Return unique_xmalloc_ptr from target_fileio_read_stralloc
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void info_target_command (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static struct target_ops *find_default_run_target (const char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, const char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Define it. */
435
436 enum target_terminal::terminal_state target_terminal::terminal_state
437 = target_terminal::terminal_is_ours;
438
439 /* See target/target.h. */
440
441 void
442 target_terminal::init (void)
443 {
444 (*current_target.to_terminal_init) (&current_target);
445
446 terminal_state = terminal_is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::inferior (void)
453 {
454 struct ui *ui = current_ui;
455
456 /* A background resume (``run&'') should leave GDB in control of the
457 terminal. */
458 if (ui->prompt_state != PROMPT_BLOCKED)
459 return;
460
461 /* Since we always run the inferior in the main console (unless "set
462 inferior-tty" is in effect), when some UI other than the main one
463 calls target_terminal::inferior, then we leave the main UI's
464 terminal settings as is. */
465 if (ui != main_ui)
466 return;
467
468 if (terminal_state == terminal_is_inferior)
469 return;
470
471 /* If GDB is resuming the inferior in the foreground, install
472 inferior's terminal modes. */
473 (*current_target.to_terminal_inferior) (&current_target);
474 terminal_state = terminal_is_inferior;
475
476 /* If the user hit C-c before, pretend that it was hit right
477 here. */
478 if (check_quit_flag ())
479 target_pass_ctrlc ();
480 }
481
482 /* See target/target.h. */
483
484 void
485 target_terminal::ours ()
486 {
487 struct ui *ui = current_ui;
488
489 /* See target_terminal::inferior. */
490 if (ui != main_ui)
491 return;
492
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498 }
499
500 /* See target/target.h. */
501
502 void
503 target_terminal::ours_for_output ()
504 {
505 struct ui *ui = current_ui;
506
507 /* See target_terminal::inferior. */
508 if (ui != main_ui)
509 return;
510
511 if (terminal_state != terminal_is_inferior)
512 return;
513 (*current_target.to_terminal_ours_for_output) (&current_target);
514 terminal_state = terminal_is_ours_for_output;
515 }
516
517 /* See target/target.h. */
518
519 void
520 target_terminal::info (const char *arg, int from_tty)
521 {
522 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
523 }
524
525 /* See target.h. */
526
527 int
528 target_supports_terminal_ours (void)
529 {
530 struct target_ops *t;
531
532 for (t = current_target.beneath; t != NULL; t = t->beneath)
533 {
534 if (t->to_terminal_ours != delegate_terminal_ours
535 && t->to_terminal_ours != tdefault_terminal_ours)
536 return 1;
537 }
538
539 return 0;
540 }
541
542 static void
543 tcomplain (void)
544 {
545 error (_("You can't do that when your target is `%s'"),
546 current_target.to_shortname);
547 }
548
549 void
550 noprocess (void)
551 {
552 error (_("You can't do that without a process to debug."));
553 }
554
555 static void
556 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
557 {
558 printf_unfiltered (_("No saved terminal information.\n"));
559 }
560
561 /* A default implementation for the to_get_ada_task_ptid target method.
562
563 This function builds the PTID by using both LWP and TID as part of
564 the PTID lwp and tid elements. The pid used is the pid of the
565 inferior_ptid. */
566
567 static ptid_t
568 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
569 {
570 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
571 }
572
573 static enum exec_direction_kind
574 default_execution_direction (struct target_ops *self)
575 {
576 if (!target_can_execute_reverse)
577 return EXEC_FORWARD;
578 else if (!target_can_async_p ())
579 return EXEC_FORWARD;
580 else
581 gdb_assert_not_reached ("\
582 to_execution_direction must be implemented for reverse async");
583 }
584
585 /* Go through the target stack from top to bottom, copying over zero
586 entries in current_target, then filling in still empty entries. In
587 effect, we are doing class inheritance through the pushed target
588 vectors.
589
590 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
591 is currently implemented, is that it discards any knowledge of
592 which target an inherited method originally belonged to.
593 Consequently, new new target methods should instead explicitly and
594 locally search the target stack for the target that can handle the
595 request. */
596
597 static void
598 update_current_target (void)
599 {
600 struct target_ops *t;
601
602 /* First, reset current's contents. */
603 memset (&current_target, 0, sizeof (current_target));
604
605 /* Install the delegators. */
606 install_delegators (&current_target);
607
608 current_target.to_stratum = target_stack->to_stratum;
609
610 #define INHERIT(FIELD, TARGET) \
611 if (!current_target.FIELD) \
612 current_target.FIELD = (TARGET)->FIELD
613
614 /* Do not add any new INHERITs here. Instead, use the delegation
615 mechanism provided by make-target-delegates. */
616 for (t = target_stack; t; t = t->beneath)
617 {
618 INHERIT (to_shortname, t);
619 INHERIT (to_longname, t);
620 INHERIT (to_attach_no_wait, t);
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 INHERIT (to_has_thread_control, t);
624 }
625 #undef INHERIT
626
627 /* Finally, position the target-stack beneath the squashed
628 "current_target". That way code looking for a non-inherited
629 target method can quickly and simply find it. */
630 current_target.beneath = target_stack;
631
632 if (targetdebug)
633 setup_target_debug ();
634 }
635
636 /* Push a new target type into the stack of the existing target accessors,
637 possibly superseding some of the existing accessors.
638
639 Rather than allow an empty stack, we always have the dummy target at
640 the bottom stratum, so we can call the function vectors without
641 checking them. */
642
643 void
644 push_target (struct target_ops *t)
645 {
646 struct target_ops **cur;
647
648 /* Check magic number. If wrong, it probably means someone changed
649 the struct definition, but not all the places that initialize one. */
650 if (t->to_magic != OPS_MAGIC)
651 {
652 fprintf_unfiltered (gdb_stderr,
653 "Magic number of %s target struct wrong\n",
654 t->to_shortname);
655 internal_error (__FILE__, __LINE__,
656 _("failed internal consistency check"));
657 }
658
659 /* Find the proper stratum to install this target in. */
660 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
661 {
662 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
663 break;
664 }
665
666 /* If there's already targets at this stratum, remove them. */
667 /* FIXME: cagney/2003-10-15: I think this should be popping all
668 targets to CUR, and not just those at this stratum level. */
669 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
670 {
671 /* There's already something at this stratum level. Close it,
672 and un-hook it from the stack. */
673 struct target_ops *tmp = (*cur);
674
675 (*cur) = (*cur)->beneath;
676 tmp->beneath = NULL;
677 target_close (tmp);
678 }
679
680 /* We have removed all targets in our stratum, now add the new one. */
681 t->beneath = (*cur);
682 (*cur) = t;
683
684 update_current_target ();
685 }
686
687 /* Remove a target_ops vector from the stack, wherever it may be.
688 Return how many times it was removed (0 or 1). */
689
690 int
691 unpush_target (struct target_ops *t)
692 {
693 struct target_ops **cur;
694 struct target_ops *tmp;
695
696 if (t->to_stratum == dummy_stratum)
697 internal_error (__FILE__, __LINE__,
698 _("Attempt to unpush the dummy target"));
699
700 /* Look for the specified target. Note that we assume that a target
701 can only occur once in the target stack. */
702
703 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
704 {
705 if ((*cur) == t)
706 break;
707 }
708
709 /* If we don't find target_ops, quit. Only open targets should be
710 closed. */
711 if ((*cur) == NULL)
712 return 0;
713
714 /* Unchain the target. */
715 tmp = (*cur);
716 (*cur) = (*cur)->beneath;
717 tmp->beneath = NULL;
718
719 update_current_target ();
720
721 /* Finally close the target. Note we do this after unchaining, so
722 any target method calls from within the target_close
723 implementation don't end up in T anymore. */
724 target_close (t);
725
726 return 1;
727 }
728
729 /* Unpush TARGET and assert that it worked. */
730
731 static void
732 unpush_target_and_assert (struct target_ops *target)
733 {
734 if (!unpush_target (target))
735 {
736 fprintf_unfiltered (gdb_stderr,
737 "pop_all_targets couldn't find target %s\n",
738 target->to_shortname);
739 internal_error (__FILE__, __LINE__,
740 _("failed internal consistency check"));
741 }
742 }
743
744 void
745 pop_all_targets_above (enum strata above_stratum)
746 {
747 while ((int) (current_target.to_stratum) > (int) above_stratum)
748 unpush_target_and_assert (target_stack);
749 }
750
751 /* See target.h. */
752
753 void
754 pop_all_targets_at_and_above (enum strata stratum)
755 {
756 while ((int) (current_target.to_stratum) >= (int) stratum)
757 unpush_target_and_assert (target_stack);
758 }
759
760 void
761 pop_all_targets (void)
762 {
763 pop_all_targets_above (dummy_stratum);
764 }
765
766 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
767
768 int
769 target_is_pushed (struct target_ops *t)
770 {
771 struct target_ops *cur;
772
773 /* Check magic number. If wrong, it probably means someone changed
774 the struct definition, but not all the places that initialize one. */
775 if (t->to_magic != OPS_MAGIC)
776 {
777 fprintf_unfiltered (gdb_stderr,
778 "Magic number of %s target struct wrong\n",
779 t->to_shortname);
780 internal_error (__FILE__, __LINE__,
781 _("failed internal consistency check"));
782 }
783
784 for (cur = target_stack; cur != NULL; cur = cur->beneath)
785 if (cur == t)
786 return 1;
787
788 return 0;
789 }
790
791 /* Default implementation of to_get_thread_local_address. */
792
793 static void
794 generic_tls_error (void)
795 {
796 throw_error (TLS_GENERIC_ERROR,
797 _("Cannot find thread-local variables on this target"));
798 }
799
800 /* Using the objfile specified in OBJFILE, find the address for the
801 current thread's thread-local storage with offset OFFSET. */
802 CORE_ADDR
803 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
804 {
805 volatile CORE_ADDR addr = 0;
806 struct target_ops *target = &current_target;
807
808 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
809 {
810 ptid_t ptid = inferior_ptid;
811
812 TRY
813 {
814 CORE_ADDR lm_addr;
815
816 /* Fetch the load module address for this objfile. */
817 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
818 objfile);
819
820 addr = target->to_get_thread_local_address (target, ptid,
821 lm_addr, offset);
822 }
823 /* If an error occurred, print TLS related messages here. Otherwise,
824 throw the error to some higher catcher. */
825 CATCH (ex, RETURN_MASK_ALL)
826 {
827 int objfile_is_library = (objfile->flags & OBJF_SHARED);
828
829 switch (ex.error)
830 {
831 case TLS_NO_LIBRARY_SUPPORT_ERROR:
832 error (_("Cannot find thread-local variables "
833 "in this thread library."));
834 break;
835 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
836 if (objfile_is_library)
837 error (_("Cannot find shared library `%s' in dynamic"
838 " linker's load module list"), objfile_name (objfile));
839 else
840 error (_("Cannot find executable file `%s' in dynamic"
841 " linker's load module list"), objfile_name (objfile));
842 break;
843 case TLS_NOT_ALLOCATED_YET_ERROR:
844 if (objfile_is_library)
845 error (_("The inferior has not yet allocated storage for"
846 " thread-local variables in\n"
847 "the shared library `%s'\n"
848 "for %s"),
849 objfile_name (objfile), target_pid_to_str (ptid));
850 else
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the executable `%s'\n"
854 "for %s"),
855 objfile_name (objfile), target_pid_to_str (ptid));
856 break;
857 case TLS_GENERIC_ERROR:
858 if (objfile_is_library)
859 error (_("Cannot find thread-local storage for %s, "
860 "shared library %s:\n%s"),
861 target_pid_to_str (ptid),
862 objfile_name (objfile), ex.message);
863 else
864 error (_("Cannot find thread-local storage for %s, "
865 "executable file %s:\n%s"),
866 target_pid_to_str (ptid),
867 objfile_name (objfile), ex.message);
868 break;
869 default:
870 throw_exception (ex);
871 break;
872 }
873 }
874 END_CATCH
875 }
876 /* It wouldn't be wrong here to try a gdbarch method, too; finding
877 TLS is an ABI-specific thing. But we don't do that yet. */
878 else
879 error (_("Cannot find thread-local variables on this target"));
880
881 return addr;
882 }
883
884 const char *
885 target_xfer_status_to_string (enum target_xfer_status status)
886 {
887 #define CASE(X) case X: return #X
888 switch (status)
889 {
890 CASE(TARGET_XFER_E_IO);
891 CASE(TARGET_XFER_UNAVAILABLE);
892 default:
893 return "<unknown>";
894 }
895 #undef CASE
896 };
897
898
899 #undef MIN
900 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
901
902 /* target_read_string -- read a null terminated string, up to LEN bytes,
903 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
904 Set *STRING to a pointer to malloc'd memory containing the data; the caller
905 is responsible for freeing it. Return the number of bytes successfully
906 read. */
907
908 int
909 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
910 {
911 int tlen, offset, i;
912 gdb_byte buf[4];
913 int errcode = 0;
914 char *buffer;
915 int buffer_allocated;
916 char *bufptr;
917 unsigned int nbytes_read = 0;
918
919 gdb_assert (string);
920
921 /* Small for testing. */
922 buffer_allocated = 4;
923 buffer = (char *) xmalloc (buffer_allocated);
924 bufptr = buffer;
925
926 while (len > 0)
927 {
928 tlen = MIN (len, 4 - (memaddr & 3));
929 offset = memaddr & 3;
930
931 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
932 if (errcode != 0)
933 {
934 /* The transfer request might have crossed the boundary to an
935 unallocated region of memory. Retry the transfer, requesting
936 a single byte. */
937 tlen = 1;
938 offset = 0;
939 errcode = target_read_memory (memaddr, buf, 1);
940 if (errcode != 0)
941 goto done;
942 }
943
944 if (bufptr - buffer + tlen > buffer_allocated)
945 {
946 unsigned int bytes;
947
948 bytes = bufptr - buffer;
949 buffer_allocated *= 2;
950 buffer = (char *) xrealloc (buffer, buffer_allocated);
951 bufptr = buffer + bytes;
952 }
953
954 for (i = 0; i < tlen; i++)
955 {
956 *bufptr++ = buf[i + offset];
957 if (buf[i + offset] == '\000')
958 {
959 nbytes_read += i + 1;
960 goto done;
961 }
962 }
963
964 memaddr += tlen;
965 len -= tlen;
966 nbytes_read += tlen;
967 }
968 done:
969 *string = buffer;
970 if (errnop != NULL)
971 *errnop = errcode;
972 return nbytes_read;
973 }
974
975 struct target_section_table *
976 target_get_section_table (struct target_ops *target)
977 {
978 return (*target->to_get_section_table) (target);
979 }
980
981 /* Find a section containing ADDR. */
982
983 struct target_section *
984 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
985 {
986 struct target_section_table *table = target_get_section_table (target);
987 struct target_section *secp;
988
989 if (table == NULL)
990 return NULL;
991
992 for (secp = table->sections; secp < table->sections_end; secp++)
993 {
994 if (addr >= secp->addr && addr < secp->endaddr)
995 return secp;
996 }
997 return NULL;
998 }
999
1000
1001 /* Helper for the memory xfer routines. Checks the attributes of the
1002 memory region of MEMADDR against the read or write being attempted.
