Replace throw_exception with throw in some cases
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "common/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "common/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* The target stack. */
114
115 static target_stack g_target_stack;
116
117 /* Top of target stack. */
118 /* The target structure we are currently using to talk to a process
119 or file or whatever "inferior" we have. */
120
121 target_ops *
122 current_top_target ()
123 {
124 return g_target_stack.top ();
125 }
126
127 /* Command list for target. */
128
129 static struct cmd_list_element *targetlist = NULL;
130
131 /* Nonzero if we should trust readonly sections from the
132 executable when reading memory. */
133
134 static int trust_readonly = 0;
135
136 /* Nonzero if we should show true memory content including
137 memory breakpoint inserted by gdb. */
138
139 static int show_memory_breakpoints = 0;
140
141 /* These globals control whether GDB attempts to perform these
142 operations; they are useful for targets that need to prevent
143 inadvertant disruption, such as in non-stop mode. */
144
145 int may_write_registers = 1;
146
147 int may_write_memory = 1;
148
149 int may_insert_breakpoints = 1;
150
151 int may_insert_tracepoints = 1;
152
153 int may_insert_fast_tracepoints = 1;
154
155 int may_stop = 1;
156
157 /* Non-zero if we want to see trace of target level stuff. */
158
159 static unsigned int targetdebug = 0;
160
161 static void
162 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
163 {
164 if (targetdebug)
165 push_target (the_debug_target);
166 else
167 unpush_target (the_debug_target);
168 }
169
170 static void
171 show_targetdebug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
175 }
176
177 /* The user just typed 'target' without the name of a target. */
178
179 static void
180 target_command (const char *arg, int from_tty)
181 {
182 fputs_filtered ("Argument required (target name). Try `help target'\n",
183 gdb_stdout);
184 }
185
186 int
187 target_has_all_memory_1 (void)
188 {
189 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
190 if (t->has_all_memory ())
191 return 1;
192
193 return 0;
194 }
195
196 int
197 target_has_memory_1 (void)
198 {
199 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
200 if (t->has_memory ())
201 return 1;
202
203 return 0;
204 }
205
206 int
207 target_has_stack_1 (void)
208 {
209 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
210 if (t->has_stack ())
211 return 1;
212
213 return 0;
214 }
215
216 int
217 target_has_registers_1 (void)
218 {
219 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
220 if (t->has_registers ())
221 return 1;
222
223 return 0;
224 }
225
226 int
227 target_has_execution_1 (ptid_t the_ptid)
228 {
229 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
230 if (t->has_execution (the_ptid))
231 return 1;
232
233 return 0;
234 }
235
236 int
237 target_has_execution_current (void)
238 {
239 return target_has_execution_1 (inferior_ptid);
240 }
241
242 /* This is used to implement the various target commands. */
243
244 static void
245 open_target (const char *args, int from_tty, struct cmd_list_element *command)
246 {
247 auto *ti = static_cast<target_info *> (get_cmd_context (command));
248 target_open_ftype *func = target_factories[ti];
249
250 if (targetdebug)
251 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
252 ti->shortname);
253
254 func (args, from_tty);
255
256 if (targetdebug)
257 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
258 ti->shortname, args, from_tty);
259 }
260
261 /* See target.h. */
262
263 void
264 add_target (const target_info &t, target_open_ftype *func,
265 completer_ftype *completer)
266 {
267 struct cmd_list_element *c;
268
269 auto &func_slot = target_factories[&t];
270 if (func_slot != nullptr)
271 internal_error (__FILE__, __LINE__,
272 _("target already added (\"%s\")."), t.shortname);
273 func_slot = func;
274
275 if (targetlist == NULL)
276 add_prefix_cmd ("target", class_run, target_command, _("\
277 Connect to a target machine or process.\n\
278 The first argument is the type or protocol of the target machine.\n\
279 Remaining arguments are interpreted by the target protocol. For more\n\
280 information on the arguments for a particular protocol, type\n\
281 `help target ' followed by the protocol name."),
282 &targetlist, "target ", 0, &cmdlist);
283 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
284 set_cmd_context (c, (void *) &t);
285 set_cmd_sfunc (c, open_target);
286 if (completer != NULL)
287 set_cmd_completer (c, completer);
288 }
289
290 /* See target.h. */
291
292 void
293 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
294 {
295 struct cmd_list_element *c;
296 char *alt;
297
298 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
299 see PR cli/15104. */
300 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
301 set_cmd_sfunc (c, open_target);
302 set_cmd_context (c, (void *) &tinfo);
303 alt = xstrprintf ("target %s", tinfo.shortname);
304 deprecate_cmd (c, alt);
305 }
306
307 /* Stub functions */
308
309 void
310 target_kill (void)
311 {
312 current_top_target ()->kill ();
313 }
314
315 void
316 target_load (const char *arg, int from_tty)
317 {
318 target_dcache_invalidate ();
319 current_top_target ()->load (arg, from_tty);
320 }
321
322 /* Define it. */
323
324 target_terminal_state target_terminal::m_terminal_state
325 = target_terminal_state::is_ours;
326
327 /* See target/target.h. */
328
329 void
330 target_terminal::init (void)
331 {
332 current_top_target ()->terminal_init ();
333
334 m_terminal_state = target_terminal_state::is_ours;
335 }
336
337 /* See target/target.h. */
338
339 void
340 target_terminal::inferior (void)
341 {
342 struct ui *ui = current_ui;
343
344 /* A background resume (``run&'') should leave GDB in control of the
345 terminal. */
346 if (ui->prompt_state != PROMPT_BLOCKED)
347 return;
348
349 /* Since we always run the inferior in the main console (unless "set
350 inferior-tty" is in effect), when some UI other than the main one
351 calls target_terminal::inferior, then we leave the main UI's
352 terminal settings as is. */
353 if (ui != main_ui)
354 return;
355
356 /* If GDB is resuming the inferior in the foreground, install
357 inferior's terminal modes. */
358
359 struct inferior *inf = current_inferior ();
360
361 if (inf->terminal_state != target_terminal_state::is_inferior)
362 {
363 current_top_target ()->terminal_inferior ();
364 inf->terminal_state = target_terminal_state::is_inferior;
365 }
366
367 m_terminal_state = target_terminal_state::is_inferior;
368
369 /* If the user hit C-c before, pretend that it was hit right
370 here. */
371 if (check_quit_flag ())
372 target_pass_ctrlc ();
373 }
374
375 /* See target/target.h. */
376
377 void
378 target_terminal::restore_inferior (void)
379 {
380 struct ui *ui = current_ui;
381
382 /* See target_terminal::inferior(). */
383 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
384 return;
385
386 /* Restore the terminal settings of inferiors that were in the
387 foreground but are now ours_for_output due to a temporary
388 target_target::ours_for_output() call. */
389
390 {
391 scoped_restore_current_inferior restore_inferior;
392
393 for (::inferior *inf : all_inferiors ())
394 {
395 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
396 {
397 set_current_inferior (inf);
398 current_top_target ()->terminal_inferior ();
399 inf->terminal_state = target_terminal_state::is_inferior;
400 }
401 }
402 }
403
404 m_terminal_state = target_terminal_state::is_inferior;
405
406 /* If the user hit C-c before, pretend that it was hit right
407 here. */
408 if (check_quit_flag ())
409 target_pass_ctrlc ();
410 }
411
412 /* Switch terminal state to DESIRED_STATE, either is_ours, or
413 is_ours_for_output. */
414
415 static void
416 target_terminal_is_ours_kind (target_terminal_state desired_state)
417 {
418 scoped_restore_current_inferior restore_inferior;
419
420 /* Must do this in two passes. First, have all inferiors save the
421 current terminal settings. Then, after all inferiors have add a
422 chance to safely save the terminal settings, restore GDB's
423 terminal settings. */
424
425 for (inferior *inf : all_inferiors ())
426 {
427 if (inf->terminal_state == target_terminal_state::is_inferior)
428 {
429 set_current_inferior (inf);
430 current_top_target ()->terminal_save_inferior ();
431 }
432 }
433
434 for (inferior *inf : all_inferiors ())
435 {
436 /* Note we don't check is_inferior here like above because we
437 need to handle 'is_ours_for_output -> is_ours' too. Careful
438 to never transition from 'is_ours' to 'is_ours_for_output',
439 though. */
440 if (inf->terminal_state != target_terminal_state::is_ours
441 && inf->terminal_state != desired_state)
442 {
443 set_current_inferior (inf);
444 if (desired_state == target_terminal_state::is_ours)
445 current_top_target ()->terminal_ours ();
446 else if (desired_state == target_terminal_state::is_ours_for_output)
447 current_top_target ()->terminal_ours_for_output ();
448 else
449 gdb_assert_not_reached ("unhandled desired state");
450 inf->terminal_state = desired_state;
451 }
452 }
453 }
454
455 /* See target/target.h. */
456
457 void
458 target_terminal::ours ()
459 {
460 struct ui *ui = current_ui;
461
462 /* See target_terminal::inferior. */
463 if (ui != main_ui)
464 return;
465
466 if (m_terminal_state == target_terminal_state::is_ours)
467 return;
468
469 target_terminal_is_ours_kind (target_terminal_state::is_ours);
470 m_terminal_state = target_terminal_state::is_ours;
471 }
472
473 /* See target/target.h. */
474
475 void
476 target_terminal::ours_for_output ()
477 {
478 struct ui *ui = current_ui;
479
480 /* See target_terminal::inferior. */
481 if (ui != main_ui)
482 return;
483
484 if (!target_terminal::is_inferior ())
485 return;
486
487 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
488 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
489 }
490
491 /* See target/target.h. */
492
493 void
494 target_terminal::info (const char *arg, int from_tty)
495 {
496 current_top_target ()->terminal_info (arg, from_tty);
497 }
498
499 /* See target.h. */
500
501 bool
502 target_supports_terminal_ours (void)
503 {
504 /* This can be called before there is any target, so we must check
505 for nullptr here. */
506 target_ops *top = current_top_target ();
507
508 if (top == nullptr)
509 return false;
510 return top->supports_terminal_ours ();
511 }
512
513 static void
514 tcomplain (void)
515 {
516 error (_("You can't do that when your target is `%s'"),
517 current_top_target ()->shortname ());
518 }
519
520 void
521 noprocess (void)
522 {
523 error (_("You can't do that without a process to debug."));
524 }
525
526 static void
527 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
528 {
529 printf_unfiltered (_("No saved terminal information.\n"));
530 }
531
532 /* A default implementation for the to_get_ada_task_ptid target method.
