Get rid of VEC (mem_region)
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void info_target_command (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static struct target_ops *find_default_run_target (const char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, const char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Define it. */
435
436 enum target_terminal::terminal_state target_terminal::terminal_state
437 = target_terminal::terminal_is_ours;
438
439 /* See target/target.h. */
440
441 void
442 target_terminal::init (void)
443 {
444 (*current_target.to_terminal_init) (&current_target);
445
446 terminal_state = terminal_is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::inferior (void)
453 {
454 struct ui *ui = current_ui;
455
456 /* A background resume (``run&'') should leave GDB in control of the
457 terminal. */
458 if (ui->prompt_state != PROMPT_BLOCKED)
459 return;
460
461 /* Since we always run the inferior in the main console (unless "set
462 inferior-tty" is in effect), when some UI other than the main one
463 calls target_terminal::inferior, then we leave the main UI's
464 terminal settings as is. */
465 if (ui != main_ui)
466 return;
467
468 if (terminal_state == terminal_is_inferior)
469 return;
470
471 /* If GDB is resuming the inferior in the foreground, install
472 inferior's terminal modes. */
473 (*current_target.to_terminal_inferior) (&current_target);
474 terminal_state = terminal_is_inferior;
475
476 /* If the user hit C-c before, pretend that it was hit right
477 here. */
478 if (check_quit_flag ())
479 target_pass_ctrlc ();
480 }
481
482 /* See target/target.h. */
483
484 void
485 target_terminal::ours ()
486 {
487 struct ui *ui = current_ui;
488
489 /* See target_terminal::inferior. */
490 if (ui != main_ui)
491 return;
492
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498 }
499
500 /* See target/target.h. */
501
502 void
503 target_terminal::ours_for_output ()
504 {
505 struct ui *ui = current_ui;
506
507 /* See target_terminal::inferior. */
508 if (ui != main_ui)
509 return;
510
511 if (terminal_state != terminal_is_inferior)
512 return;
513 (*current_target.to_terminal_ours_for_output) (&current_target);
514 terminal_state = terminal_is_ours_for_output;
515 }
516
517 /* See target/target.h. */
518
519 void
520 target_terminal::info (const char *arg, int from_tty)
521 {
522 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
523 }
524
525 /* See target.h. */
526
527 int
528 target_supports_terminal_ours (void)
529 {
530 struct target_ops *t;
531
532 for (t = current_target.beneath; t != NULL; t = t->beneath)
533 {
534 if (t->to_terminal_ours != delegate_terminal_ours
535 && t->to_terminal_ours != tdefault_terminal_ours)
536 return 1;
537 }
538
539 return 0;
540 }
541
542 static void
543 tcomplain (void)
544 {
545 error (_("You can't do that when your target is `%s'"),
546 current_target.to_shortname);
547 }
548
549 void
550 noprocess (void)
551 {
552 error (_("You can't do that without a process to debug."));
553 }
554
555 static void
556 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
557 {
558 printf_unfiltered (_("No saved terminal information.\n"));
559 }
560
561 /* A default implementation for the to_get_ada_task_ptid target method.
562
563 This function builds the PTID by using both LWP and TID as part of
564 the PTID lwp and tid elements. The pid used is the pid of the
565 inferior_ptid. */
566
567 static ptid_t
568 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
569 {
570 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
571 }
572
573 static enum exec_direction_kind
574 default_execution_direction (struct target_ops *self)
575 {
576 if (!target_can_execute_reverse)
577 return EXEC_FORWARD;
578 else if (!target_can_async_p ())
579 return EXEC_FORWARD;
580 else
581 gdb_assert_not_reached ("\
582 to_execution_direction must be implemented for reverse async");
583 }
584
585 /* Go through the target stack from top to bottom, copying over zero
586 entries in current_target, then filling in still empty entries. In
587 effect, we are doing class inheritance through the pushed target
588 vectors.
589
590 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
591 is currently implemented, is that it discards any knowledge of
592 which target an inherited method originally belonged to.
593 Consequently, new new target methods should instead explicitly and
594 locally search the target stack for the target that can handle the
595 request. */
596
597 static void
598 update_current_target (void)
599 {
600 struct target_ops *t;
601
602 /* First, reset current's contents. */
603 memset (&current_target, 0, sizeof (current_target));
604
605 /* Install the delegators. */
606 install_delegators (&current_target);
607
608 current_target.to_stratum = target_stack->to_stratum;
609
610 #define INHERIT(FIELD, TARGET) \
611 if (!current_target.FIELD) \
612 current_target.FIELD = (TARGET)->FIELD
613
614 /* Do not add any new INHERITs here. Instead, use the delegation
615 mechanism provided by make-target-delegates. */
616 for (t = target_stack; t; t = t->beneath)
617 {
618 INHERIT (to_shortname, t);
619 INHERIT (to_longname, t);
620 INHERIT (to_attach_no_wait, t);
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 INHERIT (to_has_thread_control, t);
624 }
625 #undef INHERIT
626
627 /* Finally, position the target-stack beneath the squashed
628 "current_target". That way code looking for a non-inherited
629 target method can quickly and simply find it. */
630 current_target.beneath = target_stack;
631
632 if (targetdebug)
633 setup_target_debug ();
634 }
635
636 /* Push a new target type into the stack of the existing target accessors,
637 possibly superseding some of the existing accessors.
638
639 Rather than allow an empty stack, we always have the dummy target at
640 the bottom stratum, so we can call the function vectors without
641 checking them. */
642
643 void
644 push_target (struct target_ops *t)
645 {
646 struct target_ops **cur;
647
648 /* Check magic number. If wrong, it probably means someone changed
649 the struct definition, but not all the places that initialize one. */
650 if (t->to_magic != OPS_MAGIC)
651 {
652 fprintf_unfiltered (gdb_stderr,
653 "Magic number of %s target struct wrong\n",
654 t->to_shortname);
655 internal_error (__FILE__, __LINE__,
656 _("failed internal consistency check"));
657 }
658
659 /* Find the proper stratum to install this target in. */
660 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
661 {
662 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
663 break;
664 }
665
666 /* If there's already targets at this stratum, remove them. */
667 /* FIXME: cagney/2003-10-15: I think this should be popping all
668 targets to CUR, and not just those at this stratum level. */
669 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
670 {
671 /* There's already something at this stratum level. Close it,
672 and un-hook it from the stack. */
673 struct target_ops *tmp = (*cur);
674
675 (*cur) = (*cur)->beneath;
676 tmp->beneath = NULL;
677 target_close (tmp);
678 }
679
680 /* We have removed all targets in our stratum, now add the new one. */
681 t->beneath = (*cur);
682 (*cur) = t;
683
684 update_current_target ();
685 }
686
687 /* Remove a target_ops vector from the stack, wherever it may be.
688 Return how many times it was removed (0 or 1). */
689
690 int
691 unpush_target (struct target_ops *t)
692 {
693 struct target_ops **cur;
694 struct target_ops *tmp;
695
696 if (t->to_stratum == dummy_stratum)
697 internal_error (__FILE__, __LINE__,
698 _("Attempt to unpush the dummy target"));
699
700 /* Look for the specified target. Note that we assume that a target
701 can only occur once in the target stack. */
702
703 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
704 {
705 if ((*cur) == t)
706 break;
707 }
708
709 /* If we don't find target_ops, quit. Only open targets should be
710 closed. */
711 if ((*cur) == NULL)
712 return 0;
713
714 /* Unchain the target. */
715 tmp = (*cur);
716 (*cur) = (*cur)->beneath;
717 tmp->beneath = NULL;
718
719 update_current_target ();
720
721 /* Finally close the target. Note we do this after unchaining, so
722 any target method calls from within the target_close
723 implementation don't end up in T anymore. */
724 target_close (t);
725
726 return 1;
727 }
728
729 /* Unpush TARGET and assert that it worked. */
730
731 static void
732 unpush_target_and_assert (struct target_ops *target)
733 {
734 if (!unpush_target (target))
735 {
736 fprintf_unfiltered (gdb_stderr,
737 "pop_all_targets couldn't find target %s\n",
738 target->to_shortname);
739 internal_error (__FILE__, __LINE__,
740 _("failed internal consistency check"));
741 }
742 }
743
744 void
745 pop_all_targets_above (enum strata above_stratum)
746 {
747 while ((int) (current_target.to_stratum) > (int) above_stratum)
748 unpush_target_and_assert (target_stack);
749 }
750
751 /* See target.h. */
752
753 void
754 pop_all_targets_at_and_above (enum strata stratum)
755 {
756 while ((int) (current_target.to_stratum) >= (int) stratum)
757 unpush_target_and_assert (target_stack);
758 }
759
760 void
761 pop_all_targets (void)
762 {
763 pop_all_targets_above (dummy_stratum);
764 }
765
766 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
767
768 int
769 target_is_pushed (struct target_ops *t)
770 {
771 struct target_ops *cur;
772
773 /* Check magic number. If wrong, it probably means someone changed
774 the struct definition, but not all the places that initialize one. */
775 if (t->to_magic != OPS_MAGIC)
776 {
777 fprintf_unfiltered (gdb_stderr,
778 "Magic number of %s target struct wrong\n",
779 t->to_shortname);
780 internal_error (__FILE__, __LINE__,
781 _("failed internal consistency check"));
782 }
783
784 for (cur = target_stack; cur != NULL; cur = cur->beneath)
785 if (cur == t)
786 return 1;
787
788 return 0;
789 }
790
791 /* Default implementation of to_get_thread_local_address. */
792
793 static void
794 generic_tls_error (void)
795 {
796 throw_error (TLS_GENERIC_ERROR,
797 _("Cannot find thread-local variables on this target"));
798 }
799
800 /* Using the objfile specified in OBJFILE, find the address for the
801 current thread's thread-local storage with offset OFFSET. */
802 CORE_ADDR
803 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
804 {
805 volatile CORE_ADDR addr = 0;
806 struct target_ops *target = &current_target;
807
808 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
809 {
810 ptid_t ptid = inferior_ptid;
811
812 TRY
813 {
814 CORE_ADDR lm_addr;
815
816 /* Fetch the load module address for this objfile. */
817 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
818 objfile);
819
820 addr = target->to_get_thread_local_address (target, ptid,
821 lm_addr, offset);
822 }
823 /* If an error occurred, print TLS related messages here. Otherwise,
824 throw the error to some higher catcher. */
825 CATCH (ex, RETURN_MASK_ALL)
826 {
827 int objfile_is_library = (objfile->flags & OBJF_SHARED);
828
829 switch (ex.error)
830 {
831 case TLS_NO_LIBRARY_SUPPORT_ERROR:
832 error (_("Cannot find thread-local variables "
833 "in this thread library."));
834 break;
835 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
836 if (objfile_is_library)
837 error (_("Cannot find shared library `%s' in dynamic"
838 " linker's load module list"), objfile_name (objfile));
839 else
840 error (_("Cannot find executable file `%s' in dynamic"
841 " linker's load module list"), objfile_name (objfile));
842 break;
843 case TLS_NOT_ALLOCATED_YET_ERROR:
844 if (objfile_is_library)
845 error (_("The inferior has not yet allocated storage for"
846 " thread-local variables in\n"
847 "the shared library `%s'\n"
848 "for %s"),
849 objfile_name (objfile), target_pid_to_str (ptid));
850 else
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the executable `%s'\n"
854 "for %s"),
855 objfile_name (objfile), target_pid_to_str (ptid));
856 break;
857 case TLS_GENERIC_ERROR:
858 if (objfile_is_library)
859 error (_("Cannot find thread-local storage for %s, "
860 "shared library %s:\n%s"),
861 target_pid_to_str (ptid),
862 objfile_name (objfile), ex.message);
863 else
864 error (_("Cannot find thread-local storage for %s, "
865 "executable file %s:\n%s"),
866 target_pid_to_str (ptid),
867 objfile_name (objfile), ex.message);
868 break;
869 default:
870 throw_exception (ex);
871 break;
872 }
873 }
874 END_CATCH
875 }
876 /* It wouldn't be wrong here to try a gdbarch method, too; finding
877 TLS is an ABI-specific thing. But we don't do that yet. */
878 else
879 error (_("Cannot find thread-local variables on this target"));
880
881 return addr;
882 }
883
884 const char *
885 target_xfer_status_to_string (enum target_xfer_status status)
886 {
887 #define CASE(X) case X: return #X
888 switch (status)
889 {
890 CASE(TARGET_XFER_E_IO);
891 CASE(TARGET_XFER_UNAVAILABLE);
892 default:
893 return "<unknown>";
894 }
895 #undef CASE
896 };
897
898
899 #undef MIN
900 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
901
902 /* target_read_string -- read a null terminated string, up to LEN bytes,
903 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
904 Set *STRING to a pointer to malloc'd memory containing the data; the caller
905 is responsible for freeing it. Return the number of bytes successfully
906 read. */
907
908 int
909 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
910 {
911 int tlen, offset, i;
912 gdb_byte buf[4];
913 int errcode = 0;
914 char *buffer;
915 int buffer_allocated;
916 char *bufptr;
917 unsigned int nbytes_read = 0;
918
919 gdb_assert (string);
920
921 /* Small for testing. */
922 buffer_allocated = 4;
923 buffer = (char *) xmalloc (buffer_allocated);
924 bufptr = buffer;
925
926 while (len > 0)
927 {
928 tlen = MIN (len, 4 - (memaddr & 3));
929 offset = memaddr & 3;
930
931 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
932 if (errcode != 0)
933 {
934 /* The transfer request might have crossed the boundary to an
935 unallocated region of memory. Retry the transfer, requesting
936 a single byte. */
937 tlen = 1;
938 offset = 0;
939 errcode = target_read_memory (memaddr, buf, 1);
940 if (errcode != 0)
941 goto done;
942 }
943
944 if (bufptr - buffer + tlen > buffer_allocated)
945 {
946 unsigned int bytes;
947
948 bytes = bufptr - buffer;
949 buffer_allocated *= 2;
950 buffer = (char *) xrealloc (buffer, buffer_allocated);
951 bufptr = buffer + bytes;
952 }
953
954 for (i = 0; i < tlen; i++)
955 {
956 *bufptr++ = buf[i + offset];
957 if (buf[i + offset] == '\000')
958 {
959 nbytes_read += i + 1;
960 goto done;
961 }
962 }
963
964 memaddr += tlen;
965 len -= tlen;
966 nbytes_read += tlen;
967 }
968 done:
969 *string = buffer;
970 if (errnop != NULL)
971 *errnop = errcode;
972 return nbytes_read;
973 }
974
975 struct target_section_table *
976 target_get_section_table (struct target_ops *target)
977 {
978 return (*target->to_get_section_table) (target);
979 }
980
981 /* Find a section containing ADDR. */
982
983 struct target_section *
984 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
985 {
986 struct target_section_table *table = target_get_section_table (target);
987 struct target_section *secp;
988
989 if (table == NULL)
990 return NULL;
991
992 for (secp = table->sections; secp < table->sections_end; secp++)
993 {
994 if (addr >= secp->addr && addr < secp->endaddr)
995 return secp;
996 }
997 return NULL;
998 }
999
1000
1001 /* Helper for the memory xfer routines. Checks the attributes of the
1002 memory region of MEMADDR against the read or write being attempted.
