Update copyright year range in all GDB files
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static struct target_ops *find_default_run_target (const char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (const char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (const char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, const char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Define it. */
433
434 enum target_terminal::terminal_state target_terminal::terminal_state
435 = target_terminal::terminal_is_ours;
436
437 /* See target/target.h. */
438
439 void
440 target_terminal::init (void)
441 {
442 (*current_target.to_terminal_init) (&current_target);
443
444 terminal_state = terminal_is_ours;
445 }
446
447 /* See target/target.h. */
448
449 void
450 target_terminal::inferior (void)
451 {
452 struct ui *ui = current_ui;
453
454 /* A background resume (``run&'') should leave GDB in control of the
455 terminal. */
456 if (ui->prompt_state != PROMPT_BLOCKED)
457 return;
458
459 /* Since we always run the inferior in the main console (unless "set
460 inferior-tty" is in effect), when some UI other than the main one
461 calls target_terminal::inferior, then we leave the main UI's
462 terminal settings as is. */
463 if (ui != main_ui)
464 return;
465
466 if (terminal_state == terminal_is_inferior)
467 return;
468
469 /* If GDB is resuming the inferior in the foreground, install
470 inferior's terminal modes. */
471 (*current_target.to_terminal_inferior) (&current_target);
472 terminal_state = terminal_is_inferior;
473
474 /* If the user hit C-c before, pretend that it was hit right
475 here. */
476 if (check_quit_flag ())
477 target_pass_ctrlc ();
478 }
479
480 /* See target/target.h. */
481
482 void
483 target_terminal::ours ()
484 {
485 struct ui *ui = current_ui;
486
487 /* See target_terminal::inferior. */
488 if (ui != main_ui)
489 return;
490
491 if (terminal_state == terminal_is_ours)
492 return;
493
494 (*current_target.to_terminal_ours) (&current_target);
495 terminal_state = terminal_is_ours;
496 }
497
498 /* See target/target.h. */
499
500 void
501 target_terminal::ours_for_output ()
502 {
503 struct ui *ui = current_ui;
504
505 /* See target_terminal::inferior. */
506 if (ui != main_ui)
507 return;
508
509 if (terminal_state != terminal_is_inferior)
510 return;
511 (*current_target.to_terminal_ours_for_output) (&current_target);
512 terminal_state = terminal_is_ours_for_output;
513 }
514
515 /* See target/target.h. */
516
517 void
518 target_terminal::info (const char *arg, int from_tty)
519 {
520 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
521 }
522
523 /* See target.h. */
524
525 int
526 target_supports_terminal_ours (void)
527 {
528 struct target_ops *t;
529
530 for (t = current_target.beneath; t != NULL; t = t->beneath)
531 {
532 if (t->to_terminal_ours != delegate_terminal_ours
533 && t->to_terminal_ours != tdefault_terminal_ours)
534 return 1;
535 }
536
537 return 0;
538 }
539
540 static void
541 tcomplain (void)
542 {
543 error (_("You can't do that when your target is `%s'"),
544 current_target.to_shortname);
545 }
546
547 void
548 noprocess (void)
549 {
550 error (_("You can't do that without a process to debug."));
551 }
552
553 static void
554 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
555 {
556 printf_unfiltered (_("No saved terminal information.\n"));
557 }
558
559 /* A default implementation for the to_get_ada_task_ptid target method.
560
561 This function builds the PTID by using both LWP and TID as part of
562 the PTID lwp and tid elements. The pid used is the pid of the
563 inferior_ptid. */
564
565 static ptid_t
566 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
567 {
568 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
569 }
570
571 static enum exec_direction_kind
572 default_execution_direction (struct target_ops *self)
573 {
574 if (!target_can_execute_reverse)
575 return EXEC_FORWARD;
576 else if (!target_can_async_p ())
577 return EXEC_FORWARD;
578 else
579 gdb_assert_not_reached ("\
580 to_execution_direction must be implemented for reverse async");
581 }
582
583 /* Go through the target stack from top to bottom, copying over zero
584 entries in current_target, then filling in still empty entries. In
585 effect, we are doing class inheritance through the pushed target
586 vectors.
587
588 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
589 is currently implemented, is that it discards any knowledge of
590 which target an inherited method originally belonged to.
591 Consequently, new new target methods should instead explicitly and
592 locally search the target stack for the target that can handle the
593 request. */
594
595 static void
596 update_current_target (void)
597 {
598 struct target_ops *t;
599
600 /* First, reset current's contents. */
601 memset (&current_target, 0, sizeof (current_target));
602
603 /* Install the delegators. */
604 install_delegators (&current_target);
605
606 current_target.to_stratum = target_stack->to_stratum;
607
608 #define INHERIT(FIELD, TARGET) \
609 if (!current_target.FIELD) \
610 current_target.FIELD = (TARGET)->FIELD
611
612 /* Do not add any new INHERITs here. Instead, use the delegation
613 mechanism provided by make-target-delegates. */
614 for (t = target_stack; t; t = t->beneath)
615 {
616 INHERIT (to_shortname, t);
617 INHERIT (to_longname, t);
618 INHERIT (to_attach_no_wait, t);
619 INHERIT (to_have_steppable_watchpoint, t);
620 INHERIT (to_have_continuable_watchpoint, t);
621 INHERIT (to_has_thread_control, t);
622 }
623 #undef INHERIT
624
625 /* Finally, position the target-stack beneath the squashed
626 "current_target". That way code looking for a non-inherited
627 target method can quickly and simply find it. */
628 current_target.beneath = target_stack;
629
630 if (targetdebug)
631 setup_target_debug ();
632 }
633
634 /* Push a new target type into the stack of the existing target accessors,
635 possibly superseding some of the existing accessors.
636
637 Rather than allow an empty stack, we always have the dummy target at
638 the bottom stratum, so we can call the function vectors without
639 checking them. */
640
641 void
642 push_target (struct target_ops *t)
643 {
644 struct target_ops **cur;
645
646 /* Check magic number. If wrong, it probably means someone changed
647 the struct definition, but not all the places that initialize one. */
648 if (t->to_magic != OPS_MAGIC)
649 {
650 fprintf_unfiltered (gdb_stderr,
651 "Magic number of %s target struct wrong\n",
652 t->to_shortname);
653 internal_error (__FILE__, __LINE__,
654 _("failed internal consistency check"));
655 }
656
657 /* Find the proper stratum to install this target in. */
658 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
659 {
660 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
661 break;
662 }
663
664 /* If there's already targets at this stratum, remove them. */
665 /* FIXME: cagney/2003-10-15: I think this should be popping all
666 targets to CUR, and not just those at this stratum level. */
667 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
668 {
669 /* There's already something at this stratum level. Close it,
670 and un-hook it from the stack. */
671 struct target_ops *tmp = (*cur);
672
673 (*cur) = (*cur)->beneath;
674 tmp->beneath = NULL;
675 target_close (tmp);
676 }
677
678 /* We have removed all targets in our stratum, now add the new one. */
679 t->beneath = (*cur);
680 (*cur) = t;
681
682 update_current_target ();
683 }
684
685 /* Remove a target_ops vector from the stack, wherever it may be.
686 Return how many times it was removed (0 or 1). */
687
688 int
689 unpush_target (struct target_ops *t)
690 {
691 struct target_ops **cur;
692 struct target_ops *tmp;
693
694 if (t->to_stratum == dummy_stratum)
695 internal_error (__FILE__, __LINE__,
696 _("Attempt to unpush the dummy target"));
697
698 /* Look for the specified target. Note that we assume that a target
699 can only occur once in the target stack. */
700
701 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
702 {
703 if ((*cur) == t)
704 break;
705 }
706
707 /* If we don't find target_ops, quit. Only open targets should be
708 closed. */
709 if ((*cur) == NULL)
710 return 0;
711
712 /* Unchain the target. */
713 tmp = (*cur);
714 (*cur) = (*cur)->beneath;
715 tmp->beneath = NULL;
716
717 update_current_target ();
718
719 /* Finally close the target. Note we do this after unchaining, so
720 any target method calls from within the target_close
721 implementation don't end up in T anymore. */
722 target_close (t);
723
724 return 1;
725 }
726
727 /* Unpush TARGET and assert that it worked. */
728
729 static void
730 unpush_target_and_assert (struct target_ops *target)
731 {
732 if (!unpush_target (target))
733 {
734 fprintf_unfiltered (gdb_stderr,
735 "pop_all_targets couldn't find target %s\n",
736 target->to_shortname);
737 internal_error (__FILE__, __LINE__,
738 _("failed internal consistency check"));
739 }
740 }
741
742 void
743 pop_all_targets_above (enum strata above_stratum)
744 {
745 while ((int) (current_target.to_stratum) > (int) above_stratum)
746 unpush_target_and_assert (target_stack);
747 }
748
749 /* See target.h. */
750
751 void
752 pop_all_targets_at_and_above (enum strata stratum)
753 {
754 while ((int) (current_target.to_stratum) >= (int) stratum)
755 unpush_target_and_assert (target_stack);
756 }
757
758 void
759 pop_all_targets (void)
760 {
761 pop_all_targets_above (dummy_stratum);
762 }
763
764 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
765
766 int
767 target_is_pushed (struct target_ops *t)
768 {
769 struct target_ops *cur;
770
771 /* Check magic number. If wrong, it probably means someone changed
772 the struct definition, but not all the places that initialize one. */
773 if (t->to_magic != OPS_MAGIC)
774 {
775 fprintf_unfiltered (gdb_stderr,
776 "Magic number of %s target struct wrong\n",
777 t->to_shortname);
778 internal_error (__FILE__, __LINE__,
779 _("failed internal consistency check"));
780 }
781
782 for (cur = target_stack; cur != NULL; cur = cur->beneath)
783 if (cur == t)
784 return 1;
785
786 return 0;
787 }
788
789 /* Default implementation of to_get_thread_local_address. */
790
791 static void
792 generic_tls_error (void)
793 {
794 throw_error (TLS_GENERIC_ERROR,
795 _("Cannot find thread-local variables on this target"));
796 }
797
798 /* Using the objfile specified in OBJFILE, find the address for the
799 current thread's thread-local storage with offset OFFSET. */
800 CORE_ADDR
801 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
802 {
803 volatile CORE_ADDR addr = 0;
804 struct target_ops *target = &current_target;
805
806 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
807 {
808 ptid_t ptid = inferior_ptid;
809
810 TRY
811 {
812 CORE_ADDR lm_addr;
813
814 /* Fetch the load module address for this objfile. */
815 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
816 objfile);
817
818 addr = target->to_get_thread_local_address (target, ptid,
819 lm_addr, offset);
820 }
821 /* If an error occurred, print TLS related messages here. Otherwise,
822 throw the error to some higher catcher. */
823 CATCH (ex, RETURN_MASK_ALL)
824 {
825 int objfile_is_library = (objfile->flags & OBJF_SHARED);
826
827 switch (ex.error)
828 {
829 case TLS_NO_LIBRARY_SUPPORT_ERROR:
830 error (_("Cannot find thread-local variables "
831 "in this thread library."));
832 break;
833 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
834 if (objfile_is_library)
835 error (_("Cannot find shared library `%s' in dynamic"
836 " linker's load module list"), objfile_name (objfile));
837 else
838 error (_("Cannot find executable file `%s' in dynamic"
839 " linker's load module list"), objfile_name (objfile));
840 break;
841 case TLS_NOT_ALLOCATED_YET_ERROR:
842 if (objfile_is_library)
843 error (_("The inferior has not yet allocated storage for"
844 " thread-local variables in\n"
845 "the shared library `%s'\n"
846 "for %s"),
847 objfile_name (objfile), target_pid_to_str (ptid));
848 else
849 error (_("The inferior has not yet allocated storage for"
850 " thread-local variables in\n"
851 "the executable `%s'\n"
852 "for %s"),
853 objfile_name (objfile), target_pid_to_str (ptid));
854 break;
855 case TLS_GENERIC_ERROR:
856 if (objfile_is_library)
857 error (_("Cannot find thread-local storage for %s, "
858 "shared library %s:\n%s"),
859 target_pid_to_str (ptid),
860 objfile_name (objfile), ex.message);
861 else
862 error (_("Cannot find thread-local storage for %s, "
863 "executable file %s:\n%s"),
864 target_pid_to_str (ptid),
865 objfile_name (objfile), ex.message);
866 break;
867 default:
868 throw_exception (ex);
869 break;
870 }
871 }
872 END_CATCH
873 }
874 /* It wouldn't be wrong here to try a gdbarch method, too; finding
875 TLS is an ABI-specific thing. But we don't do that yet. */
876 else
877 error (_("Cannot find thread-local variables on this target"));
878
879 return addr;
880 }
881
882 const char *
883 target_xfer_status_to_string (enum target_xfer_status status)
884 {
885 #define CASE(X) case X: return #X
886 switch (status)
887 {
888 CASE(TARGET_XFER_E_IO);
889 CASE(TARGET_XFER_UNAVAILABLE);
890 default:
891 return "<unknown>";
892 }
893 #undef CASE
894 };
895
896
897 #undef MIN
898 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
899
900 /* target_read_string -- read a null terminated string, up to LEN bytes,
901 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
902 Set *STRING to a pointer to malloc'd memory containing the data; the caller
903 is responsible for freeing it. Return the number of bytes successfully
904 read. */
905
906 int
907 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
908 {
909 int tlen, offset, i;
910 gdb_byte buf[4];
911 int errcode = 0;
912 char *buffer;
913 int buffer_allocated;
914 char *bufptr;
915 unsigned int nbytes_read = 0;
916
917 gdb_assert (string);
918
919 /* Small for testing. */
920 buffer_allocated = 4;
921 buffer = (char *) xmalloc (buffer_allocated);
922 bufptr = buffer;
923
924 while (len > 0)
925 {
926 tlen = MIN (len, 4 - (memaddr & 3));
927 offset = memaddr & 3;
928
929 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
930 if (errcode != 0)
931 {
932 /* The transfer request might have crossed the boundary to an
933 unallocated region of memory. Retry the transfer, requesting
934 a single byte. */
935 tlen = 1;
936 offset = 0;
937 errcode = target_read_memory (memaddr, buf, 1);
938 if (errcode != 0)
939 goto done;
940 }
941
942 if (bufptr - buffer + tlen > buffer_allocated)
943 {
944 unsigned int bytes;
945
946 bytes = bufptr - buffer;
947 buffer_allocated *= 2;
948 buffer = (char *) xrealloc (buffer, buffer_allocated);
949 bufptr = buffer + bytes;
950 }
951
952 for (i = 0; i < tlen; i++)
953 {
954 *bufptr++ = buf[i + offset];
955 if (buf[i + offset] == '\000')
956 {
957 nbytes_read += i + 1;
958 goto done;
959 }
960 }
961
962 memaddr += tlen;
963 len -= tlen;
964 nbytes_read += tlen;
965 }
966 done:
967 *string = buffer;
968 if (errnop != NULL)
969 *errnop = errcode;
970 return nbytes_read;
971 }
972
973 struct target_section_table *
974 target_get_section_table (struct target_ops *target)
975 {
976 return (*target->to_get_section_table) (target);
977 }
978
979 /* Find a section containing ADDR. */
980
981 struct target_section *
982 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
983 {
984 struct target_section_table *table = target_get_section_table (target);
985 struct target_section *secp;
986
987 if (table == NULL)
988 return NULL;
989
990 for (secp = table->sections; secp < table->sections_end; secp++)
991 {
992 if (addr >= secp->addr && addr < secp->endaddr)
993 return secp;
994 }
995 return NULL;
996 }
997
998
999 /* Helper for the memory xfer routines. Checks the attributes of the
1000 memory region of MEMADDR against the read or write being attempted.