533
534 This function builds the PTID by using both LWP and TID as part of
535 the PTID lwp and tid elements. The pid used is the pid of the
536 inferior_ptid. */
537
538 static ptid_t
539 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
540 {
541 return ptid_t (inferior_ptid.pid (), lwp, tid);
542 }
543
544 static enum exec_direction_kind
545 default_execution_direction (struct target_ops *self)
546 {
547 if (!target_can_execute_reverse)
548 return EXEC_FORWARD;
549 else if (!target_can_async_p ())
550 return EXEC_FORWARD;
551 else
552 gdb_assert_not_reached ("\
553 to_execution_direction must be implemented for reverse async");
554 }
555
556 /* See target.h. */
557
558 void
559 target_stack::push (target_ops *t)
560 {
561 /* If there's already a target at this stratum, remove it. */
562 strata stratum = t->stratum ();
563
564 if (m_stack[stratum] != NULL)
565 {
566 target_ops *prev = m_stack[stratum];
567 m_stack[stratum] = NULL;
568 target_close (prev);
569 }
570
571 /* Now add the new one. */
572 m_stack[stratum] = t;
573
574 if (m_top < stratum)
575 m_top = stratum;
576 }
577
578 /* See target.h. */
579
580 void
581 push_target (struct target_ops *t)
582 {
583 g_target_stack.push (t);
584 }
585
586 /* See target.h */
587
588 void
589 push_target (target_ops_up &&t)
590 {
591 g_target_stack.push (t.get ());
592 t.release ();
593 }
594
595 /* See target.h. */
596
597 int
598 unpush_target (struct target_ops *t)
599 {
600 return g_target_stack.unpush (t);
601 }
602
603 /* See target.h. */
604
605 bool
606 target_stack::unpush (target_ops *t)
607 {
608 gdb_assert (t != NULL);
609
610 strata stratum = t->stratum ();
611
612 if (stratum == dummy_stratum)
613 internal_error (__FILE__, __LINE__,
614 _("Attempt to unpush the dummy target"));
615
616 /* Look for the specified target. Note that a target can only occur
617 once in the target stack. */
618
619 if (m_stack[stratum] != t)
620 {
621 /* If T wasn't pushed, quit. Only open targets should be
622 closed. */
623 return false;
624 }
625
626 /* Unchain the target. */
627 m_stack[stratum] = NULL;
628
629 if (m_top == stratum)
630 m_top = t->beneath ()->stratum ();
631
632 /* Finally close the target. Note we do this after unchaining, so
633 any target method calls from within the target_close
634 implementation don't end up in T anymore. */
635 target_close (t);
636
637 return true;
638 }
639
640 /* Unpush TARGET and assert that it worked. */
641
642 static void
643 unpush_target_and_assert (struct target_ops *target)
644 {
645 if (!unpush_target (target))
646 {
647 fprintf_unfiltered (gdb_stderr,
648 "pop_all_targets couldn't find target %s\n",
649 target->shortname ());
650 internal_error (__FILE__, __LINE__,
651 _("failed internal consistency check"));
652 }
653 }
654
655 void
656 pop_all_targets_above (enum strata above_stratum)
657 {
658 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
659 unpush_target_and_assert (current_top_target ());
660 }
661
662 /* See target.h. */
663
664 void
665 pop_all_targets_at_and_above (enum strata stratum)
666 {
667 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
668 unpush_target_and_assert (current_top_target ());
669 }
670
671 void
672 pop_all_targets (void)
673 {
674 pop_all_targets_above (dummy_stratum);
675 }
676
677 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
678
679 int
680 target_is_pushed (struct target_ops *t)
681 {
682 return g_target_stack.is_pushed (t);
683 }
684
685 /* Default implementation of to_get_thread_local_address. */
686
687 static void
688 generic_tls_error (void)
689 {
690 throw_error (TLS_GENERIC_ERROR,
691 _("Cannot find thread-local variables on this target"));
692 }
693
694 /* Using the objfile specified in OBJFILE, find the address for the
695 current thread's thread-local storage with offset OFFSET. */
696 CORE_ADDR
697 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
698 {
699 volatile CORE_ADDR addr = 0;
700 struct target_ops *target = current_top_target ();
701 struct gdbarch *gdbarch = target_gdbarch ();
702
703 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
704 {
705 ptid_t ptid = inferior_ptid;
706
707 try
708 {
709 CORE_ADDR lm_addr;
710
711 /* Fetch the load module address for this objfile. */
712 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
713 objfile);
714
715 if (gdbarch_get_thread_local_address_p (gdbarch))
716 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
717 offset);
718 else
719 addr = target->get_thread_local_address (ptid, lm_addr, offset);
720 }
721 /* If an error occurred, print TLS related messages here. Otherwise,
722 throw the error to some higher catcher. */
723 catch (const gdb_exception &ex)
724 {
725 int objfile_is_library = (objfile->flags & OBJF_SHARED);
726
727 switch (ex.error)
728 {
729 case TLS_NO_LIBRARY_SUPPORT_ERROR:
730 error (_("Cannot find thread-local variables "
731 "in this thread library."));
732 break;
733 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
734 if (objfile_is_library)
735 error (_("Cannot find shared library `%s' in dynamic"
736 " linker's load module list"), objfile_name (objfile));
737 else
738 error (_("Cannot find executable file `%s' in dynamic"
739 " linker's load module list"), objfile_name (objfile));
740 break;
741 case TLS_NOT_ALLOCATED_YET_ERROR:
742 if (objfile_is_library)
743 error (_("The inferior has not yet allocated storage for"
744 " thread-local variables in\n"
745 "the shared library `%s'\n"
746 "for %s"),
747 objfile_name (objfile),
748 target_pid_to_str (ptid).c_str ());
749 else
750 error (_("The inferior has not yet allocated storage for"
751 " thread-local variables in\n"
752 "the executable `%s'\n"
753 "for %s"),
754 objfile_name (objfile),
755 target_pid_to_str (ptid).c_str ());
756 break;
757 case TLS_GENERIC_ERROR:
758 if (objfile_is_library)
759 error (_("Cannot find thread-local storage for %s, "
760 "shared library %s:\n%s"),
761 target_pid_to_str (ptid).c_str (),
762 objfile_name (objfile), ex.what ());
763 else
764 error (_("Cannot find thread-local storage for %s, "
765 "executable file %s:\n%s"),
766 target_pid_to_str (ptid).c_str (),
767 objfile_name (objfile), ex.what ());
768 break;
769 default:
770 throw;
771 break;
772 }
773 }
774 }
775 else
776 error (_("Cannot find thread-local variables on this target"));
777
778 return addr;
779 }
780
781 const char *
782 target_xfer_status_to_string (enum target_xfer_status status)
783 {
784 #define CASE(X) case X: return #X
785 switch (status)
786 {
787 CASE(TARGET_XFER_E_IO);
788 CASE(TARGET_XFER_UNAVAILABLE);
789 default:
790 return "<unknown>";
791 }
792 #undef CASE
793 };
794
795
796 #undef MIN
797 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
798
799 /* target_read_string -- read a null terminated string, up to LEN bytes,
800 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
801 Set *STRING to a pointer to malloc'd memory containing the data; the caller
802 is responsible for freeing it. Return the number of bytes successfully
803 read. */
804
805 int
806 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
807 int len, int *errnop)
808 {
809 int tlen, offset, i;
810 gdb_byte buf[4];
811 int errcode = 0;
812 char *buffer;
813 int buffer_allocated;
814 char *bufptr;
815 unsigned int nbytes_read = 0;
816
817 gdb_assert (string);
818
819 /* Small for testing. */
820 buffer_allocated = 4;
821 buffer = (char *) xmalloc (buffer_allocated);
822 bufptr = buffer;
823
824 while (len > 0)
825 {
826 tlen = MIN (len, 4 - (memaddr & 3));
827 offset = memaddr & 3;
828
829 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
830 if (errcode != 0)
831 {
832 /* The transfer request might have crossed the boundary to an
833 unallocated region of memory. Retry the transfer, requesting
834 a single byte. */
835 tlen = 1;
836 offset = 0;
837 errcode = target_read_memory (memaddr, buf, 1);
838 if (errcode != 0)
839 goto done;
840 }
841
842 if (bufptr - buffer + tlen > buffer_allocated)
843 {
844 unsigned int bytes;
845
846 bytes = bufptr - buffer;
847 buffer_allocated *= 2;
848 buffer = (char *) xrealloc (buffer, buffer_allocated);
849 bufptr = buffer + bytes;
850 }
851
852 for (i = 0; i < tlen; i++)
853 {
854 *bufptr++ = buf[i + offset];
855 if (buf[i + offset] == '\000')
856 {
857 nbytes_read += i + 1;
858 goto done;
859 }
860 }
861
862 memaddr += tlen;
863 len -= tlen;
864 nbytes_read += tlen;
865 }
866 done:
867 string->reset (buffer);
868 if (errnop != NULL)
869 *errnop = errcode;
870 return nbytes_read;
871 }
872
873 struct target_section_table *
874 target_get_section_table (struct target_ops *target)
875 {
876 return target->get_section_table ();
877 }
878
879 /* Find a section containing ADDR. */
880
881 struct target_section *
882 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
883 {
884 struct target_section_table *table = target_get_section_table (target);
885 struct target_section *secp;
886
887 if (table == NULL)
888 return NULL;
889
890 for (secp = table->sections; secp < table->sections_end; secp++)
891 {
892 if (addr >= secp->addr && addr < secp->endaddr)
893 return secp;
894 }
895 return NULL;
896 }
897
898
899 /* Helper for the memory xfer routines. Checks the attributes of the
900 memory region of MEMADDR against the read or write being attempted.
901 If the access is permitted returns true, otherwise returns false.
902 REGION_P is an optional output parameter. If not-NULL, it is
903 filled with a pointer to the memory region of MEMADDR. REG_LEN
904 returns LEN trimmed to the end of the region. This is how much the
905 caller can continue requesting, if the access is permitted. A
906 single xfer request must not straddle memory region boundaries. */
907
908 static int
909 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
910 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
911 struct mem_region **region_p)
912 {
913 struct mem_region *region;
914
915 region = lookup_mem_region (memaddr);
916
917 if (region_p != NULL)
918 *region_p = region;
919
920 switch (region->attrib.mode)
921 {
922 case MEM_RO:
923 if (writebuf != NULL)
924 return 0;
925 break;
926
927 case MEM_WO:
928 if (readbuf != NULL)
929 return 0;
930 break;
931
932 case MEM_FLASH:
933 /* We only support writing to flash during "load" for now. */
934 if (writebuf != NULL)
935 error (_("Writing to flash memory forbidden in this context"));
936 break;
937
938 case MEM_NONE:
939 return 0;
940 }
941
942 /* region->hi == 0 means there's no upper bound. */
943 if (memaddr + len < region->hi || region->hi == 0)
944 *reg_len = len;
945 else
946 *reg_len = region->hi - memaddr;
947
948 return 1;
949 }
950
951 /* Read memory from more than one valid target. A core file, for
952 instance, could have some of memory but delegate other bits to
953 the target below it. So, we must manually try all targets. */
954
955 enum target_xfer_status
956 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
957 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
958 ULONGEST *xfered_len)
959 {
960 enum target_xfer_status res;
961
962 do
963 {
964 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
965 readbuf, writebuf, memaddr, len,
966 xfered_len);
967 if (res == TARGET_XFER_OK)
968 break;
969
970 /* Stop if the target reports that the memory is not available. */
971 if (res == TARGET_XFER_UNAVAILABLE)
972 break;
973
974 /* We want to continue past core files to executables, but not
975 past a running target's memory. */
976 if (ops->has_all_memory ())
977 break;
978
979 ops = ops->beneath ();
980 }
981 while (ops != NULL);
982
983 /* The cache works at the raw memory level. Make sure the cache
984 gets updated with raw contents no matter what kind of memory
985 object was originally being written. Note we do write-through
986 first, so that if it fails, we don't write to the cache contents
987 that never made it to the target. */
988 if (writebuf != NULL
989 && inferior_ptid != null_ptid
990 && target_dcache_init_p ()
991 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
992 {
993 DCACHE *dcache = target_dcache_get ();
994
995 /* Note that writing to an area of memory which wasn't present
996 in the cache doesn't cause it to be loaded in. */
997 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
998 }
999
1000 return res;
1001 }
1002
1003 /* Perform a partial memory transfer.
1004 For docs see target.h, to_xfer_partial. */
1005
1006 static enum target_xfer_status
1007 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1008 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1009 ULONGEST len, ULONGEST *xfered_len)
1010 {
1011 enum target_xfer_status res;
1012 ULONGEST reg_len;
1013 struct mem_region *region;
1014 struct inferior *inf;
1015
1016 /* For accesses to unmapped overlay sections, read directly from
1017 files. Must do this first, as MEMADDR may need adjustment. */
1018 if (readbuf != NULL && overlay_debugging)
1019 {
1020 struct obj_section *section = find_pc_overlay (memaddr);
1021
1022 if (pc_in_unmapped_range (memaddr, section))
1023 {
1024 struct target_section_table *table
1025 = target_get_section_table (ops);
1026 const char *section_name = section->the_bfd_section->name;
1027
1028 memaddr = overlay_mapped_address (memaddr, section);
1029 return section_table_xfer_memory_partial (readbuf, writebuf,
1030 memaddr, len, xfered_len,
1031 table->sections,
1032 table->sections_end,
1033 section_name);
1034 }
1035 }
1036
1037 /* Try the executable files, if "trust-readonly-sections" is set. */
1038 if (readbuf != NULL && trust_readonly)
1039 {
1040 struct target_section *secp;
1041 struct target_section_table *table;
1042
1043 secp = target_section_by_addr (ops, memaddr);
1044 if (secp != NULL
1045 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1046 secp->the_bfd_section)
1047 & SEC_READONLY))
1048 {
1049 table = target_get_section_table (ops);
1050 return section_table_xfer_memory_partial (readbuf, writebuf,
1051 memaddr, len, xfered_len,
1052 table->sections,
1053 table->sections_end,
1054 NULL);
1055 }
1056 }
1057
1058 /* Try GDB's internal data cache. */
1059
1060 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1061 &region))
1062 return TARGET_XFER_E_IO;
1063
1064 if (inferior_ptid != null_ptid)
1065 inf = current_inferior ();
1066 else
1067 inf = NULL;
1068
1069 if (inf != NULL
1070 && readbuf != NULL
1071 /* The dcache reads whole cache lines; that doesn't play well
1072 with reading from a trace buffer, because reading outside of
1073 the collected memory range fails. */
1074 && get_traceframe_number () == -1
1075 && (region->attrib.cache
1076 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1077 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1078 {
1079 DCACHE *dcache = target_dcache_get_or_init ();
1080
1081 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1082 reg_len, xfered_len);
1083 }
1084
1085 /* If none of those methods found the memory we wanted, fall back
1086 to a target partial transfer. Normally a single call to
1087 to_xfer_partial is enough; if it doesn't recognize an object
1088 it will call the to_xfer_partial of the next target down.
1089 But for memory this won't do. Memory is the only target
1090 object which can be read from more than one valid target.
