 break;
924 default:
925 throw_exception (ex);
926 break;
927 }
928 }
929 END_CATCH
930 }
931 /* It wouldn't be wrong here to try a gdbarch method, too; finding
932 TLS is an ABI-specific thing. But we don't do that yet. */
933 else
934 error (_("Cannot find thread-local variables on this target"));
935
936 return addr;
937 }
938
939 const char *
940 target_xfer_status_to_string (enum target_xfer_status status)
941 {
942 #define CASE(X) case X: return #X
943 switch (status)
944 {
945 CASE(TARGET_XFER_E_IO);
946 CASE(TARGET_XFER_UNAVAILABLE);
947 default:
948 return "<unknown>";
949 }
950 #undef CASE
951 };
952
953
954 #undef MIN
955 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
956
957 /* target_read_string -- read a null terminated string, up to LEN bytes,
958 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
959 Set *STRING to a pointer to malloc'd memory containing the data; the caller
960 is responsible for freeing it. Return the number of bytes successfully
961 read. */
962
963 int
964 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
965 {
966 int tlen, offset, i;
967 gdb_byte buf[4];
968 int errcode = 0;
969 char *buffer;
970 int buffer_allocated;
971 char *bufptr;
972 unsigned int nbytes_read = 0;
973
974 gdb_assert (string);
975
976 /* Small for testing. */
977 buffer_allocated = 4;
978 buffer = (char *) xmalloc (buffer_allocated);
979 bufptr = buffer;
980
981 while (len > 0)
982 {
983 tlen = MIN (len, 4 - (memaddr & 3));
984 offset = memaddr & 3;
985
986 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
987 if (errcode != 0)
988 {
989 /* The transfer request might have crossed the boundary to an
990 unallocated region of memory. Retry the transfer, requesting
991 a single byte. */
992 tlen = 1;
993 offset = 0;
994 errcode = target_read_memory (memaddr, buf, 1);
995 if (errcode != 0)
996 goto done;
997 }
998
999 if (bufptr - buffer + tlen > buffer_allocated)
1000 {
1001 unsigned int bytes;
1002
1003 bytes = bufptr - buffer;
1004 buffer_allocated *= 2;
1005 buffer = (char *) xrealloc (buffer, buffer_allocated);
1006 bufptr = buffer + bytes;
1007 }
1008
1009 for (i = 0; i < tlen; i++)
1010 {
1011 *bufptr++ = buf[i + offset];
1012 if (buf[i + offset] == '\000')
1013 {
1014 nbytes_read += i + 1;
1015 goto done;
1016 }
1017 }
1018
1019 memaddr += tlen;
1020 len -= tlen;
1021 nbytes_read += tlen;
1022 }
1023 done:
1024 *string = buffer;
1025 if (errnop != NULL)
1026 *errnop = errcode;
1027 return nbytes_read;
1028 }
1029
1030 struct target_section_table *
1031 target_get_section_table (struct target_ops *target)
1032 {
1033 return (*target->to_get_section_table) (target);
1034 }
1035
1036 /* Find a section containing ADDR. */
1037
1038 struct target_section *
1039 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1040 {
1041 struct target_section_table *table = target_get_section_table (target);
1042 struct target_section *secp;
1043
1044 if (table == NULL)
1045 return NULL;
1046
1047 for (secp = table->sections; secp < table->sections_end; secp++)
1048 {
1049 if (addr >= secp->addr && addr < secp->endaddr)
1050 return secp;
1051 }
1052 return NULL;
1053 }
1054
1055
1056 /* Helper for the memory xfer routines. Checks the attributes of the
1057 memory region of MEMADDR against the read or write being attempted.
1058 If the access is permitted returns true, otherwise returns false.
1059 REGION_P is an optional output parameter. If not-NULL, it is
1060 filled with a pointer to the memory region of MEMADDR. REG_LEN
1061 returns LEN trimmed to the end of the region. This is how much the
1062 caller can continue requesting, if the access is permitted. A
1063 single xfer request must not straddle memory region boundaries. */
1064
1065 static int
1066 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1067 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1068 struct mem_region **region_p)
1069 {
1070 struct mem_region *region;
1071
1072 region = lookup_mem_region (memaddr);
1073
1074 if (region_p != NULL)
1075 *region_p = region;
1076
1077 switch (region->attrib.mode)
1078 {
1079 case MEM_RO:
1080 if (writebuf != NULL)
1081 return 0;
1082 break;
1083
1084 case MEM_WO:
1085 if (readbuf != NULL)
1086 return 0;
1087 break;
1088
1089 case MEM_FLASH:
1090 /* We only support writing to flash during "load" for now. */
1091 if (writebuf != NULL)
1092 error (_("Writing to flash memory forbidden in this context"));
1093 break;
1094
1095 case MEM_NONE:
1096 return 0;
1097 }
1098
1099 /* region->hi == 0 means there's no upper bound. */
1100 if (memaddr + len < region->hi || region->hi == 0)
1101 *reg_len = len;
1102 else
1103 *reg_len = region->hi - memaddr;
1104
1105 return 1;
1106 }
1107
1108 /* Read memory from more than one valid target. A core file, for
1109 instance, could have some of memory but delegate other bits to
1110 the target below it. So, we must manually try all targets. */
1111
1112 enum target_xfer_status
1113 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1114 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1115 ULONGEST *xfered_len)
1116 {
1117 enum target_xfer_status res;
1118
1119 do
1120 {
1121 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1122 readbuf, writebuf, memaddr, len,
1123 xfered_len);
1124 if (res == TARGET_XFER_OK)
1125 break;
1126
1127 /* Stop if the target reports that the memory is not available. */
1128 if (res == TARGET_XFER_UNAVAILABLE)
1129 break;
1130
1131 /* We want to continue past core files to executables, but not
1132 past a running target's memory. */
1133 if (ops->to_has_all_memory (ops))
1134 break;
1135
1136 ops = ops->beneath;
1137 }
1138 while (ops != NULL);
1139
1140 /* The cache works at the raw memory level. Make sure the cache
1141 gets updated with raw contents no matter what kind of memory
1142 object was originally being written. Note we do write-through
1143 first, so that if it fails, we don't write to the cache contents
1144 that never made it to the target. */
1145 if (writebuf != NULL
1146 && !ptid_equal (inferior_ptid, null_ptid)
1147 && target_dcache_init_p ()
1148 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1149 {
1150 DCACHE *dcache = target_dcache_get ();
1151
1152 /* Note that writing to an area of memory which wasn't present
1153 in the cache doesn't cause it to be loaded in. */
1154 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1155 }
1156
1157 return res;
1158 }
1159
1160 /* Perform a partial memory transfer.
1161 For docs see target.h, to_xfer_partial. */
1162
1163 static enum target_xfer_status
1164 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1165 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1166 ULONGEST len, ULONGEST *xfered_len)
1167 {
1168 enum target_xfer_status res;
1169 ULONGEST reg_len;
1170 struct mem_region *region;
1171 struct inferior *inf;
1172
1173 /* For accesses to unmapped overlay sections, read directly from
1174 files. Must do this first, as MEMADDR may need adjustment. */
1175 if (readbuf != NULL && overlay_debugging)
1176 {
1177 struct obj_section *section = find_pc_overlay (memaddr);
1178
1179 if (pc_in_unmapped_range (memaddr, section))
1180 {
1181 struct target_section_table *table
1182 = target_get_section_table (ops);
1183 const char *section_name = section->the_bfd_section->name;
1184
1185 memaddr = overlay_mapped_address (memaddr, section);
1186 return section_table_xfer_memory_partial (readbuf, writebuf,
1187 memaddr, len, xfered_len,
1188 table->sections,
1189 table->sections_end,
1190 section_name);
1191 }
1192 }
1193
1194 /* Try the executable files, if "trust-readonly-sections" is set. */
1195 if (readbuf != NULL && trust_readonly)
1196 {
1197 struct target_section *secp;
1198 struct target_section_table *table;
1199
1200 secp = target_section_by_addr (ops, memaddr);
1201 if (secp != NULL
1202 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1203 secp->the_bfd_section)
1204 & SEC_READONLY))
1205 {
1206 table = target_get_section_table (ops);
1207 return section_table_xfer_memory_partial (readbuf, writebuf,
1208 memaddr, len, xfered_len,
1209 table->sections,
1210 table->sections_end,
1211 NULL);
1212 }
1213 }
1214
1215 /* Try GDB's internal data cache. */
1216
1217 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1218 &region))
1219 return TARGET_XFER_E_IO;
1220
1221 if (!ptid_equal (inferior_ptid, null_ptid))
1222 inf = find_inferior_ptid (inferior_ptid);
1223 else
1224 inf = NULL;
1225
1226 if (inf != NULL
1227 && readbuf != NULL
1228 /* The dcache reads whole cache lines; that doesn't play well
1229 with reading from a trace buffer, because reading outside of
1230 the collected memory range fails. */
1231 && get_traceframe_number () == -1
1232 && (region->attrib.cache
1233 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1234 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1235 {
1236 DCACHE *dcache = target_dcache_get_or_init ();
1237
1238 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1239 reg_len, xfered_len);
1240 }
1241
1242 /* If none of those methods found the memory we wanted, fall back
1243 to a target partial transfer. Normally a single call to
1244 to_xfer_partial is enough; if it doesn't recognize an object
1245 it will call the to_xfer_partial of the next target down.
1246 But for memory this won't do. Memory is the only target
1247 object which can be read from more than one valid target.
