Remove ptid_get_pid
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* The target stack. */
123
124 static target_stack g_target_stack;
125
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
129
130 target_ops *
131 current_top_target ()
132 {
133 return g_target_stack.top ();
134 }
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 if (targetdebug)
174 push_target (the_debug_target);
175 else
176 unpush_target (the_debug_target);
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 #if GDB_SELF_TEST
196 namespace selftests {
197
198 /* A mock process_stratum target_ops that doesn't read/write registers
199 anywhere. */
200
201 static const target_info test_target_info = {
202 "test",
203 N_("unit tests target"),
204 N_("You should never see this"),
205 };
206
207 const target_info &
208 test_target_ops::info () const
209 {
210 return test_target_info;
211 }
212
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
215
216 /* Default target_has_* methods for process_stratum targets. */
217
218 int
219 default_child_has_all_memory ()
220 {
221 /* If no inferior selected, then we can't read memory here. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_memory ()
230 {
231 /* If no inferior selected, then we can't read memory here. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_stack ()
240 {
241 /* If no inferior selected, there's no stack. */
242 if (ptid_equal (inferior_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248 int
249 default_child_has_registers ()
250 {
251 /* Can't read registers from no inferior. */
252 if (ptid_equal (inferior_ptid, null_ptid))
253 return 0;
254
255 return 1;
256 }
257
258 int
259 default_child_has_execution (ptid_t the_ptid)
260 {
261 /* If there's no thread selected, then we can't make it run through
262 hoops. */
263 if (ptid_equal (the_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269
270 int
271 target_has_all_memory_1 (void)
272 {
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
275 return 1;
276
277 return 0;
278 }
279
280 int
281 target_has_memory_1 (void)
282 {
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
285 return 1;
286
287 return 0;
288 }
289
290 int
291 target_has_stack_1 (void)
292 {
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
294 if (t->has_stack ())
295 return 1;
296
297 return 0;
298 }
299
300 int
301 target_has_registers_1 (void)
302 {
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_1 (ptid_t the_ptid)
312 {
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
315 return 1;
316
317 return 0;
318 }
319
320 int
321 target_has_execution_current (void)
322 {
323 return target_has_execution_1 (inferior_ptid);
324 }
325
326 /* This is used to implement the various target commands. */
327
328 static void
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
330 {
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
333
334 if (targetdebug)
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
336 ti->shortname);
337
338 func (args, from_tty);
339
340 if (targetdebug)
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
343 }
344
345 /* See target.h. */
346
347 void
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
350 {
351 struct cmd_list_element *c;
352
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
357 func_slot = func;
358
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
372 }
373
374 /* See target.h. */
375
376 void
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
378 {
379 struct cmd_list_element *c;
380 char *alt;
381
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
383 see PR cli/15104. */
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
389 }
390
391 /* Stub functions */
392
393 void
394 target_kill (void)
395 {
396 current_top_target ()->kill ();
397 }
398
399 void
400 target_load (const char *arg, int from_tty)
401 {
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
404 }
405
406 /* Define it. */
407
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
410
411 /* See target/target.h. */
412
413 void
414 target_terminal::init (void)
415 {
416 current_top_target ()->terminal_init ();
417
418 m_terminal_state = target_terminal_state::is_ours;
419 }
420
421 /* See target/target.h. */
422
423 void
424 target_terminal::inferior (void)
425 {
426 struct ui *ui = current_ui;
427
428 /* A background resume (``run&'') should leave GDB in control of the
429 terminal. */
430 if (ui->prompt_state != PROMPT_BLOCKED)
431 return;
432
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
437 if (ui != main_ui)
438 return;
439
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
442
443 struct inferior *inf = current_inferior ();
444
445 if (inf->terminal_state != target_terminal_state::is_inferior)
446 {
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
449 }
450
451 m_terminal_state = target_terminal_state::is_inferior;
452
453 /* If the user hit C-c before, pretend that it was hit right
454 here. */
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
457 }
458
459 /* See target/target.h. */
460
461 void
462 target_terminal::restore_inferior (void)
463 {
464 struct ui *ui = current_ui;
465
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
468 return;
469
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
473
474 {
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
477
478 ALL_INFERIORS (inf)
479 {
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
481 {
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
485 }
486 }
487 }
488
489 m_terminal_state = target_terminal_state::is_inferior;
490
491 /* If the user hit C-c before, pretend that it was hit right
492 here. */
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
495 }
496
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
499
500 static void
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
510
511 ALL_INFERIORS (inf)
512 {
513 if (inf->terminal_state == target_terminal_state::is_inferior)
514 {
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
517 }
518 }
519
520 ALL_INFERIORS (inf)
521 {
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
525 though. */
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
528 {
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
534 else
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
537 }
538 }
539 }
540
541 /* See target/target.h. */
542
543 void
544 target_terminal::ours ()
545 {
546 struct ui *ui = current_ui;
547
548 /* See target_terminal::inferior. */
549 if (ui != main_ui)
550 return;
551
552 if (m_terminal_state == target_terminal_state::is_ours)
553 return;
554
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
557 }
558
559 /* See target/target.h. */
560
561 void
562 target_terminal::ours_for_output ()
563 {
564 struct ui *ui = current_ui;
565
566 /* See target_terminal::inferior. */
567 if (ui != main_ui)
568 return;
569
570 if (!target_terminal::is_inferior ())
571 return;
572
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
575 }
576
577 /* See target/target.h. */
578
579 void
580 target_terminal::info (const char *arg, int from_tty)
581 {
582 current_top_target ()->terminal_info (arg, from_tty);
583 }
584
585 /* See target.h. */
586
587 int
588 target_supports_terminal_ours (void)
589 {
590 return current_top_target ()->supports_terminal_ours ();
591 }
592
593 static void
594 tcomplain (void)
595 {
596 error (_("You can't do that when your target is `%s'"),
597 current_top_target ()->shortname ());
598 }
599
600 void
601 noprocess (void)
602 {
603 error (_("You can't do that without a process to debug."));
604 }
605
606 static void
607 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
608 {
609 printf_unfiltered (_("No saved terminal information.\n"));
610 }
611
612 /* A default implementation for the to_get_ada_task_ptid target method.
613
614 This function builds the PTID by using both LWP and TID as part of
615 the PTID lwp and tid elements. The pid used is the pid of the
616 inferior_ptid. */
617
618 static ptid_t
619 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
620 {
621 return ptid_t (inferior_ptid.pid (), lwp, tid);
622 }
623
624 static enum exec_direction_kind
625 default_execution_direction (struct target_ops *self)
626 {
627 if (!target_can_execute_reverse)
628 return EXEC_FORWARD;
629 else if (!target_can_async_p ())
630 return EXEC_FORWARD;
631 else
632 gdb_assert_not_reached ("\
633 to_execution_direction must be implemented for reverse async");
634 }
635
636 /* See target.h. */
637
638 void
639 target_stack::push (target_ops *t)
640 {
641 /* If there's already a target at this stratum, remove it. */
642 if (m_stack[t->to_stratum] != NULL)
643 {
644 target_ops *prev = m_stack[t->to_stratum];
645 m_stack[t->to_stratum] = NULL;
646 target_close (prev);
647 }
648
649 /* Now add the new one. */
650 m_stack[t->to_stratum] = t;
651
652 if (m_top < t->to_stratum)
653 m_top = t->to_stratum;
654 }
655
656 /* See target.h. */
657
658 void
659 push_target (struct target_ops *t)
660 {
661 g_target_stack.push (t);
662 }
663
664 /* See target.h. */
665
666 int
667 unpush_target (struct target_ops *t)
668 {
669 return g_target_stack.unpush (t);
670 }
671
672 /* See target.h. */
673
674 bool
675 target_stack::unpush (target_ops *t)
676 {
677 struct target_ops **cur;
678 struct target_ops *tmp;
679
680 if (t->to_stratum == dummy_stratum)
681 internal_error (__FILE__, __LINE__,
682 _("Attempt to unpush the dummy target"));
683
684 gdb_assert (t != NULL);
685
686 /* Look for the specified target. Note that a target can only occur
687 once in the target stack. */
688
689 if (m_stack[t->to_stratum] != t)
690 {
691 /* If T wasn't pushed, quit. Only open targets should be
692 closed. */
693 return false;
694 }
695
696 /* Unchain the target. */
697 m_stack[t->to_stratum] = NULL;
698
699 if (m_top == t->to_stratum)
700 m_top = t->beneath ()->to_stratum;
701
702 /* Finally close the target. Note we do this after unchaining, so
703 any target method calls from within the target_close
704 implementation don't end up in T anymore. */
705 target_close (t);
706
707 return true;
708 }
709
710 /* Unpush TARGET and assert that it worked. */
711
712 static void
713 unpush_target_and_assert (struct target_ops *target)
714 {
715 if (!unpush_target (target))
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "pop_all_targets couldn't find target %s\n",
719 target->shortname ());
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 }
723 }
724
725 void
726 pop_all_targets_above (enum strata above_stratum)
727 {
728 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
729 unpush_target_and_assert (current_top_target ());
730 }
731
732 /* See target.h. */
733
734 void
735 pop_all_targets_at_and_above (enum strata stratum)
736 {
737 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
738 unpush_target_and_assert (current_top_target ());
739 }
740
741 void
742 pop_all_targets (void)
743 {
744 pop_all_targets_above (dummy_stratum);
745 }
746
747 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
748
749 int
750 target_is_pushed (struct target_ops *t)
751 {
752 return g_target_stack.is_pushed (t);
753 }
754
755 /* Default implementation of to_get_thread_local_address. */
756
757 static void
758 generic_tls_error (void)
759 {
760 throw_error (TLS_GENERIC_ERROR,
761 _("Cannot find thread-local variables on this target"));
762 }
763
764 /* Using the objfile specified in OBJFILE, find the address for the
765 current thread's thread-local storage with offset OFFSET. */
766 CORE_ADDR
767 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
768 {
769 volatile CORE_ADDR addr = 0;
770 struct target_ops *target = current_top_target ();
771
772 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
773 {
774 ptid_t ptid = inferior_ptid;
775
776 TRY
777 {
778 CORE_ADDR lm_addr;
779
780 /* Fetch the load module address for this objfile. */
781 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
782 objfile);
783
784 addr = target->get_thread_local_address (ptid, lm_addr, offset);
785 }
786 /* If an error occurred, print TLS related messages here. Otherwise,
787 throw the error to some higher catcher. */
788 CATCH (ex, RETURN_MASK_ALL)
789 {
790 int objfile_is_library = (objfile->flags & OBJF_SHARED);
791
792 switch (ex.error)
793 {
794 case TLS_NO_LIBRARY_SUPPORT_ERROR:
795 error (_("Cannot find thread-local variables "
796 "in this thread library."));
797 break;
798 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
799 if (objfile_is_library)
800 error (_("Cannot find shared library `%s' in dynamic"
801 " linker's load module list"), objfile_name (objfile));
802 else
803 error (_("Cannot find executable file `%s' in dynamic"
804 " linker's load module list"), objfile_name (objfile));
805 break;
806 case TLS_NOT_ALLOCATED_YET_ERROR:
807 if (objfile_is_library)
808 error (_("The inferior has not yet allocated storage for"
809 " thread-local variables in\n"
810 "the shared library `%s'\n"
811 "for %s"),
812 objfile_name (objfile), target_pid_to_str (ptid));
813 else
814 error (_("The inferior has not yet allocated storage for"
815 " thread-local variables in\n"
816 "the executable `%s'\n"
817 "for %s"),
818 objfile_name (objfile), target_pid_to_str (ptid));
819 break;
820 case TLS_GENERIC_ERROR:
821 if (objfile_is_library)
822 error (_("Cannot find thread-local storage for %s, "
823 "shared library %s:\n%s"),
824 target_pid_to_str (ptid),
825 objfile_name (objfile), ex.message);
826 else
827 error (_("Cannot find thread-local storage for %s, "
828 "executable file %s:\n%s"),
829 target_pid_to_str (ptid),
830 objfile_name (objfile), ex.message);
831 break;
832 default:
833 throw_exception (ex);
834 break;
835 }
836 }
837 END_CATCH
838 }
839 /* It wouldn't be wrong here to try a gdbarch method, too; finding
840 TLS is an ABI-specific thing. But we don't do that yet. */
841 else
842 error (_("Cannot find thread-local variables on this target"));
843
844 return addr;
845 }
846
847 const char *
848 target_xfer_status_to_string (enum target_xfer_status status)
849 {
850 #define CASE(X) case X: return #X
851 switch (status)
852 {
853 CASE(TARGET_XFER_E_IO);
854 CASE(TARGET_XFER_UNAVAILABLE);
855 default:
856 return "<unknown>";
857 }
858 #undef CASE
859 };
860
861
862 #undef MIN
863 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
864
865 /* target_read_string -- read a null terminated string, up to LEN bytes,
866 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
867 Set *STRING to a pointer to malloc'd memory containing the data; the caller
868 is responsible for freeing it. Return the number of bytes successfully
869 read. */
870
871 int
872 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
873 int len, int *errnop)
874 {
875 int tlen, offset, i;
876 gdb_byte buf[4];
877 int errcode = 0;
878 char *buffer;
879 int buffer_allocated;
880 char *bufptr;
881 unsigned int nbytes_read = 0;
882
883 gdb_assert (string);
884
885 /* Small for testing. */
886 buffer_allocated = 4;
887 buffer = (char *) xmalloc (buffer_allocated);
888 bufptr = buffer;
889
890 while (len > 0)
891 {
892 tlen = MIN (len, 4 - (memaddr & 3));
893 offset = memaddr & 3;
894
895 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
896 if (errcode != 0)
897 {
898 /* The transfer request might have crossed the boundary to an
899 unallocated region of memory. Retry the transfer, requesting
900 a single byte. */
901 tlen = 1;
902 offset = 0;
903 errcode = target_read_memory (memaddr, buf, 1);
904 if (errcode != 0)
905 goto done;
906 }
907
908 if (bufptr - buffer + tlen > buffer_allocated)
909 {
910 unsigned int bytes;
911
912 bytes = bufptr - buffer;
913 buffer_allocated *= 2;
914 buffer = (char *) xrealloc (buffer, buffer_allocated);
915 bufptr = buffer + bytes;
916 }
917
918 for (i = 0; i < tlen; i++)
919 {
920 *bufptr++ = buf[i + offset];
921 if (buf[i + offset] == '\000')
922 {
923 nbytes_read += i + 1;
924 goto done;
925 }
926 }
927
928 memaddr += tlen;
929 len -= tlen;
930 nbytes_read += tlen;
931 }
932 done:
933 string->reset (buffer);
934 if (errnop != NULL)
935 *errnop = errcode;
936 return nbytes_read;
937 }
938
939 struct target_section_table *
940 target_get_section_table (struct target_ops *target)
941 {
942 return target->get_section_table ();
943 }
944
945 /* Find a section containing ADDR. */
946
947 struct target_section *
948 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
949 {
950 struct target_section_table *table = target_get_section_table (target);
951 struct target_section *secp;
952
953 if (table == NULL)
954 return NULL;
955
956 for (secp = table->sections; secp < table->sections_end; secp++)
957 {
958 if (addr >= secp->addr && addr < secp->endaddr)
959 return secp;
960 }
961 return NULL;
962 }
963
964
965 /* Helper for the memory xfer routines. Checks the attributes of the
966 memory region of MEMADDR against the read or write being attempted.
