convert to_core_of_thread
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int)
537 TARGET_DEFAULT_FUNC (default_follow_fork);
538 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_set_syscall_catchpoint) (struct target_ops *,
543 int, int, int, int, int *)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_has_exited) (struct target_ops *, int, int, int *)
546 TARGET_DEFAULT_RETURN (0);
547 void (*to_mourn_inferior) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (default_mourn_inferior);
549 int (*to_can_run) (struct target_ops *);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
562 void (*to_find_new_threads) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
565 TARGET_DEFAULT_FUNC (default_pid_to_str);
566 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
567 TARGET_DEFAULT_RETURN (0);
568 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
569 TARGET_DEFAULT_RETURN (0);
570 void (*to_stop) (struct target_ops *, ptid_t)
571 TARGET_DEFAULT_IGNORE ();
572 void (*to_rcmd) (struct target_ops *,
573 char *command, struct ui_file *output)
574 TARGET_DEFAULT_FUNC (default_rcmd);
575 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
576 TARGET_DEFAULT_RETURN (0);
577 void (*to_log_command) (struct target_ops *, const char *)
578 TARGET_DEFAULT_IGNORE ();
579 struct target_section_table *(*to_get_section_table) (struct target_ops *)
580 TARGET_DEFAULT_RETURN (0);
581 enum strata to_stratum;
582 int (*to_has_all_memory) (struct target_ops *);
583 int (*to_has_memory) (struct target_ops *);
584 int (*to_has_stack) (struct target_ops *);
585 int (*to_has_registers) (struct target_ops *);
586 int (*to_has_execution) (struct target_ops *, ptid_t);
587 int to_has_thread_control; /* control thread execution */
588 int to_attach_no_wait;
589 /* ASYNC target controls */
590 int (*to_can_async_p) (struct target_ops *)
591 TARGET_DEFAULT_FUNC (find_default_can_async_p);
592 int (*to_is_async_p) (struct target_ops *)
593 TARGET_DEFAULT_FUNC (find_default_is_async_p);
594 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 int (*to_supports_non_stop) (struct target_ops *);
597 /* find_memory_regions support method for gcore */
598 int (*to_find_memory_regions) (struct target_ops *,
599 find_memory_region_ftype func, void *data)
600 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
601 /* make_corefile_notes support method for gcore */
602 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
603 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
604 /* get_bookmark support method for bookmarks */
605 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
606 TARGET_DEFAULT_NORETURN (tcomplain ());
607 /* goto_bookmark support method for bookmarks */
608 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
609 TARGET_DEFAULT_NORETURN (tcomplain ());
610 /* Return the thread-local address at OFFSET in the
611 thread-local storage for the thread PTID and the shared library
612 or executable file given by OBJFILE. If that block of
613 thread-local storage hasn't been allocated yet, this function
614 may return an error. */
615 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
616 ptid_t ptid,
617 CORE_ADDR load_module_addr,
618 CORE_ADDR offset);
619
620 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
621 OBJECT. The OFFSET, for a seekable object, specifies the
622 starting point. The ANNEX can be used to provide additional
623 data-specific information to the target.
624
625 Return the transferred status, error or OK (an
626 'enum target_xfer_status' value). Save the number of bytes
627 actually transferred in *XFERED_LEN if transfer is successful
628 (TARGET_XFER_OK) or the number unavailable bytes if the requested
629 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
630 smaller than LEN does not indicate the end of the object, only
631 the end of the transfer; higher level code should continue
632 transferring if desired. This is handled in target.c.
633
634 The interface does not support a "retry" mechanism. Instead it
635 assumes that at least one byte will be transfered on each
636 successful call.
637
638 NOTE: cagney/2003-10-17: The current interface can lead to
639 fragmented transfers. Lower target levels should not implement
640 hacks, such as enlarging the transfer, in an attempt to
641 compensate for this. Instead, the target stack should be
642 extended so that it implements supply/collect methods and a
643 look-aside object cache. With that available, the lowest
644 target can safely and freely "push" data up the stack.
645
646 See target_read and target_write for more information. One,
647 and only one, of readbuf or writebuf must be non-NULL. */
648
649 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
650 enum target_object object,
651 const char *annex,
652 gdb_byte *readbuf,
653 const gdb_byte *writebuf,
654 ULONGEST offset, ULONGEST len,
655 ULONGEST *xfered_len)
656 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
657
658 /* Returns the memory map for the target. A return value of NULL
659 means that no memory map is available. If a memory address
660 does not fall within any returned regions, it's assumed to be
661 RAM. The returned memory regions should not overlap.
662
663 The order of regions does not matter; target_memory_map will
664 sort regions by starting address. For that reason, this
665 function should not be called directly except via
666 target_memory_map.
667
668 This method should not cache data; if the memory map could
669 change unexpectedly, it should be invalidated, and higher
670 layers will re-fetch it. */
671 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
672
673 /* Erases the region of flash memory starting at ADDRESS, of
674 length LENGTH.
675
676 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
677 on flash block boundaries, as reported by 'to_memory_map'. */
678 void (*to_flash_erase) (struct target_ops *,
679 ULONGEST address, LONGEST length)
680 TARGET_DEFAULT_NORETURN (tcomplain ());
681
682 /* Finishes a flash memory write sequence. After this operation
683 all flash memory should be available for writing and the result
684 of reading from areas written by 'to_flash_write' should be
685 equal to what was written. */
686 void (*to_flash_done) (struct target_ops *)
687 TARGET_DEFAULT_NORETURN (tcomplain ());
688
689 /* Describe the architecture-specific features of this target.
690 Returns the description found, or NULL if no description
691 was available. */
692 const struct target_desc *(*to_read_description) (struct target_ops *ops);
693
694 /* Build the PTID of the thread on which a given task is running,
695 based on LWP and THREAD. These values are extracted from the
696 task Private_Data section of the Ada Task Control Block, and
697 their interpretation depends on the target. */
698 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
699 long lwp, long thread)
700 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
701
702 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
703 Return 0 if *READPTR is already at the end of the buffer.
704 Return -1 if there is insufficient buffer for a whole entry.
705 Return 1 if an entry was read into *TYPEP and *VALP. */
706 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
707 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
708
709 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
710 sequence of bytes in PATTERN with length PATTERN_LEN.
711
712 The result is 1 if found, 0 if not found, and -1 if there was an error
713 requiring halting of the search (e.g. memory read error).
714 If the pattern is found the address is recorded in FOUND_ADDRP. */
715 int (*to_search_memory) (struct target_ops *ops,
716 CORE_ADDR start_addr, ULONGEST search_space_len,
717 const gdb_byte *pattern, ULONGEST pattern_len,
718 CORE_ADDR *found_addrp);
719
720 /* Can target execute in reverse? */
721 int (*to_can_execute_reverse) (struct target_ops *)
722 TARGET_DEFAULT_RETURN (0);
723
724 /* The direction the target is currently executing. Must be
725 implemented on targets that support reverse execution and async
726 mode. The default simply returns forward execution. */
727 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
728 TARGET_DEFAULT_FUNC (default_execution_direction);
729
730 /* Does this target support debugging multiple processes
731 simultaneously? */
732 int (*to_supports_multi_process) (struct target_ops *)
733 TARGET_DEFAULT_RETURN (0);
734
735 /* Does this target support enabling and disabling tracepoints while a trace
736 experiment is running? */
737 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
738 TARGET_DEFAULT_RETURN (0);
739
740 /* Does this target support disabling address space randomization? */
741 int (*to_supports_disable_randomization) (struct target_ops *);
742
743 /* Does this target support the tracenz bytecode for string collection? */
744 int (*to_supports_string_tracing) (struct target_ops *)
745 TARGET_DEFAULT_RETURN (0);
746
747 /* Does this target support evaluation of breakpoint conditions on its
748 end? */
749 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
750 TARGET_DEFAULT_RETURN (0);
751
752 /* Does this target support evaluation of breakpoint commands on its
753 end? */
754 int (*to_can_run_breakpoint_commands) (struct target_ops *)
755 TARGET_DEFAULT_RETURN (0);
756
757 /* Determine current architecture of thread PTID.