1091 A core file, for instance, could have some of memory but
1092 delegate other bits to the target below it. So, we must
1093 manually try all targets. */
1094
1095 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1096 xfered_len);
1097
1098 /* If we still haven't got anything, return the last error. We
1099 give up. */
1100 return res;
1101 }
1102
1103 /* Perform a partial memory transfer. For docs see target.h,
1104 to_xfer_partial. */
1105
1106 static enum target_xfer_status
1107 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1108 gdb_byte *readbuf, const gdb_byte *writebuf,
1109 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1110 {
1111 enum target_xfer_status res;
1112
1113 /* Zero length requests are ok and require no work. */
1114 if (len == 0)
1115 return TARGET_XFER_EOF;
1116
1117 memaddr = address_significant (target_gdbarch (), memaddr);
1118
1119 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1120 breakpoint insns, thus hiding out from higher layers whether
1121 there are software breakpoints inserted in the code stream. */
1122 if (readbuf != NULL)
1123 {
1124 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1125 xfered_len);
1126
1127 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1128 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1129 }
1130 else
1131 {
1132 /* A large write request is likely to be partially satisfied
1133 by memory_xfer_partial_1. We will continually malloc
1134 and free a copy of the entire write request for breakpoint
1135 shadow handling even though we only end up writing a small
1136 subset of it. Cap writes to a limit specified by the target
1137 to mitigate this. */
1138 len = std::min (ops->get_memory_xfer_limit (), len);
1139
1140 gdb::byte_vector buf (writebuf, writebuf + len);
1141 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1142 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1143 xfered_len);
1144 }
1145
1146 return res;
1147 }
1148
1149 scoped_restore_tmpl<int>
1150 make_scoped_restore_show_memory_breakpoints (int show)
1151 {
1152 return make_scoped_restore (&show_memory_breakpoints, show);
1153 }
1154
1155 /* For docs see target.h, to_xfer_partial. */
1156
1157 enum target_xfer_status
1158 target_xfer_partial (struct target_ops *ops,
1159 enum target_object object, const char *annex,
1160 gdb_byte *readbuf, const gdb_byte *writebuf,
1161 ULONGEST offset, ULONGEST len,
1162 ULONGEST *xfered_len)
1163 {
1164 enum target_xfer_status retval;
1165
1166 /* Transfer is done when LEN is zero. */
1167 if (len == 0)
1168 return TARGET_XFER_EOF;
1169
1170 if (writebuf && !may_write_memory)
1171 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1172 core_addr_to_string_nz (offset), plongest (len));
1173
1174 *xfered_len = 0;
1175
1176 /* If this is a memory transfer, let the memory-specific code
1177 have a look at it instead. Memory transfers are more
1178 complicated. */
1179 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1180 || object == TARGET_OBJECT_CODE_MEMORY)
1181 retval = memory_xfer_partial (ops, object, readbuf,
1182 writebuf, offset, len, xfered_len);
1183 else if (object == TARGET_OBJECT_RAW_MEMORY)
1184 {
1185 /* Skip/avoid accessing the target if the memory region
1186 attributes block the access. Check this here instead of in
1187 raw_memory_xfer_partial as otherwise we'd end up checking
1188 this twice in the case of the memory_xfer_partial path is
1189 taken; once before checking the dcache, and another in the
1190 tail call to raw_memory_xfer_partial. */
1191 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1192 NULL))
1193 return TARGET_XFER_E_IO;
1194
1195 /* Request the normal memory object from other layers. */
1196 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1197 xfered_len);
1198 }
1199 else
1200 retval = ops->xfer_partial (object, annex, readbuf,
1201 writebuf, offset, len, xfered_len);
1202
1203 if (targetdebug)
1204 {
1205 const unsigned char *myaddr = NULL;
1206
1207 fprintf_unfiltered (gdb_stdlog,
1208 "%s:target_xfer_partial "
1209 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1210 ops->shortname (),
1211 (int) object,
1212 (annex ? annex : "(null)"),
1213 host_address_to_string (readbuf),
1214 host_address_to_string (writebuf),
1215 core_addr_to_string_nz (offset),
1216 pulongest (len), retval,
1217 pulongest (*xfered_len));
1218
1219 if (readbuf)
1220 myaddr = readbuf;
1221 if (writebuf)
1222 myaddr = writebuf;
1223 if (retval == TARGET_XFER_OK && myaddr != NULL)
1224 {
1225 int i;
1226
1227 fputs_unfiltered (", bytes =", gdb_stdlog);
1228 for (i = 0; i < *xfered_len; i++)
1229 {
1230 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1231 {
1232 if (targetdebug < 2 && i > 0)
1233 {
1234 fprintf_unfiltered (gdb_stdlog, " ...");
1235 break;
1236 }
1237 fprintf_unfiltered (gdb_stdlog, "\n");
1238 }
1239
1240 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1241 }
1242 }
1243
1244 fputc_unfiltered ('\n', gdb_stdlog);
1245 }
1246
1247 /* Check implementations of to_xfer_partial update *XFERED_LEN
1248 properly. Do assertion after printing debug messages, so that we
1249 can find more clues on assertion failure from debugging messages. */
1250 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1251 gdb_assert (*xfered_len > 0);
1252
1253 return retval;
1254 }
1255
1256 /* Read LEN bytes of target memory at address MEMADDR, placing the
1257 results in GDB's memory at MYADDR. Returns either 0 for success or
1258 -1 if any error occurs.
1259
1260 If an error occurs, no guarantee is made about the contents of the data at
1261 MYADDR. In particular, the caller should not depend upon partial reads
1262 filling the buffer with good data. There is no way for the caller to know
1263 how much good data might have been transfered anyway. Callers that can
1264 deal with partial reads should call target_read (which will retry until
1265 it makes no progress, and then return how much was transferred). */
1266
1267 int
1268 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1269 {
1270 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1271 myaddr, memaddr, len) == len)
1272 return 0;
1273 else
1274 return -1;
1275 }
1276
1277 /* See target/target.h. */
1278
1279 int
1280 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1281 {
1282 gdb_byte buf[4];
1283 int r;
1284
1285 r = target_read_memory (memaddr, buf, sizeof buf);
1286 if (r != 0)
1287 return r;
1288 *result = extract_unsigned_integer (buf, sizeof buf,
1289 gdbarch_byte_order (target_gdbarch ()));
1290 return 0;
1291 }
1292
1293 /* Like target_read_memory, but specify explicitly that this is a read
1294 from the target's raw memory. That is, this read bypasses the
1295 dcache, breakpoint shadowing, etc. */
1296
1297 int
1298 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1299 {
1300 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1301 myaddr, memaddr, len) == len)
1302 return 0;
1303 else
1304 return -1;
1305 }
1306
1307 /* Like target_read_memory, but specify explicitly that this is a read from
1308 the target's stack. This may trigger different cache behavior. */
1309
1310 int
1311 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1312 {
1313 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1314 myaddr, memaddr, len) == len)
1315 return 0;
1316 else
1317 return -1;
1318 }
1319
1320 /* Like target_read_memory, but specify explicitly that this is a read from
1321 the target's code. This may trigger different cache behavior. */
1322
1323 int
1324 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1325 {
1326 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1327 myaddr, memaddr, len) == len)
1328 return 0;
1329 else
1330 return -1;
1331 }
1332
1333 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1334 Returns either 0 for success or -1 if any error occurs. If an
1335 error occurs, no guarantee is made about how much data got written.
1336 Callers that can deal with partial writes should call
1337 target_write. */
1338
1339 int
1340 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1341 {
1342 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1343 myaddr, memaddr, len) == len)
1344 return 0;
1345 else
1346 return -1;
1347 }
1348
1349 /* Write LEN bytes from MYADDR to target raw memory at address
1350 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1351 If an error occurs, no guarantee is made about how much data got
1352 written. Callers that can deal with partial writes should call
1353 target_write. */
1354
1355 int
1356 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1357 {
1358 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1359 myaddr, memaddr, len) == len)
1360 return 0;
1361 else
1362 return -1;
1363 }
1364
1365 /* Fetch the target's memory map. */
1366
1367 std::vector<mem_region>
1368 target_memory_map (void)
1369 {
1370 std::vector<mem_region> result = current_top_target ()->memory_map ();
1371 if (result.empty ())
1372 return result;
1373
1374 std::sort (result.begin (), result.end ());
1375
1376 /* Check that regions do not overlap. Simultaneously assign
1377 a numbering for the "mem" commands to use to refer to
1378 each region. */
1379 mem_region *last_one = NULL;
1380 for (size_t ix = 0; ix < result.size (); ix++)
1381 {
1382 mem_region *this_one = &result[ix];
1383 this_one->number = ix;
1384
1385 if (last_one != NULL && last_one->hi > this_one->lo)
1386 {
1387 warning (_("Overlapping regions in memory map: ignoring"));
1388 return std::vector<mem_region> ();
1389 }
1390
1391 last_one = this_one;
1392 }
1393
1394 return result;
1395 }
1396
1397 void
1398 target_flash_erase (ULONGEST address, LONGEST length)
1399 {
1400 current_top_target ()->flash_erase (address, length);
1401 }
1402
1403 void
1404 target_flash_done (void)
1405 {
1406 current_top_target ()->flash_done ();
1407 }
1408
1409 static void
1410 show_trust_readonly (struct ui_file *file, int from_tty,
1411 struct cmd_list_element *c, const char *value)
1412 {
1413 fprintf_filtered (file,
1414 _("Mode for reading from readonly sections is %s.\n"),
1415 value);
1416 }
1417
1418 /* Target vector read/write partial wrapper functions. */
1419
1420 static enum target_xfer_status
1421 target_read_partial (struct target_ops *ops,
1422 enum target_object object,
1423 const char *annex, gdb_byte *buf,
1424 ULONGEST offset, ULONGEST len,
1425 ULONGEST *xfered_len)
1426 {
1427 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1428 xfered_len);
1429 }
1430
1431 static enum target_xfer_status
1432 target_write_partial (struct target_ops *ops,
1433 enum target_object object,
1434 const char *annex, const gdb_byte *buf,
1435 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1436 {
1437 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1438 xfered_len);
1439 }
1440
1441 /* Wrappers to perform the full transfer. */
1442
1443 /* For docs on target_read see target.h. */
1444
1445 LONGEST
1446 target_read (struct target_ops *ops,
1447 enum target_object object,
1448 const char *annex, gdb_byte *buf,
1449 ULONGEST offset, LONGEST len)
1450 {
1451 LONGEST xfered_total = 0;
1452 int unit_size = 1;
1453
1454 /* If we are reading from a memory object, find the length of an addressable
1455 unit for that architecture. */
1456 if (object == TARGET_OBJECT_MEMORY
1457 || object == TARGET_OBJECT_STACK_MEMORY
1458 || object == TARGET_OBJECT_CODE_MEMORY
1459 || object == TARGET_OBJECT_RAW_MEMORY)
1460 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1461
1462 while (xfered_total < len)
1463 {
1464 ULONGEST xfered_partial;
1465 enum target_xfer_status status;
1466
1467 status = target_read_partial (ops, object, annex,
1468 buf + xfered_total * unit_size,
1469 offset + xfered_total, len - xfered_total,
1470 &xfered_partial);
1471
1472 /* Call an observer, notifying them of the xfer progress? */
1473 if (status == TARGET_XFER_EOF)
1474 return xfered_total;
1475 else if (status == TARGET_XFER_OK)
1476 {
1477 xfered_total += xfered_partial;
1478 QUIT;
1479 }
1480 else
1481 return TARGET_XFER_E_IO;
1482
1483 }
1484 return len;
1485 }
1486
1487 /* Assuming that the entire [begin, end) range of memory cannot be
1488 read, try to read whatever subrange is possible to read.
1489
1490 The function returns, in RESULT, either zero or one memory block.
1491 If there's a readable subrange at the beginning, it is completely
1492 read and returned. Any further readable subrange will not be read.
1493 Otherwise, if there's a readable subrange at the end, it will be
1494 completely read and returned. Any readable subranges before it
1495 (obviously, not starting at the beginning), will be ignored. In
1496 other cases -- either no readable subrange, or readable subrange(s)
1497 that is neither at the beginning, or end, nothing is returned.
1498
1499 The purpose of this function is to handle a read across a boundary
1500 of accessible memory in a case when memory map is not available.
1501 The above restrictions are fine for this case, but will give
1502 incorrect results if the memory is 'patchy'. However, supporting
1503 'patchy' memory would require trying to read every single byte,
1504 and it seems unacceptable solution. Explicit memory map is
1505 recommended for this case -- and target_read_memory_robust will
1506 take care of reading multiple ranges then. */
1507
1508 static void
1509 read_whatever_is_readable (struct target_ops *ops,
1510 const ULONGEST begin, const ULONGEST end,
1511 int unit_size,
1512 std::vector<memory_read_result> *result)
1513 {
1514 ULONGEST current_begin = begin;
1515 ULONGEST current_end = end;
1516 int forward;
1517 ULONGEST xfered_len;
1518
1519 /* If we previously failed to read 1 byte, nothing can be done here. */
1520 if (end - begin <= 1)
1521 return;
1522
1523 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1524
1525 /* Check that either first or the last byte is readable, and give up
1526 if not. This heuristic is meant to permit reading accessible memory
1527 at the boundary of accessible region. */
1528 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1529 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1530 {
1531 forward = 1;
1532 ++current_begin;
1533 }
1534 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1535 buf.get () + (end - begin) - 1, end - 1, 1,
1536 &xfered_len) == TARGET_XFER_OK)
1537 {
1538 forward = 0;
1539 --current_end;
1540 }
1541 else
1542 return;
1543
1544 /* Loop invariant is that the [current_begin, current_end) was previously
1545 found to be not readable as a whole.
1546
1547 Note loop condition -- if the range has 1 byte, we can't divide the range
1548 so there's no point trying further. */
1549 while (current_end - current_begin > 1)
1550 {
1551 ULONGEST first_half_begin, first_half_end;
1552 ULONGEST second_half_begin, second_half_end;
1553 LONGEST xfer;
1554 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1555
1556 if (forward)
1557 {
1558 first_half_begin = current_begin;
1559 first_half_end = middle;
1560 second_half_begin = middle;
1561 second_half_end = current_end;
1562 }
1563 else
1564 {
1565 first_half_begin = middle;
1566 first_half_end = current_end;
1567 second_half_begin = current_begin;
1568 second_half_end = middle;
1569 }
1570
1571 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1572 buf.get () + (first_half_begin - begin) * unit_size,
1573 first_half_begin,
1574 first_half_end - first_half_begin);
1575
1576 if (xfer == first_half_end - first_half_begin)
1577 {
1578 /* This half reads up fine. So, the error must be in the
1579 other half. */
1580 current_begin = second_half_begin;
1581 current_end = second_half_end;
1582 }
1583 else
1584 {
1585 /* This half is not readable. Because we've tried one byte, we
1586 know some part of this half if actually readable. Go to the next
1587 iteration to divide again and try to read.