967 If the access is permitted returns true, otherwise returns false.
968 REGION_P is an optional output parameter. If not-NULL, it is
969 filled with a pointer to the memory region of MEMADDR. REG_LEN
970 returns LEN trimmed to the end of the region. This is how much the
971 caller can continue requesting, if the access is permitted. A
972 single xfer request must not straddle memory region boundaries. */
973
974 static int
975 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
976 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
977 struct mem_region **region_p)
978 {
979 struct mem_region *region;
980
981 region = lookup_mem_region (memaddr);
982
983 if (region_p != NULL)
984 *region_p = region;
985
986 switch (region->attrib.mode)
987 {
988 case MEM_RO:
989 if (writebuf != NULL)
990 return 0;
991 break;
992
993 case MEM_WO:
994 if (readbuf != NULL)
995 return 0;
996 break;
997
998 case MEM_FLASH:
999 /* We only support writing to flash during "load" for now. */
1000 if (writebuf != NULL)
1001 error (_("Writing to flash memory forbidden in this context"));
1002 break;
1003
1004 case MEM_NONE:
1005 return 0;
1006 }
1007
1008 /* region->hi == 0 means there's no upper bound. */
1009 if (memaddr + len < region->hi || region->hi == 0)
1010 *reg_len = len;
1011 else
1012 *reg_len = region->hi - memaddr;
1013
1014 return 1;
1015 }
1016
1017 /* Read memory from more than one valid target. A core file, for
1018 instance, could have some of memory but delegate other bits to
1019 the target below it. So, we must manually try all targets. */
1020
1021 enum target_xfer_status
1022 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1023 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1024 ULONGEST *xfered_len)
1025 {
1026 enum target_xfer_status res;
1027
1028 do
1029 {
1030 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1031 readbuf, writebuf, memaddr, len,
1032 xfered_len);
1033 if (res == TARGET_XFER_OK)
1034 break;
1035
1036 /* Stop if the target reports that the memory is not available. */
1037 if (res == TARGET_XFER_UNAVAILABLE)
1038 break;
1039
1040 /* We want to continue past core files to executables, but not
1041 past a running target's memory. */
1042 if (ops->has_all_memory ())
1043 break;
1044
1045 ops = ops->beneath ();
1046 }
1047 while (ops != NULL);
1048
1049 /* The cache works at the raw memory level. Make sure the cache
1050 gets updated with raw contents no matter what kind of memory
1051 object was originally being written. Note we do write-through
1052 first, so that if it fails, we don't write to the cache contents
1053 that never made it to the target. */
1054 if (writebuf != NULL
1055 && !ptid_equal (inferior_ptid, null_ptid)
1056 && target_dcache_init_p ()
1057 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1058 {
1059 DCACHE *dcache = target_dcache_get ();
1060
1061 /* Note that writing to an area of memory which wasn't present
1062 in the cache doesn't cause it to be loaded in. */
1063 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1064 }
1065
1066 return res;
1067 }
1068
1069 /* Perform a partial memory transfer.
1070 For docs see target.h, to_xfer_partial. */
1071
1072 static enum target_xfer_status
1073 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1074 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1075 ULONGEST len, ULONGEST *xfered_len)
1076 {
1077 enum target_xfer_status res;
1078 ULONGEST reg_len;
1079 struct mem_region *region;
1080 struct inferior *inf;
1081
1082 /* For accesses to unmapped overlay sections, read directly from
1083 files. Must do this first, as MEMADDR may need adjustment. */
1084 if (readbuf != NULL && overlay_debugging)
1085 {
1086 struct obj_section *section = find_pc_overlay (memaddr);
1087
1088 if (pc_in_unmapped_range (memaddr, section))
1089 {
1090 struct target_section_table *table
1091 = target_get_section_table (ops);
1092 const char *section_name = section->the_bfd_section->name;
1093
1094 memaddr = overlay_mapped_address (memaddr, section);
1095 return section_table_xfer_memory_partial (readbuf, writebuf,
1096 memaddr, len, xfered_len,
1097 table->sections,
1098 table->sections_end,
1099 section_name);
1100 }
1101 }
1102
1103 /* Try the executable files, if "trust-readonly-sections" is set. */
1104 if (readbuf != NULL && trust_readonly)
1105 {
1106 struct target_section *secp;
1107 struct target_section_table *table;
1108
1109 secp = target_section_by_addr (ops, memaddr);
1110 if (secp != NULL
1111 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1112 secp->the_bfd_section)
1113 & SEC_READONLY))
1114 {
1115 table = target_get_section_table (ops);
1116 return section_table_xfer_memory_partial (readbuf, writebuf,
1117 memaddr, len, xfered_len,
1118 table->sections,
1119 table->sections_end,
1120 NULL);
1121 }
1122 }
1123
1124 /* Try GDB's internal data cache. */
1125
1126 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1127 &region))
1128 return TARGET_XFER_E_IO;
1129
1130 if (!ptid_equal (inferior_ptid, null_ptid))
1131 inf = current_inferior ();
1132 else
1133 inf = NULL;
1134
1135 if (inf != NULL
1136 && readbuf != NULL
1137 /* The dcache reads whole cache lines; that doesn't play well
1138 with reading from a trace buffer, because reading outside of
1139 the collected memory range fails. */
1140 && get_traceframe_number () == -1
1141 && (region->attrib.cache
1142 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1143 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1144 {
1145 DCACHE *dcache = target_dcache_get_or_init ();
1146
1147 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1148 reg_len, xfered_len);
1149 }
1150
1151 /* If none of those methods found the memory we wanted, fall back
1152 to a target partial transfer. Normally a single call to
1153 to_xfer_partial is enough; if it doesn't recognize an object
1154 it will call the to_xfer_partial of the next target down.
1155 But for memory this won't do. Memory is the only target
1156 object which can be read from more than one valid target.
1157 A core file, for instance, could have some of memory but
1158 delegate other bits to the target below it. So, we must
1159 manually try all targets. */
1160
1161 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1162 xfered_len);
1163
1164 /* If we still haven't got anything, return the last error. We
1165 give up. */
1166 return res;
1167 }
1168
1169 /* Perform a partial memory transfer. For docs see target.h,
1170 to_xfer_partial. */
1171
1172 static enum target_xfer_status
1173 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1174 gdb_byte *readbuf, const gdb_byte *writebuf,
1175 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1176 {
1177 enum target_xfer_status res;
1178
1179 /* Zero length requests are ok and require no work. */
1180 if (len == 0)
1181 return TARGET_XFER_EOF;
1182
1183 memaddr = address_significant (target_gdbarch (), memaddr);
1184
1185 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1186 breakpoint insns, thus hiding out from higher layers whether
1187 there are software breakpoints inserted in the code stream. */
1188 if (readbuf != NULL)
1189 {
1190 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1191 xfered_len);
1192
1193 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1194 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1195 }
1196 else
1197 {
1198 /* A large write request is likely to be partially satisfied
1199 by memory_xfer_partial_1. We will continually malloc
1200 and free a copy of the entire write request for breakpoint
1201 shadow handling even though we only end up writing a small
1202 subset of it. Cap writes to a limit specified by the target
1203 to mitigate this. */
1204 len = std::min (ops->get_memory_xfer_limit (), len);
1205
1206 gdb::byte_vector buf (writebuf, writebuf + len);
1207 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1208 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1209 xfered_len);
1210 }
1211
1212 return res;
1213 }
1214
1215 scoped_restore_tmpl<int>
1216 make_scoped_restore_show_memory_breakpoints (int show)
1217 {
1218 return make_scoped_restore (&show_memory_breakpoints, show);
1219 }
1220
1221 /* For docs see target.h, to_xfer_partial. */
1222
1223 enum target_xfer_status
1224 target_xfer_partial (struct target_ops *ops,
1225 enum target_object object, const char *annex,
1226 gdb_byte *readbuf, const gdb_byte *writebuf,
1227 ULONGEST offset, ULONGEST len,
1228 ULONGEST *xfered_len)
1229 {
1230 enum target_xfer_status retval;
1231
1232 /* Transfer is done when LEN is zero. */
1233 if (len == 0)
1234 return TARGET_XFER_EOF;
1235
1236 if (writebuf && !may_write_memory)
1237 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1238 core_addr_to_string_nz (offset), plongest (len));
1239
1240 *xfered_len = 0;
1241
1242 /* If this is a memory transfer, let the memory-specific code
1243 have a look at it instead. Memory transfers are more
1244 complicated. */
1245 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1246 || object == TARGET_OBJECT_CODE_MEMORY)
1247 retval = memory_xfer_partial (ops, object, readbuf,
1248 writebuf, offset, len, xfered_len);
1249 else if (object == TARGET_OBJECT_RAW_MEMORY)
1250 {
1251 /* Skip/avoid accessing the target if the memory region
1252 attributes block the access. Check this here instead of in
1253 raw_memory_xfer_partial as otherwise we'd end up checking
1254 this twice in the case of the memory_xfer_partial path is
1255 taken; once before checking the dcache, and another in the
1256 tail call to raw_memory_xfer_partial. */
1257 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1258 NULL))
1259 return TARGET_XFER_E_IO;
1260
1261 /* Request the normal memory object from other layers. */
1262 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1263 xfered_len);
1264 }
1265 else
1266 retval = ops->xfer_partial (object, annex, readbuf,
1267 writebuf, offset, len, xfered_len);
1268
1269 if (targetdebug)
1270 {
1271 const unsigned char *myaddr = NULL;
1272
1273 fprintf_unfiltered (gdb_stdlog,
1274 "%s:target_xfer_partial "
1275 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1276 ops->shortname (),
1277 (int) object,
1278 (annex ? annex : "(null)"),
1279 host_address_to_string (readbuf),
1280 host_address_to_string (writebuf),
1281 core_addr_to_string_nz (offset),
1282 pulongest (len), retval,
1283 pulongest (*xfered_len));
1284
1285 if (readbuf)
1286 myaddr = readbuf;
1287 if (writebuf)
1288 myaddr = writebuf;
1289 if (retval == TARGET_XFER_OK && myaddr != NULL)
1290 {
1291 int i;
1292
1293 fputs_unfiltered (", bytes =", gdb_stdlog);
1294 for (i = 0; i < *xfered_len; i++)
1295 {
1296 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1297 {
1298 if (targetdebug < 2 && i > 0)
1299 {
1300 fprintf_unfiltered (gdb_stdlog, " ...");
1301 break;
1302 }
1303 fprintf_unfiltered (gdb_stdlog, "\n");
1304 }
1305
1306 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1307 }
1308 }
1309
1310 fputc_unfiltered ('\n', gdb_stdlog);
1311 }
1312
1313 /* Check implementations of to_xfer_partial update *XFERED_LEN
1314 properly. Do assertion after printing debug messages, so that we
1315 can find more clues on assertion failure from debugging messages. */
1316 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1317 gdb_assert (*xfered_len > 0);
1318
1319 return retval;
1320 }
1321
1322 /* Read LEN bytes of target memory at address MEMADDR, placing the
1323 results in GDB's memory at MYADDR. Returns either 0 for success or
1324 -1 if any error occurs.