1003 If the access is permitted returns true, otherwise returns false.
1004 REGION_P is an optional output parameter. If not-NULL, it is
1005 filled with a pointer to the memory region of MEMADDR. REG_LEN
1006 returns LEN trimmed to the end of the region. This is how much the
1007 caller can continue requesting, if the access is permitted. A
1008 single xfer request must not straddle memory region boundaries. */
1009
1010 static int
1011 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1012 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1013 struct mem_region **region_p)
1014 {
1015 struct mem_region *region;
1016
1017 region = lookup_mem_region (memaddr);
1018
1019 if (region_p != NULL)
1020 *region_p = region;
1021
1022 switch (region->attrib.mode)
1023 {
1024 case MEM_RO:
1025 if (writebuf != NULL)
1026 return 0;
1027 break;
1028
1029 case MEM_WO:
1030 if (readbuf != NULL)
1031 return 0;
1032 break;
1033
1034 case MEM_FLASH:
1035 /* We only support writing to flash during "load" for now. */
1036 if (writebuf != NULL)
1037 error (_("Writing to flash memory forbidden in this context"));
1038 break;
1039
1040 case MEM_NONE:
1041 return 0;
1042 }
1043
1044 /* region->hi == 0 means there's no upper bound. */
1045 if (memaddr + len < region->hi || region->hi == 0)
1046 *reg_len = len;
1047 else
1048 *reg_len = region->hi - memaddr;
1049
1050 return 1;
1051 }
1052
1053 /* Read memory from more than one valid target. A core file, for
1054 instance, could have some of memory but delegate other bits to
1055 the target below it. So, we must manually try all targets. */
1056
1057 enum target_xfer_status
1058 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1059 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1060 ULONGEST *xfered_len)
1061 {
1062 enum target_xfer_status res;
1063
1064 do
1065 {
1066 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1067 readbuf, writebuf, memaddr, len,
1068 xfered_len);
1069 if (res == TARGET_XFER_OK)
1070 break;
1071
1072 /* Stop if the target reports that the memory is not available. */
1073 if (res == TARGET_XFER_UNAVAILABLE)
1074 break;
1075
1076 /* We want to continue past core files to executables, but not
1077 past a running target's memory. */
1078 if (ops->to_has_all_memory (ops))
1079 break;
1080
1081 ops = ops->beneath;
1082 }
1083 while (ops != NULL);
1084
1085 /* The cache works at the raw memory level. Make sure the cache
1086 gets updated with raw contents no matter what kind of memory
1087 object was originally being written. Note we do write-through
1088 first, so that if it fails, we don't write to the cache contents
1089 that never made it to the target. */
1090 if (writebuf != NULL
1091 && !ptid_equal (inferior_ptid, null_ptid)
1092 && target_dcache_init_p ()
1093 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1094 {
1095 DCACHE *dcache = target_dcache_get ();
1096
1097 /* Note that writing to an area of memory which wasn't present
1098 in the cache doesn't cause it to be loaded in. */
1099 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1100 }
1101
1102 return res;
1103 }
1104
1105 /* Perform a partial memory transfer.
1106 For docs see target.h, to_xfer_partial. */
1107
1108 static enum target_xfer_status
1109 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1110 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1111 ULONGEST len, ULONGEST *xfered_len)
1112 {
1113 enum target_xfer_status res;
1114 ULONGEST reg_len;
1115 struct mem_region *region;
1116 struct inferior *inf;
1117
1118 /* For accesses to unmapped overlay sections, read directly from
1119 files. Must do this first, as MEMADDR may need adjustment. */
1120 if (readbuf != NULL && overlay_debugging)
1121 {
1122 struct obj_section *section = find_pc_overlay (memaddr);
1123
1124 if (pc_in_unmapped_range (memaddr, section))
1125 {
1126 struct target_section_table *table
1127 = target_get_section_table (ops);
1128 const char *section_name = section->the_bfd_section->name;
1129
1130 memaddr = overlay_mapped_address (memaddr, section);
1131 return section_table_xfer_memory_partial (readbuf, writebuf,
1132 memaddr, len, xfered_len,
1133 table->sections,
1134 table->sections_end,
1135 section_name);
1136 }
1137 }
1138
1139 /* Try the executable files, if "trust-readonly-sections" is set. */
1140 if (readbuf != NULL && trust_readonly)
1141 {
1142 struct target_section *secp;
1143 struct target_section_table *table;
1144
1145 secp = target_section_by_addr (ops, memaddr);
1146 if (secp != NULL
1147 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1148 secp->the_bfd_section)
1149 & SEC_READONLY))
1150 {
1151 table = target_get_section_table (ops);
1152 return section_table_xfer_memory_partial (readbuf, writebuf,
1153 memaddr, len, xfered_len,
1154 table->sections,
1155 table->sections_end,
1156 NULL);
1157 }
1158 }
1159
1160 /* Try GDB's internal data cache. */
1161
1162 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1163 &region))
1164 return TARGET_XFER_E_IO;
1165
1166 if (!ptid_equal (inferior_ptid, null_ptid))
1167 inf = find_inferior_ptid (inferior_ptid);
1168 else
1169 inf = NULL;
1170
1171 if (inf != NULL
1172 && readbuf != NULL
1173 /* The dcache reads whole cache lines; that doesn't play well
1174 with reading from a trace buffer, because reading outside of
1175 the collected memory range fails. */
1176 && get_traceframe_number () == -1
1177 && (region->attrib.cache
1178 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1179 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1180 {
1181 DCACHE *dcache = target_dcache_get_or_init ();
1182
1183 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1184 reg_len, xfered_len);
1185 }
1186
1187 /* If none of those methods found the memory we wanted, fall back
1188 to a target partial transfer. Normally a single call to
1189 to_xfer_partial is enough; if it doesn't recognize an object
1190 it will call the to_xfer_partial of the next target down.
1191 But for memory this won't do. Memory is the only target
1192 object which can be read from more than one valid target.
1193 A core file, for instance, could have some of memory but
1194 delegate other bits to the target below it. So, we must
1195 manually try all targets. */
1196
1197 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1198 xfered_len);
1199
1200 /* If we still haven't got anything, return the last error. We
1201 give up. */
1202 return res;
1203 }
1204
1205 /* Perform a partial memory transfer. For docs see target.h,
1206 to_xfer_partial. */
1207
1208 static enum target_xfer_status
1209 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1210 gdb_byte *readbuf, const gdb_byte *writebuf,
1211 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1212 {
1213 enum target_xfer_status res;
1214
1215 /* Zero length requests are ok and require no work. */
1216 if (len == 0)
1217 return TARGET_XFER_EOF;
1218
1219 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1220 breakpoint insns, thus hiding out from higher layers whether
1221 there are software breakpoints inserted in the code stream. */
1222 if (readbuf != NULL)
1223 {
1224 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1225 xfered_len);
1226
1227 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1228 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1229 }
1230 else
1231 {
1232 /* A large write request is likely to be partially satisfied
1233 by memory_xfer_partial_1. We will continually malloc
1234 and free a copy of the entire write request for breakpoint
1235 shadow handling even though we only end up writing a small
1236 subset of it. Cap writes to a limit specified by the target
1237 to mitigate this. */
1238 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1239
1240 gdb::byte_vector buf (writebuf, writebuf + len);
1241 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1242 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1243 xfered_len);
1244 }
1245
1246 return res;
1247 }
1248
1249 scoped_restore_tmpl<int>
1250 make_scoped_restore_show_memory_breakpoints (int show)
1251 {
1252 return make_scoped_restore (&show_memory_breakpoints, show);
1253 }
1254
1255 /* For docs see target.h, to_xfer_partial. */
1256
1257 enum target_xfer_status
1258 target_xfer_partial (struct target_ops *ops,
1259 enum target_object object, const char *annex,
1260 gdb_byte *readbuf, const gdb_byte *writebuf,
1261 ULONGEST offset, ULONGEST len,
1262 ULONGEST *xfered_len)
1263 {
1264 enum target_xfer_status retval;
1265
1266 gdb_assert (ops->to_xfer_partial != NULL);
1267
1268 /* Transfer is done when LEN is zero. */
1269 if (len == 0)
1270 return TARGET_XFER_EOF;
1271
1272 if (writebuf && !may_write_memory)
1273 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1274 core_addr_to_string_nz (offset), plongest (len));
1275
1276 *xfered_len = 0;
1277
1278 /* If this is a memory transfer, let the memory-specific code
1279 have a look at it instead. Memory transfers are more
1280 complicated. */
1281 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1282 || object == TARGET_OBJECT_CODE_MEMORY)
1283 retval = memory_xfer_partial (ops, object, readbuf,
1284 writebuf, offset, len, xfered_len);
1285 else if (object == TARGET_OBJECT_RAW_MEMORY)
1286 {
1287 /* Skip/avoid accessing the target if the memory region
1288 attributes block the access. Check this here instead of in
1289 raw_memory_xfer_partial as otherwise we'd end up checking
1290 this twice in the case of the memory_xfer_partial path is
1291 taken; once before checking the dcache, and another in the
1292 tail call to raw_memory_xfer_partial. */
1293 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1294 NULL))
1295 return TARGET_XFER_E_IO;
1296
1297 /* Request the normal memory object from other layers. */
1298 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1299 xfered_len);
1300 }
1301 else
1302 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1303 writebuf, offset, len, xfered_len);
1304
1305 if (targetdebug)
1306 {
1307 const unsigned char *myaddr = NULL;
1308
1309 fprintf_unfiltered (gdb_stdlog,
1310 "%s:target_xfer_partial "
1311 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1312 ops->to_shortname,
1313 (int) object,
1314 (annex ? annex : "(null)"),
1315 host_address_to_string (readbuf),
1316 host_address_to_string (writebuf),
1317 core_addr_to_string_nz (offset),
1318 pulongest (len), retval,
1319 pulongest (*xfered_len));
1320
1321 if (readbuf)
1322 myaddr = readbuf;
1323 if (writebuf)
1324 myaddr = writebuf;
1325 if (retval == TARGET_XFER_OK && myaddr != NULL)
1326 {
1327 int i;
1328
1329 fputs_unfiltered (", bytes =", gdb_stdlog);
1330 for (i = 0; i < *xfered_len; i++)
1331 {
1332 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1333 {
1334 if (targetdebug < 2 && i > 0)
1335 {
1336 fprintf_unfiltered (gdb_stdlog, " ...");
1337 break;
1338 }
1339 fprintf_unfiltered (gdb_stdlog, "\n");
1340 }
1341
1342 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1343 }
1344 }
1345
1346 fputc_unfiltered ('\n', gdb_stdlog);
1347 }
1348
1349 /* Check implementations of to_xfer_partial update *XFERED_LEN
1350 properly. Do assertion after printing debug messages, so that we
1351 can find more clues on assertion failure from debugging messages. */
1352 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1353 gdb_assert (*xfered_len > 0);
1354
1355 return retval;
1356 }
1357
1358 /* Read LEN bytes of target memory at address MEMADDR, placing the
1359 results in GDB's memory at MYADDR. Returns either 0 for success or
1360 -1 if any error occurs.
1361
1362 If an error occurs, no guarantee is made about the contents of the data at
1363 MYADDR. In particular, the caller should not depend upon partial reads
1364 filling the buffer with good data. There is no way for the caller to know
1365 how much good data might have been transfered anyway. Callers that can
1366 deal with partial reads should call target_read (which will retry until
1367 it makes no progress, and then return how much was transferred). */
1368
1369 int
1370 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1371 {
1372 /* Dispatch to the topmost target, not the flattened current_target.