1001 If the access is permitted returns true, otherwise returns false.
1002 REGION_P is an optional output parameter. If not-NULL, it is
1003 filled with a pointer to the memory region of MEMADDR. REG_LEN
1004 returns LEN trimmed to the end of the region. This is how much the
1005 caller can continue requesting, if the access is permitted. A
1006 single xfer request must not straddle memory region boundaries. */
1007
1008 static int
1009 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1010 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1011 struct mem_region **region_p)
1012 {
1013 struct mem_region *region;
1014
1015 region = lookup_mem_region (memaddr);
1016
1017 if (region_p != NULL)
1018 *region_p = region;
1019
1020 switch (region->attrib.mode)
1021 {
1022 case MEM_RO:
1023 if (writebuf != NULL)
1024 return 0;
1025 break;
1026
1027 case MEM_WO:
1028 if (readbuf != NULL)
1029 return 0;
1030 break;
1031
1032 case MEM_FLASH:
1033 /* We only support writing to flash during "load" for now. */
1034 if (writebuf != NULL)
1035 error (_("Writing to flash memory forbidden in this context"));
1036 break;
1037
1038 case MEM_NONE:
1039 return 0;
1040 }
1041
1042 /* region->hi == 0 means there's no upper bound. */
1043 if (memaddr + len < region->hi || region->hi == 0)
1044 *reg_len = len;
1045 else
1046 *reg_len = region->hi - memaddr;
1047
1048 return 1;
1049 }
1050
1051 /* Read memory from more than one valid target. A core file, for
1052 instance, could have some of memory but delegate other bits to
1053 the target below it. So, we must manually try all targets. */
1054
1055 enum target_xfer_status
1056 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1057 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1058 ULONGEST *xfered_len)
1059 {
1060 enum target_xfer_status res;
1061
1062 do
1063 {
1064 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1065 readbuf, writebuf, memaddr, len,
1066 xfered_len);
1067 if (res == TARGET_XFER_OK)
1068 break;
1069
1070 /* Stop if the target reports that the memory is not available. */
1071 if (res == TARGET_XFER_UNAVAILABLE)
1072 break;
1073
1074 /* We want to continue past core files to executables, but not
1075 past a running target's memory. */
1076 if (ops->to_has_all_memory (ops))
1077 break;
1078
1079 ops = ops->beneath;
1080 }
1081 while (ops != NULL);
1082
1083 /* The cache works at the raw memory level. Make sure the cache
1084 gets updated with raw contents no matter what kind of memory
1085 object was originally being written. Note we do write-through
1086 first, so that if it fails, we don't write to the cache contents
1087 that never made it to the target. */
1088 if (writebuf != NULL
1089 && !ptid_equal (inferior_ptid, null_ptid)
1090 && target_dcache_init_p ()
1091 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1092 {
1093 DCACHE *dcache = target_dcache_get ();
1094
1095 /* Note that writing to an area of memory which wasn't present
1096 in the cache doesn't cause it to be loaded in. */
1097 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1098 }
1099
1100 return res;
1101 }
1102
1103 /* Perform a partial memory transfer.
1104 For docs see target.h, to_xfer_partial. */
1105
1106 static enum target_xfer_status
1107 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1108 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1109 ULONGEST len, ULONGEST *xfered_len)
1110 {
1111 enum target_xfer_status res;
1112 ULONGEST reg_len;
1113 struct mem_region *region;
1114 struct inferior *inf;
1115
1116 /* For accesses to unmapped overlay sections, read directly from
1117 files. Must do this first, as MEMADDR may need adjustment. */
1118 if (readbuf != NULL && overlay_debugging)
1119 {
1120 struct obj_section *section = find_pc_overlay (memaddr);
1121
1122 if (pc_in_unmapped_range (memaddr, section))
1123 {
1124 struct target_section_table *table
1125 = target_get_section_table (ops);
1126 const char *section_name = section->the_bfd_section->name;
1127
1128 memaddr = overlay_mapped_address (memaddr, section);
1129 return section_table_xfer_memory_partial (readbuf, writebuf,
1130 memaddr, len, xfered_len,
1131 table->sections,
1132 table->sections_end,
1133 section_name);
1134 }
1135 }
1136
1137 /* Try the executable files, if "trust-readonly-sections" is set. */
1138 if (readbuf != NULL && trust_readonly)
1139 {
1140 struct target_section *secp;
1141 struct target_section_table *table;
1142
1143 secp = target_section_by_addr (ops, memaddr);
1144 if (secp != NULL
1145 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1146 secp->the_bfd_section)
1147 & SEC_READONLY))
1148 {
1149 table = target_get_section_table (ops);
1150 return section_table_xfer_memory_partial (readbuf, writebuf,
1151 memaddr, len, xfered_len,
1152 table->sections,
1153 table->sections_end,
1154 NULL);
1155 }
1156 }
1157
1158 /* Try GDB's internal data cache. */
1159
1160 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1161 &region))
1162 return TARGET_XFER_E_IO;
1163
1164 if (!ptid_equal (inferior_ptid, null_ptid))
1165 inf = find_inferior_ptid (inferior_ptid);
1166 else
1167 inf = NULL;
1168
1169 if (inf != NULL
1170 && readbuf != NULL
1171 /* The dcache reads whole cache lines; that doesn't play well
1172 with reading from a trace buffer, because reading outside of
1173 the collected memory range fails. */
1174 && get_traceframe_number () == -1
1175 && (region->attrib.cache
1176 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1177 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1178 {
1179 DCACHE *dcache = target_dcache_get_or_init ();
1180
1181 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1182 reg_len, xfered_len);
1183 }
1184
1185 /* If none of those methods found the memory we wanted, fall back
1186 to a target partial transfer. Normally a single call to
1187 to_xfer_partial is enough; if it doesn't recognize an object
1188 it will call the to_xfer_partial of the next target down.
1189 But for memory this won't do. Memory is the only target
1190 object which can be read from more than one valid target.
1191 A core file, for instance, could have some of memory but
1192 delegate other bits to the target below it. So, we must
1193 manually try all targets. */
1194
1195 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1196 xfered_len);
1197
1198 /* If we still haven't got anything, return the last error. We
1199 give up. */
1200 return res;
1201 }
1202
1203 /* Perform a partial memory transfer. For docs see target.h,
1204 to_xfer_partial. */
1205
1206 static enum target_xfer_status
1207 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1208 gdb_byte *readbuf, const gdb_byte *writebuf,
1209 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1210 {
1211 enum target_xfer_status res;
1212
1213 /* Zero length requests are ok and require no work. */
1214 if (len == 0)
1215 return TARGET_XFER_EOF;
1216
1217 memaddr = address_significant (target_gdbarch (), memaddr);
1218
1219 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1220 breakpoint insns, thus hiding out from higher layers whether
1221 there are software breakpoints inserted in the code stream. */
1222 if (readbuf != NULL)
1223 {
1224 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1225 xfered_len);
1226
1227 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1228 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1229 }
1230 else
1231 {
1232 /* A large write request is likely to be partially satisfied
1233 by memory_xfer_partial_1. We will continually malloc
1234 and free a copy of the entire write request for breakpoint
1235 shadow handling even though we only end up writing a small
1236 subset of it. Cap writes to a limit specified by the target
1237 to mitigate this. */
1238 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1239
1240 gdb::byte_vector buf (writebuf, writebuf + len);
1241 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1242 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1243 xfered_len);
1244 }
1245
1246 return res;
1247 }
1248
1249 scoped_restore_tmpl<int>
1250 make_scoped_restore_show_memory_breakpoints (int show)
1251 {
1252 return make_scoped_restore (&show_memory_breakpoints, show);
1253 }
1254
1255 /* For docs see target.h, to_xfer_partial. */
1256
1257 enum target_xfer_status
1258 target_xfer_partial (struct target_ops *ops,
1259 enum target_object object, const char *annex,
1260 gdb_byte *readbuf, const gdb_byte *writebuf,
1261 ULONGEST offset, ULONGEST len,
1262 ULONGEST *xfered_len)
1263 {
1264 enum target_xfer_status retval;
1265
1266 gdb_assert (ops->to_xfer_partial != NULL);
1267
1268 /* Transfer is done when LEN is zero. */
1269 if (len == 0)
1270 return TARGET_XFER_EOF;
1271
1272 if (writebuf && !may_write_memory)
1273 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1274 core_addr_to_string_nz (offset), plongest (len));
1275
1276 *xfered_len = 0;
1277
1278 /* If this is a memory transfer, let the memory-specific code
1279 have a look at it instead. Memory transfers are more
1280 complicated. */
1281 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1282 || object == TARGET_OBJECT_CODE_MEMORY)
1283 retval = memory_xfer_partial (ops, object, readbuf,
1284 writebuf, offset, len, xfered_len);
1285 else if (object == TARGET_OBJECT_RAW_MEMORY)
1286 {
1287 /* Skip/avoid accessing the target if the memory region
1288 attributes block the access. Check this here instead of in
1289 raw_memory_xfer_partial as otherwise we'd end up checking
1290 this twice in the case of the memory_xfer_partial path is
1291 taken; once before checking the dcache, and another in the
1292 tail call to raw_memory_xfer_partial. */
1293 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1294 NULL))
1295 return TARGET_XFER_E_IO;
1296
1297 /* Request the normal memory object from other layers. */
1298 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1299 xfered_len);
1300 }
1301 else
1302 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1303 writebuf, offset, len, xfered_len);
1304
1305 if (targetdebug)
1306 {
1307 const unsigned char *myaddr = NULL;
1308
1309 fprintf_unfiltered (gdb_stdlog,
1310 "%s:target_xfer_partial "
1311 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1312 ops->to_shortname,
1313 (int) object,
1314 (annex ? annex : "(null)"),
1315 host_address_to_string (readbuf),
1316 host_address_to_string (writebuf),
1317 core_addr_to_string_nz (offset),
1318 pulongest (len), retval,
1319 pulongest (*xfered_len));
1320
1321 if (readbuf)
1322 myaddr = readbuf;
1323 if (writebuf)
1324 myaddr = writebuf;
1325 if (retval == TARGET_XFER_OK && myaddr != NULL)
1326 {
1327 int i;
1328
1329 fputs_unfiltered (", bytes =", gdb_stdlog);
1330 for (i = 0; i < *xfered_len; i++)
1331 {
1332 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1333 {
1334 if (targetdebug < 2 && i > 0)
1335 {
1336 fprintf_unfiltered (gdb_stdlog, " ...");
1337 break;
1338 }
1339 fprintf_unfiltered (gdb_stdlog, "\n");
1340 }
1341
1342 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1343 }
1344 }
1345
1346 fputc_unfiltered ('\n', gdb_stdlog);
1347 }
1348
1349 /* Check implementations of to_xfer_partial update *XFERED_LEN
1350 properly. Do assertion after printing debug messages, so that we
1351 can find more clues on assertion failure from debugging messages. */
1352 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1353 gdb_assert (*xfered_len > 0);
1354
1355 return retval;
1356 }
1357
1358 /* Read LEN bytes of target memory at address MEMADDR, placing the
1359 results in GDB's memory at MYADDR. Returns either 0 for success or
1360 -1 if any error occurs.
1361
1362 If an error occurs, no guarantee is made about the contents of the data at
1363 MYADDR. In particular, the caller should not depend upon partial reads
1364 filling the buffer with good data. There is no way for the caller to know
1365 how much good data might have been transfered anyway. Callers that can
1366 deal with partial reads should call target_read (which will retry until
1367 it makes no progress, and then return how much was transferred). */
1368
1369 int
1370 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1371 {
1372 /* Dispatch to the topmost target, not the flattened current_target.