1325
1326 If an error occurs, no guarantee is made about the contents of the data at
1327 MYADDR. In particular, the caller should not depend upon partial reads
1328 filling the buffer with good data. There is no way for the caller to know
1329 how much good data might have been transfered anyway. Callers that can
1330 deal with partial reads should call target_read (which will retry until
1331 it makes no progress, and then return how much was transferred). */
1332
1333 int
1334 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1335 {
1336 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1337 myaddr, memaddr, len) == len)
1338 return 0;
1339 else
1340 return -1;
1341 }
1342
1343 /* See target/target.h. */
1344
1345 int
1346 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1347 {
1348 gdb_byte buf[4];
1349 int r;
1350
1351 r = target_read_memory (memaddr, buf, sizeof buf);
1352 if (r != 0)
1353 return r;
1354 *result = extract_unsigned_integer (buf, sizeof buf,
1355 gdbarch_byte_order (target_gdbarch ()));
1356 return 0;
1357 }
1358
1359 /* Like target_read_memory, but specify explicitly that this is a read
1360 from the target's raw memory. That is, this read bypasses the
1361 dcache, breakpoint shadowing, etc. */
1362
1363 int
1364 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1365 {
1366 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return -1;
1371 }
1372
1373 /* Like target_read_memory, but specify explicitly that this is a read from
1374 the target's stack. This may trigger different cache behavior. */
1375
1376 int
1377 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1378 {
1379 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1380 myaddr, memaddr, len) == len)
1381 return 0;
1382 else
1383 return -1;
1384 }
1385
1386 /* Like target_read_memory, but specify explicitly that this is a read from
1387 the target's code. This may trigger different cache behavior. */
1388
1389 int
1390 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1391 {
1392 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1393 myaddr, memaddr, len) == len)
1394 return 0;
1395 else
1396 return -1;
1397 }
1398
1399 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1400 Returns either 0 for success or -1 if any error occurs. If an
1401 error occurs, no guarantee is made about how much data got written.
1402 Callers that can deal with partial writes should call
1403 target_write. */
1404
1405 int
1406 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1407 {
1408 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1409 myaddr, memaddr, len) == len)
1410 return 0;
1411 else
1412 return -1;
1413 }
1414
1415 /* Write LEN bytes from MYADDR to target raw memory at address
1416 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1417 If an error occurs, no guarantee is made about how much data got
1418 written. Callers that can deal with partial writes should call
1419 target_write. */
1420
1421 int
1422 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1423 {
1424 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1425 myaddr, memaddr, len) == len)
1426 return 0;
1427 else
1428 return -1;
1429 }
1430
1431 /* Fetch the target's memory map. */
1432
1433 std::vector<mem_region>
1434 target_memory_map (void)
1435 {
1436 std::vector<mem_region> result = current_top_target ()->memory_map ();
1437 if (result.empty ())
1438 return result;
1439
1440 std::sort (result.begin (), result.end ());
1441
1442 /* Check that regions do not overlap. Simultaneously assign
1443 a numbering for the "mem" commands to use to refer to
1444 each region. */
1445 mem_region *last_one = NULL;
1446 for (size_t ix = 0; ix < result.size (); ix++)
1447 {
1448 mem_region *this_one = &result[ix];
1449 this_one->number = ix;
1450
1451 if (last_one != NULL && last_one->hi > this_one->lo)
1452 {
1453 warning (_("Overlapping regions in memory map: ignoring"));
1454 return std::vector<mem_region> ();
1455 }
1456
1457 last_one = this_one;
1458 }
1459
1460 return result;
1461 }
1462
1463 void
1464 target_flash_erase (ULONGEST address, LONGEST length)
1465 {
1466 current_top_target ()->flash_erase (address, length);
1467 }
1468
1469 void
1470 target_flash_done (void)
1471 {
1472 current_top_target ()->flash_done ();
1473 }
1474
1475 static void
1476 show_trust_readonly (struct ui_file *file, int from_tty,
1477 struct cmd_list_element *c, const char *value)
1478 {
1479 fprintf_filtered (file,
1480 _("Mode for reading from readonly sections is %s.\n"),
1481 value);
1482 }
1483
1484 /* Target vector read/write partial wrapper functions. */
1485
1486 static enum target_xfer_status
1487 target_read_partial (struct target_ops *ops,
1488 enum target_object object,
1489 const char *annex, gdb_byte *buf,
1490 ULONGEST offset, ULONGEST len,
1491 ULONGEST *xfered_len)
1492 {
1493 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1494 xfered_len);
1495 }
1496
1497 static enum target_xfer_status
1498 target_write_partial (struct target_ops *ops,
1499 enum target_object object,
1500 const char *annex, const gdb_byte *buf,
1501 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1502 {
1503 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1504 xfered_len);
1505 }
1506
1507 /* Wrappers to perform the full transfer. */
1508
1509 /* For docs on target_read see target.h. */
1510
1511 LONGEST
1512 target_read (struct target_ops *ops,
1513 enum target_object object,
1514 const char *annex, gdb_byte *buf,
1515 ULONGEST offset, LONGEST len)
1516 {
1517 LONGEST xfered_total = 0;
1518 int unit_size = 1;
1519
1520 /* If we are reading from a memory object, find the length of an addressable
1521 unit for that architecture. */
1522 if (object == TARGET_OBJECT_MEMORY
1523 || object == TARGET_OBJECT_STACK_MEMORY
1524 || object == TARGET_OBJECT_CODE_MEMORY
1525 || object == TARGET_OBJECT_RAW_MEMORY)
1526 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1527
1528 while (xfered_total < len)
1529 {
1530 ULONGEST xfered_partial;
1531 enum target_xfer_status status;
1532
1533 status = target_read_partial (ops, object, annex,
1534 buf + xfered_total * unit_size,
1535 offset + xfered_total, len - xfered_total,
1536 &xfered_partial);
1537
1538 /* Call an observer, notifying them of the xfer progress? */
1539 if (status == TARGET_XFER_EOF)
1540 return xfered_total;
1541 else if (status == TARGET_XFER_OK)
1542 {
1543 xfered_total += xfered_partial;
1544 QUIT;
1545 }
1546 else
1547 return TARGET_XFER_E_IO;
1548
1549 }
1550 return len;
1551 }
1552
1553 /* Assuming that the entire [begin, end) range of memory cannot be
1554 read, try to read whatever subrange is possible to read.
1555
1556 The function returns, in RESULT, either zero or one memory block.
1557 If there's a readable subrange at the beginning, it is completely
1558 read and returned. Any further readable subrange will not be read.
1559 Otherwise, if there's a readable subrange at the end, it will be
1560 completely read and returned. Any readable subranges before it
1561 (obviously, not starting at the beginning), will be ignored. In
1562 other cases -- either no readable subrange, or readable subrange(s)
1563 that is neither at the beginning, or end, nothing is returned.
1564
1565 The purpose of this function is to handle a read across a boundary
1566 of accessible memory in a case when memory map is not available.
1567 The above restrictions are fine for this case, but will give
1568 incorrect results if the memory is 'patchy'. However, supporting
1569 'patchy' memory would require trying to read every single byte,
1570 and it seems unacceptable solution. Explicit memory map is
1571 recommended for this case -- and target_read_memory_robust will
1572 take care of reading multiple ranges then. */
1573
1574 static void
1575 read_whatever_is_readable (struct target_ops *ops,
1576 const ULONGEST begin, const ULONGEST end,
1577 int unit_size,
1578 std::vector<memory_read_result> *result)
1579 {
1580 ULONGEST current_begin = begin;
1581 ULONGEST current_end = end;
1582 int forward;
1583 ULONGEST xfered_len;
1584
1585 /* If we previously failed to read 1 byte, nothing can be done here. */
1586 if (end - begin <= 1)
1587 return;
1588
1589 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1590
1591 /* Check that either first or the last byte is readable, and give up
1592 if not. This heuristic is meant to permit reading accessible memory
1593 at the boundary of accessible region. */
1594 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1595 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1596 {
1597 forward = 1;
1598 ++current_begin;
1599 }
1600 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1601 buf.get () + (end - begin) - 1, end - 1, 1,
1602 &xfered_len) == TARGET_XFER_OK)
1603 {
1604 forward = 0;
1605 --current_end;
1606 }
1607 else
1608 return;
1609
1610 /* Loop invariant is that the [current_begin, current_end) was previously
1611 found to be not readable as a whole.
1612
1613 Note loop condition -- if the range has 1 byte, we can't divide the range
1614 so there's no point trying further. */
1615 while (current_end - current_begin > 1)
1616 {
1617 ULONGEST first_half_begin, first_half_end;
1618 ULONGEST second_half_begin, second_half_end;
1619 LONGEST xfer;
1620 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1621
1622 if (forward)
1623 {
1624 first_half_begin = current_begin;
1625 first_half_end = middle;
1626 second_half_begin = middle;
1627 second_half_end = current_end;
1628 }
1629 else
1630 {
1631 first_half_begin = middle;
1632 first_half_end = current_end;
1633 second_half_begin = current_begin;
1634 second_half_end = middle;
1635 }
1636
1637 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1638 buf.get () + (first_half_begin - begin) * unit_size,
1639 first_half_begin,
1640 first_half_end - first_half_begin);
1641
1642 if (xfer == first_half_end - first_half_begin)
1643 {
1644 /* This half reads up fine. So, the error must be in the
1645 other half. */
1646 current_begin = second_half_begin;
1647 current_end = second_half_end;
1648 }
1649 else
1650 {
1651 /* This half is not readable. Because we've tried one byte, we
1652 know some part of this half if actually readable. Go to the next
1653 iteration to divide again and try to read.