1373 Memory accesses check target->to_has_(all_)memory, and the
1374 flattened target doesn't inherit those. */
1375 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1376 myaddr, memaddr, len) == len)
1377 return 0;
1378 else
1379 return -1;
1380 }
1381
1382 /* See target/target.h. */
1383
1384 int
1385 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1386 {
1387 gdb_byte buf[4];
1388 int r;
1389
1390 r = target_read_memory (memaddr, buf, sizeof buf);
1391 if (r != 0)
1392 return r;
1393 *result = extract_unsigned_integer (buf, sizeof buf,
1394 gdbarch_byte_order (target_gdbarch ()));
1395 return 0;
1396 }
1397
1398 /* Like target_read_memory, but specify explicitly that this is a read
1399 from the target's raw memory. That is, this read bypasses the
1400 dcache, breakpoint shadowing, etc. */
1401
1402 int
1403 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1404 {
1405 /* See comment in target_read_memory about why the request starts at
1406 current_target.beneath. */
1407 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1408 myaddr, memaddr, len) == len)
1409 return 0;
1410 else
1411 return -1;
1412 }
1413
1414 /* Like target_read_memory, but specify explicitly that this is a read from
1415 the target's stack. This may trigger different cache behavior. */
1416
1417 int
1418 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1419 {
1420 /* See comment in target_read_memory about why the request starts at
1421 current_target.beneath. */
1422 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1423 myaddr, memaddr, len) == len)
1424 return 0;
1425 else
1426 return -1;
1427 }
1428
1429 /* Like target_read_memory, but specify explicitly that this is a read from
1430 the target's code. This may trigger different cache behavior. */
1431
1432 int
1433 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1434 {
1435 /* See comment in target_read_memory about why the request starts at
1436 current_target.beneath. */
1437 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1438 myaddr, memaddr, len) == len)
1439 return 0;
1440 else
1441 return -1;
1442 }
1443
1444 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1445 Returns either 0 for success or -1 if any error occurs. If an
1446 error occurs, no guarantee is made about how much data got written.
1447 Callers that can deal with partial writes should call
1448 target_write. */
1449
1450 int
1451 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1452 {
1453 /* See comment in target_read_memory about why the request starts at
1454 current_target.beneath. */
1455 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1456 myaddr, memaddr, len) == len)
1457 return 0;
1458 else
1459 return -1;
1460 }
1461
1462 /* Write LEN bytes from MYADDR to target raw memory at address
1463 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1464 If an error occurs, no guarantee is made about how much data got
1465 written. Callers that can deal with partial writes should call
1466 target_write. */
1467
1468 int
1469 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1470 {
1471 /* See comment in target_read_memory about why the request starts at
1472 current_target.beneath. */
1473 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1474 myaddr, memaddr, len) == len)
1475 return 0;
1476 else
1477 return -1;
1478 }
1479
1480 /* Fetch the target's memory map. */
1481
1482 VEC(mem_region_s) *
1483 target_memory_map (void)
1484 {
1485 VEC(mem_region_s) *result;
1486 struct mem_region *last_one, *this_one;
1487 int ix;
1488 result = current_target.to_memory_map (&current_target);
1489 if (result == NULL)
1490 return NULL;
1491
1492 qsort (VEC_address (mem_region_s, result),
1493 VEC_length (mem_region_s, result),
1494 sizeof (struct mem_region), mem_region_cmp);
1495
1496 /* Check that regions do not overlap. Simultaneously assign
1497 a numbering for the "mem" commands to use to refer to
1498 each region. */
1499 last_one = NULL;
1500 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1501 {
1502 this_one->number = ix;
1503
1504 if (last_one && last_one->hi > this_one->lo)
1505 {
1506 warning (_("Overlapping regions in memory map: ignoring"));
1507 VEC_free (mem_region_s, result);
1508 return NULL;
1509 }
1510 last_one = this_one;
1511 }
1512
1513 return result;
1514 }
1515
1516 void
1517 target_flash_erase (ULONGEST address, LONGEST length)
1518 {
1519 current_target.to_flash_erase (&current_target, address, length);
1520 }
1521
1522 void
1523 target_flash_done (void)
1524 {
1525 current_target.to_flash_done (&current_target);
1526 }
1527
1528 static void
1529 show_trust_readonly (struct ui_file *file, int from_tty,
1530 struct cmd_list_element *c, const char *value)
1531 {
1532 fprintf_filtered (file,
1533 _("Mode for reading from readonly sections is %s.\n"),
1534 value);
1535 }
1536
1537 /* Target vector read/write partial wrapper functions. */
1538
1539 static enum target_xfer_status
1540 target_read_partial (struct target_ops *ops,
1541 enum target_object object,
1542 const char *annex, gdb_byte *buf,
1543 ULONGEST offset, ULONGEST len,
1544 ULONGEST *xfered_len)
1545 {
1546 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1547 xfered_len);
1548 }
1549
1550 static enum target_xfer_status
1551 target_write_partial (struct target_ops *ops,
1552 enum target_object object,
1553 const char *annex, const gdb_byte *buf,
1554 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1555 {
1556 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1557 xfered_len);
1558 }
1559
1560 /* Wrappers to perform the full transfer. */
1561
1562 /* For docs on target_read see target.h. */
1563
1564 LONGEST
1565 target_read (struct target_ops *ops,
1566 enum target_object object,
1567 const char *annex, gdb_byte *buf,
1568 ULONGEST offset, LONGEST len)
1569 {
1570 LONGEST xfered_total = 0;
1571 int unit_size = 1;
1572
1573 /* If we are reading from a memory object, find the length of an addressable
1574 unit for that architecture. */
1575 if (object == TARGET_OBJECT_MEMORY
1576 || object == TARGET_OBJECT_STACK_MEMORY
1577 || object == TARGET_OBJECT_CODE_MEMORY
1578 || object == TARGET_OBJECT_RAW_MEMORY)
1579 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1580
1581 while (xfered_total < len)
1582 {
1583 ULONGEST xfered_partial;
1584 enum target_xfer_status status;
1585
1586 status = target_read_partial (ops, object, annex,
1587 buf + xfered_total * unit_size,
1588 offset + xfered_total, len - xfered_total,
1589 &xfered_partial);
1590
1591 /* Call an observer, notifying them of the xfer progress? */
1592 if (status == TARGET_XFER_EOF)
1593 return xfered_total;
1594 else if (status == TARGET_XFER_OK)
1595 {
1596 xfered_total += xfered_partial;
1597 QUIT;
1598 }
1599 else
1600 return TARGET_XFER_E_IO;
1601
1602 }
1603 return len;
1604 }
1605
1606 /* Assuming that the entire [begin, end) range of memory cannot be
1607 read, try to read whatever subrange is possible to read.
1608
1609 The function returns, in RESULT, either zero or one memory block.
1610 If there's a readable subrange at the beginning, it is completely
1611 read and returned. Any further readable subrange will not be read.
1612 Otherwise, if there's a readable subrange at the end, it will be
1613 completely read and returned. Any readable subranges before it
1614 (obviously, not starting at the beginning), will be ignored. In
1615 other cases -- either no readable subrange, or readable subrange(s)
1616 that is neither at the beginning, or end, nothing is returned.
1617
1618 The purpose of this function is to handle a read across a boundary
1619 of accessible memory in a case when memory map is not available.
1620 The above restrictions are fine for this case, but will give
1621 incorrect results if the memory is 'patchy'. However, supporting
1622 'patchy' memory would require trying to read every single byte,
1623 and it seems unacceptable solution. Explicit memory map is
1624 recommended for this case -- and target_read_memory_robust will
1625 take care of reading multiple ranges then. */
1626
1627 static void
1628 read_whatever_is_readable (struct target_ops *ops,
1629 const ULONGEST begin, const ULONGEST end,
1630 int unit_size,
1631 std::vector<memory_read_result> *result)
1632 {
1633 ULONGEST current_begin = begin;
1634 ULONGEST current_end = end;
1635 int forward;
1636 ULONGEST xfered_len;
1637
1638 /* If we previously failed to read 1 byte, nothing can be done here. */
1639 if (end - begin <= 1)
1640 return;
1641
1642 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1643
1644 /* Check that either first or the last byte is readable, and give up
1645 if not. This heuristic is meant to permit reading accessible memory
1646 at the boundary of accessible region. */
1647 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1648 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1649 {
1650 forward = 1;
1651 ++current_begin;
1652 }
1653 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1654 buf.get () + (end - begin) - 1, end - 1, 1,
1655 &xfered_len) == TARGET_XFER_OK)
1656 {
1657 forward = 0;
1658 --current_end;
1659 }
1660 else
1661 return;
1662
1663 /* Loop invariant is that the [current_begin, current_end) was previously
1664 found to be not readable as a whole.
1665
1666 Note loop condition -- if the range has 1 byte, we can't divide the range
1667 so there's no point trying further. */
1668 while (current_end - current_begin > 1)
1669 {
1670 ULONGEST first_half_begin, first_half_end;
1671 ULONGEST second_half_begin, second_half_end;
1672 LONGEST xfer;
1673 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1674
1675 if (forward)
1676 {
1677 first_half_begin = current_begin;
1678 first_half_end = middle;
1679 second_half_begin = middle;
1680 second_half_end = current_end;
1681 }
1682 else
1683 {
1684 first_half_begin = middle;
1685 first_half_end = current_end;
1686 second_half_begin = current_begin;
1687 second_half_end = middle;
1688 }
1689
1690 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1691 buf.get () + (first_half_begin - begin) * unit_size,
1692 first_half_begin,
1693 first_half_end - first_half_begin);
1694
1695 if (xfer == first_half_end - first_half_begin)
1696 {
1697 /* This half reads up fine. So, the error must be in the
1698 other half. */
1699 current_begin = second_half_begin;
1700 current_end = second_half_end;
1701 }
1702 else
1703 {
1704 /* This half is not readable. Because we've tried one byte, we
1705 know some part of this half if actually readable. Go to the next
1706 iteration to divide again and try to read.