1373 Memory accesses check target->to_has_(all_)memory, and the
1374 flattened target doesn't inherit those. */
1375 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1376 myaddr, memaddr, len) == len)
1377 return 0;
1378 else
1379 return -1;
1380 }
1381
1382 /* See target/target.h. */
1383
1384 int
1385 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1386 {
1387 gdb_byte buf[4];
1388 int r;
1389
1390 r = target_read_memory (memaddr, buf, sizeof buf);
1391 if (r != 0)
1392 return r;
1393 *result = extract_unsigned_integer (buf, sizeof buf,
1394 gdbarch_byte_order (target_gdbarch ()));
1395 return 0;
1396 }
1397
1398 /* Like target_read_memory, but specify explicitly that this is a read
1399 from the target's raw memory. That is, this read bypasses the
1400 dcache, breakpoint shadowing, etc. */
1401
1402 int
1403 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1404 {
1405 /* See comment in target_read_memory about why the request starts at
1406 current_target.beneath. */
1407 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1408 myaddr, memaddr, len) == len)
1409 return 0;
1410 else
1411 return -1;
1412 }
1413
1414 /* Like target_read_memory, but specify explicitly that this is a read from
1415 the target's stack. This may trigger different cache behavior. */
1416
1417 int
1418 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1419 {
1420 /* See comment in target_read_memory about why the request starts at
1421 current_target.beneath. */
1422 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1423 myaddr, memaddr, len) == len)
1424 return 0;
1425 else
1426 return -1;
1427 }
1428
1429 /* Like target_read_memory, but specify explicitly that this is a read from
1430 the target's code. This may trigger different cache behavior. */
1431
1432 int
1433 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1434 {
1435 /* See comment in target_read_memory about why the request starts at
1436 current_target.beneath. */
1437 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1438 myaddr, memaddr, len) == len)
1439 return 0;
1440 else
1441 return -1;
1442 }
1443
1444 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1445 Returns either 0 for success or -1 if any error occurs. If an
1446 error occurs, no guarantee is made about how much data got written.
1447 Callers that can deal with partial writes should call
1448 target_write. */
1449
1450 int
1451 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1452 {
1453 /* See comment in target_read_memory about why the request starts at
1454 current_target.beneath. */
1455 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1456 myaddr, memaddr, len) == len)
1457 return 0;
1458 else
1459 return -1;
1460 }
1461
1462 /* Write LEN bytes from MYADDR to target raw memory at address
1463 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1464 If an error occurs, no guarantee is made about how much data got
1465 written. Callers that can deal with partial writes should call
1466 target_write. */
1467
1468 int
1469 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1470 {
1471 /* See comment in target_read_memory about why the request starts at
1472 current_target.beneath. */
1473 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1474 myaddr, memaddr, len) == len)
1475 return 0;
1476 else
1477 return -1;
1478 }
1479
1480 /* Fetch the target's memory map. */
1481
1482 std::vector<mem_region>
1483 target_memory_map (void)
1484 {
1485 std::vector<mem_region> result
1486 = current_target.to_memory_map (&current_target);
1487 if (result.empty ())
1488 return result;
1489
1490 std::sort (result.begin (), result.end ());
1491
1492 /* Check that regions do not overlap. Simultaneously assign
1493 a numbering for the "mem" commands to use to refer to
1494 each region. */
1495 mem_region *last_one = NULL;
1496 for (size_t ix = 0; ix < result.size (); ix++)
1497 {
1498 mem_region *this_one = &result[ix];
1499 this_one->number = ix;
1500
1501 if (last_one != NULL && last_one->hi > this_one->lo)
1502 {
1503 warning (_("Overlapping regions in memory map: ignoring"));
1504 return std::vector<mem_region> ();
1505 }
1506
1507 last_one = this_one;
1508 }
1509
1510 return result;
1511 }
1512
1513 void
1514 target_flash_erase (ULONGEST address, LONGEST length)
1515 {
1516 current_target.to_flash_erase (&current_target, address, length);
1517 }
1518
1519 void
1520 target_flash_done (void)
1521 {
1522 current_target.to_flash_done (&current_target);
1523 }
1524
1525 static void
1526 show_trust_readonly (struct ui_file *file, int from_tty,
1527 struct cmd_list_element *c, const char *value)
1528 {
1529 fprintf_filtered (file,
1530 _("Mode for reading from readonly sections is %s.\n"),
1531 value);
1532 }
1533
1534 /* Target vector read/write partial wrapper functions. */
1535
1536 static enum target_xfer_status
1537 target_read_partial (struct target_ops *ops,
1538 enum target_object object,
1539 const char *annex, gdb_byte *buf,
1540 ULONGEST offset, ULONGEST len,
1541 ULONGEST *xfered_len)
1542 {
1543 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1544 xfered_len);
1545 }
1546
1547 static enum target_xfer_status
1548 target_write_partial (struct target_ops *ops,
1549 enum target_object object,
1550 const char *annex, const gdb_byte *buf,
1551 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1552 {
1553 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1554 xfered_len);
1555 }
1556
1557 /* Wrappers to perform the full transfer. */
1558
1559 /* For docs on target_read see target.h. */
1560
1561 LONGEST
1562 target_read (struct target_ops *ops,
1563 enum target_object object,
1564 const char *annex, gdb_byte *buf,
1565 ULONGEST offset, LONGEST len)
1566 {
1567 LONGEST xfered_total = 0;
1568 int unit_size = 1;
1569
1570 /* If we are reading from a memory object, find the length of an addressable
1571 unit for that architecture. */
1572 if (object == TARGET_OBJECT_MEMORY
1573 || object == TARGET_OBJECT_STACK_MEMORY
1574 || object == TARGET_OBJECT_CODE_MEMORY
1575 || object == TARGET_OBJECT_RAW_MEMORY)
1576 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1577
1578 while (xfered_total < len)
1579 {
1580 ULONGEST xfered_partial;
1581 enum target_xfer_status status;
1582
1583 status = target_read_partial (ops, object, annex,
1584 buf + xfered_total * unit_size,
1585 offset + xfered_total, len - xfered_total,
1586 &xfered_partial);
1587
1588 /* Call an observer, notifying them of the xfer progress? */
1589 if (status == TARGET_XFER_EOF)
1590 return xfered_total;
1591 else if (status == TARGET_XFER_OK)
1592 {
1593 xfered_total += xfered_partial;
1594 QUIT;
1595 }
1596 else
1597 return TARGET_XFER_E_IO;
1598
1599 }
1600 return len;
1601 }
1602
1603 /* Assuming that the entire [begin, end) range of memory cannot be
1604 read, try to read whatever subrange is possible to read.
1605
1606 The function returns, in RESULT, either zero or one memory block.
1607 If there's a readable subrange at the beginning, it is completely
1608 read and returned. Any further readable subrange will not be read.
1609 Otherwise, if there's a readable subrange at the end, it will be
1610 completely read and returned. Any readable subranges before it
1611 (obviously, not starting at the beginning), will be ignored. In
1612 other cases -- either no readable subrange, or readable subrange(s)
1613 that is neither at the beginning, or end, nothing is returned.
1614
1615 The purpose of this function is to handle a read across a boundary
1616 of accessible memory in a case when memory map is not available.
1617 The above restrictions are fine for this case, but will give
1618 incorrect results if the memory is 'patchy'. However, supporting
1619 'patchy' memory would require trying to read every single byte,
1620 and it seems unacceptable solution. Explicit memory map is
1621 recommended for this case -- and target_read_memory_robust will
1622 take care of reading multiple ranges then. */
1623
1624 static void
1625 read_whatever_is_readable (struct target_ops *ops,
1626 const ULONGEST begin, const ULONGEST end,
1627 int unit_size,
1628 std::vector<memory_read_result> *result)
1629 {
1630 ULONGEST current_begin = begin;
1631 ULONGEST current_end = end;
1632 int forward;
1633 ULONGEST xfered_len;
1634
1635 /* If we previously failed to read 1 byte, nothing can be done here. */
1636 if (end - begin <= 1)
1637 return;
1638
1639 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1640
1641 /* Check that either first or the last byte is readable, and give up
1642 if not. This heuristic is meant to permit reading accessible memory
1643 at the boundary of accessible region. */
1644 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1645 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1646 {
1647 forward = 1;
1648 ++current_begin;
1649 }
1650 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1651 buf.get () + (end - begin) - 1, end - 1, 1,
1652 &xfered_len) == TARGET_XFER_OK)
1653 {
1654 forward = 0;
1655 --current_end;
1656 }
1657 else
1658 return;
1659
1660 /* Loop invariant is that the [current_begin, current_end) was previously
1661 found to be not readable as a whole.
1662
1663 Note loop condition -- if the range has 1 byte, we can't divide the range
1664 so there's no point trying further. */
1665 while (current_end - current_begin > 1)
1666 {
1667 ULONGEST first_half_begin, first_half_end;
1668 ULONGEST second_half_begin, second_half_end;
1669 LONGEST xfer;
1670 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1671
1672 if (forward)
1673 {
1674 first_half_begin = current_begin;
1675 first_half_end = middle;
1676 second_half_begin = middle;
1677 second_half_end = current_end;
1678 }
1679 else
1680 {
1681 first_half_begin = middle;
1682 first_half_end = current_end;
1683 second_half_begin = current_begin;
1684 second_half_end = middle;
1685 }
1686
1687 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1688 buf.get () + (first_half_begin - begin) * unit_size,
1689 first_half_begin,
1690 first_half_end - first_half_begin);
1691
1692 if (xfer == first_half_end - first_half_begin)
1693 {
1694 /* This half reads up fine. So, the error must be in the
1695 other half. */
1696 current_begin = second_half_begin;
1697 current_end = second_half_end;
1698 }
1699 else
1700 {
1701 /* This half is not readable. Because we've tried one byte, we
1702 know some part of this half if actually readable. Go to the next
1703 iteration to divide again and try to read.