1003 If the access is permitted returns true, otherwise returns false.
1004 REGION_P is an optional output parameter. If not-NULL, it is
1005 filled with a pointer to the memory region of MEMADDR. REG_LEN
1006 returns LEN trimmed to the end of the region. This is how much the
1007 caller can continue requesting, if the access is permitted. A
1008 single xfer request must not straddle memory region boundaries. */
1009
1010 static int
1011 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1012 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1013 struct mem_region **region_p)
1014 {
1015 struct mem_region *region;
1016
1017 region = lookup_mem_region (memaddr);
1018
1019 if (region_p != NULL)
1020 *region_p = region;
1021
1022 switch (region->attrib.mode)
1023 {
1024 case MEM_RO:
1025 if (writebuf != NULL)
1026 return 0;
1027 break;
1028
1029 case MEM_WO:
1030 if (readbuf != NULL)
1031 return 0;
1032 break;
1033
1034 case MEM_FLASH:
1035 /* We only support writing to flash during "load" for now. */
1036 if (writebuf != NULL)
1037 error (_("Writing to flash memory forbidden in this context"));
1038 break;
1039
1040 case MEM_NONE:
1041 return 0;
1042 }
1043
1044 /* region->hi == 0 means there's no upper bound. */
1045 if (memaddr + len < region->hi || region->hi == 0)
1046 *reg_len = len;
1047 else
1048 *reg_len = region->hi - memaddr;
1049
1050 return 1;
1051 }
1052
1053 /* Read memory from more than one valid target. A core file, for
1054 instance, could have some of memory but delegate other bits to
1055 the target below it. So, we must manually try all targets. */
1056
1057 enum target_xfer_status
1058 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1059 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1060 ULONGEST *xfered_len)
1061 {
1062 enum target_xfer_status res;
1063
1064 do
1065 {
1066 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1067 readbuf, writebuf, memaddr, len,
1068 xfered_len);
1069 if (res == TARGET_XFER_OK)
1070 break;
1071
1072 /* Stop if the target reports that the memory is not available. */
1073 if (res == TARGET_XFER_UNAVAILABLE)
1074 break;
1075
1076 /* We want to continue past core files to executables, but not
1077 past a running target's memory. */
1078 if (ops->to_has_all_memory (ops))
1079 break;
1080
1081 ops = ops->beneath;
1082 }
1083 while (ops != NULL);
1084
1085 /* The cache works at the raw memory level. Make sure the cache
1086 gets updated with raw contents no matter what kind of memory
1087 object was originally being written. Note we do write-through
1088 first, so that if it fails, we don't write to the cache contents
1089 that never made it to the target. */
1090 if (writebuf != NULL
1091 && !ptid_equal (inferior_ptid, null_ptid)
1092 && target_dcache_init_p ()
1093 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1094 {
1095 DCACHE *dcache = target_dcache_get ();
1096
1097 /* Note that writing to an area of memory which wasn't present
1098 in the cache doesn't cause it to be loaded in. */
1099 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1100 }
1101
1102 return res;
1103 }
1104
1105 /* Perform a partial memory transfer.
1106 For docs see target.h, to_xfer_partial. */
1107
1108 static enum target_xfer_status
1109 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1110 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1111 ULONGEST len, ULONGEST *xfered_len)
1112 {
1113 enum target_xfer_status res;
1114 ULONGEST reg_len;
1115 struct mem_region *region;
1116 struct inferior *inf;
1117
1118 /* For accesses to unmapped overlay sections, read directly from
1119 files. Must do this first, as MEMADDR may need adjustment. */
1120 if (readbuf != NULL && overlay_debugging)
1121 {
1122 struct obj_section *section = find_pc_overlay (memaddr);
1123
1124 if (pc_in_unmapped_range (memaddr, section))
1125 {
1126 struct target_section_table *table
1127 = target_get_section_table (ops);
1128 const char *section_name = section->the_bfd_section->name;
1129
1130 memaddr = overlay_mapped_address (memaddr, section);
1131 return section_table_xfer_memory_partial (readbuf, writebuf,
1132 memaddr, len, xfered_len,
1133 table->sections,
1134 table->sections_end,
1135 section_name);
1136 }
1137 }
1138
1139 /* Try the executable files, if "trust-readonly-sections" is set. */
1140 if (readbuf != NULL && trust_readonly)
1141 {
1142 struct target_section *secp;
1143 struct target_section_table *table;
1144
1145 secp = target_section_by_addr (ops, memaddr);
1146 if (secp != NULL
1147 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1148 secp->the_bfd_section)
1149 & SEC_READONLY))
1150 {
1151 table = target_get_section_table (ops);
1152 return section_table_xfer_memory_partial (readbuf, writebuf,
1153 memaddr, len, xfered_len,
1154 table->sections,
1155 table->sections_end,
1156 NULL);
1157 }
1158 }
1159
1160 /* Try GDB's internal data cache. */
1161
1162 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1163 &region))
1164 return TARGET_XFER_E_IO;
1165
1166 if (!ptid_equal (inferior_ptid, null_ptid))
1167 inf = find_inferior_ptid (inferior_ptid);
1168 else
1169 inf = NULL;
1170
1171 if (inf != NULL
1172 && readbuf != NULL
1173 /* The dcache reads whole cache lines; that doesn't play well
1174 with reading from a trace buffer, because reading outside of
1175 the collected memory range fails. */
1176 && get_traceframe_number () == -1
1177 && (region->attrib.cache
1178 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1179 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1180 {
1181 DCACHE *dcache = target_dcache_get_or_init ();
1182
1183 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1184 reg_len, xfered_len);
1185 }
1186
1187 /* If none of those methods found the memory we wanted, fall back
1188 to a target partial transfer. Normally a single call to
1189 to_xfer_partial is enough; if it doesn't recognize an object
1190 it will call the to_xfer_partial of the next target down.
1191 But for memory this won't do. Memory is the only target
1192 object which can be read from more than one valid target.
1193 A core file, for instance, could have some of memory but
1194 delegate other bits to the target below it. So, we must
1195 manually try all targets. */
1196
1197 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1198 xfered_len);
1199
1200 /* If we still haven't got anything, return the last error. We
1201 give up. */
1202 return res;
1203 }
1204
1205 /* Perform a partial memory transfer. For docs see target.h,
1206 to_xfer_partial. */
1207
1208 static enum target_xfer_status
1209 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1210 gdb_byte *readbuf, const gdb_byte *writebuf,
1211 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1212 {
1213 enum target_xfer_status res;
1214
1215 /* Zero length requests are ok and require no work. */
1216 if (len == 0)
1217 return TARGET_XFER_EOF;
1218
1219 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1220 breakpoint insns, thus hiding out from higher layers whether
1221 there are software breakpoints inserted in the code stream. */
1222 if (readbuf != NULL)
1223 {
1224 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1225 xfered_len);
1226
1227 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1228 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1229 }
1230 else
1231 {
1232 /* A large write request is likely to be partially satisfied
1233 by memory_xfer_partial_1. We will continually malloc
1234 and free a copy of the entire write request for breakpoint
1235 shadow handling even though we only end up writing a small
1236 subset of it. Cap writes to a limit specified by the target
1237 to mitigate this. */
1238 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1239
1240 gdb::byte_vector buf (writebuf, writebuf + len);
1241 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1242 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1243 xfered_len);
1244 }
1245
1246 return res;
1247 }
1248
1249 scoped_restore_tmpl<int>
1250 make_scoped_restore_show_memory_breakpoints (int show)
1251 {
1252 return make_scoped_restore (&show_memory_breakpoints, show);
1253 }
1254
1255 /* For docs see target.h, to_xfer_partial. */
1256
1257 enum target_xfer_status
1258 target_xfer_partial (struct target_ops *ops,
1259 enum target_object object, const char *annex,
1260 gdb_byte *readbuf, const gdb_byte *writebuf,
1261 ULONGEST offset, ULONGEST len,
1262 ULONGEST *xfered_len)
1263 {
1264 enum target_xfer_status retval;
1265
1266 gdb_assert (ops->to_xfer_partial != NULL);
1267
1268 /* Transfer is done when LEN is zero. */
1269 if (len == 0)
1270 return TARGET_XFER_EOF;
1271
1272 if (writebuf && !may_write_memory)
1273 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1274 core_addr_to_string_nz (offset), plongest (len));
1275
1276 *xfered_len = 0;
1277
1278 /* If this is a memory transfer, let the memory-specific code
1279 have a look at it instead. Memory transfers are more
1280 complicated. */
1281 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1282 || object == TARGET_OBJECT_CODE_MEMORY)
1283 retval = memory_xfer_partial (ops, object, readbuf,
1284 writebuf, offset, len, xfered_len);
1285 else if (object == TARGET_OBJECT_RAW_MEMORY)
1286 {
1287 /* Skip/avoid accessing the target if the memory region
1288 attributes block the access. Check this here instead of in
1289 raw_memory_xfer_partial as otherwise we'd end up checking
1290 this twice in the case of the memory_xfer_partial path is
1291 taken; once before checking the dcache, and another in the
1292 tail call to raw_memory_xfer_partial. */
1293 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1294 NULL))
1295 return TARGET_XFER_E_IO;
1296
1297 /* Request the normal memory object from other layers. */
1298 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1299 xfered_len);
1300 }
1301 else
1302 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1303 writebuf, offset, len, xfered_len);
1304
1305 if (targetdebug)
1306 {
1307 const unsigned char *myaddr = NULL;
1308
1309 fprintf_unfiltered (gdb_stdlog,
1310 "%s:target_xfer_partial "
1311 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1312 ops->to_shortname,
1313 (int) object,
1314 (annex ? annex : "(null)"),
1315 host_address_to_string (readbuf),
1316 host_address_to_string (writebuf),
1317 core_addr_to_string_nz (offset),
1318 pulongest (len), retval,
1319 pulongest (*xfered_len));
1320
1321 if (readbuf)
1322 myaddr = readbuf;
1323 if (writebuf)
1324 myaddr = writebuf;
1325 if (retval == TARGET_XFER_OK && myaddr != NULL)
1326 {
1327 int i;
1328
1329 fputs_unfiltered (", bytes =", gdb_stdlog);
1330 for (i = 0; i < *xfered_len; i++)
1331 {
1332 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1333 {
1334 if (targetdebug < 2 && i > 0)
1335 {
1336 fprintf_unfiltered (gdb_stdlog, " ...");
1337 break;
1338 }
1339 fprintf_unfiltered (gdb_stdlog, "\n");
1340 }
1341
1342 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1343 }
1344 }
1345
1346 fputc_unfiltered ('\n', gdb_stdlog);
1347 }
1348
1349 /* Check implementations of to_xfer_partial update *XFERED_LEN
1350 properly. Do assertion after printing debug messages, so that we
1351 can find more clues on assertion failure from debugging messages. */
1352 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1353 gdb_assert (*xfered_len > 0);
1354
1355 return retval;
1356 }
1357
1358 /* Read LEN bytes of target memory at address MEMADDR, placing the
1359 results in GDB's memory at MYADDR. Returns either 0 for success or
1360 -1 if any error occurs.
1361
1362 If an error occurs, no guarantee is made about the contents of the data at
1363 MYADDR. In particular, the caller should not depend upon partial reads
1364 filling the buffer with good data. There is no way for the caller to know
1365 how much good data might have been transfered anyway. Callers that can
1366 deal with partial reads should call target_read (which will retry until
1367 it makes no progress, and then return how much was transferred). */
1368
1369 int
1370 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1371 {
1372 /* Dispatch to the topmost target, not the flattened current_target.