1707
1708 We don't handle the other half, because this function only tries
1709 to read a single readable subrange. */
1710 current_begin = first_half_begin;
1711 current_end = first_half_end;
1712 }
1713 }
1714
1715 if (forward)
1716 {
1717 /* The [begin, current_begin) range has been read. */
1718 result->emplace_back (begin, current_end, std::move (buf));
1719 }
1720 else
1721 {
1722 /* The [current_end, end) range has been read. */
1723 LONGEST region_len = end - current_end;
1724
1725 gdb::unique_xmalloc_ptr<gdb_byte> data
1726 ((gdb_byte *) xmalloc (region_len * unit_size));
1727 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1728 region_len * unit_size);
1729 result->emplace_back (current_end, end, std::move (data));
1730 }
1731 }
1732
1733 std::vector<memory_read_result>
1734 read_memory_robust (struct target_ops *ops,
1735 const ULONGEST offset, const LONGEST len)
1736 {
1737 std::vector<memory_read_result> result;
1738 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1739
1740 LONGEST xfered_total = 0;
1741 while (xfered_total < len)
1742 {
1743 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1744 LONGEST region_len;
1745
1746 /* If there is no explicit region, a fake one should be created. */
1747 gdb_assert (region);
1748
1749 if (region->hi == 0)
1750 region_len = len - xfered_total;
1751 else
1752 region_len = region->hi - offset;
1753
1754 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1755 {
1756 /* Cannot read this region. Note that we can end up here only
1757 if the region is explicitly marked inaccessible, or
1758 'inaccessible-by-default' is in effect. */
1759 xfered_total += region_len;
1760 }
1761 else
1762 {
1763 LONGEST to_read = std::min (len - xfered_total, region_len);
1764 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1765 ((gdb_byte *) xmalloc (to_read * unit_size));
1766
1767 LONGEST xfered_partial =
1768 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1769 offset + xfered_total, to_read);
1770 /* Call an observer, notifying them of the xfer progress? */
1771 if (xfered_partial <= 0)
1772 {
1773 /* Got an error reading full chunk. See if maybe we can read
1774 some subrange. */
1775 read_whatever_is_readable (ops, offset + xfered_total,
1776 offset + xfered_total + to_read,
1777 unit_size, &result);
1778 xfered_total += to_read;
1779 }
1780 else
1781 {
1782 result.emplace_back (offset + xfered_total,
1783 offset + xfered_total + xfered_partial,
1784 std::move (buffer));
1785 xfered_total += xfered_partial;
1786 }
1787 QUIT;
1788 }
1789 }
1790
1791 return result;
1792 }
1793
1794
1795 /* An alternative to target_write with progress callbacks. */
1796
1797 LONGEST
1798 target_write_with_progress (struct target_ops *ops,
1799 enum target_object object,
1800 const char *annex, const gdb_byte *buf,
1801 ULONGEST offset, LONGEST len,
1802 void (*progress) (ULONGEST, void *), void *baton)
1803 {
1804 LONGEST xfered_total = 0;
1805 int unit_size = 1;
1806
1807 /* If we are writing to a memory object, find the length of an addressable
1808 unit for that architecture. */
1809 if (object == TARGET_OBJECT_MEMORY
1810 || object == TARGET_OBJECT_STACK_MEMORY
1811 || object == TARGET_OBJECT_CODE_MEMORY
1812 || object == TARGET_OBJECT_RAW_MEMORY)
1813 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1814
1815 /* Give the progress callback a chance to set up. */
1816 if (progress)
1817 (*progress) (0, baton);
1818
1819 while (xfered_total < len)
1820 {
1821 ULONGEST xfered_partial;
1822 enum target_xfer_status status;
1823
1824 status = target_write_partial (ops, object, annex,
1825 buf + xfered_total * unit_size,
1826 offset + xfered_total, len - xfered_total,
1827 &xfered_partial);
1828
1829 if (status != TARGET_XFER_OK)
1830 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1831
1832 if (progress)
1833 (*progress) (xfered_partial, baton);
1834
1835 xfered_total += xfered_partial;
1836 QUIT;
1837 }
1838 return len;
1839 }
1840
1841 /* For docs on target_write see target.h. */
1842
1843 LONGEST
1844 target_write (struct target_ops *ops,
1845 enum target_object object,
1846 const char *annex, const gdb_byte *buf,
1847 ULONGEST offset, LONGEST len)
1848 {
1849 return target_write_with_progress (ops, object, annex, buf, offset, len,
1850 NULL, NULL);
1851 }
1852
1853 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1854 the size of the transferred data. PADDING additional bytes are
1855 available in *BUF_P. This is a helper function for
1856 target_read_alloc; see the declaration of that function for more
1857 information. */
1858
1859 static LONGEST
1860 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1861 const char *annex, gdb_byte **buf_p, int padding)
1862 {
1863 size_t buf_alloc, buf_pos;
1864 gdb_byte *buf;
1865
1866 /* This function does not have a length parameter; it reads the
1867 entire OBJECT). Also, it doesn't support objects fetched partly
1868 from one target and partly from another (in a different stratum,
1869 e.g. a core file and an executable). Both reasons make it
1870 unsuitable for reading memory. */
1871 gdb_assert (object != TARGET_OBJECT_MEMORY);
1872
1873 /* Start by reading up to 4K at a time. The target will throttle
1874 this number down if necessary. */
1875 buf_alloc = 4096;
1876 buf = (gdb_byte *) xmalloc (buf_alloc);
1877 buf_pos = 0;
1878 while (1)
1879 {
1880 ULONGEST xfered_len;
1881 enum target_xfer_status status;
1882
1883 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1884 buf_pos, buf_alloc - buf_pos - padding,
1885 &xfered_len);
1886
1887 if (status == TARGET_XFER_EOF)
1888 {
1889 /* Read all there was. */
1890 if (buf_pos == 0)
1891 xfree (buf);
1892 else
1893 *buf_p = buf;
1894 return buf_pos;
1895 }
1896 else if (status != TARGET_XFER_OK)
1897 {
1898 /* An error occurred. */
1899 xfree (buf);
1900 return TARGET_XFER_E_IO;
1901 }
1902
1903 buf_pos += xfered_len;
1904
1905 /* If the buffer is filling up, expand it. */
1906 if (buf_alloc < buf_pos * 2)
1907 {
1908 buf_alloc *= 2;
1909 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1910 }
1911
1912 QUIT;
1913 }
1914 }
1915
1916 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1917 the size of the transferred data. See the declaration in "target.h"
1918 function for more information about the return value. */
1919
1920 LONGEST
1921 target_read_alloc (struct target_ops *ops, enum target_object object,
1922 const char *annex, gdb_byte **buf_p)
1923 {
1924 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1925 }
1926
1927 /* See target.h. */
1928
1929 gdb::unique_xmalloc_ptr<char>
1930 target_read_stralloc (struct target_ops *ops, enum target_object object,
1931 const char *annex)
1932 {
1933 gdb_byte *buffer;
1934 char *bufstr;
1935 LONGEST i, transferred;
1936
1937 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1938 bufstr = (char *) buffer;
1939
1940 if (transferred < 0)
1941 return NULL;
1942
1943 if (transferred == 0)
1944 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
1945
1946 bufstr[transferred] = 0;
1947
1948 /* Check for embedded NUL bytes; but allow trailing NULs. */
1949 for (i = strlen (bufstr); i < transferred; i++)
1950 if (bufstr[i] != 0)
1951 {
1952 warning (_("target object %d, annex %s, "
1953 "contained unexpected null characters"),
1954 (int) object, annex ? annex : "(none)");
1955 break;
1956 }
1957
1958 return gdb::unique_xmalloc_ptr<char> (bufstr);
1959 }
1960
1961 /* Memory transfer methods. */
1962
1963 void
1964 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1965 LONGEST len)
1966 {
1967 /* This method is used to read from an alternate, non-current
1968 target. This read must bypass the overlay support (as symbols
1969 don't match this target), and GDB's internal cache (wrong cache
1970 for this target). */
1971 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1972 != len)
1973 memory_error (TARGET_XFER_E_IO, addr);
1974 }
1975
1976 ULONGEST
1977 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1978 int len, enum bfd_endian byte_order)
1979 {
1980 gdb_byte buf[sizeof (ULONGEST)];
1981
1982 gdb_assert (len <= sizeof (buf));
1983 get_target_memory (ops, addr, buf, len);
1984 return extract_unsigned_integer (buf, len, byte_order);
1985 }
1986
1987 /* See target.h. */
1988
1989 int
1990 target_insert_breakpoint (struct gdbarch *gdbarch,
1991 struct bp_target_info *bp_tgt)
1992 {
1993 if (!may_insert_breakpoints)
1994 {
1995 warning (_("May not insert breakpoints"));
1996 return 1;
1997 }
1998
1999 return current_target.to_insert_breakpoint (&current_target,
2000 gdbarch, bp_tgt);
2001 }
2002
2003 /* See target.h. */
2004
2005 int
2006 target_remove_breakpoint (struct gdbarch *gdbarch,
2007 struct bp_target_info *bp_tgt,
2008 enum remove_bp_reason reason)
2009 {
2010 /* This is kind of a weird case to handle, but the permission might
2011 have been changed after breakpoints were inserted - in which case
2012 we should just take the user literally and assume that any
2013 breakpoints should be left in place. */
2014 if (!may_insert_breakpoints)
2015 {
2016 warning (_("May not remove breakpoints"));
2017 return 1;
2018 }
2019
2020 return current_target.to_remove_breakpoint (&current_target,
2021 gdbarch, bp_tgt, reason);
2022 }
2023
2024 static void
2025 info_target_command (char *args, int from_tty)
2026 {
2027 struct target_ops *t;
2028 int has_all_mem = 0;
2029
2030 if (symfile_objfile != NULL)
2031 printf_unfiltered (_("Symbols from \"%s\".\n"),
2032 objfile_name (symfile_objfile));
2033
2034 for (t = target_stack; t != NULL; t = t->beneath)
2035 {
2036 if (!(*t->to_has_memory) (t))
2037 continue;
2038
2039 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2040 continue;
2041 if (has_all_mem)
2042 printf_unfiltered (_("\tWhile running this, "
2043 "GDB does not access memory from...\n"));
2044 printf_unfiltered ("%s:\n", t->to_longname);
2045 (t->to_files_info) (t);
2046 has_all_mem = (*t->to_has_all_memory) (t);
2047 }
2048 }
2049
2050 /* This function is called before any new inferior is created, e.g.
2051 by running a program, attaching, or connecting to a target.
2052 It cleans up any state from previous invocations which might
2053 change between runs. This is a subset of what target_preopen
2054 resets (things which might change between targets). */
2055
2056 void
2057 target_pre_inferior (int from_tty)
2058 {
2059 /* Clear out solib state. Otherwise the solib state of the previous
2060 inferior might have survived and is entirely wrong for the new
2061 target. This has been observed on GNU/Linux using glibc 2.3. How
2062 to reproduce:
2063
2064 bash$ ./foo&
2065 [1] 4711
2066 bash$ ./foo&
2067 [1] 4712
2068 bash$ gdb ./foo
2069 [...]
2070 (gdb) attach 4711
2071 (gdb) detach
2072 (gdb) attach 4712
2073 Cannot access memory at address 0xdeadbeef
2074 */
2075
2076 /* In some OSs, the shared library list is the same/global/shared
2077 across inferiors. If code is shared between processes, so are
2078 memory regions and features. */
2079 if (!gdbarch_has_global_solist (target_gdbarch ()))
2080 {
2081 no_shared_libraries (NULL, from_tty);
2082
2083 invalidate_target_mem_regions ();
2084
2085 target_clear_description ();
2086 }
2087
2088 /* attach_flag may be set if the previous process associated with
2089 the inferior was attached to. */
2090 current_inferior ()->attach_flag = 0;
2091
2092 current_inferior ()->highest_thread_num = 0;
2093
2094 agent_capability_invalidate ();
2095 }
2096
2097 /* Callback for iterate_over_inferiors. Gets rid of the given
2098 inferior. */
2099
2100 static int
2101 dispose_inferior (struct inferior *inf, void *args)
2102 {
2103 struct thread_info *thread;
2104
2105 thread = any_thread_of_process (inf->pid);
2106 if (thread)
2107 {
2108 switch_to_thread (thread->ptid);
2109
2110 /* Core inferiors actually should be detached, not killed. */
2111 if (target_has_execution)
2112 target_kill ();
2113 else
2114 target_detach (NULL, 0);
2115 }
2116
2117 return 0;
2118 }
2119
2120 /* This is to be called by the open routine before it does
2121 anything. */
2122
2123 void
2124 target_preopen (int from_tty)
2125 {
2126 dont_repeat ();
2127
2128 if (have_inferiors ())
2129 {
2130 if (!from_tty
2131 || !have_live_inferiors ()
2132 || query (_("A program is being debugged already. Kill it? ")))
2133 iterate_over_inferiors (dispose_inferior, NULL);
2134 else
2135 error (_("Program not killed."));
2136 }
2137
2138 /* Calling target_kill may remove the target from the stack. But if
2139 it doesn't (which seems like a win for UDI), remove it now. */
2140 /* Leave the exec target, though. The user may be switching from a
2141 live process to a core of the same program. */
2142 pop_all_targets_above (file_stratum);
2143
2144 target_pre_inferior (from_tty);
2145 }
2146
2147 /* Detach a target after doing deferred register stores. */
2148
2149 void
2150 target_detach (const char *args, int from_tty)
2151 {
2152 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2153 /* Don't remove global breakpoints here. They're removed on
2154 disconnection from the target. */
2155 ;
2156 else
2157 /* If we're in breakpoints-always-inserted mode, have to remove
2158 them before detaching. */
2159 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2160
2161 prepare_for_detach ();
2162
2163 current_target.to_detach (&current_target, args, from_tty);
2164 }
2165
2166 void
2167 target_disconnect (const char *args, int from_tty)
2168 {
2169 /* If we're in breakpoints-always-inserted mode or if breakpoints
2170 are global across processes, we have to remove them before
2171 disconnecting. */
2172 remove_breakpoints ();
2173
2174 current_target.to_disconnect (&current_target, args, from_tty);
2175 }
2176
2177 /* See target/target.h. */
2178
2179 ptid_t
2180 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2181 {
2182 return (current_target.to_wait) (&current_target, ptid, status, options);
2183 }
2184
2185 /* See target.h. */
2186
2187 ptid_t
2188 default_target_wait (struct target_ops *ops,
2189 ptid_t ptid, struct target_waitstatus *status,
2190 int options)
2191 {
2192 status->kind = TARGET_WAITKIND_IGNORE;
2193 return minus_one_ptid;
2194 }
2195
2196 const char *
2197 target_pid_to_str (ptid_t ptid)
2198 {
2199 return (*current_target.to_pid_to_str) (&current_target, ptid);
2200 }
2201
2202 const char *
2203 target_thread_name (struct thread_info *info)
2204 {
2205 return current_target.to_thread_name (&current_target, info);
2206 }
2207
2208 struct thread_info *
2209 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2210 int handle_len,
2211 struct inferior *inf)
2212 {
2213 return current_target.to_thread_handle_to_thread_info
2214 (&current_target, thread_handle, handle_len, inf);
2215 }
2216
2217 void
2218 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2219 {
2220 target_dcache_invalidate ();
2221
2222 current_target.to_resume (&current_target, ptid, step, signal);
2223
2224 registers_changed_ptid (ptid);
2225 /* We only set the internal executing state here. The user/frontend
2226 running state is set at a higher level. */
2227 set_executing (ptid, 1);
2228 clear_inline_frame_state (ptid);
2229 }
2230
2231 /* If true, target_commit_resume is a nop. */
2232 static int defer_target_commit_resume;
2233
2234 /* See target.h. */
2235
2236 void
2237 target_commit_resume (void)
2238 {
2239 struct target_ops *t;
2240
2241 if (defer_target_commit_resume)
2242 return;
2243
2244 current_target.to_commit_resume (&current_target);
2245 }
2246
2247 /* See target.h. */
2248
2249 scoped_restore_tmpl<int>
2250 make_scoped_defer_target_commit_resume ()
2251 {
2252 return make_scoped_restore (&defer_target_commit_resume, 1);
2253 }
2254
2255 void
2256 target_pass_signals (int numsigs, unsigned char *pass_signals)
2257 {
2258 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2259 }
2260
2261 void
2262 target_program_signals (int numsigs, unsigned char *program_signals)
2263 {
2264 (*current_target.to_program_signals) (&current_target,
2265 numsigs, program_signals);
2266 }
2267
2268 static int
2269 default_follow_fork (struct target_ops *self, int follow_child,
2270 int detach_fork)
2271 {
2272 /* Some target returned a fork event, but did not know how to follow it. */
2273 internal_error (__FILE__, __LINE__,
2274 _("could not find a target to follow fork"));
2275 }
2276
2277 /* Look through the list of possible targets for a target that can
2278 follow forks. */
2279
2280 int
2281 target_follow_fork (int follow_child, int detach_fork)
2282 {
2283 return current_target.to_follow_fork (&current_target,
2284 follow_child, detach_fork);
2285 }
2286
2287 /* Target wrapper for follow exec hook. */
2288
2289 void
2290 target_follow_exec (struct inferior *inf, char *execd_pathname)
2291 {
2292 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2293 }
2294
2295 static void
2296 default_mourn_inferior (struct target_ops *self)
2297 {
2298 internal_error (__FILE__, __LINE__,
2299 _("could not find a target to follow mourn inferior"));
2300 }
2301
2302 void
2303 target_mourn_inferior (ptid_t ptid)
2304 {
2305 gdb_assert (ptid_equal (ptid, inferior_ptid));
2306 current_target.to_mourn_inferior (&current_target);
2307
2308 /* We no longer need to keep handles on any of the object files.