1704
1705 We don't handle the other half, because this function only tries
1706 to read a single readable subrange. */
1707 current_begin = first_half_begin;
1708 current_end = first_half_end;
1709 }
1710 }
1711
1712 if (forward)
1713 {
1714 /* The [begin, current_begin) range has been read. */
1715 result->emplace_back (begin, current_end, std::move (buf));
1716 }
1717 else
1718 {
1719 /* The [current_end, end) range has been read. */
1720 LONGEST region_len = end - current_end;
1721
1722 gdb::unique_xmalloc_ptr<gdb_byte> data
1723 ((gdb_byte *) xmalloc (region_len * unit_size));
1724 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1725 region_len * unit_size);
1726 result->emplace_back (current_end, end, std::move (data));
1727 }
1728 }
1729
1730 std::vector<memory_read_result>
1731 read_memory_robust (struct target_ops *ops,
1732 const ULONGEST offset, const LONGEST len)
1733 {
1734 std::vector<memory_read_result> result;
1735 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1736
1737 LONGEST xfered_total = 0;
1738 while (xfered_total < len)
1739 {
1740 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1741 LONGEST region_len;
1742
1743 /* If there is no explicit region, a fake one should be created. */
1744 gdb_assert (region);
1745
1746 if (region->hi == 0)
1747 region_len = len - xfered_total;
1748 else
1749 region_len = region->hi - offset;
1750
1751 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1752 {
1753 /* Cannot read this region. Note that we can end up here only
1754 if the region is explicitly marked inaccessible, or
1755 'inaccessible-by-default' is in effect. */
1756 xfered_total += region_len;
1757 }
1758 else
1759 {
1760 LONGEST to_read = std::min (len - xfered_total, region_len);
1761 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1762 ((gdb_byte *) xmalloc (to_read * unit_size));
1763
1764 LONGEST xfered_partial =
1765 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1766 offset + xfered_total, to_read);
1767 /* Call an observer, notifying them of the xfer progress? */
1768 if (xfered_partial <= 0)
1769 {
1770 /* Got an error reading full chunk. See if maybe we can read
1771 some subrange. */
1772 read_whatever_is_readable (ops, offset + xfered_total,
1773 offset + xfered_total + to_read,
1774 unit_size, &result);
1775 xfered_total += to_read;
1776 }
1777 else
1778 {
1779 result.emplace_back (offset + xfered_total,
1780 offset + xfered_total + xfered_partial,
1781 std::move (buffer));
1782 xfered_total += xfered_partial;
1783 }
1784 QUIT;
1785 }
1786 }
1787
1788 return result;
1789 }
1790
1791
1792 /* An alternative to target_write with progress callbacks. */
1793
1794 LONGEST
1795 target_write_with_progress (struct target_ops *ops,
1796 enum target_object object,
1797 const char *annex, const gdb_byte *buf,
1798 ULONGEST offset, LONGEST len,
1799 void (*progress) (ULONGEST, void *), void *baton)
1800 {
1801 LONGEST xfered_total = 0;
1802 int unit_size = 1;
1803
1804 /* If we are writing to a memory object, find the length of an addressable
1805 unit for that architecture. */
1806 if (object == TARGET_OBJECT_MEMORY
1807 || object == TARGET_OBJECT_STACK_MEMORY
1808 || object == TARGET_OBJECT_CODE_MEMORY
1809 || object == TARGET_OBJECT_RAW_MEMORY)
1810 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1811
1812 /* Give the progress callback a chance to set up. */
1813 if (progress)
1814 (*progress) (0, baton);
1815
1816 while (xfered_total < len)
1817 {
1818 ULONGEST xfered_partial;
1819 enum target_xfer_status status;
1820
1821 status = target_write_partial (ops, object, annex,
1822 buf + xfered_total * unit_size,
1823 offset + xfered_total, len - xfered_total,
1824 &xfered_partial);
1825
1826 if (status != TARGET_XFER_OK)
1827 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1828
1829 if (progress)
1830 (*progress) (xfered_partial, baton);
1831
1832 xfered_total += xfered_partial;
1833 QUIT;
1834 }
1835 return len;
1836 }
1837
1838 /* For docs on target_write see target.h. */
1839
1840 LONGEST
1841 target_write (struct target_ops *ops,
1842 enum target_object object,
1843 const char *annex, const gdb_byte *buf,
1844 ULONGEST offset, LONGEST len)
1845 {
1846 return target_write_with_progress (ops, object, annex, buf, offset, len,
1847 NULL, NULL);
1848 }
1849
1850 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1851 the size of the transferred data. PADDING additional bytes are
1852 available in *BUF_P. This is a helper function for
1853 target_read_alloc; see the declaration of that function for more
1854 information. */
1855
1856 static LONGEST
1857 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1858 const char *annex, gdb_byte **buf_p, int padding)
1859 {
1860 size_t buf_alloc, buf_pos;
1861 gdb_byte *buf;
1862
1863 /* This function does not have a length parameter; it reads the
1864 entire OBJECT). Also, it doesn't support objects fetched partly
1865 from one target and partly from another (in a different stratum,
1866 e.g. a core file and an executable). Both reasons make it
1867 unsuitable for reading memory. */
1868 gdb_assert (object != TARGET_OBJECT_MEMORY);
1869
1870 /* Start by reading up to 4K at a time. The target will throttle
1871 this number down if necessary. */
1872 buf_alloc = 4096;
1873 buf = (gdb_byte *) xmalloc (buf_alloc);
1874 buf_pos = 0;
1875 while (1)
1876 {
1877 ULONGEST xfered_len;
1878 enum target_xfer_status status;
1879
1880 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1881 buf_pos, buf_alloc - buf_pos - padding,
1882 &xfered_len);
1883
1884 if (status == TARGET_XFER_EOF)
1885 {
1886 /* Read all there was. */
1887 if (buf_pos == 0)
1888 xfree (buf);
1889 else
1890 *buf_p = buf;
1891 return buf_pos;
1892 }
1893 else if (status != TARGET_XFER_OK)
1894 {
1895 /* An error occurred. */
1896 xfree (buf);
1897 return TARGET_XFER_E_IO;
1898 }
1899
1900 buf_pos += xfered_len;
1901
1902 /* If the buffer is filling up, expand it. */
1903 if (buf_alloc < buf_pos * 2)
1904 {
1905 buf_alloc *= 2;
1906 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1907 }
1908
1909 QUIT;
1910 }
1911 }
1912
1913 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1914 the size of the transferred data. See the declaration in "target.h"
1915 function for more information about the return value. */
1916
1917 LONGEST
1918 target_read_alloc (struct target_ops *ops, enum target_object object,
1919 const char *annex, gdb_byte **buf_p)
1920 {
1921 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1922 }
1923
1924 /* See target.h. */
1925
1926 gdb::unique_xmalloc_ptr<char>
1927 target_read_stralloc (struct target_ops *ops, enum target_object object,
1928 const char *annex)
1929 {
1930 gdb_byte *buffer;
1931 char *bufstr;
1932 LONGEST i, transferred;
1933
1934 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1935 bufstr = (char *) buffer;
1936
1937 if (transferred < 0)
1938 return NULL;
1939
1940 if (transferred == 0)
1941 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
1942
1943 bufstr[transferred] = 0;
1944
1945 /* Check for embedded NUL bytes; but allow trailing NULs. */
1946 for (i = strlen (bufstr); i < transferred; i++)
1947 if (bufstr[i] != 0)
1948 {
1949 warning (_("target object %d, annex %s, "
1950 "contained unexpected null characters"),
1951 (int) object, annex ? annex : "(none)");
1952 break;
1953 }
1954
1955 return gdb::unique_xmalloc_ptr<char> (bufstr);
1956 }
1957
1958 /* Memory transfer methods. */
1959
1960 void
1961 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1962 LONGEST len)
1963 {
1964 /* This method is used to read from an alternate, non-current
1965 target. This read must bypass the overlay support (as symbols
1966 don't match this target), and GDB's internal cache (wrong cache
1967 for this target). */
1968 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1969 != len)
1970 memory_error (TARGET_XFER_E_IO, addr);
1971 }
1972
1973 ULONGEST
1974 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1975 int len, enum bfd_endian byte_order)
1976 {
1977 gdb_byte buf[sizeof (ULONGEST)];
1978
1979 gdb_assert (len <= sizeof (buf));
1980 get_target_memory (ops, addr, buf, len);
1981 return extract_unsigned_integer (buf, len, byte_order);
1982 }
1983
1984 /* See target.h. */
1985
1986 int
1987 target_insert_breakpoint (struct gdbarch *gdbarch,
1988 struct bp_target_info *bp_tgt)
1989 {
1990 if (!may_insert_breakpoints)
1991 {
1992 warning (_("May not insert breakpoints"));
1993 return 1;
1994 }
1995
1996 return current_target.to_insert_breakpoint (&current_target,
1997 gdbarch, bp_tgt);
1998 }
1999
2000 /* See target.h. */
2001
2002 int
2003 target_remove_breakpoint (struct gdbarch *gdbarch,
2004 struct bp_target_info *bp_tgt,
2005 enum remove_bp_reason reason)
2006 {
2007 /* This is kind of a weird case to handle, but the permission might
2008 have been changed after breakpoints were inserted - in which case
2009 we should just take the user literally and assume that any
2010 breakpoints should be left in place. */
2011 if (!may_insert_breakpoints)
2012 {
2013 warning (_("May not remove breakpoints"));
2014 return 1;
2015 }
2016
2017 return current_target.to_remove_breakpoint (&current_target,
2018 gdbarch, bp_tgt, reason);
2019 }
2020
2021 static void
2022 info_target_command (const char *args, int from_tty)
2023 {
2024 struct target_ops *t;
2025 int has_all_mem = 0;
2026
2027 if (symfile_objfile != NULL)
2028 printf_unfiltered (_("Symbols from \"%s\".\n"),
2029 objfile_name (symfile_objfile));
2030
2031 for (t = target_stack; t != NULL; t = t->beneath)
2032 {
2033 if (!(*t->to_has_memory) (t))
2034 continue;
2035
2036 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2037 continue;
2038 if (has_all_mem)
2039 printf_unfiltered (_("\tWhile running this, "
2040 "GDB does not access memory from...\n"));
2041 printf_unfiltered ("%s:\n", t->to_longname);
2042 (t->to_files_info) (t);
2043 has_all_mem = (*t->to_has_all_memory) (t);
2044 }
2045 }
2046
2047 /* This function is called before any new inferior is created, e.g.
2048 by running a program, attaching, or connecting to a target.
2049 It cleans up any state from previous invocations which might
2050 change between runs. This is a subset of what target_preopen
2051 resets (things which might change between targets). */
2052
2053 void
2054 target_pre_inferior (int from_tty)
2055 {
2056 /* Clear out solib state. Otherwise the solib state of the previous
2057 inferior might have survived and is entirely wrong for the new
2058 target. This has been observed on GNU/Linux using glibc 2.3. How
2059 to reproduce:
2060
2061 bash$ ./foo&
2062 [1] 4711
2063 bash$ ./foo&
2064 [1] 4712
2065 bash$ gdb ./foo
2066 [...]
2067 (gdb) attach 4711
2068 (gdb) detach
2069 (gdb) attach 4712
2070 Cannot access memory at address 0xdeadbeef
2071 */
2072
2073 /* In some OSs, the shared library list is the same/global/shared
2074 across inferiors. If code is shared between processes, so are
2075 memory regions and features. */
2076 if (!gdbarch_has_global_solist (target_gdbarch ()))
2077 {
2078 no_shared_libraries (NULL, from_tty);
2079
2080 invalidate_target_mem_regions ();
2081
2082 target_clear_description ();
2083 }
2084
2085 /* attach_flag may be set if the previous process associated with
2086 the inferior was attached to. */
2087 current_inferior ()->attach_flag = 0;
2088
2089 current_inferior ()->highest_thread_num = 0;
2090
2091 agent_capability_invalidate ();
2092 }
2093
2094 /* Callback for iterate_over_inferiors. Gets rid of the given
2095 inferior. */
2096
2097 static int
2098 dispose_inferior (struct inferior *inf, void *args)
2099 {
2100 struct thread_info *thread;
2101
2102 thread = any_thread_of_process (inf->pid);
2103 if (thread)
2104 {
2105 switch_to_thread (thread->ptid);
2106
2107 /* Core inferiors actually should be detached, not killed. */
2108 if (target_has_execution)
2109 target_kill ();
2110 else
2111 target_detach (NULL, 0);
2112 }
2113
2114 return 0;
2115 }
2116
2117 /* This is to be called by the open routine before it does
2118 anything. */
2119
2120 void
2121 target_preopen (int from_tty)
2122 {
2123 dont_repeat ();
2124
2125 if (have_inferiors ())
2126 {
2127 if (!from_tty
2128 || !have_live_inferiors ()
2129 || query (_("A program is being debugged already. Kill it? ")))
2130 iterate_over_inferiors (dispose_inferior, NULL);
2131 else
2132 error (_("Program not killed."));
2133 }
2134
2135 /* Calling target_kill may remove the target from the stack. But if
2136 it doesn't (which seems like a win for UDI), remove it now. */
2137 /* Leave the exec target, though. The user may be switching from a
2138 live process to a core of the same program. */
2139 pop_all_targets_above (file_stratum);
2140
2141 target_pre_inferior (from_tty);
2142 }
2143
2144 /* Detach a target after doing deferred register stores. */
2145
2146 void
2147 target_detach (const char *args, int from_tty)
2148 {
2149 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2150 /* Don't remove global breakpoints here. They're removed on
2151 disconnection from the target. */
2152 ;
2153 else
2154 /* If we're in breakpoints-always-inserted mode, have to remove
2155 them before detaching. */
2156 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2157
2158 prepare_for_detach ();
2159
2160 current_target.to_detach (&current_target, args, from_tty);
2161 }
2162
2163 void
2164 target_disconnect (const char *args, int from_tty)
2165 {
2166 /* If we're in breakpoints-always-inserted mode or if breakpoints
2167 are global across processes, we have to remove them before
2168 disconnecting. */
2169 remove_breakpoints ();
2170
2171 current_target.to_disconnect (&current_target, args, from_tty);
2172 }
2173
2174 /* See target/target.h. */
2175
2176 ptid_t
2177 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2178 {
2179 return (current_target.to_wait) (&current_target, ptid, status, options);
2180 }
2181
2182 /* See target.h. */
2183
2184 ptid_t
2185 default_target_wait (struct target_ops *ops,
2186 ptid_t ptid, struct target_waitstatus *status,
2187 int options)
2188 {
2189 status->kind = TARGET_WAITKIND_IGNORE;
2190 return minus_one_ptid;
2191 }
2192
2193 const char *
2194 target_pid_to_str (ptid_t ptid)
2195 {
2196 return (*current_target.to_pid_to_str) (&current_target, ptid);
2197 }
2198
2199 const char *
2200 target_thread_name (struct thread_info *info)
2201 {
2202 return current_target.to_thread_name (&current_target, info);
2203 }
2204
2205 struct thread_info *
2206 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2207 int handle_len,
2208 struct inferior *inf)
2209 {
2210 return current_target.to_thread_handle_to_thread_info
2211 (&current_target, thread_handle, handle_len, inf);
2212 }
2213
2214 void
2215 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2216 {
2217 target_dcache_invalidate ();
2218
2219 current_target.to_resume (&current_target, ptid, step, signal);
2220
2221 registers_changed_ptid (ptid);
2222 /* We only set the internal executing state here. The user/frontend
2223 running state is set at a higher level. */
2224 set_executing (ptid, 1);
2225 clear_inline_frame_state (ptid);
2226 }
2227
2228 /* If true, target_commit_resume is a nop. */
2229 static int defer_target_commit_resume;
2230
2231 /* See target.h. */
2232
2233 void
2234 target_commit_resume (void)
2235 {
2236 if (defer_target_commit_resume)
2237 return;
2238
2239 current_target.to_commit_resume (&current_target);
2240 }
2241
2242 /* See target.h. */
2243
2244 scoped_restore_tmpl<int>
2245 make_scoped_defer_target_commit_resume ()
2246 {
2247 return make_scoped_restore (&defer_target_commit_resume, 1);
2248 }
2249
2250 void
2251 target_pass_signals (int numsigs, unsigned char *pass_signals)
2252 {
2253 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2254 }
2255
2256 void
2257 target_program_signals (int numsigs, unsigned char *program_signals)
2258 {
2259 (*current_target.to_program_signals) (&current_target,
2260 numsigs, program_signals);
2261 }
2262
2263 static int
2264 default_follow_fork (struct target_ops *self, int follow_child,
2265 int detach_fork)
2266 {
2267 /* Some target returned a fork event, but did not know how to follow it. */
2268 internal_error (__FILE__, __LINE__,
2269 _("could not find a target to follow fork"));
2270 }
2271
2272 /* Look through the list of possible targets for a target that can
2273 follow forks. */
2274
2275 int
2276 target_follow_fork (int follow_child, int detach_fork)
2277 {
2278 return current_target.to_follow_fork (&current_target,
2279 follow_child, detach_fork);
2280 }
2281
2282 /* Target wrapper for follow exec hook. */
2283
2284 void
2285 target_follow_exec (struct inferior *inf, char *execd_pathname)
2286 {
2287 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2288 }
2289
2290 static void
2291 default_mourn_inferior (struct target_ops *self)
2292 {
2293 internal_error (__FILE__, __LINE__,
2294 _("could not find a target to follow mourn inferior"));
2295 }
2296
2297 void
2298 target_mourn_inferior (ptid_t ptid)
2299 {
2300 gdb_assert (ptid_equal (ptid, inferior_ptid));
2301 current_target.to_mourn_inferior (&current_target);
2302
2303 /* We no longer need to keep handles on any of the object files.