1373 Memory accesses check target->to_has_(all_)memory, and the
1374 flattened target doesn't inherit those. */
1375 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1376 myaddr, memaddr, len) == len)
1377 return 0;
1378 else
1379 return -1;
1380 }
1381
1382 /* See target/target.h. */
1383
1384 int
1385 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1386 {
1387 gdb_byte buf[4];
1388 int r;
1389
1390 r = target_read_memory (memaddr, buf, sizeof buf);
1391 if (r != 0)
1392 return r;
1393 *result = extract_unsigned_integer (buf, sizeof buf,
1394 gdbarch_byte_order (target_gdbarch ()));
1395 return 0;
1396 }
1397
1398 /* Like target_read_memory, but specify explicitly that this is a read
1399 from the target's raw memory. That is, this read bypasses the
1400 dcache, breakpoint shadowing, etc. */
1401
1402 int
1403 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1404 {
1405 /* See comment in target_read_memory about why the request starts at
1406 current_target.beneath. */
1407 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1408 myaddr, memaddr, len) == len)
1409 return 0;
1410 else
1411 return -1;
1412 }
1413
1414 /* Like target_read_memory, but specify explicitly that this is a read from
1415 the target's stack. This may trigger different cache behavior. */
1416
1417 int
1418 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1419 {
1420 /* See comment in target_read_memory about why the request starts at
1421 current_target.beneath. */
1422 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1423 myaddr, memaddr, len) == len)
1424 return 0;
1425 else
1426 return -1;
1427 }
1428
1429 /* Like target_read_memory, but specify explicitly that this is a read from
1430 the target's code. This may trigger different cache behavior. */
1431
1432 int
1433 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1434 {
1435 /* See comment in target_read_memory about why the request starts at
1436 current_target.beneath. */
1437 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1438 myaddr, memaddr, len) == len)
1439 return 0;
1440 else
1441 return -1;
1442 }
1443
1444 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1445 Returns either 0 for success or -1 if any error occurs. If an
1446 error occurs, no guarantee is made about how much data got written.
1447 Callers that can deal with partial writes should call
1448 target_write. */
1449
1450 int
1451 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1452 {
1453 /* See comment in target_read_memory about why the request starts at
1454 current_target.beneath. */
1455 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1456 myaddr, memaddr, len) == len)
1457 return 0;
1458 else
1459 return -1;
1460 }
1461
1462 /* Write LEN bytes from MYADDR to target raw memory at address
1463 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1464 If an error occurs, no guarantee is made about how much data got
1465 written. Callers that can deal with partial writes should call
1466 target_write. */
1467
1468 int
1469 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1470 {
1471 /* See comment in target_read_memory about why the request starts at
1472 current_target.beneath. */
1473 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1474 myaddr, memaddr, len) == len)
1475 return 0;
1476 else
1477 return -1;
1478 }
1479
1480 /* Fetch the target's memory map. */
1481
1482 std::vector<mem_region>
1483 target_memory_map (void)
1484 {
1485 std::vector<mem_region> result
1486 = current_target.to_memory_map (&current_target);
1487 if (result.empty ())
1488 return result;
1489
1490 std::sort (result.begin (), result.end ());
1491
1492 /* Check that regions do not overlap. Simultaneously assign
1493 a numbering for the "mem" commands to use to refer to
1494 each region. */
1495 mem_region *last_one = NULL;
1496 for (size_t ix = 0; ix < result.size (); ix++)
1497 {
1498 mem_region *this_one = &result[ix];
1499 this_one->number = ix;
1500
1501 if (last_one != NULL && last_one->hi > this_one->lo)
1502 {
1503 warning (_("Overlapping regions in memory map: ignoring"));
1504 return std::vector<mem_region> ();
1505 }
1506
1507 last_one = this_one;
1508 }
1509
1510 return result;
1511 }
1512
1513 void
1514 target_flash_erase (ULONGEST address, LONGEST length)
1515 {
1516 current_target.to_flash_erase (&current_target, address, length);
1517 }
1518
1519 void
1520 target_flash_done (void)
1521 {
1522 current_target.to_flash_done (&current_target);
1523 }
1524
1525 static void
1526 show_trust_readonly (struct ui_file *file, int from_tty,
1527 struct cmd_list_element *c, const char *value)
1528 {
1529 fprintf_filtered (file,
1530 _("Mode for reading from readonly sections is %s.\n"),
1531 value);
1532 }
1533
1534 /* Target vector read/write partial wrapper functions. */
1535
1536 static enum target_xfer_status
1537 target_read_partial (struct target_ops *ops,
1538 enum target_object object,
1539 const char *annex, gdb_byte *buf,
1540 ULONGEST offset, ULONGEST len,
1541 ULONGEST *xfered_len)
1542 {
1543 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1544 xfered_len);
1545 }
1546
1547 static enum target_xfer_status
1548 target_write_partial (struct target_ops *ops,
1549 enum target_object object,
1550 const char *annex, const gdb_byte *buf,
1551 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1552 {
1553 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1554 xfered_len);
1555 }
1556
1557 /* Wrappers to perform the full transfer. */
1558
1559 /* For docs on target_read see target.h. */
1560
1561 LONGEST
1562 target_read (struct target_ops *ops,
1563 enum target_object object,
1564 const char *annex, gdb_byte *buf,
1565 ULONGEST offset, LONGEST len)
1566 {
1567 LONGEST xfered_total = 0;
1568 int unit_size = 1;
1569
1570 /* If we are reading from a memory object, find the length of an addressable
1571 unit for that architecture. */
1572 if (object == TARGET_OBJECT_MEMORY
1573 || object == TARGET_OBJECT_STACK_MEMORY
1574 || object == TARGET_OBJECT_CODE_MEMORY
1575 || object == TARGET_OBJECT_RAW_MEMORY)
1576 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1577
1578 while (xfered_total < len)
1579 {
1580 ULONGEST xfered_partial;
1581 enum target_xfer_status status;
1582
1583 status = target_read_partial (ops, object, annex,
1584 buf + xfered_total * unit_size,
1585 offset + xfered_total, len - xfered_total,
1586 &xfered_partial);
1587
1588 /* Call an observer, notifying them of the xfer progress? */
1589 if (status == TARGET_XFER_EOF)
1590 return xfered_total;
1591 else if (status == TARGET_XFER_OK)
1592 {
1593 xfered_total += xfered_partial;
1594 QUIT;
1595 }
1596 else
1597 return TARGET_XFER_E_IO;
1598
1599 }
1600 return len;
1601 }
1602
1603 /* Assuming that the entire [begin, end) range of memory cannot be
1604 read, try to read whatever subrange is possible to read.
1605
1606 The function returns, in RESULT, either zero or one memory block.
1607 If there's a readable subrange at the beginning, it is completely
1608 read and returned. Any further readable subrange will not be read.
1609 Otherwise, if there's a readable subrange at the end, it will be
1610 completely read and returned. Any readable subranges before it
1611 (obviously, not starting at the beginning), will be ignored. In
1612 other cases -- either no readable subrange, or readable subrange(s)
1613 that is neither at the beginning, or end, nothing is returned.
1614
1615 The purpose of this function is to handle a read across a boundary
1616 of accessible memory in a case when memory map is not available.
1617 The above restrictions are fine for this case, but will give
1618 incorrect results if the memory is 'patchy'. However, supporting
1619 'patchy' memory would require trying to read every single byte,
1620 and it seems unacceptable solution. Explicit memory map is
1621 recommended for this case -- and target_read_memory_robust will
1622 take care of reading multiple ranges then. */
1623
1624 static void
1625 read_whatever_is_readable (struct target_ops *ops,
1626 const ULONGEST begin, const ULONGEST end,
1627 int unit_size,
1628 std::vector<memory_read_result> *result)
1629 {
1630 ULONGEST current_begin = begin;
1631 ULONGEST current_end = end;
1632 int forward;
1633 ULONGEST xfered_len;
1634
1635 /* If we previously failed to read 1 byte, nothing can be done here. */
1636 if (end - begin <= 1)
1637 return;
1638
1639 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1640
1641 /* Check that either first or the last byte is readable, and give up
1642 if not. This heuristic is meant to permit reading accessible memory
1643 at the boundary of accessible region. */
1644 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1645 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1646 {
1647 forward = 1;
1648 ++current_begin;
1649 }
1650 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1651 buf.get () + (end - begin) - 1, end - 1, 1,
1652 &xfered_len) == TARGET_XFER_OK)
1653 {
1654 forward = 0;
1655 --current_end;
1656 }
1657 else
1658 return;
1659
1660 /* Loop invariant is that the [current_begin, current_end) was previously
1661 found to be not readable as a whole.
1662
1663 Note loop condition -- if the range has 1 byte, we can't divide the range
1664 so there's no point trying further. */
1665 while (current_end - current_begin > 1)
1666 {
1667 ULONGEST first_half_begin, first_half_end;
1668 ULONGEST second_half_begin, second_half_end;
1669 LONGEST xfer;
1670 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1671
1672 if (forward)
1673 {
1674 first_half_begin = current_begin;
1675 first_half_end = middle;
1676 second_half_begin = middle;
1677 second_half_end = current_end;
1678 }
1679 else
1680 {
1681 first_half_begin = middle;
1682 first_half_end = current_end;
1683 second_half_begin = current_begin;
1684 second_half_end = middle;
1685 }
1686
1687 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1688 buf.get () + (first_half_begin - begin) * unit_size,
1689 first_half_begin,
1690 first_half_end - first_half_begin);
1691
1692 if (xfer == first_half_end - first_half_begin)
1693 {
1694 /* This half reads up fine. So, the error must be in the
1695 other half. */
1696 current_begin = second_half_begin;
1697 current_end = second_half_end;
1698 }
1699 else
1700 {
1701 /* This half is not readable. Because we've tried one byte, we
1702 know some part of this half if actually readable. Go to the next
1703 iteration to divide again and try to read.