1588
1589 We don't handle the other half, because this function only tries
1590 to read a single readable subrange. */
1591 current_begin = first_half_begin;
1592 current_end = first_half_end;
1593 }
1594 }
1595
1596 if (forward)
1597 {
1598 /* The [begin, current_begin) range has been read. */
1599 result->emplace_back (begin, current_end, std::move (buf));
1600 }
1601 else
1602 {
1603 /* The [current_end, end) range has been read. */
1604 LONGEST region_len = end - current_end;
1605
1606 gdb::unique_xmalloc_ptr<gdb_byte> data
1607 ((gdb_byte *) xmalloc (region_len * unit_size));
1608 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1609 region_len * unit_size);
1610 result->emplace_back (current_end, end, std::move (data));
1611 }
1612 }
1613
1614 std::vector<memory_read_result>
1615 read_memory_robust (struct target_ops *ops,
1616 const ULONGEST offset, const LONGEST len)
1617 {
1618 std::vector<memory_read_result> result;
1619 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1620
1621 LONGEST xfered_total = 0;
1622 while (xfered_total < len)
1623 {
1624 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1625 LONGEST region_len;
1626
1627 /* If there is no explicit region, a fake one should be created. */
1628 gdb_assert (region);
1629
1630 if (region->hi == 0)
1631 region_len = len - xfered_total;
1632 else
1633 region_len = region->hi - offset;
1634
1635 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1636 {
1637 /* Cannot read this region. Note that we can end up here only
1638 if the region is explicitly marked inaccessible, or
1639 'inaccessible-by-default' is in effect. */
1640 xfered_total += region_len;
1641 }
1642 else
1643 {
1644 LONGEST to_read = std::min (len - xfered_total, region_len);
1645 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1646 ((gdb_byte *) xmalloc (to_read * unit_size));
1647
1648 LONGEST xfered_partial =
1649 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1650 offset + xfered_total, to_read);
1651 /* Call an observer, notifying them of the xfer progress? */
1652 if (xfered_partial <= 0)
1653 {
1654 /* Got an error reading full chunk. See if maybe we can read
1655 some subrange. */
1656 read_whatever_is_readable (ops, offset + xfered_total,
1657 offset + xfered_total + to_read,
1658 unit_size, &result);
1659 xfered_total += to_read;
1660 }
1661 else
1662 {
1663 result.emplace_back (offset + xfered_total,
1664 offset + xfered_total + xfered_partial,
1665 std::move (buffer));
1666 xfered_total += xfered_partial;
1667 }
1668 QUIT;
1669 }
1670 }
1671
1672 return result;
1673 }
1674
1675
1676 /* An alternative to target_write with progress callbacks. */
1677
1678 LONGEST
1679 target_write_with_progress (struct target_ops *ops,
1680 enum target_object object,
1681 const char *annex, const gdb_byte *buf,
1682 ULONGEST offset, LONGEST len,
1683 void (*progress) (ULONGEST, void *), void *baton)
1684 {
1685 LONGEST xfered_total = 0;
1686 int unit_size = 1;
1687
1688 /* If we are writing to a memory object, find the length of an addressable
1689 unit for that architecture. */
1690 if (object == TARGET_OBJECT_MEMORY
1691 || object == TARGET_OBJECT_STACK_MEMORY
1692 || object == TARGET_OBJECT_CODE_MEMORY
1693 || object == TARGET_OBJECT_RAW_MEMORY)
1694 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1695
1696 /* Give the progress callback a chance to set up. */
1697 if (progress)
1698 (*progress) (0, baton);
1699
1700 while (xfered_total < len)
1701 {
1702 ULONGEST xfered_partial;
1703 enum target_xfer_status status;
1704
1705 status = target_write_partial (ops, object, annex,
1706 buf + xfered_total * unit_size,
1707 offset + xfered_total, len - xfered_total,
1708 &xfered_partial);
1709
1710 if (status != TARGET_XFER_OK)
1711 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1712
1713 if (progress)
1714 (*progress) (xfered_partial, baton);
1715
1716 xfered_total += xfered_partial;
1717 QUIT;
1718 }
1719 return len;
1720 }
1721
1722 /* For docs on target_write see target.h. */
1723
1724 LONGEST
1725 target_write (struct target_ops *ops,
1726 enum target_object object,
1727 const char *annex, const gdb_byte *buf,
1728 ULONGEST offset, LONGEST len)
1729 {
1730 return target_write_with_progress (ops, object, annex, buf, offset, len,
1731 NULL, NULL);
1732 }
1733
1734 /* Help for target_read_alloc and target_read_stralloc. See their comments
1735 for details. */
1736
1737 template <typename T>
1738 gdb::optional<gdb::def_vector<T>>
1739 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1740 const char *annex)
1741 {
1742 gdb::def_vector<T> buf;
1743 size_t buf_pos = 0;
1744 const int chunk = 4096;
1745
1746 /* This function does not have a length parameter; it reads the
1747 entire OBJECT). Also, it doesn't support objects fetched partly
1748 from one target and partly from another (in a different stratum,
1749 e.g. a core file and an executable). Both reasons make it
1750 unsuitable for reading memory. */
1751 gdb_assert (object != TARGET_OBJECT_MEMORY);
1752
1753 /* Start by reading up to 4K at a time. The target will throttle
1754 this number down if necessary. */
1755 while (1)
1756 {
1757 ULONGEST xfered_len;
1758 enum target_xfer_status status;
1759
1760 buf.resize (buf_pos + chunk);
1761
1762 status = target_read_partial (ops, object, annex,
1763 (gdb_byte *) &buf[buf_pos],
1764 buf_pos, chunk,
1765 &xfered_len);
1766
1767 if (status == TARGET_XFER_EOF)
1768 {
1769 /* Read all there was. */
1770 buf.resize (buf_pos);
1771 return buf;
1772 }
1773 else if (status != TARGET_XFER_OK)
1774 {
1775 /* An error occurred. */
1776 return {};
1777 }
1778
1779 buf_pos += xfered_len;
1780
1781 QUIT;
1782 }
1783 }
1784
1785 /* See target.h */
1786
1787 gdb::optional<gdb::byte_vector>
1788 target_read_alloc (struct target_ops *ops, enum target_object object,
1789 const char *annex)
1790 {
1791 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1792 }
1793
1794 /* See target.h. */
1795
1796 gdb::optional<gdb::char_vector>
1797 target_read_stralloc (struct target_ops *ops, enum target_object object,
1798 const char *annex)
1799 {
1800 gdb::optional<gdb::char_vector> buf
1801 = target_read_alloc_1<char> (ops, object, annex);
1802
1803 if (!buf)
1804 return {};
1805
1806 if (buf->empty () || buf->back () != '\0')
1807 buf->push_back ('\0');
1808
1809 /* Check for embedded NUL bytes; but allow trailing NULs. */
1810 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1811 it != buf->end (); it++)
1812 if (*it != '\0')
1813 {
1814 warning (_("target object %d, annex %s, "
1815 "contained unexpected null characters"),
1816 (int) object, annex ? annex : "(none)");
1817 break;
1818 }
1819
1820 return buf;
1821 }
1822
1823 /* Memory transfer methods. */
1824
1825 void
1826 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1827 LONGEST len)
1828 {
1829 /* This method is used to read from an alternate, non-current
1830 target. This read must bypass the overlay support (as symbols
1831 don't match this target), and GDB's internal cache (wrong cache
1832 for this target). */
1833 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1834 != len)
1835 memory_error (TARGET_XFER_E_IO, addr);
1836 }
1837
1838 ULONGEST
1839 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1840 int len, enum bfd_endian byte_order)
1841 {
1842 gdb_byte buf[sizeof (ULONGEST)];
1843
1844 gdb_assert (len <= sizeof (buf));
1845 get_target_memory (ops, addr, buf, len);
1846 return extract_unsigned_integer (buf, len, byte_order);
1847 }
1848
1849 /* See target.h. */
1850
1851 int
1852 target_insert_breakpoint (struct gdbarch *gdbarch,
1853 struct bp_target_info *bp_tgt)
1854 {
1855 if (!may_insert_breakpoints)
1856 {
1857 warning (_("May not insert breakpoints"));
1858 return 1;
1859 }
1860
1861 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1862 }
1863
1864 /* See target.h. */
1865
1866 int
1867 target_remove_breakpoint (struct gdbarch *gdbarch,
1868 struct bp_target_info *bp_tgt,
1869 enum remove_bp_reason reason)
1870 {
1871 /* This is kind of a weird case to handle, but the permission might
1872 have been changed after breakpoints were inserted - in which case
1873 we should just take the user literally and assume that any
1874 breakpoints should be left in place. */
1875 if (!may_insert_breakpoints)
1876 {
1877 warning (_("May not remove breakpoints"));
1878 return 1;
1879 }
1880
1881 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1882 }
1883
1884 static void
1885 info_target_command (const char *args, int from_tty)
1886 {
1887 int has_all_mem = 0;
1888
1889 if (symfile_objfile != NULL)
1890 printf_unfiltered (_("Symbols from \"%s\".\n"),
1891 objfile_name (symfile_objfile));
1892
1893 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1894 {
1895 if (!t->has_memory ())
1896 continue;
1897
1898 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1899 continue;
1900 if (has_all_mem)
1901 printf_unfiltered (_("\tWhile running this, "
1902 "GDB does not access memory from...\n"));
1903 printf_unfiltered ("%s:\n", t->longname ());
1904 t->files_info ();
1905 has_all_mem = t->has_all_memory ();
1906 }
1907 }
1908
1909 /* This function is called before any new inferior is created, e.g.
1910 by running a program, attaching, or connecting to a target.
1911 It cleans up any state from previous invocations which might
1912 change between runs. This is a subset of what target_preopen
1913 resets (things which might change between targets). */
1914
1915 void
1916 target_pre_inferior (int from_tty)
1917 {
1918 /* Clear out solib state. Otherwise the solib state of the previous
1919 inferior might have survived and is entirely wrong for the new
1920 target. This has been observed on GNU/Linux using glibc 2.3. How
1921 to reproduce:
1922
1923 bash$ ./foo&
1924 [1] 4711
1925 bash$ ./foo&
1926 [1] 4712
1927 bash$ gdb ./foo
1928 [...]
1929 (gdb) attach 4711
1930 (gdb) detach
1931 (gdb) attach 4712
1932 Cannot access memory at address 0xdeadbeef
1933 */
1934
1935 /* In some OSs, the shared library list is the same/global/shared
1936 across inferiors. If code is shared between processes, so are
1937 memory regions and features. */
1938 if (!gdbarch_has_global_solist (target_gdbarch ()))
1939 {
1940 no_shared_libraries (NULL, from_tty);
1941
1942 invalidate_target_mem_regions ();
1943
1944 target_clear_description ();
1945 }
1946
1947 /* attach_flag may be set if the previous process associated with
1948 the inferior was attached to. */
1949 current_inferior ()->attach_flag = 0;
1950
1951 current_inferior ()->highest_thread_num = 0;
1952
1953 agent_capability_invalidate ();
1954 }
1955
1956 /* Callback for iterate_over_inferiors. Gets rid of the given
1957 inferior. */
1958
1959 static int
1960 dispose_inferior (struct inferior *inf, void *args)
1961 {
1962 /* Not all killed inferiors can, or will ever be, removed from the
1963 inferior list. Killed inferiors clearly don't need to be killed
1964 again, so, we're done. */
1965 if (inf->pid == 0)
1966 return 0;
1967
1968 thread_info *thread = any_thread_of_inferior (inf);
1969 if (thread != NULL)
1970 {
1971 switch_to_thread (thread);
1972
1973 /* Core inferiors actually should be detached, not killed. */
1974 if (target_has_execution)
1975 target_kill ();
1976 else
1977 target_detach (inf, 0);
1978 }
1979
1980 return 0;
1981 }
1982
1983 /* This is to be called by the open routine before it does
1984 anything. */
1985
1986 void
1987 target_preopen (int from_tty)
1988 {
1989 dont_repeat ();
1990
1991 if (have_inferiors ())
1992 {
1993 if (!from_tty
1994 || !have_live_inferiors ()
1995 || query (_("A program is being debugged already. Kill it? ")))
1996 iterate_over_inferiors (dispose_inferior, NULL);
1997 else
1998 error (_("Program not killed."));
1999 }
2000
2001 /* Calling target_kill may remove the target from the stack. But if
2002 it doesn't (which seems like a win for UDI), remove it now. */
2003 /* Leave the exec target, though. The user may be switching from a
2004 live process to a core of the same program. */
2005 pop_all_targets_above (file_stratum);
2006
2007 target_pre_inferior (from_tty);
2008 }
2009
2010 /* See target.h. */
2011
2012 void
2013 target_detach (inferior *inf, int from_tty)
2014 {
2015 /* After we have detached, we will clear the register cache for this inferior
2016 by calling registers_changed_ptid. We must save the pid_ptid before
2017 detaching, as the target detach method will clear inf->pid. */
2018 ptid_t save_pid_ptid = ptid_t (inf->pid);
2019
2020 /* As long as some to_detach implementations rely on the current_inferior
2021 (either directly, or indirectly, like through target_gdbarch or by
2022 reading memory), INF needs to be the current inferior. When that
2023 requirement will become no longer true, then we can remove this
2024 assertion. */
2025 gdb_assert (inf == current_inferior ());
2026
2027 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2028 /* Don't remove global breakpoints here. They're removed on
2029 disconnection from the target. */
2030 ;
2031 else
2032 /* If we're in breakpoints-always-inserted mode, have to remove
2033 breakpoints before detaching. */
2034 remove_breakpoints_inf (current_inferior ());
2035
2036 prepare_for_detach ();
2037
2038 current_top_target ()->detach (inf, from_tty);
2039
2040 registers_changed_ptid (save_pid_ptid);
2041
2042 /* We have to ensure we have no frame cache left. Normally,
2043 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2044 inferior_ptid matches save_pid_ptid, but in our case, it does not
2045 call it, as inferior_ptid has been reset. */
2046 reinit_frame_cache ();
2047 }
2048
2049 void
2050 target_disconnect (const char *args, int from_tty)
2051 {
2052 /* If we're in breakpoints-always-inserted mode or if breakpoints
2053 are global across processes, we have to remove them before
2054 disconnecting. */
2055 remove_breakpoints ();
2056
2057 current_top_target ()->disconnect (args, from_tty);
2058 }
2059
2060 /* See target/target.h. */
2061
2062 ptid_t
2063 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2064 {
2065 return current_top_target ()->wait (ptid, status, options);
2066 }
2067
2068 /* See target.h. */
2069
2070 ptid_t
2071 default_target_wait (struct target_ops *ops,
2072 ptid_t ptid, struct target_waitstatus *status,
2073 int options)
2074 {
2075 status->kind = TARGET_WAITKIND_IGNORE;
2076 return minus_one_ptid;
2077 }
2078
2079 std::string
2080 target_pid_to_str (ptid_t ptid)
2081 {
2082 return current_top_target ()->pid_to_str (ptid);
2083 }
2084
2085 const char *
2086 target_thread_name (struct thread_info *info)
2087 {
2088 return current_top_target ()->thread_name (info);
2089 }
2090
2091 struct thread_info *
2092 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2093 int handle_len,
2094 struct inferior *inf)
2095 {
2096 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2097 handle_len, inf);
2098 }
2099
2100 void
2101 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2102 {
2103 target_dcache_invalidate ();
2104
2105 current_top_target ()->resume (ptid, step, signal);
2106
2107 registers_changed_ptid (ptid);
2108 /* We only set the internal executing state here. The user/frontend
2109 running state is set at a higher level. This also clears the
2110 thread's stop_pc as side effect. */
2111 set_executing (ptid, 1);
2112 clear_inline_frame_state (ptid);
2113 }
2114
2115 /* If true, target_commit_resume is a nop. */
2116 static int defer_target_commit_resume;
2117
2118 /* See target.h. */
2119
2120 void
2121 target_commit_resume (void)
2122 {
2123 if (defer_target_commit_resume)
2124 return;
2125
2126 current_top_target ()->commit_resume ();
2127 }
2128
2129 /* See target.h. */
2130
2131 scoped_restore_tmpl<int>
2132 make_scoped_defer_target_commit_resume ()
2133 {
2134 return make_scoped_restore (&defer_target_commit_resume, 1);
2135 }
2136
2137 void
2138 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2139 {
2140 current_top_target ()->pass_signals (pass_signals);
2141 }
2142
2143 void
2144 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2145 {
2146 current_top_target ()->program_signals (program_signals);
2147 }
2148
2149 static int
2150 default_follow_fork (struct target_ops *self, int follow_child,
2151 int detach_fork)
2152 {
2153 /* Some target returned a fork event, but did not know how to follow it. */
2154 internal_error (__FILE__, __LINE__,
2155 _("could not find a target to follow fork"));
2156 }
2157
2158 /* Look through the list of possible targets for a target that can
2159 follow forks. */
2160
2161 int
2162 target_follow_fork (int follow_child, int detach_fork)
2163 {
2164 return current_top_target ()->follow_fork (follow_child, detach_fork);
2165 }
2166
2167 /* Target wrapper for follow exec hook. */
2168
2169 void
2170 target_follow_exec (struct inferior *inf, char *execd_pathname)
2171 {
2172 current_top_target ()->follow_exec (inf, execd_pathname);
2173 }
2174
2175 static void
2176 default_mourn_inferior (struct target_ops *self)
2177 {
2178 internal_error (__FILE__, __LINE__,
2179 _("could not find a target to follow mourn inferior"));
2180 }
2181
2182 void
2183 target_mourn_inferior (ptid_t ptid)
2184 {
2185 gdb_assert (ptid == inferior_ptid);
2186 current_top_target ()->mourn_inferior ();
2187
2188 /* We no longer need to keep handles on any of the object files.