1248 A core file, for instance, could have some of memory but
1249 delegate other bits to the target below it. So, we must
1250 manually try all targets. */
1251
1252 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1253 xfered_len);
1254
1255 /* If we still haven't got anything, return the last error. We
1256 give up. */
1257 return res;
1258 }
1259
1260 /* Perform a partial memory transfer. For docs see target.h,
1261 to_xfer_partial. */
1262
1263 static enum target_xfer_status
1264 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1265 gdb_byte *readbuf, const gdb_byte *writebuf,
1266 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1267 {
1268 enum target_xfer_status res;
1269
1270 /* Zero length requests are ok and require no work. */
1271 if (len == 0)
1272 return TARGET_XFER_EOF;
1273
1274 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1275 breakpoint insns, thus hiding out from higher layers whether
1276 there are software breakpoints inserted in the code stream. */
1277 if (readbuf != NULL)
1278 {
1279 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1280 xfered_len);
1281
1282 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1283 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1284 }
1285 else
1286 {
1287 gdb_byte *buf;
1288 struct cleanup *old_chain;
1289
1290 /* A large write request is likely to be partially satisfied
1291 by memory_xfer_partial_1. We will continually malloc
1292 and free a copy of the entire write request for breakpoint
1293 shadow handling even though we only end up writing a small
1294 subset of it. Cap writes to a limit specified by the target
1295 to mitigate this. */
1296 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1297
1298 buf = (gdb_byte *) xmalloc (len);
1299 old_chain = make_cleanup (xfree, buf);
1300 memcpy (buf, writebuf, len);
1301
1302 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1303 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1304 xfered_len);
1305
1306 do_cleanups (old_chain);
1307 }
1308
1309 return res;
1310 }
1311
1312 static void
1313 restore_show_memory_breakpoints (void *arg)
1314 {
1315 show_memory_breakpoints = (uintptr_t) arg;
1316 }
1317
1318 struct cleanup *
1319 make_show_memory_breakpoints_cleanup (int show)
1320 {
1321 int current = show_memory_breakpoints;
1322
1323 show_memory_breakpoints = show;
1324 return make_cleanup (restore_show_memory_breakpoints,
1325 (void *) (uintptr_t) current);
1326 }
1327
1328 /* For docs see target.h, to_xfer_partial. */
1329
1330 enum target_xfer_status
1331 target_xfer_partial (struct target_ops *ops,
1332 enum target_object object, const char *annex,
1333 gdb_byte *readbuf, const gdb_byte *writebuf,
1334 ULONGEST offset, ULONGEST len,
1335 ULONGEST *xfered_len)
1336 {
1337 enum target_xfer_status retval;
1338
1339 gdb_assert (ops->to_xfer_partial != NULL);
1340
1341 /* Transfer is done when LEN is zero. */
1342 if (len == 0)
1343 return TARGET_XFER_EOF;
1344
1345 if (writebuf && !may_write_memory)
1346 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1347 core_addr_to_string_nz (offset), plongest (len));
1348
1349 *xfered_len = 0;
1350
1351 /* If this is a memory transfer, let the memory-specific code
1352 have a look at it instead. Memory transfers are more
1353 complicated. */
1354 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1355 || object == TARGET_OBJECT_CODE_MEMORY)
1356 retval = memory_xfer_partial (ops, object, readbuf,
1357 writebuf, offset, len, xfered_len);
1358 else if (object == TARGET_OBJECT_RAW_MEMORY)
1359 {
1360 /* Skip/avoid accessing the target if the memory region
1361 attributes block the access. Check this here instead of in
1362 raw_memory_xfer_partial as otherwise we'd end up checking
1363 this twice in the case of the memory_xfer_partial path is
1364 taken; once before checking the dcache, and another in the
1365 tail call to raw_memory_xfer_partial. */
1366 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1367 NULL))
1368 return TARGET_XFER_E_IO;
1369
1370 /* Request the normal memory object from other layers. */
1371 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1372 xfered_len);
1373 }
1374 else
1375 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1376 writebuf, offset, len, xfered_len);
1377
1378 if (targetdebug)
1379 {
1380 const unsigned char *myaddr = NULL;
1381
1382 fprintf_unfiltered (gdb_stdlog,
1383 "%s:target_xfer_partial "
1384 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1385 ops->to_shortname,
1386 (int) object,
1387 (annex ? annex : "(null)"),
1388 host_address_to_string (readbuf),
1389 host_address_to_string (writebuf),
1390 core_addr_to_string_nz (offset),
1391 pulongest (len), retval,
1392 pulongest (*xfered_len));
1393
1394 if (readbuf)
1395 myaddr = readbuf;
1396 if (writebuf)
1397 myaddr = writebuf;
1398 if (retval == TARGET_XFER_OK && myaddr != NULL)
1399 {
1400 int i;
1401
1402 fputs_unfiltered (", bytes =", gdb_stdlog);
1403 for (i = 0; i < *xfered_len; i++)
1404 {
1405 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1406 {
1407 if (targetdebug < 2 && i > 0)
1408 {
1409 fprintf_unfiltered (gdb_stdlog, " ...");
1410 break;
1411 }
1412 fprintf_unfiltered (gdb_stdlog, "\n");
1413 }
1414
1415 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1416 }
1417 }
1418
1419 fputc_unfiltered ('\n', gdb_stdlog);
1420 }
1421
1422 /* Check implementations of to_xfer_partial update *XFERED_LEN
1423 properly. Do assertion after printing debug messages, so that we
1424 can find more clues on assertion failure from debugging messages. */
1425 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1426 gdb_assert (*xfered_len > 0);
1427
1428 return retval;
1429 }
1430
1431 /* Read LEN bytes of target memory at address MEMADDR, placing the
1432 results in GDB's memory at MYADDR. Returns either 0 for success or
1433 -1 if any error occurs.
1434
1435 If an error occurs, no guarantee is made about the contents of the data at
1436 MYADDR. In particular, the caller should not depend upon partial reads
1437 filling the buffer with good data. There is no way for the caller to know
1438 how much good data might have been transfered anyway. Callers that can
1439 deal with partial reads should call target_read (which will retry until
1440 it makes no progress, and then return how much was transferred). */
1441
1442 int
1443 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1444 {
1445 /* Dispatch to the topmost target, not the flattened current_target.
1446 Memory accesses check target->to_has_(all_)memory, and the
1447 flattened target doesn't inherit those. */
1448 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1449 myaddr, memaddr, len) == len)
1450 return 0;
1451 else
1452 return -1;
1453 }
1454
1455 /* See target/target.h. */
1456
1457 int
1458 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1459 {
1460 gdb_byte buf[4];
1461 int r;
1462
1463 r = target_read_memory (memaddr, buf, sizeof buf);
1464 if (r != 0)
1465 return r;
1466 *result = extract_unsigned_integer (buf, sizeof buf,
1467 gdbarch_byte_order (target_gdbarch ()));
1468 return 0;
1469 }
1470
1471 /* Like target_read_memory, but specify explicitly that this is a read
1472 from the target's raw memory. That is, this read bypasses the
1473 dcache, breakpoint shadowing, etc. */
1474
1475 int
1476 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1477 {
1478 /* See comment in target_read_memory about why the request starts at
1479 current_target.beneath. */
1480 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1481 myaddr, memaddr, len) == len)
1482 return 0;
1483 else
1484 return -1;
1485 }
1486
1487 /* Like target_read_memory, but specify explicitly that this is a read from
1488 the target's stack. This may trigger different cache behavior. */
1489
1490 int
1491 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1492 {
1493 /* See comment in target_read_memory about why the request starts at
1494 current_target.beneath. */
1495 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1496 myaddr, memaddr, len) == len)
1497 return 0;
1498 else
1499 return -1;
1500 }
1501
1502 /* Like target_read_memory, but specify explicitly that this is a read from
1503 the target's code. This may trigger different cache behavior. */
1504
1505 int
1506 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1507 {
1508 /* See comment in target_read_memory about why the request starts at
1509 current_target.beneath. */
1510 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1511 myaddr, memaddr, len) == len)
1512 return 0;
1513 else
1514 return -1;
1515 }
1516
1517 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1518 Returns either 0 for success or -1 if any error occurs. If an
1519 error occurs, no guarantee is made about how much data got written.
1520 Callers that can deal with partial writes should call
1521 target_write. */
1522
1523 int
1524 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1525 {
1526 /* See comment in target_read_memory about why the request starts at
1527 current_target.beneath. */
1528 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1529 myaddr, memaddr, len) == len)
1530 return 0;
1531 else
1532 return -1;
1533 }
1534
1535 /* Write LEN bytes from MYADDR to target raw memory at address
1536 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1537 If an error occurs, no guarantee is made about how much data got
1538 written. Callers that can deal with partial writes should call
1539 target_write. */
1540
1541 int
1542 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1543 {
1544 /* See comment in target_read_memory about why the request starts at
1545 current_target.beneath. */
1546 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1547 myaddr, memaddr, len) == len)
1548 return 0;
1549 else
1550 return -1;
1551 }
1552
1553 /* Fetch the target's memory map. */
1554
1555 VEC(mem_region_s) *
1556 target_memory_map (void)
1557 {
1558 VEC(mem_region_s) *result;
1559 struct mem_region *last_one, *this_one;
1560 int ix;
1561 result = current_target.to_memory_map (&current_target);
1562 if (result == NULL)
1563 return NULL;
1564
1565 qsort (VEC_address (mem_region_s, result),
1566 VEC_length (mem_region_s, result),
1567 sizeof (struct mem_region), mem_region_cmp);
1568
1569 /* Check that regions do not overlap. Simultaneously assign
1570 a numbering for the "mem" commands to use to refer to
1571 each region. */
1572 last_one = NULL;
1573 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1574 {
1575 this_one->number = ix;
1576
1577 if (last_one && last_one->hi > this_one->lo)
1578 {
1579 warning (_("Overlapping regions in memory map: ignoring"));
1580 VEC_free (mem_region_s, result);
1581 return NULL;
1582 }
1583 last_one = this_one;
1584 }
1585
1586 return result;
1587 }
1588
1589 void
1590 target_flash_erase (ULONGEST address, LONGEST length)
1591 {
1592 current_target.to_flash_erase (&current_target, address, length);
1593 }
1594
1595 void
1596 target_flash_done (void)
1597 {
1598 current_target.to_flash_done (&current_target);
1599 }
1600
1601 static void
1602 show_trust_readonly (struct ui_file *file, int from_tty,
1603 struct cmd_list_element *c, const char *value)
1604 {
1605 fprintf_filtered (file,
1606 _("Mode for reading from readonly sections is %s.\n"),
1607 value);
1608 }
1609
1610 /* Target vector read/write partial wrapper functions. */
1611
1612 static enum target_xfer_status
1613 target_read_partial (struct target_ops *ops,
1614 enum target_object object,
1615 const char *annex, gdb_byte *buf,
1616 ULONGEST offset, ULONGEST len,
1617 ULONGEST *xfered_len)
1618 {
1619 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1620 xfered_len);
1621 }
1622
1623 static enum target_xfer_status
1624 target_write_partial (struct target_ops *ops,
1625 enum target_object object,
1626 const char *annex, const gdb_byte *buf,
1627 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1628 {
1629 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1630 xfered_len);
1631 }
1632
1633 /* Wrappers to perform the full transfer. */
1634
1635 /* For docs on target_read see target.h. */
1636
1637 LONGEST
1638 target_read (struct target_ops *ops,
1639 enum target_object object,
1640 const char *annex, gdb_byte *buf,
1641 ULONGEST offset, LONGEST len)
1642 {
1643 LONGEST xfered_total = 0;
1644 int unit_size = 1;
1645
1646 /* If we are reading from a memory object, find the length of an addressable
1647 unit for that architecture. */
1648 if (object == TARGET_OBJECT_MEMORY
1649 || object == TARGET_OBJECT_STACK_MEMORY
1650 || object == TARGET_OBJECT_CODE_MEMORY
1651 || object == TARGET_OBJECT_RAW_MEMORY)
1652 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1653
1654 while (xfered_total < len)
1655 {
1656 ULONGEST xfered_partial;
1657 enum target_xfer_status status;
1658
1659 status = target_read_partial (ops, object, annex,
1660 buf + xfered_total * unit_size,
1661 offset + xfered_total, len - xfered_total,
1662 &xfered_partial);
1663
1664 /* Call an observer, notifying them of the xfer progress? */
1665 if (status == TARGET_XFER_EOF)
1666 return xfered_total;
1667 else if (status == TARGET_XFER_OK)
1668 {
1669 xfered_total += xfered_partial;
1670 QUIT;
1671 }
1672 else
1673 return TARGET_XFER_E_IO;
1674
1675 }
1676 return len;
1677 }
1678
1679 /* Assuming that the entire [begin, end) range of memory cannot be
1680 read, try to read whatever subrange is possible to read.
1681
1682 The function returns, in RESULT, either zero or one memory block.
1683 If there's a readable subrange at the beginning, it is completely
1684 read and returned. Any further readable subrange will not be read.
1685 Otherwise, if there's a readable subrange at the end, it will be
1686 completely read and returned. Any readable subranges before it
1687 (obviously, not starting at the beginning), will be ignored. In
1688 other cases -- either no readable subrange, or readable subrange(s)
1689 that is neither at the beginning, or end, nothing is returned.
1690
1691 The purpose of this function is to handle a read across a boundary
1692 of accessible memory in a case when memory map is not available.
1693 The above restrictions are fine for this case, but will give
1694 incorrect results if the memory is 'patchy'. However, supporting
1695 'patchy' memory would require trying to read every single byte,
1696 and it seems unacceptable solution. Explicit memory map is
1697 recommended for this case -- and target_read_memory_robust will
1698 take care of reading multiple ranges then. */
1699
1700 static void
1701 read_whatever_is_readable (struct target_ops *ops,
1702 const ULONGEST begin, const ULONGEST end,
1703 int unit_size,
1704 VEC(memory_read_result_s) **result)
1705 {
1706 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1707 ULONGEST current_begin = begin;
1708 ULONGEST current_end = end;
1709 int forward;
1710 memory_read_result_s r;
1711 ULONGEST xfered_len;
1712
1713 /* If we previously failed to read 1 byte, nothing can be done here. */
1714 if (end - begin <= 1)
1715 {
1716 xfree (buf);
1717 return;
1718 }
1719
1720 /* Check that either first or the last byte is readable, and give up
1721 if not. This heuristic is meant to permit reading accessible memory
1722 at the boundary of accessible region. */
1723 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1724 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1725 {
1726 forward = 1;
1727 ++current_begin;
1728 }
1729 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1730 buf + (end - begin) - 1, end - 1, 1,
1731 &xfered_len) == TARGET_XFER_OK)
1732 {
1733 forward = 0;
1734 --current_end;
1735 }
1736 else
1737 {
1738 xfree (buf);
1739 return;
1740 }
1741
1742 /* Loop invariant is that the [current_begin, current_end) was previously
1743 found to be not readable as a whole.