1704
1705 We don't handle the other half, because this function only tries
1706 to read a single readable subrange. */
1707 current_begin = first_half_begin;
1708 current_end = first_half_end;
1709 }
1710 }
1711
1712 if (forward)
1713 {
1714 /* The [begin, current_begin) range has been read. */
1715 result->emplace_back (begin, current_end, std::move (buf));
1716 }
1717 else
1718 {
1719 /* The [current_end, end) range has been read. */
1720 LONGEST region_len = end - current_end;
1721
1722 gdb::unique_xmalloc_ptr<gdb_byte> data
1723 ((gdb_byte *) xmalloc (region_len * unit_size));
1724 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1725 region_len * unit_size);
1726 result->emplace_back (current_end, end, std::move (data));
1727 }
1728 }
1729
1730 std::vector<memory_read_result>
1731 read_memory_robust (struct target_ops *ops,
1732 const ULONGEST offset, const LONGEST len)
1733 {
1734 std::vector<memory_read_result> result;
1735 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1736
1737 LONGEST xfered_total = 0;
1738 while (xfered_total < len)
1739 {
1740 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1741 LONGEST region_len;
1742
1743 /* If there is no explicit region, a fake one should be created. */
1744 gdb_assert (region);
1745
1746 if (region->hi == 0)
1747 region_len = len - xfered_total;
1748 else
1749 region_len = region->hi - offset;
1750
1751 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1752 {
1753 /* Cannot read this region. Note that we can end up here only
1754 if the region is explicitly marked inaccessible, or
1755 'inaccessible-by-default' is in effect. */
1756 xfered_total += region_len;
1757 }
1758 else
1759 {
1760 LONGEST to_read = std::min (len - xfered_total, region_len);
1761 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1762 ((gdb_byte *) xmalloc (to_read * unit_size));
1763
1764 LONGEST xfered_partial =
1765 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1766 offset + xfered_total, to_read);
1767 /* Call an observer, notifying them of the xfer progress? */
1768 if (xfered_partial <= 0)
1769 {
1770 /* Got an error reading full chunk. See if maybe we can read
1771 some subrange. */
1772 read_whatever_is_readable (ops, offset + xfered_total,
1773 offset + xfered_total + to_read,
1774 unit_size, &result);
1775 xfered_total += to_read;
1776 }
1777 else
1778 {
1779 result.emplace_back (offset + xfered_total,
1780 offset + xfered_total + xfered_partial,
1781 std::move (buffer));
1782 xfered_total += xfered_partial;
1783 }
1784 QUIT;
1785 }
1786 }
1787
1788 return result;
1789 }
1790
1791
1792 /* An alternative to target_write with progress callbacks. */
1793
1794 LONGEST
1795 target_write_with_progress (struct target_ops *ops,
1796 enum target_object object,
1797 const char *annex, const gdb_byte *buf,
1798 ULONGEST offset, LONGEST len,
1799 void (*progress) (ULONGEST, void *), void *baton)
1800 {
1801 LONGEST xfered_total = 0;
1802 int unit_size = 1;
1803
1804 /* If we are writing to a memory object, find the length of an addressable
1805 unit for that architecture. */
1806 if (object == TARGET_OBJECT_MEMORY
1807 || object == TARGET_OBJECT_STACK_MEMORY
1808 || object == TARGET_OBJECT_CODE_MEMORY
1809 || object == TARGET_OBJECT_RAW_MEMORY)
1810 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1811
1812 /* Give the progress callback a chance to set up. */
1813 if (progress)
1814 (*progress) (0, baton);
1815
1816 while (xfered_total < len)
1817 {
1818 ULONGEST xfered_partial;
1819 enum target_xfer_status status;
1820
1821 status = target_write_partial (ops, object, annex,
1822 buf + xfered_total * unit_size,
1823 offset + xfered_total, len - xfered_total,
1824 &xfered_partial);
1825
1826 if (status != TARGET_XFER_OK)
1827 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1828
1829 if (progress)
1830 (*progress) (xfered_partial, baton);
1831
1832 xfered_total += xfered_partial;
1833 QUIT;
1834 }
1835 return len;
1836 }
1837
1838 /* For docs on target_write see target.h. */
1839
1840 LONGEST
1841 target_write (struct target_ops *ops,
1842 enum target_object object,
1843 const char *annex, const gdb_byte *buf,
1844 ULONGEST offset, LONGEST len)
1845 {
1846 return target_write_with_progress (ops, object, annex, buf, offset, len,
1847 NULL, NULL);
1848 }
1849
1850 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1851 the size of the transferred data. PADDING additional bytes are
1852 available in *BUF_P. This is a helper function for
1853 target_read_alloc; see the declaration of that function for more
1854 information. */
1855
1856 static LONGEST
1857 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1858 const char *annex, gdb_byte **buf_p, int padding)
1859 {
1860 size_t buf_alloc, buf_pos;
1861 gdb_byte *buf;
1862
1863 /* This function does not have a length parameter; it reads the
1864 entire OBJECT). Also, it doesn't support objects fetched partly
1865 from one target and partly from another (in a different stratum,
1866 e.g. a core file and an executable). Both reasons make it
1867 unsuitable for reading memory. */
1868 gdb_assert (object != TARGET_OBJECT_MEMORY);
1869
1870 /* Start by reading up to 4K at a time. The target will throttle
1871 this number down if necessary. */
1872 buf_alloc = 4096;
1873 buf = (gdb_byte *) xmalloc (buf_alloc);
1874 buf_pos = 0;
1875 while (1)
1876 {
1877 ULONGEST xfered_len;
1878 enum target_xfer_status status;
1879
1880 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1881 buf_pos, buf_alloc - buf_pos - padding,
1882 &xfered_len);
1883
1884 if (status == TARGET_XFER_EOF)
1885 {
1886 /* Read all there was. */
1887 if (buf_pos == 0)
1888 xfree (buf);
1889 else
1890 *buf_p = buf;
1891 return buf_pos;
1892 }
1893 else if (status != TARGET_XFER_OK)
1894 {
1895 /* An error occurred. */
1896 xfree (buf);
1897 return TARGET_XFER_E_IO;
1898 }
1899
1900 buf_pos += xfered_len;
1901
1902 /* If the buffer is filling up, expand it. */
1903 if (buf_alloc < buf_pos * 2)
1904 {
1905 buf_alloc *= 2;
1906 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1907 }
1908
1909 QUIT;
1910 }
1911 }
1912
1913 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1914 the size of the transferred data. See the declaration in "target.h"
1915 function for more information about the return value. */
1916
1917 LONGEST
1918 target_read_alloc (struct target_ops *ops, enum target_object object,
1919 const char *annex, gdb_byte **buf_p)
1920 {
1921 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1922 }
1923
1924 /* See target.h. */
1925
1926 gdb::unique_xmalloc_ptr<char>
1927 target_read_stralloc (struct target_ops *ops, enum target_object object,
1928 const char *annex)
1929 {
1930 gdb_byte *buffer;
1931 char *bufstr;
1932 LONGEST i, transferred;
1933
1934 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1935 bufstr = (char *) buffer;
1936
1937 if (transferred < 0)
1938 return NULL;
1939
1940 if (transferred == 0)
1941 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
1942
1943 bufstr[transferred] = 0;
1944
1945 /* Check for embedded NUL bytes; but allow trailing NULs. */
1946 for (i = strlen (bufstr); i < transferred; i++)
1947 if (bufstr[i] != 0)
1948 {
1949 warning (_("target object %d, annex %s, "
1950 "contained unexpected null characters"),
1951 (int) object, annex ? annex : "(none)");
1952 break;
1953 }
1954
1955 return gdb::unique_xmalloc_ptr<char> (bufstr);
1956 }
1957
1958 /* Memory transfer methods. */
1959
1960 void
1961 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1962 LONGEST len)
1963 {
1964 /* This method is used to read from an alternate, non-current
1965 target. This read must bypass the overlay support (as symbols
1966 don't match this target), and GDB's internal cache (wrong cache
1967 for this target). */
1968 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1969 != len)
1970 memory_error (TARGET_XFER_E_IO, addr);
1971 }
1972
1973 ULONGEST
1974 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1975 int len, enum bfd_endian byte_order)
1976 {
1977 gdb_byte buf[sizeof (ULONGEST)];
1978
1979 gdb_assert (len <= sizeof (buf));
1980 get_target_memory (ops, addr, buf, len);
1981 return extract_unsigned_integer (buf, len, byte_order);
1982 }
1983
1984 /* See target.h. */
1985
1986 int
1987 target_insert_breakpoint (struct gdbarch *gdbarch,
1988 struct bp_target_info *bp_tgt)
1989 {
1990 if (!may_insert_breakpoints)
1991 {
1992 warning (_("May not insert breakpoints"));
1993 return 1;
1994 }
1995
1996 return current_target.to_insert_breakpoint (&current_target,
1997 gdbarch, bp_tgt);
1998 }
1999
2000 /* See target.h. */
2001
2002 int
2003 target_remove_breakpoint (struct gdbarch *gdbarch,
2004 struct bp_target_info *bp_tgt,
2005 enum remove_bp_reason reason)
2006 {
2007 /* This is kind of a weird case to handle, but the permission might
2008 have been changed after breakpoints were inserted - in which case
2009 we should just take the user literally and assume that any
2010 breakpoints should be left in place. */
2011 if (!may_insert_breakpoints)
2012 {
2013 warning (_("May not remove breakpoints"));
2014 return 1;
2015 }
2016
2017 return current_target.to_remove_breakpoint (&current_target,
2018 gdbarch, bp_tgt, reason);
2019 }
2020
2021 static void
2022 info_target_command (char *args, int from_tty)
2023 {
2024 struct target_ops *t;
2025 int has_all_mem = 0;
2026
2027 if (symfile_objfile != NULL)
2028 printf_unfiltered (_("Symbols from \"%s\".\n"),
2029 objfile_name (symfile_objfile));
2030
2031 for (t = target_stack; t != NULL; t = t->beneath)
2032 {
2033 if (!(*t->to_has_memory) (t))
2034 continue;
2035
2036 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2037 continue;
2038 if (has_all_mem)
2039 printf_unfiltered (_("\tWhile running this, "
2040 "GDB does not access memory from...\n"));
2041 printf_unfiltered ("%s:\n", t->to_longname);
2042 (t->to_files_info) (t);
2043 has_all_mem = (*t->to_has_all_memory) (t);
2044 }
2045 }
2046
2047 /* This function is called before any new inferior is created, e.g.
2048 by running a program, attaching, or connecting to a target.
2049 It cleans up any state from previous invocations which might
2050 change between runs. This is a subset of what target_preopen
2051 resets (things which might change between targets). */
2052
2053 void
2054 target_pre_inferior (int from_tty)
2055 {
2056 /* Clear out solib state. Otherwise the solib state of the previous
2057 inferior might have survived and is entirely wrong for the new
2058 target. This has been observed on GNU/Linux using glibc 2.3. How
2059 to reproduce:
2060
2061 bash$ ./foo&
2062 [1] 4711
2063 bash$ ./foo&
2064 [1] 4712
2065 bash$ gdb ./foo
2066 [...]
2067 (gdb) attach 4711
2068 (gdb) detach
2069 (gdb) attach 4712
2070 Cannot access memory at address 0xdeadbeef
2071 */
2072
2073 /* In some OSs, the shared library list is the same/global/shared
2074 across inferiors. If code is shared between processes, so are
2075 memory regions and features. */
2076 if (!gdbarch_has_global_solist (target_gdbarch ()))
2077 {
2078 no_shared_libraries (NULL, from_tty);
2079
2080 invalidate_target_mem_regions ();
2081
2082 target_clear_description ();
2083 }
2084
2085 /* attach_flag may be set if the previous process associated with
2086 the inferior was attached to. */
2087 current_inferior ()->attach_flag = 0;
2088
2089 current_inferior ()->highest_thread_num = 0;
2090
2091 agent_capability_invalidate ();
2092 }
2093
2094 /* Callback for iterate_over_inferiors. Gets rid of the given
2095 inferior. */
2096
2097 static int
2098 dispose_inferior (struct inferior *inf, void *args)
2099 {
2100 struct thread_info *thread;
2101
2102 thread = any_thread_of_process (inf->pid);
2103 if (thread)
2104 {
2105 switch_to_thread (thread->ptid);
2106
2107 /* Core inferiors actually should be detached, not killed. */
2108 if (target_has_execution)
2109 target_kill ();
2110 else
2111 target_detach (NULL, 0);
2112 }
2113
2114 return 0;
2115 }
2116
2117 /* This is to be called by the open routine before it does
2118 anything. */
2119
2120 void
2121 target_preopen (int from_tty)
2122 {
2123 dont_repeat ();
2124
2125 if (have_inferiors ())
2126 {
2127 if (!from_tty
2128 || !have_live_inferiors ()
2129 || query (_("A program is being debugged already. Kill it? ")))
2130 iterate_over_inferiors (dispose_inferior, NULL);
2131 else
2132 error (_("Program not killed."));
2133 }
2134
2135 /* Calling target_kill may remove the target from the stack. But if
2136 it doesn't (which seems like a win for UDI), remove it now. */
2137 /* Leave the exec target, though. The user may be switching from a
2138 live process to a core of the same program. */
2139 pop_all_targets_above (file_stratum);
2140
2141 target_pre_inferior (from_tty);
2142 }
2143
2144 /* Detach a target after doing deferred register stores. */
2145
2146 void
2147 target_detach (const char *args, int from_tty)
2148 {
2149 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2150 /* Don't remove global breakpoints here. They're removed on
2151 disconnection from the target. */
2152 ;
2153 else
2154 /* If we're in breakpoints-always-inserted mode, have to remove
2155 them before detaching. */
2156 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2157
2158 prepare_for_detach ();
2159
2160 current_target.to_detach (&current_target, args, from_tty);
2161 }
2162
2163 void
2164 target_disconnect (const char *args, int from_tty)
2165 {
2166 /* If we're in breakpoints-always-inserted mode or if breakpoints
2167 are global across processes, we have to remove them before
2168 disconnecting. */
2169 remove_breakpoints ();
2170
2171 current_target.to_disconnect (&current_target, args, from_tty);
2172 }
2173
2174 /* See target/target.h. */
2175
2176 ptid_t
2177 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2178 {
2179 return (current_target.to_wait) (&current_target, ptid, status, options);
2180 }
2181
2182 /* See target.h. */
2183
2184 ptid_t
2185 default_target_wait (struct target_ops *ops,
2186 ptid_t ptid, struct target_waitstatus *status,
2187 int options)
2188 {
2189 status->kind = TARGET_WAITKIND_IGNORE;
2190 return minus_one_ptid;
2191 }
2192
2193 const char *
2194 target_pid_to_str (ptid_t ptid)
2195 {
2196 return (*current_target.to_pid_to_str) (&current_target, ptid);
2197 }
2198
2199 const char *
2200 target_thread_name (struct thread_info *info)
2201 {
2202 return current_target.to_thread_name (&current_target, info);
2203 }
2204
2205 struct thread_info *
2206 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2207 int handle_len,
2208 struct inferior *inf)
2209 {
2210 return current_target.to_thread_handle_to_thread_info
2211 (&current_target, thread_handle, handle_len, inf);
2212 }
2213
2214 void
2215 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2216 {
2217 target_dcache_invalidate ();
2218
2219 current_target.to_resume (&current_target, ptid, step, signal);
2220
2221 registers_changed_ptid (ptid);
2222 /* We only set the internal executing state here. The user/frontend
2223 running state is set at a higher level. */
2224 set_executing (ptid, 1);
2225 clear_inline_frame_state (ptid);
2226 }
2227
2228 /* If true, target_commit_resume is a nop. */
2229 static int defer_target_commit_resume;
2230
2231 /* See target.h. */
2232
2233 void
2234 target_commit_resume (void)
2235 {
2236 struct target_ops *t;
2237
2238 if (defer_target_commit_resume)
2239 return;
2240
2241 current_target.to_commit_resume (&current_target);
2242 }
2243
2244 /* See target.h. */
2245
2246 scoped_restore_tmpl<int>
2247 make_scoped_defer_target_commit_resume ()
2248 {
2249 return make_scoped_restore (&defer_target_commit_resume, 1);
2250 }
2251
2252 void
2253 target_pass_signals (int numsigs, unsigned char *pass_signals)
2254 {
2255 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2256 }
2257
2258 void
2259 target_program_signals (int numsigs, unsigned char *program_signals)
2260 {
2261 (*current_target.to_program_signals) (&current_target,
2262 numsigs, program_signals);
2263 }
2264
2265 static int
2266 default_follow_fork (struct target_ops *self, int follow_child,
2267 int detach_fork)
2268 {
2269 /* Some target returned a fork event, but did not know how to follow it. */
2270 internal_error (__FILE__, __LINE__,
2271 _("could not find a target to follow fork"));
2272 }
2273
2274 /* Look through the list of possible targets for a target that can
2275 follow forks. */
2276
2277 int
2278 target_follow_fork (int follow_child, int detach_fork)
2279 {
2280 return current_target.to_follow_fork (&current_target,
2281 follow_child, detach_fork);
2282 }
2283
2284 /* Target wrapper for follow exec hook. */
2285
2286 void
2287 target_follow_exec (struct inferior *inf, char *execd_pathname)
2288 {
2289 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2290 }
2291
2292 static void
2293 default_mourn_inferior (struct target_ops *self)
2294 {
2295 internal_error (__FILE__, __LINE__,
2296 _("could not find a target to follow mourn inferior"));
2297 }
2298
2299 void
2300 target_mourn_inferior (ptid_t ptid)
2301 {
2302 gdb_assert (ptid_equal (ptid, inferior_ptid));
2303 current_target.to_mourn_inferior (&current_target);
2304
2305 /* We no longer need to keep handles on any of the object files.