1654
1655 We don't handle the other half, because this function only tries
1656 to read a single readable subrange. */
1657 current_begin = first_half_begin;
1658 current_end = first_half_end;
1659 }
1660 }
1661
1662 if (forward)
1663 {
1664 /* The [begin, current_begin) range has been read. */
1665 result->emplace_back (begin, current_end, std::move (buf));
1666 }
1667 else
1668 {
1669 /* The [current_end, end) range has been read. */
1670 LONGEST region_len = end - current_end;
1671
1672 gdb::unique_xmalloc_ptr<gdb_byte> data
1673 ((gdb_byte *) xmalloc (region_len * unit_size));
1674 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1675 region_len * unit_size);
1676 result->emplace_back (current_end, end, std::move (data));
1677 }
1678 }
1679
1680 std::vector<memory_read_result>
1681 read_memory_robust (struct target_ops *ops,
1682 const ULONGEST offset, const LONGEST len)
1683 {
1684 std::vector<memory_read_result> result;
1685 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1686
1687 LONGEST xfered_total = 0;
1688 while (xfered_total < len)
1689 {
1690 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1691 LONGEST region_len;
1692
1693 /* If there is no explicit region, a fake one should be created. */
1694 gdb_assert (region);
1695
1696 if (region->hi == 0)
1697 region_len = len - xfered_total;
1698 else
1699 region_len = region->hi - offset;
1700
1701 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1702 {
1703 /* Cannot read this region. Note that we can end up here only
1704 if the region is explicitly marked inaccessible, or
1705 'inaccessible-by-default' is in effect. */
1706 xfered_total += region_len;
1707 }
1708 else
1709 {
1710 LONGEST to_read = std::min (len - xfered_total, region_len);
1711 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1712 ((gdb_byte *) xmalloc (to_read * unit_size));
1713
1714 LONGEST xfered_partial =
1715 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1716 offset + xfered_total, to_read);
1717 /* Call an observer, notifying them of the xfer progress? */
1718 if (xfered_partial <= 0)
1719 {
1720 /* Got an error reading full chunk. See if maybe we can read
1721 some subrange. */
1722 read_whatever_is_readable (ops, offset + xfered_total,
1723 offset + xfered_total + to_read,
1724 unit_size, &result);
1725 xfered_total += to_read;
1726 }
1727 else
1728 {
1729 result.emplace_back (offset + xfered_total,
1730 offset + xfered_total + xfered_partial,
1731 std::move (buffer));
1732 xfered_total += xfered_partial;
1733 }
1734 QUIT;
1735 }
1736 }
1737
1738 return result;
1739 }
1740
1741
1742 /* An alternative to target_write with progress callbacks. */
1743
1744 LONGEST
1745 target_write_with_progress (struct target_ops *ops,
1746 enum target_object object,
1747 const char *annex, const gdb_byte *buf,
1748 ULONGEST offset, LONGEST len,
1749 void (*progress) (ULONGEST, void *), void *baton)
1750 {
1751 LONGEST xfered_total = 0;
1752 int unit_size = 1;
1753
1754 /* If we are writing to a memory object, find the length of an addressable
1755 unit for that architecture. */
1756 if (object == TARGET_OBJECT_MEMORY
1757 || object == TARGET_OBJECT_STACK_MEMORY
1758 || object == TARGET_OBJECT_CODE_MEMORY
1759 || object == TARGET_OBJECT_RAW_MEMORY)
1760 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1761
1762 /* Give the progress callback a chance to set up. */
1763 if (progress)
1764 (*progress) (0, baton);
1765
1766 while (xfered_total < len)
1767 {
1768 ULONGEST xfered_partial;
1769 enum target_xfer_status status;
1770
1771 status = target_write_partial (ops, object, annex,
1772 buf + xfered_total * unit_size,
1773 offset + xfered_total, len - xfered_total,
1774 &xfered_partial);
1775
1776 if (status != TARGET_XFER_OK)
1777 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1778
1779 if (progress)
1780 (*progress) (xfered_partial, baton);
1781
1782 xfered_total += xfered_partial;
1783 QUIT;
1784 }
1785 return len;
1786 }
1787
1788 /* For docs on target_write see target.h. */
1789
1790 LONGEST
1791 target_write (struct target_ops *ops,
1792 enum target_object object,
1793 const char *annex, const gdb_byte *buf,
1794 ULONGEST offset, LONGEST len)
1795 {
1796 return target_write_with_progress (ops, object, annex, buf, offset, len,
1797 NULL, NULL);
1798 }
1799
1800 /* Help for target_read_alloc and target_read_stralloc. See their comments
1801 for details. */
1802
1803 template <typename T>
1804 gdb::optional<gdb::def_vector<T>>
1805 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1806 const char *annex)
1807 {
1808 gdb::def_vector<T> buf;
1809 size_t buf_pos = 0;
1810 const int chunk = 4096;
1811
1812 /* This function does not have a length parameter; it reads the
1813 entire OBJECT). Also, it doesn't support objects fetched partly
1814 from one target and partly from another (in a different stratum,
1815 e.g. a core file and an executable). Both reasons make it
1816 unsuitable for reading memory. */
1817 gdb_assert (object != TARGET_OBJECT_MEMORY);
1818
1819 /* Start by reading up to 4K at a time. The target will throttle
1820 this number down if necessary. */
1821 while (1)
1822 {
1823 ULONGEST xfered_len;
1824 enum target_xfer_status status;
1825
1826 buf.resize (buf_pos + chunk);
1827
1828 status = target_read_partial (ops, object, annex,
1829 (gdb_byte *) &buf[buf_pos],
1830 buf_pos, chunk,
1831 &xfered_len);
1832
1833 if (status == TARGET_XFER_EOF)
1834 {
1835 /* Read all there was. */
1836 buf.resize (buf_pos);
1837 return buf;
1838 }
1839 else if (status != TARGET_XFER_OK)
1840 {
1841 /* An error occurred. */
1842 return {};
1843 }
1844
1845 buf_pos += xfered_len;
1846
1847 QUIT;
1848 }
1849 }
1850
1851 /* See target.h */
1852
1853 gdb::optional<gdb::byte_vector>
1854 target_read_alloc (struct target_ops *ops, enum target_object object,
1855 const char *annex)
1856 {
1857 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1858 }
1859
1860 /* See target.h. */
1861
1862 gdb::optional<gdb::char_vector>
1863 target_read_stralloc (struct target_ops *ops, enum target_object object,
1864 const char *annex)
1865 {
1866 gdb::optional<gdb::char_vector> buf
1867 = target_read_alloc_1<char> (ops, object, annex);
1868
1869 if (!buf)
1870 return {};
1871
1872 if (buf->back () != '\0')
1873 buf->push_back ('\0');
1874
1875 /* Check for embedded NUL bytes; but allow trailing NULs. */
1876 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1877 it != buf->end (); it++)
1878 if (*it != '\0')
1879 {
1880 warning (_("target object %d, annex %s, "
1881 "contained unexpected null characters"),
1882 (int) object, annex ? annex : "(none)");
1883 break;
1884 }
1885
1886 return buf;
1887 }
1888
1889 /* Memory transfer methods. */
1890
1891 void
1892 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1893 LONGEST len)
1894 {
1895 /* This method is used to read from an alternate, non-current
1896 target. This read must bypass the overlay support (as symbols
1897 don't match this target), and GDB's internal cache (wrong cache
1898 for this target). */
1899 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1900 != len)
1901 memory_error (TARGET_XFER_E_IO, addr);
1902 }
1903
1904 ULONGEST
1905 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1906 int len, enum bfd_endian byte_order)
1907 {
1908 gdb_byte buf[sizeof (ULONGEST)];
1909
1910 gdb_assert (len <= sizeof (buf));
1911 get_target_memory (ops, addr, buf, len);
1912 return extract_unsigned_integer (buf, len, byte_order);
1913 }
1914
1915 /* See target.h. */
1916
1917 int
1918 target_insert_breakpoint (struct gdbarch *gdbarch,
1919 struct bp_target_info *bp_tgt)
1920 {
1921 if (!may_insert_breakpoints)
1922 {
1923 warning (_("May not insert breakpoints"));
1924 return 1;
1925 }
1926
1927 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1928 }
1929
1930 /* See target.h. */
1931
1932 int
1933 target_remove_breakpoint (struct gdbarch *gdbarch,
1934 struct bp_target_info *bp_tgt,
1935 enum remove_bp_reason reason)
1936 {
1937 /* This is kind of a weird case to handle, but the permission might
1938 have been changed after breakpoints were inserted - in which case
1939 we should just take the user literally and assume that any
1940 breakpoints should be left in place. */
1941 if (!may_insert_breakpoints)
1942 {
1943 warning (_("May not remove breakpoints"));
1944 return 1;
1945 }
1946
1947 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1948 }
1949
1950 static void
1951 info_target_command (const char *args, int from_tty)
1952 {
1953 int has_all_mem = 0;
1954
1955 if (symfile_objfile != NULL)
1956 printf_unfiltered (_("Symbols from \"%s\".\n"),
1957 objfile_name (symfile_objfile));
1958
1959 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1960 {
1961 if (!t->has_memory ())
1962 continue;
1963
1964 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1965 continue;
1966 if (has_all_mem)
1967 printf_unfiltered (_("\tWhile running this, "
1968 "GDB does not access memory from...\n"));
1969 printf_unfiltered ("%s:\n", t->longname ());
1970 t->files_info ();
1971 has_all_mem = t->has_all_memory ();
1972 }
1973 }
1974
1975 /* This function is called before any new inferior is created, e.g.
1976 by running a program, attaching, or connecting to a target.
1977 It cleans up any state from previous invocations which might
1978 change between runs. This is a subset of what target_preopen
1979 resets (things which might change between targets). */
1980
1981 void
1982 target_pre_inferior (int from_tty)
1983 {
1984 /* Clear out solib state. Otherwise the solib state of the previous
1985 inferior might have survived and is entirely wrong for the new
1986 target. This has been observed on GNU/Linux using glibc 2.3. How
1987 to reproduce:
1988
1989 bash$ ./foo&
1990 [1] 4711
1991 bash$ ./foo&
1992 [1] 4712
1993 bash$ gdb ./foo
1994 [...]
1995 (gdb) attach 4711
1996 (gdb) detach
1997 (gdb) attach 4712
1998 Cannot access memory at address 0xdeadbeef
1999 */
2000
2001 /* In some OSs, the shared library list is the same/global/shared
2002 across inferiors. If code is shared between processes, so are
2003 memory regions and features. */
2004 if (!gdbarch_has_global_solist (target_gdbarch ()))
2005 {
2006 no_shared_libraries (NULL, from_tty);
2007
2008 invalidate_target_mem_regions ();
2009
2010 target_clear_description ();
2011 }
2012
2013 /* attach_flag may be set if the previous process associated with
2014 the inferior was attached to. */
2015 current_inferior ()->attach_flag = 0;
2016
2017 current_inferior ()->highest_thread_num = 0;
2018
2019 agent_capability_invalidate ();
2020 }
2021
2022 /* Callback for iterate_over_inferiors. Gets rid of the given
2023 inferior. */
2024
2025 static int
2026 dispose_inferior (struct inferior *inf, void *args)
2027 {
2028 thread_info *thread = any_thread_of_inferior (inf);
2029 if (thread != NULL)
2030 {
2031 switch_to_thread (thread);
2032
2033 /* Core inferiors actually should be detached, not killed. */
2034 if (target_has_execution)
2035 target_kill ();
2036 else
2037 target_detach (inf, 0);
2038 }
2039
2040 return 0;
2041 }
2042
2043 /* This is to be called by the open routine before it does
2044 anything. */
2045
2046 void
2047 target_preopen (int from_tty)
2048 {
2049 dont_repeat ();
2050
2051 if (have_inferiors ())
2052 {
2053 if (!from_tty
2054 || !have_live_inferiors ()
2055 || query (_("A program is being debugged already. Kill it? ")))
2056 iterate_over_inferiors (dispose_inferior, NULL);
2057 else
2058 error (_("Program not killed."));
2059 }
2060
2061 /* Calling target_kill may remove the target from the stack. But if
2062 it doesn't (which seems like a win for UDI), remove it now. */
2063 /* Leave the exec target, though. The user may be switching from a
2064 live process to a core of the same program. */
2065 pop_all_targets_above (file_stratum);
2066
2067 target_pre_inferior (from_tty);
2068 }
2069
2070 /* See target.h. */
2071
2072 void
2073 target_detach (inferior *inf, int from_tty)
2074 {
2075 /* As long as some to_detach implementations rely on the current_inferior
2076 (either directly, or indirectly, like through target_gdbarch or by
2077 reading memory), INF needs to be the current inferior. When that
2078 requirement will become no longer true, then we can remove this
2079 assertion. */
2080 gdb_assert (inf == current_inferior ());
2081
2082 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2083 /* Don't remove global breakpoints here. They're removed on
2084 disconnection from the target. */
2085 ;
2086 else
2087 /* If we're in breakpoints-always-inserted mode, have to remove
2088 breakpoints before detaching. */
2089 remove_breakpoints_inf (current_inferior ());
2090
2091 prepare_for_detach ();
2092
2093 current_top_target ()->detach (inf, from_tty);
2094 }
2095
2096 void
2097 target_disconnect (const char *args, int from_tty)
2098 {
2099 /* If we're in breakpoints-always-inserted mode or if breakpoints
2100 are global across processes, we have to remove them before
2101 disconnecting. */
2102 remove_breakpoints ();
2103
2104 current_top_target ()->disconnect (args, from_tty);
2105 }
2106
2107 /* See target/target.h. */
2108
2109 ptid_t
2110 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2111 {
2112 return current_top_target ()->wait (ptid, status, options);
2113 }
2114
2115 /* See target.h. */
2116
2117 ptid_t
2118 default_target_wait (struct target_ops *ops,
2119 ptid_t ptid, struct target_waitstatus *status,
2120 int options)
2121 {
2122 status->kind = TARGET_WAITKIND_IGNORE;
2123 return minus_one_ptid;
2124 }
2125
2126 const char *
2127 target_pid_to_str (ptid_t ptid)
2128 {
2129 return current_top_target ()->pid_to_str (ptid);
2130 }
2131
2132 const char *
2133 target_thread_name (struct thread_info *info)
2134 {
2135 return current_top_target ()->thread_name (info);
2136 }
2137
2138 struct thread_info *
2139 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2140 int handle_len,
2141 struct inferior *inf)
2142 {
2143 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2144 handle_len, inf);
2145 }
2146
2147 void
2148 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2149 {
2150 target_dcache_invalidate ();
2151
2152 current_top_target ()->resume (ptid, step, signal);
2153
2154 registers_changed_ptid (ptid);
2155 /* We only set the internal executing state here. The user/frontend
2156 running state is set at a higher level. This also clears the
2157 thread's stop_pc as side effect. */
2158 set_executing (ptid, 1);
2159 clear_inline_frame_state (ptid);
2160 }
2161
2162 /* If true, target_commit_resume is a nop. */
2163 static int defer_target_commit_resume;
2164
2165 /* See target.h. */
2166
2167 void
2168 target_commit_resume (void)
2169 {
2170 if (defer_target_commit_resume)
2171 return;
2172
2173 current_top_target ()->commit_resume ();
2174 }
2175
2176 /* See target.h. */
2177
2178 scoped_restore_tmpl<int>
2179 make_scoped_defer_target_commit_resume ()
2180 {
2181 return make_scoped_restore (&defer_target_commit_resume, 1);
2182 }
2183
2184 void
2185 target_pass_signals (int numsigs, unsigned char *pass_signals)
2186 {
2187 current_top_target ()->pass_signals (numsigs, pass_signals);
2188 }
2189
2190 void
2191 target_program_signals (int numsigs, unsigned char *program_signals)
2192 {
2193 current_top_target ()->program_signals (numsigs, program_signals);
2194 }
2195
2196 static int
2197 default_follow_fork (struct target_ops *self, int follow_child,
2198 int detach_fork)
2199 {
2200 /* Some target returned a fork event, but did not know how to follow it. */
2201 internal_error (__FILE__, __LINE__,
2202 _("could not find a target to follow fork"));
2203 }
2204
2205 /* Look through the list of possible targets for a target that can
2206 follow forks. */
2207
2208 int
2209 target_follow_fork (int follow_child, int detach_fork)
2210 {
2211 return current_top_target ()->follow_fork (follow_child, detach_fork);
2212 }
2213
2214 /* Target wrapper for follow exec hook. */
2215
2216 void
2217 target_follow_exec (struct inferior *inf, char *execd_pathname)
2218 {
2219 current_top_target ()->follow_exec (inf, execd_pathname);
2220 }
2221
2222 static void
2223 default_mourn_inferior (struct target_ops *self)
2224 {
2225 internal_error (__FILE__, __LINE__,
2226 _("could not find a target to follow mourn inferior"));
2227 }
2228
2229 void
2230 target_mourn_inferior (ptid_t ptid)
2231 {
2232 gdb_assert (ptid_equal (ptid, inferior_ptid));
2233 current_top_target ()->mourn_inferior ();
2234
2235 /* We no longer need to keep handles on any of the object files.