2309 Make sure to release them to avoid unnecessarily locking any
2310 of them while we're not actually debugging. */
2311 bfd_cache_close_all ();
2312 }
2313
2314 /* Look for a target which can describe architectural features, starting
2315 from TARGET. If we find one, return its description. */
2316
2317 const struct target_desc *
2318 target_read_description (struct target_ops *target)
2319 {
2320 return target->to_read_description (target);
2321 }
2322
2323 /* This implements a basic search of memory, reading target memory and
2324 performing the search here (as opposed to performing the search in on the
2325 target side with, for example, gdbserver). */
2326
2327 int
2328 simple_search_memory (struct target_ops *ops,
2329 CORE_ADDR start_addr, ULONGEST search_space_len,
2330 const gdb_byte *pattern, ULONGEST pattern_len,
2331 CORE_ADDR *found_addrp)
2332 {
2333 /* NOTE: also defined in find.c testcase. */
2334 #define SEARCH_CHUNK_SIZE 16000
2335 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2336 /* Buffer to hold memory contents for searching. */
2337 unsigned search_buf_size;
2338
2339 search_buf_size = chunk_size + pattern_len - 1;
2340
2341 /* No point in trying to allocate a buffer larger than the search space. */
2342 if (search_space_len < search_buf_size)
2343 search_buf_size = search_space_len;
2344
2345 gdb::byte_vector search_buf (search_buf_size);
2346
2347 /* Prime the search buffer. */
2348
2349 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2350 search_buf.data (), start_addr, search_buf_size)
2351 != search_buf_size)
2352 {
2353 warning (_("Unable to access %s bytes of target "
2354 "memory at %s, halting search."),
2355 pulongest (search_buf_size), hex_string (start_addr));
2356 return -1;
2357 }
2358
2359 /* Perform the search.
2360
2361 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2362 When we've scanned N bytes we copy the trailing bytes to the start and
2363 read in another N bytes. */
2364
2365 while (search_space_len >= pattern_len)
2366 {
2367 gdb_byte *found_ptr;
2368 unsigned nr_search_bytes
2369 = std::min (search_space_len, (ULONGEST) search_buf_size);
2370
2371 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2372 pattern, pattern_len);
2373
2374 if (found_ptr != NULL)
2375 {
2376 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2377
2378 *found_addrp = found_addr;
2379 return 1;
2380 }
2381
2382 /* Not found in this chunk, skip to next chunk. */
2383
2384 /* Don't let search_space_len wrap here, it's unsigned. */
2385 if (search_space_len >= chunk_size)
2386 search_space_len -= chunk_size;
2387 else
2388 search_space_len = 0;
2389
2390 if (search_space_len >= pattern_len)
2391 {
2392 unsigned keep_len = search_buf_size - chunk_size;
2393 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2394 int nr_to_read;
2395
2396 /* Copy the trailing part of the previous iteration to the front
2397 of the buffer for the next iteration. */
2398 gdb_assert (keep_len == pattern_len - 1);
2399 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2400
2401 nr_to_read = std::min (search_space_len - keep_len,
2402 (ULONGEST) chunk_size);
2403
2404 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2405 &search_buf[keep_len], read_addr,
2406 nr_to_read) != nr_to_read)
2407 {
2408 warning (_("Unable to access %s bytes of target "
2409 "memory at %s, halting search."),
2410 plongest (nr_to_read),
2411 hex_string (read_addr));
2412 return -1;
2413 }
2414
2415 start_addr += chunk_size;
2416 }
2417 }
2418
2419 /* Not found. */
2420
2421 return 0;
2422 }
2423
2424 /* Default implementation of memory-searching. */
2425
2426 static int
2427 default_search_memory (struct target_ops *self,
2428 CORE_ADDR start_addr, ULONGEST search_space_len,
2429 const gdb_byte *pattern, ULONGEST pattern_len,
2430 CORE_ADDR *found_addrp)
2431 {
2432 /* Start over from the top of the target stack. */
2433 return simple_search_memory (current_target.beneath,
2434 start_addr, search_space_len,
2435 pattern, pattern_len, found_addrp);
2436 }
2437
2438 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2439 sequence of bytes in PATTERN with length PATTERN_LEN.
2440
2441 The result is 1 if found, 0 if not found, and -1 if there was an error
2442 requiring halting of the search (e.g. memory read error).
2443 If the pattern is found the address is recorded in FOUND_ADDRP. */
2444
2445 int
2446 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2447 const gdb_byte *pattern, ULONGEST pattern_len,
2448 CORE_ADDR *found_addrp)
2449 {
2450 return current_target.to_search_memory (&current_target, start_addr,
2451 search_space_len,
2452 pattern, pattern_len, found_addrp);
2453 }
2454
2455 /* Look through the currently pushed targets. If none of them will
2456 be able to restart the currently running process, issue an error
2457 message. */
2458
2459 void
2460 target_require_runnable (void)
2461 {
2462 struct target_ops *t;
2463
2464 for (t = target_stack; t != NULL; t = t->beneath)
2465 {
2466 /* If this target knows how to create a new program, then
2467 assume we will still be able to after killing the current
2468 one. Either killing and mourning will not pop T, or else
2469 find_default_run_target will find it again. */
2470 if (t->to_create_inferior != NULL)
2471 return;
2472
2473 /* Do not worry about targets at certain strata that can not
2474 create inferiors. Assume they will be pushed again if
2475 necessary, and continue to the process_stratum. */
2476 if (t->to_stratum == thread_stratum
2477 || t->to_stratum == record_stratum
2478 || t->to_stratum == arch_stratum)
2479 continue;
2480
2481 error (_("The \"%s\" target does not support \"run\". "
2482 "Try \"help target\" or \"continue\"."),
2483 t->to_shortname);
2484 }
2485
2486 /* This function is only called if the target is running. In that
2487 case there should have been a process_stratum target and it
2488 should either know how to create inferiors, or not... */
2489 internal_error (__FILE__, __LINE__, _("No targets found"));
2490 }
2491
2492 /* Whether GDB is allowed to fall back to the default run target for
2493 "run", "attach", etc. when no target is connected yet. */
2494 static int auto_connect_native_target = 1;
2495
2496 static void
2497 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2498 struct cmd_list_element *c, const char *value)
2499 {
2500 fprintf_filtered (file,
2501 _("Whether GDB may automatically connect to the "
2502 "native target is %s.\n"),
2503 value);
2504 }
2505
2506 /* Look through the list of possible targets for a target that can
2507 execute a run or attach command without any other data. This is
2508 used to locate the default process stratum.
2509
2510 If DO_MESG is not NULL, the result is always valid (error() is
2511 called for errors); else, return NULL on error. */
2512
2513 static struct target_ops *
2514 find_default_run_target (const char *do_mesg)
2515 {
2516 struct target_ops *runable = NULL;
2517
2518 if (auto_connect_native_target)
2519 {
2520 struct target_ops *t;
2521 int count = 0;
2522 int i;
2523
2524 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2525 {
2526 if (t->to_can_run != delegate_can_run && target_can_run (t))
2527 {
2528 runable = t;
2529 ++count;
2530 }
2531 }
2532
2533 if (count != 1)
2534 runable = NULL;
2535 }
2536
2537 if (runable == NULL)
2538 {
2539 if (do_mesg)
2540 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2541 else
2542 return NULL;
2543 }
2544
2545 return runable;
2546 }
2547
2548 /* See target.h. */
2549
2550 struct target_ops *
2551 find_attach_target (void)
2552 {
2553 struct target_ops *t;
2554
2555 /* If a target on the current stack can attach, use it. */
2556 for (t = current_target.beneath; t != NULL; t = t->beneath)
2557 {
2558 if (t->to_attach != NULL)
2559 break;
2560 }
2561
2562 /* Otherwise, use the default run target for attaching. */
2563 if (t == NULL)
2564 t = find_default_run_target ("attach");
2565
2566 return t;
2567 }
2568
2569 /* See target.h. */
2570
2571 struct target_ops *
2572 find_run_target (void)
2573 {
2574 struct target_ops *t;
2575
2576 /* If a target on the current stack can attach, use it. */
2577 for (t = current_target.beneath; t != NULL; t = t->beneath)
2578 {
2579 if (t->to_create_inferior != NULL)
2580 break;
2581 }
2582
2583 /* Otherwise, use the default run target. */
2584 if (t == NULL)
2585 t = find_default_run_target ("run");
2586
2587 return t;
2588 }
2589
2590 /* Implement the "info proc" command. */
2591
2592 int
2593 target_info_proc (const char *args, enum info_proc_what what)
2594 {
2595 struct target_ops *t;
2596
2597 /* If we're already connected to something that can get us OS
2598 related data, use it. Otherwise, try using the native
2599 target. */
2600 if (current_target.to_stratum >= process_stratum)
2601 t = current_target.beneath;
2602 else
2603 t = find_default_run_target (NULL);
2604
2605 for (; t != NULL; t = t->beneath)
2606 {
2607 if (t->to_info_proc != NULL)
2608 {
2609 t->to_info_proc (t, args, what);
2610
2611 if (targetdebug)
2612 fprintf_unfiltered (gdb_stdlog,
2613 "target_info_proc (\"%s\", %d)\n", args, what);
2614
2615 return 1;
2616 }
2617 }
2618
2619 return 0;
2620 }
2621
2622 static int
2623 find_default_supports_disable_randomization (struct target_ops *self)
2624 {
2625 struct target_ops *t;
2626
2627 t = find_default_run_target (NULL);
2628 if (t && t->to_supports_disable_randomization)
2629 return (t->to_supports_disable_randomization) (t);
2630 return 0;
2631 }
2632
2633 int
2634 target_supports_disable_randomization (void)
2635 {
2636 struct target_ops *t;
2637
2638 for (t = &current_target; t != NULL; t = t->beneath)
2639 if (t->to_supports_disable_randomization)
2640 return t->to_supports_disable_randomization (t);
2641
2642 return 0;
2643 }
2644
2645 /* See target/target.h. */
2646
2647 int
2648 target_supports_multi_process (void)
2649 {
2650 return (*current_target.to_supports_multi_process) (&current_target);
2651 }
2652
2653 /* See target.h. */
2654
2655 gdb::unique_xmalloc_ptr<char>
2656 target_get_osdata (const char *type)
2657 {
2658 struct target_ops *t;
2659
2660 /* If we're already connected to something that can get us OS
2661 related data, use it. Otherwise, try using the native
2662 target. */
2663 if (current_target.to_stratum >= process_stratum)
2664 t = current_target.beneath;
2665 else
2666 t = find_default_run_target ("get OS data");
2667
2668 if (!t)
2669 return NULL;
2670
2671 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2672 }
2673
2674 static struct address_space *
2675 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2676 {
2677 struct inferior *inf;
2678
2679 /* Fall-back to the "main" address space of the inferior. */
2680 inf = find_inferior_ptid (ptid);
2681
2682 if (inf == NULL || inf->aspace == NULL)
2683 internal_error (__FILE__, __LINE__,
2684 _("Can't determine the current "
2685 "address space of thread %s\n"),
2686 target_pid_to_str (ptid));
2687
2688 return inf->aspace;
2689 }
2690
2691 /* Determine the current address space of thread PTID. */
2692
2693 struct address_space *
2694 target_thread_address_space (ptid_t ptid)
2695 {
2696 struct address_space *aspace;
2697
2698 aspace = current_target.to_thread_address_space (&current_target, ptid);
2699 gdb_assert (aspace != NULL);
2700
2701 return aspace;
2702 }
2703
2704
2705 /* Target file operations. */
2706
2707 static struct target_ops *
2708 default_fileio_target (void)
2709 {