2306 Make sure to release them to avoid unnecessarily locking any
2307 of them while we're not actually debugging. */
2308 bfd_cache_close_all ();
2309 }
2310
2311 /* Look for a target which can describe architectural features, starting
2312 from TARGET. If we find one, return its description. */
2313
2314 const struct target_desc *
2315 target_read_description (struct target_ops *target)
2316 {
2317 return target->to_read_description (target);
2318 }
2319
2320 /* This implements a basic search of memory, reading target memory and
2321 performing the search here (as opposed to performing the search in on the
2322 target side with, for example, gdbserver). */
2323
2324 int
2325 simple_search_memory (struct target_ops *ops,
2326 CORE_ADDR start_addr, ULONGEST search_space_len,
2327 const gdb_byte *pattern, ULONGEST pattern_len,
2328 CORE_ADDR *found_addrp)
2329 {
2330 /* NOTE: also defined in find.c testcase. */
2331 #define SEARCH_CHUNK_SIZE 16000
2332 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2333 /* Buffer to hold memory contents for searching. */
2334 unsigned search_buf_size;
2335
2336 search_buf_size = chunk_size + pattern_len - 1;
2337
2338 /* No point in trying to allocate a buffer larger than the search space. */
2339 if (search_space_len < search_buf_size)
2340 search_buf_size = search_space_len;
2341
2342 gdb::byte_vector search_buf (search_buf_size);
2343
2344 /* Prime the search buffer. */
2345
2346 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2347 search_buf.data (), start_addr, search_buf_size)
2348 != search_buf_size)
2349 {
2350 warning (_("Unable to access %s bytes of target "
2351 "memory at %s, halting search."),
2352 pulongest (search_buf_size), hex_string (start_addr));
2353 return -1;
2354 }
2355
2356 /* Perform the search.
2357
2358 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2359 When we've scanned N bytes we copy the trailing bytes to the start and
2360 read in another N bytes. */
2361
2362 while (search_space_len >= pattern_len)
2363 {
2364 gdb_byte *found_ptr;
2365 unsigned nr_search_bytes
2366 = std::min (search_space_len, (ULONGEST) search_buf_size);
2367
2368 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2369 pattern, pattern_len);
2370
2371 if (found_ptr != NULL)
2372 {
2373 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2374
2375 *found_addrp = found_addr;
2376 return 1;
2377 }
2378
2379 /* Not found in this chunk, skip to next chunk. */
2380
2381 /* Don't let search_space_len wrap here, it's unsigned. */
2382 if (search_space_len >= chunk_size)
2383 search_space_len -= chunk_size;
2384 else
2385 search_space_len = 0;
2386
2387 if (search_space_len >= pattern_len)
2388 {
2389 unsigned keep_len = search_buf_size - chunk_size;
2390 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2391 int nr_to_read;
2392
2393 /* Copy the trailing part of the previous iteration to the front
2394 of the buffer for the next iteration. */
2395 gdb_assert (keep_len == pattern_len - 1);
2396 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2397
2398 nr_to_read = std::min (search_space_len - keep_len,
2399 (ULONGEST) chunk_size);
2400
2401 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2402 &search_buf[keep_len], read_addr,
2403 nr_to_read) != nr_to_read)
2404 {
2405 warning (_("Unable to access %s bytes of target "
2406 "memory at %s, halting search."),
2407 plongest (nr_to_read),
2408 hex_string (read_addr));
2409 return -1;
2410 }
2411
2412 start_addr += chunk_size;
2413 }
2414 }
2415
2416 /* Not found. */
2417
2418 return 0;
2419 }
2420
2421 /* Default implementation of memory-searching. */
2422
2423 static int
2424 default_search_memory (struct target_ops *self,
2425 CORE_ADDR start_addr, ULONGEST search_space_len,
2426 const gdb_byte *pattern, ULONGEST pattern_len,
2427 CORE_ADDR *found_addrp)
2428 {
2429 /* Start over from the top of the target stack. */
2430 return simple_search_memory (current_target.beneath,
2431 start_addr, search_space_len,
2432 pattern, pattern_len, found_addrp);
2433 }
2434
2435 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2436 sequence of bytes in PATTERN with length PATTERN_LEN.
2437
2438 The result is 1 if found, 0 if not found, and -1 if there was an error
2439 requiring halting of the search (e.g. memory read error).
2440 If the pattern is found the address is recorded in FOUND_ADDRP. */
2441
2442 int
2443 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2444 const gdb_byte *pattern, ULONGEST pattern_len,
2445 CORE_ADDR *found_addrp)
2446 {
2447 return current_target.to_search_memory (&current_target, start_addr,
2448 search_space_len,
2449 pattern, pattern_len, found_addrp);
2450 }
2451
2452 /* Look through the currently pushed targets. If none of them will
2453 be able to restart the currently running process, issue an error
2454 message. */
2455
2456 void
2457 target_require_runnable (void)
2458 {
2459 struct target_ops *t;
2460
2461 for (t = target_stack; t != NULL; t = t->beneath)
2462 {
2463 /* If this target knows how to create a new program, then
2464 assume we will still be able to after killing the current
2465 one. Either killing and mourning will not pop T, or else
2466 find_default_run_target will find it again. */
2467 if (t->to_create_inferior != NULL)
2468 return;
2469
2470 /* Do not worry about targets at certain strata that can not
2471 create inferiors. Assume they will be pushed again if
2472 necessary, and continue to the process_stratum. */
2473 if (t->to_stratum == thread_stratum
2474 || t->to_stratum == record_stratum
2475 || t->to_stratum == arch_stratum)
2476 continue;
2477
2478 error (_("The \"%s\" target does not support \"run\". "
2479 "Try \"help target\" or \"continue\"."),
2480 t->to_shortname);
2481 }
2482
2483 /* This function is only called if the target is running. In that
2484 case there should have been a process_stratum target and it
2485 should either know how to create inferiors, or not... */
2486 internal_error (__FILE__, __LINE__, _("No targets found"));
2487 }
2488
2489 /* Whether GDB is allowed to fall back to the default run target for
2490 "run", "attach", etc. when no target is connected yet. */
2491 static int auto_connect_native_target = 1;
2492
2493 static void
2494 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2495 struct cmd_list_element *c, const char *value)
2496 {
2497 fprintf_filtered (file,
2498 _("Whether GDB may automatically connect to the "
2499 "native target is %s.\n"),
2500 value);
2501 }
2502
2503 /* Look through the list of possible targets for a target that can
2504 execute a run or attach command without any other data. This is
2505 used to locate the default process stratum.
2506
2507 If DO_MESG is not NULL, the result is always valid (error() is
2508 called for errors); else, return NULL on error. */
2509
2510 static struct target_ops *
2511 find_default_run_target (const char *do_mesg)
2512 {
2513 struct target_ops *runable = NULL;
2514
2515 if (auto_connect_native_target)
2516 {
2517 struct target_ops *t;
2518 int count = 0;
2519 int i;
2520
2521 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2522 {
2523 if (t->to_can_run != delegate_can_run && target_can_run (t))
2524 {
2525 runable = t;
2526 ++count;
2527 }
2528 }
2529
2530 if (count != 1)
2531 runable = NULL;
2532 }
2533
2534 if (runable == NULL)
2535 {
2536 if (do_mesg)
2537 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2538 else
2539 return NULL;
2540 }
2541
2542 return runable;
2543 }
2544
2545 /* See target.h. */
2546
2547 struct target_ops *
2548 find_attach_target (void)
2549 {
2550 struct target_ops *t;
2551
2552 /* If a target on the current stack can attach, use it. */
2553 for (t = current_target.beneath; t != NULL; t = t->beneath)
2554 {
2555 if (t->to_attach != NULL)
2556 break;
2557 }
2558
2559 /* Otherwise, use the default run target for attaching. */
2560 if (t == NULL)
2561 t = find_default_run_target ("attach");
2562
2563 return t;
2564 }
2565
2566 /* See target.h. */
2567
2568 struct target_ops *
2569 find_run_target (void)
2570 {
2571 struct target_ops *t;
2572
2573 /* If a target on the current stack can attach, use it. */
2574 for (t = current_target.beneath; t != NULL; t = t->beneath)
2575 {
2576 if (t->to_create_inferior != NULL)
2577 break;
2578 }
2579
2580 /* Otherwise, use the default run target. */
2581 if (t == NULL)
2582 t = find_default_run_target ("run");
2583
2584 return t;
2585 }
2586
2587 /* Implement the "info proc" command. */
2588
2589 int
2590 target_info_proc (const char *args, enum info_proc_what what)
2591 {
2592 struct target_ops *t;
2593
2594 /* If we're already connected to something that can get us OS
2595 related data, use it. Otherwise, try using the native
2596 target. */
2597 if (current_target.to_stratum >= process_stratum)
2598 t = current_target.beneath;
2599 else
2600 t = find_default_run_target (NULL);
2601
2602 for (; t != NULL; t = t->beneath)
2603 {
2604 if (t->to_info_proc != NULL)
2605 {
2606 t->to_info_proc (t, args, what);
2607
2608 if (targetdebug)
2609 fprintf_unfiltered (gdb_stdlog,
2610 "target_info_proc (\"%s\", %d)\n", args, what);
2611
2612 return 1;
2613 }
2614 }
2615
2616 return 0;
2617 }
2618
2619 static int
2620 find_default_supports_disable_randomization (struct target_ops *self)
2621 {
2622 struct target_ops *t;
2623
2624 t = find_default_run_target (NULL);
2625 if (t && t->to_supports_disable_randomization)
2626 return (t->to_supports_disable_randomization) (t);
2627 return 0;
2628 }
2629
2630 int
2631 target_supports_disable_randomization (void)
2632 {
2633 struct target_ops *t;
2634
2635 for (t = &current_target; t != NULL; t = t->beneath)
2636 if (t->to_supports_disable_randomization)
2637 return t->to_supports_disable_randomization (t);
2638
2639 return 0;
2640 }
2641
2642 /* See target/target.h. */
2643
2644 int
2645 target_supports_multi_process (void)
2646 {
2647 return (*current_target.to_supports_multi_process) (&current_target);
2648 }
2649
2650 /* See target.h. */
2651
2652 gdb::unique_xmalloc_ptr<char>
2653 target_get_osdata (const char *type)
2654 {
2655 struct target_ops *t;
2656
2657 /* If we're already connected to something that can get us OS
2658 related data, use it. Otherwise, try using the native
2659 target. */
2660 if (current_target.to_stratum >= process_stratum)
2661 t = current_target.beneath;
2662 else
2663 t = find_default_run_target ("get OS data");
2664
2665 if (!t)
2666 return NULL;
2667
2668 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2669 }
2670
2671 static struct address_space *
2672 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2673 {
2674 struct inferior *inf;
2675
2676 /* Fall-back to the "main" address space of the inferior. */
2677 inf = find_inferior_ptid (ptid);
2678
2679 if (inf == NULL || inf->aspace == NULL)
2680 internal_error (__FILE__, __LINE__,
2681 _("Can't determine the current "
2682 "address space of thread %s\n"),
2683 target_pid_to_str (ptid));
2684
2685 return inf->aspace;
2686 }
2687
2688 /* Determine the current address space of thread PTID. */
2689
2690 struct address_space *
2691 target_thread_address_space (ptid_t ptid)
2692 {
2693 struct address_space *aspace;
2694
2695 aspace = current_target.to_thread_address_space (&current_target, ptid);
2696 gdb_assert (aspace != NULL);
2697
2698 return aspace;
2699 }
2700
2701
2702 /* Target file operations. */
2703
2704 static struct target_ops *
2705 default_fileio_target (void)
2706 {
