Return gdb::optional<std::string> from target_fileio_readlink
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51
52 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53
54 static void default_terminal_info (struct target_ops *, const char *, int);
55
56 static int default_watchpoint_addr_within_range (struct target_ops *,
57 CORE_ADDR, CORE_ADDR, int);
58
59 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
60 CORE_ADDR, int);
61
62 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
63
64 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
65 long lwp, long tid);
66
67 static int default_follow_fork (struct target_ops *self, int follow_child,
68 int detach_fork);
69
70 static void default_mourn_inferior (struct target_ops *self);
71
72 static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79 static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83 static struct address_space *default_thread_address_space
84 (struct target_ops *self, ptid_t ptid);
85
86 static void tcomplain (void) ATTRIBUTE_NORETURN;
87
88 static int return_zero (struct target_ops *);
89
90 static int return_zero_has_execution (struct target_ops *, ptid_t);
91
92 static struct target_ops *find_default_run_target (const char *);
93
94 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 ptid_t ptid);
96
97 static int dummy_find_memory_regions (struct target_ops *self,
98 find_memory_region_ftype ignore1,
99 void *ignore2);
100
101 static char *dummy_make_corefile_notes (struct target_ops *self,
102 bfd *ignore1, int *ignore2);
103
104 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105
106 static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
109 static struct target_ops debug_target;
110
111 #include "target-delegates.c"
112
113 static void init_dummy_target (void);
114
115 static void update_current_target (void);
116
117 /* Vector of existing target structures. */
118 typedef struct target_ops *target_ops_p;
119 DEF_VEC_P (target_ops_p);
120 static VEC (target_ops_p) *target_structs;
121
122 /* The initial current target, so that there is always a semi-valid
123 current target. */
124
125 static struct target_ops dummy_target;
126
127 /* Top of target stack. */
128
129 static struct target_ops *target_stack;
130
131 /* The target structure we are currently using to talk to a process
132 or file or whatever "inferior" we have. */
133
134 struct target_ops current_target;
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 update_current_target ();
174 }
175
176 static void
177 show_targetdebug (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
181 }
182
183 static void setup_target_debug (void);
184
185 /* The user just typed 'target' without the name of a target. */
186
187 static void
188 target_command (const char *arg, int from_tty)
189 {
190 fputs_filtered ("Argument required (target name). Try `help target'\n",
191 gdb_stdout);
192 }
193
194 /* Default target_has_* methods for process_stratum targets. */
195
196 int
197 default_child_has_all_memory (struct target_ops *ops)
198 {
199 /* If no inferior selected, then we can't read memory here. */
200 if (ptid_equal (inferior_ptid, null_ptid))
201 return 0;
202
203 return 1;
204 }
205
206 int
207 default_child_has_memory (struct target_ops *ops)
208 {
209 /* If no inferior selected, then we can't read memory here. */
210 if (ptid_equal (inferior_ptid, null_ptid))
211 return 0;
212
213 return 1;
214 }
215
216 int
217 default_child_has_stack (struct target_ops *ops)
218 {
219 /* If no inferior selected, there's no stack. */
220 if (ptid_equal (inferior_ptid, null_ptid))
221 return 0;
222
223 return 1;
224 }
225
226 int
227 default_child_has_registers (struct target_ops *ops)
228 {
229 /* Can't read registers from no inferior. */
230 if (ptid_equal (inferior_ptid, null_ptid))
231 return 0;
232
233 return 1;
234 }
235
236 int
237 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
238 {
239 /* If there's no thread selected, then we can't make it run through
240 hoops. */
241 if (ptid_equal (the_ptid, null_ptid))
242 return 0;
243
244 return 1;
245 }
246
247
248 int
249 target_has_all_memory_1 (void)
250 {
251 struct target_ops *t;
252
253 for (t = current_target.beneath; t != NULL; t = t->beneath)
254 if (t->to_has_all_memory (t))
255 return 1;
256
257 return 0;
258 }
259
260 int
261 target_has_memory_1 (void)
262 {
263 struct target_ops *t;
264
265 for (t = current_target.beneath; t != NULL; t = t->beneath)
266 if (t->to_has_memory (t))
267 return 1;
268
269 return 0;
270 }
271
272 int
273 target_has_stack_1 (void)
274 {
275 struct target_ops *t;
276
277 for (t = current_target.beneath; t != NULL; t = t->beneath)
278 if (t->to_has_stack (t))
279 return 1;
280
281 return 0;
282 }
283
284 int
285 target_has_registers_1 (void)
286 {
287 struct target_ops *t;
288
289 for (t = current_target.beneath; t != NULL; t = t->beneath)
290 if (t->to_has_registers (t))
291 return 1;
292
293 return 0;
294 }
295
296 int
297 target_has_execution_1 (ptid_t the_ptid)
298 {
299 struct target_ops *t;
300
301 for (t = current_target.beneath; t != NULL; t = t->beneath)
302 if (t->to_has_execution (t, the_ptid))
303 return 1;
304
305 return 0;
306 }
307
308 int
309 target_has_execution_current (void)
310 {
311 return target_has_execution_1 (inferior_ptid);
312 }
313
314 /* Complete initialization of T. This ensures that various fields in
315 T are set, if needed by the target implementation. */
316
317 void
318 complete_target_initialization (struct target_ops *t)
319 {
320 /* Provide default values for all "must have" methods. */
321
322 if (t->to_has_all_memory == NULL)
323 t->to_has_all_memory = return_zero;
324
325 if (t->to_has_memory == NULL)
326 t->to_has_memory = return_zero;
327
328 if (t->to_has_stack == NULL)
329 t->to_has_stack = return_zero;
330
331 if (t->to_has_registers == NULL)
332 t->to_has_registers = return_zero;
333
334 if (t->to_has_execution == NULL)
335 t->to_has_execution = return_zero_has_execution;
336
337 /* These methods can be called on an unpushed target and so require
338 a default implementation if the target might plausibly be the
339 default run target. */
340 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
341 && t->to_supports_non_stop != NULL));
342
343 install_delegators (t);
344 }
345
346 /* This is used to implement the various target commands. */
347
348 static void
349 open_target (const char *args, int from_tty, struct cmd_list_element *command)
350 {
351 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
352
353 if (targetdebug)
354 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
355 ops->to_shortname);
356
357 ops->to_open (args, from_tty);
358
359 if (targetdebug)
360 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
361 ops->to_shortname, args, from_tty);
362 }
363
364 /* Add possible target architecture T to the list and add a new
365 command 'target T->to_shortname'. Set COMPLETER as the command's
366 completer if not NULL. */
367
368 void
369 add_target_with_completer (struct target_ops *t,
370 completer_ftype *completer)
371 {
372 struct cmd_list_element *c;
373
374 complete_target_initialization (t);
375
376 VEC_safe_push (target_ops_p, target_structs, t);
377
378 if (targetlist == NULL)
379 add_prefix_cmd ("target", class_run, target_command, _("\
380 Connect to a target machine or process.\n\
381 The first argument is the type or protocol of the target machine.\n\
382 Remaining arguments are interpreted by the target protocol. For more\n\
383 information on the arguments for a particular protocol, type\n\
384 `help target ' followed by the protocol name."),
385 &targetlist, "target ", 0, &cmdlist);
386 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
387 set_cmd_sfunc (c, open_target);
388 set_cmd_context (c, t);
389 if (completer != NULL)
390 set_cmd_completer (c, completer);
391 }
392
393 /* Add a possible target architecture to the list. */
394
395 void
396 add_target (struct target_ops *t)
397 {
398 add_target_with_completer (t, NULL);
399 }
400
401 /* See target.h. */
402
403 void
404 add_deprecated_target_alias (struct target_ops *t, const char *alias)
405 {
406 struct cmd_list_element *c;
407 char *alt;
408
409 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
410 see PR cli/15104. */
411 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
412 set_cmd_sfunc (c, open_target);
413 set_cmd_context (c, t);
414 alt = xstrprintf ("target %s", t->to_shortname);
415 deprecate_cmd (c, alt);
416 }
417
418 /* Stub functions */
419
420 void
421 target_kill (void)
422 {
423 current_target.to_kill (&current_target);
424 }
425
426 void
427 target_load (const char *arg, int from_tty)
428 {
429 target_dcache_invalidate ();
430 (*current_target.to_load) (&current_target, arg, from_tty);
431 }
432
433 /* Define it. */
434
435 target_terminal_state target_terminal::m_terminal_state
436 = target_terminal_state::is_ours;
437
438 /* See target/target.h. */
439
440 void
441 target_terminal::init (void)
442 {
443 (*current_target.to_terminal_init) (&current_target);
444
445 m_terminal_state = target_terminal_state::is_ours;
446 }
447
448 /* See target/target.h. */
449
450 void
451 target_terminal::inferior (void)
452 {
453 struct ui *ui = current_ui;
454
455 /* A background resume (``run&'') should leave GDB in control of the
456 terminal. */
457 if (ui->prompt_state != PROMPT_BLOCKED)
458 return;
459
460 /* Since we always run the inferior in the main console (unless "set
461 inferior-tty" is in effect), when some UI other than the main one
462 calls target_terminal::inferior, then we leave the main UI's
463 terminal settings as is. */
464 if (ui != main_ui)
465 return;
466
467 /* If GDB is resuming the inferior in the foreground, install
468 inferior's terminal modes. */
469
470 struct inferior *inf = current_inferior ();
471
472 if (inf->terminal_state != target_terminal_state::is_inferior)
473 {
474 (*current_target.to_terminal_inferior) (&current_target);
475 inf->terminal_state = target_terminal_state::is_inferior;
476 }
477
478 m_terminal_state = target_terminal_state::is_inferior;
479
480 /* If the user hit C-c before, pretend that it was hit right
481 here. */
482 if (check_quit_flag ())
483 target_pass_ctrlc ();
484 }
485
486 /* See target/target.h. */
487
488 void
489 target_terminal::restore_inferior (void)
490 {
491 struct ui *ui = current_ui;
492
493 /* See target_terminal::inferior(). */
494 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
495 return;
496
497 /* Restore the terminal settings of inferiors that were in the
498 foreground but are now ours_for_output due to a temporary
499 target_target::ours_for_output() call. */
500
501 {
502 scoped_restore_current_inferior restore_inferior;
503 struct inferior *inf;
504
505 ALL_INFERIORS (inf)
506 {
507 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
508 {
509 set_current_inferior (inf);
510 (*current_target.to_terminal_inferior) (&current_target);
511 inf->terminal_state = target_terminal_state::is_inferior;
512 }
513 }
514 }
515
516 m_terminal_state = target_terminal_state::is_inferior;
517
518 /* If the user hit C-c before, pretend that it was hit right
519 here. */
520 if (check_quit_flag ())
521 target_pass_ctrlc ();
522 }
523
524 /* Switch terminal state to DESIRED_STATE, either is_ours, or
525 is_ours_for_output. */
526
527 static void
528 target_terminal_is_ours_kind (target_terminal_state desired_state)
529 {
530 scoped_restore_current_inferior restore_inferior;
531 struct inferior *inf;
532
533 /* Must do this in two passes. First, have all inferiors save the
534 current terminal settings. Then, after all inferiors have add a
535 chance to safely save the terminal settings, restore GDB's
536 terminal settings. */
537
538 ALL_INFERIORS (inf)
539 {
540 if (inf->terminal_state == target_terminal_state::is_inferior)
541 {
542 set_current_inferior (inf);
543 (*current_target.to_terminal_save_inferior) (&current_target);
544 }
545 }
546
547 ALL_INFERIORS (inf)
548 {
549 /* Note we don't check is_inferior here like above because we
550 need to handle 'is_ours_for_output -> is_ours' too. Careful
551 to never transition from 'is_ours' to 'is_ours_for_output',
552 though. */
553 if (inf->terminal_state != target_terminal_state::is_ours
554 && inf->terminal_state != desired_state)
555 {
556 set_current_inferior (inf);
557 if (desired_state == target_terminal_state::is_ours)
558 (*current_target.to_terminal_ours) (&current_target);
559 else if (desired_state == target_terminal_state::is_ours_for_output)
560 (*current_target.to_terminal_ours_for_output) (&current_target);
561 else
562 gdb_assert_not_reached ("unhandled desired state");
563 inf->terminal_state = desired_state;
564 }
565 }
566 }
567
568 /* See target/target.h. */
569
570 void
571 target_terminal::ours ()
572 {
573 struct ui *ui = current_ui;
574
575 /* See target_terminal::inferior. */
576 if (ui != main_ui)
577 return;
578
579 if (m_terminal_state == target_terminal_state::is_ours)
580 return;
581
582 target_terminal_is_ours_kind (target_terminal_state::is_ours);
583 m_terminal_state = target_terminal_state::is_ours;
584 }
585
586 /* See target/target.h. */
587
588 void
589 target_terminal::ours_for_output ()
590 {
591 struct ui *ui = current_ui;
592
593 /* See target_terminal::inferior. */
594 if (ui != main_ui)
595 return;
596
597 if (!target_terminal::is_inferior ())
598 return;
599
600 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
601 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
602 }
603
604 /* See target/target.h. */
605
606 void
607 target_terminal::info (const char *arg, int from_tty)
608 {
609 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
610 }
611
612 /* See target.h. */
613
614 int
615 target_supports_terminal_ours (void)
616 {
617 struct target_ops *t;
618
619 for (t = current_target.beneath; t != NULL; t = t->beneath)
620 {
621 if (t->to_terminal_ours != delegate_terminal_ours
622 && t->to_terminal_ours != tdefault_terminal_ours)
623 return 1;
624 }
625
626 return 0;
627 }
628
629 static void
630 tcomplain (void)
631 {
632 error (_("You can't do that when your target is `%s'"),
633 current_target.to_shortname);
634 }
635
636 void
637 noprocess (void)
638 {
639 error (_("You can't do that without a process to debug."));
640 }
641
642 static void
643 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
644 {
645 printf_unfiltered (_("No saved terminal information.\n"));
646 }
647
648 /* A default implementation for the to_get_ada_task_ptid target method.
649
650 This function builds the PTID by using both LWP and TID as part of
651 the PTID lwp and tid elements. The pid used is the pid of the
652 inferior_ptid. */
653
654 static ptid_t
655 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
656 {
657 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
658 }
659
660 static enum exec_direction_kind
661 default_execution_direction (struct target_ops *self)
662 {
663 if (!target_can_execute_reverse)
664 return EXEC_FORWARD;
665 else if (!target_can_async_p ())
666 return EXEC_FORWARD;
667 else
668 gdb_assert_not_reached ("\
669 to_execution_direction must be implemented for reverse async");
670 }
671
672 /* Go through the target stack from top to bottom, copying over zero
673 entries in current_target, then filling in still empty entries. In
674 effect, we are doing class inheritance through the pushed target
675 vectors.
676
677 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
678 is currently implemented, is that it discards any knowledge of
679 which target an inherited method originally belonged to.