2189 Make sure to release them to avoid unnecessarily locking any
2190 of them while we're not actually debugging. */
2191 bfd_cache_close_all ();
2192 }
2193
2194 /* Look for a target which can describe architectural features, starting
2195 from TARGET. If we find one, return its description. */
2196
2197 const struct target_desc *
2198 target_read_description (struct target_ops *target)
2199 {
2200 return target->read_description ();
2201 }
2202
2203 /* This implements a basic search of memory, reading target memory and
2204 performing the search here (as opposed to performing the search in on the
2205 target side with, for example, gdbserver). */
2206
2207 int
2208 simple_search_memory (struct target_ops *ops,
2209 CORE_ADDR start_addr, ULONGEST search_space_len,
2210 const gdb_byte *pattern, ULONGEST pattern_len,
2211 CORE_ADDR *found_addrp)
2212 {
2213 /* NOTE: also defined in find.c testcase. */
2214 #define SEARCH_CHUNK_SIZE 16000
2215 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2216 /* Buffer to hold memory contents for searching. */
2217 unsigned search_buf_size;
2218
2219 search_buf_size = chunk_size + pattern_len - 1;
2220
2221 /* No point in trying to allocate a buffer larger than the search space. */
2222 if (search_space_len < search_buf_size)
2223 search_buf_size = search_space_len;
2224
2225 gdb::byte_vector search_buf (search_buf_size);
2226
2227 /* Prime the search buffer. */
2228
2229 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2230 search_buf.data (), start_addr, search_buf_size)
2231 != search_buf_size)
2232 {
2233 warning (_("Unable to access %s bytes of target "
2234 "memory at %s, halting search."),
2235 pulongest (search_buf_size), hex_string (start_addr));
2236 return -1;
2237 }
2238
2239 /* Perform the search.
2240
2241 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2242 When we've scanned N bytes we copy the trailing bytes to the start and
2243 read in another N bytes. */
2244
2245 while (search_space_len >= pattern_len)
2246 {
2247 gdb_byte *found_ptr;
2248 unsigned nr_search_bytes
2249 = std::min (search_space_len, (ULONGEST) search_buf_size);
2250
2251 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2252 pattern, pattern_len);
2253
2254 if (found_ptr != NULL)
2255 {
2256 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2257
2258 *found_addrp = found_addr;
2259 return 1;
2260 }
2261
2262 /* Not found in this chunk, skip to next chunk. */
2263
2264 /* Don't let search_space_len wrap here, it's unsigned. */
2265 if (search_space_len >= chunk_size)
2266 search_space_len -= chunk_size;
2267 else
2268 search_space_len = 0;
2269
2270 if (search_space_len >= pattern_len)
2271 {
2272 unsigned keep_len = search_buf_size - chunk_size;
2273 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2274 int nr_to_read;
2275
2276 /* Copy the trailing part of the previous iteration to the front
2277 of the buffer for the next iteration. */
2278 gdb_assert (keep_len == pattern_len - 1);
2279 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2280
2281 nr_to_read = std::min (search_space_len - keep_len,
2282 (ULONGEST) chunk_size);
2283
2284 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2285 &search_buf[keep_len], read_addr,
2286 nr_to_read) != nr_to_read)
2287 {
2288 warning (_("Unable to access %s bytes of target "
2289 "memory at %s, halting search."),
2290 plongest (nr_to_read),
2291 hex_string (read_addr));
2292 return -1;
2293 }
2294
2295 start_addr += chunk_size;
2296 }
2297 }
2298
2299 /* Not found. */
2300
2301 return 0;
2302 }
2303
2304 /* Default implementation of memory-searching. */
2305
2306 static int
2307 default_search_memory (struct target_ops *self,
2308 CORE_ADDR start_addr, ULONGEST search_space_len,
2309 const gdb_byte *pattern, ULONGEST pattern_len,
2310 CORE_ADDR *found_addrp)
2311 {
2312 /* Start over from the top of the target stack. */
2313 return simple_search_memory (current_top_target (),
2314 start_addr, search_space_len,
2315 pattern, pattern_len, found_addrp);
2316 }
2317
2318 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2319 sequence of bytes in PATTERN with length PATTERN_LEN.
2320
2321 The result is 1 if found, 0 if not found, and -1 if there was an error
2322 requiring halting of the search (e.g. memory read error).
2323 If the pattern is found the address is recorded in FOUND_ADDRP. */
2324
2325 int
2326 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2327 const gdb_byte *pattern, ULONGEST pattern_len,
2328 CORE_ADDR *found_addrp)
2329 {
2330 return current_top_target ()->search_memory (start_addr, search_space_len,
2331 pattern, pattern_len, found_addrp);
2332 }
2333
2334 /* Look through the currently pushed targets. If none of them will
2335 be able to restart the currently running process, issue an error
2336 message. */
2337
2338 void
2339 target_require_runnable (void)
2340 {
2341 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2342 {
2343 /* If this target knows how to create a new program, then
2344 assume we will still be able to after killing the current
2345 one. Either killing and mourning will not pop T, or else
2346 find_default_run_target will find it again. */
2347 if (t->can_create_inferior ())
2348 return;
2349
2350 /* Do not worry about targets at certain strata that can not
2351 create inferiors. Assume they will be pushed again if
2352 necessary, and continue to the process_stratum. */
2353 if (t->stratum () > process_stratum)
2354 continue;
2355
2356 error (_("The \"%s\" target does not support \"run\". "
2357 "Try \"help target\" or \"continue\"."),
2358 t->shortname ());
2359 }
2360
2361 /* This function is only called if the target is running. In that
2362 case there should have been a process_stratum target and it
2363 should either know how to create inferiors, or not... */
2364 internal_error (__FILE__, __LINE__, _("No targets found"));
2365 }
2366
2367 /* Whether GDB is allowed to fall back to the default run target for
2368 "run", "attach", etc. when no target is connected yet. */
2369 static int auto_connect_native_target = 1;
2370
2371 static void
2372 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2373 struct cmd_list_element *c, const char *value)
2374 {
2375 fprintf_filtered (file,
2376 _("Whether GDB may automatically connect to the "
2377 "native target is %s.\n"),
2378 value);
2379 }
2380
2381 /* A pointer to the target that can respond to "run" or "attach".
2382 Native targets are always singletons and instantiated early at GDB
2383 startup. */
2384 static target_ops *the_native_target;
2385
2386 /* See target.h. */
2387
2388 void
2389 set_native_target (target_ops *target)
2390 {
2391 if (the_native_target != NULL)
2392 internal_error (__FILE__, __LINE__,
2393 _("native target already set (\"%s\")."),
2394 the_native_target->longname ());
2395
2396 the_native_target = target;
2397 }
2398
2399 /* See target.h. */
2400
2401 target_ops *
2402 get_native_target ()
2403 {
2404 return the_native_target;
2405 }
2406
2407 /* Look through the list of possible targets for a target that can
2408 execute a run or attach command without any other data. This is
2409 used to locate the default process stratum.