2707 /* If we're already connected to something that can perform
2708 file I/O, use it. Otherwise, try using the native target. */
2709 if (current_target.to_stratum >= process_stratum)
2710 return current_target.beneath;
2711 else
2712 return find_default_run_target ("file I/O");
2713 }
2714
2715 /* File handle for target file operations. */
2716
2717 typedef struct
2718 {
2719 /* The target on which this file is open. */
2720 struct target_ops *t;
2721
2722 /* The file descriptor on the target. */
2723 int fd;
2724 } fileio_fh_t;
2725
2726 DEF_VEC_O (fileio_fh_t);
2727
2728 /* Vector of currently open file handles. The value returned by
2729 target_fileio_open and passed as the FD argument to other
2730 target_fileio_* functions is an index into this vector. This
2731 vector's entries are never freed; instead, files are marked as
2732 closed, and the handle becomes available for reuse. */
2733 static VEC (fileio_fh_t) *fileio_fhandles;
2734
2735 /* Macro to check whether a fileio_fh_t represents a closed file. */
2736 #define is_closed_fileio_fh(fd) ((fd) < 0)
2737
2738 /* Index into fileio_fhandles of the lowest handle that might be
2739 closed. This permits handle reuse without searching the whole
2740 list each time a new file is opened. */
2741 static int lowest_closed_fd;
2742
2743 /* Acquire a target fileio file descriptor. */
2744
2745 static int
2746 acquire_fileio_fd (struct target_ops *t, int fd)
2747 {
2748 fileio_fh_t *fh;
2749
2750 gdb_assert (!is_closed_fileio_fh (fd));
2751
2752 /* Search for closed handles to reuse. */
2753 for (;
2754 VEC_iterate (fileio_fh_t, fileio_fhandles,
2755 lowest_closed_fd, fh);
2756 lowest_closed_fd++)
2757 if (is_closed_fileio_fh (fh->fd))
2758 break;
2759
2760 /* Push a new handle if no closed handles were found. */
2761 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2762 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2763
2764 /* Fill in the handle. */
2765 fh->t = t;
2766 fh->fd = fd;
2767
2768 /* Return its index, and start the next lookup at
2769 the next index. */
2770 return lowest_closed_fd++;
2771 }
2772
2773 /* Release a target fileio file descriptor. */
2774
2775 static void
2776 release_fileio_fd (int fd, fileio_fh_t *fh)
2777 {
2778 fh->fd = -1;
2779 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2780 }
2781
2782 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2783
2784 #define fileio_fd_to_fh(fd) \
2785 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2786
2787 /* Helper for target_fileio_open and
2788 target_fileio_open_warn_if_slow. */
2789
2790 static int
2791 target_fileio_open_1 (struct inferior *inf, const char *filename,
2792 int flags, int mode, int warn_if_slow,
2793 int *target_errno)
2794 {
2795 struct target_ops *t;
2796
2797 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2798 {
2799 if (t->to_fileio_open != NULL)
2800 {
2801 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2802 warn_if_slow, target_errno);
2803
2804 if (fd < 0)
2805 fd = -1;
2806 else
2807 fd = acquire_fileio_fd (t, fd);
2808
2809 if (targetdebug)
2810 fprintf_unfiltered (gdb_stdlog,
2811 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2812 " = %d (%d)\n",
2813 inf == NULL ? 0 : inf->num,
2814 filename, flags, mode,
2815 warn_if_slow, fd,
2816 fd != -1 ? 0 : *target_errno);
2817 return fd;
2818 }
2819 }
2820
2821 *target_errno = FILEIO_ENOSYS;
2822 return -1;
2823 }
2824
2825 /* See target.h. */
2826
2827 int
2828 target_fileio_open (struct inferior *inf, const char *filename,
2829 int flags, int mode, int *target_errno)
2830 {
2831 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2832 target_errno);
2833 }
2834
2835 /* See target.h. */
2836
2837 int
2838 target_fileio_open_warn_if_slow (struct inferior *inf,
2839 const char *filename,
2840 int flags, int mode, int *target_errno)
2841 {
2842 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2843 target_errno);
2844 }
2845
2846 /* See target.h. */
2847
2848 int
2849 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2850 ULONGEST offset, int *target_errno)
2851 {
2852 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2853 int ret = -1;
2854
2855 if (is_closed_fileio_fh (fh->fd))
2856 *target_errno = EBADF;
2857 else
2858 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2859 len, offset, target_errno);
2860
2861 if (targetdebug)
2862 fprintf_unfiltered (gdb_stdlog,
2863 "target_fileio_pwrite (%d,...,%d,%s) "
2864 "= %d (%d)\n",
2865 fd, len, pulongest (offset),
2866 ret, ret != -1 ? 0 : *target_errno);
2867 return ret;
2868 }
2869
2870 /* See target.h. */
2871
2872 int
2873 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2874 ULONGEST offset, int *target_errno)
2875 {
2876 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2877 int ret = -1;
2878
2879 if (is_closed_fileio_fh (fh->fd))
2880 *target_errno = EBADF;
2881 else
2882 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2883 len, offset, target_errno);
2884
2885 if (targetdebug)
2886 fprintf_unfiltered (gdb_stdlog,
2887 "target_fileio_pread (%d,...,%d,%s) "
2888 "= %d (%d)\n",
2889 fd, len, pulongest (offset),
2890 ret, ret != -1 ? 0 : *target_errno);
2891 return ret;
2892 }
2893
2894 /* See target.h. */
2895
2896 int
2897 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2898 {
2899 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2900 int ret = -1;
2901
2902 if (is_closed_fileio_fh (fh->fd))
2903 *target_errno = EBADF;
2904 else
2905 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2906
2907 if (targetdebug)
2908 fprintf_unfiltered (gdb_stdlog,
2909 "target_fileio_fstat (%d) = %d (%d)\n",
2910 fd, ret, ret != -1 ? 0 : *target_errno);
2911 return ret;
2912 }
2913
2914 /* See target.h. */
2915
2916 int
2917 target_fileio_close (int fd, int *target_errno)
2918 {
2919 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2920 int ret = -1;
2921
2922 if (is_closed_fileio_fh (fh->fd))
2923 *target_errno = EBADF;
2924 else
2925 {
2926 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2927 release_fileio_fd (fd, fh);
2928 }
2929
2930 if (targetdebug)
2931 fprintf_unfiltered (gdb_stdlog,
2932 "target_fileio_close (%d) = %d (%d)\n",
2933 fd, ret, ret != -1 ? 0 : *target_errno);
2934 return ret;
2935 }
2936
2937 /* See target.h. */
2938
2939 int
2940 target_fileio_unlink (struct inferior *inf, const char *filename,
2941 int *target_errno)
2942 {
2943 struct target_ops *t;
2944
2945 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2946 {
2947 if (t->to_fileio_unlink != NULL)
2948 {
2949 int ret = t->to_fileio_unlink (t, inf, filename,
2950 target_errno);
2951
2952 if (targetdebug)
2953 fprintf_unfiltered (gdb_stdlog,
2954 "target_fileio_unlink (%d,%s)"
2955 " = %d (%d)\n",
2956 inf == NULL ? 0 : inf->num, filename,
2957 ret, ret != -1 ? 0 : *target_errno);
2958 return ret;
2959 }
2960 }
2961
2962 *target_errno = FILEIO_ENOSYS;
2963 return -1;
2964 }
2965
2966 /* See target.h. */
2967
2968 char *
2969 target_fileio_readlink (struct inferior *inf, const char *filename,
2970 int *target_errno)
2971 {
2972 struct target_ops *t;
2973
2974 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2975 {
2976 if (t->to_fileio_readlink != NULL)
2977 {
2978 char *ret = t->to_fileio_readlink (t, inf, filename,
2979 target_errno);
2980
2981 if (targetdebug)
2982 fprintf_unfiltered (gdb_stdlog,
2983 "target_fileio_readlink (%d,%s)"
2984 " = %s (%d)\n",
2985 inf == NULL ? 0 : inf->num,
2986 filename, ret? ret : "(nil)",
2987 ret? 0 : *target_errno);
2988 return ret;
2989 }
2990 }
2991
2992 *target_errno = FILEIO_ENOSYS;
2993 return NULL;
2994 }
2995
2996 static void
2997 target_fileio_close_cleanup (void *opaque)
2998 {
2999 int fd = *(int *) opaque;
3000 int target_errno;
3001
3002 target_fileio_close (fd, &target_errno);
3003 }
3004
3005 /* Read target file FILENAME, in the filesystem as seen by INF. If
3006 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3007 remote targets, the remote stub). Store the result in *BUF_P and
3008 return the size of the transferred data. PADDING additional bytes
3009 are available in *BUF_P. This is a helper function for
3010 target_fileio_read_alloc; see the declaration of that function for
3011 more information. */
3012
3013 static LONGEST
3014 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3015 gdb_byte **buf_p, int padding)
3016 {
3017 struct cleanup *close_cleanup;
3018 size_t buf_alloc, buf_pos;
3019 gdb_byte *buf;
3020 LONGEST n;
3021 int fd;
3022 int target_errno;
3023
3024 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3025 &target_errno);
3026 if (fd == -1)
3027 return -1;
3028
3029 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3030
3031 /* Start by reading up to 4K at a time. The target will throttle
3032 this number down if necessary. */
3033 buf_alloc = 4096;
3034 buf = (gdb_byte *) xmalloc (buf_alloc);
3035 buf_pos = 0;
3036 while (1)
3037 {
3038 n = target_fileio_pread (fd, &buf[buf_pos],
3039 buf_alloc - buf_pos - padding, buf_pos,
3040 &target_errno);
3041 if (n < 0)
3042 {
3043 /* An error occurred. */
3044 do_cleanups (close_cleanup);
3045 xfree (buf);
3046 return -1;
3047 }
3048 else if (n == 0)
3049 {
3050 /* Read all there was. */
3051 do_cleanups (close_cleanup);
3052 if (buf_pos == 0)
3053 xfree (buf);
3054 else
3055 *buf_p = buf;
3056 return buf_pos;
3057 }
3058
3059 buf_pos += n;
3060
3061 /* If the buffer is filling up, expand it. */
3062 if (buf_alloc < buf_pos * 2)
3063 {
3064 buf_alloc *= 2;
3065 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3066 }
3067
3068 QUIT;
3069 }
3070 }
3071
3072 /* See target.h. */
3073
3074 LONGEST
3075 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3076 gdb_byte **buf_p)
3077 {
3078 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3079 }
3080
3081 /* See target.h. */
3082
3083 gdb::unique_xmalloc_ptr<char>
3084 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3085 {
3086 gdb_byte *buffer;
3087 char *bufstr;
3088 LONGEST i, transferred;
3089
3090 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3091 bufstr = (char *) buffer;
3092
3093 if (transferred < 0)
3094 return gdb::unique_xmalloc_ptr<char> (nullptr);
3095
3096 if (transferred == 0)
3097 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3098
3099 bufstr[transferred] = 0;
3100
3101 /* Check for embedded NUL bytes; but allow trailing NULs. */
3102 for (i = strlen (bufstr); i < transferred; i++)
3103 if (bufstr[i] != 0)
3104 {
3105 warning (_("target file %s "
3106 "contained unexpected null characters"),
3107 filename);
3108 break;
3109 }
3110
3111 return gdb::unique_xmalloc_ptr<char> (bufstr);
3112 }
3113
3114
3115 static int
3116 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3117 CORE_ADDR addr, int len)
3118 {
3119 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3120 }
3121
3122 static int
3123 default_watchpoint_addr_within_range (struct target_ops *target,
3124 CORE_ADDR addr,
3125 CORE_ADDR start, int length)
3126 {
3127 return addr >= start && addr < start + length;
3128 }
3129
3130 static struct gdbarch *
3131 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3132 {
3133 inferior *inf = find_inferior_ptid (ptid);
3134 gdb_assert (inf != NULL);
3135 return inf->gdbarch;
3136 }
3137
3138 static int
3139 return_zero (struct target_ops *ignore)
3140 {
3141 return 0;
3142 }
3143
3144 static int
3145 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3146 {
3147 return 0;
3148 }
3149
3150 /*
3151 * Find the next target down the stack from the specified target.