758
759 The target is supposed to determine the architecture of the code where
760 the target is currently stopped at (on Cell, if a target is in spu_run,
761 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
762 This is architecture used to perform decr_pc_after_break adjustment,
763 and also determines the frame architecture of the innermost frame.
764 ptrace operations need to operate according to target_gdbarch ().
765
766 The default implementation always returns target_gdbarch (). */
767 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
768 TARGET_DEFAULT_FUNC (default_thread_architecture);
769
770 /* Determine current address space of thread PTID.
771
772 The default implementation always returns the inferior's
773 address space. */
774 struct address_space *(*to_thread_address_space) (struct target_ops *,
775 ptid_t);
776
777 /* Target file operations. */
778
779 /* Open FILENAME on the target, using FLAGS and MODE. Return a
780 target file descriptor, or -1 if an error occurs (and set
781 *TARGET_ERRNO). */
782 int (*to_fileio_open) (struct target_ops *,
783 const char *filename, int flags, int mode,
784 int *target_errno);
785
786 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
787 Return the number of bytes written, or -1 if an error occurs
788 (and set *TARGET_ERRNO). */
789 int (*to_fileio_pwrite) (struct target_ops *,
790 int fd, const gdb_byte *write_buf, int len,
791 ULONGEST offset, int *target_errno);
792
793 /* Read up to LEN bytes FD on the target into READ_BUF.
794 Return the number of bytes read, or -1 if an error occurs
795 (and set *TARGET_ERRNO). */
796 int (*to_fileio_pread) (struct target_ops *,
797 int fd, gdb_byte *read_buf, int len,
798 ULONGEST offset, int *target_errno);
799
800 /* Close FD on the target. Return 0, or -1 if an error occurs
801 (and set *TARGET_ERRNO). */
802 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
803
804 /* Unlink FILENAME on the target. Return 0, or -1 if an error
805 occurs (and set *TARGET_ERRNO). */
806 int (*to_fileio_unlink) (struct target_ops *,
807 const char *filename, int *target_errno);
808
809 /* Read value of symbolic link FILENAME on the target. Return a
810 null-terminated string allocated via xmalloc, or NULL if an error
811 occurs (and set *TARGET_ERRNO). */
812 char *(*to_fileio_readlink) (struct target_ops *,
813 const char *filename, int *target_errno);
814
815
816 /* Implement the "info proc" command. */
817 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
818
819 /* Tracepoint-related operations. */
820
821 /* Prepare the target for a tracing run. */
822 void (*to_trace_init) (struct target_ops *)
823 TARGET_DEFAULT_NORETURN (tcomplain ());
824
825 /* Send full details of a tracepoint location to the target. */
826 void (*to_download_tracepoint) (struct target_ops *,
827 struct bp_location *location)
828 TARGET_DEFAULT_NORETURN (tcomplain ());
829
830 /* Is the target able to download tracepoint locations in current
831 state? */
832 int (*to_can_download_tracepoint) (struct target_ops *)
833 TARGET_DEFAULT_RETURN (0);
834
835 /* Send full details of a trace state variable to the target. */
836 void (*to_download_trace_state_variable) (struct target_ops *,
837 struct trace_state_variable *tsv)
838 TARGET_DEFAULT_NORETURN (tcomplain ());
839
840 /* Enable a tracepoint on the target. */
841 void (*to_enable_tracepoint) (struct target_ops *,
842 struct bp_location *location)
843 TARGET_DEFAULT_NORETURN (tcomplain ());
844
845 /* Disable a tracepoint on the target. */
846 void (*to_disable_tracepoint) (struct target_ops *,
847 struct bp_location *location)
848 TARGET_DEFAULT_NORETURN (tcomplain ());
849
850 /* Inform the target info of memory regions that are readonly
851 (such as text sections), and so it should return data from
852 those rather than look in the trace buffer. */
853 void (*to_trace_set_readonly_regions) (struct target_ops *)
854 TARGET_DEFAULT_NORETURN (tcomplain ());
855
856 /* Start a trace run. */
857 void (*to_trace_start) (struct target_ops *)
858 TARGET_DEFAULT_NORETURN (tcomplain ());
859
860 /* Get the current status of a tracing run. */
861 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
862 TARGET_DEFAULT_RETURN (-1);
863
864 void (*to_get_tracepoint_status) (struct target_ops *,
865 struct breakpoint *tp,
866 struct uploaded_tp *utp)
867 TARGET_DEFAULT_NORETURN (tcomplain ());
868
869 /* Stop a trace run. */
870 void (*to_trace_stop) (struct target_ops *)
871 TARGET_DEFAULT_NORETURN (tcomplain ());
872
873 /* Ask the target to find a trace frame of the given type TYPE,
874 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
875 number of the trace frame, and also the tracepoint number at
876 TPP. If no trace frame matches, return -1. May throw if the
877 operation fails. */
878 int (*to_trace_find) (struct target_ops *,
879 enum trace_find_type type, int num,
880 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
881 TARGET_DEFAULT_RETURN (-1);
882
883 /* Get the value of the trace state variable number TSV, returning
884 1 if the value is known and writing the value itself into the
885 location pointed to by VAL, else returning 0. */
886 int (*to_get_trace_state_variable_value) (struct target_ops *,
887 int tsv, LONGEST *val)
888 TARGET_DEFAULT_RETURN (0);
889
890 int (*to_save_trace_data) (struct target_ops *, const char *filename)
891 TARGET_DEFAULT_NORETURN (tcomplain ());
892
893 int (*to_upload_tracepoints) (struct target_ops *,
894 struct uploaded_tp **utpp)
895 TARGET_DEFAULT_RETURN (0);
896
897 int (*to_upload_trace_state_variables) (struct target_ops *,
898 struct uploaded_tsv **utsvp)
899 TARGET_DEFAULT_RETURN (0);
900
901 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
902 ULONGEST offset, LONGEST len)
903 TARGET_DEFAULT_NORETURN (tcomplain ());
904
905 /* Get the minimum length of instruction on which a fast tracepoint
906 may be set on the target. If this operation is unsupported,
907 return -1. If for some reason the minimum length cannot be
908 determined, return 0. */
909 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
910 TARGET_DEFAULT_RETURN (-1);
911
912 /* Set the target's tracing behavior in response to unexpected
913 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
914 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
915 TARGET_DEFAULT_IGNORE ();
916 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
917 TARGET_DEFAULT_IGNORE ();
918 /* Set the size of trace buffer in the target. */
919 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
920 TARGET_DEFAULT_IGNORE ();
921
922 /* Add/change textual notes about the trace run, returning 1 if
923 successful, 0 otherwise. */
924 int (*to_set_trace_notes) (struct target_ops *,
925 const char *user, const char *notes,
926 const char *stopnotes)
927 TARGET_DEFAULT_RETURN (0);
928
929 /* Return the processor core that thread PTID was last seen on.