680 Consequently, new new target methods should instead explicitly and
681 locally search the target stack for the target that can handle the
682 request. */
683
684 static void
685 update_current_target (void)
686 {
687 struct target_ops *t;
688
689 /* First, reset current's contents. */
690 memset (&current_target, 0, sizeof (current_target));
691
692 /* Install the delegators. */
693 install_delegators (&current_target);
694
695 current_target.to_stratum = target_stack->to_stratum;
696
697 #define INHERIT(FIELD, TARGET) \
698 if (!current_target.FIELD) \
699 current_target.FIELD = (TARGET)->FIELD
700
701 /* Do not add any new INHERITs here. Instead, use the delegation
702 mechanism provided by make-target-delegates. */
703 for (t = target_stack; t; t = t->beneath)
704 {
705 INHERIT (to_shortname, t);
706 INHERIT (to_longname, t);
707 INHERIT (to_attach_no_wait, t);
708 INHERIT (to_have_steppable_watchpoint, t);
709 INHERIT (to_have_continuable_watchpoint, t);
710 INHERIT (to_has_thread_control, t);
711 }
712 #undef INHERIT
713
714 /* Finally, position the target-stack beneath the squashed
715 "current_target". That way code looking for a non-inherited
716 target method can quickly and simply find it. */
717 current_target.beneath = target_stack;
718
719 if (targetdebug)
720 setup_target_debug ();
721 }
722
723 /* Push a new target type into the stack of the existing target accessors,
724 possibly superseding some of the existing accessors.
725
726 Rather than allow an empty stack, we always have the dummy target at
727 the bottom stratum, so we can call the function vectors without
728 checking them. */
729
730 void
731 push_target (struct target_ops *t)
732 {
733 struct target_ops **cur;
734
735 /* Check magic number. If wrong, it probably means someone changed
736 the struct definition, but not all the places that initialize one. */
737 if (t->to_magic != OPS_MAGIC)
738 {
739 fprintf_unfiltered (gdb_stderr,
740 "Magic number of %s target struct wrong\n",
741 t->to_shortname);
742 internal_error (__FILE__, __LINE__,
743 _("failed internal consistency check"));
744 }
745
746 /* Find the proper stratum to install this target in. */
747 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
748 {
749 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
750 break;
751 }
752
753 /* If there's already targets at this stratum, remove them. */
754 /* FIXME: cagney/2003-10-15: I think this should be popping all
755 targets to CUR, and not just those at this stratum level. */
756 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
757 {
758 /* There's already something at this stratum level. Close it,
759 and un-hook it from the stack. */
760 struct target_ops *tmp = (*cur);
761
762 (*cur) = (*cur)->beneath;
763 tmp->beneath = NULL;
764 target_close (tmp);
765 }
766
767 /* We have removed all targets in our stratum, now add the new one. */
768 t->beneath = (*cur);
769 (*cur) = t;
770
771 update_current_target ();
772 }
773
774 /* Remove a target_ops vector from the stack, wherever it may be.
775 Return how many times it was removed (0 or 1). */
776
777 int
778 unpush_target (struct target_ops *t)
779 {
780 struct target_ops **cur;
781 struct target_ops *tmp;
782
783 if (t->to_stratum == dummy_stratum)
784 internal_error (__FILE__, __LINE__,
785 _("Attempt to unpush the dummy target"));
786
787 /* Look for the specified target. Note that we assume that a target
788 can only occur once in the target stack. */
789
790 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
791 {
792 if ((*cur) == t)
793 break;
794 }
795
796 /* If we don't find target_ops, quit. Only open targets should be
797 closed. */
798 if ((*cur) == NULL)
799 return 0;
800
801 /* Unchain the target. */
802 tmp = (*cur);
803 (*cur) = (*cur)->beneath;
804 tmp->beneath = NULL;
805
806 update_current_target ();
807
808 /* Finally close the target. Note we do this after unchaining, so
809 any target method calls from within the target_close
810 implementation don't end up in T anymore. */
811 target_close (t);
812
813 return 1;
814 }
815
816 /* Unpush TARGET and assert that it worked. */
817
818 static void
819 unpush_target_and_assert (struct target_ops *target)
820 {
821 if (!unpush_target (target))
822 {
823 fprintf_unfiltered (gdb_stderr,
824 "pop_all_targets couldn't find target %s\n",
825 target->to_shortname);
826 internal_error (__FILE__, __LINE__,
827 _("failed internal consistency check"));
828 }
829 }
830
831 void
832 pop_all_targets_above (enum strata above_stratum)
833 {
834 while ((int) (current_target.to_stratum) > (int) above_stratum)
835 unpush_target_and_assert (target_stack);
836 }
837
838 /* See target.h. */
839
840 void
841 pop_all_targets_at_and_above (enum strata stratum)
842 {
843 while ((int) (current_target.to_stratum) >= (int) stratum)
844 unpush_target_and_assert (target_stack);
845 }
846
847 void
848 pop_all_targets (void)
849 {
850 pop_all_targets_above (dummy_stratum);
851 }
852
853 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
854
855 int
856 target_is_pushed (struct target_ops *t)
857 {
858 struct target_ops *cur;
859
860 /* Check magic number. If wrong, it probably means someone changed
861 the struct definition, but not all the places that initialize one. */
862 if (t->to_magic != OPS_MAGIC)
863 {
864 fprintf_unfiltered (gdb_stderr,
865 "Magic number of %s target struct wrong\n",
866 t->to_shortname);
867 internal_error (__FILE__, __LINE__,
868 _("failed internal consistency check"));
869 }
870
871 for (cur = target_stack; cur != NULL; cur = cur->beneath)
872 if (cur == t)
873 return 1;
874
875 return 0;
876 }
877
878 /* Default implementation of to_get_thread_local_address. */
879
880 static void
881 generic_tls_error (void)
882 {
883 throw_error (TLS_GENERIC_ERROR,
884 _("Cannot find thread-local variables on this target"));
885 }
886
887 /* Using the objfile specified in OBJFILE, find the address for the
888 current thread's thread-local storage with offset OFFSET. */
889 CORE_ADDR
890 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
891 {
892 volatile CORE_ADDR addr = 0;
893 struct target_ops *target = &current_target;
894
895 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
896 {
897 ptid_t ptid = inferior_ptid;
898
899 TRY
900 {
901 CORE_ADDR lm_addr;
902
903 /* Fetch the load module address for this objfile. */
904 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
905 objfile);
906
907 addr = target->to_get_thread_local_address (target, ptid,
908 lm_addr, offset);
909 }
910 /* If an error occurred, print TLS related messages here. Otherwise,
911 throw the error to some higher catcher. */
912 CATCH (ex, RETURN_MASK_ALL)
913 {
914 int objfile_is_library = (objfile->flags & OBJF_SHARED);
915
916 switch (ex.error)
917 {
918 case TLS_NO_LIBRARY_SUPPORT_ERROR:
919 error (_("Cannot find thread-local variables "
920 "in this thread library."));
921 break;
922 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
923 if (objfile_is_library)
924 error (_("Cannot find shared library `%s' in dynamic"
925 " linker's load module list"), objfile_name (objfile));
926 else
927 error (_("Cannot find executable file `%s' in dynamic"
928 " linker's load module list"), objfile_name (objfile));
929 break;
930 case TLS_NOT_ALLOCATED_YET_ERROR:
931 if (objfile_is_library)
932 error (_("The inferior has not yet allocated storage for"
933 " thread-local variables in\n"
934 "the shared library `%s'\n"
935 "for %s"),
936 objfile_name (objfile), target_pid_to_str (ptid));
937 else
938 error (_("The inferior has not yet allocated storage for"
939 " thread-local variables in\n"
940 "the executable `%s'\n"
941 "for %s"),
942 objfile_name (objfile), target_pid_to_str (ptid));
943 break;
944 case TLS_GENERIC_ERROR:
945 if (objfile_is_library)
946 error (_("Cannot find thread-local storage for %s, "
947 "shared library %s:\n%s"),
948 target_pid_to_str (ptid),
949 objfile_name (objfile), ex.message);
950 else
951 error (_("Cannot find thread-local storage for %s, "
952 "executable file %s:\n%s"),
953 target_pid_to_str (ptid),
954 objfile_name (objfile), ex.message);
955 break;
956 default:
957 throw_exception (ex);
958 break;
959 }
960 }
961 END_CATCH
962 }
963 /* It wouldn't be wrong here to try a gdbarch method, too; finding
964 TLS is an ABI-specific thing. But we don't do that yet. */
965 else
966 error (_("Cannot find thread-local variables on this target"));
967
968 return addr;
969 }
970
971 const char *
972 target_xfer_status_to_string (enum target_xfer_status status)
973 {
974 #define CASE(X) case X: return #X
975 switch (status)
976 {
977 CASE(TARGET_XFER_E_IO);
978 CASE(TARGET_XFER_UNAVAILABLE);
979 default:
980 return "<unknown>";
981 }
982 #undef CASE
983 };
984
985
986 #undef MIN
987 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
988
989 /* target_read_string -- read a null terminated string, up to LEN bytes,
990 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
991 Set *STRING to a pointer to malloc'd memory containing the data; the caller
992 is responsible for freeing it. Return the number of bytes successfully
993 read. */
994
995 int
996 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
997 {
998 int tlen, offset, i;
999 gdb_byte buf[4];
1000 int errcode = 0;
1001 char *buffer;
1002 int buffer_allocated;
1003 char *bufptr;
1004 unsigned int nbytes_read = 0;
1005
1006 gdb_assert (string);
1007
1008 /* Small for testing. */
1009 buffer_allocated = 4;
1010 buffer = (char *) xmalloc (buffer_allocated);
1011 bufptr = buffer;
1012
1013 while (len > 0)
1014 {
1015 tlen = MIN (len, 4 - (memaddr & 3));
1016 offset = memaddr & 3;
1017
1018 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1019 if (errcode != 0)
1020 {
1021 /* The transfer request might have crossed the boundary to an
1022 unallocated region of memory. Retry the transfer, requesting
1023 a single byte. */
1024 tlen = 1;
1025 offset = 0;
1026 errcode = target_read_memory (memaddr, buf, 1);
1027 if (errcode != 0)
1028 goto done;
1029 }
1030
1031 if (bufptr - buffer + tlen > buffer_allocated)
1032 {
1033 unsigned int bytes;
1034
1035 bytes = bufptr - buffer;
1036 buffer_allocated *= 2;
1037 buffer = (char *) xrealloc (buffer, buffer_allocated);
1038 bufptr = buffer + bytes;
1039 }
1040
1041 for (i = 0; i < tlen; i++)
1042 {
1043 *bufptr++ = buf[i + offset];
1044 if (buf[i + offset] == '\000')
1045 {
1046 nbytes_read += i + 1;
1047 goto done;
1048 }
1049 }
1050
1051 memaddr += tlen;
1052 len -= tlen;
1053 nbytes_read += tlen;
1054 }
1055 done:
1056 *string = buffer;
1057 if (errnop != NULL)
1058 *errnop = errcode;
1059 return nbytes_read;
1060 }
1061
1062 struct target_section_table *
1063 target_get_section_table (struct target_ops *target)
1064 {
1065 return (*target->to_get_section_table) (target);
1066 }
1067
1068 /* Find a section containing ADDR. */
1069
1070 struct target_section *
1071 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1072 {
1073 struct target_section_table *table = target_get_section_table (target);
1074 struct target_section *secp;
1075
1076 if (table == NULL)
1077 return NULL;
1078
1079 for (secp = table->sections; secp < table->sections_end; secp++)
1080 {
1081 if (addr >= secp->addr && addr < secp->endaddr)
1082 return secp;
1083 }
1084 return NULL;
1085 }
1086
1087
1088 /* Helper for the memory xfer routines. Checks the attributes of the
1089 memory region of MEMADDR against the read or write being attempted.
1090 If the access is permitted returns true, otherwise returns false.
1091 REGION_P is an optional output parameter. If not-NULL, it is
1092 filled with a pointer to the memory region of MEMADDR. REG_LEN
1093 returns LEN trimmed to the end of the region. This is how much the
1094 caller can continue requesting, if the access is permitted. A
1095 single xfer request must not straddle memory region boundaries. */
1096
1097 static int
1098 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1099 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1100 struct mem_region **region_p)
1101 {
1102 struct mem_region *region;
1103
1104 region = lookup_mem_region (memaddr);
1105
1106 if (region_p != NULL)
1107 *region_p = region;
1108
1109 switch (region->attrib.mode)
1110 {
1111 case MEM_RO:
1112 if (writebuf != NULL)
1113 return 0;
1114 break;
1115
1116 case MEM_WO:
1117 if (readbuf != NULL)
1118 return 0;
1119 break;
1120
1121 case MEM_FLASH:
1122 /* We only support writing to flash during "load" for now. */
1123 if (writebuf != NULL)
1124 error (_("Writing to flash memory forbidden in this context"));
1125 break;
1126
1127 case MEM_NONE:
1128 return 0;
1129 }
1130
1131 /* region->hi == 0 means there's no upper bound. */
1132 if (memaddr + len < region->hi || region->hi == 0)
1133 *reg_len = len;
1134 else
1135 *reg_len = region->hi - memaddr;
1136
1137 return 1;
1138 }
1139
1140 /* Read memory from more than one valid target. A core file, for
1141 instance, could have some of memory but delegate other bits to
1142 the target below it. So, we must manually try all targets. */
1143
1144 enum target_xfer_status
1145 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1146 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1147 ULONGEST *xfered_len)
1148 {
1149 enum target_xfer_status res;
1150
1151 do
1152 {
1153 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1154 readbuf, writebuf, memaddr, len,
1155 xfered_len);
1156 if (res == TARGET_XFER_OK)
1157 break;
1158
1159 /* Stop if the target reports that the memory is not available. */
1160 if (res == TARGET_XFER_UNAVAILABLE)
1161 break;
1162
1163 /* We want to continue past core files to executables, but not
1164 past a running target's memory. */
1165 if (ops->to_has_all_memory (ops))
1166 break;
1167
1168 ops = ops->beneath;
1169 }
1170 while (ops != NULL);
1171
1172 /* The cache works at the raw memory level. Make sure the cache
1173 gets updated with raw contents no matter what kind of memory
1174 object was originally being written. Note we do write-through
1175 first, so that if it fails, we don't write to the cache contents
1176 that never made it to the target. */
1177 if (writebuf != NULL
1178 && !ptid_equal (inferior_ptid, null_ptid)
1179 && target_dcache_init_p ()
1180 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1181 {
1182 DCACHE *dcache = target_dcache_get ();
1183
1184 /* Note that writing to an area of memory which wasn't present
1185 in the cache doesn't cause it to be loaded in. */
1186 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1187 }
1188
1189 return res;
1190 }
1191
1192 /* Perform a partial memory transfer.