2710 /* If we're already connected to something that can perform
2711 file I/O, use it. Otherwise, try using the native target. */
2712 if (current_target.to_stratum >= process_stratum)
2713 return current_target.beneath;
2714 else
2715 return find_default_run_target ("file I/O");
2716 }
2717
2718 /* File handle for target file operations. */
2719
2720 typedef struct
2721 {
2722 /* The target on which this file is open. */
2723 struct target_ops *t;
2724
2725 /* The file descriptor on the target. */
2726 int fd;
2727 } fileio_fh_t;
2728
2729 DEF_VEC_O (fileio_fh_t);
2730
2731 /* Vector of currently open file handles. The value returned by
2732 target_fileio_open and passed as the FD argument to other
2733 target_fileio_* functions is an index into this vector. This
2734 vector's entries are never freed; instead, files are marked as
2735 closed, and the handle becomes available for reuse. */
2736 static VEC (fileio_fh_t) *fileio_fhandles;
2737
2738 /* Macro to check whether a fileio_fh_t represents a closed file. */
2739 #define is_closed_fileio_fh(fd) ((fd) < 0)
2740
2741 /* Index into fileio_fhandles of the lowest handle that might be
2742 closed. This permits handle reuse without searching the whole
2743 list each time a new file is opened. */
2744 static int lowest_closed_fd;
2745
2746 /* Acquire a target fileio file descriptor. */
2747
2748 static int
2749 acquire_fileio_fd (struct target_ops *t, int fd)
2750 {
2751 fileio_fh_t *fh;
2752
2753 gdb_assert (!is_closed_fileio_fh (fd));
2754
2755 /* Search for closed handles to reuse. */
2756 for (;
2757 VEC_iterate (fileio_fh_t, fileio_fhandles,
2758 lowest_closed_fd, fh);
2759 lowest_closed_fd++)
2760 if (is_closed_fileio_fh (fh->fd))
2761 break;
2762
2763 /* Push a new handle if no closed handles were found. */
2764 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2765 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2766
2767 /* Fill in the handle. */
2768 fh->t = t;
2769 fh->fd = fd;
2770
2771 /* Return its index, and start the next lookup at
2772 the next index. */
2773 return lowest_closed_fd++;
2774 }
2775
2776 /* Release a target fileio file descriptor. */
2777
2778 static void
2779 release_fileio_fd (int fd, fileio_fh_t *fh)
2780 {
2781 fh->fd = -1;
2782 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2783 }
2784
2785 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2786
2787 #define fileio_fd_to_fh(fd) \
2788 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2789
2790 /* Helper for target_fileio_open and
2791 target_fileio_open_warn_if_slow. */
2792
2793 static int
2794 target_fileio_open_1 (struct inferior *inf, const char *filename,
2795 int flags, int mode, int warn_if_slow,
2796 int *target_errno)
2797 {
2798 struct target_ops *t;
2799
2800 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2801 {
2802 if (t->to_fileio_open != NULL)
2803 {
2804 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2805 warn_if_slow, target_errno);
2806
2807 if (fd < 0)
2808 fd = -1;
2809 else
2810 fd = acquire_fileio_fd (t, fd);
2811
2812 if (targetdebug)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2815 " = %d (%d)\n",
2816 inf == NULL ? 0 : inf->num,
2817 filename, flags, mode,
2818 warn_if_slow, fd,
2819 fd != -1 ? 0 : *target_errno);
2820 return fd;
2821 }
2822 }
2823
2824 *target_errno = FILEIO_ENOSYS;
2825 return -1;
2826 }
2827
2828 /* See target.h. */
2829
2830 int
2831 target_fileio_open (struct inferior *inf, const char *filename,
2832 int flags, int mode, int *target_errno)
2833 {
2834 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2835 target_errno);
2836 }
2837
2838 /* See target.h. */
2839
2840 int
2841 target_fileio_open_warn_if_slow (struct inferior *inf,
2842 const char *filename,
2843 int flags, int mode, int *target_errno)
2844 {
2845 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2846 target_errno);
2847 }
2848
2849 /* See target.h. */
2850
2851 int
2852 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2853 ULONGEST offset, int *target_errno)
2854 {
2855 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2856 int ret = -1;
2857
2858 if (is_closed_fileio_fh (fh->fd))
2859 *target_errno = EBADF;
2860 else
2861 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2862 len, offset, target_errno);
2863
2864 if (targetdebug)
2865 fprintf_unfiltered (gdb_stdlog,
2866 "target_fileio_pwrite (%d,...,%d,%s) "
2867 "= %d (%d)\n",
2868 fd, len, pulongest (offset),
2869 ret, ret != -1 ? 0 : *target_errno);
2870 return ret;
2871 }
2872
2873 /* See target.h. */
2874
2875 int
2876 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2877 ULONGEST offset, int *target_errno)
2878 {
2879 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2880 int ret = -1;
2881
2882 if (is_closed_fileio_fh (fh->fd))
2883 *target_errno = EBADF;
2884 else
2885 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2886 len, offset, target_errno);
2887
2888 if (targetdebug)
2889 fprintf_unfiltered (gdb_stdlog,
2890 "target_fileio_pread (%d,...,%d,%s) "
2891 "= %d (%d)\n",
2892 fd, len, pulongest (offset),
2893 ret, ret != -1 ? 0 : *target_errno);
2894 return ret;
2895 }
2896
2897 /* See target.h. */
2898
2899 int
2900 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2901 {
2902 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2903 int ret = -1;
2904
2905 if (is_closed_fileio_fh (fh->fd))
2906 *target_errno = EBADF;
2907 else
2908 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2909
2910 if (targetdebug)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "target_fileio_fstat (%d) = %d (%d)\n",
2913 fd, ret, ret != -1 ? 0 : *target_errno);
2914 return ret;
2915 }
2916
2917 /* See target.h. */
2918
2919 int
2920 target_fileio_close (int fd, int *target_errno)
2921 {
2922 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2923 int ret = -1;
2924
2925 if (is_closed_fileio_fh (fh->fd))
2926 *target_errno = EBADF;
2927 else
2928 {
2929 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2930 release_fileio_fd (fd, fh);
2931 }
2932
2933 if (targetdebug)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "target_fileio_close (%d) = %d (%d)\n",
2936 fd, ret, ret != -1 ? 0 : *target_errno);
2937 return ret;
2938 }
2939
2940 /* See target.h. */
2941
2942 int
2943 target_fileio_unlink (struct inferior *inf, const char *filename,
2944 int *target_errno)
2945 {
2946 struct target_ops *t;
2947
2948 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2949 {
2950 if (t->to_fileio_unlink != NULL)
2951 {
2952 int ret = t->to_fileio_unlink (t, inf, filename,
2953 target_errno);
2954
2955 if (targetdebug)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "target_fileio_unlink (%d,%s)"
2958 " = %d (%d)\n",
2959 inf == NULL ? 0 : inf->num, filename,
2960 ret, ret != -1 ? 0 : *target_errno);
2961 return ret;
2962 }
2963 }
2964
2965 *target_errno = FILEIO_ENOSYS;
2966 return -1;
2967 }
2968
2969 /* See target.h. */
2970
2971 char *
2972 target_fileio_readlink (struct inferior *inf, const char *filename,
2973 int *target_errno)
2974 {
2975 struct target_ops *t;
2976
2977 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2978 {
2979 if (t->to_fileio_readlink != NULL)
2980 {
2981 char *ret = t->to_fileio_readlink (t, inf, filename,
2982 target_errno);
2983
2984 if (targetdebug)
2985 fprintf_unfiltered (gdb_stdlog,
2986 "target_fileio_readlink (%d,%s)"
2987 " = %s (%d)\n",
2988 inf == NULL ? 0 : inf->num,
2989 filename, ret? ret : "(nil)",
2990 ret? 0 : *target_errno);
2991 return ret;
2992 }
2993 }
2994
2995 *target_errno = FILEIO_ENOSYS;
2996 return NULL;
2997 }
2998
2999 static void
3000 target_fileio_close_cleanup (void *opaque)
3001 {
3002 int fd = *(int *) opaque;
3003 int target_errno;
3004
3005 target_fileio_close (fd, &target_errno);
3006 }
3007
3008 /* Read target file FILENAME, in the filesystem as seen by INF. If
3009 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3010 remote targets, the remote stub). Store the result in *BUF_P and
3011 return the size of the transferred data. PADDING additional bytes
3012 are available in *BUF_P. This is a helper function for
3013 target_fileio_read_alloc; see the declaration of that function for
3014 more information. */
3015
3016 static LONGEST
3017 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3018 gdb_byte **buf_p, int padding)
3019 {
3020 struct cleanup *close_cleanup;
3021 size_t buf_alloc, buf_pos;
3022 gdb_byte *buf;
3023 LONGEST n;
3024 int fd;
3025 int target_errno;
3026
3027 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3028 &target_errno);
3029 if (fd == -1)
3030 return -1;
3031
3032 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3033
3034 /* Start by reading up to 4K at a time. The target will throttle
3035 this number down if necessary. */
3036 buf_alloc = 4096;
3037 buf = (gdb_byte *) xmalloc (buf_alloc);
3038 buf_pos = 0;
3039 while (1)
3040 {
3041 n = target_fileio_pread (fd, &buf[buf_pos],
3042 buf_alloc - buf_pos - padding, buf_pos,
3043 &target_errno);
3044 if (n < 0)
3045 {
3046 /* An error occurred. */
3047 do_cleanups (close_cleanup);
3048 xfree (buf);
3049 return -1;
3050 }
3051 else if (n == 0)
3052 {
3053 /* Read all there was. */
3054 do_cleanups (close_cleanup);
3055 if (buf_pos == 0)
3056 xfree (buf);
3057 else
3058 *buf_p = buf;
3059 return buf_pos;
3060 }
3061
3062 buf_pos += n;
3063
3064 /* If the buffer is filling up, expand it. */
3065 if (buf_alloc < buf_pos * 2)
3066 {
3067 buf_alloc *= 2;
3068 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3069 }
3070
3071 QUIT;
3072 }
3073 }
3074
3075 /* See target.h. */
3076
3077 LONGEST
3078 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3079 gdb_byte **buf_p)
3080 {
3081 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3082 }
3083
3084 /* See target.h. */
3085
3086 gdb::unique_xmalloc_ptr<char>
3087 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3088 {
3089 gdb_byte *buffer;
3090 char *bufstr;
3091 LONGEST i, transferred;
3092
3093 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3094 bufstr = (char *) buffer;
3095
3096 if (transferred < 0)
3097 return gdb::unique_xmalloc_ptr<char> (nullptr);
3098
3099 if (transferred == 0)
3100 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3101
3102 bufstr[transferred] = 0;
3103
3104 /* Check for embedded NUL bytes; but allow trailing NULs. */
3105 for (i = strlen (bufstr); i < transferred; i++)
3106 if (bufstr[i] != 0)
3107 {
3108 warning (_("target file %s "
3109 "contained unexpected null characters"),
3110 filename);
3111 break;
3112 }
3113
3114 return gdb::unique_xmalloc_ptr<char> (bufstr);
3115 }
3116
3117
3118 static int
3119 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3120 CORE_ADDR addr, int len)
3121 {
3122 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3123 }
3124
3125 static int
3126 default_watchpoint_addr_within_range (struct target_ops *target,
3127 CORE_ADDR addr,
3128 CORE_ADDR start, int length)
3129 {
3130 return addr >= start && addr < start + length;
3131 }
3132
3133 static struct gdbarch *
3134 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3135 {
3136 inferior *inf = find_inferior_ptid (ptid);
3137 gdb_assert (inf != NULL);
3138 return inf->gdbarch;
3139 }
3140
3141 static int
3142 return_zero (struct target_ops *ignore)
3143 {
3144 return 0;
3145 }
3146
3147 static int
3148 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3149 {
3150 return 0;
3151 }
3152
3153 /*
3154 * Find the next target down the stack from the specified target.