930 This information is updated only when:
931 - update_thread_list is called
932 - thread stops
933 If the core cannot be determined -- either for the specified
934 thread, or right now, or in this debug session, or for this
935 target -- return -1. */
936 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
937 TARGET_DEFAULT_RETURN (-1);
938
939 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
940 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
941 a match, 0 if there's a mismatch, and -1 if an error is
942 encountered while reading memory. */
943 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
944 CORE_ADDR memaddr, ULONGEST size);
945
946 /* Return the address of the start of the Thread Information Block
947 a Windows OS specific feature. */
948 int (*to_get_tib_address) (struct target_ops *,
949 ptid_t ptid, CORE_ADDR *addr)
950 TARGET_DEFAULT_NORETURN (tcomplain ());
951
952 /* Send the new settings of write permission variables. */
953 void (*to_set_permissions) (struct target_ops *)
954 TARGET_DEFAULT_IGNORE ();
955
956 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
957 with its details. Return 1 on success, 0 on failure. */
958 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
959 struct static_tracepoint_marker *marker)
960 TARGET_DEFAULT_RETURN (0);
961
962 /* Return a vector of all tracepoints markers string id ID, or all
963 markers if ID is NULL. */
964 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
965 TARGET_DEFAULT_NORETURN (tcomplain ());
966
967 /* Return a traceframe info object describing the current
968 traceframe's contents. If the target doesn't support
969 traceframe info, return NULL. If the current traceframe is not
970 selected (the current traceframe number is -1), the target can
971 choose to return either NULL or an empty traceframe info. If
972 NULL is returned, for example in remote target, GDB will read
973 from the live inferior. If an empty traceframe info is
974 returned, for example in tfile target, which means the
975 traceframe info is available, but the requested memory is not
976 available in it. GDB will try to see if the requested memory
977 is available in the read-only sections. This method should not
978 cache data; higher layers take care of caching, invalidating,
979 and re-fetching when necessary. */
980 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
981 TARGET_DEFAULT_RETURN (0);
982
983 /* Ask the target to use or not to use agent according to USE. Return 1
984 successful, 0 otherwise. */
985 int (*to_use_agent) (struct target_ops *, int use)
986 TARGET_DEFAULT_NORETURN (tcomplain ());
987
988 /* Is the target able to use agent in current state? */
989 int (*to_can_use_agent) (struct target_ops *)
990 TARGET_DEFAULT_RETURN (0);
991
992 /* Check whether the target supports branch tracing. */
993 int (*to_supports_btrace) (struct target_ops *)
994 TARGET_DEFAULT_RETURN (0);
995
996 /* Enable branch tracing for PTID and allocate a branch trace target
997 information struct for reading and for disabling branch trace. */
998 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
999 ptid_t ptid);
1000
1001 /* Disable branch tracing and deallocate TINFO. */
1002 void (*to_disable_btrace) (struct target_ops *,
1003 struct btrace_target_info *tinfo);
1004
1005 /* Disable branch tracing and deallocate TINFO. This function is similar
1006 to to_disable_btrace, except that it is called during teardown and is
1007 only allowed to perform actions that are safe. A counter-example would
1008 be attempting to talk to a remote target. */
1009 void (*to_teardown_btrace) (struct target_ops *,
1010 struct btrace_target_info *tinfo);
1011
1012 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1013 DATA is cleared before new trace is added.
1014 The branch trace will start with the most recent block and continue
1015 towards older blocks. */
1016 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1017 VEC (btrace_block_s) **data,
1018 struct btrace_target_info *btinfo,
1019 enum btrace_read_type type);
1020
1021 /* Stop trace recording. */
1022 void (*to_stop_recording) (struct target_ops *);
1023
1024 /* Print information about the recording. */
1025 void (*to_info_record) (struct target_ops *);
1026
1027 /* Save the recorded execution trace into a file. */
1028 void (*to_save_record) (struct target_ops *, const char *filename);
1029
1030 /* Delete the recorded execution trace from the current position onwards. */
1031 void (*to_delete_record) (struct target_ops *);
1032
1033 /* Query if the record target is currently replaying. */
1034 int (*to_record_is_replaying) (struct target_ops *);
1035
1036 /* Go to the begin of the execution trace. */
1037 void (*to_goto_record_begin) (struct target_ops *);
1038
1039 /* Go to the end of the execution trace. */
1040 void (*to_goto_record_end) (struct target_ops *);
1041
1042 /* Go to a specific location in the recorded execution trace. */
1043 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1044
1045 /* Disassemble SIZE instructions in the recorded execution trace from
1046 the current position.
1047 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1048 disassemble SIZE succeeding instructions. */
1049 void (*to_insn_history) (struct target_ops *, int size, int flags);
1050
1051 /* Disassemble SIZE instructions in the recorded execution trace around
1052 FROM.
1053 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1054 disassemble SIZE instructions after FROM. */
1055 void (*to_insn_history_from) (struct target_ops *,
1056 ULONGEST from, int size, int flags);
1057
1058 /* Disassemble a section of the recorded execution trace from instruction
1059 BEGIN (inclusive) to instruction END (inclusive). */
1060 void (*to_insn_history_range) (struct target_ops *,
1061 ULONGEST begin, ULONGEST end, int flags);
1062
1063 /* Print a function trace of the recorded execution trace.
1064 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1065 succeeding functions. */
1066 void (*to_call_history) (struct target_ops *, int size, int flags);
1067
1068 /* Print a function trace of the recorded execution trace starting
1069 at function FROM.
1070 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1071 SIZE functions after FROM. */
1072 void (*to_call_history_from) (struct target_ops *,
1073 ULONGEST begin, int size, int flags);
1074
1075 /* Print a function trace of an execution trace section from function BEGIN
1076 (inclusive) to function END (inclusive). */
1077 void (*to_call_history_range) (struct target_ops *,
1078 ULONGEST begin, ULONGEST end, int flags);
1079
1080 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1081 non-empty annex. */
1082 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1083 TARGET_DEFAULT_RETURN (0);
1084
1085 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1086 it is not used. */
1087 const struct frame_unwind *to_get_unwinder;
1088 const struct frame_unwind *to_get_tailcall_unwinder;
1089
1090 /* Return the number of bytes by which the PC needs to be decremented
1091 after executing a breakpoint instruction.
1092 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1093 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1094 struct gdbarch *gdbarch);
1095
1096 int to_magic;
1097 /* Need sub-structure for target machine related rather than comm related?
1098 */
1099 };
1100
1101 /* Magic number for checking ops size. If a struct doesn't end with this
1102 number, somebody changed the declaration but didn't change all the
1103 places that initialize one. */
1104
1105 #define OPS_MAGIC 3840
1106
1107 /* The ops structure for our "current" target process. This should
1108 never be NULL. If there is no target, it points to the dummy_target. */
1109
1110 extern struct target_ops current_target;
1111
1112 /* Define easy words for doing these operations on our current target. */
1113
1114 #define target_shortname (current_target.to_shortname)
1115 #define target_longname (current_target.to_longname)
1116
1117 /* Does whatever cleanup is required for a target that we are no
1118 longer going to be calling. This routine is automatically always
1119 called after popping the target off the target stack - the target's
1120 own methods are no longer available through the target vector.