3152 */
3153
3154 struct target_ops *
3155 find_target_beneath (struct target_ops *t)
3156 {
3157 return t->beneath;
3158 }
3159
3160 /* See target.h. */
3161
3162 struct target_ops *
3163 find_target_at (enum strata stratum)
3164 {
3165 struct target_ops *t;
3166
3167 for (t = current_target.beneath; t != NULL; t = t->beneath)
3168 if (t->to_stratum == stratum)
3169 return t;
3170
3171 return NULL;
3172 }
3173
3174 \f
3175
3176 /* See target.h */
3177
3178 void
3179 target_announce_detach (int from_tty)
3180 {
3181 pid_t pid;
3182 const char *exec_file;
3183
3184 if (!from_tty)
3185 return;
3186
3187 exec_file = get_exec_file (0);
3188 if (exec_file == NULL)
3189 exec_file = "";
3190
3191 pid = ptid_get_pid (inferior_ptid);
3192 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3193 target_pid_to_str (pid_to_ptid (pid)));
3194 gdb_flush (gdb_stdout);
3195 }
3196
3197 /* The inferior process has died. Long live the inferior! */
3198
3199 void
3200 generic_mourn_inferior (void)
3201 {
3202 ptid_t ptid;
3203
3204 ptid = inferior_ptid;
3205 inferior_ptid = null_ptid;
3206
3207 /* Mark breakpoints uninserted in case something tries to delete a
3208 breakpoint while we delete the inferior's threads (which would
3209 fail, since the inferior is long gone). */
3210 mark_breakpoints_out ();
3211
3212 if (!ptid_equal (ptid, null_ptid))
3213 {
3214 int pid = ptid_get_pid (ptid);
3215 exit_inferior (pid);
3216 }
3217
3218 /* Note this wipes step-resume breakpoints, so needs to be done
3219 after exit_inferior, which ends up referencing the step-resume
3220 breakpoints through clear_thread_inferior_resources. */
3221 breakpoint_init_inferior (inf_exited);
3222
3223 registers_changed ();
3224
3225 reopen_exec_file ();
3226 reinit_frame_cache ();
3227
3228 if (deprecated_detach_hook)
3229 deprecated_detach_hook ();
3230 }
3231 \f
3232 /* Convert a normal process ID to a string. Returns the string in a
3233 static buffer. */
3234
3235 const char *
3236 normal_pid_to_str (ptid_t ptid)
3237 {
3238 static char buf[32];
3239
3240 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3241 return buf;
3242 }
3243
3244 static const char *
3245 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3246 {
3247 return normal_pid_to_str (ptid);
3248 }
3249
3250 /* Error-catcher for target_find_memory_regions. */
3251 static int
3252 dummy_find_memory_regions (struct target_ops *self,
3253 find_memory_region_ftype ignore1, void *ignore2)
3254 {
3255 error (_("Command not implemented for this target."));
3256 return 0;
3257 }
3258
3259 /* Error-catcher for target_make_corefile_notes. */
3260 static char *
3261 dummy_make_corefile_notes (struct target_ops *self,
3262 bfd *ignore1, int *ignore2)
3263 {
3264 error (_("Command not implemented for this target."));
3265 return NULL;
3266 }
3267
3268 /* Set up the handful of non-empty slots needed by the dummy target
3269 vector. */
3270
3271 static void
3272 init_dummy_target (void)
3273 {
3274 dummy_target.to_shortname = "None";
3275 dummy_target.to_longname = "None";
3276 dummy_target.to_doc = "";
3277 dummy_target.to_supports_disable_randomization
3278 = find_default_supports_disable_randomization;
3279 dummy_target.to_stratum = dummy_stratum;
3280 dummy_target.to_has_all_memory = return_zero;
3281 dummy_target.to_has_memory = return_zero;
3282 dummy_target.to_has_stack = return_zero;
3283 dummy_target.to_has_registers = return_zero;
3284 dummy_target.to_has_execution = return_zero_has_execution;
3285 dummy_target.to_magic = OPS_MAGIC;
3286
3287 install_dummy_methods (&dummy_target);
3288 }
3289 \f
3290
3291 void
3292 target_close (struct target_ops *targ)
3293 {
3294 gdb_assert (!target_is_pushed (targ));
3295
3296 if (targ->to_xclose != NULL)
3297 targ->to_xclose (targ);
3298 else if (targ->to_close != NULL)
3299 targ->to_close (targ);
3300
3301 if (targetdebug)
3302 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3303 }
3304
3305 int
3306 target_thread_alive (ptid_t ptid)
3307 {
3308 return current_target.to_thread_alive (&current_target, ptid);
3309 }
3310
3311 void
3312 target_update_thread_list (void)
3313 {
3314 current_target.to_update_thread_list (&current_target);
3315 }
3316
3317 void
3318 target_stop (ptid_t ptid)
3319 {
3320 if (!may_stop)
3321 {
3322 warning (_("May not interrupt or stop the target, ignoring attempt"));
3323 return;
3324 }
3325
3326 (*current_target.to_stop) (&current_target, ptid);
3327 }
3328
3329 void
3330 target_interrupt (ptid_t ptid)
3331 {
3332 if (!may_stop)
3333 {
3334 warning (_("May not interrupt or stop the target, ignoring attempt"));
3335 return;
3336 }
3337
3338 (*current_target.to_interrupt) (&current_target, ptid);
3339 }
3340
3341 /* See target.h. */
3342
3343 void
3344 target_pass_ctrlc (void)
3345 {
3346 (*current_target.to_pass_ctrlc) (&current_target);
3347 }
3348
3349 /* See target.h. */
3350
3351 void
3352 default_target_pass_ctrlc (struct target_ops *ops)
3353 {
3354 target_interrupt (inferior_ptid);
3355 }
3356
3357 /* See target/target.h. */
3358
3359 void
3360 target_stop_and_wait (ptid_t ptid)
3361 {
3362 struct target_waitstatus status;
3363 int was_non_stop = non_stop;
3364
3365 non_stop = 1;
3366 target_stop (ptid);
3367
3368 memset (&status, 0, sizeof (status));
3369 target_wait (ptid, &status, 0);
3370
3371 non_stop = was_non_stop;
3372 }
3373
3374 /* See target/target.h. */
3375
3376 void
3377 target_continue_no_signal (ptid_t ptid)
3378 {
3379 target_resume (ptid, 0, GDB_SIGNAL_0);
3380 }
3381
3382 /* See target/target.h. */
3383
3384 void
3385 target_continue (ptid_t ptid, enum gdb_signal signal)
3386 {
3387 target_resume (ptid, 0, signal);
3388 }
3389
3390 /* Concatenate ELEM to LIST, a comma separate list, and return the
3391 result. The LIST incoming argument is released. */
3392
3393 static char *
3394 str_comma_list_concat_elem (char *list, const char *elem)
3395 {
3396 if (list == NULL)
3397 return xstrdup (elem);
3398 else
3399 return reconcat (list, list, ", ", elem, (char *) NULL);
3400 }
3401
3402 /* Helper for target_options_to_string. If OPT is present in
3403 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3404 Returns the new resulting string. OPT is removed from
3405 TARGET_OPTIONS. */
3406
3407 static char *
3408 do_option (int *target_options, char *ret,
3409 int opt, const char *opt_str)
3410 {
3411 if ((*target_options & opt) != 0)
3412 {
3413 ret = str_comma_list_concat_elem (ret, opt_str);
3414 *target_options &= ~opt;
3415 }
3416
3417 return ret;
3418 }
3419
3420 char *
3421 target_options_to_string (int target_options)
3422 {
3423 char *ret = NULL;
3424
3425 #define DO_TARG_OPTION(OPT) \
3426 ret = do_option (&target_options, ret, OPT, #OPT)
3427
3428 DO_TARG_OPTION (TARGET_WNOHANG);
3429
3430 if (target_options != 0)
3431 ret = str_comma_list_concat_elem (ret, "unknown???");
3432
3433 if (ret == NULL)
3434 ret = xstrdup ("");
3435 return ret;
3436 }
3437
3438 void
3439 target_fetch_registers (struct regcache *regcache, int regno)
3440 {
3441 current_target.to_fetch_registers (&current_target, regcache, regno);
3442 if (targetdebug)
3443 regcache->debug_print_register ("target_fetch_registers", regno);
3444 }
3445
3446 void
3447 target_store_registers (struct regcache *regcache, int regno)
3448 {
3449 if (!may_write_registers)
3450 error (_("Writing to registers is not allowed (regno %d)"), regno);
3451
3452 current_target.to_store_registers (&current_target, regcache, regno);
3453 if (targetdebug)
3454 {
3455 regcache->debug_print_register ("target_store_registers", regno);
3456 }
3457 }
3458
3459 int
3460 target_core_of_thread (ptid_t ptid)
3461 {
3462 return current_target.to_core_of_thread (&current_target, ptid);
3463 }
3464
3465 int
3466 simple_verify_memory (struct target_ops *ops,
3467 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3468 {
3469 LONGEST total_xfered = 0;
3470
3471 while (total_xfered < size)
3472 {
3473 ULONGEST xfered_len;
3474 enum target_xfer_status status;
3475 gdb_byte buf[1024];
3476 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3477
3478 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3479 buf, NULL, lma + total_xfered, howmuch,
3480 &xfered_len);
3481 if (status == TARGET_XFER_OK
3482 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3483 {
3484 total_xfered += xfered_len;
3485 QUIT;
3486 }
3487 else
3488 return 0;
3489 }
3490 return 1;
3491 }
3492
3493 /* Default implementation of memory verification. */
3494
3495 static int
3496 default_verify_memory (struct target_ops *self,
3497 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3498 {
3499 /* Start over from the top of the target stack. */
3500 return simple_verify_memory (current_target.beneath,
3501 data, memaddr, size);
3502 }
3503
3504 int
3505 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3506 {
3507 return current_target.to_verify_memory (&current_target,
3508 data, memaddr, size);
3509 }
3510
3511 /* The documentation for this function is in its prototype declaration in
3512 target.h. */
3513
3514 int
3515 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3516 enum target_hw_bp_type rw)
3517 {
3518 return current_target.to_insert_mask_watchpoint (&current_target,
3519 addr, mask, rw);
3520 }
3521
3522 /* The documentation for this function is in its prototype declaration in
3523 target.h. */
3524
3525 int
3526 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3527 enum target_hw_bp_type rw)
3528 {
3529 return current_target.to_remove_mask_watchpoint (&current_target,
3530 addr, mask, rw);
3531 }
3532
3533 /* The documentation for this function is in its prototype declaration
3534 in target.h. */
3535
3536 int
3537 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3538 {
3539 return current_target.to_masked_watch_num_registers (&current_target,
3540 addr, mask);
3541 }
3542
3543 /* The documentation for this function is in its prototype declaration
3544 in target.h. */
3545
3546 int
3547 target_ranged_break_num_registers (void)
3548 {
3549 return current_target.to_ranged_break_num_registers (&current_target);
3550 }
3551
3552 /* See target.h. */
3553
3554 int
3555 target_supports_btrace (enum btrace_format format)
3556 {
3557 return current_target.to_supports_btrace (&current_target, format);
3558 }
3559
3560 /* See target.h. */
3561
3562 struct btrace_target_info *
3563 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3564 {
3565 return current_target.to_enable_btrace (&current_target, ptid, conf);
3566 }
3567
3568 /* See target.h. */
3569
3570 void
3571 target_disable_btrace (struct btrace_target_info *btinfo)
3572 {
3573 current_target.to_disable_btrace (&current_target, btinfo);
3574 }
3575
3576 /* See target.h. */
3577
3578 void
3579 target_teardown_btrace (struct btrace_target_info *btinfo)
3580 {
3581 current_target.to_teardown_btrace (&current_target, btinfo);
3582 }
3583
3584 /* See target.h. */
3585
3586 enum btrace_error
3587 target_read_btrace (struct btrace_data *btrace,
3588 struct btrace_target_info *btinfo,
3589 enum btrace_read_type type)
3590 {
3591 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3592 }
3593
3594 /* See target.h. */
3595
3596 const struct btrace_config *
3597 target_btrace_conf (const struct btrace_target_info *btinfo)
3598 {
3599 return current_target.to_btrace_conf (&current_target, btinfo);
3600 }
3601
3602 /* See target.h. */
3603
3604 void
3605 target_stop_recording (void)
3606 {
3607 current_target.to_stop_recording (&current_target);
3608 }
3609
3610 /* See target.h. */
3611
3612 void
3613 target_save_record (const char *filename)
3614 {
3615 current_target.to_save_record (&current_target, filename);
3616 }
3617
3618 /* See target.h. */
3619
3620 int
3621 target_supports_delete_record (void)
3622 {
3623 struct target_ops *t;
3624
3625 for (t = current_target.beneath; t != NULL; t = t->beneath)
3626 if (t->to_delete_record != delegate_delete_record
3627 && t->to_delete_record != tdefault_delete_record)
3628 return 1;
3629
3630 return 0;
3631 }
3632
3633 /* See target.h. */
3634
3635 void
3636 target_delete_record (void)
3637 {
3638 current_target.to_delete_record (&current_target);
3639 }
3640
3641 /* See target.h. */
3642
3643 enum record_method
3644 target_record_method (ptid_t ptid)
3645 {
3646 return current_target.to_record_method (&current_target, ptid);
3647 }
3648
3649 /* See target.h. */
3650
3651 int
3652 target_record_is_replaying (ptid_t ptid)
3653 {
3654 return current_target.to_record_is_replaying (&current_target, ptid);
3655 }
3656
3657 /* See target.h. */
3658
3659 int
3660 target_record_will_replay (ptid_t ptid, int dir)
3661 {
3662 return current_target.to_record_will_replay (&current_target, ptid, dir);
3663 }
3664
3665 /* See target.h. */
3666
3667 void
3668 target_record_stop_replaying (void)
3669 {
3670 current_target.to_record_stop_replaying (&current_target);
3671 }
3672
3673 /* See target.h. */
3674
3675 void
3676 target_goto_record_begin (void)
3677 {
3678 current_target.to_goto_record_begin (&current_target);
3679 }
3680
3681 /* See target.h. */
3682
3683 void
3684 target_goto_record_end (void)
3685 {
3686 current_target.to_goto_record_end (&current_target);
3687 }
3688
3689 /* See target.h. */
3690
3691 void
3692 target_goto_record (ULONGEST insn)
3693 {
3694 current_target.to_goto_record (&current_target, insn);
3695 }
3696
3697 /* See target.h. */
3698
3699 void
3700 target_insn_history (int size, gdb_disassembly_flags flags)
3701 {
3702 current_target.to_insn_history (&current_target, size, flags);
3703 }
3704
3705 /* See target.h. */
3706
3707 void
3708 target_insn_history_from (ULONGEST from, int size,
3709 gdb_disassembly_flags flags)
3710 {
3711 current_target.to_insn_history_from (&current_target, from, size, flags);
3712 }
3713
3714 /* See target.h. */
3715
3716 void
3717 target_insn_history_range (ULONGEST begin, ULONGEST end,
3718 gdb_disassembly_flags flags)
3719 {
3720 current_target.to_insn_history_range (&current_target, begin, end, flags);
3721 }
3722
3723 /* See target.h. */
3724
3725 void
3726 target_call_history (int size, int flags)
3727 {
3728 current_target.to_call_history (&current_target, size, flags);