2236 Make sure to release them to avoid unnecessarily locking any
2237 of them while we're not actually debugging. */
2238 bfd_cache_close_all ();
2239 }
2240
2241 /* Look for a target which can describe architectural features, starting
2242 from TARGET. If we find one, return its description. */
2243
2244 const struct target_desc *
2245 target_read_description (struct target_ops *target)
2246 {
2247 return target->read_description ();
2248 }
2249
2250 /* This implements a basic search of memory, reading target memory and
2251 performing the search here (as opposed to performing the search in on the
2252 target side with, for example, gdbserver). */
2253
2254 int
2255 simple_search_memory (struct target_ops *ops,
2256 CORE_ADDR start_addr, ULONGEST search_space_len,
2257 const gdb_byte *pattern, ULONGEST pattern_len,
2258 CORE_ADDR *found_addrp)
2259 {
2260 /* NOTE: also defined in find.c testcase. */
2261 #define SEARCH_CHUNK_SIZE 16000
2262 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2263 /* Buffer to hold memory contents for searching. */
2264 unsigned search_buf_size;
2265
2266 search_buf_size = chunk_size + pattern_len - 1;
2267
2268 /* No point in trying to allocate a buffer larger than the search space. */
2269 if (search_space_len < search_buf_size)
2270 search_buf_size = search_space_len;
2271
2272 gdb::byte_vector search_buf (search_buf_size);
2273
2274 /* Prime the search buffer. */
2275
2276 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2277 search_buf.data (), start_addr, search_buf_size)
2278 != search_buf_size)
2279 {
2280 warning (_("Unable to access %s bytes of target "
2281 "memory at %s, halting search."),
2282 pulongest (search_buf_size), hex_string (start_addr));
2283 return -1;
2284 }
2285
2286 /* Perform the search.
2287
2288 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2289 When we've scanned N bytes we copy the trailing bytes to the start and
2290 read in another N bytes. */
2291
2292 while (search_space_len >= pattern_len)
2293 {
2294 gdb_byte *found_ptr;
2295 unsigned nr_search_bytes
2296 = std::min (search_space_len, (ULONGEST) search_buf_size);
2297
2298 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2299 pattern, pattern_len);
2300
2301 if (found_ptr != NULL)
2302 {
2303 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2304
2305 *found_addrp = found_addr;
2306 return 1;
2307 }
2308
2309 /* Not found in this chunk, skip to next chunk. */
2310
2311 /* Don't let search_space_len wrap here, it's unsigned. */
2312 if (search_space_len >= chunk_size)
2313 search_space_len -= chunk_size;
2314 else
2315 search_space_len = 0;
2316
2317 if (search_space_len >= pattern_len)
2318 {
2319 unsigned keep_len = search_buf_size - chunk_size;
2320 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2321 int nr_to_read;
2322
2323 /* Copy the trailing part of the previous iteration to the front
2324 of the buffer for the next iteration. */
2325 gdb_assert (keep_len == pattern_len - 1);
2326 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2327
2328 nr_to_read = std::min (search_space_len - keep_len,
2329 (ULONGEST) chunk_size);
2330
2331 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2332 &search_buf[keep_len], read_addr,
2333 nr_to_read) != nr_to_read)
2334 {
2335 warning (_("Unable to access %s bytes of target "
2336 "memory at %s, halting search."),
2337 plongest (nr_to_read),
2338 hex_string (read_addr));
2339 return -1;
2340 }
2341
2342 start_addr += chunk_size;
2343 }
2344 }
2345
2346 /* Not found. */
2347
2348 return 0;
2349 }
2350
2351 /* Default implementation of memory-searching. */
2352
2353 static int
2354 default_search_memory (struct target_ops *self,
2355 CORE_ADDR start_addr, ULONGEST search_space_len,
2356 const gdb_byte *pattern, ULONGEST pattern_len,
2357 CORE_ADDR *found_addrp)
2358 {
2359 /* Start over from the top of the target stack. */
2360 return simple_search_memory (current_top_target (),
2361 start_addr, search_space_len,
2362 pattern, pattern_len, found_addrp);
2363 }
2364
2365 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2366 sequence of bytes in PATTERN with length PATTERN_LEN.
2367
2368 The result is 1 if found, 0 if not found, and -1 if there was an error
2369 requiring halting of the search (e.g. memory read error).
2370 If the pattern is found the address is recorded in FOUND_ADDRP. */
2371
2372 int
2373 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2374 const gdb_byte *pattern, ULONGEST pattern_len,
2375 CORE_ADDR *found_addrp)
2376 {
2377 return current_top_target ()->search_memory (start_addr, search_space_len,
2378 pattern, pattern_len, found_addrp);
2379 }
2380
2381 /* Look through the currently pushed targets. If none of them will
2382 be able to restart the currently running process, issue an error
2383 message. */
2384
2385 void
2386 target_require_runnable (void)
2387 {
2388 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2389 {
2390 /* If this target knows how to create a new program, then
2391 assume we will still be able to after killing the current
2392 one. Either killing and mourning will not pop T, or else
2393 find_default_run_target will find it again. */
2394 if (t->can_create_inferior ())
2395 return;
2396
2397 /* Do not worry about targets at certain strata that can not
2398 create inferiors. Assume they will be pushed again if
2399 necessary, and continue to the process_stratum. */
2400 if (t->to_stratum > process_stratum)
2401 continue;
2402
2403 error (_("The \"%s\" target does not support \"run\". "
2404 "Try \"help target\" or \"continue\"."),
2405 t->shortname ());
2406 }
2407
2408 /* This function is only called if the target is running. In that
2409 case there should have been a process_stratum target and it
2410 should either know how to create inferiors, or not... */
2411 internal_error (__FILE__, __LINE__, _("No targets found"));
2412 }
2413
2414 /* Whether GDB is allowed to fall back to the default run target for
2415 "run", "attach", etc. when no target is connected yet. */
2416 static int auto_connect_native_target = 1;
2417
2418 static void
2419 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2420 struct cmd_list_element *c, const char *value)
2421 {
2422 fprintf_filtered (file,
2423 _("Whether GDB may automatically connect to the "
2424 "native target is %s.\n"),
2425 value);
2426 }
2427
2428 /* A pointer to the target that can respond to "run" or "attach".
2429 Native targets are always singletons and instantiated early at GDB
2430 startup. */
2431 static target_ops *the_native_target;
2432
2433 /* See target.h. */
2434
2435 void
2436 set_native_target (target_ops *target)
2437 {
2438 if (the_native_target != NULL)
2439 internal_error (__FILE__, __LINE__,
2440 _("native target already set (\"%s\")."),
2441 the_native_target->longname ());
2442
2443 the_native_target = target;
2444 }
2445
2446 /* See target.h. */
2447
2448 target_ops *
2449 get_native_target ()
2450 {
2451 return the_native_target;
2452 }
2453
2454 /* Look through the list of possible targets for a target that can
2455 execute a run or attach command without any other data. This is
2456 used to locate the default process stratum.
2457
2458 If DO_MESG is not NULL, the result is always valid (error() is
2459 called for errors); else, return NULL on error. */
2460
2461 static struct target_ops *
2462 find_default_run_target (const char *do_mesg)
2463 {
2464 if (auto_connect_native_target && the_native_target != NULL)
2465 return the_native_target;
2466
2467 if (do_mesg != NULL)
2468 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2469 return NULL;
2470 }
2471
2472 /* See target.h. */
2473
2474 struct target_ops *
2475 find_attach_target (void)
2476 {
2477 /* If a target on the current stack can attach, use it. */
2478 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2479 {
2480 if (t->can_attach ())
2481 return t;
2482 }
2483
2484 /* Otherwise, use the default run target for attaching. */
2485 return find_default_run_target ("attach");
2486 }
2487
2488 /* See target.h. */
2489
2490 struct target_ops *
2491 find_run_target (void)
2492 {
2493 /* If a target on the current stack can run, use it. */
2494 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2495 {
2496 if (t->can_create_inferior ())
2497 return t;
2498 }
2499
2500 /* Otherwise, use the default run target. */
2501 return find_default_run_target ("run");
2502 }
2503
2504 bool
2505 target_ops::info_proc (const char *args, enum info_proc_what what)
2506 {
2507 return false;
2508 }
2509
2510 /* Implement the "info proc" command. */
2511
2512 int
2513 target_info_proc (const char *args, enum info_proc_what what)
2514 {
2515 struct target_ops *t;
2516
2517 /* If we're already connected to something that can get us OS
2518 related data, use it. Otherwise, try using the native
2519 target. */
2520 t = find_target_at (process_stratum);
2521 if (t == NULL)
2522 t = find_default_run_target (NULL);
2523
2524 for (; t != NULL; t = t->beneath ())
2525 {
2526 if (t->info_proc (args, what))
2527 {
2528 if (targetdebug)
2529 fprintf_unfiltered (gdb_stdlog,
2530 "target_info_proc (\"%s\", %d)\n", args, what);
2531
2532 return 1;
2533 }
2534 }
2535
2536 return 0;
2537 }
2538
2539 static int
2540 find_default_supports_disable_randomization (struct target_ops *self)
2541 {
2542 struct target_ops *t;
2543
2544 t = find_default_run_target (NULL);
2545 if (t != NULL)
2546 return t->supports_disable_randomization ();
2547 return 0;
2548 }
2549
2550 int
2551 target_supports_disable_randomization (void)
2552 {
2553 return current_top_target ()->supports_disable_randomization ();
2554 }
2555
2556 /* See target/target.h. */
2557
2558 int
2559 target_supports_multi_process (void)
2560 {
2561 return current_top_target ()->supports_multi_process ();
2562 }
2563
2564 /* See target.h. */
2565
2566 gdb::optional<gdb::char_vector>
2567 target_get_osdata (const char *type)
2568 {
2569 struct target_ops *t;
2570
2571 /* If we're already connected to something that can get us OS
2572 related data, use it. Otherwise, try using the native
2573 target. */
2574 t = find_target_at (process_stratum);
2575 if (t == NULL)
2576 t = find_default_run_target ("get OS data");
2577
2578 if (!t)
2579 return {};
2580
2581 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2582 }
2583
2584 static struct address_space *
2585 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2586 {
2587 struct inferior *inf;
2588
2589 /* Fall-back to the "main" address space of the inferior. */
2590 inf = find_inferior_ptid (ptid);
2591
2592 if (inf == NULL || inf->aspace == NULL)
2593 internal_error (__FILE__, __LINE__,
2594 _("Can't determine the current "
2595 "address space of thread %s\n"),
2596 target_pid_to_str (ptid));
2597
2598 return inf->aspace;
2599 }
2600
2601 /* Determine the current address space of thread PTID. */
2602
2603 struct address_space *
2604 target_thread_address_space (ptid_t ptid)
2605 {
2606 struct address_space *aspace;
2607
2608 aspace = current_top_target ()->thread_address_space (ptid);
2609 gdb_assert (aspace != NULL);
2610
2611 return aspace;
2612 }
2613
2614 /* See target.h. */
2615
2616 target_ops *
2617 target_ops::beneath () const
2618 {
2619 return g_target_stack.find_beneath (this);
2620 }
2621
2622 void
2623 target_ops::close ()
2624 {
2625 }
2626
2627 bool
2628 target_ops::can_attach ()
2629 {
2630 return 0;
2631 }
2632
2633 void
2634 target_ops::attach (const char *, int)
2635 {
2636 gdb_assert_not_reached ("target_ops::attach called");
2637 }
2638
2639 bool
2640 target_ops::can_create_inferior ()
2641 {
2642 return 0;
2643 }
2644
2645 void
2646 target_ops::create_inferior (const char *, const std::string &,
2647 char **, int)
2648 {
2649 gdb_assert_not_reached ("target_ops::create_inferior called");
2650 }
2651
2652 bool
2653 target_ops::can_run ()
2654 {
2655 return false;
2656 }
2657
2658 int
2659 target_can_run ()
2660 {
2661 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2662 {
2663 if (t->can_run ())
2664 return 1;
2665 }
2666
2667 return 0;
2668 }
2669
2670 /* Target file operations. */
2671
2672 static struct target_ops *
2673 default_fileio_target (void)
2674 {
2675 struct target_ops *t;
2676
2677 /* If we're already connected to something that can perform
2678 file I/O, use it. Otherwise, try using the native target. */
2679 t = find_target_at (process_stratum);
2680 if (t != NULL)
2681 return t;
2682 return find_default_run_target ("file I/O");
2683 }
2684
2685 /* File handle for target file operations. */
2686
2687 struct fileio_fh_t
2688 {
2689 /* The target on which this file is open. NULL if the target is
2690 meanwhile closed while the handle is open. */
2691 target_ops *target;
2692
2693 /* The file descriptor on the target. */
2694 int target_fd;
2695
2696 /* Check whether this fileio_fh_t represents a closed file. */
2697 bool is_closed ()
2698 {
2699 return target_fd < 0;
2700 }
2701 };
2702
2703 /* Vector of currently open file handles. The value returned by
2704 target_fileio_open and passed as the FD argument to other
2705 target_fileio_* functions is an index into this vector. This
2706 vector's entries are never freed; instead, files are marked as