1121 Closing file descriptors and freeing all memory allocated memory are
1122 typical things it should do. */
1123
1124 void target_close (struct target_ops *targ);
1125
1126 /* Attaches to a process on the target side. Arguments are as passed
1127 to the `attach' command by the user. This routine can be called
1128 when the target is not on the target-stack, if the target_can_run
1129 routine returns 1; in that case, it must push itself onto the stack.
1130 Upon exit, the target should be ready for normal operations, and
1131 should be ready to deliver the status of the process immediately
1132 (without waiting) to an upcoming target_wait call. */
1133
1134 void target_attach (char *, int);
1135
1136 /* Some targets don't generate traps when attaching to the inferior,
1137 or their target_attach implementation takes care of the waiting.
1138 These targets must set to_attach_no_wait. */
1139
1140 #define target_attach_no_wait \
1141 (current_target.to_attach_no_wait)
1142
1143 /* The target_attach operation places a process under debugger control,
1144 and stops the process.
1145
1146 This operation provides a target-specific hook that allows the
1147 necessary bookkeeping to be performed after an attach completes. */
1148 #define target_post_attach(pid) \
1149 (*current_target.to_post_attach) (&current_target, pid)
1150
1151 /* Takes a program previously attached to and detaches it.
1152 The program may resume execution (some targets do, some don't) and will
1153 no longer stop on signals, etc. We better not have left any breakpoints
1154 in the program or it'll die when it hits one. ARGS is arguments
1155 typed by the user (e.g. a signal to send the process). FROM_TTY
1156 says whether to be verbose or not. */
1157
1158 extern void target_detach (const char *, int);
1159
1160 /* Disconnect from the current target without resuming it (leaving it
1161 waiting for a debugger). */
1162
1163 extern void target_disconnect (char *, int);
1164
1165 /* Resume execution of the target process PTID (or a group of
1166 threads). STEP says whether to single-step or to run free; SIGGNAL
1167 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1168 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1169 PTID means `step/resume only this process id'. A wildcard PTID
1170 (all threads, or all threads of process) means `step/resume
1171 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1172 matches) resume with their 'thread->suspend.stop_signal' signal
1173 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1174 if in "no pass" state. */
1175
1176 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1177
1178 /* Wait for process pid to do something. PTID = -1 to wait for any
1179 pid to do something. Return pid of child, or -1 in case of error;
1180 store status through argument pointer STATUS. Note that it is
1181 _NOT_ OK to throw_exception() out of target_wait() without popping
1182 the debugging target from the stack; GDB isn't prepared to get back
1183 to the prompt with a debugging target but without the frame cache,
1184 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1185 options. */
1186
1187 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1188 int options);
1189
1190 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1191
1192 extern void target_fetch_registers (struct regcache *regcache, int regno);
1193
1194 /* Store at least register REGNO, or all regs if REGNO == -1.
1195 It can store as many registers as it wants to, so target_prepare_to_store
1196 must have been previously called. Calls error() if there are problems. */
1197
1198 extern void target_store_registers (struct regcache *regcache, int regs);
1199
1200 /* Get ready to modify the registers array. On machines which store
1201 individual registers, this doesn't need to do anything. On machines
1202 which store all the registers in one fell swoop, this makes sure
1203 that REGISTERS contains all the registers from the program being
1204 debugged. */
1205
1206 #define target_prepare_to_store(regcache) \
1207 (*current_target.to_prepare_to_store) (&current_target, regcache)
1208
1209 /* Determine current address space of thread PTID. */
1210
1211 struct address_space *target_thread_address_space (ptid_t);
1212
1213 /* Implement the "info proc" command. This returns one if the request
1214 was handled, and zero otherwise. It can also throw an exception if
1215 an error was encountered while attempting to handle the
1216 request. */
1217
1218 int target_info_proc (char *, enum info_proc_what);
1219
1220 /* Returns true if this target can debug multiple processes
1221 simultaneously. */
1222
1223 #define target_supports_multi_process() \
1224 (*current_target.to_supports_multi_process) (&current_target)
1225
1226 /* Returns true if this target can disable address space randomization. */
1227
1228 int target_supports_disable_randomization (void);
1229
1230 /* Returns true if this target can enable and disable tracepoints
1231 while a trace experiment is running. */
1232
1233 #define target_supports_enable_disable_tracepoint() \
1234 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1235
1236 #define target_supports_string_tracing() \
1237 (*current_target.to_supports_string_tracing) (&current_target)
1238
1239 /* Returns true if this target can handle breakpoint conditions
1240 on its end. */
1241
1242 #define target_supports_evaluation_of_breakpoint_conditions() \
1243 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1244
1245 /* Returns true if this target can handle breakpoint commands
1246 on its end. */
1247
1248 #define target_can_run_breakpoint_commands() \
1249 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1250
1251 extern int target_read_string (CORE_ADDR, char **, int, int *);
1252
1253 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1254 ssize_t len);
1255
1256 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1257 ssize_t len);
1258
1259 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1260
1261 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1262
1263 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1264 ssize_t len);
1265
1266 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1267 ssize_t len);
1268
1269 /* Fetches the target's memory map. If one is found it is sorted
1270 and returned, after some consistency checking. Otherwise, NULL
1271 is returned. */
1272 VEC(mem_region_s) *target_memory_map (void);
1273
1274 /* Erase the specified flash region. */
1275 void target_flash_erase (ULONGEST address, LONGEST length);
1276
1277 /* Finish a sequence of flash operations. */
1278 void target_flash_done (void);
1279
1280 /* Describes a request for a memory write operation. */
1281 struct memory_write_request
1282 {
1283 /* Begining address that must be written. */
1284 ULONGEST begin;
1285 /* Past-the-end address. */
1286 ULONGEST end;
1287 /* The data to write. */
1288 gdb_byte *data;
1289 /* A callback baton for progress reporting for this request. */
1290 void *baton;
1291 };
1292 typedef struct memory_write_request memory_write_request_s;
1293 DEF_VEC_O(memory_write_request_s);
1294
1295 /* Enumeration specifying different flash preservation behaviour. */
1296 enum flash_preserve_mode
1297 {
1298 flash_preserve,
1299 flash_discard
1300 };
1301
1302 /* Write several memory blocks at once. This version can be more
1303 efficient than making several calls to target_write_memory, in
1304 particular because it can optimize accesses to flash memory.
1305
1306 Moreover, this is currently the only memory access function in gdb
1307 that supports writing to flash memory, and it should be used for
1308 all cases where access to flash memory is desirable.
1309
1310 REQUESTS is the vector (see vec.h) of memory_write_request.
1311 PRESERVE_FLASH_P indicates what to do with blocks which must be
1312 erased, but not completely rewritten.
1313 PROGRESS_CB is a function that will be periodically called to provide
1314 feedback to user. It will be called with the baton corresponding
1315 to the request currently being written. It may also be called
1316 with a NULL baton, when preserved flash sectors are being rewritten.