2410
2411 If DO_MESG is not NULL, the result is always valid (error() is
2412 called for errors); else, return NULL on error. */
2413
2414 static struct target_ops *
2415 find_default_run_target (const char *do_mesg)
2416 {
2417 if (auto_connect_native_target && the_native_target != NULL)
2418 return the_native_target;
2419
2420 if (do_mesg != NULL)
2421 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2422 return NULL;
2423 }
2424
2425 /* See target.h. */
2426
2427 struct target_ops *
2428 find_attach_target (void)
2429 {
2430 /* If a target on the current stack can attach, use it. */
2431 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2432 {
2433 if (t->can_attach ())
2434 return t;
2435 }
2436
2437 /* Otherwise, use the default run target for attaching. */
2438 return find_default_run_target ("attach");
2439 }
2440
2441 /* See target.h. */
2442
2443 struct target_ops *
2444 find_run_target (void)
2445 {
2446 /* If a target on the current stack can run, use it. */
2447 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2448 {
2449 if (t->can_create_inferior ())
2450 return t;
2451 }
2452
2453 /* Otherwise, use the default run target. */
2454 return find_default_run_target ("run");
2455 }
2456
2457 bool
2458 target_ops::info_proc (const char *args, enum info_proc_what what)
2459 {
2460 return false;
2461 }
2462
2463 /* Implement the "info proc" command. */
2464
2465 int
2466 target_info_proc (const char *args, enum info_proc_what what)
2467 {
2468 struct target_ops *t;
2469
2470 /* If we're already connected to something that can get us OS
2471 related data, use it. Otherwise, try using the native
2472 target. */
2473 t = find_target_at (process_stratum);
2474 if (t == NULL)
2475 t = find_default_run_target (NULL);
2476
2477 for (; t != NULL; t = t->beneath ())
2478 {
2479 if (t->info_proc (args, what))
2480 {
2481 if (targetdebug)
2482 fprintf_unfiltered (gdb_stdlog,
2483 "target_info_proc (\"%s\", %d)\n", args, what);
2484
2485 return 1;
2486 }
2487 }
2488
2489 return 0;
2490 }
2491
2492 static int
2493 find_default_supports_disable_randomization (struct target_ops *self)
2494 {
2495 struct target_ops *t;
2496
2497 t = find_default_run_target (NULL);
2498 if (t != NULL)
2499 return t->supports_disable_randomization ();
2500 return 0;
2501 }
2502
2503 int
2504 target_supports_disable_randomization (void)
2505 {
2506 return current_top_target ()->supports_disable_randomization ();
2507 }
2508
2509 /* See target/target.h. */
2510
2511 int
2512 target_supports_multi_process (void)
2513 {
2514 return current_top_target ()->supports_multi_process ();
2515 }
2516
2517 /* See target.h. */
2518
2519 gdb::optional<gdb::char_vector>
2520 target_get_osdata (const char *type)
2521 {
2522 struct target_ops *t;
2523
2524 /* If we're already connected to something that can get us OS
2525 related data, use it. Otherwise, try using the native
2526 target. */
2527 t = find_target_at (process_stratum);
2528 if (t == NULL)
2529 t = find_default_run_target ("get OS data");
2530
2531 if (!t)
2532 return {};
2533
2534 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2535 }
2536
2537
2538 /* Determine the current address space of thread PTID. */
2539
2540 struct address_space *
2541 target_thread_address_space (ptid_t ptid)
2542 {
2543 struct address_space *aspace;
2544
2545 aspace = current_top_target ()->thread_address_space (ptid);
2546 gdb_assert (aspace != NULL);
2547
2548 return aspace;
2549 }
2550
2551 /* See target.h. */
2552
2553 target_ops *
2554 target_ops::beneath () const
2555 {
2556 return g_target_stack.find_beneath (this);
2557 }
2558
2559 void
2560 target_ops::close ()
2561 {
2562 }
2563
2564 bool
2565 target_ops::can_attach ()
2566 {
2567 return 0;
2568 }
2569
2570 void
2571 target_ops::attach (const char *, int)
2572 {
2573 gdb_assert_not_reached ("target_ops::attach called");
2574 }
2575
2576 bool
2577 target_ops::can_create_inferior ()
2578 {
2579 return 0;
2580 }
2581
2582 void
2583 target_ops::create_inferior (const char *, const std::string &,
2584 char **, int)
2585 {
2586 gdb_assert_not_reached ("target_ops::create_inferior called");
2587 }
2588
2589 bool
2590 target_ops::can_run ()
2591 {
2592 return false;
2593 }
2594
2595 int
2596 target_can_run ()
2597 {
2598 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2599 {
2600 if (t->can_run ())
2601 return 1;
2602 }
2603
2604 return 0;
2605 }
2606
2607 /* Target file operations. */
2608
2609 static struct target_ops *
2610 default_fileio_target (void)
2611 {
2612 struct target_ops *t;
2613
2614 /* If we're already connected to something that can perform
2615 file I/O, use it. Otherwise, try using the native target. */
2616 t = find_target_at (process_stratum);
2617 if (t != NULL)
2618 return t;
2619 return find_default_run_target ("file I/O");
2620 }
2621
2622 /* File handle for target file operations. */
2623
2624 struct fileio_fh_t
2625 {
2626 /* The target on which this file is open. NULL if the target is
2627 meanwhile closed while the handle is open. */
2628 target_ops *target;
2629
2630 /* The file descriptor on the target. */
2631 int target_fd;
2632
2633 /* Check whether this fileio_fh_t represents a closed file. */
2634 bool is_closed ()
2635 {
2636 return target_fd < 0;
2637 }
2638 };
2639
2640 /* Vector of currently open file handles. The value returned by
2641 target_fileio_open and passed as the FD argument to other
2642 target_fileio_* functions is an index into this vector. This
2643 vector's entries are never freed; instead, files are marked as
2644 closed, and the handle becomes available for reuse. */
2645 static std::vector<fileio_fh_t> fileio_fhandles;
2646
2647 /* Index into fileio_fhandles of the lowest handle that might be
2648 closed. This permits handle reuse without searching the whole
2649 list each time a new file is opened. */
2650 static int lowest_closed_fd;
2651
2652 /* Invalidate the target associated with open handles that were open
2653 on target TARG, since we're about to close (and maybe destroy) the
2654 target. The handles remain open from the client's perspective, but
2655 trying to do anything with them other than closing them will fail
2656 with EIO. */
2657
2658 static void
2659 fileio_handles_invalidate_target (target_ops *targ)
2660 {
2661 for (fileio_fh_t &fh : fileio_fhandles)
2662 if (fh.target == targ)
2663 fh.target = NULL;
2664 }
2665
2666 /* Acquire a target fileio file descriptor. */
2667
2668 static int
2669 acquire_fileio_fd (target_ops *target, int target_fd)
2670 {
2671 /* Search for closed handles to reuse. */
2672 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2673 {
2674 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2675
2676 if (fh.is_closed ())
2677 break;
2678 }
2679
2680 /* Push a new handle if no closed handles were found. */
2681 if (lowest_closed_fd == fileio_fhandles.size ())
2682 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2683 else
2684 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2685
2686 /* Should no longer be marked closed. */
2687 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2688
2689 /* Return its index, and start the next lookup at
2690 the next index. */
2691 return lowest_closed_fd++;
2692 }
2693
2694 /* Release a target fileio file descriptor. */
2695
2696 static void
2697 release_fileio_fd (int fd, fileio_fh_t *fh)
2698 {
2699 fh->target_fd = -1;
2700 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2701 }
2702
2703 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2704
2705 static fileio_fh_t *
2706 fileio_fd_to_fh (int fd)
2707 {
2708 return &fileio_fhandles[fd];
2709 }
2710
2711
2712 /* Default implementations of file i/o methods. We don't want these
2713 to delegate automatically, because we need to know which target
2714 supported the method, in order to call it directly from within
2715 pread/pwrite, etc. */
2716
2717 int
2718 target_ops::fileio_open (struct inferior *inf, const char *filename,
2719 int flags, int mode, int warn_if_slow,
2720 int *target_errno)
2721 {
2722 *target_errno = FILEIO_ENOSYS;
2723 return -1;
2724 }
2725
2726 int
2727 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2728 ULONGEST offset, int *target_errno)
2729 {
2730 *target_errno = FILEIO_ENOSYS;
2731 return -1;
2732 }
2733
2734 int
2735 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2736 ULONGEST offset, int *target_errno)
2737 {
2738 *target_errno = FILEIO_ENOSYS;
2739 return -1;
2740 }
2741
2742 int
2743 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2744 {
2745 *target_errno = FILEIO_ENOSYS;
2746 return -1;
2747 }
2748
2749 int
2750 target_ops::fileio_close (int fd, int *target_errno)
2751 {
2752 *target_errno = FILEIO_ENOSYS;
2753 return -1;
2754 }
2755
2756 int
2757 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2758 int *target_errno)
2759 {
2760 *target_errno = FILEIO_ENOSYS;
2761 return -1;
2762 }
2763
2764 gdb::optional<std::string>
2765 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2766 int *target_errno)
2767 {
2768 *target_errno = FILEIO_ENOSYS;
2769 return {};
2770 }
2771
2772 /* Helper for target_fileio_open and
2773 target_fileio_open_warn_if_slow. */
2774
2775 static int
2776 target_fileio_open_1 (struct inferior *inf, const char *filename,
2777 int flags, int mode, int warn_if_slow,
2778 int *target_errno)
2779 {
2780 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2781 {
2782 int fd = t->fileio_open (inf, filename, flags, mode,
2783 warn_if_slow, target_errno);
2784
2785 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2786 continue;
2787
2788 if (fd < 0)
2789 fd = -1;
2790 else
2791 fd = acquire_fileio_fd (t, fd);
2792
2793 if (targetdebug)
2794 fprintf_unfiltered (gdb_stdlog,
2795 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2796 " = %d (%d)\n",
2797 inf == NULL ? 0 : inf->num,
2798 filename, flags, mode,
2799 warn_if_slow, fd,
2800 fd != -1 ? 0 : *target_errno);
2801 return fd;
2802 }
2803
2804 *target_errno = FILEIO_ENOSYS;
2805 return -1;
2806 }
2807
2808 /* See target.h. */
2809
2810 int
2811 target_fileio_open (struct inferior *inf, const char *filename,
2812 int flags, int mode, int *target_errno)
2813 {
2814 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2815 target_errno);
2816 }
2817
2818 /* See target.h. */
2819
2820 int
2821 target_fileio_open_warn_if_slow (struct inferior *inf,
2822 const char *filename,
2823 int flags, int mode, int *target_errno)
2824 {
2825 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2826 target_errno);
2827 }
2828
2829 /* See target.h. */
2830
2831 int
2832 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2833 ULONGEST offset, int *target_errno)
2834 {
2835 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2836 int ret = -1;
2837
2838 if (fh->is_closed ())
2839 *target_errno = EBADF;
2840 else if (fh->target == NULL)
2841 *target_errno = EIO;
2842 else
2843 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2844 len, offset, target_errno);
2845
2846 if (targetdebug)
2847 fprintf_unfiltered (gdb_stdlog,
2848 "target_fileio_pwrite (%d,...,%d,%s) "
2849 "= %d (%d)\n",
2850 fd, len, pulongest (offset),
2851 ret, ret != -1 ? 0 : *target_errno);
2852 return ret;
2853 }
2854
2855 /* See target.h. */
2856
2857 int
2858 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2859 ULONGEST offset, int *target_errno)
2860 {
2861 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2862 int ret = -1;
2863
2864 if (fh->is_closed ())
2865 *target_errno = EBADF;
2866 else if (fh->target == NULL)
2867 *target_errno = EIO;
2868 else
2869 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2870 len, offset, target_errno);
2871
2872 if (targetdebug)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "target_fileio_pread (%d,...,%d,%s) "
2875 "= %d (%d)\n",
2876 fd, len, pulongest (offset),
2877 ret, ret != -1 ? 0 : *target_errno);
2878 return ret;
2879 }
2880
2881 /* See target.h. */
2882
2883 int
2884 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2885 {
2886 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2887 int ret = -1;
2888
2889 if (fh->is_closed ())
2890 *target_errno = EBADF;
2891 else if (fh->target == NULL)
2892 *target_errno = EIO;
2893 else
2894 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2895
2896 if (targetdebug)
2897 fprintf_unfiltered (gdb_stdlog,
2898 "target_fileio_fstat (%d) = %d (%d)\n",
2899 fd, ret, ret != -1 ? 0 : *target_errno);
2900 return ret;
2901 }
2902
2903 /* See target.h. */
2904
2905 int
2906 target_fileio_close (int fd, int *target_errno)
2907 {
2908 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2909 int ret = -1;
2910
2911 if (fh->is_closed ())
2912 *target_errno = EBADF;
2913 else
2914 {
2915 if (fh->target != NULL)
2916 ret = fh->target->fileio_close (fh->target_fd,
2917 target_errno);
2918 else
2919 ret = 0;
2920 release_fileio_fd (fd, fh);
2921 }
2922
2923 if (targetdebug)
2924 fprintf_unfiltered (gdb_stdlog,
2925 "target_fileio_close (%d) = %d (%d)\n",
2926 fd, ret, ret != -1 ? 0 : *target_errno);
2927 return ret;
2928 }
2929
2930 /* See target.h. */
2931
2932 int
2933 target_fileio_unlink (struct inferior *inf, const char *filename,
2934 int *target_errno)
2935 {
2936 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2937 {
2938 int ret = t->fileio_unlink (inf, filename, target_errno);
2939
2940 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2941 continue;
2942
2943 if (targetdebug)
2944 fprintf_unfiltered (gdb_stdlog,
2945 "target_fileio_unlink (%d,%s)"
2946 " = %d (%d)\n",
2947 inf == NULL ? 0 : inf->num, filename,
2948 ret, ret != -1 ? 0 : *target_errno);
2949 return ret;
2950 }
2951
2952 *target_errno = FILEIO_ENOSYS;
2953 return -1;
2954 }
2955
2956 /* See target.h. */
2957
2958 gdb::optional<std::string>
2959 target_fileio_readlink (struct inferior *inf, const char *filename,
2960 int *target_errno)
2961 {
2962 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2963 {
2964 gdb::optional<std::string> ret
2965 = t->fileio_readlink (inf, filename, target_errno);
2966
2967 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2968 continue;
2969
2970 if (targetdebug)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "target_fileio_readlink (%d,%s)"
2973 " = %s (%d)\n",
2974 inf == NULL ? 0 : inf->num,
2975 filename, ret ? ret->c_str () : "(nil)",
2976 ret ? 0 : *target_errno);
2977 return ret;
2978 }
2979
2980 *target_errno = FILEIO_ENOSYS;
2981 return {};
2982 }
2983
2984 /* Like scoped_fd, but specific to target fileio. */
2985
2986 class scoped_target_fd
2987 {
2988 public:
2989 explicit scoped_target_fd (int fd) noexcept
2990 : m_fd (fd)
2991 {
2992 }
2993
2994 ~scoped_target_fd ()
2995 {
2996 if (m_fd >= 0)
2997 {
2998 int target_errno;
2999
3000 target_fileio_close (m_fd, &target_errno);
3001 }
3002 }
3003
3004 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3005
3006 int get () const noexcept
3007 {
3008 return m_fd;
3009 }
3010
3011 private:
3012 int m_fd;
3013 };
3014