2707 closed, and the handle becomes available for reuse. */
2708 static std::vector<fileio_fh_t> fileio_fhandles;
2709
2710 /* Index into fileio_fhandles of the lowest handle that might be
2711 closed. This permits handle reuse without searching the whole
2712 list each time a new file is opened. */
2713 static int lowest_closed_fd;
2714
2715 /* Invalidate the target associated with open handles that were open
2716 on target TARG, since we're about to close (and maybe destroy) the
2717 target. The handles remain open from the client's perspective, but
2718 trying to do anything with them other than closing them will fail
2719 with EIO. */
2720
2721 static void
2722 fileio_handles_invalidate_target (target_ops *targ)
2723 {
2724 for (fileio_fh_t &fh : fileio_fhandles)
2725 if (fh.target == targ)
2726 fh.target = NULL;
2727 }
2728
2729 /* Acquire a target fileio file descriptor. */
2730
2731 static int
2732 acquire_fileio_fd (target_ops *target, int target_fd)
2733 {
2734 /* Search for closed handles to reuse. */
2735 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2736 {
2737 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2738
2739 if (fh.is_closed ())
2740 break;
2741 }
2742
2743 /* Push a new handle if no closed handles were found. */
2744 if (lowest_closed_fd == fileio_fhandles.size ())
2745 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2746 else
2747 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2748
2749 /* Should no longer be marked closed. */
2750 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2751
2752 /* Return its index, and start the next lookup at
2753 the next index. */
2754 return lowest_closed_fd++;
2755 }
2756
2757 /* Release a target fileio file descriptor. */
2758
2759 static void
2760 release_fileio_fd (int fd, fileio_fh_t *fh)
2761 {
2762 fh->target_fd = -1;
2763 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2764 }
2765
2766 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2767
2768 static fileio_fh_t *
2769 fileio_fd_to_fh (int fd)
2770 {
2771 return &fileio_fhandles[fd];
2772 }
2773
2774
2775 /* Default implementations of file i/o methods. We don't want these
2776 to delegate automatically, because we need to know which target
2777 supported the method, in order to call it directly from within
2778 pread/pwrite, etc. */
2779
2780 int
2781 target_ops::fileio_open (struct inferior *inf, const char *filename,
2782 int flags, int mode, int warn_if_slow,
2783 int *target_errno)
2784 {
2785 *target_errno = FILEIO_ENOSYS;
2786 return -1;
2787 }
2788
2789 int
2790 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2791 ULONGEST offset, int *target_errno)
2792 {
2793 *target_errno = FILEIO_ENOSYS;
2794 return -1;
2795 }
2796
2797 int
2798 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2799 ULONGEST offset, int *target_errno)
2800 {
2801 *target_errno = FILEIO_ENOSYS;
2802 return -1;
2803 }
2804
2805 int
2806 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2807 {
2808 *target_errno = FILEIO_ENOSYS;
2809 return -1;
2810 }
2811
2812 int
2813 target_ops::fileio_close (int fd, int *target_errno)
2814 {
2815 *target_errno = FILEIO_ENOSYS;
2816 return -1;
2817 }
2818
2819 int
2820 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2821 int *target_errno)
2822 {
2823 *target_errno = FILEIO_ENOSYS;
2824 return -1;
2825 }
2826
2827 gdb::optional<std::string>
2828 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2829 int *target_errno)
2830 {
2831 *target_errno = FILEIO_ENOSYS;
2832 return {};
2833 }
2834
2835 /* Helper for target_fileio_open and
2836 target_fileio_open_warn_if_slow. */
2837
2838 static int
2839 target_fileio_open_1 (struct inferior *inf, const char *filename,
2840 int flags, int mode, int warn_if_slow,
2841 int *target_errno)
2842 {
2843 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2844 {
2845 int fd = t->fileio_open (inf, filename, flags, mode,
2846 warn_if_slow, target_errno);
2847
2848 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2849 continue;
2850
2851 if (fd < 0)
2852 fd = -1;
2853 else
2854 fd = acquire_fileio_fd (t, fd);
2855
2856 if (targetdebug)
2857 fprintf_unfiltered (gdb_stdlog,
2858 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2859 " = %d (%d)\n",
2860 inf == NULL ? 0 : inf->num,
2861 filename, flags, mode,
2862 warn_if_slow, fd,
2863 fd != -1 ? 0 : *target_errno);
2864 return fd;
2865 }
2866
2867 *target_errno = FILEIO_ENOSYS;
2868 return -1;
2869 }
2870
2871 /* See target.h. */
2872
2873 int
2874 target_fileio_open (struct inferior *inf, const char *filename,
2875 int flags, int mode, int *target_errno)
2876 {
2877 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2878 target_errno);
2879 }
2880
2881 /* See target.h. */
2882
2883 int
2884 target_fileio_open_warn_if_slow (struct inferior *inf,
2885 const char *filename,
2886 int flags, int mode, int *target_errno)
2887 {
2888 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2889 target_errno);
2890 }
2891
2892 /* See target.h. */
2893
2894 int
2895 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2896 ULONGEST offset, int *target_errno)
2897 {
2898 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2899 int ret = -1;
2900
2901 if (fh->is_closed ())
2902 *target_errno = EBADF;
2903 else if (fh->target == NULL)
2904 *target_errno = EIO;
2905 else
2906 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2907 len, offset, target_errno);
2908
2909 if (targetdebug)
2910 fprintf_unfiltered (gdb_stdlog,
2911 "target_fileio_pwrite (%d,...,%d,%s) "
2912 "= %d (%d)\n",
2913 fd, len, pulongest (offset),
2914 ret, ret != -1 ? 0 : *target_errno);
2915 return ret;
2916 }
2917
2918 /* See target.h. */
2919
2920 int
2921 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2922 ULONGEST offset, int *target_errno)
2923 {
2924 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2925 int ret = -1;
2926
2927 if (fh->is_closed ())
2928 *target_errno = EBADF;
2929 else if (fh->target == NULL)
2930 *target_errno = EIO;
2931 else
2932 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2933 len, offset, target_errno);
2934
2935 if (targetdebug)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "target_fileio_pread (%d,...,%d,%s) "
2938 "= %d (%d)\n",
2939 fd, len, pulongest (offset),
2940 ret, ret != -1 ? 0 : *target_errno);
2941 return ret;
2942 }
2943
2944 /* See target.h. */
2945
2946 int
2947 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2948 {
2949 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2950 int ret = -1;
2951
2952 if (fh->is_closed ())
2953 *target_errno = EBADF;
2954 else if (fh->target == NULL)
2955 *target_errno = EIO;
2956 else
2957 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2958
2959 if (targetdebug)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "target_fileio_fstat (%d) = %d (%d)\n",
2962 fd, ret, ret != -1 ? 0 : *target_errno);
2963 return ret;
2964 }
2965
2966 /* See target.h. */
2967
2968 int
2969 target_fileio_close (int fd, int *target_errno)
2970 {
2971 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2972 int ret = -1;
2973
2974 if (fh->is_closed ())
2975 *target_errno = EBADF;
2976 else
2977 {
2978 if (fh->target != NULL)
2979 ret = fh->target->fileio_close (fh->target_fd,
2980 target_errno);
2981 else
2982 ret = 0;
2983 release_fileio_fd (fd, fh);
2984 }
2985
2986 if (targetdebug)
2987 fprintf_unfiltered (gdb_stdlog,
2988 "target_fileio_close (%d) = %d (%d)\n",
2989 fd, ret, ret != -1 ? 0 : *target_errno);
2990 return ret;
2991 }
2992
2993 /* See target.h. */
2994
2995 int
2996 target_fileio_unlink (struct inferior *inf, const char *filename,
2997 int *target_errno)
2998 {
2999 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3000 {
3001 int ret = t->fileio_unlink (inf, filename, target_errno);
3002
3003 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3004 continue;
3005
3006 if (targetdebug)
3007 fprintf_unfiltered (gdb_stdlog,
3008 "target_fileio_unlink (%d,%s)"
3009 " = %d (%d)\n",
3010 inf == NULL ? 0 : inf->num, filename,
3011 ret, ret != -1 ? 0 : *target_errno);
3012 return ret;
3013 }
3014
3015 *target_errno = FILEIO_ENOSYS;
3016 return -1;
3017 }
3018
3019 /* See target.h. */
3020
3021 gdb::optional<std::string>
3022 target_fileio_readlink (struct inferior *inf, const char *filename,
3023 int *target_errno)
3024 {
3025 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3026 {
3027 gdb::optional<std::string> ret
3028 = t->fileio_readlink (inf, filename, target_errno);
3029
3030 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3031 continue;
3032
3033 if (targetdebug)
3034 fprintf_unfiltered (gdb_stdlog,
3035 "target_fileio_readlink (%d,%s)"
3036 " = %s (%d)\n",
3037 inf == NULL ? 0 : inf->num,
3038 filename, ret ? ret->c_str () : "(nil)",
3039 ret ? 0 : *target_errno);
3040 return ret;
3041 }
3042
3043 *target_errno = FILEIO_ENOSYS;
3044 return {};
3045 }
3046
3047 /* Like scoped_fd, but specific to target fileio. */
3048
3049 class scoped_target_fd
3050 {
3051 public:
3052 explicit scoped_target_fd (int fd) noexcept
3053 : m_fd (fd)
3054 {
3055 }
3056
3057 ~scoped_target_fd ()
3058 {
3059 if (m_fd >= 0)
3060 {
3061 int target_errno;
3062
3063 target_fileio_close (m_fd, &target_errno);
3064 }
3065 }
3066
3067 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3068
3069 int get () const noexcept
3070 {
3071 return m_fd;
3072 }
3073
3074 private:
3075 int m_fd;
3076 };
3077
3078 /* Read target file FILENAME, in the filesystem as seen by INF. If
3079 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3080 remote targets, the remote stub). Store the result in *BUF_P and
3081 return the size of the transferred data. PADDING additional bytes
3082 are available in *BUF_P. This is a helper function for
3083 target_fileio_read_alloc; see the declaration of that function for
3084 more information. */
3085
3086 static LONGEST
3087 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3088 gdb_byte **buf_p, int padding)
3089 {
3090 size_t buf_alloc, buf_pos;
3091 gdb_byte *buf;
3092 LONGEST n;
3093 int target_errno;
3094
3095 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3096 0700, &target_errno));
3097 if (fd.get () == -1)
3098 return -1;
3099
3100 /* Start by reading up to 4K at a time. The target will throttle
3101 this number down if necessary. */
3102 buf_alloc = 4096;
3103 buf = (gdb_byte *) xmalloc (buf_alloc);
3104 buf_pos = 0;
3105 while (1)
3106 {
3107 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3108 buf_alloc - buf_pos - padding, buf_pos,
3109 &target_errno);
3110 if (n < 0)
3111 {
3112 /* An error occurred. */
3113 xfree (buf);
3114 return -1;
3115 }
3116 else if (n == 0)
3117 {
3118 /* Read all there was. */
3119 if (buf_pos == 0)
3120 xfree (buf);
3121 else
3122 *buf_p = buf;
3123 return buf_pos;
3124 }
3125
3126 buf_pos += n;
3127
3128 /* If the buffer is filling up, expand it. */
3129 if (buf_alloc < buf_pos * 2)
3130 {
3131 buf_alloc *= 2;
3132 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3133 }
3134
3135 QUIT;
3136 }
3137 }
3138
3139 /* See target.h. */
3140
3141 LONGEST
3142 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3143 gdb_byte **buf_p)
3144 {
3145 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3146 }
3147
3148 /* See target.h. */
3149
3150 gdb::unique_xmalloc_ptr<char>
3151 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3152 {
3153 gdb_byte *buffer;
3154 char *bufstr;
3155 LONGEST i, transferred;
3156
3157 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3158 bufstr = (char *) buffer;
3159
3160 if (transferred < 0)
3161 return gdb::unique_xmalloc_ptr<char> (nullptr);
3162
3163 if (transferred == 0)
3164 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3165
3166 bufstr[transferred] = 0;
3167
3168 /* Check for embedded NUL bytes; but allow trailing NULs. */
3169 for (i = strlen (bufstr); i < transferred; i++)
3170 if (bufstr[i] != 0)
3171 {
3172 warning (_("target file %s "
3173 "contained unexpected null characters"),
3174 filename);
3175 break;
3176 }
3177
3178 return gdb::unique_xmalloc_ptr<char> (bufstr);
3179 }
3180
3181
3182 static int
3183 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3184 CORE_ADDR addr, int len)
3185 {
3186 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3187 }
3188
3189 static int
3190 default_watchpoint_addr_within_range (struct target_ops *target,
3191 CORE_ADDR addr,
3192 CORE_ADDR start, int length)
3193 {
3194 return addr >= start && addr < start + length;
3195 }
3196
3197 static struct gdbarch *
3198 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3199 {
3200 inferior *inf = find_inferior_ptid (ptid);
3201 gdb_assert (inf != NULL);
3202 return inf->gdbarch;
3203 }
3204
3205 /* See target.h. */
3206
3207 target_ops *
3208 target_stack::find_beneath (const target_ops *t) const
3209 {
3210 /* Look for a non-empty slot at stratum levels beneath T's. */
3211 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3212 if (m_stack[stratum] != NULL)
3213 return m_stack[stratum];
3214
3215 return NULL;
3216 }
3217
3218 /* See target.h. */
3219
3220 struct target_ops *
3221 find_target_at (enum strata stratum)
3222 {
3223 return g_target_stack.at (stratum);
3224 }
3225
3226 \f
3227
3228 /* See target.h */
3229
3230 void