1317
1318 The function returns 0 on success, and error otherwise. */
1319 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1320 enum flash_preserve_mode preserve_flash_p,
1321 void (*progress_cb) (ULONGEST, void *));
1322
1323 /* Print a line about the current target. */
1324
1325 #define target_files_info() \
1326 (*current_target.to_files_info) (&current_target)
1327
1328 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1329 the target machine. Returns 0 for success, and returns non-zero or
1330 throws an error (with a detailed failure reason error code and
1331 message) otherwise. */
1332
1333 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1334 struct bp_target_info *bp_tgt);
1335
1336 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1337 machine. Result is 0 for success, non-zero for error. */
1338
1339 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1340 struct bp_target_info *bp_tgt);
1341
1342 /* Initialize the terminal settings we record for the inferior,
1343 before we actually run the inferior. */
1344
1345 #define target_terminal_init() \
1346 (*current_target.to_terminal_init) (&current_target)
1347
1348 /* Put the inferior's terminal settings into effect.
1349 This is preparation for starting or resuming the inferior. */
1350
1351 extern void target_terminal_inferior (void);
1352
1353 /* Put some of our terminal settings into effect,
1354 enough to get proper results from our output,
1355 but do not change into or out of RAW mode
1356 so that no input is discarded.
1357
1358 After doing this, either terminal_ours or terminal_inferior
1359 should be called to get back to a normal state of affairs. */
1360
1361 #define target_terminal_ours_for_output() \
1362 (*current_target.to_terminal_ours_for_output) (&current_target)
1363
1364 /* Put our terminal settings into effect.
1365 First record the inferior's terminal settings
1366 so they can be restored properly later. */
1367
1368 #define target_terminal_ours() \
1369 (*current_target.to_terminal_ours) (&current_target)
1370
1371 /* Save our terminal settings.
1372 This is called from TUI after entering or leaving the curses
1373 mode. Since curses modifies our terminal this call is here
1374 to take this change into account. */
1375
1376 #define target_terminal_save_ours() \
1377 (*current_target.to_terminal_save_ours) (&current_target)
1378
1379 /* Print useful information about our terminal status, if such a thing
1380 exists. */
1381
1382 #define target_terminal_info(arg, from_tty) \
1383 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1384
1385 /* Kill the inferior process. Make it go away. */
1386
1387 extern void target_kill (void);
1388
1389 /* Load an executable file into the target process. This is expected
1390 to not only bring new code into the target process, but also to
1391 update GDB's symbol tables to match.
1392
1393 ARG contains command-line arguments, to be broken down with
1394 buildargv (). The first non-switch argument is the filename to
1395 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1396 0)), which is an offset to apply to the load addresses of FILE's
1397 sections. The target may define switches, or other non-switch
1398 arguments, as it pleases. */
1399
1400 extern void target_load (char *arg, int from_tty);
1401
1402 /* Start an inferior process and set inferior_ptid to its pid.
1403 EXEC_FILE is the file to run.
1404 ALLARGS is a string containing the arguments to the program.
1405 ENV is the environment vector to pass. Errors reported with error().
1406 On VxWorks and various standalone systems, we ignore exec_file. */
1407
1408 void target_create_inferior (char *exec_file, char *args,
1409 char **env, int from_tty);
1410
1411 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1412 notification of inferior events such as fork and vork immediately
1413 after the inferior is created. (This because of how gdb gets an
1414 inferior created via invoking a shell to do it. In such a scenario,
1415 if the shell init file has commands in it, the shell will fork and
1416 exec for each of those commands, and we will see each such fork
1417 event. Very bad.)
1418
1419 Such targets will supply an appropriate definition for this function. */
1420
1421 #define target_post_startup_inferior(ptid) \
1422 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1423
1424 /* On some targets, we can catch an inferior fork or vfork event when
1425 it occurs. These functions insert/remove an already-created
1426 catchpoint for such events. They return 0 for success, 1 if the
1427 catchpoint type is not supported and -1 for failure. */
1428
1429 #define target_insert_fork_catchpoint(pid) \
1430 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1431
1432 #define target_remove_fork_catchpoint(pid) \
1433 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1434
1435 #define target_insert_vfork_catchpoint(pid) \
1436 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1437
1438 #define target_remove_vfork_catchpoint(pid) \
1439 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1440
1441 /* If the inferior forks or vforks, this function will be called at
1442 the next resume in order to perform any bookkeeping and fiddling
1443 necessary to continue debugging either the parent or child, as
1444 requested, and releasing the other. Information about the fork
1445 or vfork event is available via get_last_target_status ().
1446 This function returns 1 if the inferior should not be resumed
1447 (i.e. there is another event pending). */
1448
1449 int target_follow_fork (int follow_child, int detach_fork);
1450
1451 /* On some targets, we can catch an inferior exec event when it
1452 occurs. These functions insert/remove an already-created
1453 catchpoint for such events. They return 0 for success, 1 if the
1454 catchpoint type is not supported and -1 for failure. */
1455
1456 #define target_insert_exec_catchpoint(pid) \
1457 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1458
1459 #define target_remove_exec_catchpoint(pid) \
1460 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1461
1462 /* Syscall catch.
1463
1464 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1465 If NEEDED is zero, it means the target can disable the mechanism to
1466 catch system calls because there are no more catchpoints of this type.
1467
1468 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1469 being requested. In this case, both TABLE_SIZE and TABLE should
1470 be ignored.
1471
1472 TABLE_SIZE is the number of elements in TABLE. It only matters if
1473 ANY_COUNT is zero.
1474
1475 TABLE is an array of ints, indexed by syscall number. An element in
1476 this array is nonzero if that syscall should be caught. This argument
1477 only matters if ANY_COUNT is zero.
1478
1479 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1480 for failure. */
1481
1482 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1483 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1484 pid, needed, any_count, \
1485 table_size, table)
1486
1487 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1488 exit code of PID, if any. */
1489
1490 #define target_has_exited(pid,wait_status,exit_status) \
1491 (*current_target.to_has_exited) (&current_target, \
1492 pid,wait_status,exit_status)
1493
1494 /* The debugger has completed a blocking wait() call. There is now
1495 some process event that must be processed. This function should
1496 be defined by those targets that require the debugger to perform
1497 cleanup or internal state changes in response to the process event. */
1498
1499 /* The inferior process has died. Do what is right. */
1500
1501 void target_mourn_inferior (void);
1502
1503 /* Does target have enough data to do a run or attach command? */
1504
1505 #define target_can_run(t) \
1506 ((t)->to_can_run) (t)
1507
1508 /* Set list of signals to be handled in the target.
1509
1510 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1511 (enum gdb_signal). For every signal whose entry in this array is
1512 non-zero, the target is allowed -but not required- to skip reporting
1513 arrival of the signal to the GDB core by returning from target_wait,
1514 and to pass the signal directly to the inferior instead.
1515
1516 However, if the target is hardware single-stepping a thread that is
1517 about to receive a signal, it needs to be reported in any case, even
1518 if mentioned in a previous target_pass_signals call. */
1519
1520 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1521
1522 /* Set list of signals the target may pass to the inferior. This
1523 directly maps to the "handle SIGNAL pass/nopass" setting.