3155 */
3156
3157 struct target_ops *
3158 find_target_beneath (struct target_ops *t)
3159 {
3160 return t->beneath;
3161 }
3162
3163 /* See target.h. */
3164
3165 struct target_ops *
3166 find_target_at (enum strata stratum)
3167 {
3168 struct target_ops *t;
3169
3170 for (t = current_target.beneath; t != NULL; t = t->beneath)
3171 if (t->to_stratum == stratum)
3172 return t;
3173
3174 return NULL;
3175 }
3176
3177 \f
3178
3179 /* See target.h */
3180
3181 void
3182 target_announce_detach (int from_tty)
3183 {
3184 pid_t pid;
3185 const char *exec_file;
3186
3187 if (!from_tty)
3188 return;
3189
3190 exec_file = get_exec_file (0);
3191 if (exec_file == NULL)
3192 exec_file = "";
3193
3194 pid = ptid_get_pid (inferior_ptid);
3195 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3196 target_pid_to_str (pid_to_ptid (pid)));
3197 gdb_flush (gdb_stdout);
3198 }
3199
3200 /* The inferior process has died. Long live the inferior! */
3201
3202 void
3203 generic_mourn_inferior (void)
3204 {
3205 ptid_t ptid;
3206
3207 ptid = inferior_ptid;
3208 inferior_ptid = null_ptid;
3209
3210 /* Mark breakpoints uninserted in case something tries to delete a
3211 breakpoint while we delete the inferior's threads (which would
3212 fail, since the inferior is long gone). */
3213 mark_breakpoints_out ();
3214
3215 if (!ptid_equal (ptid, null_ptid))
3216 {
3217 int pid = ptid_get_pid (ptid);
3218 exit_inferior (pid);
3219 }
3220
3221 /* Note this wipes step-resume breakpoints, so needs to be done
3222 after exit_inferior, which ends up referencing the step-resume
3223 breakpoints through clear_thread_inferior_resources. */
3224 breakpoint_init_inferior (inf_exited);
3225
3226 registers_changed ();
3227
3228 reopen_exec_file ();
3229 reinit_frame_cache ();
3230
3231 if (deprecated_detach_hook)
3232 deprecated_detach_hook ();
3233 }
3234 \f
3235 /* Convert a normal process ID to a string. Returns the string in a
3236 static buffer. */
3237
3238 const char *
3239 normal_pid_to_str (ptid_t ptid)
3240 {
3241 static char buf[32];
3242
3243 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3244 return buf;
3245 }
3246
3247 static const char *
3248 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3249 {
3250 return normal_pid_to_str (ptid);
3251 }
3252
3253 /* Error-catcher for target_find_memory_regions. */
3254 static int
3255 dummy_find_memory_regions (struct target_ops *self,
3256 find_memory_region_ftype ignore1, void *ignore2)
3257 {
3258 error (_("Command not implemented for this target."));
3259 return 0;
3260 }
3261
3262 /* Error-catcher for target_make_corefile_notes. */
3263 static char *
3264 dummy_make_corefile_notes (struct target_ops *self,
3265 bfd *ignore1, int *ignore2)
3266 {
3267 error (_("Command not implemented for this target."));
3268 return NULL;
3269 }
3270
3271 /* Set up the handful of non-empty slots needed by the dummy target
3272 vector. */
3273
3274 static void
3275 init_dummy_target (void)
3276 {
3277 dummy_target.to_shortname = "None";
3278 dummy_target.to_longname = "None";
3279 dummy_target.to_doc = "";
3280 dummy_target.to_supports_disable_randomization
3281 = find_default_supports_disable_randomization;
3282 dummy_target.to_stratum = dummy_stratum;
3283 dummy_target.to_has_all_memory = return_zero;
3284 dummy_target.to_has_memory = return_zero;
3285 dummy_target.to_has_stack = return_zero;
3286 dummy_target.to_has_registers = return_zero;
3287 dummy_target.to_has_execution = return_zero_has_execution;
3288 dummy_target.to_magic = OPS_MAGIC;
3289
3290 install_dummy_methods (&dummy_target);
3291 }
3292 \f
3293
3294 void
3295 target_close (struct target_ops *targ)
3296 {
3297 gdb_assert (!target_is_pushed (targ));
3298
3299 if (targ->to_xclose != NULL)
3300 targ->to_xclose (targ);
3301 else if (targ->to_close != NULL)
3302 targ->to_close (targ);
3303
3304 if (targetdebug)
3305 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3306 }
3307
3308 int
3309 target_thread_alive (ptid_t ptid)
3310 {
3311 return current_target.to_thread_alive (&current_target, ptid);
3312 }
3313
3314 void
3315 target_update_thread_list (void)
3316 {
3317 current_target.to_update_thread_list (&current_target);
3318 }
3319
3320 void
3321 target_stop (ptid_t ptid)
3322 {
3323 if (!may_stop)
3324 {
3325 warning (_("May not interrupt or stop the target, ignoring attempt"));
3326 return;
3327 }
3328
3329 (*current_target.to_stop) (&current_target, ptid);
3330 }
3331
3332 void
3333 target_interrupt (ptid_t ptid)
3334 {
3335 if (!may_stop)
3336 {
3337 warning (_("May not interrupt or stop the target, ignoring attempt"));
3338 return;
3339 }
3340
3341 (*current_target.to_interrupt) (&current_target, ptid);
3342 }
3343
3344 /* See target.h. */
3345
3346 void
3347 target_pass_ctrlc (void)
3348 {
3349 (*current_target.to_pass_ctrlc) (&current_target);
3350 }
3351
3352 /* See target.h. */
3353
3354 void
3355 default_target_pass_ctrlc (struct target_ops *ops)
3356 {
3357 target_interrupt (inferior_ptid);
3358 }
3359
3360 /* See target/target.h. */
3361
3362 void
3363 target_stop_and_wait (ptid_t ptid)
3364 {
3365 struct target_waitstatus status;
3366 int was_non_stop = non_stop;
3367
3368 non_stop = 1;
3369 target_stop (ptid);
3370
3371 memset (&status, 0, sizeof (status));
3372 target_wait (ptid, &status, 0);
3373
3374 non_stop = was_non_stop;
3375 }
3376
3377 /* See target/target.h. */
3378
3379 void
3380 target_continue_no_signal (ptid_t ptid)
3381 {
3382 target_resume (ptid, 0, GDB_SIGNAL_0);
3383 }
3384
3385 /* See target/target.h. */
3386
3387 void
3388 target_continue (ptid_t ptid, enum gdb_signal signal)
3389 {
3390 target_resume (ptid, 0, signal);
3391 }
3392
3393 /* Concatenate ELEM to LIST, a comma separate list, and return the
3394 result. The LIST incoming argument is released. */
3395
3396 static char *
3397 str_comma_list_concat_elem (char *list, const char *elem)
3398 {
3399 if (list == NULL)
3400 return xstrdup (elem);
3401 else
3402 return reconcat (list, list, ", ", elem, (char *) NULL);
3403 }
3404
3405 /* Helper for target_options_to_string. If OPT is present in
3406 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3407 Returns the new resulting string. OPT is removed from
3408 TARGET_OPTIONS. */
3409
3410 static char *
3411 do_option (int *target_options, char *ret,
3412 int opt, const char *opt_str)
3413 {
3414 if ((*target_options & opt) != 0)
3415 {
3416 ret = str_comma_list_concat_elem (ret, opt_str);
3417 *target_options &= ~opt;
3418 }
3419
3420 return ret;
3421 }
3422
3423 char *
3424 target_options_to_string (int target_options)
3425 {
3426 char *ret = NULL;
3427
3428 #define DO_TARG_OPTION(OPT) \
3429 ret = do_option (&target_options, ret, OPT, #OPT)
3430
3431 DO_TARG_OPTION (TARGET_WNOHANG);
3432
3433 if (target_options != 0)
3434 ret = str_comma_list_concat_elem (ret, "unknown???");
3435
3436 if (ret == NULL)
3437 ret = xstrdup ("");
3438 return ret;
3439 }
3440
3441 void
3442 target_fetch_registers (struct regcache *regcache, int regno)
3443 {
3444 current_target.to_fetch_registers (&current_target, regcache, regno);
3445 if (targetdebug)
3446 regcache->debug_print_register ("target_fetch_registers", regno);
3447 }
3448
3449 void
3450 target_store_registers (struct regcache *regcache, int regno)
3451 {
3452 if (!may_write_registers)
3453 error (_("Writing to registers is not allowed (regno %d)"), regno);
3454
3455 current_target.to_store_registers (&current_target, regcache, regno);
3456 if (targetdebug)
3457 {
3458 regcache->debug_print_register ("target_store_registers", regno);
3459 }
3460 }
3461
3462 int
3463 target_core_of_thread (ptid_t ptid)
3464 {
3465 return current_target.to_core_of_thread (&current_target, ptid);
3466 }
3467
3468 int
3469 simple_verify_memory (struct target_ops *ops,
3470 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3471 {
3472 LONGEST total_xfered = 0;
3473
3474 while (total_xfered < size)
3475 {
3476 ULONGEST xfered_len;
3477 enum target_xfer_status status;
3478 gdb_byte buf[1024];
3479 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3480
3481 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3482 buf, NULL, lma + total_xfered, howmuch,
3483 &xfered_len);
3484 if (status == TARGET_XFER_OK
3485 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3486 {
3487 total_xfered += xfered_len;
3488 QUIT;
3489 }
3490 else
3491 return 0;
3492 }
3493 return 1;
3494 }
3495
3496 /* Default implementation of memory verification. */
3497
3498 static int
3499 default_verify_memory (struct target_ops *self,
3500 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3501 {
3502 /* Start over from the top of the target stack. */
3503 return simple_verify_memory (current_target.beneath,
3504 data, memaddr, size);
3505 }
3506
3507 int
3508 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3509 {
3510 return current_target.to_verify_memory (&current_target,
3511 data, memaddr, size);
3512 }
3513
3514 /* The documentation for this function is in its prototype declaration in
3515 target.h. */
3516
3517 int
3518 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3519 enum target_hw_bp_type rw)
3520 {
3521 return current_target.to_insert_mask_watchpoint (&current_target,
3522 addr, mask, rw);
3523 }
3524
3525 /* The documentation for this function is in its prototype declaration in
3526 target.h. */
3527
3528 int
3529 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3530 enum target_hw_bp_type rw)
3531 {
3532 return current_target.to_remove_mask_watchpoint (&current_target,
3533 addr, mask, rw);
3534 }
3535
3536 /* The documentation for this function is in its prototype declaration
3537 in target.h. */
3538
3539 int
3540 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3541 {
3542 return current_target.to_masked_watch_num_registers (&current_target,
3543 addr, mask);
3544 }
3545
3546 /* The documentation for this function is in its prototype declaration
3547 in target.h. */
3548
3549 int
3550 target_ranged_break_num_registers (void)
3551 {
3552 return current_target.to_ranged_break_num_registers (&current_target);
3553 }
3554
3555 /* See target.h. */
3556
3557 int
3558 target_supports_btrace (enum btrace_format format)
3559 {
3560 return current_target.to_supports_btrace (&current_target, format);
3561 }
3562
3563 /* See target.h. */
3564
3565 struct btrace_target_info *
3566 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3567 {
3568 return current_target.to_enable_btrace (&current_target, ptid, conf);
3569 }
3570
3571 /* See target.h. */
3572
3573 void
3574 target_disable_btrace (struct btrace_target_info *btinfo)
3575 {
3576 current_target.to_disable_btrace (&current_target, btinfo);
3577 }
3578
3579 /* See target.h. */
3580
3581 void
3582 target_teardown_btrace (struct btrace_target_info *btinfo)
3583 {
3584 current_target.to_teardown_btrace (&current_target, btinfo);
3585 }
3586
3587 /* See target.h. */
3588
3589 enum btrace_error
3590 target_read_btrace (struct btrace_data *btrace,
3591 struct btrace_target_info *btinfo,
3592 enum btrace_read_type type)
3593 {
3594 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3595 }
3596
3597 /* See target.h. */
3598
3599 const struct btrace_config *
3600 target_btrace_conf (const struct btrace_target_info *btinfo)
3601 {
3602 return current_target.to_btrace_conf (&current_target, btinfo);
3603 }
3604
3605 /* See target.h. */
3606
3607 void
3608 target_stop_recording (void)
3609 {
3610 current_target.to_stop_recording (&current_target);
3611 }
3612
3613 /* See target.h. */
3614
3615 void
3616 target_save_record (const char *filename)
3617 {
3618 current_target.to_save_record (&current_target, filename);
3619 }
3620
3621 /* See target.h. */
3622
3623 int
3624 target_supports_delete_record (void)
3625 {
3626 struct target_ops *t;
3627
3628 for (t = current_target.beneath; t != NULL; t = t->beneath)
3629 if (t->to_delete_record != delegate_delete_record
3630 && t->to_delete_record != tdefault_delete_record)
3631 return 1;
3632
3633 return 0;
3634 }
3635
3636 /* See target.h. */
3637
3638 void
3639 target_delete_record (void)
3640 {
3641 current_target.to_delete_record (&current_target);
3642 }
3643
3644 /* See target.h. */
3645
3646 enum record_method
3647 target_record_method (ptid_t ptid)
3648 {
3649 return current_target.to_record_method (&current_target, ptid);
3650 }
3651
3652 /* See target.h. */
3653
3654 int
3655 target_record_is_replaying (ptid_t ptid)
3656 {
3657 return current_target.to_record_is_replaying (&current_target, ptid);
3658 }
3659
3660 /* See target.h. */
3661
3662 int
3663 target_record_will_replay (ptid_t ptid, int dir)
3664 {
3665 return current_target.to_record_will_replay (&current_target, ptid, dir);
3666 }
3667
3668 /* See target.h. */
3669
3670 void
3671 target_record_stop_replaying (void)
3672 {
3673 current_target.to_record_stop_replaying (&current_target);
3674 }
3675
3676 /* See target.h. */
3677
3678 void
3679 target_goto_record_begin (void)
3680 {
3681 current_target.to_goto_record_begin (&current_target);
3682 }
3683
3684 /* See target.h. */
3685
3686 void
3687 target_goto_record_end (void)
3688 {
3689 current_target.to_goto_record_end (&current_target);
3690 }
3691
3692 /* See target.h. */
3693
3694 void
3695 target_goto_record (ULONGEST insn)
3696 {
3697 current_target.to_goto_record (&current_target, insn);
3698 }
3699
3700 /* See target.h. */
3701
3702 void
3703 target_insn_history (int size, gdb_disassembly_flags flags)
3704 {
3705 current_target.to_insn_history (&current_target, size, flags);
3706 }
3707
3708 /* See target.h. */
3709
3710 void
3711 target_insn_history_from (ULONGEST from, int size,
3712 gdb_disassembly_flags flags)
3713 {
3714 current_target.to_insn_history_from (&current_target, from, size, flags);
3715 }
3716
3717 /* See target.h. */
3718
3719 void
3720 target_insn_history_range (ULONGEST begin, ULONGEST end,
3721 gdb_disassembly_flags flags)
3722 {
3723 current_target.to_insn_history_range (&current_target, begin, end, flags);
3724 }
3725
3726 /* See target.h. */
3727
3728 void
3729 target_call_history (int size, int flags)
3730 {
3731 current_target.to_call_history (&current_target, size, flags);
3732 }
3733
3734 /* See target.h. */
3735
3736 void