1744
1745 Note loop condition -- if the range has 1 byte, we can't divide the range
1746 so there's no point trying further. */
1747 while (current_end - current_begin > 1)
1748 {
1749 ULONGEST first_half_begin, first_half_end;
1750 ULONGEST second_half_begin, second_half_end;
1751 LONGEST xfer;
1752 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1753
1754 if (forward)
1755 {
1756 first_half_begin = current_begin;
1757 first_half_end = middle;
1758 second_half_begin = middle;
1759 second_half_end = current_end;
1760 }
1761 else
1762 {
1763 first_half_begin = middle;
1764 first_half_end = current_end;
1765 second_half_begin = current_begin;
1766 second_half_end = middle;
1767 }
1768
1769 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1770 buf + (first_half_begin - begin) * unit_size,
1771 first_half_begin,
1772 first_half_end - first_half_begin);
1773
1774 if (xfer == first_half_end - first_half_begin)
1775 {
1776 /* This half reads up fine. So, the error must be in the
1777 other half. */
1778 current_begin = second_half_begin;
1779 current_end = second_half_end;
1780 }
1781 else
1782 {
1783 /* This half is not readable. Because we've tried one byte, we
1784 know some part of this half if actually readable. Go to the next
1785 iteration to divide again and try to read.
1786
1787 We don't handle the other half, because this function only tries
1788 to read a single readable subrange. */
1789 current_begin = first_half_begin;
1790 current_end = first_half_end;
1791 }
1792 }
1793
1794 if (forward)
1795 {
1796 /* The [begin, current_begin) range has been read. */
1797 r.begin = begin;
1798 r.end = current_begin;
1799 r.data = buf;
1800 }
1801 else
1802 {
1803 /* The [current_end, end) range has been read. */
1804 LONGEST region_len = end - current_end;
1805
1806 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1807 memcpy (r.data, buf + (current_end - begin) * unit_size,
1808 region_len * unit_size);
1809 r.begin = current_end;
1810 r.end = end;
1811 xfree (buf);
1812 }
1813 VEC_safe_push(memory_read_result_s, (*result), &r);
1814 }
1815
1816 void
1817 free_memory_read_result_vector (void *x)
1818 {
1819 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1820 memory_read_result_s *current;
1821 int ix;
1822
1823 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1824 {
1825 xfree (current->data);
1826 }
1827 VEC_free (memory_read_result_s, *v);
1828 }
1829
1830 VEC(memory_read_result_s) *
1831 read_memory_robust (struct target_ops *ops,
1832 const ULONGEST offset, const LONGEST len)
1833 {
1834 VEC(memory_read_result_s) *result = 0;
1835 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1836 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1837 &result);
1838
1839 LONGEST xfered_total = 0;
1840 while (xfered_total < len)
1841 {
1842 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1843 LONGEST region_len;
1844
1845 /* If there is no explicit region, a fake one should be created. */
1846 gdb_assert (region);
1847
1848 if (region->hi == 0)
1849 region_len = len - xfered_total;
1850 else
1851 region_len = region->hi - offset;
1852
1853 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1854 {
1855 /* Cannot read this region. Note that we can end up here only
1856 if the region is explicitly marked inaccessible, or
1857 'inaccessible-by-default' is in effect. */
1858 xfered_total += region_len;
1859 }
1860 else
1861 {
1862 LONGEST to_read = std::min (len - xfered_total, region_len);
1863 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1864 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1865
1866 LONGEST xfered_partial =
1867 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1868 (gdb_byte *) buffer,
1869 offset + xfered_total, to_read);
1870 /* Call an observer, notifying them of the xfer progress? */
1871 if (xfered_partial <= 0)
1872 {
1873 /* Got an error reading full chunk. See if maybe we can read
1874 some subrange. */
1875 do_cleanups (inner_cleanup);
1876 read_whatever_is_readable (ops, offset + xfered_total,
1877 offset + xfered_total + to_read,
1878 unit_size, &result);
1879 xfered_total += to_read;
1880 }
1881 else
1882 {
1883 struct memory_read_result r;
1884
1885 discard_cleanups (inner_cleanup);
1886 r.data = buffer;
1887 r.begin = offset + xfered_total;
1888 r.end = r.begin + xfered_partial;
1889 VEC_safe_push (memory_read_result_s, result, &r);
1890 xfered_total += xfered_partial;
1891 }
1892 QUIT;
1893 }
1894 }
1895
1896 discard_cleanups (cleanup);
1897 return result;
1898 }
1899
1900
1901 /* An alternative to target_write with progress callbacks. */
1902
1903 LONGEST
1904 target_write_with_progress (struct target_ops *ops,
1905 enum target_object object,
1906 const char *annex, const gdb_byte *buf,
1907 ULONGEST offset, LONGEST len,
1908 void (*progress) (ULONGEST, void *), void *baton)
1909 {
1910 LONGEST xfered_total = 0;
1911 int unit_size = 1;
1912
1913 /* If we are writing to a memory object, find the length of an addressable
1914 unit for that architecture. */
1915 if (object == TARGET_OBJECT_MEMORY
1916 || object == TARGET_OBJECT_STACK_MEMORY
1917 || object == TARGET_OBJECT_CODE_MEMORY
1918 || object == TARGET_OBJECT_RAW_MEMORY)
1919 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1920
1921 /* Give the progress callback a chance to set up. */
1922 if (progress)
1923 (*progress) (0, baton);
1924
1925 while (xfered_total < len)
1926 {
1927 ULONGEST xfered_partial;
1928 enum target_xfer_status status;
1929
1930 status = target_write_partial (ops, object, annex,
1931 buf + xfered_total * unit_size,
1932 offset + xfered_total, len - xfered_total,
1933 &xfered_partial);
1934
1935 if (status != TARGET_XFER_OK)
1936 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1937
1938 if (progress)
1939 (*progress) (xfered_partial, baton);
1940
1941 xfered_total += xfered_partial;
1942 QUIT;
1943 }
1944 return len;
1945 }
1946
1947 /* For docs on target_write see target.h. */
1948
1949 LONGEST
1950 target_write (struct target_ops *ops,
1951 enum target_object object,
1952 const char *annex, const gdb_byte *buf,
1953 ULONGEST offset, LONGEST len)
1954 {
1955 return target_write_with_progress (ops, object, annex, buf, offset, len,
1956 NULL, NULL);
1957 }
1958
1959 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1960 the size of the transferred data. PADDING additional bytes are
1961 available in *BUF_P. This is a helper function for
1962 target_read_alloc; see the declaration of that function for more
1963 information. */
1964
1965 static LONGEST
1966 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1967 const char *annex, gdb_byte **buf_p, int padding)
1968 {
1969 size_t buf_alloc, buf_pos;
1970 gdb_byte *buf;
1971
1972 /* This function does not have a length parameter; it reads the
1973 entire OBJECT). Also, it doesn't support objects fetched partly
1974 from one target and partly from another (in a different stratum,
1975 e.g. a core file and an executable). Both reasons make it
1976 unsuitable for reading memory. */
1977 gdb_assert (object != TARGET_OBJECT_MEMORY);
1978
1979 /* Start by reading up to 4K at a time. The target will throttle
1980 this number down if necessary. */
1981 buf_alloc = 4096;
1982 buf = (gdb_byte *) xmalloc (buf_alloc);
1983 buf_pos = 0;
1984 while (1)
1985 {
1986 ULONGEST xfered_len;
1987 enum target_xfer_status status;
1988
1989 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1990 buf_pos, buf_alloc - buf_pos - padding,
1991 &xfered_len);
1992
1993 if (status == TARGET_XFER_EOF)
1994 {
1995 /* Read all there was. */
1996 if (buf_pos == 0)
1997 xfree (buf);
1998 else
1999 *buf_p = buf;
2000 return buf_pos;
2001 }
2002 else if (status != TARGET_XFER_OK)
2003 {
2004 /* An error occurred. */
2005 xfree (buf);
2006 return TARGET_XFER_E_IO;
2007 }
2008
2009 buf_pos += xfered_len;
2010
2011 /* If the buffer is filling up, expand it. */
2012 if (buf_alloc < buf_pos * 2)
2013 {
2014 buf_alloc *= 2;
2015 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2016 }
2017
2018 QUIT;
2019 }
2020 }
2021
2022 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2023 the size of the transferred data. See the declaration in "target.h"
2024 function for more information about the return value. */
2025
2026 LONGEST
2027 target_read_alloc (struct target_ops *ops, enum target_object object,
2028 const char *annex, gdb_byte **buf_p)
2029 {
2030 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2031 }
2032
2033 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2034 returned as a string, allocated using xmalloc. If an error occurs
2035 or the transfer is unsupported, NULL is returned. Empty objects
2036 are returned as allocated but empty strings. A warning is issued
2037 if the result contains any embedded NUL bytes. */
2038
2039 char *
2040 target_read_stralloc (struct target_ops *ops, enum target_object object,
2041 const char *annex)
2042 {
2043 gdb_byte *buffer;
2044 char *bufstr;
2045 LONGEST i, transferred;
2046
2047 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2048 bufstr = (char *) buffer;
2049
2050 if (transferred < 0)
2051 return NULL;
2052
2053 if (transferred == 0)
2054 return xstrdup ("");
2055
2056 bufstr[transferred] = 0;
2057
2058 /* Check for embedded NUL bytes; but allow trailing NULs. */
2059 for (i = strlen (bufstr); i < transferred; i++)
2060 if (bufstr[i] != 0)
2061 {
2062 warning (_("target object %d, annex %s, "
2063 "contained unexpected null characters"),
2064 (int) object, annex ? annex : "(none)");
2065 break;
2066 }
2067
2068 return bufstr;
2069 }
2070
2071 /* Memory transfer methods. */
2072
2073 void
2074 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2075 LONGEST len)
2076 {
2077 /* This method is used to read from an alternate, non-current
2078 target. This read must bypass the overlay support (as symbols
2079 don't match this target), and GDB's internal cache (wrong cache
2080 for this target). */
2081 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2082 != len)
2083 memory_error (TARGET_XFER_E_IO, addr);
2084 }
2085
2086 ULONGEST
2087 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2088 int len, enum bfd_endian byte_order)
2089 {
2090 gdb_byte buf[sizeof (ULONGEST)];
2091
2092 gdb_assert (len <= sizeof (buf));
2093 get_target_memory (ops, addr, buf, len);
2094 return extract_unsigned_integer (buf, len, byte_order);
2095 }
2096
2097 /* See target.h. */
2098
2099 int
2100 target_insert_breakpoint (struct gdbarch *gdbarch,
2101 struct bp_target_info *bp_tgt)
2102 {
2103 if (!may_insert_breakpoints)
2104 {
2105 warning (_("May not insert breakpoints"));
2106 return 1;
2107 }
2108
2109 return current_target.to_insert_breakpoint (&current_target,
2110 gdbarch, bp_tgt);
2111 }
2112
2113 /* See target.h. */
2114
2115 int
2116 target_remove_breakpoint (struct gdbarch *gdbarch,
2117 struct bp_target_info *bp_tgt,
2118 enum remove_bp_reason reason)
2119 {
2120 /* This is kind of a weird case to handle, but the permission might
2121 have been changed after breakpoints were inserted - in which case
2122 we should just take the user literally and assume that any
2123 breakpoints should be left in place. */
2124 if (!may_insert_breakpoints)
2125 {
2126 warning (_("May not remove breakpoints"));
2127 return 1;
2128 }
2129
2130 return current_target.to_remove_breakpoint (&current_target,
2131 gdbarch, bp_tgt, reason);
2132 }
2133
2134 static void
2135 target_info (char *args, int from_tty)
2136 {
2137 struct target_ops *t;
2138 int has_all_mem = 0;
2139
2140 if (symfile_objfile != NULL)
2141 printf_unfiltered (_("Symbols from \"%s\".\n"),
2142 objfile_name (symfile_objfile));
2143
2144 for (t = target_stack; t != NULL; t = t->beneath)
2145 {
2146 if (!(*t->to_has_memory) (t))
2147 continue;
2148
2149 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2150 continue;
2151 if (has_all_mem)
2152 printf_unfiltered (_("\tWhile running this, "
2153 "GDB does not access memory from...\n"));
2154 printf_unfiltered ("%s:\n", t->to_longname);
2155 (t->to_files_info) (t);
2156 has_all_mem = (*t->to_has_all_memory) (t);
2157 }
2158 }
2159
2160 /* This function is called before any new inferior is created, e.g.