1524
1525 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1526 number (enum gdb_signal). For every signal whose entry in this
1527 array is non-zero, the target is allowed to pass the signal to the
1528 inferior. Signals not present in the array shall be silently
1529 discarded. This does not influence whether to pass signals to the
1530 inferior as a result of a target_resume call. This is useful in
1531 scenarios where the target needs to decide whether to pass or not a
1532 signal to the inferior without GDB core involvement, such as for
1533 example, when detaching (as threads may have been suspended with
1534 pending signals not reported to GDB). */
1535
1536 extern void target_program_signals (int nsig, unsigned char *program_signals);
1537
1538 /* Check to see if a thread is still alive. */
1539
1540 extern int target_thread_alive (ptid_t ptid);
1541
1542 /* Query for new threads and add them to the thread list. */
1543
1544 extern void target_find_new_threads (void);
1545
1546 /* Make target stop in a continuable fashion. (For instance, under
1547 Unix, this should act like SIGSTOP). This function is normally
1548 used by GUIs to implement a stop button. */
1549
1550 extern void target_stop (ptid_t ptid);
1551
1552 /* Send the specified COMMAND to the target's monitor
1553 (shell,interpreter) for execution. The result of the query is
1554 placed in OUTBUF. */
1555
1556 #define target_rcmd(command, outbuf) \
1557 (*current_target.to_rcmd) (&current_target, command, outbuf)
1558
1559
1560 /* Does the target include all of memory, or only part of it? This
1561 determines whether we look up the target chain for other parts of
1562 memory if this target can't satisfy a request. */
1563
1564 extern int target_has_all_memory_1 (void);
1565 #define target_has_all_memory target_has_all_memory_1 ()
1566
1567 /* Does the target include memory? (Dummy targets don't.) */
1568
1569 extern int target_has_memory_1 (void);
1570 #define target_has_memory target_has_memory_1 ()
1571
1572 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1573 we start a process.) */
1574
1575 extern int target_has_stack_1 (void);
1576 #define target_has_stack target_has_stack_1 ()
1577
1578 /* Does the target have registers? (Exec files don't.) */
1579
1580 extern int target_has_registers_1 (void);
1581 #define target_has_registers target_has_registers_1 ()
1582
1583 /* Does the target have execution? Can we make it jump (through
1584 hoops), or pop its stack a few times? This means that the current
1585 target is currently executing; for some targets, that's the same as
1586 whether or not the target is capable of execution, but there are
1587 also targets which can be current while not executing. In that
1588 case this will become true after target_create_inferior or
1589 target_attach. */
1590
1591 extern int target_has_execution_1 (ptid_t);
1592
1593 /* Like target_has_execution_1, but always passes inferior_ptid. */
1594
1595 extern int target_has_execution_current (void);
1596
1597 #define target_has_execution target_has_execution_current ()
1598
1599 /* Default implementations for process_stratum targets. Return true
1600 if there's a selected inferior, false otherwise. */
1601
1602 extern int default_child_has_all_memory (struct target_ops *ops);
1603 extern int default_child_has_memory (struct target_ops *ops);
1604 extern int default_child_has_stack (struct target_ops *ops);
1605 extern int default_child_has_registers (struct target_ops *ops);
1606 extern int default_child_has_execution (struct target_ops *ops,
1607 ptid_t the_ptid);
1608
1609 /* Can the target support the debugger control of thread execution?
1610 Can it lock the thread scheduler? */
1611
1612 #define target_can_lock_scheduler \
1613 (current_target.to_has_thread_control & tc_schedlock)
1614
1615 /* Should the target enable async mode if it is supported? Temporary
1616 cludge until async mode is a strict superset of sync mode. */
1617 extern int target_async_permitted;
1618
1619 /* Can the target support asynchronous execution? */
1620 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1621
1622 /* Is the target in asynchronous execution mode? */
1623 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1624
1625 int target_supports_non_stop (void);
1626
1627 /* Put the target in async mode with the specified callback function. */
1628 #define target_async(CALLBACK,CONTEXT) \
1629 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1630
1631 #define target_execution_direction() \
1632 (current_target.to_execution_direction (&current_target))
1633
1634 /* Converts a process id to a string. Usually, the string just contains
1635 `process xyz', but on some systems it may contain
1636 `process xyz thread abc'. */
1637
1638 extern char *target_pid_to_str (ptid_t ptid);
1639
1640 extern char *normal_pid_to_str (ptid_t ptid);
1641
1642 /* Return a short string describing extra information about PID,
1643 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1644 is okay. */
1645
1646 #define target_extra_thread_info(TP) \
1647 (current_target.to_extra_thread_info (&current_target, TP))
1648
1649 /* Return the thread's name. A NULL result means that the target
1650 could not determine this thread's name. */
1651
1652 extern char *target_thread_name (struct thread_info *);
1653
1654 /* Attempts to find the pathname of the executable file
1655 that was run to create a specified process.
1656
1657 The process PID must be stopped when this operation is used.
1658
1659 If the executable file cannot be determined, NULL is returned.
1660
1661 Else, a pointer to a character string containing the pathname
1662 is returned. This string should be copied into a buffer by
1663 the client if the string will not be immediately used, or if
1664 it must persist. */
1665
1666 #define target_pid_to_exec_file(pid) \
1667 (current_target.to_pid_to_exec_file) (&current_target, pid)
1668
1669 /* See the to_thread_architecture description in struct target_ops. */
1670
1671 #define target_thread_architecture(ptid) \
1672 (current_target.to_thread_architecture (&current_target, ptid))
1673
1674 /*
1675 * Iterator function for target memory regions.
1676 * Calls a callback function once for each memory region 'mapped'
1677 * in the child process. Defined as a simple macro rather than
1678 * as a function macro so that it can be tested for nullity.
1679 */
1680
1681 #define target_find_memory_regions(FUNC, DATA) \
1682 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1683
1684 /*
1685 * Compose corefile .note section.
1686 */
1687
1688 #define target_make_corefile_notes(BFD, SIZE_P) \
1689 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1690
1691 /* Bookmark interfaces. */
1692 #define target_get_bookmark(ARGS, FROM_TTY) \
1693 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1694
1695 #define target_goto_bookmark(ARG, FROM_TTY) \
1696 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1697
1698 /* Hardware watchpoint interfaces. */
1699
1700 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1701 write). Only the INFERIOR_PTID task is being queried. */
1702
1703 #define target_stopped_by_watchpoint() \
1704 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1705
1706 /* Non-zero if we have steppable watchpoints */
1707
1708 #define target_have_steppable_watchpoint \
1709 (current_target.to_have_steppable_watchpoint)
1710
1711 /* Non-zero if we have continuable watchpoints */
1712
1713 #define target_have_continuable_watchpoint \
1714 (current_target.to_have_continuable_watchpoint)
1715
1716 /* Provide defaults for hardware watchpoint functions. */
1717
1718 /* If the *_hw_beakpoint functions have not been defined
1719 elsewhere use the definitions in the target vector. */
1720
1721 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1722 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1723 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1724 (including this one?). OTHERTYPE is who knows what... */
1725
1726 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1727 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1728 TYPE, CNT, OTHERTYPE);
1729
1730 /* Returns the number of debug registers needed to watch the given
1731 memory region, or zero if not supported. */
1732
1733 #define target_region_ok_for_hw_watchpoint(addr, len) \
1734 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1735 addr, len)
1736
1737
1738 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1739 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1740 COND is the expression for its condition, or NULL if there's none.
1741 Returns 0 for success, 1 if the watchpoint type is not supported,
1742 -1 for failure. */
1743
1744 #define target_insert_watchpoint(addr, len, type, cond) \
1745 (*current_target.to_insert_watchpoint) (&current_target, \
1746 addr, len, type, cond)
1747
1748 #define target_remove_watchpoint(addr, len, type, cond) \
1749 (*current_target.to_remove_watchpoint) (&current_target, \
1750 addr, len, type, cond)
1751
1752 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1753 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1754 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1755 masked watchpoints are not supported, -1 for failure. */
1756
1757 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1758
1759 /* Remove a masked watchpoint at ADDR with the mask MASK.