3737 target_call_history_from (ULONGEST begin, int size, int flags)
3738 {
3739 current_target.to_call_history_from (&current_target, begin, size, flags);
3740 }
3741
3742 /* See target.h. */
3743
3744 void
3745 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3746 {
3747 current_target.to_call_history_range (&current_target, begin, end, flags);
3748 }
3749
3750 /* See target.h. */
3751
3752 const struct frame_unwind *
3753 target_get_unwinder (void)
3754 {
3755 return current_target.to_get_unwinder (&current_target);
3756 }
3757
3758 /* See target.h. */
3759
3760 const struct frame_unwind *
3761 target_get_tailcall_unwinder (void)
3762 {
3763 return current_target.to_get_tailcall_unwinder (&current_target);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_prepare_to_generate_core (void)
3770 {
3771 current_target.to_prepare_to_generate_core (&current_target);
3772 }
3773
3774 /* See target.h. */
3775
3776 void
3777 target_done_generating_core (void)
3778 {
3779 current_target.to_done_generating_core (&current_target);
3780 }
3781
3782 static void
3783 setup_target_debug (void)
3784 {
3785 memcpy (&debug_target, &current_target, sizeof debug_target);
3786
3787 init_debug_target (&current_target);
3788 }
3789 \f
3790
3791 static char targ_desc[] =
3792 "Names of targets and files being debugged.\nShows the entire \
3793 stack of targets currently in use (including the exec-file,\n\
3794 core-file, and process, if any), as well as the symbol file name.";
3795
3796 static void
3797 default_rcmd (struct target_ops *self, const char *command,
3798 struct ui_file *output)
3799 {
3800 error (_("\"monitor\" command not supported by this target."));
3801 }
3802
3803 static void
3804 do_monitor_command (char *cmd,
3805 int from_tty)
3806 {
3807 target_rcmd (cmd, gdb_stdtarg);
3808 }
3809
3810 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3811 ignored. */
3812
3813 void
3814 flash_erase_command (char *cmd, int from_tty)
3815 {
3816 /* Used to communicate termination of flash operations to the target. */
3817 bool found_flash_region = false;
3818 struct mem_region *m;
3819 struct gdbarch *gdbarch = target_gdbarch ();
3820
3821 VEC(mem_region_s) *mem_regions = target_memory_map ();
3822
3823 /* Iterate over all memory regions. */
3824 for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3825 {
3826 /* Fetch the memory attribute. */
3827 struct mem_attrib *attrib = &m->attrib;
3828
3829 /* Is this a flash memory region? */
3830 if (attrib->mode == MEM_FLASH)
3831 {
3832 found_flash_region = true;
3833 target_flash_erase (m->lo, m->hi - m->lo);
3834
3835 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3836
3837 current_uiout->message (_("Erasing flash memory region at address "));
3838 current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3839 m->lo));
3840 current_uiout->message (", size = ");
3841 current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3842 current_uiout->message ("\n");
3843 }
3844 }
3845
3846 /* Did we do any flash operations? If so, we need to finalize them. */
3847 if (found_flash_region)
3848 target_flash_done ();
3849 else
3850 current_uiout->message (_("No flash memory regions found.\n"));
3851 }
3852
3853 /* Print the name of each layers of our target stack. */
3854
3855 static void
3856 maintenance_print_target_stack (const char *cmd, int from_tty)
3857 {
3858 struct target_ops *t;
3859
3860 printf_filtered (_("The current target stack is:\n"));
3861
3862 for (t = target_stack; t != NULL; t = t->beneath)
3863 {
3864 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3865 }
3866 }
3867
3868 /* See target.h. */
3869
3870 void
3871 target_async (int enable)
3872 {
3873 infrun_async (enable);
3874 current_target.to_async (&current_target, enable);
3875 }
3876
3877 /* See target.h. */
3878
3879 void
3880 target_thread_events (int enable)
3881 {
3882 current_target.to_thread_events (&current_target, enable);
3883 }
3884
3885 /* Controls if targets can report that they can/are async. This is
3886 just for maintainers to use when debugging gdb. */
3887 int target_async_permitted = 1;
3888
3889 /* The set command writes to this variable. If the inferior is
3890 executing, target_async_permitted is *not* updated. */
3891 static int target_async_permitted_1 = 1;
3892
3893 static void
3894 maint_set_target_async_command (char *args, int from_tty,
3895 struct cmd_list_element *c)
3896 {
3897 if (have_live_inferiors ())
3898 {
3899 target_async_permitted_1 = target_async_permitted;
3900 error (_("Cannot change this setting while the inferior is running."));
3901 }
3902
3903 target_async_permitted = target_async_permitted_1;
3904 }
3905
3906 static void
3907 maint_show_target_async_command (struct ui_file *file, int from_tty,
3908 struct cmd_list_element *c,
3909 const char *value)
3910 {
3911 fprintf_filtered (file,
3912 _("Controlling the inferior in "
3913 "asynchronous mode is %s.\n"), value);
3914 }
3915
3916 /* Return true if the target operates in non-stop mode even with "set
3917 non-stop off". */
3918
3919 static int
3920 target_always_non_stop_p (void)
3921 {
3922 return current_target.to_always_non_stop_p (&current_target);
3923 }
3924
3925 /* See target.h. */
3926
3927 int
3928 target_is_non_stop_p (void)
3929 {
3930 return (non_stop
3931 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3932 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3933 && target_always_non_stop_p ()));
3934 }
3935
3936 /* Controls if targets can report that they always run in non-stop
3937 mode. This is just for maintainers to use when debugging gdb. */
3938 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3939
3940 /* The set command writes to this variable. If the inferior is
3941 executing, target_non_stop_enabled is *not* updated. */
3942 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3943
3944 /* Implementation of "maint set target-non-stop". */
3945
3946 static void
3947 maint_set_target_non_stop_command (char *args, int from_tty,
3948 struct cmd_list_element *c)
3949 {
3950 if (have_live_inferiors ())
3951 {
3952 target_non_stop_enabled_1 = target_non_stop_enabled;
3953 error (_("Cannot change this setting while the inferior is running."));
3954 }
3955
3956 target_non_stop_enabled = target_non_stop_enabled_1;
3957 }
3958
3959 /* Implementation of "maint show target-non-stop". */
3960
3961 static void
3962 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3963 struct cmd_list_element *c,
3964 const char *value)
3965 {
3966 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3967 fprintf_filtered (file,
3968 _("Whether the target is always in non-stop mode "
3969 "is %s (currently %s).\n"), value,
3970 target_always_non_stop_p () ? "on" : "off");
3971 else
3972 fprintf_filtered (file,
3973 _("Whether the target is always in non-stop mode "
3974 "is %s.\n"), value);
3975 }
3976
3977 /* Temporary copies of permission settings. */
3978
3979 static int may_write_registers_1 = 1;
3980 static int may_write_memory_1 = 1;
3981 static int may_insert_breakpoints_1 = 1;
3982 static int may_insert_tracepoints_1 = 1;
3983 static int may_insert_fast_tracepoints_1 = 1;
3984 static int may_stop_1 = 1;
3985
3986 /* Make the user-set values match the real values again. */
3987
3988 void
3989 update_target_permissions (void)
3990 {
3991 may_write_registers_1 = may_write_registers;
3992 may_write_memory_1 = may_write_memory;
3993 may_insert_breakpoints_1 = may_insert_breakpoints;
3994 may_insert_tracepoints_1 = may_insert_tracepoints;
3995 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3996 may_stop_1 = may_stop;
3997 }
3998
3999 /* The one function handles (most of) the permission flags in the same
4000 way. */
4001
4002 static void
4003 set_target_permissions (char *args, int from_tty,
4004 struct cmd_list_element *c)
4005 {
4006 if (target_has_execution)
4007 {
4008 update_target_permissions ();
4009 error (_("Cannot change this setting while the inferior is running."));
4010 }
4011
4012 /* Make the real values match the user-changed values. */
4013 may_write_registers = may_write_registers_1;
4014 may_insert_breakpoints = may_insert_breakpoints_1;
4015 may_insert_tracepoints = may_insert_tracepoints_1;
4016 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4017 may_stop = may_stop_1;
4018 update_observer_mode ();
4019 }
4020
4021 /* Set memory write permission independently of observer mode. */
4022
4023 static void
4024 set_write_memory_permission (char *args, int from_tty,
4025 struct cmd_list_element *c)
4026 {
4027 /* Make the real values match the user-changed values. */
4028 may_write_memory = may_write_memory_1;
4029 update_observer_mode ();
4030 }
4031
4032
4033 void
4034 initialize_targets (void)
4035 {
4036 init_dummy_target ();
4037 push_target (&dummy_target);
4038
4039 add_info ("target", info_target_command, targ_desc);
4040 add_info ("files", info_target_command, targ_desc);
4041
4042 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4043 Set target debugging."), _("\
4044 Show target debugging."), _("\
4045 When non-zero, target debugging is enabled. Higher numbers are more\n\
4046 verbose."),
4047 set_targetdebug,
4048 show_targetdebug,
4049 &setdebuglist, &showdebuglist);
4050
4051 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4052 &trust_readonly, _("\
4053 Set mode for reading from readonly sections."), _("\
4054 Show mode for reading from readonly sections."), _("\
4055 When this mode is on, memory reads from readonly sections (such as .text)\n\
4056 will be read from the object file instead of from the target. This will\n\
4057 result in significant performance improvement for remote targets."),
4058 NULL,
4059 show_trust_readonly,
4060 &setlist, &showlist);
4061
4062 add_com ("monitor", class_obscure, do_monitor_command,
4063 _("Send a command to the remote monitor (remote targets only)."));
4064
4065 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4066 _("Print the name of each layer of the internal target stack."),
4067 &maintenanceprintlist);
4068
4069 add_setshow_boolean_cmd ("target-async", no_class,
4070 &target_async_permitted_1, _("\
4071 Set whether gdb controls the inferior in asynchronous mode."), _("\
4072 Show whether gdb controls the inferior in asynchronous mode."), _("\
4073 Tells gdb whether to control the inferior in asynchronous mode."),
4074 maint_set_target_async_command,
4075 maint_show_target_async_command,
4076 &maintenance_set_cmdlist,
4077 &maintenance_show_cmdlist);
4078
4079 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4080 &target_non_stop_enabled_1, _("\
4081 Set whether gdb always controls the inferior in non-stop mode."), _("\
4082 Show whether gdb always controls the inferior in non-stop mode."), _("\
4083 Tells gdb whether to control the inferior in non-stop mode."),
4084 maint_set_target_non_stop_command,
4085 maint_show_target_non_stop_command,
4086 &maintenance_set_cmdlist,
4087 &maintenance_show_cmdlist);
4088
4089 add_setshow_boolean_cmd ("may-write-registers", class_support,
4090 &may_write_registers_1, _("\
4091 Set permission to write into registers."), _("\
4092 Show permission to write into registers."), _("\
4093 When this permission is on, GDB may write into the target's registers.\n\
4094 Otherwise, any sort of write attempt will result in an error."),
4095 set_target_permissions, NULL,
4096 &setlist, &showlist);
4097
4098 add_setshow_boolean_cmd ("may-write-memory", class_support,
4099 &may_write_memory_1, _("\
4100 Set permission to write into target memory."), _("\
4101 Show permission to write into target memory."), _("\
4102 When this permission is on, GDB may write into the target's memory.\n\
4103 Otherwise, any sort of write attempt will result in an error."),
4104 set_write_memory_permission, NULL,
4105 &setlist, &showlist);
4106
4107 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4108 &may_insert_breakpoints_1, _("\
4109 Set permission to insert breakpoints in the target."), _("\
4110 Show permission to insert breakpoints in the target."), _("\
4111 When this permission is on, GDB may insert breakpoints in the program.\n\
4112 Otherwise, any sort of insertion attempt will result in an error."),
4113 set_target_permissions, NULL,
4114 &setlist, &showlist);
4115
4116 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4117 &may_insert_tracepoints_1, _("\
4118 Set permission to insert tracepoints in the target."), _("\
4119 Show permission to insert tracepoints in the target."), _("\
4120 When this permission is on, GDB may insert tracepoints in the program.\n\
4121 Otherwise, any sort of insertion attempt will result in an error."),
4122 set_target_permissions, NULL,
4123 &setlist, &showlist);
4124
4125 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4126 &may_insert_fast_tracepoints_1, _("\
4127 Set permission to insert fast tracepoints in the target."), _("\
4128 Show permission to insert fast tracepoints in the target."), _("\
4129 When this permission is on, GDB may insert fast tracepoints.\n\
4130 Otherwise, any sort of insertion attempt will result in an error."),
4131 set_target_permissions, NULL,
4132 &setlist, &showlist);
4133
4134 add_setshow_boolean_cmd ("may-interrupt", class_support,
4135 &may_stop_1, _("\
4136 Set permission to interrupt or signal the target."), _("\
4137 Show permission to interrupt or signal the target."), _("\
4138 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4139 Otherwise, any attempt to interrupt or stop will be ignored."),
4140 set_target_permissions, NULL,
4141 &setlist, &showlist);
4142
4143 add_com ("flash-erase", no_class, flash_erase_command,
4144 _("Erase all flash memory regions."));
4145
4146 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4147 &auto_connect_native_target, _("\
4148 Set whether GDB may automatically connect to the native target."), _("\
4149 Show whether GDB may automatically connect to the native target."), _("\
4150 When on, and GDB is not connected to a target yet, GDB\n\
4151 attempts \"run\" and other commands with the native target."),
4152 NULL, show_auto_connect_native_target,
4153 &setlist, &showlist);
4154 }
This page took 0.11527 seconds and 5 git commands to generate.