1193 For docs see target.h, to_xfer_partial. */
1194
1195 static enum target_xfer_status
1196 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1197 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1198 ULONGEST len, ULONGEST *xfered_len)
1199 {
1200 enum target_xfer_status res;
1201 ULONGEST reg_len;
1202 struct mem_region *region;
1203 struct inferior *inf;
1204
1205 /* For accesses to unmapped overlay sections, read directly from
1206 files. Must do this first, as MEMADDR may need adjustment. */
1207 if (readbuf != NULL && overlay_debugging)
1208 {
1209 struct obj_section *section = find_pc_overlay (memaddr);
1210
1211 if (pc_in_unmapped_range (memaddr, section))
1212 {
1213 struct target_section_table *table
1214 = target_get_section_table (ops);
1215 const char *section_name = section->the_bfd_section->name;
1216
1217 memaddr = overlay_mapped_address (memaddr, section);
1218 return section_table_xfer_memory_partial (readbuf, writebuf,
1219 memaddr, len, xfered_len,
1220 table->sections,
1221 table->sections_end,
1222 section_name);
1223 }
1224 }
1225
1226 /* Try the executable files, if "trust-readonly-sections" is set. */
1227 if (readbuf != NULL && trust_readonly)
1228 {
1229 struct target_section *secp;
1230 struct target_section_table *table;
1231
1232 secp = target_section_by_addr (ops, memaddr);
1233 if (secp != NULL
1234 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1235 secp->the_bfd_section)
1236 & SEC_READONLY))
1237 {
1238 table = target_get_section_table (ops);
1239 return section_table_xfer_memory_partial (readbuf, writebuf,
1240 memaddr, len, xfered_len,
1241 table->sections,
1242 table->sections_end,
1243 NULL);
1244 }
1245 }
1246
1247 /* Try GDB's internal data cache. */
1248
1249 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1250 &region))
1251 return TARGET_XFER_E_IO;
1252
1253 if (!ptid_equal (inferior_ptid, null_ptid))
1254 inf = find_inferior_ptid (inferior_ptid);
1255 else
1256 inf = NULL;
1257
1258 if (inf != NULL
1259 && readbuf != NULL
1260 /* The dcache reads whole cache lines; that doesn't play well
1261 with reading from a trace buffer, because reading outside of
1262 the collected memory range fails. */
1263 && get_traceframe_number () == -1
1264 && (region->attrib.cache
1265 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1266 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1267 {
1268 DCACHE *dcache = target_dcache_get_or_init ();
1269
1270 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1271 reg_len, xfered_len);
1272 }
1273
1274 /* If none of those methods found the memory we wanted, fall back
1275 to a target partial transfer. Normally a single call to
1276 to_xfer_partial is enough; if it doesn't recognize an object
1277 it will call the to_xfer_partial of the next target down.
1278 But for memory this won't do. Memory is the only target
1279 object which can be read from more than one valid target.
1280 A core file, for instance, could have some of memory but
1281 delegate other bits to the target below it. So, we must
1282 manually try all targets. */
1283
1284 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1285 xfered_len);
1286
1287 /* If we still haven't got anything, return the last error. We
1288 give up. */
1289 return res;
1290 }
1291
1292 /* Perform a partial memory transfer. For docs see target.h,
1293 to_xfer_partial. */
1294
1295 static enum target_xfer_status
1296 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1297 gdb_byte *readbuf, const gdb_byte *writebuf,
1298 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1299 {
1300 enum target_xfer_status res;
1301
1302 /* Zero length requests are ok and require no work. */
1303 if (len == 0)
1304 return TARGET_XFER_EOF;
1305
1306 memaddr = address_significant (target_gdbarch (), memaddr);
1307
1308 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1309 breakpoint insns, thus hiding out from higher layers whether
1310 there are software breakpoints inserted in the code stream. */
1311 if (readbuf != NULL)
1312 {
1313 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1314 xfered_len);
1315
1316 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1317 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1318 }
1319 else
1320 {
1321 /* A large write request is likely to be partially satisfied
1322 by memory_xfer_partial_1. We will continually malloc
1323 and free a copy of the entire write request for breakpoint
1324 shadow handling even though we only end up writing a small
1325 subset of it. Cap writes to a limit specified by the target
1326 to mitigate this. */
1327 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1328
1329 gdb::byte_vector buf (writebuf, writebuf + len);
1330 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1331 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1332 xfered_len);
1333 }
1334
1335 return res;
1336 }
1337
1338 scoped_restore_tmpl<int>
1339 make_scoped_restore_show_memory_breakpoints (int show)
1340 {
1341 return make_scoped_restore (&show_memory_breakpoints, show);
1342 }
1343
1344 /* For docs see target.h, to_xfer_partial. */
1345
1346 enum target_xfer_status
1347 target_xfer_partial (struct target_ops *ops,
1348 enum target_object object, const char *annex,
1349 gdb_byte *readbuf, const gdb_byte *writebuf,
1350 ULONGEST offset, ULONGEST len,
1351 ULONGEST *xfered_len)
1352 {
1353 enum target_xfer_status retval;
1354
1355 gdb_assert (ops->to_xfer_partial != NULL);
1356
1357 /* Transfer is done when LEN is zero. */
1358 if (len == 0)
1359 return TARGET_XFER_EOF;
1360
1361 if (writebuf && !may_write_memory)
1362 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1363 core_addr_to_string_nz (offset), plongest (len));
1364
1365 *xfered_len = 0;
1366
1367 /* If this is a memory transfer, let the memory-specific code
1368 have a look at it instead. Memory transfers are more
1369 complicated. */
1370 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1371 || object == TARGET_OBJECT_CODE_MEMORY)
1372 retval = memory_xfer_partial (ops, object, readbuf,
1373 writebuf, offset, len, xfered_len);
1374 else if (object == TARGET_OBJECT_RAW_MEMORY)
1375 {
1376 /* Skip/avoid accessing the target if the memory region
1377 attributes block the access. Check this here instead of in
1378 raw_memory_xfer_partial as otherwise we'd end up checking
1379 this twice in the case of the memory_xfer_partial path is
1380 taken; once before checking the dcache, and another in the
1381 tail call to raw_memory_xfer_partial. */
1382 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1383 NULL))
1384 return TARGET_XFER_E_IO;
1385
1386 /* Request the normal memory object from other layers. */
1387 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1388 xfered_len);
1389 }
1390 else
1391 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1392 writebuf, offset, len, xfered_len);
1393
1394 if (targetdebug)
1395 {
1396 const unsigned char *myaddr = NULL;
1397
1398 fprintf_unfiltered (gdb_stdlog,
1399 "%s:target_xfer_partial "
1400 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1401 ops->to_shortname,
1402 (int) object,
1403 (annex ? annex : "(null)"),
1404 host_address_to_string (readbuf),
1405 host_address_to_string (writebuf),
1406 core_addr_to_string_nz (offset),
1407 pulongest (len), retval,
1408 pulongest (*xfered_len));
1409
1410 if (readbuf)
1411 myaddr = readbuf;
1412 if (writebuf)
1413 myaddr = writebuf;
1414 if (retval == TARGET_XFER_OK && myaddr != NULL)
1415 {
1416 int i;
1417
1418 fputs_unfiltered (", bytes =", gdb_stdlog);
1419 for (i = 0; i < *xfered_len; i++)
1420 {
1421 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1422 {
1423 if (targetdebug < 2 && i > 0)
1424 {
1425 fprintf_unfiltered (gdb_stdlog, " ...");
1426 break;
1427 }
1428 fprintf_unfiltered (gdb_stdlog, "\n");
1429 }
1430
1431 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1432 }
1433 }
1434
1435 fputc_unfiltered ('\n', gdb_stdlog);
1436 }
1437
1438 /* Check implementations of to_xfer_partial update *XFERED_LEN
1439 properly. Do assertion after printing debug messages, so that we
1440 can find more clues on assertion failure from debugging messages. */
1441 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1442 gdb_assert (*xfered_len > 0);
1443
1444 return retval;
1445 }
1446
1447 /* Read LEN bytes of target memory at address MEMADDR, placing the
1448 results in GDB's memory at MYADDR. Returns either 0 for success or
1449 -1 if any error occurs.
1450
1451 If an error occurs, no guarantee is made about the contents of the data at
1452 MYADDR. In particular, the caller should not depend upon partial reads
1453 filling the buffer with good data. There is no way for the caller to know
1454 how much good data might have been transfered anyway. Callers that can
1455 deal with partial reads should call target_read (which will retry until
1456 it makes no progress, and then return how much was transferred). */
1457
1458 int
1459 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1460 {
1461 /* Dispatch to the topmost target, not the flattened current_target.
1462 Memory accesses check target->to_has_(all_)memory, and the
1463 flattened target doesn't inherit those. */
1464 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1465 myaddr, memaddr, len) == len)
1466 return 0;
1467 else
1468 return -1;
1469 }
1470
1471 /* See target/target.h. */
1472
1473 int
1474 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1475 {
1476 gdb_byte buf[4];
1477 int r;
1478
1479 r = target_read_memory (memaddr, buf, sizeof buf);
1480 if (r != 0)
1481 return r;
1482 *result = extract_unsigned_integer (buf, sizeof buf,
1483 gdbarch_byte_order (target_gdbarch ()));
1484 return 0;
1485 }
1486
1487 /* Like target_read_memory, but specify explicitly that this is a read
1488 from the target's raw memory. That is, this read bypasses the
1489 dcache, breakpoint shadowing, etc. */
1490
1491 int
1492 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1493 {
1494 /* See comment in target_read_memory about why the request starts at
1495 current_target.beneath. */
1496 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1497 myaddr, memaddr, len) == len)
1498 return 0;
1499 else
1500 return -1;
1501 }
1502
1503 /* Like target_read_memory, but specify explicitly that this is a read from
1504 the target's stack. This may trigger different cache behavior. */
1505
1506 int
1507 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1508 {
1509 /* See comment in target_read_memory about why the request starts at
1510 current_target.beneath. */
1511 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1512 myaddr, memaddr, len) == len)
1513 return 0;
1514 else
1515 return -1;
1516 }
1517
1518 /* Like target_read_memory, but specify explicitly that this is a read from
1519 the target's code. This may trigger different cache behavior. */
1520
1521 int
1522 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1523 {
1524 /* See comment in target_read_memory about why the request starts at
1525 current_target.beneath. */
1526 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1527 myaddr, memaddr, len) == len)
1528 return 0;
1529 else
1530 return -1;
1531 }
1532
1533 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1534 Returns either 0 for success or -1 if any error occurs. If an
1535 error occurs, no guarantee is made about how much data got written.
1536 Callers that can deal with partial writes should call
1537 target_write. */
1538
1539 int
1540 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1541 {
1542 /* See comment in target_read_memory about why the request starts at
1543 current_target.beneath. */
1544 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1545 myaddr, memaddr, len) == len)
1546 return 0;
1547 else
1548 return -1;
1549 }
1550
1551 /* Write LEN bytes from MYADDR to target raw memory at address
1552 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1553 If an error occurs, no guarantee is made about how much data got
1554 written. Callers that can deal with partial writes should call
1555 target_write. */
1556
1557 int
1558 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1559 {
1560 /* See comment in target_read_memory about why the request starts at
1561 current_target.beneath. */
1562 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1563 myaddr, memaddr, len) == len)
1564 return 0;
1565 else
1566 return -1;
1567 }
1568
1569 /* Fetch the target's memory map. */
1570
1571 std::vector<mem_region>
1572 target_memory_map (void)
1573 {
1574 std::vector<mem_region> result
1575 = current_target.to_memory_map (&current_target);
1576 if (result.empty ())
1577 return result;
1578
1579 std::sort (result.begin (), result.end ());
1580
1581 /* Check that regions do not overlap. Simultaneously assign
1582 a numbering for the "mem" commands to use to refer to
1583 each region. */
1584 mem_region *last_one = NULL;
1585 for (size_t ix = 0; ix < result.size (); ix++)
1586 {
1587 mem_region *this_one = &result[ix];
1588 this_one->number = ix;
1589
1590 if (last_one != NULL && last_one->hi > this_one->lo)
1591 {
1592 warning (_("Overlapping regions in memory map: ignoring"));
1593 return std::vector<mem_region> ();
1594 }
1595
1596 last_one = this_one;
1597 }
1598
1599 return result;
1600 }
1601
1602 void
1603 target_flash_erase (ULONGEST address, LONGEST length)
1604 {
1605 current_target.to_flash_erase (&current_target, address, length);
1606 }
1607
1608 void
1609 target_flash_done (void)
1610 {
1611 current_target.to_flash_done (&current_target);
1612 }
1613
1614 static void
1615 show_trust_readonly (struct ui_file *file, int from_tty,
1616 struct cmd_list_element *c, const char *value)
1617 {
1618 fprintf_filtered (file,
1619 _("Mode for reading from readonly sections is %s.\n"),
1620 value);
1621 }
1622
1623 /* Target vector read/write partial wrapper functions. */
1624
1625 static enum target_xfer_status
1626 target_read_partial (struct target_ops *ops,
1627 enum target_object object,
1628 const char *annex, gdb_byte *buf,
1629 ULONGEST offset, ULONGEST len,
1630 ULONGEST *xfered_len)
1631 {
1632 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1633 xfered_len);
1634 }
1635
1636 static enum target_xfer_status
1637 target_write_partial (struct target_ops *ops,
1638 enum target_object object,
1639 const char *annex, const gdb_byte *buf,
1640 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1641 {
1642 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1643 xfered_len);
1644 }
1645
1646 /* Wrappers to perform the full transfer. */
1647
1648 /* For docs on target_read see target.h. */
1649
1650 LONGEST
1651 target_read (struct target_ops *ops,
1652 enum target_object object,
1653 const char *annex, gdb_byte *buf,
1654 ULONGEST offset, LONGEST len)
1655 {
1656 LONGEST xfered_total = 0;
1657 int unit_size = 1;
1658
1659 /* If we are reading from a memory object, find the length of an addressable
1660 unit for that architecture. */
1661 if (object == TARGET_OBJECT_MEMORY
1662 || object == TARGET_OBJECT_STACK_MEMORY
1663 || object == TARGET_OBJECT_CODE_MEMORY
1664 || object == TARGET_OBJECT_RAW_MEMORY)
1665 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1666
1667 while (xfered_total < len)
1668 {
1669 ULONGEST xfered_partial;
1670 enum target_xfer_status status;
1671
1672 status = target_read_partial (ops, object, annex,
1673 buf + xfered_total * unit_size,
1674 offset + xfered_total, len - xfered_total,
1675 &xfered_partial);
1676
1677 /* Call an observer, notifying them of the xfer progress? */
1678 if (status == TARGET_XFER_EOF)
1679 return xfered_total;
1680 else if (status == TARGET_XFER_OK)
1681 {
1682 xfered_total += xfered_partial;
1683 QUIT;
1684 }
1685 else
1686 return TARGET_XFER_E_IO;
1687
1688 }
1689 return len;
1690 }
1691
1692 /* Assuming that the entire [begin, end) range of memory cannot be
1693 read, try to read whatever subrange is possible to read.