2161 by running a program, attaching, or connecting to a target.
2162 It cleans up any state from previous invocations which might
2163 change between runs. This is a subset of what target_preopen
2164 resets (things which might change between targets). */
2165
2166 void
2167 target_pre_inferior (int from_tty)
2168 {
2169 /* Clear out solib state. Otherwise the solib state of the previous
2170 inferior might have survived and is entirely wrong for the new
2171 target. This has been observed on GNU/Linux using glibc 2.3. How
2172 to reproduce:
2173
2174 bash$ ./foo&
2175 [1] 4711
2176 bash$ ./foo&
2177 [1] 4712
2178 bash$ gdb ./foo
2179 [...]
2180 (gdb) attach 4711
2181 (gdb) detach
2182 (gdb) attach 4712
2183 Cannot access memory at address 0xdeadbeef
2184 */
2185
2186 /* In some OSs, the shared library list is the same/global/shared
2187 across inferiors. If code is shared between processes, so are
2188 memory regions and features. */
2189 if (!gdbarch_has_global_solist (target_gdbarch ()))
2190 {
2191 no_shared_libraries (NULL, from_tty);
2192
2193 invalidate_target_mem_regions ();
2194
2195 target_clear_description ();
2196 }
2197
2198 /* attach_flag may be set if the previous process associated with
2199 the inferior was attached to. */
2200 current_inferior ()->attach_flag = 0;
2201
2202 current_inferior ()->highest_thread_num = 0;
2203
2204 agent_capability_invalidate ();
2205 }
2206
2207 /* Callback for iterate_over_inferiors. Gets rid of the given
2208 inferior. */
2209
2210 static int
2211 dispose_inferior (struct inferior *inf, void *args)
2212 {
2213 struct thread_info *thread;
2214
2215 thread = any_thread_of_process (inf->pid);
2216 if (thread)
2217 {
2218 switch_to_thread (thread->ptid);
2219
2220 /* Core inferiors actually should be detached, not killed. */
2221 if (target_has_execution)
2222 target_kill ();
2223 else
2224 target_detach (NULL, 0);
2225 }
2226
2227 return 0;
2228 }
2229
2230 /* This is to be called by the open routine before it does
2231 anything. */
2232
2233 void
2234 target_preopen (int from_tty)
2235 {
2236 dont_repeat ();
2237
2238 if (have_inferiors ())
2239 {
2240 if (!from_tty
2241 || !have_live_inferiors ()
2242 || query (_("A program is being debugged already. Kill it? ")))
2243 iterate_over_inferiors (dispose_inferior, NULL);
2244 else
2245 error (_("Program not killed."));
2246 }
2247
2248 /* Calling target_kill may remove the target from the stack. But if
2249 it doesn't (which seems like a win for UDI), remove it now. */
2250 /* Leave the exec target, though. The user may be switching from a
2251 live process to a core of the same program. */
2252 pop_all_targets_above (file_stratum);
2253
2254 target_pre_inferior (from_tty);
2255 }
2256
2257 /* Detach a target after doing deferred register stores. */
2258
2259 void
2260 target_detach (const char *args, int from_tty)
2261 {
2262 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2263 /* Don't remove global breakpoints here. They're removed on
2264 disconnection from the target. */
2265 ;
2266 else
2267 /* If we're in breakpoints-always-inserted mode, have to remove
2268 them before detaching. */
2269 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2270
2271 prepare_for_detach ();
2272
2273 current_target.to_detach (&current_target, args, from_tty);
2274 }
2275
2276 void
2277 target_disconnect (const char *args, int from_tty)
2278 {
2279 /* If we're in breakpoints-always-inserted mode or if breakpoints
2280 are global across processes, we have to remove them before
2281 disconnecting. */
2282 remove_breakpoints ();
2283
2284 current_target.to_disconnect (&current_target, args, from_tty);
2285 }
2286
2287 /* See target/target.h. */
2288
2289 ptid_t
2290 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2291 {
2292 return (current_target.to_wait) (&current_target, ptid, status, options);
2293 }
2294
2295 /* See target.h. */
2296
2297 ptid_t
2298 default_target_wait (struct target_ops *ops,
2299 ptid_t ptid, struct target_waitstatus *status,
2300 int options)
2301 {
2302 status->kind = TARGET_WAITKIND_IGNORE;
2303 return minus_one_ptid;
2304 }
2305
2306 char *
2307 target_pid_to_str (ptid_t ptid)
2308 {
2309 return (*current_target.to_pid_to_str) (&current_target, ptid);
2310 }
2311
2312 const char *
2313 target_thread_name (struct thread_info *info)
2314 {
2315 return current_target.to_thread_name (&current_target, info);
2316 }
2317
2318 void
2319 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2320 {
2321 target_dcache_invalidate ();
2322
2323 current_target.to_resume (&current_target, ptid, step, signal);
2324
2325 registers_changed_ptid (ptid);
2326 /* We only set the internal executing state here. The user/frontend
2327 running state is set at a higher level. */
2328 set_executing (ptid, 1);
2329 clear_inline_frame_state (ptid);
2330 }
2331
2332 /* If true, target_commit_resume is a nop. */
2333 static int defer_target_commit_resume;
2334
2335 /* See target.h. */
2336
2337 void
2338 target_commit_resume (void)
2339 {
2340 struct target_ops *t;
2341
2342 if (defer_target_commit_resume)
2343 return;
2344
2345 current_target.to_commit_resume (&current_target);
2346 }
2347
2348 /* See target.h. */
2349
2350 struct cleanup *
2351 make_cleanup_defer_target_commit_resume (void)
2352 {
2353 struct cleanup *old_chain;
2354
2355 old_chain = make_cleanup_restore_integer (&defer_target_commit_resume);
2356 defer_target_commit_resume = 1;
2357 return old_chain;
2358 }
2359
2360 void
2361 target_pass_signals (int numsigs, unsigned char *pass_signals)
2362 {
2363 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2364 }
2365
2366 void
2367 target_program_signals (int numsigs, unsigned char *program_signals)
2368 {
2369 (*current_target.to_program_signals) (&current_target,
2370 numsigs, program_signals);
2371 }
2372
2373 static int
2374 default_follow_fork (struct target_ops *self, int follow_child,
2375 int detach_fork)
2376 {
2377 /* Some target returned a fork event, but did not know how to follow it. */
2378 internal_error (__FILE__, __LINE__,
2379 _("could not find a target to follow fork"));
2380 }
2381
2382 /* Look through the list of possible targets for a target that can
2383 follow forks. */
2384
2385 int
2386 target_follow_fork (int follow_child, int detach_fork)
2387 {
2388 return current_target.to_follow_fork (&current_target,
2389 follow_child, detach_fork);
2390 }
2391
2392 /* Target wrapper for follow exec hook. */
2393
2394 void
2395 target_follow_exec (struct inferior *inf, char *execd_pathname)
2396 {
2397 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2398 }
2399
2400 static void
2401 default_mourn_inferior (struct target_ops *self)
2402 {
2403 internal_error (__FILE__, __LINE__,
2404 _("could not find a target to follow mourn inferior"));
2405 }
2406
2407 void
2408 target_mourn_inferior (ptid_t ptid)
2409 {
2410 gdb_assert (ptid_equal (ptid, inferior_ptid));
2411 current_target.to_mourn_inferior (&current_target);
2412
2413 /* We no longer need to keep handles on any of the object files.
2414 Make sure to release them to avoid unnecessarily locking any
2415 of them while we're not actually debugging. */
2416 bfd_cache_close_all ();
2417 }
2418
2419 /* Look for a target which can describe architectural features, starting
2420 from TARGET. If we find one, return its description. */
2421
2422 const struct target_desc *
2423 target_read_description (struct target_ops *target)
2424 {
2425 return target->to_read_description (target);
2426 }
2427
2428 /* This implements a basic search of memory, reading target memory and
2429 performing the search here (as opposed to performing the search in on the
2430 target side with, for example, gdbserver). */
2431
2432 int
2433 simple_search_memory (struct target_ops *ops,
2434 CORE_ADDR start_addr, ULONGEST search_space_len,
2435 const gdb_byte *pattern, ULONGEST pattern_len,
2436 CORE_ADDR *found_addrp)
2437 {
2438 /* NOTE: also defined in find.c testcase. */
2439 #define SEARCH_CHUNK_SIZE 16000
2440 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2441 /* Buffer to hold memory contents for searching. */
2442 gdb_byte *search_buf;
2443 unsigned search_buf_size;
2444 struct cleanup *old_cleanups;
2445
2446 search_buf_size = chunk_size + pattern_len - 1;
2447
2448 /* No point in trying to allocate a buffer larger than the search space. */
2449 if (search_space_len < search_buf_size)
2450 search_buf_size = search_space_len;
2451
2452 search_buf = (gdb_byte *) malloc (search_buf_size);
2453 if (search_buf == NULL)
2454 error (_("Unable to allocate memory to perform the search."));
2455 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2456
2457 /* Prime the search buffer. */
2458
2459 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2460 search_buf, start_addr, search_buf_size) != search_buf_size)
2461 {
2462 warning (_("Unable to access %s bytes of target "
2463 "memory at %s, halting search."),
2464 pulongest (search_buf_size), hex_string (start_addr));
2465 do_cleanups (old_cleanups);
2466 return -1;
2467 }
2468
2469 /* Perform the search.
2470
2471 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2472 When we've scanned N bytes we copy the trailing bytes to the start and
2473 read in another N bytes. */
2474
2475 while (search_space_len >= pattern_len)
2476 {
2477 gdb_byte *found_ptr;
2478 unsigned nr_search_bytes
2479 = std::min (search_space_len, (ULONGEST) search_buf_size);
2480
2481 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2482 pattern, pattern_len);
2483
2484 if (found_ptr != NULL)
2485 {
2486 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2487
2488 *found_addrp = found_addr;
2489 do_cleanups (old_cleanups);
2490 return 1;
2491 }
2492
2493 /* Not found in this chunk, skip to next chunk. */
2494
2495 /* Don't let search_space_len wrap here, it's unsigned. */
2496 if (search_space_len >= chunk_size)
2497 search_space_len -= chunk_size;
2498 else
2499 search_space_len = 0;
2500
2501 if (search_space_len >= pattern_len)
2502 {
2503 unsigned keep_len = search_buf_size - chunk_size;
2504 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2505 int nr_to_read;
2506
2507 /* Copy the trailing part of the previous iteration to the front
2508 of the buffer for the next iteration. */
2509 gdb_assert (keep_len == pattern_len - 1);
2510 memcpy (search_buf, search_buf + chunk_size, keep_len);
2511
2512 nr_to_read = std::min (search_space_len - keep_len,
2513 (ULONGEST) chunk_size);
2514
2515 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2516 search_buf + keep_len, read_addr,
2517 nr_to_read) != nr_to_read)
2518 {
2519 warning (_("Unable to access %s bytes of target "
2520 "memory at %s, halting search."),
2521 plongest (nr_to_read),
2522 hex_string (read_addr));
2523 do_cleanups (old_cleanups);
2524 return -1;
2525 }
2526
2527 start_addr += chunk_size;
2528 }
2529 }
2530
2531 /* Not found. */
2532
2533 do_cleanups (old_cleanups);
2534 return 0;
2535 }
2536
2537 /* Default implementation of memory-searching. */
2538
2539 static int
2540 default_search_memory (struct target_ops *self,
2541 CORE_ADDR start_addr, ULONGEST search_space_len,
2542 const gdb_byte *pattern, ULONGEST pattern_len,
2543 CORE_ADDR *found_addrp)
2544 {
2545 /* Start over from the top of the target stack. */
2546 return simple_search_memory (current_target.beneath,
2547 start_addr, search_space_len,
2548 pattern, pattern_len, found_addrp);
2549 }
2550
2551 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2552 sequence of bytes in PATTERN with length PATTERN_LEN.