3729 }
3730
3731 /* See target.h. */
3732
3733 void
3734 target_call_history_from (ULONGEST begin, int size, int flags)
3735 {
3736 current_target.to_call_history_from (&current_target, begin, size, flags);
3737 }
3738
3739 /* See target.h. */
3740
3741 void
3742 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3743 {
3744 current_target.to_call_history_range (&current_target, begin, end, flags);
3745 }
3746
3747 /* See target.h. */
3748
3749 const struct frame_unwind *
3750 target_get_unwinder (void)
3751 {
3752 return current_target.to_get_unwinder (&current_target);
3753 }
3754
3755 /* See target.h. */
3756
3757 const struct frame_unwind *
3758 target_get_tailcall_unwinder (void)
3759 {
3760 return current_target.to_get_tailcall_unwinder (&current_target);
3761 }
3762
3763 /* See target.h. */
3764
3765 void
3766 target_prepare_to_generate_core (void)
3767 {
3768 current_target.to_prepare_to_generate_core (&current_target);
3769 }
3770
3771 /* See target.h. */
3772
3773 void
3774 target_done_generating_core (void)
3775 {
3776 current_target.to_done_generating_core (&current_target);
3777 }
3778
3779 static void
3780 setup_target_debug (void)
3781 {
3782 memcpy (&debug_target, &current_target, sizeof debug_target);
3783
3784 init_debug_target (&current_target);
3785 }
3786 \f
3787
3788 static char targ_desc[] =
3789 "Names of targets and files being debugged.\nShows the entire \
3790 stack of targets currently in use (including the exec-file,\n\
3791 core-file, and process, if any), as well as the symbol file name.";
3792
3793 static void
3794 default_rcmd (struct target_ops *self, const char *command,
3795 struct ui_file *output)
3796 {
3797 error (_("\"monitor\" command not supported by this target."));
3798 }
3799
3800 static void
3801 do_monitor_command (char *cmd,
3802 int from_tty)
3803 {
3804 target_rcmd (cmd, gdb_stdtarg);
3805 }
3806
3807 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3808 ignored. */
3809
3810 void
3811 flash_erase_command (char *cmd, int from_tty)
3812 {
3813 /* Used to communicate termination of flash operations to the target. */
3814 bool found_flash_region = false;
3815 struct gdbarch *gdbarch = target_gdbarch ();
3816
3817 std::vector<mem_region> mem_regions = target_memory_map ();
3818
3819 /* Iterate over all memory regions. */
3820 for (const mem_region &m : mem_regions)
3821 {
3822 /* Is this a flash memory region? */
3823 if (m.attrib.mode == MEM_FLASH)
3824 {
3825 found_flash_region = true;
3826 target_flash_erase (m.lo, m.hi - m.lo);
3827
3828 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3829
3830 current_uiout->message (_("Erasing flash memory region at address "));
3831 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3832 current_uiout->message (", size = ");
3833 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3834 current_uiout->message ("\n");
3835 }
3836 }
3837
3838 /* Did we do any flash operations? If so, we need to finalize them. */
3839 if (found_flash_region)
3840 target_flash_done ();
3841 else
3842 current_uiout->message (_("No flash memory regions found.\n"));
3843 }
3844
3845 /* Print the name of each layers of our target stack. */
3846
3847 static void
3848 maintenance_print_target_stack (const char *cmd, int from_tty)
3849 {
3850 struct target_ops *t;
3851
3852 printf_filtered (_("The current target stack is:\n"));
3853
3854 for (t = target_stack; t != NULL; t = t->beneath)
3855 {
3856 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3857 }
3858 }
3859
3860 /* See target.h. */
3861
3862 void
3863 target_async (int enable)
3864 {
3865 infrun_async (enable);
3866 current_target.to_async (&current_target, enable);
3867 }
3868
3869 /* See target.h. */
3870
3871 void
3872 target_thread_events (int enable)
3873 {
3874 current_target.to_thread_events (&current_target, enable);
3875 }
3876
3877 /* Controls if targets can report that they can/are async. This is
3878 just for maintainers to use when debugging gdb. */
3879 int target_async_permitted = 1;
3880
3881 /* The set command writes to this variable. If the inferior is
3882 executing, target_async_permitted is *not* updated. */
3883 static int target_async_permitted_1 = 1;
3884
3885 static void
3886 maint_set_target_async_command (char *args, int from_tty,
3887 struct cmd_list_element *c)
3888 {
3889 if (have_live_inferiors ())
3890 {
3891 target_async_permitted_1 = target_async_permitted;
3892 error (_("Cannot change this setting while the inferior is running."));
3893 }
3894
3895 target_async_permitted = target_async_permitted_1;
3896 }
3897
3898 static void
3899 maint_show_target_async_command (struct ui_file *file, int from_tty,
3900 struct cmd_list_element *c,
3901 const char *value)
3902 {
3903 fprintf_filtered (file,
3904 _("Controlling the inferior in "
3905 "asynchronous mode is %s.\n"), value);
3906 }
3907
3908 /* Return true if the target operates in non-stop mode even with "set
3909 non-stop off". */
3910
3911 static int
3912 target_always_non_stop_p (void)
3913 {
3914 return current_target.to_always_non_stop_p (&current_target);
3915 }
3916
3917 /* See target.h. */
3918
3919 int
3920 target_is_non_stop_p (void)
3921 {
3922 return (non_stop
3923 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3924 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3925 && target_always_non_stop_p ()));
3926 }
3927
3928 /* Controls if targets can report that they always run in non-stop
3929 mode. This is just for maintainers to use when debugging gdb. */
3930 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3931
3932 /* The set command writes to this variable. If the inferior is
3933 executing, target_non_stop_enabled is *not* updated. */
3934 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3935
3936 /* Implementation of "maint set target-non-stop". */
3937
3938 static void
3939 maint_set_target_non_stop_command (char *args, int from_tty,
3940 struct cmd_list_element *c)
3941 {
3942 if (have_live_inferiors ())
3943 {
3944 target_non_stop_enabled_1 = target_non_stop_enabled;
3945 error (_("Cannot change this setting while the inferior is running."));
3946 }
3947
3948 target_non_stop_enabled = target_non_stop_enabled_1;
3949 }
3950
3951 /* Implementation of "maint show target-non-stop". */
3952
3953 static void
3954 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3955 struct cmd_list_element *c,
3956 const char *value)
3957 {
3958 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3959 fprintf_filtered (file,
3960 _("Whether the target is always in non-stop mode "
3961 "is %s (currently %s).\n"), value,
3962 target_always_non_stop_p () ? "on" : "off");
3963 else
3964 fprintf_filtered (file,
3965 _("Whether the target is always in non-stop mode "
3966 "is %s.\n"), value);
3967 }
3968
3969 /* Temporary copies of permission settings. */
3970
3971 static int may_write_registers_1 = 1;
3972 static int may_write_memory_1 = 1;
3973 static int may_insert_breakpoints_1 = 1;
3974 static int may_insert_tracepoints_1 = 1;
3975 static int may_insert_fast_tracepoints_1 = 1;
3976 static int may_stop_1 = 1;
3977
3978 /* Make the user-set values match the real values again. */
3979
3980 void
3981 update_target_permissions (void)
3982 {
3983 may_write_registers_1 = may_write_registers;
3984 may_write_memory_1 = may_write_memory;
3985 may_insert_breakpoints_1 = may_insert_breakpoints;
3986 may_insert_tracepoints_1 = may_insert_tracepoints;
3987 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3988 may_stop_1 = may_stop;
3989 }
3990
3991 /* The one function handles (most of) the permission flags in the same
3992 way. */
3993
3994 static void
3995 set_target_permissions (char *args, int from_tty,
3996 struct cmd_list_element *c)
3997 {
3998 if (target_has_execution)
3999 {
4000 update_target_permissions ();
4001 error (_("Cannot change this setting while the inferior is running."));
4002 }
4003
4004 /* Make the real values match the user-changed values. */
4005 may_write_registers = may_write_registers_1;
4006 may_insert_breakpoints = may_insert_breakpoints_1;
4007 may_insert_tracepoints = may_insert_tracepoints_1;
4008 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4009 may_stop = may_stop_1;
4010 update_observer_mode ();
4011 }
4012
4013 /* Set memory write permission independently of observer mode. */
4014
4015 static void
4016 set_write_memory_permission (char *args, int from_tty,
4017 struct cmd_list_element *c)
4018 {
4019 /* Make the real values match the user-changed values. */
4020 may_write_memory = may_write_memory_1;
4021 update_observer_mode ();
4022 }
4023
4024
4025 void
4026 initialize_targets (void)
4027 {
4028 init_dummy_target ();
4029 push_target (&dummy_target);
4030
4031 add_info ("target", info_target_command, targ_desc);
4032 add_info ("files", info_target_command, targ_desc);
4033
4034 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4035 Set target debugging."), _("\
4036 Show target debugging."), _("\
4037 When non-zero, target debugging is enabled. Higher numbers are more\n\
4038 verbose."),
4039 set_targetdebug,
4040 show_targetdebug,
4041 &setdebuglist, &showdebuglist);
4042
4043 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4044 &trust_readonly, _("\
4045 Set mode for reading from readonly sections."), _("\
4046 Show mode for reading from readonly sections."), _("\
4047 When this mode is on, memory reads from readonly sections (such as .text)\n\
4048 will be read from the object file instead of from the target. This will\n\
4049 result in significant performance improvement for remote targets."),
4050 NULL,
4051 show_trust_readonly,
4052 &setlist, &showlist);
4053
4054 add_com ("monitor", class_obscure, do_monitor_command,
4055 _("Send a command to the remote monitor (remote targets only)."));
4056
4057 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4058 _("Print the name of each layer of the internal target stack."),
4059 &maintenanceprintlist);
4060
4061 add_setshow_boolean_cmd ("target-async", no_class,
4062 &target_async_permitted_1, _("\
4063 Set whether gdb controls the inferior in asynchronous mode."), _("\
4064 Show whether gdb controls the inferior in asynchronous mode."), _("\
4065 Tells gdb whether to control the inferior in asynchronous mode."),
4066 maint_set_target_async_command,
4067 maint_show_target_async_command,
4068 &maintenance_set_cmdlist,
4069 &maintenance_show_cmdlist);
4070
4071 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4072 &target_non_stop_enabled_1, _("\
4073 Set whether gdb always controls the inferior in non-stop mode."), _("\
4074 Show whether gdb always controls the inferior in non-stop mode."), _("\
4075 Tells gdb whether to control the inferior in non-stop mode."),
4076 maint_set_target_non_stop_command,
4077 maint_show_target_non_stop_command,
4078 &maintenance_set_cmdlist,
4079 &maintenance_show_cmdlist);
4080
4081 add_setshow_boolean_cmd ("may-write-registers", class_support,
4082 &may_write_registers_1, _("\
4083 Set permission to write into registers."), _("\
4084 Show permission to write into registers."), _("\
4085 When this permission is on, GDB may write into the target's registers.\n\
4086 Otherwise, any sort of write attempt will result in an error."),
4087 set_target_permissions, NULL,
4088 &setlist, &showlist);
4089
4090 add_setshow_boolean_cmd ("may-write-memory", class_support,
4091 &may_write_memory_1, _("\
4092 Set permission to write into target memory."), _("\
4093 Show permission to write into target memory."), _("\
4094 When this permission is on, GDB may write into the target's memory.\n\
4095 Otherwise, any sort of write attempt will result in an error."),
4096 set_write_memory_permission, NULL,
4097 &setlist, &showlist);
4098
4099 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4100 &may_insert_breakpoints_1, _("\
4101 Set permission to insert breakpoints in the target."), _("\
4102 Show permission to insert breakpoints in the target."), _("\
4103 When this permission is on, GDB may insert breakpoints in the program.\n\
4104 Otherwise, any sort of insertion attempt will result in an error."),
4105 set_target_permissions, NULL,
4106 &setlist, &showlist);
4107
4108 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4109 &may_insert_tracepoints_1, _("\
4110 Set permission to insert tracepoints in the target."), _("\
4111 Show permission to insert tracepoints in the target."), _("\
4112 When this permission is on, GDB may insert tracepoints in the program.\n\
4113 Otherwise, any sort of insertion attempt will result in an error."),
4114 set_target_permissions, NULL,
4115 &setlist, &showlist);
4116
4117 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4118 &may_insert_fast_tracepoints_1, _("\
4119 Set permission to insert fast tracepoints in the target."), _("\
4120 Show permission to insert fast tracepoints in the target."), _("\
4121 When this permission is on, GDB may insert fast tracepoints.\n\
4122 Otherwise, any sort of insertion attempt will result in an error."),
4123 set_target_permissions, NULL,
4124 &setlist, &showlist);
4125
4126 add_setshow_boolean_cmd ("may-interrupt", class_support,
4127 &may_stop_1, _("\
4128 Set permission to interrupt or signal the target."), _("\
4129 Show permission to interrupt or signal the target."), _("\
4130 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4131 Otherwise, any attempt to interrupt or stop will be ignored."),
4132 set_target_permissions, NULL,
4133 &setlist, &showlist);
4134
4135 add_com ("flash-erase", no_class, flash_erase_command,
4136 _("Erase all flash memory regions."));
4137
4138 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4139 &auto_connect_native_target, _("\
4140 Set whether GDB may automatically connect to the native target."), _("\
4141 Show whether GDB may automatically connect to the native target."), _("\
4142 When on, and GDB is not connected to a target yet, GDB\n\
4143 attempts \"run\" and other commands with the native target."),
4144 NULL, show_auto_connect_native_target,
4145 &setlist, &showlist);
4146 }
This page took 0.149979 seconds and 5 git commands to generate.