1694
1695 The function returns, in RESULT, either zero or one memory block.
1696 If there's a readable subrange at the beginning, it is completely
1697 read and returned. Any further readable subrange will not be read.
1698 Otherwise, if there's a readable subrange at the end, it will be
1699 completely read and returned. Any readable subranges before it
1700 (obviously, not starting at the beginning), will be ignored. In
1701 other cases -- either no readable subrange, or readable subrange(s)
1702 that is neither at the beginning, or end, nothing is returned.
1703
1704 The purpose of this function is to handle a read across a boundary
1705 of accessible memory in a case when memory map is not available.
1706 The above restrictions are fine for this case, but will give
1707 incorrect results if the memory is 'patchy'. However, supporting
1708 'patchy' memory would require trying to read every single byte,
1709 and it seems unacceptable solution. Explicit memory map is
1710 recommended for this case -- and target_read_memory_robust will
1711 take care of reading multiple ranges then. */
1712
1713 static void
1714 read_whatever_is_readable (struct target_ops *ops,
1715 const ULONGEST begin, const ULONGEST end,
1716 int unit_size,
1717 std::vector<memory_read_result> *result)
1718 {
1719 ULONGEST current_begin = begin;
1720 ULONGEST current_end = end;
1721 int forward;
1722 ULONGEST xfered_len;
1723
1724 /* If we previously failed to read 1 byte, nothing can be done here. */
1725 if (end - begin <= 1)
1726 return;
1727
1728 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1729
1730 /* Check that either first or the last byte is readable, and give up
1731 if not. This heuristic is meant to permit reading accessible memory
1732 at the boundary of accessible region. */
1733 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1734 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1735 {
1736 forward = 1;
1737 ++current_begin;
1738 }
1739 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1740 buf.get () + (end - begin) - 1, end - 1, 1,
1741 &xfered_len) == TARGET_XFER_OK)
1742 {
1743 forward = 0;
1744 --current_end;
1745 }
1746 else
1747 return;
1748
1749 /* Loop invariant is that the [current_begin, current_end) was previously
1750 found to be not readable as a whole.
1751
1752 Note loop condition -- if the range has 1 byte, we can't divide the range
1753 so there's no point trying further. */
1754 while (current_end - current_begin > 1)
1755 {
1756 ULONGEST first_half_begin, first_half_end;
1757 ULONGEST second_half_begin, second_half_end;
1758 LONGEST xfer;
1759 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1760
1761 if (forward)
1762 {
1763 first_half_begin = current_begin;
1764 first_half_end = middle;
1765 second_half_begin = middle;
1766 second_half_end = current_end;
1767 }
1768 else
1769 {
1770 first_half_begin = middle;
1771 first_half_end = current_end;
1772 second_half_begin = current_begin;
1773 second_half_end = middle;
1774 }
1775
1776 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1777 buf.get () + (first_half_begin - begin) * unit_size,
1778 first_half_begin,
1779 first_half_end - first_half_begin);
1780
1781 if (xfer == first_half_end - first_half_begin)
1782 {
1783 /* This half reads up fine. So, the error must be in the
1784 other half. */
1785 current_begin = second_half_begin;
1786 current_end = second_half_end;
1787 }
1788 else
1789 {
1790 /* This half is not readable. Because we've tried one byte, we
1791 know some part of this half if actually readable. Go to the next
1792 iteration to divide again and try to read.
1793
1794 We don't handle the other half, because this function only tries
1795 to read a single readable subrange. */
1796 current_begin = first_half_begin;
1797 current_end = first_half_end;
1798 }
1799 }
1800
1801 if (forward)
1802 {
1803 /* The [begin, current_begin) range has been read. */
1804 result->emplace_back (begin, current_end, std::move (buf));
1805 }
1806 else
1807 {
1808 /* The [current_end, end) range has been read. */
1809 LONGEST region_len = end - current_end;
1810
1811 gdb::unique_xmalloc_ptr<gdb_byte> data
1812 ((gdb_byte *) xmalloc (region_len * unit_size));
1813 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1814 region_len * unit_size);
1815 result->emplace_back (current_end, end, std::move (data));
1816 }
1817 }
1818
1819 std::vector<memory_read_result>
1820 read_memory_robust (struct target_ops *ops,
1821 const ULONGEST offset, const LONGEST len)
1822 {
1823 std::vector<memory_read_result> result;
1824 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1825
1826 LONGEST xfered_total = 0;
1827 while (xfered_total < len)
1828 {
1829 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1830 LONGEST region_len;
1831
1832 /* If there is no explicit region, a fake one should be created. */
1833 gdb_assert (region);
1834
1835 if (region->hi == 0)
1836 region_len = len - xfered_total;
1837 else
1838 region_len = region->hi - offset;
1839
1840 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1841 {
1842 /* Cannot read this region. Note that we can end up here only
1843 if the region is explicitly marked inaccessible, or
1844 'inaccessible-by-default' is in effect. */
1845 xfered_total += region_len;
1846 }
1847 else
1848 {
1849 LONGEST to_read = std::min (len - xfered_total, region_len);
1850 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1851 ((gdb_byte *) xmalloc (to_read * unit_size));
1852
1853 LONGEST xfered_partial =
1854 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1855 offset + xfered_total, to_read);
1856 /* Call an observer, notifying them of the xfer progress? */
1857 if (xfered_partial <= 0)
1858 {
1859 /* Got an error reading full chunk. See if maybe we can read
1860 some subrange. */
1861 read_whatever_is_readable (ops, offset + xfered_total,
1862 offset + xfered_total + to_read,
1863 unit_size, &result);
1864 xfered_total += to_read;
1865 }
1866 else
1867 {
1868 result.emplace_back (offset + xfered_total,
1869 offset + xfered_total + xfered_partial,
1870 std::move (buffer));
1871 xfered_total += xfered_partial;
1872 }
1873 QUIT;
1874 }
1875 }
1876
1877 return result;
1878 }
1879
1880
1881 /* An alternative to target_write with progress callbacks. */
1882
1883 LONGEST
1884 target_write_with_progress (struct target_ops *ops,
1885 enum target_object object,
1886 const char *annex, const gdb_byte *buf,
1887 ULONGEST offset, LONGEST len,
1888 void (*progress) (ULONGEST, void *), void *baton)
1889 {
1890 LONGEST xfered_total = 0;
1891 int unit_size = 1;
1892
1893 /* If we are writing to a memory object, find the length of an addressable
1894 unit for that architecture. */
1895 if (object == TARGET_OBJECT_MEMORY
1896 || object == TARGET_OBJECT_STACK_MEMORY
1897 || object == TARGET_OBJECT_CODE_MEMORY
1898 || object == TARGET_OBJECT_RAW_MEMORY)
1899 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1900
1901 /* Give the progress callback a chance to set up. */
1902 if (progress)
1903 (*progress) (0, baton);
1904
1905 while (xfered_total < len)
1906 {
1907 ULONGEST xfered_partial;
1908 enum target_xfer_status status;
1909
1910 status = target_write_partial (ops, object, annex,
1911 buf + xfered_total * unit_size,
1912 offset + xfered_total, len - xfered_total,
1913 &xfered_partial);
1914
1915 if (status != TARGET_XFER_OK)
1916 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1917
1918 if (progress)
1919 (*progress) (xfered_partial, baton);
1920
1921 xfered_total += xfered_partial;
1922 QUIT;
1923 }
1924 return len;
1925 }
1926
1927 /* For docs on target_write see target.h. */
1928
1929 LONGEST
1930 target_write (struct target_ops *ops,
1931 enum target_object object,
1932 const char *annex, const gdb_byte *buf,
1933 ULONGEST offset, LONGEST len)
1934 {
1935 return target_write_with_progress (ops, object, annex, buf, offset, len,
1936 NULL, NULL);
1937 }
1938
1939 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1940 the size of the transferred data. PADDING additional bytes are
1941 available in *BUF_P. This is a helper function for
1942 target_read_alloc; see the declaration of that function for more
1943 information. */
1944
1945 static LONGEST
1946 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1947 const char *annex, gdb_byte **buf_p, int padding)
1948 {
1949 size_t buf_alloc, buf_pos;
1950 gdb_byte *buf;
1951
1952 /* This function does not have a length parameter; it reads the
1953 entire OBJECT). Also, it doesn't support objects fetched partly
1954 from one target and partly from another (in a different stratum,
1955 e.g. a core file and an executable). Both reasons make it
1956 unsuitable for reading memory. */
1957 gdb_assert (object != TARGET_OBJECT_MEMORY);
1958
1959 /* Start by reading up to 4K at a time. The target will throttle
1960 this number down if necessary. */
1961 buf_alloc = 4096;
1962 buf = (gdb_byte *) xmalloc (buf_alloc);
1963 buf_pos = 0;
1964 while (1)
1965 {
1966 ULONGEST xfered_len;
1967 enum target_xfer_status status;
1968
1969 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1970 buf_pos, buf_alloc - buf_pos - padding,
1971 &xfered_len);
1972
1973 if (status == TARGET_XFER_EOF)
1974 {
1975 /* Read all there was. */
1976 if (buf_pos == 0)
1977 xfree (buf);
1978 else
1979 *buf_p = buf;
1980 return buf_pos;
1981 }
1982 else if (status != TARGET_XFER_OK)
1983 {
1984 /* An error occurred. */
1985 xfree (buf);
1986 return TARGET_XFER_E_IO;
1987 }
1988
1989 buf_pos += xfered_len;
1990
1991 /* If the buffer is filling up, expand it. */
1992 if (buf_alloc < buf_pos * 2)
1993 {
1994 buf_alloc *= 2;
1995 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1996 }
1997
1998 QUIT;
1999 }
2000 }
2001
2002 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2003 the size of the transferred data. See the declaration in "target.h"
2004 function for more information about the return value. */
2005
2006 LONGEST
2007 target_read_alloc (struct target_ops *ops, enum target_object object,
2008 const char *annex, gdb_byte **buf_p)
2009 {
2010 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2011 }
2012
2013 /* See target.h. */
2014
2015 gdb::unique_xmalloc_ptr<char>
2016 target_read_stralloc (struct target_ops *ops, enum target_object object,
2017 const char *annex)
2018 {
2019 gdb_byte *buffer;
2020 char *bufstr;
2021 LONGEST i, transferred;
2022
2023 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2024 bufstr = (char *) buffer;
2025
2026 if (transferred < 0)
2027 return NULL;
2028
2029 if (transferred == 0)
2030 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
2031
2032 bufstr[transferred] = 0;
2033
2034 /* Check for embedded NUL bytes; but allow trailing NULs. */
2035 for (i = strlen (bufstr); i < transferred; i++)
2036 if (bufstr[i] != 0)
2037 {
2038 warning (_("target object %d, annex %s, "
2039 "contained unexpected null characters"),
2040 (int) object, annex ? annex : "(none)");
2041 break;
2042 }
2043
2044 return gdb::unique_xmalloc_ptr<char> (bufstr);
2045 }
2046
2047 /* Memory transfer methods. */
2048
2049 void
2050 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2051 LONGEST len)
2052 {
2053 /* This method is used to read from an alternate, non-current
2054 target. This read must bypass the overlay support (as symbols
2055 don't match this target), and GDB's internal cache (wrong cache
2056 for this target). */
2057 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2058 != len)
2059 memory_error (TARGET_XFER_E_IO, addr);
2060 }
2061
2062 ULONGEST
2063 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2064 int len, enum bfd_endian byte_order)
2065 {
2066 gdb_byte buf[sizeof (ULONGEST)];
2067
2068 gdb_assert (len <= sizeof (buf));
2069 get_target_memory (ops, addr, buf, len);
2070 return extract_unsigned_integer (buf, len, byte_order);
2071 }
2072
2073 /* See target.h. */
2074
2075 int
2076 target_insert_breakpoint (struct gdbarch *gdbarch,
2077 struct bp_target_info *bp_tgt)
2078 {
2079 if (!may_insert_breakpoints)
2080 {
2081 warning (_("May not insert breakpoints"));
2082 return 1;
2083 }
2084
2085 return current_target.to_insert_breakpoint (&current_target,
2086 gdbarch, bp_tgt);
2087 }
2088
2089 /* See target.h. */
2090
2091 int
2092 target_remove_breakpoint (struct gdbarch *gdbarch,
2093 struct bp_target_info *bp_tgt,
2094 enum remove_bp_reason reason)
2095 {
2096 /* This is kind of a weird case to handle, but the permission might
2097 have been changed after breakpoints were inserted - in which case
2098 we should just take the user literally and assume that any
2099 breakpoints should be left in place. */
2100 if (!may_insert_breakpoints)
2101 {
2102 warning (_("May not remove breakpoints"));
2103 return 1;
2104 }
2105
2106 return current_target.to_remove_breakpoint (&current_target,
2107 gdbarch, bp_tgt, reason);
2108 }
2109
2110 static void
2111 info_target_command (const char *args, int from_tty)
2112 {
2113 struct target_ops *t;
2114 int has_all_mem = 0;
2115
2116 if (symfile_objfile != NULL)
2117 printf_unfiltered (_("Symbols from \"%s\".\n"),
2118 objfile_name (symfile_objfile));
2119
2120 for (t = target_stack; t != NULL; t = t->beneath)
2121 {
2122 if (!(*t->to_has_memory) (t))
2123 continue;
2124
2125 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2126 continue;
2127 if (has_all_mem)
2128 printf_unfiltered (_("\tWhile running this, "
2129 "GDB does not access memory from...\n"));
2130 printf_unfiltered ("%s:\n", t->to_longname);
2131 (t->to_files_info) (t);
2132 has_all_mem = (*t->to_has_all_memory) (t);
2133 }
2134 }
2135
2136 /* This function is called before any new inferior is created, e.g.
2137 by running a program, attaching, or connecting to a target.
2138 It cleans up any state from previous invocations which might
2139 change between runs. This is a subset of what target_preopen
2140 resets (things which might change between targets). */
2141
2142 void
2143 target_pre_inferior (int from_tty)
2144 {
2145 /* Clear out solib state. Otherwise the solib state of the previous
2146 inferior might have survived and is entirely wrong for the new
2147 target. This has been observed on GNU/Linux using glibc 2.3. How
2148 to reproduce:
2149
2150 bash$ ./foo&
2151 [1] 4711
2152 bash$ ./foo&
2153 [1] 4712
2154 bash$ gdb ./foo
2155 [...]