2553
2554 The result is 1 if found, 0 if not found, and -1 if there was an error
2555 requiring halting of the search (e.g. memory read error).
2556 If the pattern is found the address is recorded in FOUND_ADDRP. */
2557
2558 int
2559 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2560 const gdb_byte *pattern, ULONGEST pattern_len,
2561 CORE_ADDR *found_addrp)
2562 {
2563 return current_target.to_search_memory (&current_target, start_addr,
2564 search_space_len,
2565 pattern, pattern_len, found_addrp);
2566 }
2567
2568 /* Look through the currently pushed targets. If none of them will
2569 be able to restart the currently running process, issue an error
2570 message. */
2571
2572 void
2573 target_require_runnable (void)
2574 {
2575 struct target_ops *t;
2576
2577 for (t = target_stack; t != NULL; t = t->beneath)
2578 {
2579 /* If this target knows how to create a new program, then
2580 assume we will still be able to after killing the current
2581 one. Either killing and mourning will not pop T, or else
2582 find_default_run_target will find it again. */
2583 if (t->to_create_inferior != NULL)
2584 return;
2585
2586 /* Do not worry about targets at certain strata that can not
2587 create inferiors. Assume they will be pushed again if
2588 necessary, and continue to the process_stratum. */
2589 if (t->to_stratum == thread_stratum
2590 || t->to_stratum == record_stratum
2591 || t->to_stratum == arch_stratum)
2592 continue;
2593
2594 error (_("The \"%s\" target does not support \"run\". "
2595 "Try \"help target\" or \"continue\"."),
2596 t->to_shortname);
2597 }
2598
2599 /* This function is only called if the target is running. In that
2600 case there should have been a process_stratum target and it
2601 should either know how to create inferiors, or not... */
2602 internal_error (__FILE__, __LINE__, _("No targets found"));
2603 }
2604
2605 /* Whether GDB is allowed to fall back to the default run target for
2606 "run", "attach", etc. when no target is connected yet. */
2607 static int auto_connect_native_target = 1;
2608
2609 static void
2610 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2611 struct cmd_list_element *c, const char *value)
2612 {
2613 fprintf_filtered (file,
2614 _("Whether GDB may automatically connect to the "
2615 "native target is %s.\n"),
2616 value);
2617 }
2618
2619 /* Look through the list of possible targets for a target that can
2620 execute a run or attach command without any other data. This is
2621 used to locate the default process stratum.
2622
2623 If DO_MESG is not NULL, the result is always valid (error() is
2624 called for errors); else, return NULL on error. */
2625
2626 static struct target_ops *
2627 find_default_run_target (char *do_mesg)
2628 {
2629 struct target_ops *runable = NULL;
2630
2631 if (auto_connect_native_target)
2632 {
2633 struct target_ops *t;
2634 int count = 0;
2635 int i;
2636
2637 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2638 {
2639 if (t->to_can_run != delegate_can_run && target_can_run (t))
2640 {
2641 runable = t;
2642 ++count;
2643 }
2644 }
2645
2646 if (count != 1)
2647 runable = NULL;
2648 }
2649
2650 if (runable == NULL)
2651 {
2652 if (do_mesg)
2653 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2654 else
2655 return NULL;
2656 }
2657
2658 return runable;
2659 }
2660
2661 /* See target.h. */
2662
2663 struct target_ops *
2664 find_attach_target (void)
2665 {
2666 struct target_ops *t;
2667
2668 /* If a target on the current stack can attach, use it. */
2669 for (t = current_target.beneath; t != NULL; t = t->beneath)
2670 {
2671 if (t->to_attach != NULL)
2672 break;
2673 }
2674
2675 /* Otherwise, use the default run target for attaching. */
2676 if (t == NULL)
2677 t = find_default_run_target ("attach");
2678
2679 return t;
2680 }
2681
2682 /* See target.h. */
2683
2684 struct target_ops *
2685 find_run_target (void)
2686 {
2687 struct target_ops *t;
2688
2689 /* If a target on the current stack can attach, use it. */
2690 for (t = current_target.beneath; t != NULL; t = t->beneath)
2691 {
2692 if (t->to_create_inferior != NULL)
2693 break;
2694 }
2695
2696 /* Otherwise, use the default run target. */
2697 if (t == NULL)
2698 t = find_default_run_target ("run");
2699
2700 return t;
2701 }
2702
2703 /* Implement the "info proc" command. */
2704
2705 int
2706 target_info_proc (const char *args, enum info_proc_what what)
2707 {
2708 struct target_ops *t;
2709
2710 /* If we're already connected to something that can get us OS
2711 related data, use it. Otherwise, try using the native
2712 target. */
2713 if (current_target.to_stratum >= process_stratum)
2714 t = current_target.beneath;
2715 else
2716 t = find_default_run_target (NULL);
2717
2718 for (; t != NULL; t = t->beneath)
2719 {
2720 if (t->to_info_proc != NULL)
2721 {
2722 t->to_info_proc (t, args, what);
2723
2724 if (targetdebug)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "target_info_proc (\"%s\", %d)\n", args, what);
2727
2728 return 1;
2729 }
2730 }
2731
2732 return 0;
2733 }
2734
2735 static int
2736 find_default_supports_disable_randomization (struct target_ops *self)
2737 {
2738 struct target_ops *t;
2739
2740 t = find_default_run_target (NULL);
2741 if (t && t->to_supports_disable_randomization)
2742 return (t->to_supports_disable_randomization) (t);
2743 return 0;
2744 }
2745
2746 int
2747 target_supports_disable_randomization (void)
2748 {
2749 struct target_ops *t;
2750
2751 for (t = &current_target; t != NULL; t = t->beneath)
2752 if (t->to_supports_disable_randomization)
2753 return t->to_supports_disable_randomization (t);
2754
2755 return 0;
2756 }
2757
2758 /* See target/target.h. */
2759
2760 int
2761 target_supports_multi_process (void)
2762 {
2763 return (*current_target.to_supports_multi_process) (&current_target);
2764 }
2765
2766 char *
2767 target_get_osdata (const char *type)
2768 {
2769 struct target_ops *t;
2770
2771 /* If we're already connected to something that can get us OS
2772 related data, use it. Otherwise, try using the native
2773 target. */
2774 if (current_target.to_stratum >= process_stratum)
2775 t = current_target.beneath;
2776 else
2777 t = find_default_run_target ("get OS data");
2778
2779 if (!t)
2780 return NULL;
2781
2782 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2783 }
2784
2785 static struct address_space *
2786 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2787 {
2788 struct inferior *inf;
2789
2790 /* Fall-back to the "main" address space of the inferior. */
2791 inf = find_inferior_ptid (ptid);
2792
2793 if (inf == NULL || inf->aspace == NULL)
2794 internal_error (__FILE__, __LINE__,
2795 _("Can't determine the current "
2796 "address space of thread %s\n"),
2797 target_pid_to_str (ptid));
2798
2799 return inf->aspace;
2800 }
2801
2802 /* Determine the current address space of thread PTID. */
2803
2804 struct address_space *
2805 target_thread_address_space (ptid_t ptid)
2806 {
2807 struct address_space *aspace;
2808
2809 aspace = current_target.to_thread_address_space (&current_target, ptid);
2810 gdb_assert (aspace != NULL);
2811
2812 return aspace;
2813 }
2814
2815
2816 /* Target file operations. */
2817
2818 static struct target_ops *
2819 default_fileio_target (void)
2820 {
2821 /* If we're already connected to something that can perform
2822 file I/O, use it. Otherwise, try using the native target. */
2823 if (current_target.to_stratum >= process_stratum)
2824 return current_target.beneath;
2825 else
2826 return find_default_run_target ("file I/O");
2827 }
2828
2829 /* File handle for target file operations. */
2830
2831 typedef struct
2832 {
2833 /* The target on which this file is open. */
2834 struct target_ops *t;
2835
2836 /* The file descriptor on the target. */
2837 int fd;
2838 } fileio_fh_t;
2839
2840 DEF_VEC_O (fileio_fh_t);
2841
2842 /* Vector of currently open file handles. The value returned by
2843 target_fileio_open and passed as the FD argument to other
2844 target_fileio_* functions is an index into this vector. This
2845 vector's entries are never freed; instead, files are marked as
2846 closed, and the handle becomes available for reuse. */
2847 static VEC (fileio_fh_t) *fileio_fhandles;
2848
2849 /* Macro to check whether a fileio_fh_t represents a closed file. */
2850 #define is_closed_fileio_fh(fd) ((fd) < 0)
2851
2852 /* Index into fileio_fhandles of the lowest handle that might be
2853 closed. This permits handle reuse without searching the whole
2854 list each time a new file is opened. */
2855 static int lowest_closed_fd;
2856
2857 /* Acquire a target fileio file descriptor. */
2858
2859 static int
2860 acquire_fileio_fd (struct target_ops *t, int fd)
2861 {
2862 fileio_fh_t *fh;
2863
2864 gdb_assert (!is_closed_fileio_fh (fd));
2865
2866 /* Search for closed handles to reuse. */
2867 for (;
2868 VEC_iterate (fileio_fh_t, fileio_fhandles,
2869 lowest_closed_fd, fh);
2870 lowest_closed_fd++)
2871 if (is_closed_fileio_fh (fh->fd))
2872 break;
2873
2874 /* Push a new handle if no closed handles were found. */
2875 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2876 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2877
2878 /* Fill in the handle. */
2879 fh->t = t;
2880 fh->fd = fd;
2881
2882 /* Return its index, and start the next lookup at
2883 the next index. */
2884 return lowest_closed_fd++;
2885 }
2886
2887 /* Release a target fileio file descriptor. */
2888
2889 static void
2890 release_fileio_fd (int fd, fileio_fh_t *fh)
2891 {
2892 fh->fd = -1;
2893 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2894 }
2895
2896 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2897
2898 #define fileio_fd_to_fh(fd) \
2899 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2900
2901 /* Helper for target_fileio_open and
2902 target_fileio_open_warn_if_slow. */
2903
2904 static int
2905 target_fileio_open_1 (struct inferior *inf, const char *filename,
2906 int flags, int mode, int warn_if_slow,
2907 int *target_errno)
2908 {
2909 struct target_ops *t;
2910
2911 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2912 {
2913 if (t->to_fileio_open != NULL)
2914 {
2915 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2916 warn_if_slow, target_errno);
2917
2918 if (fd < 0)
2919 fd = -1;
2920 else
2921 fd = acquire_fileio_fd (t, fd);
2922
2923 if (targetdebug)
2924 fprintf_unfiltered (gdb_stdlog,
2925 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2926 " = %d (%d)\n",
2927 inf == NULL ? 0 : inf->num,
2928 filename, flags, mode,
2929 warn_if_slow, fd,
2930 fd != -1 ? 0 : *target_errno);
2931 return fd;
2932 }
2933 }
2934
2935 *target_errno = FILEIO_ENOSYS;
2936 return -1;
2937 }
2938
2939 /* See target.h. */
2940
2941 int
2942 target_fileio_open (struct inferior *inf, const char *filename,
2943 int flags, int mode, int *target_errno)
2944 {
2945 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2946 target_errno);
2947 }
2948
2949 /* See target.h. */
2950
2951 int
2952 target_fileio_open_warn_if_slow (struct inferior *inf,
2953 const char *filename,
2954 int flags, int mode, int *target_errno)
2955 {
2956 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2957 target_errno);
2958 }
2959
2960 /* See target.h. */
2961
2962 int
2963 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2964 ULONGEST offset, int *target_errno)
2965 {
2966 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2967 int ret = -1;
2968
2969 if (is_closed_fileio_fh (fh->fd))
2970 *target_errno = EBADF;
2971 else
2972 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2973 len, offset, target_errno);
2974
2975 if (targetdebug)