3231 target_announce_detach (int from_tty)
3232 {
3233 pid_t pid;
3234 const char *exec_file;
3235
3236 if (!from_tty)
3237 return;
3238
3239 exec_file = get_exec_file (0);
3240 if (exec_file == NULL)
3241 exec_file = "";
3242
3243 pid = inferior_ptid.pid ();
3244 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3245 target_pid_to_str (ptid_t (pid)));
3246 gdb_flush (gdb_stdout);
3247 }
3248
3249 /* The inferior process has died. Long live the inferior! */
3250
3251 void
3252 generic_mourn_inferior (void)
3253 {
3254 inferior *inf = current_inferior ();
3255
3256 inferior_ptid = null_ptid;
3257
3258 /* Mark breakpoints uninserted in case something tries to delete a
3259 breakpoint while we delete the inferior's threads (which would
3260 fail, since the inferior is long gone). */
3261 mark_breakpoints_out ();
3262
3263 if (inf->pid != 0)
3264 exit_inferior (inf);
3265
3266 /* Note this wipes step-resume breakpoints, so needs to be done
3267 after exit_inferior, which ends up referencing the step-resume
3268 breakpoints through clear_thread_inferior_resources. */
3269 breakpoint_init_inferior (inf_exited);
3270
3271 registers_changed ();
3272
3273 reopen_exec_file ();
3274 reinit_frame_cache ();
3275
3276 if (deprecated_detach_hook)
3277 deprecated_detach_hook ();
3278 }
3279 \f
3280 /* Convert a normal process ID to a string. Returns the string in a
3281 static buffer. */
3282
3283 const char *
3284 normal_pid_to_str (ptid_t ptid)
3285 {
3286 static char buf[32];
3287
3288 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3289 return buf;
3290 }
3291
3292 static const char *
3293 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3294 {
3295 return normal_pid_to_str (ptid);
3296 }
3297
3298 /* Error-catcher for target_find_memory_regions. */
3299 static int
3300 dummy_find_memory_regions (struct target_ops *self,
3301 find_memory_region_ftype ignore1, void *ignore2)
3302 {
3303 error (_("Command not implemented for this target."));
3304 return 0;
3305 }
3306
3307 /* Error-catcher for target_make_corefile_notes. */
3308 static char *
3309 dummy_make_corefile_notes (struct target_ops *self,
3310 bfd *ignore1, int *ignore2)
3311 {
3312 error (_("Command not implemented for this target."));
3313 return NULL;
3314 }
3315
3316 #include "target-delegates.c"
3317
3318
3319 static const target_info dummy_target_info = {
3320 "None",
3321 N_("None"),
3322 ""
3323 };
3324
3325 dummy_target::dummy_target ()
3326 {
3327 to_stratum = dummy_stratum;
3328 }
3329
3330 debug_target::debug_target ()
3331 {
3332 to_stratum = debug_stratum;
3333 }
3334
3335 const target_info &
3336 dummy_target::info () const
3337 {
3338 return dummy_target_info;
3339 }
3340
3341 const target_info &
3342 debug_target::info () const
3343 {
3344 return beneath ()->info ();
3345 }
3346
3347 \f
3348
3349 void
3350 target_close (struct target_ops *targ)
3351 {
3352 gdb_assert (!target_is_pushed (targ));
3353
3354 fileio_handles_invalidate_target (targ);
3355
3356 targ->close ();
3357
3358 if (targetdebug)
3359 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3360 }
3361
3362 int
3363 target_thread_alive (ptid_t ptid)
3364 {
3365 return current_top_target ()->thread_alive (ptid);
3366 }
3367
3368 void
3369 target_update_thread_list (void)
3370 {
3371 current_top_target ()->update_thread_list ();
3372 }
3373
3374 void
3375 target_stop (ptid_t ptid)
3376 {
3377 if (!may_stop)
3378 {
3379 warning (_("May not interrupt or stop the target, ignoring attempt"));
3380 return;
3381 }
3382
3383 current_top_target ()->stop (ptid);
3384 }
3385
3386 void
3387 target_interrupt ()
3388 {
3389 if (!may_stop)
3390 {
3391 warning (_("May not interrupt or stop the target, ignoring attempt"));
3392 return;
3393 }
3394
3395 current_top_target ()->interrupt ();
3396 }
3397
3398 /* See target.h. */
3399
3400 void
3401 target_pass_ctrlc (void)
3402 {
3403 current_top_target ()->pass_ctrlc ();
3404 }
3405
3406 /* See target.h. */
3407
3408 void
3409 default_target_pass_ctrlc (struct target_ops *ops)
3410 {
3411 target_interrupt ();
3412 }
3413
3414 /* See target/target.h. */
3415
3416 void
3417 target_stop_and_wait (ptid_t ptid)
3418 {
3419 struct target_waitstatus status;
3420 int was_non_stop = non_stop;
3421
3422 non_stop = 1;
3423 target_stop (ptid);
3424
3425 memset (&status, 0, sizeof (status));
3426 target_wait (ptid, &status, 0);
3427
3428 non_stop = was_non_stop;
3429 }
3430
3431 /* See target/target.h. */
3432
3433 void
3434 target_continue_no_signal (ptid_t ptid)
3435 {
3436 target_resume (ptid, 0, GDB_SIGNAL_0);
3437 }
3438
3439 /* See target/target.h. */
3440
3441 void
3442 target_continue (ptid_t ptid, enum gdb_signal signal)
3443 {
3444 target_resume (ptid, 0, signal);
3445 }
3446
3447 /* Concatenate ELEM to LIST, a comma separate list, and return the
3448 result. The LIST incoming argument is released. */
3449
3450 static char *
3451 str_comma_list_concat_elem (char *list, const char *elem)
3452 {
3453 if (list == NULL)
3454 return xstrdup (elem);
3455 else
3456 return reconcat (list, list, ", ", elem, (char *) NULL);
3457 }
3458
3459 /* Helper for target_options_to_string. If OPT is present in
3460 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3461 Returns the new resulting string. OPT is removed from
3462 TARGET_OPTIONS. */
3463
3464 static char *
3465 do_option (int *target_options, char *ret,
3466 int opt, const char *opt_str)
3467 {
3468 if ((*target_options & opt) != 0)
3469 {
3470 ret = str_comma_list_concat_elem (ret, opt_str);
3471 *target_options &= ~opt;
3472 }
3473
3474 return ret;
3475 }
3476
3477 char *
3478 target_options_to_string (int target_options)
3479 {
3480 char *ret = NULL;
3481
3482 #define DO_TARG_OPTION(OPT) \
3483 ret = do_option (&target_options, ret, OPT, #OPT)
3484
3485 DO_TARG_OPTION (TARGET_WNOHANG);
3486
3487 if (target_options != 0)
3488 ret = str_comma_list_concat_elem (ret, "unknown???");
3489
3490 if (ret == NULL)
3491 ret = xstrdup ("");
3492 return ret;
3493 }
3494
3495 void
3496 target_fetch_registers (struct regcache *regcache, int regno)
3497 {
3498 current_top_target ()->fetch_registers (regcache, regno);
3499 if (targetdebug)
3500 regcache->debug_print_register ("target_fetch_registers", regno);
3501 }
3502
3503 void
3504 target_store_registers (struct regcache *regcache, int regno)
3505 {
3506 if (!may_write_registers)
3507 error (_("Writing to registers is not allowed (regno %d)"), regno);
3508
3509 current_top_target ()->store_registers (regcache, regno);
3510 if (targetdebug)
3511 {
3512 regcache->debug_print_register ("target_store_registers", regno);
3513 }
3514 }
3515
3516 int
3517 target_core_of_thread (ptid_t ptid)
3518 {
3519 return current_top_target ()->core_of_thread (ptid);
3520 }
3521
3522 int
3523 simple_verify_memory (struct target_ops *ops,
3524 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3525 {
3526 LONGEST total_xfered = 0;
3527
3528 while (total_xfered < size)
3529 {
3530 ULONGEST xfered_len;
3531 enum target_xfer_status status;
3532 gdb_byte buf[1024];
3533 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3534
3535 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3536 buf, NULL, lma + total_xfered, howmuch,
3537 &xfered_len);
3538 if (status == TARGET_XFER_OK
3539 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3540 {
3541 total_xfered += xfered_len;
3542 QUIT;
3543 }
3544 else
3545 return 0;
3546 }
3547 return 1;
3548 }
3549
3550 /* Default implementation of memory verification. */
3551
3552 static int
3553 default_verify_memory (struct target_ops *self,
3554 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3555 {
3556 /* Start over from the top of the target stack. */
3557 return simple_verify_memory (current_top_target (),
3558 data, memaddr, size);
3559 }
3560
3561 int
3562 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3563 {
3564 return current_top_target ()->verify_memory (data, memaddr, size);
3565 }
3566
3567 /* The documentation for this function is in its prototype declaration in
3568 target.h. */
3569
3570 int
3571 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3572 enum target_hw_bp_type rw)
3573 {
3574 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3575 }
3576
3577 /* The documentation for this function is in its prototype declaration in
3578 target.h. */
3579
3580 int
3581 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3582 enum target_hw_bp_type rw)
3583 {
3584 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3585 }
3586
3587 /* The documentation for this function is in its prototype declaration
3588 in target.h. */
3589
3590 int
3591 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3592 {
3593 return current_top_target ()->masked_watch_num_registers (addr, mask);
3594 }
3595
3596 /* The documentation for this function is in its prototype declaration
3597 in target.h. */
3598
3599 int
3600 target_ranged_break_num_registers (void)
3601 {
3602 return current_top_target ()->ranged_break_num_registers ();
3603 }
3604
3605 /* See target.h. */
3606
3607 struct btrace_target_info *
3608 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3609 {
3610 return current_top_target ()->enable_btrace (ptid, conf);
3611 }
3612
3613 /* See target.h. */
3614
3615 void
3616 target_disable_btrace (struct btrace_target_info *btinfo)
3617 {
3618 current_top_target ()->disable_btrace (btinfo);
3619 }
3620
3621 /* See target.h. */
3622
3623 void
3624 target_teardown_btrace (struct btrace_target_info *btinfo)
3625 {
3626 current_top_target ()->teardown_btrace (btinfo);
3627 }
3628
3629 /* See target.h. */
3630
3631 enum btrace_error
3632 target_read_btrace (struct btrace_data *btrace,
3633 struct btrace_target_info *btinfo,
3634 enum btrace_read_type type)
3635 {
3636 return current_top_target ()->read_btrace (btrace, btinfo, type);
3637 }
3638
3639 /* See target.h. */
3640
3641 const struct btrace_config *
3642 target_btrace_conf (const struct btrace_target_info *btinfo)
3643 {
3644 return current_top_target ()->btrace_conf (btinfo);
3645 }
3646
3647 /* See target.h. */
3648
3649 void
3650 target_stop_recording (void)
3651 {
3652 current_top_target ()->stop_recording ();
3653 }
3654
3655 /* See target.h. */
3656
3657 void
3658 target_save_record (const char *filename)
3659 {
3660 current_top_target ()->save_record (filename);
3661 }
3662
3663 /* See target.h. */
3664
3665 int
3666 target_supports_delete_record ()
3667 {
3668 return current_top_target ()->supports_delete_record ();
3669 }
3670
3671 /* See target.h. */
3672
3673 void
3674 target_delete_record (void)
3675 {
3676 current_top_target ()->delete_record ();
3677 }
3678
3679 /* See target.h. */
3680
3681 enum record_method
3682 target_record_method (ptid_t ptid)
3683 {
3684 return current_top_target ()->record_method (ptid);
3685 }
3686
3687 /* See target.h. */
3688
3689 int
3690 target_record_is_replaying (ptid_t ptid)
3691 {
3692 return current_top_target ()->record_is_replaying (ptid);
3693 }
3694
3695 /* See target.h. */
3696
3697 int
3698 target_record_will_replay (ptid_t ptid, int dir)
3699 {
3700 return current_top_target ()->record_will_replay (ptid, dir);
3701 }
3702
3703 /* See target.h. */
3704
3705 void
3706 target_record_stop_replaying (void)
3707 {
3708 current_top_target ()->record_stop_replaying ();
3709 }
3710
3711 /* See target.h. */
3712
3713 void
3714 target_goto_record_begin (void)
3715 {
3716 current_top_target ()->goto_record_begin ();
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_goto_record_end (void)
3723 {
3724 current_top_target ()->goto_record_end ();
3725 }
3726
3727 /* See target.h. */
3728
3729 void
3730 target_goto_record (ULONGEST insn)
3731 {
3732 current_top_target ()->goto_record (insn);
3733 }
3734
3735 /* See target.h. */
3736
3737 void
3738 target_insn_history (int size, gdb_disassembly_flags flags)
3739 {
3740 current_top_target ()->insn_history (size, flags);
3741 }
3742
3743 /* See target.h. */
3744
3745 void
3746 target_insn_history_from (ULONGEST from, int size,
3747 gdb_disassembly_flags flags)
3748 {
3749 current_top_target ()->insn_history_from (from, size, flags);
3750 }
3751
3752 /* See target.h. */
3753
3754 void
3755 target_insn_history_range (ULONGEST begin, ULONGEST end,
3756 gdb_disassembly_flags flags)
3757 {
3758 current_top_target ()->insn_history_range (begin, end, flags);
3759 }
3760
3761 /* See target.h. */
3762
3763 void
3764 target_call_history (int size, record_print_flags flags)
3765 {
3766 current_top_target ()->call_history (size, flags);
3767 }
3768
3769 /* See target.h. */
3770
3771 void
3772 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3773 {
3774 current_top_target ()->call_history_from (begin, size, flags);
3775 }
3776
3777 /* See target.h. */
3778
3779 void
3780 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3781 {
3782 current_top_target ()->call_history_range (begin, end, flags);
3783 }
3784
3785 /* See target.h. */
3786
3787 const struct frame_unwind *
3788 target_get_unwinder (void)
3789 {
3790 return current_top_target ()->get_unwinder ();
3791 }
3792
3793 /* See target.h. */
3794
3795 const struct frame_unwind *
3796 target_get_tailcall_unwinder (void)
3797 {
3798 return current_top_target ()->get_tailcall_unwinder ();