3015 /* Read target file FILENAME, in the filesystem as seen by INF. If
3016 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3017 remote targets, the remote stub). Store the result in *BUF_P and
3018 return the size of the transferred data. PADDING additional bytes
3019 are available in *BUF_P. This is a helper function for
3020 target_fileio_read_alloc; see the declaration of that function for
3021 more information. */
3022
3023 static LONGEST
3024 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3025 gdb_byte **buf_p, int padding)
3026 {
3027 size_t buf_alloc, buf_pos;
3028 gdb_byte *buf;
3029 LONGEST n;
3030 int target_errno;
3031
3032 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3033 0700, &target_errno));
3034 if (fd.get () == -1)
3035 return -1;
3036
3037 /* Start by reading up to 4K at a time. The target will throttle
3038 this number down if necessary. */
3039 buf_alloc = 4096;
3040 buf = (gdb_byte *) xmalloc (buf_alloc);
3041 buf_pos = 0;
3042 while (1)
3043 {
3044 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3045 buf_alloc - buf_pos - padding, buf_pos,
3046 &target_errno);
3047 if (n < 0)
3048 {
3049 /* An error occurred. */
3050 xfree (buf);
3051 return -1;
3052 }
3053 else if (n == 0)
3054 {
3055 /* Read all there was. */
3056 if (buf_pos == 0)
3057 xfree (buf);
3058 else
3059 *buf_p = buf;
3060 return buf_pos;
3061 }
3062
3063 buf_pos += n;
3064
3065 /* If the buffer is filling up, expand it. */
3066 if (buf_alloc < buf_pos * 2)
3067 {
3068 buf_alloc *= 2;
3069 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3070 }
3071
3072 QUIT;
3073 }
3074 }
3075
3076 /* See target.h. */
3077
3078 LONGEST
3079 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3080 gdb_byte **buf_p)
3081 {
3082 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3083 }
3084
3085 /* See target.h. */
3086
3087 gdb::unique_xmalloc_ptr<char>
3088 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3089 {
3090 gdb_byte *buffer;
3091 char *bufstr;
3092 LONGEST i, transferred;
3093
3094 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3095 bufstr = (char *) buffer;
3096
3097 if (transferred < 0)
3098 return gdb::unique_xmalloc_ptr<char> (nullptr);
3099
3100 if (transferred == 0)
3101 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3102
3103 bufstr[transferred] = 0;
3104
3105 /* Check for embedded NUL bytes; but allow trailing NULs. */
3106 for (i = strlen (bufstr); i < transferred; i++)
3107 if (bufstr[i] != 0)
3108 {
3109 warning (_("target file %s "
3110 "contained unexpected null characters"),
3111 filename);
3112 break;
3113 }
3114
3115 return gdb::unique_xmalloc_ptr<char> (bufstr);
3116 }
3117
3118
3119 static int
3120 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3121 CORE_ADDR addr, int len)
3122 {
3123 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3124 }
3125
3126 static int
3127 default_watchpoint_addr_within_range (struct target_ops *target,
3128 CORE_ADDR addr,
3129 CORE_ADDR start, int length)
3130 {
3131 return addr >= start && addr < start + length;
3132 }
3133
3134 /* See target.h. */
3135
3136 target_ops *
3137 target_stack::find_beneath (const target_ops *t) const
3138 {
3139 /* Look for a non-empty slot at stratum levels beneath T's. */
3140 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3141 if (m_stack[stratum] != NULL)
3142 return m_stack[stratum];
3143
3144 return NULL;
3145 }
3146
3147 /* See target.h. */
3148
3149 struct target_ops *
3150 find_target_at (enum strata stratum)
3151 {
3152 return g_target_stack.at (stratum);
3153 }
3154
3155 \f
3156
3157 /* See target.h */
3158
3159 void
3160 target_announce_detach (int from_tty)
3161 {
3162 pid_t pid;
3163 const char *exec_file;
3164
3165 if (!from_tty)
3166 return;
3167
3168 exec_file = get_exec_file (0);
3169 if (exec_file == NULL)
3170 exec_file = "";
3171
3172 pid = inferior_ptid.pid ();
3173 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3174 target_pid_to_str (ptid_t (pid)).c_str ());
3175 }
3176
3177 /* The inferior process has died. Long live the inferior! */
3178
3179 void
3180 generic_mourn_inferior (void)
3181 {
3182 inferior *inf = current_inferior ();
3183
3184 inferior_ptid = null_ptid;
3185
3186 /* Mark breakpoints uninserted in case something tries to delete a
3187 breakpoint while we delete the inferior's threads (which would
3188 fail, since the inferior is long gone). */
3189 mark_breakpoints_out ();
3190
3191 if (inf->pid != 0)
3192 exit_inferior (inf);
3193
3194 /* Note this wipes step-resume breakpoints, so needs to be done
3195 after exit_inferior, which ends up referencing the step-resume
3196 breakpoints through clear_thread_inferior_resources. */
3197 breakpoint_init_inferior (inf_exited);
3198
3199 registers_changed ();
3200
3201 reopen_exec_file ();
3202 reinit_frame_cache ();
3203
3204 if (deprecated_detach_hook)
3205 deprecated_detach_hook ();
3206 }
3207 \f
3208 /* Convert a normal process ID to a string. Returns the string in a
3209 static buffer. */
3210
3211 std::string
3212 normal_pid_to_str (ptid_t ptid)
3213 {
3214 return string_printf ("process %d", ptid.pid ());
3215 }
3216
3217 static std::string
3218 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3219 {
3220 return normal_pid_to_str (ptid);
3221 }
3222
3223 /* Error-catcher for target_find_memory_regions. */
3224 static int
3225 dummy_find_memory_regions (struct target_ops *self,
3226 find_memory_region_ftype ignore1, void *ignore2)
3227 {
3228 error (_("Command not implemented for this target."));
3229 return 0;
3230 }
3231
3232 /* Error-catcher for target_make_corefile_notes. */
3233 static char *
3234 dummy_make_corefile_notes (struct target_ops *self,
3235 bfd *ignore1, int *ignore2)
3236 {
3237 error (_("Command not implemented for this target."));
3238 return NULL;
3239 }
3240
3241 #include "target-delegates.c"
3242
3243 /* The initial current target, so that there is always a semi-valid
3244 current target. */
3245
3246 static dummy_target the_dummy_target;
3247
3248 static const target_info dummy_target_info = {
3249 "None",
3250 N_("None"),
3251 ""
3252 };
3253
3254 strata
3255 dummy_target::stratum () const
3256 {
3257 return dummy_stratum;
3258 }
3259
3260 strata
3261 debug_target::stratum () const
3262 {
3263 return debug_stratum;
3264 }
3265
3266 const target_info &
3267 dummy_target::info () const
3268 {
3269 return dummy_target_info;
3270 }
3271
3272 const target_info &
3273 debug_target::info () const
3274 {
3275 return beneath ()->info ();
3276 }
3277
3278 \f
3279
3280 void
3281 target_close (struct target_ops *targ)
3282 {
3283 gdb_assert (!target_is_pushed (targ));
3284
3285 fileio_handles_invalidate_target (targ);
3286
3287 targ->close ();
3288
3289 if (targetdebug)
3290 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3291 }
3292
3293 int
3294 target_thread_alive (ptid_t ptid)
3295 {
3296 return current_top_target ()->thread_alive (ptid);
3297 }
3298
3299 void
3300 target_update_thread_list (void)
3301 {
3302 current_top_target ()->update_thread_list ();
3303 }
3304
3305 void
3306 target_stop (ptid_t ptid)
3307 {
3308 if (!may_stop)
3309 {
3310 warning (_("May not interrupt or stop the target, ignoring attempt"));
3311 return;
3312 }
3313
3314 current_top_target ()->stop (ptid);
3315 }
3316
3317 void
3318 target_interrupt ()
3319 {
3320 if (!may_stop)
3321 {
3322 warning (_("May not interrupt or stop the target, ignoring attempt"));
3323 return;
3324 }
3325
3326 current_top_target ()->interrupt ();
3327 }
3328
3329 /* See target.h. */
3330
3331 void
3332 target_pass_ctrlc (void)
3333 {
3334 current_top_target ()->pass_ctrlc ();
3335 }
3336
3337 /* See target.h. */
3338
3339 void
3340 default_target_pass_ctrlc (struct target_ops *ops)
3341 {
3342 target_interrupt ();
3343 }
3344
3345 /* See target/target.h. */
3346
3347 void
3348 target_stop_and_wait (ptid_t ptid)
3349 {
3350 struct target_waitstatus status;
3351 int was_non_stop = non_stop;
3352
3353 non_stop = 1;
3354 target_stop (ptid);
3355
3356 memset (&status, 0, sizeof (status));
3357 target_wait (ptid, &status, 0);
3358
3359 non_stop = was_non_stop;
3360 }
3361
3362 /* See target/target.h. */
3363
3364 void
3365 target_continue_no_signal (ptid_t ptid)
3366 {
3367 target_resume (ptid, 0, GDB_SIGNAL_0);
3368 }
3369
3370 /* See target/target.h. */
3371
3372 void
3373 target_continue (ptid_t ptid, enum gdb_signal signal)
3374 {
3375 target_resume (ptid, 0, signal);
3376 }
3377
3378 /* Concatenate ELEM to LIST, a comma-separated list. */
3379
3380 static void
3381 str_comma_list_concat_elem (std::string *list, const char *elem)
3382 {
3383 if (!list->empty ())
3384 list->append (", ");
3385
3386 list->append (elem);
3387 }
3388
3389 /* Helper for target_options_to_string. If OPT is present in
3390 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3391 OPT is removed from TARGET_OPTIONS. */
3392
3393 static void
3394 do_option (int *target_options, std::string *ret,
3395 int opt, const char *opt_str)
3396 {
3397 if ((*target_options & opt) != 0)
3398 {
3399 str_comma_list_concat_elem (ret, opt_str);
3400 *target_options &= ~opt;
3401 }
3402 }
3403
3404 /* See target.h. */
3405
3406 std::string
3407 target_options_to_string (int target_options)
3408 {
3409 std::string ret;
3410
3411 #define DO_TARG_OPTION(OPT) \
3412 do_option (&target_options, &ret, OPT, #OPT)
3413
3414 DO_TARG_OPTION (TARGET_WNOHANG);
3415
3416 if (target_options != 0)
3417 str_comma_list_concat_elem (&ret, "unknown???");
3418
3419 return ret;
3420 }
3421
3422 void
3423 target_fetch_registers (struct regcache *regcache, int regno)
3424 {
3425 current_top_target ()->fetch_registers (regcache, regno);
3426 if (targetdebug)
3427 regcache->debug_print_register ("target_fetch_registers", regno);
3428 }
3429
3430 void
3431 target_store_registers (struct regcache *regcache, int regno)
3432 {
3433 if (!may_write_registers)
3434 error (_("Writing to registers is not allowed (regno %d)"), regno);
3435
3436 current_top_target ()->store_registers (regcache, regno);
3437 if (targetdebug)
3438 {
3439 regcache->debug_print_register ("target_store_registers", regno);
3440 }
3441 }
3442
3443 int
3444 target_core_of_thread (ptid_t ptid)
3445 {
3446 return current_top_target ()->core_of_thread (ptid);
3447 }
3448
3449 int
3450 simple_verify_memory (struct target_ops *ops,
3451 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3452 {
3453 LONGEST total_xfered = 0;
3454
3455 while (total_xfered < size)
3456 {
3457 ULONGEST xfered_len;
3458 enum target_xfer_status status;
3459 gdb_byte buf[1024];
3460 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3461
3462 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3463 buf, NULL, lma + total_xfered, howmuch,
3464 &xfered_len);
3465 if (status == TARGET_XFER_OK
3466 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3467 {
3468 total_xfered += xfered_len;
3469 QUIT;
3470 }
3471 else
3472 return 0;
3473 }
3474 return 1;
3475 }
3476
3477 /* Default implementation of memory verification. */
3478
3479 static int
3480 default_verify_memory (struct target_ops *self,
3481 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3482 {
3483 /* Start over from the top of the target stack. */
3484 return simple_verify_memory (current_top_target (),
3485 data, memaddr, size);
3486 }
3487
3488 int
3489 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3490 {
3491 return current_top_target ()->verify_memory (data, memaddr, size);
3492 }
3493
3494 /* The documentation for this function is in its prototype declaration in
3495 target.h. */
3496
3497 int
3498 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3499 enum target_hw_bp_type rw)
3500 {
3501 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3502 }
3503
3504 /* The documentation for this function is in its prototype declaration in
3505 target.h. */
3506
3507 int
3508 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3509 enum target_hw_bp_type rw)
3510 {
3511 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3512 }
3513
3514 /* The documentation for this function is in its prototype declaration
3515 in target.h. */
3516
3517 int
3518 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3519 {
3520 return current_top_target ()->masked_watch_num_registers (addr, mask);
3521 }
3522
3523 /* The documentation for this function is in its prototype declaration
3524 in target.h. */
3525
3526 int
3527 target_ranged_break_num_registers (void)
3528 {
3529 return current_top_target ()->ranged_break_num_registers ();
3530 }
3531
3532 /* See target.h. */
3533
3534 struct btrace_target_info *
3535 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3536 {
3537 return current_top_target ()->enable_btrace (ptid, conf);
3538 }
3539
3540 /* See target.h. */
3541
3542 void
3543 target_disable_btrace (struct btrace_target_info *btinfo)
3544 {
3545 current_top_target ()->disable_btrace (btinfo);
3546 }
3547
3548 /* See target.h. */
3549
3550 void
3551 target_teardown_btrace (struct btrace_target_info *btinfo)
3552 {
3553 current_top_target ()->teardown_btrace (btinfo);
3554 }
3555
3556 /* See target.h. */
3557
3558 enum btrace_error
3559 target_read_btrace (struct btrace_data *btrace,
3560 struct btrace_target_info *btinfo,
3561 enum btrace_read_type type)
3562 {
3563 return current_top_target ()->read_btrace (btrace, btinfo, type);
3564 }
3565
3566 /* See target.h. */
3567
3568 const struct btrace_config *
3569 target_btrace_conf (const struct btrace_target_info *btinfo)
3570 {
3571 return current_top_target ()->btrace_conf (btinfo);
3572 }
3573
3574 /* See target.h. */
3575
3576 void
3577 target_stop_recording (void)
3578 {
3579 current_top_target ()->stop_recording ();
3580 }
3581
3582 /* See target.h. */
3583
3584 void
3585 target_save_record (const char *filename)
3586 {
3587 current_top_target ()->save_record (filename);
3588 }
3589
3590 /* See target.h. */
3591
3592 int
3593 target_supports_delete_record ()
3594 {
3595 return current_top_target ()->supports_delete_record ();
3596 }
3597
3598 /* See target.h. */
3599
3600 void
3601 target_delete_record (void)
3602 {
3603 current_top_target ()->delete_record ();
3604 }
3605
3606 /* See target.h. */
3607
3608 enum record_method
3609 target_record_method (ptid_t ptid)
3610 {
3611 return current_top_target ()->record_method (ptid);
3612 }
3613
3614 /* See target.h. */
3615
3616 int
3617 target_record_is_replaying (ptid_t ptid)
3618 {
3619 return current_top_target ()->record_is_replaying (ptid);
3620 }
3621
3622 /* See target.h. */
3623
3624 int
3625 target_record_will_replay (ptid_t ptid, int dir)
3626 {
3627 return current_top_target ()->record_will_replay (ptid, dir);
3628 }
3629
3630 /* See target.h. */
3631
3632 void
3633 target_record_stop_replaying (void)
3634 {
3635 current_top_target ()->record_stop_replaying ();
3636 }
3637
3638 /* See target.h. */
3639
3640 void
3641 target_goto_record_begin (void)
3642 {
3643 current_top_target ()->goto_record_begin ();
3644 }
3645