2156 (gdb) attach 4711
2157 (gdb) detach
2158 (gdb) attach 4712
2159 Cannot access memory at address 0xdeadbeef
2160 */
2161
2162 /* In some OSs, the shared library list is the same/global/shared
2163 across inferiors. If code is shared between processes, so are
2164 memory regions and features. */
2165 if (!gdbarch_has_global_solist (target_gdbarch ()))
2166 {
2167 no_shared_libraries (NULL, from_tty);
2168
2169 invalidate_target_mem_regions ();
2170
2171 target_clear_description ();
2172 }
2173
2174 /* attach_flag may be set if the previous process associated with
2175 the inferior was attached to. */
2176 current_inferior ()->attach_flag = 0;
2177
2178 current_inferior ()->highest_thread_num = 0;
2179
2180 agent_capability_invalidate ();
2181 }
2182
2183 /* Callback for iterate_over_inferiors. Gets rid of the given
2184 inferior. */
2185
2186 static int
2187 dispose_inferior (struct inferior *inf, void *args)
2188 {
2189 struct thread_info *thread;
2190
2191 thread = any_thread_of_process (inf->pid);
2192 if (thread)
2193 {
2194 switch_to_thread (thread->ptid);
2195
2196 /* Core inferiors actually should be detached, not killed. */
2197 if (target_has_execution)
2198 target_kill ();
2199 else
2200 target_detach (inf, 0);
2201 }
2202
2203 return 0;
2204 }
2205
2206 /* This is to be called by the open routine before it does
2207 anything. */
2208
2209 void
2210 target_preopen (int from_tty)
2211 {
2212 dont_repeat ();
2213
2214 if (have_inferiors ())
2215 {
2216 if (!from_tty
2217 || !have_live_inferiors ()
2218 || query (_("A program is being debugged already. Kill it? ")))
2219 iterate_over_inferiors (dispose_inferior, NULL);
2220 else
2221 error (_("Program not killed."));
2222 }
2223
2224 /* Calling target_kill may remove the target from the stack. But if
2225 it doesn't (which seems like a win for UDI), remove it now. */
2226 /* Leave the exec target, though. The user may be switching from a
2227 live process to a core of the same program. */
2228 pop_all_targets_above (file_stratum);
2229
2230 target_pre_inferior (from_tty);
2231 }
2232
2233 /* See target.h. */
2234
2235 void
2236 target_detach (inferior *inf, int from_tty)
2237 {
2238 /* As long as some to_detach implementations rely on the current_inferior
2239 (either directly, or indirectly, like through target_gdbarch or by
2240 reading memory), INF needs to be the current inferior. When that
2241 requirement will become no longer true, then we can remove this
2242 assertion. */
2243 gdb_assert (inf == current_inferior ());
2244
2245 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2246 /* Don't remove global breakpoints here. They're removed on
2247 disconnection from the target. */
2248 ;
2249 else
2250 /* If we're in breakpoints-always-inserted mode, have to remove
2251 them before detaching. */
2252 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2253
2254 prepare_for_detach ();
2255
2256 current_target.to_detach (&current_target, inf, from_tty);
2257 }
2258
2259 void
2260 target_disconnect (const char *args, int from_tty)
2261 {
2262 /* If we're in breakpoints-always-inserted mode or if breakpoints
2263 are global across processes, we have to remove them before
2264 disconnecting. */
2265 remove_breakpoints ();
2266
2267 current_target.to_disconnect (&current_target, args, from_tty);
2268 }
2269
2270 /* See target/target.h. */
2271
2272 ptid_t
2273 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2274 {
2275 return (current_target.to_wait) (&current_target, ptid, status, options);
2276 }
2277
2278 /* See target.h. */
2279
2280 ptid_t
2281 default_target_wait (struct target_ops *ops,
2282 ptid_t ptid, struct target_waitstatus *status,
2283 int options)
2284 {
2285 status->kind = TARGET_WAITKIND_IGNORE;
2286 return minus_one_ptid;
2287 }
2288
2289 const char *
2290 target_pid_to_str (ptid_t ptid)
2291 {
2292 return (*current_target.to_pid_to_str) (&current_target, ptid);
2293 }
2294
2295 const char *
2296 target_thread_name (struct thread_info *info)
2297 {
2298 return current_target.to_thread_name (&current_target, info);
2299 }
2300
2301 struct thread_info *
2302 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2303 int handle_len,
2304 struct inferior *inf)
2305 {
2306 return current_target.to_thread_handle_to_thread_info
2307 (&current_target, thread_handle, handle_len, inf);
2308 }
2309
2310 void
2311 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2312 {
2313 target_dcache_invalidate ();
2314
2315 current_target.to_resume (&current_target, ptid, step, signal);
2316
2317 registers_changed_ptid (ptid);
2318 /* We only set the internal executing state here. The user/frontend
2319 running state is set at a higher level. */
2320 set_executing (ptid, 1);
2321 clear_inline_frame_state (ptid);
2322 }
2323
2324 /* If true, target_commit_resume is a nop. */
2325 static int defer_target_commit_resume;
2326
2327 /* See target.h. */
2328
2329 void
2330 target_commit_resume (void)
2331 {
2332 if (defer_target_commit_resume)
2333 return;
2334
2335 current_target.to_commit_resume (&current_target);
2336 }
2337
2338 /* See target.h. */
2339
2340 scoped_restore_tmpl<int>
2341 make_scoped_defer_target_commit_resume ()
2342 {
2343 return make_scoped_restore (&defer_target_commit_resume, 1);
2344 }
2345
2346 void
2347 target_pass_signals (int numsigs, unsigned char *pass_signals)
2348 {
2349 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2350 }
2351
2352 void
2353 target_program_signals (int numsigs, unsigned char *program_signals)
2354 {
2355 (*current_target.to_program_signals) (&current_target,
2356 numsigs, program_signals);
2357 }
2358
2359 static int
2360 default_follow_fork (struct target_ops *self, int follow_child,
2361 int detach_fork)
2362 {
2363 /* Some target returned a fork event, but did not know how to follow it. */
2364 internal_error (__FILE__, __LINE__,
2365 _("could not find a target to follow fork"));
2366 }
2367
2368 /* Look through the list of possible targets for a target that can
2369 follow forks. */
2370
2371 int
2372 target_follow_fork (int follow_child, int detach_fork)
2373 {
2374 return current_target.to_follow_fork (&current_target,
2375 follow_child, detach_fork);
2376 }
2377
2378 /* Target wrapper for follow exec hook. */
2379
2380 void
2381 target_follow_exec (struct inferior *inf, char *execd_pathname)
2382 {
2383 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2384 }
2385
2386 static void
2387 default_mourn_inferior (struct target_ops *self)
2388 {
2389 internal_error (__FILE__, __LINE__,
2390 _("could not find a target to follow mourn inferior"));
2391 }
2392
2393 void
2394 target_mourn_inferior (ptid_t ptid)
2395 {
2396 gdb_assert (ptid_equal (ptid, inferior_ptid));
2397 current_target.to_mourn_inferior (&current_target);
2398
2399 /* We no longer need to keep handles on any of the object files.
2400 Make sure to release them to avoid unnecessarily locking any
2401 of them while we're not actually debugging. */
2402 bfd_cache_close_all ();
2403 }
2404
2405 /* Look for a target which can describe architectural features, starting
2406 from TARGET. If we find one, return its description. */
2407
2408 const struct target_desc *
2409 target_read_description (struct target_ops *target)
2410 {
2411 return target->to_read_description (target);
2412 }
2413
2414 /* This implements a basic search of memory, reading target memory and
2415 performing the search here (as opposed to performing the search in on the
2416 target side with, for example, gdbserver). */
2417
2418 int
2419 simple_search_memory (struct target_ops *ops,
2420 CORE_ADDR start_addr, ULONGEST search_space_len,
2421 const gdb_byte *pattern, ULONGEST pattern_len,
2422 CORE_ADDR *found_addrp)
2423 {
2424 /* NOTE: also defined in find.c testcase. */
2425 #define SEARCH_CHUNK_SIZE 16000
2426 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2427 /* Buffer to hold memory contents for searching. */
2428 unsigned search_buf_size;
2429
2430 search_buf_size = chunk_size + pattern_len - 1;
2431
2432 /* No point in trying to allocate a buffer larger than the search space. */
2433 if (search_space_len < search_buf_size)
2434 search_buf_size = search_space_len;
2435
2436 gdb::byte_vector search_buf (search_buf_size);
2437
2438 /* Prime the search buffer. */
2439
2440 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2441 search_buf.data (), start_addr, search_buf_size)
2442 != search_buf_size)
2443 {
2444 warning (_("Unable to access %s bytes of target "
2445 "memory at %s, halting search."),
2446 pulongest (search_buf_size), hex_string (start_addr));
2447 return -1;
2448 }
2449
2450 /* Perform the search.
2451
2452 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2453 When we've scanned N bytes we copy the trailing bytes to the start and
2454 read in another N bytes. */
2455
2456 while (search_space_len >= pattern_len)
2457 {
2458 gdb_byte *found_ptr;
2459 unsigned nr_search_bytes
2460 = std::min (search_space_len, (ULONGEST) search_buf_size);
2461
2462 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2463 pattern, pattern_len);
2464
2465 if (found_ptr != NULL)
2466 {
2467 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2468
2469 *found_addrp = found_addr;
2470 return 1;
2471 }
2472
2473 /* Not found in this chunk, skip to next chunk. */
2474
2475 /* Don't let search_space_len wrap here, it's unsigned. */
2476 if (search_space_len >= chunk_size)
2477 search_space_len -= chunk_size;
2478 else
2479 search_space_len = 0;
2480
2481 if (search_space_len >= pattern_len)
2482 {
2483 unsigned keep_len = search_buf_size - chunk_size;
2484 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2485 int nr_to_read;
2486
2487 /* Copy the trailing part of the previous iteration to the front
2488 of the buffer for the next iteration. */
2489 gdb_assert (keep_len == pattern_len - 1);
2490 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2491
2492 nr_to_read = std::min (search_space_len - keep_len,
2493 (ULONGEST) chunk_size);
2494
2495 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2496 &search_buf[keep_len], read_addr,
2497 nr_to_read) != nr_to_read)
2498 {
2499 warning (_("Unable to access %s bytes of target "
2500 "memory at %s, halting search."),
2501 plongest (nr_to_read),
2502 hex_string (read_addr));
2503 return -1;
2504 }
2505
2506 start_addr += chunk_size;
2507 }
2508 }
2509
2510 /* Not found. */
2511
2512 return 0;
2513 }
2514
2515 /* Default implementation of memory-searching. */
2516
2517 static int
2518 default_search_memory (struct target_ops *self,
2519 CORE_ADDR start_addr, ULONGEST search_space_len,
2520 const gdb_byte *pattern, ULONGEST pattern_len,
2521 CORE_ADDR *found_addrp)
2522 {
2523 /* Start over from the top of the target stack. */
2524 return simple_search_memory (current_target.beneath,
2525 start_addr, search_space_len,
2526 pattern, pattern_len, found_addrp);
2527 }
2528
2529 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2530 sequence of bytes in PATTERN with length PATTERN_LEN.
2531
2532 The result is 1 if found, 0 if not found, and -1 if there was an error
2533 requiring halting of the search (e.g. memory read error).
2534 If the pattern is found the address is recorded in FOUND_ADDRP. */
2535
2536 int
2537 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2538 const gdb_byte *pattern, ULONGEST pattern_len,
2539 CORE_ADDR *found_addrp)
2540 {
2541 return current_target.to_search_memory (&current_target, start_addr,
2542 search_space_len,
2543 pattern, pattern_len, found_addrp);
2544 }
2545
2546 /* Look through the currently pushed targets. If none of them will
2547 be able to restart the currently running process, issue an error
2548 message. */
2549
2550 void
2551 target_require_runnable (void)
2552 {
2553 struct target_ops *t;
2554
2555 for (t = target_stack; t != NULL; t = t->beneath)
2556 {
2557 /* If this target knows how to create a new program, then
2558 assume we will still be able to after killing the current
2559 one. Either killing and mourning will not pop T, or else
2560 find_default_run_target will find it again. */
2561 if (t->to_create_inferior != NULL)
2562 return;
2563
2564 /* Do not worry about targets at certain strata that can not
2565 create inferiors. Assume they will be pushed again if
2566 necessary, and continue to the process_stratum. */
2567 if (t->to_stratum == thread_stratum
2568 || t->to_stratum == record_stratum
2569 || t->to_stratum == arch_stratum)
2570 continue;
2571
2572 error (_("The \"%s\" target does not support \"run\". "
2573 "Try \"help target\" or \"continue\"."),
2574 t->to_shortname);
2575 }
2576
2577 /* This function is only called if the target is running. In that
2578 case there should have been a process_stratum target and it
2579 should either know how to create inferiors, or not... */
2580 internal_error (__FILE__, __LINE__, _("No targets found"));
2581 }
2582
2583 /* Whether GDB is allowed to fall back to the default run target for
2584 "run", "attach", etc. when no target is connected yet. */
2585 static int auto_connect_native_target = 1;
2586
2587 static void
2588 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2589 struct cmd_list_element *c, const char *value)
2590 {
2591 fprintf_filtered (file,
2592 _("Whether GDB may automatically connect to the "
2593 "native target is %s.\n"),
2594 value);
2595 }
2596
2597 /* Look through the list of possible targets for a target that can
2598 execute a run or attach command without any other data. This is
2599 used to locate the default process stratum.