2976 fprintf_unfiltered (gdb_stdlog,
2977 "target_fileio_pwrite (%d,...,%d,%s) "
2978 "= %d (%d)\n",
2979 fd, len, pulongest (offset),
2980 ret, ret != -1 ? 0 : *target_errno);
2981 return ret;
2982 }
2983
2984 /* See target.h. */
2985
2986 int
2987 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2988 ULONGEST offset, int *target_errno)
2989 {
2990 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2991 int ret = -1;
2992
2993 if (is_closed_fileio_fh (fh->fd))
2994 *target_errno = EBADF;
2995 else
2996 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2997 len, offset, target_errno);
2998
2999 if (targetdebug)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "target_fileio_pread (%d,...,%d,%s) "
3002 "= %d (%d)\n",
3003 fd, len, pulongest (offset),
3004 ret, ret != -1 ? 0 : *target_errno);
3005 return ret;
3006 }
3007
3008 /* See target.h. */
3009
3010 int
3011 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
3012 {
3013 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3014 int ret = -1;
3015
3016 if (is_closed_fileio_fh (fh->fd))
3017 *target_errno = EBADF;
3018 else
3019 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
3020
3021 if (targetdebug)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "target_fileio_fstat (%d) = %d (%d)\n",
3024 fd, ret, ret != -1 ? 0 : *target_errno);
3025 return ret;
3026 }
3027
3028 /* See target.h. */
3029
3030 int
3031 target_fileio_close (int fd, int *target_errno)
3032 {
3033 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3034 int ret = -1;
3035
3036 if (is_closed_fileio_fh (fh->fd))
3037 *target_errno = EBADF;
3038 else
3039 {
3040 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3041 release_fileio_fd (fd, fh);
3042 }
3043
3044 if (targetdebug)
3045 fprintf_unfiltered (gdb_stdlog,
3046 "target_fileio_close (%d) = %d (%d)\n",
3047 fd, ret, ret != -1 ? 0 : *target_errno);
3048 return ret;
3049 }
3050
3051 /* See target.h. */
3052
3053 int
3054 target_fileio_unlink (struct inferior *inf, const char *filename,
3055 int *target_errno)
3056 {
3057 struct target_ops *t;
3058
3059 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3060 {
3061 if (t->to_fileio_unlink != NULL)
3062 {
3063 int ret = t->to_fileio_unlink (t, inf, filename,
3064 target_errno);
3065
3066 if (targetdebug)
3067 fprintf_unfiltered (gdb_stdlog,
3068 "target_fileio_unlink (%d,%s)"
3069 " = %d (%d)\n",
3070 inf == NULL ? 0 : inf->num, filename,
3071 ret, ret != -1 ? 0 : *target_errno);
3072 return ret;
3073 }
3074 }
3075
3076 *target_errno = FILEIO_ENOSYS;
3077 return -1;
3078 }
3079
3080 /* See target.h. */
3081
3082 char *
3083 target_fileio_readlink (struct inferior *inf, const char *filename,
3084 int *target_errno)
3085 {
3086 struct target_ops *t;
3087
3088 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3089 {
3090 if (t->to_fileio_readlink != NULL)
3091 {
3092 char *ret = t->to_fileio_readlink (t, inf, filename,
3093 target_errno);
3094
3095 if (targetdebug)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "target_fileio_readlink (%d,%s)"
3098 " = %s (%d)\n",
3099 inf == NULL ? 0 : inf->num,
3100 filename, ret? ret : "(nil)",
3101 ret? 0 : *target_errno);
3102 return ret;
3103 }
3104 }
3105
3106 *target_errno = FILEIO_ENOSYS;
3107 return NULL;
3108 }
3109
3110 static void
3111 target_fileio_close_cleanup (void *opaque)
3112 {
3113 int fd = *(int *) opaque;
3114 int target_errno;
3115
3116 target_fileio_close (fd, &target_errno);
3117 }
3118
3119 /* Read target file FILENAME, in the filesystem as seen by INF. If
3120 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3121 remote targets, the remote stub). Store the result in *BUF_P and
3122 return the size of the transferred data. PADDING additional bytes
3123 are available in *BUF_P. This is a helper function for
3124 target_fileio_read_alloc; see the declaration of that function for
3125 more information. */
3126
3127 static LONGEST
3128 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3129 gdb_byte **buf_p, int padding)
3130 {
3131 struct cleanup *close_cleanup;
3132 size_t buf_alloc, buf_pos;
3133 gdb_byte *buf;
3134 LONGEST n;
3135 int fd;
3136 int target_errno;
3137
3138 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3139 &target_errno);
3140 if (fd == -1)
3141 return -1;
3142
3143 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3144
3145 /* Start by reading up to 4K at a time. The target will throttle
3146 this number down if necessary. */
3147 buf_alloc = 4096;
3148 buf = (gdb_byte *) xmalloc (buf_alloc);
3149 buf_pos = 0;
3150 while (1)
3151 {
3152 n = target_fileio_pread (fd, &buf[buf_pos],
3153 buf_alloc - buf_pos - padding, buf_pos,
3154 &target_errno);
3155 if (n < 0)
3156 {
3157 /* An error occurred. */
3158 do_cleanups (close_cleanup);
3159 xfree (buf);
3160 return -1;
3161 }
3162 else if (n == 0)
3163 {
3164 /* Read all there was. */
3165 do_cleanups (close_cleanup);
3166 if (buf_pos == 0)
3167 xfree (buf);
3168 else
3169 *buf_p = buf;
3170 return buf_pos;
3171 }
3172
3173 buf_pos += n;
3174
3175 /* If the buffer is filling up, expand it. */
3176 if (buf_alloc < buf_pos * 2)
3177 {
3178 buf_alloc *= 2;
3179 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3180 }
3181
3182 QUIT;
3183 }
3184 }
3185
3186 /* See target.h. */
3187
3188 LONGEST
3189 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3190 gdb_byte **buf_p)
3191 {
3192 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3193 }
3194
3195 /* See target.h. */
3196
3197 char *
3198 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3199 {
3200 gdb_byte *buffer;
3201 char *bufstr;
3202 LONGEST i, transferred;
3203
3204 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3205 bufstr = (char *) buffer;
3206
3207 if (transferred < 0)
3208 return NULL;
3209
3210 if (transferred == 0)
3211 return xstrdup ("");
3212
3213 bufstr[transferred] = 0;
3214
3215 /* Check for embedded NUL bytes; but allow trailing NULs. */
3216 for (i = strlen (bufstr); i < transferred; i++)
3217 if (bufstr[i] != 0)
3218 {
3219 warning (_("target file %s "
3220 "contained unexpected null characters"),
3221 filename);
3222 break;
3223 }
3224
3225 return bufstr;
3226 }
3227
3228
3229 static int
3230 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3231 CORE_ADDR addr, int len)
3232 {
3233 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3234 }
3235
3236 static int
3237 default_watchpoint_addr_within_range (struct target_ops *target,
3238 CORE_ADDR addr,
3239 CORE_ADDR start, int length)
3240 {
3241 return addr >= start && addr < start + length;
3242 }
3243
3244 static struct gdbarch *
3245 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3246 {
3247 return target_gdbarch ();
3248 }
3249
3250 static int
3251 return_zero (struct target_ops *ignore)
3252 {
3253 return 0;
3254 }
3255
3256 static int
3257 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3258 {
3259 return 0;
3260 }
3261
3262 /*
3263 * Find the next target down the stack from the specified target.
3264 */
3265
3266 struct target_ops *
3267 find_target_beneath (struct target_ops *t)
3268 {
3269 return t->beneath;
3270 }
3271
3272 /* See target.h. */
3273
3274 struct target_ops *
3275 find_target_at (enum strata stratum)
3276 {
3277 struct target_ops *t;
3278
3279 for (t = current_target.beneath; t != NULL; t = t->beneath)
3280 if (t->to_stratum == stratum)
3281 return t;
3282
3283 return NULL;
3284 }
3285
3286 \f
3287
3288 /* See target.h */
3289
3290 void
3291 target_announce_detach (int from_tty)
3292 {
3293 pid_t pid;
3294 char *exec_file;
3295
3296 if (!from_tty)
3297 return;
3298
3299 exec_file = get_exec_file (0);
3300 if (exec_file == NULL)
3301 exec_file = "";
3302
3303 pid = ptid_get_pid (inferior_ptid);
3304 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3305 target_pid_to_str (pid_to_ptid (pid)));
3306 gdb_flush (gdb_stdout);
3307 }
3308
3309 /* The inferior process has died. Long live the inferior! */
3310
3311 void
3312 generic_mourn_inferior (void)
3313 {
3314 ptid_t ptid;
3315
3316 ptid = inferior_ptid;
3317 inferior_ptid = null_ptid;
3318
3319 /* Mark breakpoints uninserted in case something tries to delete a
3320 breakpoint while we delete the inferior's threads (which would
3321 fail, since the inferior is long gone). */
3322 mark_breakpoints_out ();
3323
3324 if (!ptid_equal (ptid, null_ptid))
3325 {
3326 int pid = ptid_get_pid (ptid);
3327 exit_inferior (pid);
3328 }
3329
3330 /* Note this wipes step-resume breakpoints, so needs to be done
3331 after exit_inferior, which ends up referencing the step-resume
3332 breakpoints through clear_thread_inferior_resources. */
3333 breakpoint_init_inferior (inf_exited);
3334
3335 registers_changed ();
3336
3337 reopen_exec_file ();
3338 reinit_frame_cache ();
3339
3340 if (deprecated_detach_hook)
3341 deprecated_detach_hook ();
3342 }
3343 \f
3344 /* Convert a normal process ID to a string. Returns the string in a
3345 static buffer. */
3346
3347 char *
3348 normal_pid_to_str (ptid_t ptid)
3349 {
3350 static char buf[32];
3351
3352 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3353 return buf;
3354 }
3355
3356 static char *
3357 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3358 {
3359 return normal_pid_to_str (ptid);
3360 }
3361
3362 /* Error-catcher for target_find_memory_regions. */
3363 static int
3364 dummy_find_memory_regions (struct target_ops *self,
3365 find_memory_region_ftype ignore1, void *ignore2)
3366 {
3367 error (_("Command not implemented for this target."));
3368 return 0;
3369 }
3370
3371 /* Error-catcher for target_make_corefile_notes. */
3372 static char *
3373 dummy_make_corefile_notes (struct target_ops *self,
3374 bfd *ignore1, int *ignore2)
3375 {
3376 error (_("Command not implemented for this target."));
3377 return NULL;
3378 }
3379
3380 /* Set up the handful of non-empty slots needed by the dummy target
3381 vector. */
3382
3383 static void
3384 init_dummy_target (void)
3385 {
3386 dummy_target.to_shortname = "None";
3387 dummy_target.to_longname = "None";
3388 dummy_target.to_doc = "";
3389 dummy_target.to_supports_disable_randomization
3390 = find_default_supports_disable_randomization;
3391 dummy_target.to_stratum = dummy_stratum;
3392 dummy_target.to_has_all_memory = return_zero;
3393 dummy_target.to_has_memory = return_zero;
3394 dummy_target.to_has_stack = return_zero;
3395 dummy_target.to_has_registers = return_zero;
3396 dummy_target.to_has_execution = return_zero_has_execution;
3397 dummy_target.to_magic = OPS_MAGIC;
3398
3399 install_dummy_methods (&dummy_target);
3400 }
3401 \f
3402
3403 void
3404 target_close (struct target_ops *targ)
3405 {
3406 gdb_assert (!target_is_pushed (targ));
3407
3408 if (targ->to_xclose != NULL)
3409 targ->to_xclose (targ);
3410 else if (targ->to_close != NULL)
3411 targ->to_close (targ);
3412
3413 if (targetdebug)
3414 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3415 }
3416
3417 int
3418 target_thread_alive (ptid_t ptid)
3419 {
3420 return current_target.to_thread_alive (&current_target, ptid);
3421 }
3422
3423 void
3424 target_update_thread_list (void)
3425 {
3426 current_target.to_update_thread_list (&current_target);
3427 }
3428
3429 void
3430 target_stop (ptid_t ptid)
3431 {
3432 if (!may_stop)
3433 {
3434 warning (_("May not interrupt or stop the target, ignoring attempt"));
3435 return;
3436 }
3437
3438 (*current_target.to_stop) (&current_target, ptid);
3439 }
3440
3441 void
3442 target_interrupt (ptid_t ptid)
3443 {
3444 if (!may_stop)
3445 {
3446 warning (_("May not interrupt or stop the target, ignoring attempt"));
3447 return;
3448 }
3449