2304 Make sure to release them to avoid unnecessarily locking any
2305 of them while we're not actually debugging. */
2306 bfd_cache_close_all ();
2307 }
2308
2309 /* Look for a target which can describe architectural features, starting
2310 from TARGET. If we find one, return its description. */
2311
2312 const struct target_desc *
2313 target_read_description (struct target_ops *target)
2314 {
2315 return target->to_read_description (target);
2316 }
2317
2318 /* This implements a basic search of memory, reading target memory and
2319 performing the search here (as opposed to performing the search in on the
2320 target side with, for example, gdbserver). */
2321
2322 int
2323 simple_search_memory (struct target_ops *ops,
2324 CORE_ADDR start_addr, ULONGEST search_space_len,
2325 const gdb_byte *pattern, ULONGEST pattern_len,
2326 CORE_ADDR *found_addrp)
2327 {
2328 /* NOTE: also defined in find.c testcase. */
2329 #define SEARCH_CHUNK_SIZE 16000
2330 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2331 /* Buffer to hold memory contents for searching. */
2332 unsigned search_buf_size;
2333
2334 search_buf_size = chunk_size + pattern_len - 1;
2335
2336 /* No point in trying to allocate a buffer larger than the search space. */
2337 if (search_space_len < search_buf_size)
2338 search_buf_size = search_space_len;
2339
2340 gdb::byte_vector search_buf (search_buf_size);
2341
2342 /* Prime the search buffer. */
2343
2344 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2345 search_buf.data (), start_addr, search_buf_size)
2346 != search_buf_size)
2347 {
2348 warning (_("Unable to access %s bytes of target "
2349 "memory at %s, halting search."),
2350 pulongest (search_buf_size), hex_string (start_addr));
2351 return -1;
2352 }
2353
2354 /* Perform the search.
2355
2356 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2357 When we've scanned N bytes we copy the trailing bytes to the start and
2358 read in another N bytes. */
2359
2360 while (search_space_len >= pattern_len)
2361 {
2362 gdb_byte *found_ptr;
2363 unsigned nr_search_bytes
2364 = std::min (search_space_len, (ULONGEST) search_buf_size);
2365
2366 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2367 pattern, pattern_len);
2368
2369 if (found_ptr != NULL)
2370 {
2371 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2372
2373 *found_addrp = found_addr;
2374 return 1;
2375 }
2376
2377 /* Not found in this chunk, skip to next chunk. */
2378
2379 /* Don't let search_space_len wrap here, it's unsigned. */
2380 if (search_space_len >= chunk_size)
2381 search_space_len -= chunk_size;
2382 else
2383 search_space_len = 0;
2384
2385 if (search_space_len >= pattern_len)
2386 {
2387 unsigned keep_len = search_buf_size - chunk_size;
2388 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2389 int nr_to_read;
2390
2391 /* Copy the trailing part of the previous iteration to the front
2392 of the buffer for the next iteration. */
2393 gdb_assert (keep_len == pattern_len - 1);
2394 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2395
2396 nr_to_read = std::min (search_space_len - keep_len,
2397 (ULONGEST) chunk_size);
2398
2399 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2400 &search_buf[keep_len], read_addr,
2401 nr_to_read) != nr_to_read)
2402 {
2403 warning (_("Unable to access %s bytes of target "
2404 "memory at %s, halting search."),
2405 plongest (nr_to_read),
2406 hex_string (read_addr));
2407 return -1;
2408 }
2409
2410 start_addr += chunk_size;
2411 }
2412 }
2413
2414 /* Not found. */
2415
2416 return 0;
2417 }
2418
2419 /* Default implementation of memory-searching. */
2420
2421 static int
2422 default_search_memory (struct target_ops *self,
2423 CORE_ADDR start_addr, ULONGEST search_space_len,
2424 const gdb_byte *pattern, ULONGEST pattern_len,
2425 CORE_ADDR *found_addrp)
2426 {
2427 /* Start over from the top of the target stack. */
2428 return simple_search_memory (current_target.beneath,
2429 start_addr, search_space_len,
2430 pattern, pattern_len, found_addrp);
2431 }
2432
2433 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2434 sequence of bytes in PATTERN with length PATTERN_LEN.
2435
2436 The result is 1 if found, 0 if not found, and -1 if there was an error
2437 requiring halting of the search (e.g. memory read error).
2438 If the pattern is found the address is recorded in FOUND_ADDRP. */
2439
2440 int
2441 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2442 const gdb_byte *pattern, ULONGEST pattern_len,
2443 CORE_ADDR *found_addrp)
2444 {
2445 return current_target.to_search_memory (&current_target, start_addr,
2446 search_space_len,
2447 pattern, pattern_len, found_addrp);
2448 }
2449
2450 /* Look through the currently pushed targets. If none of them will
2451 be able to restart the currently running process, issue an error
2452 message. */
2453
2454 void
2455 target_require_runnable (void)
2456 {
2457 struct target_ops *t;
2458
2459 for (t = target_stack; t != NULL; t = t->beneath)
2460 {
2461 /* If this target knows how to create a new program, then
2462 assume we will still be able to after killing the current
2463 one. Either killing and mourning will not pop T, or else
2464 find_default_run_target will find it again. */
2465 if (t->to_create_inferior != NULL)
2466 return;
2467
2468 /* Do not worry about targets at certain strata that can not
2469 create inferiors. Assume they will be pushed again if
2470 necessary, and continue to the process_stratum. */
2471 if (t->to_stratum == thread_stratum
2472 || t->to_stratum == record_stratum
2473 || t->to_stratum == arch_stratum)
2474 continue;
2475
2476 error (_("The \"%s\" target does not support \"run\". "
2477 "Try \"help target\" or \"continue\"."),
2478 t->to_shortname);
2479 }
2480
2481 /* This function is only called if the target is running. In that
2482 case there should have been a process_stratum target and it
2483 should either know how to create inferiors, or not... */
2484 internal_error (__FILE__, __LINE__, _("No targets found"));
2485 }
2486
2487 /* Whether GDB is allowed to fall back to the default run target for
2488 "run", "attach", etc. when no target is connected yet. */
2489 static int auto_connect_native_target = 1;
2490
2491 static void
2492 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2493 struct cmd_list_element *c, const char *value)
2494 {
2495 fprintf_filtered (file,
2496 _("Whether GDB may automatically connect to the "
2497 "native target is %s.\n"),
2498 value);
2499 }
2500
2501 /* Look through the list of possible targets for a target that can
2502 execute a run or attach command without any other data. This is
2503 used to locate the default process stratum.
2504
2505 If DO_MESG is not NULL, the result is always valid (error() is
2506 called for errors); else, return NULL on error. */
2507
2508 static struct target_ops *
2509 find_default_run_target (const char *do_mesg)
2510 {
2511 struct target_ops *runable = NULL;
2512
2513 if (auto_connect_native_target)
2514 {
2515 struct target_ops *t;
2516 int count = 0;
2517 int i;
2518
2519 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2520 {
2521 if (t->to_can_run != delegate_can_run && target_can_run (t))
2522 {
2523 runable = t;
2524 ++count;
2525 }
2526 }
2527
2528 if (count != 1)
2529 runable = NULL;
2530 }
2531
2532 if (runable == NULL)
2533 {
2534 if (do_mesg)
2535 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2536 else
2537 return NULL;
2538 }
2539
2540 return runable;
2541 }
2542
2543 /* See target.h. */
2544
2545 struct target_ops *
2546 find_attach_target (void)
2547 {
2548 struct target_ops *t;
2549
2550 /* If a target on the current stack can attach, use it. */
2551 for (t = current_target.beneath; t != NULL; t = t->beneath)
2552 {
2553 if (t->to_attach != NULL)
2554 break;
2555 }
2556
2557 /* Otherwise, use the default run target for attaching. */
2558 if (t == NULL)
2559 t = find_default_run_target ("attach");
2560
2561 return t;
2562 }
2563
2564 /* See target.h. */
2565
2566 struct target_ops *
2567 find_run_target (void)
2568 {
2569 struct target_ops *t;
2570
2571 /* If a target on the current stack can attach, use it. */
2572 for (t = current_target.beneath; t != NULL; t = t->beneath)
2573 {
2574 if (t->to_create_inferior != NULL)
2575 break;
2576 }
2577
2578 /* Otherwise, use the default run target. */
2579 if (t == NULL)
2580 t = find_default_run_target ("run");
2581
2582 return t;
2583 }
2584
2585 /* Implement the "info proc" command. */
2586
2587 int
2588 target_info_proc (const char *args, enum info_proc_what what)
2589 {
2590 struct target_ops *t;
2591
2592 /* If we're already connected to something that can get us OS
2593 related data, use it. Otherwise, try using the native
2594 target. */
2595 if (current_target.to_stratum >= process_stratum)
2596 t = current_target.beneath;
2597 else
2598 t = find_default_run_target (NULL);
2599
2600 for (; t != NULL; t = t->beneath)
2601 {
2602 if (t->to_info_proc != NULL)
2603 {
2604 t->to_info_proc (t, args, what);
2605
2606 if (targetdebug)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "target_info_proc (\"%s\", %d)\n", args, what);
2609
2610 return 1;
2611 }
2612 }
2613
2614 return 0;
2615 }
2616
2617 static int
2618 find_default_supports_disable_randomization (struct target_ops *self)
2619 {
2620 struct target_ops *t;
2621
2622 t = find_default_run_target (NULL);
2623 if (t && t->to_supports_disable_randomization)
2624 return (t->to_supports_disable_randomization) (t);
2625 return 0;
2626 }
2627
2628 int
2629 target_supports_disable_randomization (void)
2630 {
2631 struct target_ops *t;
2632
2633 for (t = &current_target; t != NULL; t = t->beneath)
2634 if (t->to_supports_disable_randomization)
2635 return t->to_supports_disable_randomization (t);
2636
2637 return 0;
2638 }
2639
2640 /* See target/target.h. */
2641
2642 int
2643 target_supports_multi_process (void)
2644 {
2645 return (*current_target.to_supports_multi_process) (&current_target);
2646 }
2647
2648 /* See target.h. */
2649
2650 gdb::unique_xmalloc_ptr<char>
2651 target_get_osdata (const char *type)
2652 {
2653 struct target_ops *t;
2654
2655 /* If we're already connected to something that can get us OS
2656 related data, use it. Otherwise, try using the native
2657 target. */
2658 if (current_target.to_stratum >= process_stratum)
2659 t = current_target.beneath;
2660 else
2661 t = find_default_run_target ("get OS data");
2662
2663 if (!t)
2664 return NULL;
2665
2666 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2667 }
2668
2669 static struct address_space *
2670 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2671 {
2672 struct inferior *inf;
2673
2674 /* Fall-back to the "main" address space of the inferior. */
2675 inf = find_inferior_ptid (ptid);
2676
2677 if (inf == NULL || inf->aspace == NULL)
2678 internal_error (__FILE__, __LINE__,
2679 _("Can't determine the current "
2680 "address space of thread %s\n"),
2681 target_pid_to_str (ptid));
2682
2683 return inf->aspace;
2684 }
2685
2686 /* Determine the current address space of thread PTID. */
2687
2688 struct address_space *
2689 target_thread_address_space (ptid_t ptid)
2690 {
2691 struct address_space *aspace;
2692
2693 aspace = current_target.to_thread_address_space (&current_target, ptid);
2694 gdb_assert (aspace != NULL);
2695
2696 return aspace;
2697 }
2698
2699
2700 /* Target file operations. */
2701
2702 static struct target_ops *
2703 default_fileio_target (void)
2704 {