3799 }
3800
3801 /* See target.h. */
3802
3803 void
3804 target_prepare_to_generate_core (void)
3805 {
3806 current_top_target ()->prepare_to_generate_core ();
3807 }
3808
3809 /* See target.h. */
3810
3811 void
3812 target_done_generating_core (void)
3813 {
3814 current_top_target ()->done_generating_core ();
3815 }
3816
3817 \f
3818
3819 static char targ_desc[] =
3820 "Names of targets and files being debugged.\nShows the entire \
3821 stack of targets currently in use (including the exec-file,\n\
3822 core-file, and process, if any), as well as the symbol file name.";
3823
3824 static void
3825 default_rcmd (struct target_ops *self, const char *command,
3826 struct ui_file *output)
3827 {
3828 error (_("\"monitor\" command not supported by this target."));
3829 }
3830
3831 static void
3832 do_monitor_command (const char *cmd, int from_tty)
3833 {
3834 target_rcmd (cmd, gdb_stdtarg);
3835 }
3836
3837 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3838 ignored. */
3839
3840 void
3841 flash_erase_command (const char *cmd, int from_tty)
3842 {
3843 /* Used to communicate termination of flash operations to the target. */
3844 bool found_flash_region = false;
3845 struct gdbarch *gdbarch = target_gdbarch ();
3846
3847 std::vector<mem_region> mem_regions = target_memory_map ();
3848
3849 /* Iterate over all memory regions. */
3850 for (const mem_region &m : mem_regions)
3851 {
3852 /* Is this a flash memory region? */
3853 if (m.attrib.mode == MEM_FLASH)
3854 {
3855 found_flash_region = true;
3856 target_flash_erase (m.lo, m.hi - m.lo);
3857
3858 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3859
3860 current_uiout->message (_("Erasing flash memory region at address "));
3861 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3862 current_uiout->message (", size = ");
3863 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3864 current_uiout->message ("\n");
3865 }
3866 }
3867
3868 /* Did we do any flash operations? If so, we need to finalize them. */
3869 if (found_flash_region)
3870 target_flash_done ();
3871 else
3872 current_uiout->message (_("No flash memory regions found.\n"));
3873 }
3874
3875 /* Print the name of each layers of our target stack. */
3876
3877 static void
3878 maintenance_print_target_stack (const char *cmd, int from_tty)
3879 {
3880 printf_filtered (_("The current target stack is:\n"));
3881
3882 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3883 {
3884 if (t->to_stratum == debug_stratum)
3885 continue;
3886 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3887 }
3888 }
3889
3890 /* See target.h. */
3891
3892 void
3893 target_async (int enable)
3894 {
3895 infrun_async (enable);
3896 current_top_target ()->async (enable);
3897 }
3898
3899 /* See target.h. */
3900
3901 void
3902 target_thread_events (int enable)
3903 {
3904 current_top_target ()->thread_events (enable);
3905 }
3906
3907 /* Controls if targets can report that they can/are async. This is
3908 just for maintainers to use when debugging gdb. */
3909 int target_async_permitted = 1;
3910
3911 /* The set command writes to this variable. If the inferior is
3912 executing, target_async_permitted is *not* updated. */
3913 static int target_async_permitted_1 = 1;
3914
3915 static void
3916 maint_set_target_async_command (const char *args, int from_tty,
3917 struct cmd_list_element *c)
3918 {
3919 if (have_live_inferiors ())
3920 {
3921 target_async_permitted_1 = target_async_permitted;
3922 error (_("Cannot change this setting while the inferior is running."));
3923 }
3924
3925 target_async_permitted = target_async_permitted_1;
3926 }
3927
3928 static void
3929 maint_show_target_async_command (struct ui_file *file, int from_tty,
3930 struct cmd_list_element *c,
3931 const char *value)
3932 {
3933 fprintf_filtered (file,
3934 _("Controlling the inferior in "
3935 "asynchronous mode is %s.\n"), value);
3936 }
3937
3938 /* Return true if the target operates in non-stop mode even with "set
3939 non-stop off". */
3940
3941 static int
3942 target_always_non_stop_p (void)
3943 {
3944 return current_top_target ()->always_non_stop_p ();
3945 }
3946
3947 /* See target.h. */
3948
3949 int
3950 target_is_non_stop_p (void)
3951 {
3952 return (non_stop
3953 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3954 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3955 && target_always_non_stop_p ()));
3956 }
3957
3958 /* Controls if targets can report that they always run in non-stop
3959 mode. This is just for maintainers to use when debugging gdb. */
3960 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3961
3962 /* The set command writes to this variable. If the inferior is
3963 executing, target_non_stop_enabled is *not* updated. */
3964 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3965
3966 /* Implementation of "maint set target-non-stop". */
3967
3968 static void
3969 maint_set_target_non_stop_command (const char *args, int from_tty,
3970 struct cmd_list_element *c)
3971 {
3972 if (have_live_inferiors ())
3973 {
3974 target_non_stop_enabled_1 = target_non_stop_enabled;
3975 error (_("Cannot change this setting while the inferior is running."));
3976 }
3977
3978 target_non_stop_enabled = target_non_stop_enabled_1;
3979 }
3980
3981 /* Implementation of "maint show target-non-stop". */
3982
3983 static void
3984 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3985 struct cmd_list_element *c,
3986 const char *value)
3987 {
3988 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3989 fprintf_filtered (file,
3990 _("Whether the target is always in non-stop mode "
3991 "is %s (currently %s).\n"), value,
3992 target_always_non_stop_p () ? "on" : "off");
3993 else
3994 fprintf_filtered (file,
3995 _("Whether the target is always in non-stop mode "
3996 "is %s.\n"), value);
3997 }
3998
3999 /* Temporary copies of permission settings. */
4000
4001 static int may_write_registers_1 = 1;
4002 static int may_write_memory_1 = 1;
4003 static int may_insert_breakpoints_1 = 1;
4004 static int may_insert_tracepoints_1 = 1;
4005 static int may_insert_fast_tracepoints_1 = 1;
4006 static int may_stop_1 = 1;
4007
4008 /* Make the user-set values match the real values again. */
4009
4010 void
4011 update_target_permissions (void)
4012 {
4013 may_write_registers_1 = may_write_registers;
4014 may_write_memory_1 = may_write_memory;
4015 may_insert_breakpoints_1 = may_insert_breakpoints;
4016 may_insert_tracepoints_1 = may_insert_tracepoints;
4017 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4018 may_stop_1 = may_stop;
4019 }
4020
4021 /* The one function handles (most of) the permission flags in the same
4022 way. */
4023
4024 static void
4025 set_target_permissions (const char *args, int from_tty,
4026 struct cmd_list_element *c)
4027 {
4028 if (target_has_execution)
4029 {
4030 update_target_permissions ();
4031 error (_("Cannot change this setting while the inferior is running."));
4032 }
4033
4034 /* Make the real values match the user-changed values. */
4035 may_write_registers = may_write_registers_1;
4036 may_insert_breakpoints = may_insert_breakpoints_1;
4037 may_insert_tracepoints = may_insert_tracepoints_1;
4038 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4039 may_stop = may_stop_1;
4040 update_observer_mode ();
4041 }
4042
4043 /* Set memory write permission independently of observer mode. */
4044
4045 static void
4046 set_write_memory_permission (const char *args, int from_tty,
4047 struct cmd_list_element *c)
4048 {
4049 /* Make the real values match the user-changed values. */
4050 may_write_memory = may_write_memory_1;
4051 update_observer_mode ();
4052 }
4053
4054 void
4055 initialize_targets (void)
4056 {
4057 the_dummy_target = new dummy_target ();
4058 push_target (the_dummy_target);
4059
4060 the_debug_target = new debug_target ();
4061
4062 add_info ("target", info_target_command, targ_desc);
4063 add_info ("files", info_target_command, targ_desc);
4064
4065 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4066 Set target debugging."), _("\
4067 Show target debugging."), _("\
4068 When non-zero, target debugging is enabled. Higher numbers are more\n\
4069 verbose."),
4070 set_targetdebug,
4071 show_targetdebug,
4072 &setdebuglist, &showdebuglist);
4073
4074 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4075 &trust_readonly, _("\
4076 Set mode for reading from readonly sections."), _("\
4077 Show mode for reading from readonly sections."), _("\
4078 When this mode is on, memory reads from readonly sections (such as .text)\n\
4079 will be read from the object file instead of from the target. This will\n\
4080 result in significant performance improvement for remote targets."),
4081 NULL,
4082 show_trust_readonly,
4083 &setlist, &showlist);
4084
4085 add_com ("monitor", class_obscure, do_monitor_command,
4086 _("Send a command to the remote monitor (remote targets only)."));
4087
4088 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4089 _("Print the name of each layer of the internal target stack."),
4090 &maintenanceprintlist);
4091
4092 add_setshow_boolean_cmd ("target-async", no_class,
4093 &target_async_permitted_1, _("\
4094 Set whether gdb controls the inferior in asynchronous mode."), _("\
4095 Show whether gdb controls the inferior in asynchronous mode."), _("\
4096 Tells gdb whether to control the inferior in asynchronous mode."),
4097 maint_set_target_async_command,
4098 maint_show_target_async_command,
4099 &maintenance_set_cmdlist,
4100 &maintenance_show_cmdlist);
4101
4102 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4103 &target_non_stop_enabled_1, _("\
4104 Set whether gdb always controls the inferior in non-stop mode."), _("\
4105 Show whether gdb always controls the inferior in non-stop mode."), _("\
4106 Tells gdb whether to control the inferior in non-stop mode."),
4107 maint_set_target_non_stop_command,
4108 maint_show_target_non_stop_command,
4109 &maintenance_set_cmdlist,
4110 &maintenance_show_cmdlist);
4111
4112 add_setshow_boolean_cmd ("may-write-registers", class_support,
4113 &may_write_registers_1, _("\
4114 Set permission to write into registers."), _("\
4115 Show permission to write into registers."), _("\
4116 When this permission is on, GDB may write into the target's registers.\n\
4117 Otherwise, any sort of write attempt will result in an error."),
4118 set_target_permissions, NULL,
4119 &setlist, &showlist);
4120
4121 add_setshow_boolean_cmd ("may-write-memory", class_support,
4122 &may_write_memory_1, _("\
4123 Set permission to write into target memory."), _("\
4124 Show permission to write into target memory."), _("\
4125 When this permission is on, GDB may write into the target's memory.\n\
4126 Otherwise, any sort of write attempt will result in an error."),
4127 set_write_memory_permission, NULL,
4128 &setlist, &showlist);
4129
4130 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4131 &may_insert_breakpoints_1, _("\
4132 Set permission to insert breakpoints in the target."), _("\
4133 Show permission to insert breakpoints in the target."), _("\
4134 When this permission is on, GDB may insert breakpoints in the program.\n\
4135 Otherwise, any sort of insertion attempt will result in an error."),
4136 set_target_permissions, NULL,
4137 &setlist, &showlist);
4138
4139 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4140 &may_insert_tracepoints_1, _("\
4141 Set permission to insert tracepoints in the target."), _("\
4142 Show permission to insert tracepoints in the target."), _("\
4143 When this permission is on, GDB may insert tracepoints in the program.\n\
4144 Otherwise, any sort of insertion attempt will result in an error."),
4145 set_target_permissions, NULL,
4146 &setlist, &showlist);
4147
4148 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4149 &may_insert_fast_tracepoints_1, _("\
4150 Set permission to insert fast tracepoints in the target."), _("\
4151 Show permission to insert fast tracepoints in the target."), _("\
4152 When this permission is on, GDB may insert fast tracepoints.\n\
4153 Otherwise, any sort of insertion attempt will result in an error."),
4154 set_target_permissions, NULL,
4155 &setlist, &showlist);
4156
4157 add_setshow_boolean_cmd ("may-interrupt", class_support,
4158 &may_stop_1, _("\
4159 Set permission to interrupt or signal the target."), _("\
4160 Show permission to interrupt or signal the target."), _("\
4161 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4162 Otherwise, any attempt to interrupt or stop will be ignored."),
4163 set_target_permissions, NULL,
4164 &setlist, &showlist);
4165
4166 add_com ("flash-erase", no_class, flash_erase_command,
4167 _("Erase all flash memory regions."));
4168
4169 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4170 &auto_connect_native_target, _("\
4171 Set whether GDB may automatically connect to the native target."), _("\
4172 Show whether GDB may automatically connect to the native target."), _("\
4173 When on, and GDB is not connected to a target yet, GDB\n\
4174 attempts \"run\" and other commands with the native target."),
4175 NULL, show_auto_connect_native_target,
4176 &setlist, &showlist);
4177 }
This page took 0.149469 seconds and 5 git commands to generate.