2600
2601 If DO_MESG is not NULL, the result is always valid (error() is
2602 called for errors); else, return NULL on error. */
2603
2604 static struct target_ops *
2605 find_default_run_target (const char *do_mesg)
2606 {
2607 struct target_ops *runable = NULL;
2608
2609 if (auto_connect_native_target)
2610 {
2611 struct target_ops *t;
2612 int count = 0;
2613 int i;
2614
2615 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2616 {
2617 if (t->to_can_run != delegate_can_run && target_can_run (t))
2618 {
2619 runable = t;
2620 ++count;
2621 }
2622 }
2623
2624 if (count != 1)
2625 runable = NULL;
2626 }
2627
2628 if (runable == NULL)
2629 {
2630 if (do_mesg)
2631 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2632 else
2633 return NULL;
2634 }
2635
2636 return runable;
2637 }
2638
2639 /* See target.h. */
2640
2641 struct target_ops *
2642 find_attach_target (void)
2643 {
2644 struct target_ops *t;
2645
2646 /* If a target on the current stack can attach, use it. */
2647 for (t = current_target.beneath; t != NULL; t = t->beneath)
2648 {
2649 if (t->to_attach != NULL)
2650 break;
2651 }
2652
2653 /* Otherwise, use the default run target for attaching. */
2654 if (t == NULL)
2655 t = find_default_run_target ("attach");
2656
2657 return t;
2658 }
2659
2660 /* See target.h. */
2661
2662 struct target_ops *
2663 find_run_target (void)
2664 {
2665 struct target_ops *t;
2666
2667 /* If a target on the current stack can attach, use it. */
2668 for (t = current_target.beneath; t != NULL; t = t->beneath)
2669 {
2670 if (t->to_create_inferior != NULL)
2671 break;
2672 }
2673
2674 /* Otherwise, use the default run target. */
2675 if (t == NULL)
2676 t = find_default_run_target ("run");
2677
2678 return t;
2679 }
2680
2681 /* Implement the "info proc" command. */
2682
2683 int
2684 target_info_proc (const char *args, enum info_proc_what what)
2685 {
2686 struct target_ops *t;
2687
2688 /* If we're already connected to something that can get us OS
2689 related data, use it. Otherwise, try using the native
2690 target. */
2691 if (current_target.to_stratum >= process_stratum)
2692 t = current_target.beneath;
2693 else
2694 t = find_default_run_target (NULL);
2695
2696 for (; t != NULL; t = t->beneath)
2697 {
2698 if (t->to_info_proc != NULL)
2699 {
2700 t->to_info_proc (t, args, what);
2701
2702 if (targetdebug)
2703 fprintf_unfiltered (gdb_stdlog,
2704 "target_info_proc (\"%s\", %d)\n", args, what);
2705
2706 return 1;
2707 }
2708 }
2709
2710 return 0;
2711 }
2712
2713 static int
2714 find_default_supports_disable_randomization (struct target_ops *self)
2715 {
2716 struct target_ops *t;
2717
2718 t = find_default_run_target (NULL);
2719 if (t && t->to_supports_disable_randomization)
2720 return (t->to_supports_disable_randomization) (t);
2721 return 0;
2722 }
2723
2724 int
2725 target_supports_disable_randomization (void)
2726 {
2727 struct target_ops *t;
2728
2729 for (t = &current_target; t != NULL; t = t->beneath)
2730 if (t->to_supports_disable_randomization)
2731 return t->to_supports_disable_randomization (t);
2732
2733 return 0;
2734 }
2735
2736 /* See target/target.h. */
2737
2738 int
2739 target_supports_multi_process (void)
2740 {
2741 return (*current_target.to_supports_multi_process) (&current_target);
2742 }
2743
2744 /* See target.h. */
2745
2746 gdb::unique_xmalloc_ptr<char>
2747 target_get_osdata (const char *type)
2748 {
2749 struct target_ops *t;
2750
2751 /* If we're already connected to something that can get us OS
2752 related data, use it. Otherwise, try using the native
2753 target. */
2754 if (current_target.to_stratum >= process_stratum)
2755 t = current_target.beneath;
2756 else
2757 t = find_default_run_target ("get OS data");
2758
2759 if (!t)
2760 return NULL;
2761
2762 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2763 }
2764
2765 static struct address_space *
2766 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2767 {
2768 struct inferior *inf;
2769
2770 /* Fall-back to the "main" address space of the inferior. */
2771 inf = find_inferior_ptid (ptid);
2772
2773 if (inf == NULL || inf->aspace == NULL)
2774 internal_error (__FILE__, __LINE__,
2775 _("Can't determine the current "
2776 "address space of thread %s\n"),
2777 target_pid_to_str (ptid));
2778
2779 return inf->aspace;
2780 }
2781
2782 /* Determine the current address space of thread PTID. */
2783
2784 struct address_space *
2785 target_thread_address_space (ptid_t ptid)
2786 {
2787 struct address_space *aspace;
2788
2789 aspace = current_target.to_thread_address_space (&current_target, ptid);
2790 gdb_assert (aspace != NULL);
2791
2792 return aspace;
2793 }
2794
2795
2796 /* Target file operations. */
2797
2798 static struct target_ops *
2799 default_fileio_target (void)
2800 {
2801 /* If we're already connected to something that can perform
2802 file I/O, use it. Otherwise, try using the native target. */
2803 if (current_target.to_stratum >= process_stratum)
2804 return current_target.beneath;
2805 else
2806 return find_default_run_target ("file I/O");
2807 }
2808
2809 /* File handle for target file operations. */
2810
2811 typedef struct
2812 {
2813 /* The target on which this file is open. */
2814 struct target_ops *t;
2815
2816 /* The file descriptor on the target. */
2817 int fd;
2818 } fileio_fh_t;
2819
2820 DEF_VEC_O (fileio_fh_t);
2821
2822 /* Vector of currently open file handles. The value returned by
2823 target_fileio_open and passed as the FD argument to other
2824 target_fileio_* functions is an index into this vector. This
2825 vector's entries are never freed; instead, files are marked as
2826 closed, and the handle becomes available for reuse. */
2827 static VEC (fileio_fh_t) *fileio_fhandles;
2828
2829 /* Macro to check whether a fileio_fh_t represents a closed file. */
2830 #define is_closed_fileio_fh(fd) ((fd) < 0)
2831
2832 /* Index into fileio_fhandles of the lowest handle that might be
2833 closed. This permits handle reuse without searching the whole
2834 list each time a new file is opened. */
2835 static int lowest_closed_fd;
2836
2837 /* Acquire a target fileio file descriptor. */
2838
2839 static int
2840 acquire_fileio_fd (struct target_ops *t, int fd)
2841 {
2842 fileio_fh_t *fh;
2843
2844 gdb_assert (!is_closed_fileio_fh (fd));
2845
2846 /* Search for closed handles to reuse. */
2847 for (;
2848 VEC_iterate (fileio_fh_t, fileio_fhandles,
2849 lowest_closed_fd, fh);
2850 lowest_closed_fd++)
2851 if (is_closed_fileio_fh (fh->fd))
2852 break;
2853
2854 /* Push a new handle if no closed handles were found. */
2855 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2856 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2857
2858 /* Fill in the handle. */
2859 fh->t = t;
2860 fh->fd = fd;
2861
2862 /* Return its index, and start the next lookup at
2863 the next index. */
2864 return lowest_closed_fd++;
2865 }
2866
2867 /* Release a target fileio file descriptor. */
2868
2869 static void
2870 release_fileio_fd (int fd, fileio_fh_t *fh)
2871 {
2872 fh->fd = -1;
2873 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2874 }
2875
2876 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2877
2878 #define fileio_fd_to_fh(fd) \
2879 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2880
2881 /* Helper for target_fileio_open and
2882 target_fileio_open_warn_if_slow. */
2883
2884 static int
2885 target_fileio_open_1 (struct inferior *inf, const char *filename,
2886 int flags, int mode, int warn_if_slow,
2887 int *target_errno)
2888 {
2889 struct target_ops *t;
2890
2891 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2892 {
2893 if (t->to_fileio_open != NULL)
2894 {
2895 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2896 warn_if_slow, target_errno);
2897
2898 if (fd < 0)
2899 fd = -1;
2900 else
2901 fd = acquire_fileio_fd (t, fd);
2902
2903 if (targetdebug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2906 " = %d (%d)\n",
2907 inf == NULL ? 0 : inf->num,
2908 filename, flags, mode,
2909 warn_if_slow, fd,
2910 fd != -1 ? 0 : *target_errno);
2911 return fd;
2912 }
2913 }
2914
2915 *target_errno = FILEIO_ENOSYS;
2916 return -1;
2917 }
2918
2919 /* See target.h. */
2920
2921 int
2922 target_fileio_open (struct inferior *inf, const char *filename,
2923 int flags, int mode, int *target_errno)
2924 {
2925 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2926 target_errno);
2927 }
2928
2929 /* See target.h. */
2930
2931 int
2932 target_fileio_open_warn_if_slow (struct inferior *inf,
2933 const char *filename,
2934 int flags, int mode, int *target_errno)
2935 {
2936 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2937 target_errno);
2938 }
2939
2940 /* See target.h. */
2941
2942 int
2943 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2944 ULONGEST offset, int *target_errno)
2945 {
2946 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2947 int ret = -1;
2948
2949 if (is_closed_fileio_fh (fh->fd))
2950 *target_errno = EBADF;
2951 else
2952 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2953 len, offset, target_errno);
2954
2955 if (targetdebug)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "target_fileio_pwrite (%d,...,%d,%s) "
2958 "= %d (%d)\n",
2959 fd, len, pulongest (offset),
2960 ret, ret != -1 ? 0 : *target_errno);
2961 return ret;
2962 }
2963
2964 /* See target.h. */
2965
2966 int
2967 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2968 ULONGEST offset, int *target_errno)
2969 {
2970 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2971 int ret = -1;
2972
2973 if (is_closed_fileio_fh (fh->fd))
2974 *target_errno = EBADF;
2975 else
2976 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2977 len, offset, target_errno);
2978
2979 if (targetdebug)
2980 fprintf_unfiltered (gdb_stdlog,
2981 "target_fileio_pread (%d,...,%d,%s) "
2982 "= %d (%d)\n",
2983 fd, len, pulongest (offset),
2984 ret, ret != -1 ? 0 : *target_errno);
2985 return ret;
2986 }
2987
2988 /* See target.h. */
2989
2990 int
2991 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2992 {
2993 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2994 int ret = -1;
2995
2996 if (is_closed_fileio_fh (fh->fd))
2997 *target_errno = EBADF;
2998 else
2999 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
3000
3001 if (targetdebug)
3002 fprintf_unfiltered (gdb_stdlog,
3003 "target_fileio_fstat (%d) = %d (%d)\n",
3004 fd, ret, ret != -1 ? 0 : *target_errno);
3005 return ret;
3006 }
3007
3008 /* See target.h. */
3009
3010 int
3011 target_fileio_close (int fd, int *target_errno)
3012 {
3013 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3014 int ret = -1;
3015
3016 if (is_closed_fileio_fh (fh->fd))
3017 *target_errno = EBADF;
3018 else
3019 {
3020 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3021 release_fileio_fd (fd, fh);
3022 }
3023
3024 if (targetdebug)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "target_fileio_close (%d) = %d (%d)\n",
3027 fd, ret, ret != -1 ? 0 : *target_errno);
3028 return ret;
3029 }
3030
3031 /* See target.h. */
3032
3033 int
3034 target_fileio_unlink (struct inferior *inf, const char *filename,
3035 int *target_errno)
3036 {
3037 struct target_ops *t;
3038
3039 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3040 {
3041 if (t->to_fileio_unlink != NULL)
3042 {
3043 int ret = t->to_fileio_unlink (t, inf, filename,
3044 target_errno);
3045
3046 if (targetdebug)
3047 fprintf_unfiltered (gdb_stdlog,
3048 "target_fileio_unlink (%d,%s)"
3049 " = %d (%d)\n",
3050 inf == NULL ? 0 : inf->num, filename,
3051 ret, ret != -1 ? 0 : *target_errno);
3052 return ret;
3053 }
3054 }
3055
3056 *target_errno = FILEIO_ENOSYS;
3057 return -1;
3058 }
3059
3060 /* See target.h. */
3061
3062 gdb::optional<std::string>
3063 target_fileio_readlink (struct inferior *inf, const char *filename,
3064 int *target_errno)
3065 {
3066 struct target_ops *t;
3067
3068 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3069 {
3070 if (t->to_fileio_readlink != NULL)
3071 {
3072 gdb::optional<std::string> ret
3073 = t->to_fileio_readlink (t, inf, filename, target_errno);
3074
3075 if (targetdebug)
3076 fprintf_unfiltered (gdb_stdlog,
3077 "target_fileio_readlink (%d,%s)"
3078 " = %s (%d)\n",
3079 inf == NULL ? 0 : inf->num,
3080 filename, ret ? ret->c_str () : "(nil)",
3081 ret ? 0 : *target_errno);
3082 return ret;
3083 }
3084 }
3085
3086 *target_errno = FILEIO_ENOSYS;
3087 return {};
3088 }
3089
3090 static void
3091 target_fileio_close_cleanup (void *opaque)
3092 {
3093 int fd = *(int *) opaque;
3094 int target_errno;
3095
3096 target_fileio_close (fd, &target_errno);
3097 }
3098
3099 /* Read target file FILENAME, in the filesystem as seen by INF. If
3100 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3101 remote targets, the remote stub). Store the result in *BUF_P and
3102 return the size of the transferred data. PADDING additional bytes
3103 are available in *BUF_P. This is a helper function for
3104 target_fileio_read_alloc; see the declaration of that function for
3105 more information. */
3106
3107 static LONGEST
3108 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3109 gdb_byte **buf_p, int padding)
3110 {
3111 struct cleanup *close_cleanup;
3112 size_t buf_alloc, buf_pos;
3113 gdb_byte *buf;
3114 LONGEST n;
3115 int fd;
3116 int target_errno;
3117
3118 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3119 &target_errno);
3120 if (fd == -1)
3121 return -1;
3122
3123 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3124
3125 /* Start by reading up to 4K at a time. The target will throttle
3126 this number down if necessary. */
3127 buf_alloc = 4096;
3128 buf = (gdb_byte *) xmalloc (buf_alloc);
3129 buf_pos = 0;
3130 while (1)
3131 {
3132 n = target_fileio_pread (fd, &buf[buf_pos],
3133 buf_alloc - buf_pos - padding, buf_pos,
3134 &target_errno);
3135 if (n < 0)
3136 {
3137 /* An error occurred. */
3138 do_cleanups (close_cleanup);
3139 xfree (buf);
3140 return -1;
3141 }
3142 else if (n == 0)
3143 {
3144 /* Read all there was. */
3145 do_cleanups (close_cleanup);
3146 if (buf_pos == 0)
3147 xfree (buf);
3148 else
3149 *buf_p = buf;
3150 return buf_pos;
3151 }
3152
3153 buf_pos += n;
3154
3155 /* If the buffer is filling up, expand it. */
3156 if (buf_alloc < buf_pos * 2)
3157 {
3158 buf_alloc *= 2;
3159 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3160 }
3161
3162 QUIT;
3163 }
3164 }
3165
3166 /* See target.h. */
3167
3168 LONGEST
3169 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3170 gdb_byte **buf_p)
3171 {
3172 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3173 }
3174
3175 /* See target.h. */
3176
3177 gdb::unique_xmalloc_ptr<char>
3178 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3179 {
3180 gdb_byte *buffer;
3181 char *bufstr;
3182 LONGEST i, transferred;
3183
3184 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3185 bufstr = (char *) buffer;
3186
3187 if (transferred < 0)
3188 return gdb::unique_xmalloc_ptr<char> (nullptr);
3189
3190 if (transferred == 0)
3191 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3192
3193 bufstr[transferred] = 0;
3194
3195 /* Check for embedded NUL bytes; but allow trailing NULs. */
3196 for (i = strlen (bufstr); i < transferred; i++)
3197 if (bufstr[i] != 0)
3198 {
3199 warning (_("target file %s "
3200 "contained unexpected null characters"),
3201 filename);
3202 break;
3203 }
3204
3205 return gdb::unique_xmalloc_ptr<char> (bufstr);
3206 }
3207
3208
3209 static int
3210 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3211 CORE_ADDR addr, int len)
3212 {
3213 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3214 }
3215
3216 static int
3217 default_watchpoint_addr_within_range (struct target_ops *target,
3218 CORE_ADDR addr,
3219 CORE_ADDR start, int length)
3220 {
3221 return addr >= start && addr < start + length;
3222 }
3223
3224 static struct gdbarch *
3225 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3226 {
3227 inferior *inf = find_inferior_ptid (ptid);
3228 gdb_assert (inf != NULL);
3229 return inf->gdbarch;
3230 }
3231
3232 static int
3233 return_zero (struct target_ops *ignore)
3234 {
3235 return 0;
3236 }
3237
3238 static int
3239 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3240 {
3241 return 0;
3242 }
3243
3244 /*
3245 * Find the next target down the stack from the specified target.