3450 (*current_target.to_interrupt) (&current_target, ptid);
3451 }
3452
3453 /* See target.h. */
3454
3455 void
3456 target_pass_ctrlc (void)
3457 {
3458 (*current_target.to_pass_ctrlc) (&current_target);
3459 }
3460
3461 /* See target.h. */
3462
3463 void
3464 default_target_pass_ctrlc (struct target_ops *ops)
3465 {
3466 target_interrupt (inferior_ptid);
3467 }
3468
3469 /* See target/target.h. */
3470
3471 void
3472 target_stop_and_wait (ptid_t ptid)
3473 {
3474 struct target_waitstatus status;
3475 int was_non_stop = non_stop;
3476
3477 non_stop = 1;
3478 target_stop (ptid);
3479
3480 memset (&status, 0, sizeof (status));
3481 target_wait (ptid, &status, 0);
3482
3483 non_stop = was_non_stop;
3484 }
3485
3486 /* See target/target.h. */
3487
3488 void
3489 target_continue_no_signal (ptid_t ptid)
3490 {
3491 target_resume (ptid, 0, GDB_SIGNAL_0);
3492 }
3493
3494 /* See target/target.h. */
3495
3496 void
3497 target_continue (ptid_t ptid, enum gdb_signal signal)
3498 {
3499 target_resume (ptid, 0, signal);
3500 }
3501
3502 /* Concatenate ELEM to LIST, a comma separate list, and return the
3503 result. The LIST incoming argument is released. */
3504
3505 static char *
3506 str_comma_list_concat_elem (char *list, const char *elem)
3507 {
3508 if (list == NULL)
3509 return xstrdup (elem);
3510 else
3511 return reconcat (list, list, ", ", elem, (char *) NULL);
3512 }
3513
3514 /* Helper for target_options_to_string. If OPT is present in
3515 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3516 Returns the new resulting string. OPT is removed from
3517 TARGET_OPTIONS. */
3518
3519 static char *
3520 do_option (int *target_options, char *ret,
3521 int opt, char *opt_str)
3522 {
3523 if ((*target_options & opt) != 0)
3524 {
3525 ret = str_comma_list_concat_elem (ret, opt_str);
3526 *target_options &= ~opt;
3527 }
3528
3529 return ret;
3530 }
3531
3532 char *
3533 target_options_to_string (int target_options)
3534 {
3535 char *ret = NULL;
3536
3537 #define DO_TARG_OPTION(OPT) \
3538 ret = do_option (&target_options, ret, OPT, #OPT)
3539
3540 DO_TARG_OPTION (TARGET_WNOHANG);
3541
3542 if (target_options != 0)
3543 ret = str_comma_list_concat_elem (ret, "unknown???");
3544
3545 if (ret == NULL)
3546 ret = xstrdup ("");
3547 return ret;
3548 }
3549
3550 static void
3551 debug_print_register (const char * func,
3552 struct regcache *regcache, int regno)
3553 {
3554 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3555
3556 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3557 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3558 && gdbarch_register_name (gdbarch, regno) != NULL
3559 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3560 fprintf_unfiltered (gdb_stdlog, "(%s)",
3561 gdbarch_register_name (gdbarch, regno));
3562 else
3563 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3564 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3565 {
3566 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3567 int i, size = register_size (gdbarch, regno);
3568 gdb_byte buf[MAX_REGISTER_SIZE];
3569
3570 regcache_raw_collect (regcache, regno, buf);
3571 fprintf_unfiltered (gdb_stdlog, " = ");
3572 for (i = 0; i < size; i++)
3573 {
3574 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3575 }
3576 if (size <= sizeof (LONGEST))
3577 {
3578 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3579
3580 fprintf_unfiltered (gdb_stdlog, " %s %s",
3581 core_addr_to_string_nz (val), plongest (val));
3582 }
3583 }
3584 fprintf_unfiltered (gdb_stdlog, "\n");
3585 }
3586
3587 void
3588 target_fetch_registers (struct regcache *regcache, int regno)
3589 {
3590 current_target.to_fetch_registers (&current_target, regcache, regno);
3591 if (targetdebug)
3592 debug_print_register ("target_fetch_registers", regcache, regno);
3593 }
3594
3595 void
3596 target_store_registers (struct regcache *regcache, int regno)
3597 {
3598 if (!may_write_registers)
3599 error (_("Writing to registers is not allowed (regno %d)"), regno);
3600
3601 current_target.to_store_registers (&current_target, regcache, regno);
3602 if (targetdebug)
3603 {
3604 debug_print_register ("target_store_registers", regcache, regno);
3605 }
3606 }
3607
3608 int
3609 target_core_of_thread (ptid_t ptid)
3610 {
3611 return current_target.to_core_of_thread (&current_target, ptid);
3612 }
3613
3614 int
3615 simple_verify_memory (struct target_ops *ops,
3616 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3617 {
3618 LONGEST total_xfered = 0;
3619
3620 while (total_xfered < size)
3621 {
3622 ULONGEST xfered_len;
3623 enum target_xfer_status status;
3624 gdb_byte buf[1024];
3625 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3626
3627 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3628 buf, NULL, lma + total_xfered, howmuch,
3629 &xfered_len);
3630 if (status == TARGET_XFER_OK
3631 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3632 {
3633 total_xfered += xfered_len;
3634 QUIT;
3635 }
3636 else
3637 return 0;
3638 }
3639 return 1;
3640 }
3641
3642 /* Default implementation of memory verification. */
3643
3644 static int
3645 default_verify_memory (struct target_ops *self,
3646 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3647 {
3648 /* Start over from the top of the target stack. */
3649 return simple_verify_memory (current_target.beneath,
3650 data, memaddr, size);
3651 }
3652
3653 int
3654 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3655 {
3656 return current_target.to_verify_memory (&current_target,
3657 data, memaddr, size);
3658 }
3659
3660 /* The documentation for this function is in its prototype declaration in
3661 target.h. */
3662
3663 int
3664 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3665 enum target_hw_bp_type rw)
3666 {
3667 return current_target.to_insert_mask_watchpoint (&current_target,
3668 addr, mask, rw);
3669 }
3670
3671 /* The documentation for this function is in its prototype declaration in
3672 target.h. */
3673
3674 int
3675 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3676 enum target_hw_bp_type rw)
3677 {
3678 return current_target.to_remove_mask_watchpoint (&current_target,
3679 addr, mask, rw);
3680 }
3681
3682 /* The documentation for this function is in its prototype declaration
3683 in target.h. */
3684
3685 int
3686 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3687 {
3688 return current_target.to_masked_watch_num_registers (&current_target,
3689 addr, mask);
3690 }
3691
3692 /* The documentation for this function is in its prototype declaration
3693 in target.h. */
3694
3695 int
3696 target_ranged_break_num_registers (void)
3697 {
3698 return current_target.to_ranged_break_num_registers (&current_target);
3699 }
3700
3701 /* See target.h. */
3702
3703 int
3704 target_supports_btrace (enum btrace_format format)
3705 {
3706 return current_target.to_supports_btrace (&current_target, format);
3707 }
3708
3709 /* See target.h. */
3710
3711 struct btrace_target_info *
3712 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3713 {
3714 return current_target.to_enable_btrace (&current_target, ptid, conf);
3715 }
3716
3717 /* See target.h. */
3718
3719 void
3720 target_disable_btrace (struct btrace_target_info *btinfo)
3721 {
3722 current_target.to_disable_btrace (&current_target, btinfo);
3723 }
3724
3725 /* See target.h. */
3726
3727 void
3728 target_teardown_btrace (struct btrace_target_info *btinfo)
3729 {
3730 current_target.to_teardown_btrace (&current_target, btinfo);
3731 }
3732
3733 /* See target.h. */
3734
3735 enum btrace_error
3736 target_read_btrace (struct btrace_data *btrace,
3737 struct btrace_target_info *btinfo,
3738 enum btrace_read_type type)
3739 {
3740 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3741 }
3742
3743 /* See target.h. */
3744
3745 const struct btrace_config *
3746 target_btrace_conf (const struct btrace_target_info *btinfo)
3747 {
3748 return current_target.to_btrace_conf (&current_target, btinfo);
3749 }
3750
3751 /* See target.h. */
3752
3753 void
3754 target_stop_recording (void)
3755 {
3756 current_target.to_stop_recording (&current_target);
3757 }
3758
3759 /* See target.h. */
3760
3761 void
3762 target_save_record (const char *filename)
3763 {
3764 current_target.to_save_record (&current_target, filename);
3765 }
3766
3767 /* See target.h. */
3768
3769 int
3770 target_supports_delete_record (void)
3771 {
3772 struct target_ops *t;
3773
3774 for (t = current_target.beneath; t != NULL; t = t->beneath)
3775 if (t->to_delete_record != delegate_delete_record
3776 && t->to_delete_record != tdefault_delete_record)
3777 return 1;
3778
3779 return 0;
3780 }
3781
3782 /* See target.h. */
3783
3784 void
3785 target_delete_record (void)
3786 {
3787 current_target.to_delete_record (&current_target);
3788 }
3789
3790 /* See target.h. */
3791
3792 int
3793 target_record_is_replaying (ptid_t ptid)
3794 {
3795 return current_target.to_record_is_replaying (&current_target, ptid);
3796 }
3797
3798 /* See target.h. */
3799
3800 int
3801 target_record_will_replay (ptid_t ptid, int dir)
3802 {
3803 return current_target.to_record_will_replay (&current_target, ptid, dir);
3804 }
3805
3806 /* See target.h. */
3807
3808 void
3809 target_record_stop_replaying (void)
3810 {
3811 current_target.to_record_stop_replaying (&current_target);
3812 }
3813
3814 /* See target.h. */
3815
3816 void
3817 target_goto_record_begin (void)
3818 {
3819 current_target.to_goto_record_begin (&current_target);
3820 }
3821
3822 /* See target.h. */
3823
3824 void
3825 target_goto_record_end (void)
3826 {
3827 current_target.to_goto_record_end (&current_target);
3828 }
3829
3830 /* See target.h. */
3831
3832 void
3833 target_goto_record (ULONGEST insn)
3834 {
3835 current_target.to_goto_record (&current_target, insn);
3836 }
3837
3838 /* See target.h. */
3839
3840 void
3841 target_insn_history (int size, int flags)
3842 {
3843 current_target.to_insn_history (&current_target, size, flags);
3844 }
3845
3846 /* See target.h. */
3847
3848 void
3849 target_insn_history_from (ULONGEST from, int size, int flags)
3850 {
3851 current_target.to_insn_history_from (&current_target, from, size, flags);
3852 }
3853
3854 /* See target.h. */
3855
3856 void
3857 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3858 {
3859 current_target.to_insn_history_range (&current_target, begin, end, flags);
3860 }
3861
3862 /* See target.h. */
3863
3864 void
3865 target_call_history (int size, int flags)
3866 {
3867 current_target.to_call_history (&current_target, size, flags);
3868 }
3869
3870 /* See target.h. */
3871
3872 void
3873 target_call_history_from (ULONGEST begin, int size, int flags)
3874 {
3875 current_target.to_call_history_from (&current_target, begin, size, flags);
3876 }
3877
3878 /* See target.h. */
3879
3880 void
3881 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3882 {
3883 current_target.to_call_history_range (&current_target, begin, end, flags);
3884 }
3885
3886 /* See target.h. */
3887
3888 const struct frame_unwind *
3889 target_get_unwinder (void)
3890 {
3891 return current_target.to_get_unwinder (&current_target);
3892 }
3893
3894 /* See target.h. */
3895
3896 const struct frame_unwind *
3897 target_get_tailcall_unwinder (void)
3898 {
3899 return current_target.to_get_tailcall_unwinder (&current_target);
3900 }
3901
3902 /* See target.h. */
3903
3904 void
3905 target_prepare_to_generate_core (void)
3906 {
3907 current_target.to_prepare_to_generate_core (&current_target);
3908 }
3909
3910 /* See target.h. */
3911
3912 void
3913 target_done_generating_core (void)
3914 {
3915 current_target.to_done_generating_core (&current_target);
3916 }
3917
3918 static void