3646 /* See target.h. */
3647
3648 void
3649 target_goto_record_end (void)
3650 {
3651 current_top_target ()->goto_record_end ();
3652 }
3653
3654 /* See target.h. */
3655
3656 void
3657 target_goto_record (ULONGEST insn)
3658 {
3659 current_top_target ()->goto_record (insn);
3660 }
3661
3662 /* See target.h. */
3663
3664 void
3665 target_insn_history (int size, gdb_disassembly_flags flags)
3666 {
3667 current_top_target ()->insn_history (size, flags);
3668 }
3669
3670 /* See target.h. */
3671
3672 void
3673 target_insn_history_from (ULONGEST from, int size,
3674 gdb_disassembly_flags flags)
3675 {
3676 current_top_target ()->insn_history_from (from, size, flags);
3677 }
3678
3679 /* See target.h. */
3680
3681 void
3682 target_insn_history_range (ULONGEST begin, ULONGEST end,
3683 gdb_disassembly_flags flags)
3684 {
3685 current_top_target ()->insn_history_range (begin, end, flags);
3686 }
3687
3688 /* See target.h. */
3689
3690 void
3691 target_call_history (int size, record_print_flags flags)
3692 {
3693 current_top_target ()->call_history (size, flags);
3694 }
3695
3696 /* See target.h. */
3697
3698 void
3699 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3700 {
3701 current_top_target ()->call_history_from (begin, size, flags);
3702 }
3703
3704 /* See target.h. */
3705
3706 void
3707 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3708 {
3709 current_top_target ()->call_history_range (begin, end, flags);
3710 }
3711
3712 /* See target.h. */
3713
3714 const struct frame_unwind *
3715 target_get_unwinder (void)
3716 {
3717 return current_top_target ()->get_unwinder ();
3718 }
3719
3720 /* See target.h. */
3721
3722 const struct frame_unwind *
3723 target_get_tailcall_unwinder (void)
3724 {
3725 return current_top_target ()->get_tailcall_unwinder ();
3726 }
3727
3728 /* See target.h. */
3729
3730 void
3731 target_prepare_to_generate_core (void)
3732 {
3733 current_top_target ()->prepare_to_generate_core ();
3734 }
3735
3736 /* See target.h. */
3737
3738 void
3739 target_done_generating_core (void)
3740 {
3741 current_top_target ()->done_generating_core ();
3742 }
3743
3744 \f
3745
3746 static char targ_desc[] =
3747 "Names of targets and files being debugged.\nShows the entire \
3748 stack of targets currently in use (including the exec-file,\n\
3749 core-file, and process, if any), as well as the symbol file name.";
3750
3751 static void
3752 default_rcmd (struct target_ops *self, const char *command,
3753 struct ui_file *output)
3754 {
3755 error (_("\"monitor\" command not supported by this target."));
3756 }
3757
3758 static void
3759 do_monitor_command (const char *cmd, int from_tty)
3760 {
3761 target_rcmd (cmd, gdb_stdtarg);
3762 }
3763
3764 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3765 ignored. */
3766
3767 void
3768 flash_erase_command (const char *cmd, int from_tty)
3769 {
3770 /* Used to communicate termination of flash operations to the target. */
3771 bool found_flash_region = false;
3772 struct gdbarch *gdbarch = target_gdbarch ();
3773
3774 std::vector<mem_region> mem_regions = target_memory_map ();
3775
3776 /* Iterate over all memory regions. */
3777 for (const mem_region &m : mem_regions)
3778 {
3779 /* Is this a flash memory region? */
3780 if (m.attrib.mode == MEM_FLASH)
3781 {
3782 found_flash_region = true;
3783 target_flash_erase (m.lo, m.hi - m.lo);
3784
3785 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3786
3787 current_uiout->message (_("Erasing flash memory region at address "));
3788 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3789 current_uiout->message (", size = ");
3790 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3791 current_uiout->message ("\n");
3792 }
3793 }
3794
3795 /* Did we do any flash operations? If so, we need to finalize them. */
3796 if (found_flash_region)
3797 target_flash_done ();
3798 else
3799 current_uiout->message (_("No flash memory regions found.\n"));
3800 }
3801
3802 /* Print the name of each layers of our target stack. */
3803
3804 static void
3805 maintenance_print_target_stack (const char *cmd, int from_tty)
3806 {
3807 printf_filtered (_("The current target stack is:\n"));
3808
3809 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3810 {
3811 if (t->stratum () == debug_stratum)
3812 continue;
3813 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3814 }
3815 }
3816
3817 /* See target.h. */
3818
3819 void
3820 target_async (int enable)
3821 {
3822 infrun_async (enable);
3823 current_top_target ()->async (enable);
3824 }
3825
3826 /* See target.h. */
3827
3828 void
3829 target_thread_events (int enable)
3830 {
3831 current_top_target ()->thread_events (enable);
3832 }
3833
3834 /* Controls if targets can report that they can/are async. This is
3835 just for maintainers to use when debugging gdb. */
3836 int target_async_permitted = 1;
3837
3838 /* The set command writes to this variable. If the inferior is
3839 executing, target_async_permitted is *not* updated. */
3840 static int target_async_permitted_1 = 1;
3841
3842 static void
3843 maint_set_target_async_command (const char *args, int from_tty,
3844 struct cmd_list_element *c)
3845 {
3846 if (have_live_inferiors ())
3847 {
3848 target_async_permitted_1 = target_async_permitted;
3849 error (_("Cannot change this setting while the inferior is running."));
3850 }
3851
3852 target_async_permitted = target_async_permitted_1;
3853 }
3854
3855 static void
3856 maint_show_target_async_command (struct ui_file *file, int from_tty,
3857 struct cmd_list_element *c,
3858 const char *value)
3859 {
3860 fprintf_filtered (file,
3861 _("Controlling the inferior in "
3862 "asynchronous mode is %s.\n"), value);
3863 }
3864
3865 /* Return true if the target operates in non-stop mode even with "set
3866 non-stop off". */
3867
3868 static int
3869 target_always_non_stop_p (void)
3870 {
3871 return current_top_target ()->always_non_stop_p ();
3872 }
3873
3874 /* See target.h. */
3875
3876 int
3877 target_is_non_stop_p (void)
3878 {
3879 return (non_stop
3880 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3881 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3882 && target_always_non_stop_p ()));
3883 }
3884
3885 /* Controls if targets can report that they always run in non-stop
3886 mode. This is just for maintainers to use when debugging gdb. */
3887 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3888
3889 /* The set command writes to this variable. If the inferior is
3890 executing, target_non_stop_enabled is *not* updated. */
3891 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3892
3893 /* Implementation of "maint set target-non-stop". */
3894
3895 static void
3896 maint_set_target_non_stop_command (const char *args, int from_tty,
3897 struct cmd_list_element *c)
3898 {
3899 if (have_live_inferiors ())
3900 {
3901 target_non_stop_enabled_1 = target_non_stop_enabled;
3902 error (_("Cannot change this setting while the inferior is running."));
3903 }
3904
3905 target_non_stop_enabled = target_non_stop_enabled_1;
3906 }
3907
3908 /* Implementation of "maint show target-non-stop". */
3909
3910 static void
3911 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3912 struct cmd_list_element *c,
3913 const char *value)
3914 {
3915 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3916 fprintf_filtered (file,
3917 _("Whether the target is always in non-stop mode "
3918 "is %s (currently %s).\n"), value,
3919 target_always_non_stop_p () ? "on" : "off");
3920 else
3921 fprintf_filtered (file,
3922 _("Whether the target is always in non-stop mode "
3923 "is %s.\n"), value);
3924 }
3925
3926 /* Temporary copies of permission settings. */
3927
3928 static int may_write_registers_1 = 1;
3929 static int may_write_memory_1 = 1;
3930 static int may_insert_breakpoints_1 = 1;
3931 static int may_insert_tracepoints_1 = 1;
3932 static int may_insert_fast_tracepoints_1 = 1;
3933 static int may_stop_1 = 1;
3934
3935 /* Make the user-set values match the real values again. */
3936
3937 void
3938 update_target_permissions (void)
3939 {
3940 may_write_registers_1 = may_write_registers;
3941 may_write_memory_1 = may_write_memory;
3942 may_insert_breakpoints_1 = may_insert_breakpoints;
3943 may_insert_tracepoints_1 = may_insert_tracepoints;
3944 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3945 may_stop_1 = may_stop;
3946 }
3947
3948 /* The one function handles (most of) the permission flags in the same
3949 way. */
3950
3951 static void
3952 set_target_permissions (const char *args, int from_tty,
3953 struct cmd_list_element *c)
3954 {
3955 if (target_has_execution)
3956 {
3957 update_target_permissions ();
3958 error (_("Cannot change this setting while the inferior is running."));
3959 }
3960
3961 /* Make the real values match the user-changed values. */
3962 may_write_registers = may_write_registers_1;
3963 may_insert_breakpoints = may_insert_breakpoints_1;
3964 may_insert_tracepoints = may_insert_tracepoints_1;
3965 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3966 may_stop = may_stop_1;
3967 update_observer_mode ();
3968 }
3969
3970 /* Set memory write permission independently of observer mode. */
3971
3972 static void
3973 set_write_memory_permission (const char *args, int from_tty,
3974 struct cmd_list_element *c)
3975 {
3976 /* Make the real values match the user-changed values. */
3977 may_write_memory = may_write_memory_1;
3978 update_observer_mode ();
3979 }
3980
3981 void
3982 initialize_targets (void)
3983 {
3984 push_target (&the_dummy_target);
3985
3986 the_debug_target = new debug_target ();
3987
3988 add_info ("target", info_target_command, targ_desc);
3989 add_info ("files", info_target_command, targ_desc);
3990
3991 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3992 Set target debugging."), _("\
3993 Show target debugging."), _("\
3994 When non-zero, target debugging is enabled. Higher numbers are more\n\
3995 verbose."),
3996 set_targetdebug,
3997 show_targetdebug,
3998 &setdebuglist, &showdebuglist);
3999
4000 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4001 &trust_readonly, _("\
4002 Set mode for reading from readonly sections."), _("\
4003 Show mode for reading from readonly sections."), _("\
4004 When this mode is on, memory reads from readonly sections (such as .text)\n\
4005 will be read from the object file instead of from the target. This will\n\
4006 result in significant performance improvement for remote targets."),
4007 NULL,
4008 show_trust_readonly,
4009 &setlist, &showlist);
4010
4011 add_com ("monitor", class_obscure, do_monitor_command,
4012 _("Send a command to the remote monitor (remote targets only)."));
4013
4014 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4015 _("Print the name of each layer of the internal target stack."),
4016 &maintenanceprintlist);
4017
4018 add_setshow_boolean_cmd ("target-async", no_class,
4019 &target_async_permitted_1, _("\
4020 Set whether gdb controls the inferior in asynchronous mode."), _("\
4021 Show whether gdb controls the inferior in asynchronous mode."), _("\
4022 Tells gdb whether to control the inferior in asynchronous mode."),
4023 maint_set_target_async_command,
4024 maint_show_target_async_command,
4025 &maintenance_set_cmdlist,
4026 &maintenance_show_cmdlist);
4027
4028 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4029 &target_non_stop_enabled_1, _("\
4030 Set whether gdb always controls the inferior in non-stop mode."), _("\
4031 Show whether gdb always controls the inferior in non-stop mode."), _("\
4032 Tells gdb whether to control the inferior in non-stop mode."),
4033 maint_set_target_non_stop_command,
4034 maint_show_target_non_stop_command,
4035 &maintenance_set_cmdlist,
4036 &maintenance_show_cmdlist);
4037
4038 add_setshow_boolean_cmd ("may-write-registers", class_support,
4039 &may_write_registers_1, _("\
4040 Set permission to write into registers."), _("\
4041 Show permission to write into registers."), _("\
4042 When this permission is on, GDB may write into the target's registers.\n\
4043 Otherwise, any sort of write attempt will result in an error."),
4044 set_target_permissions, NULL,
4045 &setlist, &showlist);
4046
4047 add_setshow_boolean_cmd ("may-write-memory", class_support,
4048 &may_write_memory_1, _("\
4049 Set permission to write into target memory."), _("\
4050 Show permission to write into target memory."), _("\
4051 When this permission is on, GDB may write into the target's memory.\n\
4052 Otherwise, any sort of write attempt will result in an error."),
4053 set_write_memory_permission, NULL,
4054 &setlist, &showlist);
4055
4056 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4057 &may_insert_breakpoints_1, _("\
4058 Set permission to insert breakpoints in the target."), _("\
4059 Show permission to insert breakpoints in the target."), _("\
4060 When this permission is on, GDB may insert breakpoints in the program.\n\
4061 Otherwise, any sort of insertion attempt will result in an error."),
4062 set_target_permissions, NULL,
4063 &setlist, &showlist);
4064
4065 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4066 &may_insert_tracepoints_1, _("\
4067 Set permission to insert tracepoints in the target."), _("\
4068 Show permission to insert tracepoints in the target."), _("\
4069 When this permission is on, GDB may insert tracepoints in the program.\n\
4070 Otherwise, any sort of insertion attempt will result in an error."),
4071 set_target_permissions, NULL,
4072 &setlist, &showlist);
4073
4074 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4075 &may_insert_fast_tracepoints_1, _("\
4076 Set permission to insert fast tracepoints in the target."), _("\
4077 Show permission to insert fast tracepoints in the target."), _("\
4078 When this permission is on, GDB may insert fast tracepoints.\n\
4079 Otherwise, any sort of insertion attempt will result in an error."),
4080 set_target_permissions, NULL,
4081 &setlist, &showlist);
4082
4083 add_setshow_boolean_cmd ("may-interrupt", class_support,
4084 &may_stop_1, _("\
4085 Set permission to interrupt or signal the target."), _("\
4086 Show permission to interrupt or signal the target."), _("\
4087 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4088 Otherwise, any attempt to interrupt or stop will be ignored."),
4089 set_target_permissions, NULL,
4090 &setlist, &showlist);
4091
4092 add_com ("flash-erase", no_class, flash_erase_command,
4093 _("Erase all flash memory regions."));
4094
4095 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4096 &auto_connect_native_target, _("\
4097 Set whether GDB may automatically connect to the native target."), _("\
4098 Show whether GDB may automatically connect to the native target."), _("\
4099 When on, and GDB is not connected to a target yet, GDB\n\
4100 attempts \"run\" and other commands with the native target."),
4101 NULL, show_auto_connect_native_target,
4102 &setlist, &showlist);
4103 }
This page took 0.11154 seconds and 5 git commands to generate.