3246 */
3247
3248 struct target_ops *
3249 find_target_beneath (struct target_ops *t)
3250 {
3251 return t->beneath;
3252 }
3253
3254 /* See target.h. */
3255
3256 struct target_ops *
3257 find_target_at (enum strata stratum)
3258 {
3259 struct target_ops *t;
3260
3261 for (t = current_target.beneath; t != NULL; t = t->beneath)
3262 if (t->to_stratum == stratum)
3263 return t;
3264
3265 return NULL;
3266 }
3267
3268 \f
3269
3270 /* See target.h */
3271
3272 void
3273 target_announce_detach (int from_tty)
3274 {
3275 pid_t pid;
3276 const char *exec_file;
3277
3278 if (!from_tty)
3279 return;
3280
3281 exec_file = get_exec_file (0);
3282 if (exec_file == NULL)
3283 exec_file = "";
3284
3285 pid = ptid_get_pid (inferior_ptid);
3286 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3287 target_pid_to_str (pid_to_ptid (pid)));
3288 gdb_flush (gdb_stdout);
3289 }
3290
3291 /* The inferior process has died. Long live the inferior! */
3292
3293 void
3294 generic_mourn_inferior (void)
3295 {
3296 ptid_t ptid;
3297
3298 ptid = inferior_ptid;
3299 inferior_ptid = null_ptid;
3300
3301 /* Mark breakpoints uninserted in case something tries to delete a
3302 breakpoint while we delete the inferior's threads (which would
3303 fail, since the inferior is long gone). */
3304 mark_breakpoints_out ();
3305
3306 if (!ptid_equal (ptid, null_ptid))
3307 {
3308 int pid = ptid_get_pid (ptid);
3309 exit_inferior (pid);
3310 }
3311
3312 /* Note this wipes step-resume breakpoints, so needs to be done
3313 after exit_inferior, which ends up referencing the step-resume
3314 breakpoints through clear_thread_inferior_resources. */
3315 breakpoint_init_inferior (inf_exited);
3316
3317 registers_changed ();
3318
3319 reopen_exec_file ();
3320 reinit_frame_cache ();
3321
3322 if (deprecated_detach_hook)
3323 deprecated_detach_hook ();
3324 }
3325 \f
3326 /* Convert a normal process ID to a string. Returns the string in a
3327 static buffer. */
3328
3329 const char *
3330 normal_pid_to_str (ptid_t ptid)
3331 {
3332 static char buf[32];
3333
3334 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3335 return buf;
3336 }
3337
3338 static const char *
3339 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3340 {
3341 return normal_pid_to_str (ptid);
3342 }
3343
3344 /* Error-catcher for target_find_memory_regions. */
3345 static int
3346 dummy_find_memory_regions (struct target_ops *self,
3347 find_memory_region_ftype ignore1, void *ignore2)
3348 {
3349 error (_("Command not implemented for this target."));
3350 return 0;
3351 }
3352
3353 /* Error-catcher for target_make_corefile_notes. */
3354 static char *
3355 dummy_make_corefile_notes (struct target_ops *self,
3356 bfd *ignore1, int *ignore2)
3357 {
3358 error (_("Command not implemented for this target."));
3359 return NULL;
3360 }
3361
3362 /* Set up the handful of non-empty slots needed by the dummy target
3363 vector. */
3364
3365 static void
3366 init_dummy_target (void)
3367 {
3368 dummy_target.to_shortname = "None";
3369 dummy_target.to_longname = "None";
3370 dummy_target.to_doc = "";
3371 dummy_target.to_supports_disable_randomization
3372 = find_default_supports_disable_randomization;
3373 dummy_target.to_stratum = dummy_stratum;
3374 dummy_target.to_has_all_memory = return_zero;
3375 dummy_target.to_has_memory = return_zero;
3376 dummy_target.to_has_stack = return_zero;
3377 dummy_target.to_has_registers = return_zero;
3378 dummy_target.to_has_execution = return_zero_has_execution;
3379 dummy_target.to_magic = OPS_MAGIC;
3380
3381 install_dummy_methods (&dummy_target);
3382 }
3383 \f
3384
3385 void
3386 target_close (struct target_ops *targ)
3387 {
3388 gdb_assert (!target_is_pushed (targ));
3389
3390 if (targ->to_xclose != NULL)
3391 targ->to_xclose (targ);
3392 else if (targ->to_close != NULL)
3393 targ->to_close (targ);
3394
3395 if (targetdebug)
3396 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3397 }
3398
3399 int
3400 target_thread_alive (ptid_t ptid)
3401 {
3402 return current_target.to_thread_alive (&current_target, ptid);
3403 }
3404
3405 void
3406 target_update_thread_list (void)
3407 {
3408 current_target.to_update_thread_list (&current_target);
3409 }
3410
3411 void
3412 target_stop (ptid_t ptid)
3413 {
3414 if (!may_stop)
3415 {
3416 warning (_("May not interrupt or stop the target, ignoring attempt"));
3417 return;
3418 }
3419
3420 (*current_target.to_stop) (&current_target, ptid);
3421 }
3422
3423 void
3424 target_interrupt ()
3425 {
3426 if (!may_stop)
3427 {
3428 warning (_("May not interrupt or stop the target, ignoring attempt"));
3429 return;
3430 }
3431
3432 (*current_target.to_interrupt) (&current_target);
3433 }
3434
3435 /* See target.h. */
3436
3437 void
3438 target_pass_ctrlc (void)
3439 {
3440 (*current_target.to_pass_ctrlc) (&current_target);
3441 }
3442
3443 /* See target.h. */
3444
3445 void
3446 default_target_pass_ctrlc (struct target_ops *ops)
3447 {
3448 target_interrupt ();
3449 }
3450
3451 /* See target/target.h. */
3452
3453 void
3454 target_stop_and_wait (ptid_t ptid)
3455 {
3456 struct target_waitstatus status;
3457 int was_non_stop = non_stop;
3458
3459 non_stop = 1;
3460 target_stop (ptid);
3461
3462 memset (&status, 0, sizeof (status));
3463 target_wait (ptid, &status, 0);
3464
3465 non_stop = was_non_stop;
3466 }
3467
3468 /* See target/target.h. */
3469
3470 void
3471 target_continue_no_signal (ptid_t ptid)
3472 {
3473 target_resume (ptid, 0, GDB_SIGNAL_0);
3474 }
3475
3476 /* See target/target.h. */
3477
3478 void
3479 target_continue (ptid_t ptid, enum gdb_signal signal)
3480 {
3481 target_resume (ptid, 0, signal);
3482 }
3483
3484 /* Concatenate ELEM to LIST, a comma separate list, and return the
3485 result. The LIST incoming argument is released. */
3486
3487 static char *
3488 str_comma_list_concat_elem (char *list, const char *elem)
3489 {
3490 if (list == NULL)
3491 return xstrdup (elem);
3492 else
3493 return reconcat (list, list, ", ", elem, (char *) NULL);
3494 }
3495
3496 /* Helper for target_options_to_string. If OPT is present in
3497 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3498 Returns the new resulting string. OPT is removed from
3499 TARGET_OPTIONS. */
3500
3501 static char *
3502 do_option (int *target_options, char *ret,
3503 int opt, const char *opt_str)
3504 {
3505 if ((*target_options & opt) != 0)
3506 {
3507 ret = str_comma_list_concat_elem (ret, opt_str);
3508 *target_options &= ~opt;
3509 }
3510
3511 return ret;
3512 }
3513
3514 char *
3515 target_options_to_string (int target_options)
3516 {
3517 char *ret = NULL;
3518
3519 #define DO_TARG_OPTION(OPT) \
3520 ret = do_option (&target_options, ret, OPT, #OPT)
3521
3522 DO_TARG_OPTION (TARGET_WNOHANG);
3523
3524 if (target_options != 0)
3525 ret = str_comma_list_concat_elem (ret, "unknown???");
3526
3527 if (ret == NULL)
3528 ret = xstrdup ("");
3529 return ret;
3530 }
3531
3532 void
3533 target_fetch_registers (struct regcache *regcache, int regno)
3534 {
3535 current_target.to_fetch_registers (&current_target, regcache, regno);
3536 if (targetdebug)
3537 regcache->debug_print_register ("target_fetch_registers", regno);
3538 }
3539
3540 void
3541 target_store_registers (struct regcache *regcache, int regno)
3542 {
3543 if (!may_write_registers)
3544 error (_("Writing to registers is not allowed (regno %d)"), regno);
3545
3546 current_target.to_store_registers (&current_target, regcache, regno);
3547 if (targetdebug)
3548 {
3549 regcache->debug_print_register ("target_store_registers", regno);
3550 }
3551 }
3552
3553 int
3554 target_core_of_thread (ptid_t ptid)
3555 {
3556 return current_target.to_core_of_thread (&current_target, ptid);
3557 }
3558
3559 int
3560 simple_verify_memory (struct target_ops *ops,
3561 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3562 {
3563 LONGEST total_xfered = 0;
3564
3565 while (total_xfered < size)
3566 {
3567 ULONGEST xfered_len;
3568 enum target_xfer_status status;
3569 gdb_byte buf[1024];
3570 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3571
3572 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3573 buf, NULL, lma + total_xfered, howmuch,
3574 &xfered_len);
3575 if (status == TARGET_XFER_OK
3576 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3577 {
3578 total_xfered += xfered_len;
3579 QUIT;
3580 }
3581 else
3582 return 0;
3583 }
3584 return 1;
3585 }
3586
3587 /* Default implementation of memory verification. */
3588
3589 static int
3590 default_verify_memory (struct target_ops *self,
3591 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3592 {
3593 /* Start over from the top of the target stack. */
3594 return simple_verify_memory (current_target.beneath,
3595 data, memaddr, size);
3596 }
3597
3598 int
3599 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3600 {
3601 return current_target.to_verify_memory (&current_target,
3602 data, memaddr, size);
3603 }
3604
3605 /* The documentation for this function is in its prototype declaration in
3606 target.h. */
3607
3608 int
3609 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3610 enum target_hw_bp_type rw)
3611 {
3612 return current_target.to_insert_mask_watchpoint (&current_target,
3613 addr, mask, rw);
3614 }
3615
3616 /* The documentation for this function is in its prototype declaration in
3617 target.h. */
3618
3619 int
3620 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3621 enum target_hw_bp_type rw)
3622 {
3623 return current_target.to_remove_mask_watchpoint (&current_target,
3624 addr, mask, rw);
3625 }
3626
3627 /* The documentation for this function is in its prototype declaration
3628 in target.h. */
3629
3630 int
3631 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3632 {
3633 return current_target.to_masked_watch_num_registers (&current_target,
3634 addr, mask);
3635 }
3636
3637 /* The documentation for this function is in its prototype declaration
3638 in target.h. */
3639
3640 int
3641 target_ranged_break_num_registers (void)
3642 {
3643 return current_target.to_ranged_break_num_registers (&current_target);
3644 }
3645
3646 /* See target.h. */
3647
3648 struct btrace_target_info *
3649 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3650 {
3651 return current_target.to_enable_btrace (&current_target, ptid, conf);
3652 }
3653
3654 /* See target.h. */
3655
3656 void
3657 target_disable_btrace (struct btrace_target_info *btinfo)
3658 {
3659 current_target.to_disable_btrace (&current_target, btinfo);
3660 }
3661
3662 /* See target.h. */
3663
3664 void
3665 target_teardown_btrace (struct btrace_target_info *btinfo)
3666 {
3667 current_target.to_teardown_btrace (&current_target, btinfo);
3668 }
3669
3670 /* See target.h. */
3671
3672 enum btrace_error
3673 target_read_btrace (struct btrace_data *btrace,
3674 struct btrace_target_info *btinfo,
3675 enum btrace_read_type type)
3676 {
3677 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3678 }
3679
3680 /* See target.h. */
3681
3682 const struct btrace_config *
3683 target_btrace_conf (const struct btrace_target_info *btinfo)
3684 {
3685 return current_target.to_btrace_conf (&current_target, btinfo);
3686 }
3687
3688 /* See target.h. */
3689
3690 void
3691 target_stop_recording (void)
3692 {
3693 current_target.to_stop_recording (&current_target);
3694 }
3695
3696 /* See target.h. */
3697
3698 void
3699 target_save_record (const char *filename)
3700 {
3701 current_target.to_save_record (&current_target, filename);
3702 }
3703
3704 /* See target.h. */
3705
3706 int
3707 target_supports_delete_record (void)
3708 {
3709 struct target_ops *t;
3710
3711 for (t = current_target.beneath; t != NULL; t = t->beneath)
3712 if (t->to_delete_record != delegate_delete_record
3713 && t->to_delete_record != tdefault_delete_record)
3714 return 1;
3715
3716 return 0;
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_delete_record (void)
3723 {
3724 current_target.to_delete_record (&current_target);
3725 }
3726
3727 /* See target.h. */
3728
3729 enum record_method
3730 target_record_method (ptid_t ptid)
3731 {
3732 return current_target.to_record_method (&current_target, ptid);
3733 }
3734
3735 /* See target.h. */
3736
3737 int
3738 target_record_is_replaying (ptid_t ptid)
3739 {
3740 return current_target.to_record_is_replaying (&current_target, ptid);
3741 }
3742
3743 /* See target.h. */
3744
3745 int
3746 target_record_will_replay (ptid_t ptid, int dir)
3747 {
3748 return current_target.to_record_will_replay (&current_target, ptid, dir);
3749 }
3750
3751 /* See target.h. */
3752
3753 void
3754 target_record_stop_replaying (void)
3755 {
3756 current_target.to_record_stop_replaying (&current_target);
3757 }
3758
3759 /* See target.h. */
3760
3761 void
3762 target_goto_record_begin (void)
3763 {
3764 current_target.to_goto_record_begin (&current_target);
3765 }
3766
3767 /* See target.h. */
3768
3769 void
3770 target_goto_record_end (void)
3771 {
3772 current_target.to_goto_record_end (&current_target);
3773 }
3774
3775 /* See target.h. */
3776
3777 void
3778 target_goto_record (ULONGEST insn)
3779 {
3780 current_target.to_goto_record (&current_target, insn);
3781 }
3782
3783 /* See target.h. */
3784
3785 void
3786 target_insn_history (int size, gdb_disassembly_flags flags)
3787 {
3788 current_target.to_insn_history (&current_target, size, flags);
3789 }
3790
3791 /* See target.h. */
3792
3793 void
3794 target_insn_history_from (ULONGEST from, int size,
3795 gdb_disassembly_flags flags)
3796 {
3797 current_target.to_insn_history_from (&current_target, from, size, flags);
3798 }
3799
3800 /* See target.h. */
3801
3802 void
3803 target_insn_history_range (ULONGEST begin, ULONGEST end,
3804 gdb_disassembly_flags flags)
3805 {
3806 current_target.to_insn_history_range (&current_target, begin, end, flags);
3807 }
3808
3809 /* See target.h. */
3810
3811 void
3812 target_call_history (int size, record_print_flags flags)
3813 {
3814 current_target.to_call_history (&current_target, size, flags);
3815 }
3816
3817 /* See target.h. */
3818
3819 void
3820 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3821 {
3822 current_target.to_call_history_from (&current_target, begin, size, flags);
3823 }
3824
3825 /* See target.h. */
3826
3827 void
3828 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3829 {
3830 current_target.to_call_history_range (&current_target, begin, end, flags);
3831 }
3832
3833 /* See target.h. */
3834
3835 const struct frame_unwind *
3836 target_get_unwinder (void)
3837 {
3838 return current_target.to_get_unwinder (&current_target);
3839 }
3840
3841 /* See target.h. */
3842
3843 const struct frame_unwind *