2705 /* If we're already connected to something that can perform
2706 file I/O, use it. Otherwise, try using the native target. */
2707 if (current_target.to_stratum >= process_stratum)
2708 return current_target.beneath;
2709 else
2710 return find_default_run_target ("file I/O");
2711 }
2712
2713 /* File handle for target file operations. */
2714
2715 typedef struct
2716 {
2717 /* The target on which this file is open. */
2718 struct target_ops *t;
2719
2720 /* The file descriptor on the target. */
2721 int fd;
2722 } fileio_fh_t;
2723
2724 DEF_VEC_O (fileio_fh_t);
2725
2726 /* Vector of currently open file handles. The value returned by
2727 target_fileio_open and passed as the FD argument to other
2728 target_fileio_* functions is an index into this vector. This
2729 vector's entries are never freed; instead, files are marked as
2730 closed, and the handle becomes available for reuse. */
2731 static VEC (fileio_fh_t) *fileio_fhandles;
2732
2733 /* Macro to check whether a fileio_fh_t represents a closed file. */
2734 #define is_closed_fileio_fh(fd) ((fd) < 0)
2735
2736 /* Index into fileio_fhandles of the lowest handle that might be
2737 closed. This permits handle reuse without searching the whole
2738 list each time a new file is opened. */
2739 static int lowest_closed_fd;
2740
2741 /* Acquire a target fileio file descriptor. */
2742
2743 static int
2744 acquire_fileio_fd (struct target_ops *t, int fd)
2745 {
2746 fileio_fh_t *fh;
2747
2748 gdb_assert (!is_closed_fileio_fh (fd));
2749
2750 /* Search for closed handles to reuse. */
2751 for (;
2752 VEC_iterate (fileio_fh_t, fileio_fhandles,
2753 lowest_closed_fd, fh);
2754 lowest_closed_fd++)
2755 if (is_closed_fileio_fh (fh->fd))
2756 break;
2757
2758 /* Push a new handle if no closed handles were found. */
2759 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2760 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2761
2762 /* Fill in the handle. */
2763 fh->t = t;
2764 fh->fd = fd;
2765
2766 /* Return its index, and start the next lookup at
2767 the next index. */
2768 return lowest_closed_fd++;
2769 }
2770
2771 /* Release a target fileio file descriptor. */
2772
2773 static void
2774 release_fileio_fd (int fd, fileio_fh_t *fh)
2775 {
2776 fh->fd = -1;
2777 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2778 }
2779
2780 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2781
2782 #define fileio_fd_to_fh(fd) \
2783 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2784
2785 /* Helper for target_fileio_open and
2786 target_fileio_open_warn_if_slow. */
2787
2788 static int
2789 target_fileio_open_1 (struct inferior *inf, const char *filename,
2790 int flags, int mode, int warn_if_slow,
2791 int *target_errno)
2792 {
2793 struct target_ops *t;
2794
2795 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2796 {
2797 if (t->to_fileio_open != NULL)
2798 {
2799 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2800 warn_if_slow, target_errno);
2801
2802 if (fd < 0)
2803 fd = -1;
2804 else
2805 fd = acquire_fileio_fd (t, fd);
2806
2807 if (targetdebug)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2810 " = %d (%d)\n",
2811 inf == NULL ? 0 : inf->num,
2812 filename, flags, mode,
2813 warn_if_slow, fd,
2814 fd != -1 ? 0 : *target_errno);
2815 return fd;
2816 }
2817 }
2818
2819 *target_errno = FILEIO_ENOSYS;
2820 return -1;
2821 }
2822
2823 /* See target.h. */
2824
2825 int
2826 target_fileio_open (struct inferior *inf, const char *filename,
2827 int flags, int mode, int *target_errno)
2828 {
2829 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2830 target_errno);
2831 }
2832
2833 /* See target.h. */
2834
2835 int
2836 target_fileio_open_warn_if_slow (struct inferior *inf,
2837 const char *filename,
2838 int flags, int mode, int *target_errno)
2839 {
2840 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2841 target_errno);
2842 }
2843
2844 /* See target.h. */
2845
2846 int
2847 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2848 ULONGEST offset, int *target_errno)
2849 {
2850 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2851 int ret = -1;
2852
2853 if (is_closed_fileio_fh (fh->fd))
2854 *target_errno = EBADF;
2855 else
2856 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2857 len, offset, target_errno);
2858
2859 if (targetdebug)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "target_fileio_pwrite (%d,...,%d,%s) "
2862 "= %d (%d)\n",
2863 fd, len, pulongest (offset),
2864 ret, ret != -1 ? 0 : *target_errno);
2865 return ret;
2866 }
2867
2868 /* See target.h. */
2869
2870 int
2871 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2872 ULONGEST offset, int *target_errno)
2873 {
2874 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2875 int ret = -1;
2876
2877 if (is_closed_fileio_fh (fh->fd))
2878 *target_errno = EBADF;
2879 else
2880 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2881 len, offset, target_errno);
2882
2883 if (targetdebug)
2884 fprintf_unfiltered (gdb_stdlog,
2885 "target_fileio_pread (%d,...,%d,%s) "
2886 "= %d (%d)\n",
2887 fd, len, pulongest (offset),
2888 ret, ret != -1 ? 0 : *target_errno);
2889 return ret;
2890 }
2891
2892 /* See target.h. */
2893
2894 int
2895 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2896 {
2897 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2898 int ret = -1;
2899
2900 if (is_closed_fileio_fh (fh->fd))
2901 *target_errno = EBADF;
2902 else
2903 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2904
2905 if (targetdebug)
2906 fprintf_unfiltered (gdb_stdlog,
2907 "target_fileio_fstat (%d) = %d (%d)\n",
2908 fd, ret, ret != -1 ? 0 : *target_errno);
2909 return ret;
2910 }
2911
2912 /* See target.h. */
2913
2914 int
2915 target_fileio_close (int fd, int *target_errno)
2916 {
2917 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2918 int ret = -1;
2919
2920 if (is_closed_fileio_fh (fh->fd))
2921 *target_errno = EBADF;
2922 else
2923 {
2924 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2925 release_fileio_fd (fd, fh);
2926 }
2927
2928 if (targetdebug)
2929 fprintf_unfiltered (gdb_stdlog,
2930 "target_fileio_close (%d) = %d (%d)\n",
2931 fd, ret, ret != -1 ? 0 : *target_errno);
2932 return ret;
2933 }
2934
2935 /* See target.h. */
2936
2937 int
2938 target_fileio_unlink (struct inferior *inf, const char *filename,
2939 int *target_errno)
2940 {
2941 struct target_ops *t;
2942
2943 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2944 {
2945 if (t->to_fileio_unlink != NULL)
2946 {
2947 int ret = t->to_fileio_unlink (t, inf, filename,
2948 target_errno);
2949
2950 if (targetdebug)
2951 fprintf_unfiltered (gdb_stdlog,
2952 "target_fileio_unlink (%d,%s)"
2953 " = %d (%d)\n",
2954 inf == NULL ? 0 : inf->num, filename,
2955 ret, ret != -1 ? 0 : *target_errno);
2956 return ret;
2957 }
2958 }
2959
2960 *target_errno = FILEIO_ENOSYS;
2961 return -1;
2962 }
2963
2964 /* See target.h. */
2965
2966 char *
2967 target_fileio_readlink (struct inferior *inf, const char *filename,
2968 int *target_errno)
2969 {
2970 struct target_ops *t;
2971
2972 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2973 {
2974 if (t->to_fileio_readlink != NULL)
2975 {
2976 char *ret = t->to_fileio_readlink (t, inf, filename,
2977 target_errno);
2978
2979 if (targetdebug)
2980 fprintf_unfiltered (gdb_stdlog,
2981 "target_fileio_readlink (%d,%s)"
2982 " = %s (%d)\n",
2983 inf == NULL ? 0 : inf->num,
2984 filename, ret? ret : "(nil)",
2985 ret? 0 : *target_errno);
2986 return ret;
2987 }
2988 }
2989
2990 *target_errno = FILEIO_ENOSYS;
2991 return NULL;
2992 }
2993
2994 static void
2995 target_fileio_close_cleanup (void *opaque)
2996 {
2997 int fd = *(int *) opaque;
2998 int target_errno;
2999
3000 target_fileio_close (fd, &target_errno);
3001 }
3002
3003 /* Read target file FILENAME, in the filesystem as seen by INF. If
3004 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3005 remote targets, the remote stub). Store the result in *BUF_P and
3006 return the size of the transferred data. PADDING additional bytes
3007 are available in *BUF_P. This is a helper function for
3008 target_fileio_read_alloc; see the declaration of that function for
3009 more information. */
3010
3011 static LONGEST
3012 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3013 gdb_byte **buf_p, int padding)
3014 {
3015 struct cleanup *close_cleanup;
3016 size_t buf_alloc, buf_pos;
3017 gdb_byte *buf;
3018 LONGEST n;
3019 int fd;
3020 int target_errno;
3021
3022 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3023 &target_errno);
3024 if (fd == -1)
3025 return -1;
3026
3027 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3028
3029 /* Start by reading up to 4K at a time. The target will throttle
3030 this number down if necessary. */
3031 buf_alloc = 4096;
3032 buf = (gdb_byte *) xmalloc (buf_alloc);
3033 buf_pos = 0;
3034 while (1)
3035 {
3036 n = target_fileio_pread (fd, &buf[buf_pos],
3037 buf_alloc - buf_pos - padding, buf_pos,
3038 &target_errno);
3039 if (n < 0)
3040 {
3041 /* An error occurred. */
3042 do_cleanups (close_cleanup);
3043 xfree (buf);
3044 return -1;
3045 }
3046 else if (n == 0)
3047 {
3048 /* Read all there was. */
3049 do_cleanups (close_cleanup);
3050 if (buf_pos == 0)
3051 xfree (buf);
3052 else
3053 *buf_p = buf;
3054 return buf_pos;
3055 }
3056
3057 buf_pos += n;
3058
3059 /* If the buffer is filling up, expand it. */
3060 if (buf_alloc < buf_pos * 2)
3061 {
3062 buf_alloc *= 2;
3063 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3064 }
3065
3066 QUIT;
3067 }
3068 }
3069
3070 /* See target.h. */
3071
3072 LONGEST
3073 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3074 gdb_byte **buf_p)
3075 {
3076 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3077 }
3078
3079 /* See target.h. */
3080
3081 gdb::unique_xmalloc_ptr<char>
3082 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3083 {
3084 gdb_byte *buffer;
3085 char *bufstr;
3086 LONGEST i, transferred;
3087
3088 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3089 bufstr = (char *) buffer;
3090
3091 if (transferred < 0)
3092 return gdb::unique_xmalloc_ptr<char> (nullptr);
3093
3094 if (transferred == 0)
3095 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3096
3097 bufstr[transferred] = 0;
3098
3099 /* Check for embedded NUL bytes; but allow trailing NULs. */
3100 for (i = strlen (bufstr); i < transferred; i++)
3101 if (bufstr[i] != 0)
3102 {
3103 warning (_("target file %s "
3104 "contained unexpected null characters"),
3105 filename);
3106 break;
3107 }
3108
3109 return gdb::unique_xmalloc_ptr<char> (bufstr);
3110 }
3111
3112
3113 static int
3114 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3115 CORE_ADDR addr, int len)
3116 {
3117 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3118 }
3119
3120 static int
3121 default_watchpoint_addr_within_range (struct target_ops *target,
3122 CORE_ADDR addr,
3123 CORE_ADDR start, int length)
3124 {
3125 return addr >= start && addr < start + length;
3126 }
3127
3128 static struct gdbarch *
3129 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3130 {
3131 inferior *inf = find_inferior_ptid (ptid);
3132 gdb_assert (inf != NULL);
3133 return inf->gdbarch;
3134 }
3135
3136 static int
3137 return_zero (struct target_ops *ignore)
3138 {
3139 return 0;
3140 }
3141
3142 static int
3143 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3144 {
3145 return 0;
3146 }
3147
3148 /*
3149 * Find the next target down the stack from the specified target.