3919 setup_target_debug (void)
3920 {
3921 memcpy (&debug_target, &current_target, sizeof debug_target);
3922
3923 init_debug_target (&current_target);
3924 }
3925 \f
3926
3927 static char targ_desc[] =
3928 "Names of targets and files being debugged.\nShows the entire \
3929 stack of targets currently in use (including the exec-file,\n\
3930 core-file, and process, if any), as well as the symbol file name.";
3931
3932 static void
3933 default_rcmd (struct target_ops *self, const char *command,
3934 struct ui_file *output)
3935 {
3936 error (_("\"monitor\" command not supported by this target."));
3937 }
3938
3939 static void
3940 do_monitor_command (char *cmd,
3941 int from_tty)
3942 {
3943 target_rcmd (cmd, gdb_stdtarg);
3944 }
3945
3946 /* Print the name of each layers of our target stack. */
3947
3948 static void
3949 maintenance_print_target_stack (char *cmd, int from_tty)
3950 {
3951 struct target_ops *t;
3952
3953 printf_filtered (_("The current target stack is:\n"));
3954
3955 for (t = target_stack; t != NULL; t = t->beneath)
3956 {
3957 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3958 }
3959 }
3960
3961 /* See target.h. */
3962
3963 void
3964 target_async (int enable)
3965 {
3966 infrun_async (enable);
3967 current_target.to_async (&current_target, enable);
3968 }
3969
3970 /* See target.h. */
3971
3972 void
3973 target_thread_events (int enable)
3974 {
3975 current_target.to_thread_events (&current_target, enable);
3976 }
3977
3978 /* Controls if targets can report that they can/are async. This is
3979 just for maintainers to use when debugging gdb. */
3980 int target_async_permitted = 1;
3981
3982 /* The set command writes to this variable. If the inferior is
3983 executing, target_async_permitted is *not* updated. */
3984 static int target_async_permitted_1 = 1;
3985
3986 static void
3987 maint_set_target_async_command (char *args, int from_tty,
3988 struct cmd_list_element *c)
3989 {
3990 if (have_live_inferiors ())
3991 {
3992 target_async_permitted_1 = target_async_permitted;
3993 error (_("Cannot change this setting while the inferior is running."));
3994 }
3995
3996 target_async_permitted = target_async_permitted_1;
3997 }
3998
3999 static void
4000 maint_show_target_async_command (struct ui_file *file, int from_tty,
4001 struct cmd_list_element *c,
4002 const char *value)
4003 {
4004 fprintf_filtered (file,
4005 _("Controlling the inferior in "
4006 "asynchronous mode is %s.\n"), value);
4007 }
4008
4009 /* Return true if the target operates in non-stop mode even with "set
4010 non-stop off". */
4011
4012 static int
4013 target_always_non_stop_p (void)
4014 {
4015 return current_target.to_always_non_stop_p (&current_target);
4016 }
4017
4018 /* See target.h. */
4019
4020 int
4021 target_is_non_stop_p (void)
4022 {
4023 return (non_stop
4024 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4025 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4026 && target_always_non_stop_p ()));
4027 }
4028
4029 /* Controls if targets can report that they always run in non-stop
4030 mode. This is just for maintainers to use when debugging gdb. */
4031 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4032
4033 /* The set command writes to this variable. If the inferior is
4034 executing, target_non_stop_enabled is *not* updated. */
4035 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4036
4037 /* Implementation of "maint set target-non-stop". */
4038
4039 static void
4040 maint_set_target_non_stop_command (char *args, int from_tty,
4041 struct cmd_list_element *c)
4042 {
4043 if (have_live_inferiors ())
4044 {
4045 target_non_stop_enabled_1 = target_non_stop_enabled;
4046 error (_("Cannot change this setting while the inferior is running."));
4047 }
4048
4049 target_non_stop_enabled = target_non_stop_enabled_1;
4050 }
4051
4052 /* Implementation of "maint show target-non-stop". */
4053
4054 static void
4055 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4056 struct cmd_list_element *c,
4057 const char *value)
4058 {
4059 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4060 fprintf_filtered (file,
4061 _("Whether the target is always in non-stop mode "
4062 "is %s (currently %s).\n"), value,
4063 target_always_non_stop_p () ? "on" : "off");
4064 else
4065 fprintf_filtered (file,
4066 _("Whether the target is always in non-stop mode "
4067 "is %s.\n"), value);
4068 }
4069
4070 /* Temporary copies of permission settings. */
4071
4072 static int may_write_registers_1 = 1;
4073 static int may_write_memory_1 = 1;
4074 static int may_insert_breakpoints_1 = 1;
4075 static int may_insert_tracepoints_1 = 1;
4076 static int may_insert_fast_tracepoints_1 = 1;
4077 static int may_stop_1 = 1;
4078
4079 /* Make the user-set values match the real values again. */
4080
4081 void
4082 update_target_permissions (void)
4083 {
4084 may_write_registers_1 = may_write_registers;
4085 may_write_memory_1 = may_write_memory;
4086 may_insert_breakpoints_1 = may_insert_breakpoints;
4087 may_insert_tracepoints_1 = may_insert_tracepoints;
4088 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4089 may_stop_1 = may_stop;
4090 }
4091
4092 /* The one function handles (most of) the permission flags in the same
4093 way. */
4094
4095 static void
4096 set_target_permissions (char *args, int from_tty,
4097 struct cmd_list_element *c)
4098 {
4099 if (target_has_execution)
4100 {
4101 update_target_permissions ();
4102 error (_("Cannot change this setting while the inferior is running."));
4103 }
4104
4105 /* Make the real values match the user-changed values. */
4106 may_write_registers = may_write_registers_1;
4107 may_insert_breakpoints = may_insert_breakpoints_1;
4108 may_insert_tracepoints = may_insert_tracepoints_1;
4109 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4110 may_stop = may_stop_1;
4111 update_observer_mode ();
4112 }
4113
4114 /* Set memory write permission independently of observer mode. */
4115
4116 static void
4117 set_write_memory_permission (char *args, int from_tty,
4118 struct cmd_list_element *c)
4119 {
4120 /* Make the real values match the user-changed values. */
4121 may_write_memory = may_write_memory_1;
4122 update_observer_mode ();
4123 }
4124
4125
4126 void
4127 initialize_targets (void)
4128 {
4129 init_dummy_target ();
4130 push_target (&dummy_target);
4131
4132 add_info ("target", target_info, targ_desc);
4133 add_info ("files", target_info, targ_desc);
4134
4135 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4136 Set target debugging."), _("\
4137 Show target debugging."), _("\
4138 When non-zero, target debugging is enabled. Higher numbers are more\n\
4139 verbose."),
4140 set_targetdebug,
4141 show_targetdebug,
4142 &setdebuglist, &showdebuglist);
4143
4144 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4145 &trust_readonly, _("\
4146 Set mode for reading from readonly sections."), _("\
4147 Show mode for reading from readonly sections."), _("\
4148 When this mode is on, memory reads from readonly sections (such as .text)\n\
4149 will be read from the object file instead of from the target. This will\n\
4150 result in significant performance improvement for remote targets."),
4151 NULL,
4152 show_trust_readonly,
4153 &setlist, &showlist);
4154
4155 add_com ("monitor", class_obscure, do_monitor_command,
4156 _("Send a command to the remote monitor (remote targets only)."));
4157
4158 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4159 _("Print the name of each layer of the internal target stack."),
4160 &maintenanceprintlist);
4161
4162 add_setshow_boolean_cmd ("target-async", no_class,
4163 &target_async_permitted_1, _("\
4164 Set whether gdb controls the inferior in asynchronous mode."), _("\
4165 Show whether gdb controls the inferior in asynchronous mode."), _("\
4166 Tells gdb whether to control the inferior in asynchronous mode."),
4167 maint_set_target_async_command,
4168 maint_show_target_async_command,
4169 &maintenance_set_cmdlist,
4170 &maintenance_show_cmdlist);
4171
4172 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4173 &target_non_stop_enabled_1, _("\
4174 Set whether gdb always controls the inferior in non-stop mode."), _("\
4175 Show whether gdb always controls the inferior in non-stop mode."), _("\
4176 Tells gdb whether to control the inferior in non-stop mode."),
4177 maint_set_target_non_stop_command,
4178 maint_show_target_non_stop_command,
4179 &maintenance_set_cmdlist,
4180 &maintenance_show_cmdlist);
4181
4182 add_setshow_boolean_cmd ("may-write-registers", class_support,
4183 &may_write_registers_1, _("\
4184 Set permission to write into registers."), _("\
4185 Show permission to write into registers."), _("\
4186 When this permission is on, GDB may write into the target's registers.\n\
4187 Otherwise, any sort of write attempt will result in an error."),
4188 set_target_permissions, NULL,
4189 &setlist, &showlist);
4190
4191 add_setshow_boolean_cmd ("may-write-memory", class_support,
4192 &may_write_memory_1, _("\
4193 Set permission to write into target memory."), _("\
4194 Show permission to write into target memory."), _("\
4195 When this permission is on, GDB may write into the target's memory.\n\
4196 Otherwise, any sort of write attempt will result in an error."),
4197 set_write_memory_permission, NULL,
4198 &setlist, &showlist);
4199
4200 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4201 &may_insert_breakpoints_1, _("\
4202 Set permission to insert breakpoints in the target."), _("\
4203 Show permission to insert breakpoints in the target."), _("\
4204 When this permission is on, GDB may insert breakpoints in the program.\n\
4205 Otherwise, any sort of insertion attempt will result in an error."),
4206 set_target_permissions, NULL,
4207 &setlist, &showlist);
4208
4209 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4210 &may_insert_tracepoints_1, _("\
4211 Set permission to insert tracepoints in the target."), _("\
4212 Show permission to insert tracepoints in the target."), _("\
4213 When this permission is on, GDB may insert tracepoints in the program.\n\
4214 Otherwise, any sort of insertion attempt will result in an error."),
4215 set_target_permissions, NULL,
4216 &setlist, &showlist);
4217
4218 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4219 &may_insert_fast_tracepoints_1, _("\
4220 Set permission to insert fast tracepoints in the target."), _("\
4221 Show permission to insert fast tracepoints in the target."), _("\
4222 When this permission is on, GDB may insert fast tracepoints.\n\
4223 Otherwise, any sort of insertion attempt will result in an error."),
4224 set_target_permissions, NULL,
4225 &setlist, &showlist);
4226
4227 add_setshow_boolean_cmd ("may-interrupt", class_support,
4228 &may_stop_1, _("\
4229 Set permission to interrupt or signal the target."), _("\
4230 Show permission to interrupt or signal the target."), _("\
4231 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4232 Otherwise, any attempt to interrupt or stop will be ignored."),
4233 set_target_permissions, NULL,
4234 &setlist, &showlist);
4235
4236 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4237 &auto_connect_native_target, _("\
4238 Set whether GDB may automatically connect to the native target."), _("\
4239 Show whether GDB may automatically connect to the native target."), _("\
4240 When on, and GDB is not connected to a target yet, GDB\n\
4241 attempts \"run\" and other commands with the native target."),
4242 NULL, show_auto_connect_native_target,
4243 &setlist, &showlist);
4244 }
This page took 0.111222 seconds and 5 git commands to generate.