3844 target_get_tailcall_unwinder (void)
3845 {
3846 return current_target.to_get_tailcall_unwinder (&current_target);
3847 }
3848
3849 /* See target.h. */
3850
3851 void
3852 target_prepare_to_generate_core (void)
3853 {
3854 current_target.to_prepare_to_generate_core (&current_target);
3855 }
3856
3857 /* See target.h. */
3858
3859 void
3860 target_done_generating_core (void)
3861 {
3862 current_target.to_done_generating_core (&current_target);
3863 }
3864
3865 static void
3866 setup_target_debug (void)
3867 {
3868 memcpy (&debug_target, &current_target, sizeof debug_target);
3869
3870 init_debug_target (&current_target);
3871 }
3872 \f
3873
3874 static char targ_desc[] =
3875 "Names of targets and files being debugged.\nShows the entire \
3876 stack of targets currently in use (including the exec-file,\n\
3877 core-file, and process, if any), as well as the symbol file name.";
3878
3879 static void
3880 default_rcmd (struct target_ops *self, const char *command,
3881 struct ui_file *output)
3882 {
3883 error (_("\"monitor\" command not supported by this target."));
3884 }
3885
3886 static void
3887 do_monitor_command (const char *cmd, int from_tty)
3888 {
3889 target_rcmd (cmd, gdb_stdtarg);
3890 }
3891
3892 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3893 ignored. */
3894
3895 void
3896 flash_erase_command (const char *cmd, int from_tty)
3897 {
3898 /* Used to communicate termination of flash operations to the target. */
3899 bool found_flash_region = false;
3900 struct gdbarch *gdbarch = target_gdbarch ();
3901
3902 std::vector<mem_region> mem_regions = target_memory_map ();
3903
3904 /* Iterate over all memory regions. */
3905 for (const mem_region &m : mem_regions)
3906 {
3907 /* Is this a flash memory region? */
3908 if (m.attrib.mode == MEM_FLASH)
3909 {
3910 found_flash_region = true;
3911 target_flash_erase (m.lo, m.hi - m.lo);
3912
3913 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3914
3915 current_uiout->message (_("Erasing flash memory region at address "));
3916 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3917 current_uiout->message (", size = ");
3918 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3919 current_uiout->message ("\n");
3920 }
3921 }
3922
3923 /* Did we do any flash operations? If so, we need to finalize them. */
3924 if (found_flash_region)
3925 target_flash_done ();
3926 else
3927 current_uiout->message (_("No flash memory regions found.\n"));
3928 }
3929
3930 /* Print the name of each layers of our target stack. */
3931
3932 static void
3933 maintenance_print_target_stack (const char *cmd, int from_tty)
3934 {
3935 struct target_ops *t;
3936
3937 printf_filtered (_("The current target stack is:\n"));
3938
3939 for (t = target_stack; t != NULL; t = t->beneath)
3940 {
3941 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3942 }
3943 }
3944
3945 /* See target.h. */
3946
3947 void
3948 target_async (int enable)
3949 {
3950 infrun_async (enable);
3951 current_target.to_async (&current_target, enable);
3952 }
3953
3954 /* See target.h. */
3955
3956 void
3957 target_thread_events (int enable)
3958 {
3959 current_target.to_thread_events (&current_target, enable);
3960 }
3961
3962 /* Controls if targets can report that they can/are async. This is
3963 just for maintainers to use when debugging gdb. */
3964 int target_async_permitted = 1;
3965
3966 /* The set command writes to this variable. If the inferior is
3967 executing, target_async_permitted is *not* updated. */
3968 static int target_async_permitted_1 = 1;
3969
3970 static void
3971 maint_set_target_async_command (const char *args, int from_tty,
3972 struct cmd_list_element *c)
3973 {
3974 if (have_live_inferiors ())
3975 {
3976 target_async_permitted_1 = target_async_permitted;
3977 error (_("Cannot change this setting while the inferior is running."));
3978 }
3979
3980 target_async_permitted = target_async_permitted_1;
3981 }
3982
3983 static void
3984 maint_show_target_async_command (struct ui_file *file, int from_tty,
3985 struct cmd_list_element *c,
3986 const char *value)
3987 {
3988 fprintf_filtered (file,
3989 _("Controlling the inferior in "
3990 "asynchronous mode is %s.\n"), value);
3991 }
3992
3993 /* Return true if the target operates in non-stop mode even with "set
3994 non-stop off". */
3995
3996 static int
3997 target_always_non_stop_p (void)
3998 {
3999 return current_target.to_always_non_stop_p (&current_target);
4000 }
4001
4002 /* See target.h. */
4003
4004 int
4005 target_is_non_stop_p (void)
4006 {
4007 return (non_stop
4008 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4009 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4010 && target_always_non_stop_p ()));
4011 }
4012
4013 /* Controls if targets can report that they always run in non-stop
4014 mode. This is just for maintainers to use when debugging gdb. */
4015 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4016
4017 /* The set command writes to this variable. If the inferior is
4018 executing, target_non_stop_enabled is *not* updated. */
4019 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4020
4021 /* Implementation of "maint set target-non-stop". */
4022
4023 static void
4024 maint_set_target_non_stop_command (const char *args, int from_tty,
4025 struct cmd_list_element *c)
4026 {
4027 if (have_live_inferiors ())
4028 {
4029 target_non_stop_enabled_1 = target_non_stop_enabled;
4030 error (_("Cannot change this setting while the inferior is running."));
4031 }
4032
4033 target_non_stop_enabled = target_non_stop_enabled_1;
4034 }
4035
4036 /* Implementation of "maint show target-non-stop". */
4037
4038 static void
4039 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4040 struct cmd_list_element *c,
4041 const char *value)
4042 {
4043 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4044 fprintf_filtered (file,
4045 _("Whether the target is always in non-stop mode "
4046 "is %s (currently %s).\n"), value,
4047 target_always_non_stop_p () ? "on" : "off");
4048 else
4049 fprintf_filtered (file,
4050 _("Whether the target is always in non-stop mode "
4051 "is %s.\n"), value);
4052 }
4053
4054 /* Temporary copies of permission settings. */
4055
4056 static int may_write_registers_1 = 1;
4057 static int may_write_memory_1 = 1;
4058 static int may_insert_breakpoints_1 = 1;
4059 static int may_insert_tracepoints_1 = 1;
4060 static int may_insert_fast_tracepoints_1 = 1;
4061 static int may_stop_1 = 1;
4062
4063 /* Make the user-set values match the real values again. */
4064
4065 void
4066 update_target_permissions (void)
4067 {
4068 may_write_registers_1 = may_write_registers;
4069 may_write_memory_1 = may_write_memory;
4070 may_insert_breakpoints_1 = may_insert_breakpoints;
4071 may_insert_tracepoints_1 = may_insert_tracepoints;
4072 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4073 may_stop_1 = may_stop;
4074 }
4075
4076 /* The one function handles (most of) the permission flags in the same
4077 way. */
4078
4079 static void
4080 set_target_permissions (const char *args, int from_tty,
4081 struct cmd_list_element *c)
4082 {
4083 if (target_has_execution)
4084 {
4085 update_target_permissions ();
4086 error (_("Cannot change this setting while the inferior is running."));
4087 }
4088
4089 /* Make the real values match the user-changed values. */
4090 may_write_registers = may_write_registers_1;
4091 may_insert_breakpoints = may_insert_breakpoints_1;
4092 may_insert_tracepoints = may_insert_tracepoints_1;
4093 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4094 may_stop = may_stop_1;
4095 update_observer_mode ();
4096 }
4097
4098 /* Set memory write permission independently of observer mode. */
4099
4100 static void
4101 set_write_memory_permission (const char *args, int from_tty,
4102 struct cmd_list_element *c)
4103 {
4104 /* Make the real values match the user-changed values. */
4105 may_write_memory = may_write_memory_1;
4106 update_observer_mode ();
4107 }
4108
4109 #if GDB_SELF_TEST
4110 namespace selftests {
4111
4112 static int
4113 test_target_has_registers (target_ops *self)
4114 {
4115 return 1;
4116 }
4117
4118 static int
4119 test_target_has_stack (target_ops *self)
4120 {
4121 return 1;
4122 }
4123
4124 static int
4125 test_target_has_memory (target_ops *self)
4126 {
4127 return 1;
4128 }
4129
4130 static void
4131 test_target_prepare_to_store (target_ops *self, regcache *regs)
4132 {
4133 }
4134
4135 static void
4136 test_target_store_registers (target_ops *self, regcache *regs, int regno)
4137 {
4138 }
4139
4140 test_target_ops::test_target_ops ()
4141 : target_ops {}
4142 {
4143 to_magic = OPS_MAGIC;
4144 to_stratum = process_stratum;
4145 to_has_memory = test_target_has_memory;
4146 to_has_stack = test_target_has_stack;
4147 to_has_registers = test_target_has_registers;
4148 to_prepare_to_store = test_target_prepare_to_store;
4149 to_store_registers = test_target_store_registers;
4150
4151 complete_target_initialization (this);
4152 }
4153
4154 } // namespace selftests
4155 #endif /* GDB_SELF_TEST */
4156
4157 void
4158 initialize_targets (void)
4159 {
4160 init_dummy_target ();
4161 push_target (&dummy_target);
4162
4163 add_info ("target", info_target_command, targ_desc);
4164 add_info ("files", info_target_command, targ_desc);
4165
4166 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4167 Set target debugging."), _("\
4168 Show target debugging."), _("\
4169 When non-zero, target debugging is enabled. Higher numbers are more\n\
4170 verbose."),
4171 set_targetdebug,
4172 show_targetdebug,
4173 &setdebuglist, &showdebuglist);
4174
4175 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4176 &trust_readonly, _("\
4177 Set mode for reading from readonly sections."), _("\
4178 Show mode for reading from readonly sections."), _("\
4179 When this mode is on, memory reads from readonly sections (such as .text)\n\
4180 will be read from the object file instead of from the target. This will\n\
4181 result in significant performance improvement for remote targets."),
4182 NULL,
4183 show_trust_readonly,
4184 &setlist, &showlist);
4185
4186 add_com ("monitor", class_obscure, do_monitor_command,
4187 _("Send a command to the remote monitor (remote targets only)."));
4188
4189 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4190 _("Print the name of each layer of the internal target stack."),
4191 &maintenanceprintlist);
4192
4193 add_setshow_boolean_cmd ("target-async", no_class,
4194 &target_async_permitted_1, _("\
4195 Set whether gdb controls the inferior in asynchronous mode."), _("\
4196 Show whether gdb controls the inferior in asynchronous mode."), _("\
4197 Tells gdb whether to control the inferior in asynchronous mode."),
4198 maint_set_target_async_command,
4199 maint_show_target_async_command,
4200 &maintenance_set_cmdlist,
4201 &maintenance_show_cmdlist);
4202
4203 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4204 &target_non_stop_enabled_1, _("\
4205 Set whether gdb always controls the inferior in non-stop mode."), _("\
4206 Show whether gdb always controls the inferior in non-stop mode."), _("\
4207 Tells gdb whether to control the inferior in non-stop mode."),
4208 maint_set_target_non_stop_command,
4209 maint_show_target_non_stop_command,
4210 &maintenance_set_cmdlist,
4211 &maintenance_show_cmdlist);
4212
4213 add_setshow_boolean_cmd ("may-write-registers", class_support,
4214 &may_write_registers_1, _("\
4215 Set permission to write into registers."), _("\
4216 Show permission to write into registers."), _("\
4217 When this permission is on, GDB may write into the target's registers.\n\
4218 Otherwise, any sort of write attempt will result in an error."),
4219 set_target_permissions, NULL,
4220 &setlist, &showlist);
4221
4222 add_setshow_boolean_cmd ("may-write-memory", class_support,
4223 &may_write_memory_1, _("\
4224 Set permission to write into target memory."), _("\
4225 Show permission to write into target memory."), _("\
4226 When this permission is on, GDB may write into the target's memory.\n\
4227 Otherwise, any sort of write attempt will result in an error."),
4228 set_write_memory_permission, NULL,
4229 &setlist, &showlist);
4230
4231 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4232 &may_insert_breakpoints_1, _("\
4233 Set permission to insert breakpoints in the target."), _("\
4234 Show permission to insert breakpoints in the target."), _("\
4235 When this permission is on, GDB may insert breakpoints in the program.\n\
4236 Otherwise, any sort of insertion attempt will result in an error."),
4237 set_target_permissions, NULL,
4238 &setlist, &showlist);
4239
4240 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4241 &may_insert_tracepoints_1, _("\
4242 Set permission to insert tracepoints in the target."), _("\
4243 Show permission to insert tracepoints in the target."), _("\
4244 When this permission is on, GDB may insert tracepoints in the program.\n\
4245 Otherwise, any sort of insertion attempt will result in an error."),
4246 set_target_permissions, NULL,
4247 &setlist, &showlist);
4248
4249 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4250 &may_insert_fast_tracepoints_1, _("\
4251 Set permission to insert fast tracepoints in the target."), _("\
4252 Show permission to insert fast tracepoints in the target."), _("\
4253 When this permission is on, GDB may insert fast tracepoints.\n\
4254 Otherwise, any sort of insertion attempt will result in an error."),
4255 set_target_permissions, NULL,
4256 &setlist, &showlist);
4257
4258 add_setshow_boolean_cmd ("may-interrupt", class_support,
4259 &may_stop_1, _("\
4260 Set permission to interrupt or signal the target."), _("\
4261 Show permission to interrupt or signal the target."), _("\
4262 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4263 Otherwise, any attempt to interrupt or stop will be ignored."),
4264 set_target_permissions, NULL,
4265 &setlist, &showlist);
4266
4267 add_com ("flash-erase", no_class, flash_erase_command,
4268 _("Erase all flash memory regions."));
4269
4270 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4271 &auto_connect_native_target, _("\
4272 Set whether GDB may automatically connect to the native target."), _("\
4273 Show whether GDB may automatically connect to the native target."), _("\
4274 When on, and GDB is not connected to a target yet, GDB\n\
4275 attempts \"run\" and other commands with the native target."),
4276 NULL, show_auto_connect_native_target,
4277 &setlist, &showlist);
4278 }
This page took 0.109419 seconds and 5 git commands to generate.