3150 */
3151
3152 struct target_ops *
3153 find_target_beneath (struct target_ops *t)
3154 {
3155 return t->beneath;
3156 }
3157
3158 /* See target.h. */
3159
3160 struct target_ops *
3161 find_target_at (enum strata stratum)
3162 {
3163 struct target_ops *t;
3164
3165 for (t = current_target.beneath; t != NULL; t = t->beneath)
3166 if (t->to_stratum == stratum)
3167 return t;
3168
3169 return NULL;
3170 }
3171
3172 \f
3173
3174 /* See target.h */
3175
3176 void
3177 target_announce_detach (int from_tty)
3178 {
3179 pid_t pid;
3180 const char *exec_file;
3181
3182 if (!from_tty)
3183 return;
3184
3185 exec_file = get_exec_file (0);
3186 if (exec_file == NULL)
3187 exec_file = "";
3188
3189 pid = ptid_get_pid (inferior_ptid);
3190 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3191 target_pid_to_str (pid_to_ptid (pid)));
3192 gdb_flush (gdb_stdout);
3193 }
3194
3195 /* The inferior process has died. Long live the inferior! */
3196
3197 void
3198 generic_mourn_inferior (void)
3199 {
3200 ptid_t ptid;
3201
3202 ptid = inferior_ptid;
3203 inferior_ptid = null_ptid;
3204
3205 /* Mark breakpoints uninserted in case something tries to delete a
3206 breakpoint while we delete the inferior's threads (which would
3207 fail, since the inferior is long gone). */
3208 mark_breakpoints_out ();
3209
3210 if (!ptid_equal (ptid, null_ptid))
3211 {
3212 int pid = ptid_get_pid (ptid);
3213 exit_inferior (pid);
3214 }
3215
3216 /* Note this wipes step-resume breakpoints, so needs to be done
3217 after exit_inferior, which ends up referencing the step-resume
3218 breakpoints through clear_thread_inferior_resources. */
3219 breakpoint_init_inferior (inf_exited);
3220
3221 registers_changed ();
3222
3223 reopen_exec_file ();
3224 reinit_frame_cache ();
3225
3226 if (deprecated_detach_hook)
3227 deprecated_detach_hook ();
3228 }
3229 \f
3230 /* Convert a normal process ID to a string. Returns the string in a
3231 static buffer. */
3232
3233 const char *
3234 normal_pid_to_str (ptid_t ptid)
3235 {
3236 static char buf[32];
3237
3238 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3239 return buf;
3240 }
3241
3242 static const char *
3243 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3244 {
3245 return normal_pid_to_str (ptid);
3246 }
3247
3248 /* Error-catcher for target_find_memory_regions. */
3249 static int
3250 dummy_find_memory_regions (struct target_ops *self,
3251 find_memory_region_ftype ignore1, void *ignore2)
3252 {
3253 error (_("Command not implemented for this target."));
3254 return 0;
3255 }
3256
3257 /* Error-catcher for target_make_corefile_notes. */
3258 static char *
3259 dummy_make_corefile_notes (struct target_ops *self,
3260 bfd *ignore1, int *ignore2)
3261 {
3262 error (_("Command not implemented for this target."));
3263 return NULL;
3264 }
3265
3266 /* Set up the handful of non-empty slots needed by the dummy target
3267 vector. */
3268
3269 static void
3270 init_dummy_target (void)
3271 {
3272 dummy_target.to_shortname = "None";
3273 dummy_target.to_longname = "None";
3274 dummy_target.to_doc = "";
3275 dummy_target.to_supports_disable_randomization
3276 = find_default_supports_disable_randomization;
3277 dummy_target.to_stratum = dummy_stratum;
3278 dummy_target.to_has_all_memory = return_zero;
3279 dummy_target.to_has_memory = return_zero;
3280 dummy_target.to_has_stack = return_zero;
3281 dummy_target.to_has_registers = return_zero;
3282 dummy_target.to_has_execution = return_zero_has_execution;
3283 dummy_target.to_magic = OPS_MAGIC;
3284
3285 install_dummy_methods (&dummy_target);
3286 }
3287 \f
3288
3289 void
3290 target_close (struct target_ops *targ)
3291 {
3292 gdb_assert (!target_is_pushed (targ));
3293
3294 if (targ->to_xclose != NULL)
3295 targ->to_xclose (targ);
3296 else if (targ->to_close != NULL)
3297 targ->to_close (targ);
3298
3299 if (targetdebug)
3300 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3301 }
3302
3303 int
3304 target_thread_alive (ptid_t ptid)
3305 {
3306 return current_target.to_thread_alive (&current_target, ptid);
3307 }
3308
3309 void
3310 target_update_thread_list (void)
3311 {
3312 current_target.to_update_thread_list (&current_target);
3313 }
3314
3315 void
3316 target_stop (ptid_t ptid)
3317 {
3318 if (!may_stop)
3319 {
3320 warning (_("May not interrupt or stop the target, ignoring attempt"));
3321 return;
3322 }
3323
3324 (*current_target.to_stop) (&current_target, ptid);
3325 }
3326
3327 void
3328 target_interrupt (ptid_t ptid)
3329 {
3330 if (!may_stop)
3331 {
3332 warning (_("May not interrupt or stop the target, ignoring attempt"));
3333 return;
3334 }
3335
3336 (*current_target.to_interrupt) (&current_target, ptid);
3337 }
3338
3339 /* See target.h. */
3340
3341 void
3342 target_pass_ctrlc (void)
3343 {
3344 (*current_target.to_pass_ctrlc) (&current_target);
3345 }
3346
3347 /* See target.h. */
3348
3349 void
3350 default_target_pass_ctrlc (struct target_ops *ops)
3351 {
3352 target_interrupt (inferior_ptid);
3353 }
3354
3355 /* See target/target.h. */
3356
3357 void
3358 target_stop_and_wait (ptid_t ptid)
3359 {
3360 struct target_waitstatus status;
3361 int was_non_stop = non_stop;
3362
3363 non_stop = 1;
3364 target_stop (ptid);
3365
3366 memset (&status, 0, sizeof (status));
3367 target_wait (ptid, &status, 0);
3368
3369 non_stop = was_non_stop;
3370 }
3371
3372 /* See target/target.h. */
3373
3374 void
3375 target_continue_no_signal (ptid_t ptid)
3376 {
3377 target_resume (ptid, 0, GDB_SIGNAL_0);
3378 }
3379
3380 /* See target/target.h. */
3381
3382 void
3383 target_continue (ptid_t ptid, enum gdb_signal signal)
3384 {
3385 target_resume (ptid, 0, signal);
3386 }
3387
3388 /* Concatenate ELEM to LIST, a comma separate list, and return the
3389 result. The LIST incoming argument is released. */
3390
3391 static char *
3392 str_comma_list_concat_elem (char *list, const char *elem)
3393 {
3394 if (list == NULL)
3395 return xstrdup (elem);
3396 else
3397 return reconcat (list, list, ", ", elem, (char *) NULL);
3398 }
3399
3400 /* Helper for target_options_to_string. If OPT is present in
3401 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3402 Returns the new resulting string. OPT is removed from
3403 TARGET_OPTIONS. */
3404
3405 static char *
3406 do_option (int *target_options, char *ret,
3407 int opt, const char *opt_str)
3408 {
3409 if ((*target_options & opt) != 0)
3410 {
3411 ret = str_comma_list_concat_elem (ret, opt_str);
3412 *target_options &= ~opt;
3413 }
3414
3415 return ret;
3416 }
3417
3418 char *
3419 target_options_to_string (int target_options)
3420 {
3421 char *ret = NULL;
3422
3423 #define DO_TARG_OPTION(OPT) \
3424 ret = do_option (&target_options, ret, OPT, #OPT)
3425
3426 DO_TARG_OPTION (TARGET_WNOHANG);
3427
3428 if (target_options != 0)
3429 ret = str_comma_list_concat_elem (ret, "unknown???");
3430
3431 if (ret == NULL)
3432 ret = xstrdup ("");
3433 return ret;
3434 }
3435
3436 void
3437 target_fetch_registers (struct regcache *regcache, int regno)
3438 {
3439 current_target.to_fetch_registers (&current_target, regcache, regno);
3440 if (targetdebug)
3441 regcache->debug_print_register ("target_fetch_registers", regno);
3442 }
3443
3444 void
3445 target_store_registers (struct regcache *regcache, int regno)
3446 {
3447 if (!may_write_registers)
3448 error (_("Writing to registers is not allowed (regno %d)"), regno);
3449
3450 current_target.to_store_registers (&current_target, regcache, regno);
3451 if (targetdebug)
3452 {
3453 regcache->debug_print_register ("target_store_registers", regno);
3454 }
3455 }
3456
3457 int
3458 target_core_of_thread (ptid_t ptid)
3459 {
3460 return current_target.to_core_of_thread (&current_target, ptid);
3461 }
3462
3463 int
3464 simple_verify_memory (struct target_ops *ops,
3465 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3466 {
3467 LONGEST total_xfered = 0;
3468
3469 while (total_xfered < size)
3470 {
3471 ULONGEST xfered_len;
3472 enum target_xfer_status status;
3473 gdb_byte buf[1024];
3474 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3475
3476 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3477 buf, NULL, lma + total_xfered, howmuch,
3478 &xfered_len);
3479 if (status == TARGET_XFER_OK
3480 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3481 {
3482 total_xfered += xfered_len;
3483 QUIT;
3484 }
3485 else
3486 return 0;
3487 }
3488 return 1;
3489 }
3490
3491 /* Default implementation of memory verification. */
3492
3493 static int
3494 default_verify_memory (struct target_ops *self,
3495 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3496 {
3497 /* Start over from the top of the target stack. */
3498 return simple_verify_memory (current_target.beneath,
3499 data, memaddr, size);
3500 }
3501
3502 int
3503 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3504 {
3505 return current_target.to_verify_memory (&current_target,
3506 data, memaddr, size);
3507 }
3508
3509 /* The documentation for this function is in its prototype declaration in
3510 target.h. */
3511
3512 int
3513 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3514 enum target_hw_bp_type rw)
3515 {
3516 return current_target.to_insert_mask_watchpoint (&current_target,
3517 addr, mask, rw);
3518 }
3519
3520 /* The documentation for this function is in its prototype declaration in
3521 target.h. */
3522
3523 int
3524 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3525 enum target_hw_bp_type rw)
3526 {
3527 return current_target.to_remove_mask_watchpoint (&current_target,
3528 addr, mask, rw);
3529 }
3530
3531 /* The documentation for this function is in its prototype declaration
3532 in target.h. */
3533
3534 int
3535 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3536 {
3537 return current_target.to_masked_watch_num_registers (&current_target,
3538 addr, mask);
3539 }
3540
3541 /* The documentation for this function is in its prototype declaration
3542 in target.h. */
3543
3544 int
3545 target_ranged_break_num_registers (void)
3546 {
3547 return current_target.to_ranged_break_num_registers (&current_target);
3548 }
3549
3550 /* See target.h. */
3551
3552 int
3553 target_supports_btrace (enum btrace_format format)
3554 {
3555 return current_target.to_supports_btrace (&current_target, format);
3556 }
3557
3558 /* See target.h. */
3559
3560 struct btrace_target_info *
3561 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3562 {
3563 return current_target.to_enable_btrace (&current_target, ptid, conf);
3564 }
3565
3566 /* See target.h. */
3567
3568 void
3569 target_disable_btrace (struct btrace_target_info *btinfo)
3570 {
3571 current_target.to_disable_btrace (&current_target, btinfo);
3572 }
3573
3574 /* See target.h. */
3575
3576 void
3577 target_teardown_btrace (struct btrace_target_info *btinfo)
3578 {
3579 current_target.to_teardown_btrace (&current_target, btinfo);
3580 }
3581
3582 /* See target.h. */
3583
3584 enum btrace_error
3585 target_read_btrace (struct btrace_data *btrace,
3586 struct btrace_target_info *btinfo,
3587 enum btrace_read_type type)
3588 {
3589 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3590 }
3591
3592 /* See target.h. */
3593
3594 const struct btrace_config *
3595 target_btrace_conf (const struct btrace_target_info *btinfo)
3596 {
3597 return current_target.to_btrace_conf (&current_target, btinfo);
3598 }
3599
3600 /* See target.h. */
3601
3602 void
3603 target_stop_recording (void)
3604 {
3605 current_target.to_stop_recording (&current_target);
3606 }
3607
3608 /* See target.h. */
3609
3610 void
3611 target_save_record (const char *filename)
3612 {
3613 current_target.to_save_record (&current_target, filename);
3614 }
3615
3616 /* See target.h. */
3617
3618 int
3619 target_supports_delete_record (void)
3620 {
3621 struct target_ops *t;
3622
3623 for (t = current_target.beneath; t != NULL; t = t->beneath)
3624 if (t->to_delete_record != delegate_delete_record
3625 && t->to_delete_record != tdefault_delete_record)
3626 return 1;
3627
3628 return 0;
3629 }
3630
3631 /* See target.h. */
3632
3633 void
3634 target_delete_record (void)
3635 {
3636 current_target.to_delete_record (&current_target);
3637 }
3638
3639 /* See target.h. */
3640
3641 enum record_method
3642 target_record_method (ptid_t ptid)
3643 {
3644 return current_target.to_record_method (&current_target, ptid);
3645 }
3646
3647 /* See target.h. */
3648
3649 int
3650 target_record_is_replaying (ptid_t ptid)
3651 {
3652 return current_target.to_record_is_replaying (&current_target, ptid);
3653 }
3654
3655 /* See target.h. */
3656
3657 int
3658 target_record_will_replay (ptid_t ptid, int dir)
3659 {
3660 return current_target.to_record_will_replay (&current_target, ptid, dir);
3661 }
3662
3663 /* See target.h. */
3664
3665 void
3666 target_record_stop_replaying (void)
3667 {
3668 current_target.to_record_stop_replaying (&current_target);
3669 }
3670
3671 /* See target.h. */
3672
3673 void
3674 target_goto_record_begin (void)
3675 {
3676 current_target.to_goto_record_begin (&current_target);
3677 }
3678
3679 /* See target.h. */
3680
3681 void
3682 target_goto_record_end (void)
3683 {
3684 current_target.to_goto_record_end (&current_target);
3685 }
3686
3687 /* See target.h. */
3688
3689 void
3690 target_goto_record (ULONGEST insn)
3691 {
3692 current_target.to_goto_record (&current_target, insn);
3693 }
3694
3695 /* See target.h. */
3696
3697 void
3698 target_insn_history (int size, gdb_disassembly_flags flags)
3699 {
3700 current_target.to_insn_history (&current_target, size, flags);
3701 }
3702
3703 /* See target.h. */
3704
3705 void
3706 target_insn_history_from (ULONGEST from, int size,
3707 gdb_disassembly_flags flags)
3708 {
3709 current_target.to_insn_history_from (&current_target, from, size, flags);
3710 }
3711
3712 /* See target.h. */
3713
3714 void
3715 target_insn_history_range (ULONGEST begin, ULONGEST end,
3716 gdb_disassembly_flags flags)
3717 {
3718 current_target.to_insn_history_range (&current_target, begin, end, flags);
3719 }
3720
3721 /* See target.h. */
3722
3723 void
3724 target_call_history (int size, int flags)
3725 {
3726 current_target.to_call_history (&current_target, size, flags);
3727 }
3728
3729 /* See target.h. */
3730
3731 void
3732 target_call_history_from (ULONGEST begin, int size, int flags)
3733 {
3734 current_target.to_call_history_from (&current_target, begin, size, flags);
3735 }
3736
3737 /* See target.h. */
3738
3739 void
3740 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3741 {
3742 current_target.to_call_history_range (&current_target, begin, end, flags);
3743 }
3744
3745 /* See target.h. */
3746
3747 const struct frame_unwind *
3748 target_get_unwinder (void)
3749 {