1760 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1761 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1762 for failure. */
1763
1764 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1765
1766 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1767 the target machine. Returns 0 for success, and returns non-zero or
1768 throws an error (with a detailed failure reason error code and
1769 message) otherwise. */
1770
1771 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1772 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1773 gdbarch, bp_tgt)
1774
1775 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1776 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1777 gdbarch, bp_tgt)
1778
1779 /* Return number of debug registers needed for a ranged breakpoint,
1780 or -1 if ranged breakpoints are not supported. */
1781
1782 extern int target_ranged_break_num_registers (void);
1783
1784 /* Return non-zero if target knows the data address which triggered this
1785 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1786 INFERIOR_PTID task is being queried. */
1787 #define target_stopped_data_address(target, addr_p) \
1788 (*target.to_stopped_data_address) (target, addr_p)
1789
1790 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1791 LENGTH bytes beginning at START. */
1792 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1793 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1794
1795 /* Return non-zero if the target is capable of using hardware to evaluate
1796 the condition expression. In this case, if the condition is false when
1797 the watched memory location changes, execution may continue without the
1798 debugger being notified.
1799
1800 Due to limitations in the hardware implementation, it may be capable of
1801 avoiding triggering the watchpoint in some cases where the condition
1802 expression is false, but may report some false positives as well.
1803 For this reason, GDB will still evaluate the condition expression when
1804 the watchpoint triggers. */
1805 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1806 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1807 addr, len, type, cond)
1808
1809 /* Return number of debug registers needed for a masked watchpoint,
1810 -1 if masked watchpoints are not supported or -2 if the given address
1811 and mask combination cannot be used. */
1812
1813 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1814
1815 /* Target can execute in reverse? */
1816 #define target_can_execute_reverse \
1817 current_target.to_can_execute_reverse (&current_target)
1818
1819 extern const struct target_desc *target_read_description (struct target_ops *);
1820
1821 #define target_get_ada_task_ptid(lwp, tid) \
1822 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1823
1824 /* Utility implementation of searching memory. */
1825 extern int simple_search_memory (struct target_ops* ops,
1826 CORE_ADDR start_addr,
1827 ULONGEST search_space_len,
1828 const gdb_byte *pattern,
1829 ULONGEST pattern_len,
1830 CORE_ADDR *found_addrp);
1831
1832 /* Main entry point for searching memory. */
1833 extern int target_search_memory (CORE_ADDR start_addr,
1834 ULONGEST search_space_len,
1835 const gdb_byte *pattern,
1836 ULONGEST pattern_len,
1837 CORE_ADDR *found_addrp);
1838
1839 /* Target file operations. */
1840
1841 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1842 target file descriptor, or -1 if an error occurs (and set
1843 *TARGET_ERRNO). */
1844 extern int target_fileio_open (const char *filename, int flags, int mode,
1845 int *target_errno);
1846
1847 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1848 Return the number of bytes written, or -1 if an error occurs
1849 (and set *TARGET_ERRNO). */
1850 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1851 ULONGEST offset, int *target_errno);
1852
1853 /* Read up to LEN bytes FD on the target into READ_BUF.
1854 Return the number of bytes read, or -1 if an error occurs
1855 (and set *TARGET_ERRNO). */
1856 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1857 ULONGEST offset, int *target_errno);
1858
1859 /* Close FD on the target. Return 0, or -1 if an error occurs
1860 (and set *TARGET_ERRNO). */
1861 extern int target_fileio_close (int fd, int *target_errno);
1862
1863 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1864 occurs (and set *TARGET_ERRNO). */
1865 extern int target_fileio_unlink (const char *filename, int *target_errno);
1866
1867 /* Read value of symbolic link FILENAME on the target. Return a
1868 null-terminated string allocated via xmalloc, or NULL if an error
1869 occurs (and set *TARGET_ERRNO). */
1870 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1871
1872 /* Read target file FILENAME. The return value will be -1 if the transfer
1873 fails or is not supported; 0 if the object is empty; or the length
1874 of the object otherwise. If a positive value is returned, a
1875 sufficiently large buffer will be allocated using xmalloc and
1876 returned in *BUF_P containing the contents of the object.
1877
1878 This method should be used for objects sufficiently small to store
1879 in a single xmalloc'd buffer, when no fixed bound on the object's
1880 size is known in advance. */
1881 extern LONGEST target_fileio_read_alloc (const char *filename,
1882 gdb_byte **buf_p);
1883
1884 /* Read target file FILENAME. The result is NUL-terminated and
1885 returned as a string, allocated using xmalloc. If an error occurs
1886 or the transfer is unsupported, NULL is returned. Empty objects
1887 are returned as allocated but empty strings. A warning is issued
1888 if the result contains any embedded NUL bytes. */
1889 extern char *target_fileio_read_stralloc (const char *filename);
1890
1891
1892 /* Tracepoint-related operations. */
1893
1894 #define target_trace_init() \
1895 (*current_target.to_trace_init) (&current_target)
1896
1897 #define target_download_tracepoint(t) \
1898 (*current_target.to_download_tracepoint) (&current_target, t)
1899
1900 #define target_can_download_tracepoint() \
1901 (*current_target.to_can_download_tracepoint) (&current_target)
1902
1903 #define target_download_trace_state_variable(tsv) \
1904 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1905
1906 #define target_enable_tracepoint(loc) \
1907 (*current_target.to_enable_tracepoint) (&current_target, loc)
1908
1909 #define target_disable_tracepoint(loc) \
1910 (*current_target.to_disable_tracepoint) (&current_target, loc)
1911
1912 #define target_trace_start() \
1913 (*current_target.to_trace_start) (&current_target)
1914
1915 #define target_trace_set_readonly_regions() \
1916 (*current_target.to_trace_set_readonly_regions) (&current_target)
1917
1918 #define target_get_trace_status(ts) \
1919 (*current_target.to_get_trace_status) (&current_target, ts)
1920
1921 #define target_get_tracepoint_status(tp,utp) \
1922 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1923
1924 #define target_trace_stop() \
1925 (*current_target.to_trace_stop) (&current_target)
1926
1927 #define target_trace_find(type,num,addr1,addr2,tpp) \
1928 (*current_target.to_trace_find) (&current_target, \
1929 (type), (num), (addr1), (addr2), (tpp))
1930
1931 #define target_get_trace_state_variable_value(tsv,val) \
1932 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1933 (tsv), (val))
1934
1935 #define target_save_trace_data(filename) \
1936 (*current_target.to_save_trace_data) (&current_target, filename)
1937
1938 #define target_upload_tracepoints(utpp) \
1939 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1940
1941 #define target_upload_trace_state_variables(utsvp) \
1942 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1943
1944 #define target_get_raw_trace_data(buf,offset,len) \
1945 (*current_target.to_get_raw_trace_data) (&current_target, \
1946 (buf), (offset), (len))
1947
1948 #define target_get_min_fast_tracepoint_insn_len() \
1949 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1950
1951 #define target_set_disconnected_tracing(val) \
1952 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1953
1954 #define target_set_circular_trace_buffer(val) \
1955 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1956
1957 #define target_set_trace_buffer_size(val) \
1958 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1959
1960 #define target_set_trace_notes(user,notes,stopnotes) \
1961 (*current_target.to_set_trace_notes) (&current_target, \
1962 (user), (notes), (stopnotes))
1963
1964 #define target_get_tib_address(ptid, addr) \
1965 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1966
1967 #define target_set_permissions() \
1968 (*current_target.to_set_permissions) (&current_target)
1969
1970 #define target_static_tracepoint_marker_at(addr, marker) \
1971 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1972 addr, marker)
1973
1974 #define target_static_tracepoint_markers_by_strid(marker_id) \
1975 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1976 marker_id)
1977
1978 #define target_traceframe_info() \
1979 (*current_target.to_traceframe_info) (&current_target)
1980
1981 #define target_use_agent(use) \
1982 (*current_target.to_use_agent) (&current_target, use)
1983
1984 #define target_can_use_agent() \
1985 (*current_target.to_can_use_agent) (&current_target)
1986
1987 #define target_augmented_libraries_svr4_read() \
1988 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1989
1990 /* Command logging facility. */
1991
1992 #define target_log_command(p) \
1993 (*current_target.to_log_command) (&current_target, p)
1994
1995
1996 extern int target_core_of_thread (ptid_t ptid);
1997
1998 /* See to_get_unwinder in struct target_ops. */
1999 extern const struct frame_unwind *target_get_unwinder (void);
2000
2001 /* See to_get_tailcall_unwinder in struct target_ops. */
2002 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2003
2004 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2005 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2006 if there's a mismatch, and -1 if an error is encountered while
2007 reading memory. Throws an error if the functionality is found not
2008 to be supported by the current target. */
2009 int target_verify_memory (const gdb_byte *data,
2010 CORE_ADDR memaddr, ULONGEST size);
2011
2012 /* Routines for maintenance of the target structures...