3750 return current_target.to_get_unwinder (&current_target);
3751 }
3752
3753 /* See target.h. */
3754
3755 const struct frame_unwind *
3756 target_get_tailcall_unwinder (void)
3757 {
3758 return current_target.to_get_tailcall_unwinder (&current_target);
3759 }
3760
3761 /* See target.h. */
3762
3763 void
3764 target_prepare_to_generate_core (void)
3765 {
3766 current_target.to_prepare_to_generate_core (&current_target);
3767 }
3768
3769 /* See target.h. */
3770
3771 void
3772 target_done_generating_core (void)
3773 {
3774 current_target.to_done_generating_core (&current_target);
3775 }
3776
3777 static void
3778 setup_target_debug (void)
3779 {
3780 memcpy (&debug_target, &current_target, sizeof debug_target);
3781
3782 init_debug_target (&current_target);
3783 }
3784 \f
3785
3786 static char targ_desc[] =
3787 "Names of targets and files being debugged.\nShows the entire \
3788 stack of targets currently in use (including the exec-file,\n\
3789 core-file, and process, if any), as well as the symbol file name.";
3790
3791 static void
3792 default_rcmd (struct target_ops *self, const char *command,
3793 struct ui_file *output)
3794 {
3795 error (_("\"monitor\" command not supported by this target."));
3796 }
3797
3798 static void
3799 do_monitor_command (const char *cmd, int from_tty)
3800 {
3801 target_rcmd (cmd, gdb_stdtarg);
3802 }
3803
3804 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3805 ignored. */
3806
3807 void
3808 flash_erase_command (const char *cmd, int from_tty)
3809 {
3810 /* Used to communicate termination of flash operations to the target. */
3811 bool found_flash_region = false;
3812 struct gdbarch *gdbarch = target_gdbarch ();
3813
3814 std::vector<mem_region> mem_regions = target_memory_map ();
3815
3816 /* Iterate over all memory regions. */
3817 for (const mem_region &m : mem_regions)
3818 {
3819 /* Is this a flash memory region? */
3820 if (m.attrib.mode == MEM_FLASH)
3821 {
3822 found_flash_region = true;
3823 target_flash_erase (m.lo, m.hi - m.lo);
3824
3825 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3826
3827 current_uiout->message (_("Erasing flash memory region at address "));
3828 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3829 current_uiout->message (", size = ");
3830 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3831 current_uiout->message ("\n");
3832 }
3833 }
3834
3835 /* Did we do any flash operations? If so, we need to finalize them. */
3836 if (found_flash_region)
3837 target_flash_done ();
3838 else
3839 current_uiout->message (_("No flash memory regions found.\n"));
3840 }
3841
3842 /* Print the name of each layers of our target stack. */
3843
3844 static void
3845 maintenance_print_target_stack (const char *cmd, int from_tty)
3846 {
3847 struct target_ops *t;
3848
3849 printf_filtered (_("The current target stack is:\n"));
3850
3851 for (t = target_stack; t != NULL; t = t->beneath)
3852 {
3853 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3854 }
3855 }
3856
3857 /* See target.h. */
3858
3859 void
3860 target_async (int enable)
3861 {
3862 infrun_async (enable);
3863 current_target.to_async (&current_target, enable);
3864 }
3865
3866 /* See target.h. */
3867
3868 void
3869 target_thread_events (int enable)
3870 {
3871 current_target.to_thread_events (&current_target, enable);
3872 }
3873
3874 /* Controls if targets can report that they can/are async. This is
3875 just for maintainers to use when debugging gdb. */
3876 int target_async_permitted = 1;
3877
3878 /* The set command writes to this variable. If the inferior is
3879 executing, target_async_permitted is *not* updated. */
3880 static int target_async_permitted_1 = 1;
3881
3882 static void
3883 maint_set_target_async_command (const char *args, int from_tty,
3884 struct cmd_list_element *c)
3885 {
3886 if (have_live_inferiors ())
3887 {
3888 target_async_permitted_1 = target_async_permitted;
3889 error (_("Cannot change this setting while the inferior is running."));
3890 }
3891
3892 target_async_permitted = target_async_permitted_1;
3893 }
3894
3895 static void
3896 maint_show_target_async_command (struct ui_file *file, int from_tty,
3897 struct cmd_list_element *c,
3898 const char *value)
3899 {
3900 fprintf_filtered (file,
3901 _("Controlling the inferior in "
3902 "asynchronous mode is %s.\n"), value);
3903 }
3904
3905 /* Return true if the target operates in non-stop mode even with "set
3906 non-stop off". */
3907
3908 static int
3909 target_always_non_stop_p (void)
3910 {
3911 return current_target.to_always_non_stop_p (&current_target);
3912 }
3913
3914 /* See target.h. */
3915
3916 int
3917 target_is_non_stop_p (void)
3918 {
3919 return (non_stop
3920 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3921 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3922 && target_always_non_stop_p ()));
3923 }
3924
3925 /* Controls if targets can report that they always run in non-stop
3926 mode. This is just for maintainers to use when debugging gdb. */
3927 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3928
3929 /* The set command writes to this variable. If the inferior is
3930 executing, target_non_stop_enabled is *not* updated. */
3931 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3932
3933 /* Implementation of "maint set target-non-stop". */
3934
3935 static void
3936 maint_set_target_non_stop_command (const char *args, int from_tty,
3937 struct cmd_list_element *c)
3938 {
3939 if (have_live_inferiors ())
3940 {
3941 target_non_stop_enabled_1 = target_non_stop_enabled;
3942 error (_("Cannot change this setting while the inferior is running."));
3943 }
3944
3945 target_non_stop_enabled = target_non_stop_enabled_1;
3946 }
3947
3948 /* Implementation of "maint show target-non-stop". */
3949
3950 static void
3951 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3952 struct cmd_list_element *c,
3953 const char *value)
3954 {
3955 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3956 fprintf_filtered (file,
3957 _("Whether the target is always in non-stop mode "
3958 "is %s (currently %s).\n"), value,
3959 target_always_non_stop_p () ? "on" : "off");
3960 else
3961 fprintf_filtered (file,
3962 _("Whether the target is always in non-stop mode "
3963 "is %s.\n"), value);
3964 }
3965
3966 /* Temporary copies of permission settings. */
3967
3968 static int may_write_registers_1 = 1;
3969 static int may_write_memory_1 = 1;
3970 static int may_insert_breakpoints_1 = 1;
3971 static int may_insert_tracepoints_1 = 1;
3972 static int may_insert_fast_tracepoints_1 = 1;
3973 static int may_stop_1 = 1;
3974
3975 /* Make the user-set values match the real values again. */
3976
3977 void
3978 update_target_permissions (void)
3979 {
3980 may_write_registers_1 = may_write_registers;
3981 may_write_memory_1 = may_write_memory;
3982 may_insert_breakpoints_1 = may_insert_breakpoints;
3983 may_insert_tracepoints_1 = may_insert_tracepoints;
3984 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3985 may_stop_1 = may_stop;
3986 }
3987
3988 /* The one function handles (most of) the permission flags in the same
3989 way. */
3990
3991 static void
3992 set_target_permissions (const char *args, int from_tty,
3993 struct cmd_list_element *c)
3994 {
3995 if (target_has_execution)
3996 {
3997 update_target_permissions ();
3998 error (_("Cannot change this setting while the inferior is running."));
3999 }
4000
4001 /* Make the real values match the user-changed values. */
4002 may_write_registers = may_write_registers_1;
4003 may_insert_breakpoints = may_insert_breakpoints_1;
4004 may_insert_tracepoints = may_insert_tracepoints_1;
4005 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4006 may_stop = may_stop_1;
4007 update_observer_mode ();
4008 }
4009
4010 /* Set memory write permission independently of observer mode. */
4011
4012 static void
4013 set_write_memory_permission (const char *args, int from_tty,
4014 struct cmd_list_element *c)
4015 {
4016 /* Make the real values match the user-changed values. */
4017 may_write_memory = may_write_memory_1;
4018 update_observer_mode ();
4019 }
4020
4021 #if GDB_SELF_TEST
4022 namespace selftests {
4023
4024 static int
4025 test_target_has_registers (target_ops *self)
4026 {
4027 return 1;
4028 }
4029
4030 static int
4031 test_target_has_stack (target_ops *self)
4032 {
4033 return 1;
4034 }
4035
4036 static int
4037 test_target_has_memory (target_ops *self)
4038 {
4039 return 1;
4040 }
4041
4042 static void
4043 test_target_prepare_to_store (target_ops *self, regcache *regs)
4044 {
4045 }
4046
4047 static void
4048 test_target_store_registers (target_ops *self, regcache *regs, int regno)
4049 {
4050 }
4051
4052 test_target_ops::test_target_ops ()
4053 : target_ops {}
4054 {
4055 to_magic = OPS_MAGIC;
4056 to_stratum = process_stratum;
4057 to_has_memory = test_target_has_memory;
4058 to_has_stack = test_target_has_stack;
4059 to_has_registers = test_target_has_registers;
4060 to_prepare_to_store = test_target_prepare_to_store;
4061 to_store_registers = test_target_store_registers;
4062
4063 complete_target_initialization (this);
4064 }
4065
4066 } // namespace selftests
4067 #endif /* GDB_SELF_TEST */
4068
4069 void
4070 initialize_targets (void)
4071 {
4072 init_dummy_target ();
4073 push_target (&dummy_target);
4074
4075 add_info ("target", info_target_command, targ_desc);
4076 add_info ("files", info_target_command, targ_desc);
4077
4078 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4079 Set target debugging."), _("\
4080 Show target debugging."), _("\
4081 When non-zero, target debugging is enabled. Higher numbers are more\n\
4082 verbose."),
4083 set_targetdebug,
4084 show_targetdebug,
4085 &setdebuglist, &showdebuglist);
4086
4087 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4088 &trust_readonly, _("\
4089 Set mode for reading from readonly sections."), _("\
4090 Show mode for reading from readonly sections."), _("\
4091 When this mode is on, memory reads from readonly sections (such as .text)\n\
4092 will be read from the object file instead of from the target. This will\n\
4093 result in significant performance improvement for remote targets."),
4094 NULL,
4095 show_trust_readonly,
4096 &setlist, &showlist);
4097
4098 add_com ("monitor", class_obscure, do_monitor_command,
4099 _("Send a command to the remote monitor (remote targets only)."));
4100
4101 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4102 _("Print the name of each layer of the internal target stack."),
4103 &maintenanceprintlist);
4104
4105 add_setshow_boolean_cmd ("target-async", no_class,
4106 &target_async_permitted_1, _("\
4107 Set whether gdb controls the inferior in asynchronous mode."), _("\
4108 Show whether gdb controls the inferior in asynchronous mode."), _("\
4109 Tells gdb whether to control the inferior in asynchronous mode."),
4110 maint_set_target_async_command,
4111 maint_show_target_async_command,
4112 &maintenance_set_cmdlist,
4113 &maintenance_show_cmdlist);
4114
4115 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4116 &target_non_stop_enabled_1, _("\
4117 Set whether gdb always controls the inferior in non-stop mode."), _("\
4118 Show whether gdb always controls the inferior in non-stop mode."), _("\
4119 Tells gdb whether to control the inferior in non-stop mode."),
4120 maint_set_target_non_stop_command,
4121 maint_show_target_non_stop_command,
4122 &maintenance_set_cmdlist,
4123 &maintenance_show_cmdlist);
4124
4125 add_setshow_boolean_cmd ("may-write-registers", class_support,
4126 &may_write_registers_1, _("\
4127 Set permission to write into registers."), _("\
4128 Show permission to write into registers."), _("\
4129 When this permission is on, GDB may write into the target's registers.\n\
4130 Otherwise, any sort of write attempt will result in an error."),
4131 set_target_permissions, NULL,
4132 &setlist, &showlist);
4133
4134 add_setshow_boolean_cmd ("may-write-memory", class_support,
4135 &may_write_memory_1, _("\
4136 Set permission to write into target memory."), _("\
4137 Show permission to write into target memory."), _("\
4138 When this permission is on, GDB may write into the target's memory.\n\
4139 Otherwise, any sort of write attempt will result in an error."),
4140 set_write_memory_permission, NULL,
4141 &setlist, &showlist);
4142
4143 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4144 &may_insert_breakpoints_1, _("\
4145 Set permission to insert breakpoints in the target."), _("\
4146 Show permission to insert breakpoints in the target."), _("\
4147 When this permission is on, GDB may insert breakpoints in the program.\n\
4148 Otherwise, any sort of insertion attempt will result in an error."),
4149 set_target_permissions, NULL,
4150 &setlist, &showlist);
4151
4152 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4153 &may_insert_tracepoints_1, _("\
4154 Set permission to insert tracepoints in the target."), _("\
4155 Show permission to insert tracepoints in the target."), _("\
4156 When this permission is on, GDB may insert tracepoints in the program.\n\
4157 Otherwise, any sort of insertion attempt will result in an error."),
4158 set_target_permissions, NULL,
4159 &setlist, &showlist);
4160
4161 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4162 &may_insert_fast_tracepoints_1, _("\
4163 Set permission to insert fast tracepoints in the target."), _("\
4164 Show permission to insert fast tracepoints in the target."), _("\
4165 When this permission is on, GDB may insert fast tracepoints.\n\
4166 Otherwise, any sort of insertion attempt will result in an error."),
4167 set_target_permissions, NULL,
4168 &setlist, &showlist);
4169
4170 add_setshow_boolean_cmd ("may-interrupt", class_support,
4171 &may_stop_1, _("\
4172 Set permission to interrupt or signal the target."), _("\
4173 Show permission to interrupt or signal the target."), _("\
4174 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4175 Otherwise, any attempt to interrupt or stop will be ignored."),
4176 set_target_permissions, NULL,
4177 &setlist, &showlist);
4178
4179 add_com ("flash-erase", no_class, flash_erase_command,
4180 _("Erase all flash memory regions."));
4181
4182 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4183 &auto_connect_native_target, _("\
4184 Set whether GDB may automatically connect to the native target."), _("\
4185 Show whether GDB may automatically connect to the native target."), _("\
4186 When on, and GDB is not connected to a target yet, GDB\n\
4187 attempts \"run\" and other commands with the native target."),
4188 NULL, show_auto_connect_native_target,
4189 &setlist, &showlist);
4190 }
This page took 0.131812 seconds and 5 git commands to generate.