2013
2014 complete_target_initialization: Finalize a target_ops by filling in
2015 any fields needed by the target implementation.
2016
2017 add_target: Add a target to the list of all possible targets.
2018
2019 push_target: Make this target the top of the stack of currently used
2020 targets, within its particular stratum of the stack. Result
2021 is 0 if now atop the stack, nonzero if not on top (maybe
2022 should warn user).
2023
2024 unpush_target: Remove this from the stack of currently used targets,
2025 no matter where it is on the list. Returns 0 if no
2026 change, 1 if removed from stack. */
2027
2028 extern void add_target (struct target_ops *);
2029
2030 extern void add_target_with_completer (struct target_ops *t,
2031 completer_ftype *completer);
2032
2033 extern void complete_target_initialization (struct target_ops *t);
2034
2035 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2036 for maintaining backwards compatibility when renaming targets. */
2037
2038 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2039
2040 extern void push_target (struct target_ops *);
2041
2042 extern int unpush_target (struct target_ops *);
2043
2044 extern void target_pre_inferior (int);
2045
2046 extern void target_preopen (int);
2047
2048 /* Does whatever cleanup is required to get rid of all pushed targets. */
2049 extern void pop_all_targets (void);
2050
2051 /* Like pop_all_targets, but pops only targets whose stratum is
2052 strictly above ABOVE_STRATUM. */
2053 extern void pop_all_targets_above (enum strata above_stratum);
2054
2055 extern int target_is_pushed (struct target_ops *t);
2056
2057 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2058 CORE_ADDR offset);
2059
2060 /* Struct target_section maps address ranges to file sections. It is
2061 mostly used with BFD files, but can be used without (e.g. for handling
2062 raw disks, or files not in formats handled by BFD). */
2063
2064 struct target_section
2065 {
2066 CORE_ADDR addr; /* Lowest address in section */
2067 CORE_ADDR endaddr; /* 1+highest address in section */
2068
2069 struct bfd_section *the_bfd_section;
2070
2071 /* The "owner" of the section.
2072 It can be any unique value. It is set by add_target_sections
2073 and used by remove_target_sections.
2074 For example, for executables it is a pointer to exec_bfd and
2075 for shlibs it is the so_list pointer. */
2076 void *owner;
2077 };
2078
2079 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2080
2081 struct target_section_table
2082 {
2083 struct target_section *sections;
2084 struct target_section *sections_end;
2085 };
2086
2087 /* Return the "section" containing the specified address. */
2088 struct target_section *target_section_by_addr (struct target_ops *target,
2089 CORE_ADDR addr);
2090
2091 /* Return the target section table this target (or the targets
2092 beneath) currently manipulate. */
2093
2094 extern struct target_section_table *target_get_section_table
2095 (struct target_ops *target);
2096
2097 /* From mem-break.c */
2098
2099 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2100 struct bp_target_info *);
2101
2102 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2103 struct bp_target_info *);
2104
2105 extern int default_memory_remove_breakpoint (struct gdbarch *,
2106 struct bp_target_info *);
2107
2108 extern int default_memory_insert_breakpoint (struct gdbarch *,
2109 struct bp_target_info *);
2110
2111
2112 /* From target.c */
2113
2114 extern void initialize_targets (void);
2115
2116 extern void noprocess (void) ATTRIBUTE_NORETURN;
2117
2118 extern void target_require_runnable (void);
2119
2120 extern void find_default_attach (struct target_ops *, char *, int);
2121
2122 extern void find_default_create_inferior (struct target_ops *,
2123 char *, char *, char **, int);
2124
2125 extern struct target_ops *find_target_beneath (struct target_ops *);
2126
2127 /* Find the target at STRATUM. If no target is at that stratum,
2128 return NULL. */
2129
2130 struct target_ops *find_target_at (enum strata stratum);
2131
2132 /* Read OS data object of type TYPE from the target, and return it in
2133 XML format. The result is NUL-terminated and returned as a string,
2134 allocated using xmalloc. If an error occurs or the transfer is
2135 unsupported, NULL is returned. Empty objects are returned as
2136 allocated but empty strings. */
2137
2138 extern char *target_get_osdata (const char *type);
2139
2140 \f
2141 /* Stuff that should be shared among the various remote targets. */
2142
2143 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2144 information (higher values, more information). */
2145 extern int remote_debug;
2146
2147 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2148 extern int baud_rate;
2149 /* Timeout limit for response from target. */
2150 extern int remote_timeout;
2151
2152 \f
2153
2154 /* Set the show memory breakpoints mode to show, and installs a cleanup
2155 to restore it back to the current value. */
2156 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2157
2158 extern int may_write_registers;
2159 extern int may_write_memory;
2160 extern int may_insert_breakpoints;
2161 extern int may_insert_tracepoints;
2162 extern int may_insert_fast_tracepoints;
2163 extern int may_stop;
2164
2165 extern void update_target_permissions (void);
2166
2167 \f
2168 /* Imported from machine dependent code. */
2169
2170 /* Blank target vector entries are initialized to target_ignore. */
2171 void target_ignore (void);
2172
2173 /* See to_supports_btrace in struct target_ops. */
2174 #define target_supports_btrace() \
2175 (current_target.to_supports_btrace (&current_target))
2176
2177 /* See to_enable_btrace in struct target_ops. */
2178 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2179
2180 /* See to_disable_btrace in struct target_ops. */
2181 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2182
2183 /* See to_teardown_btrace in struct target_ops. */
2184 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2185
2186 /* See to_read_btrace in struct target_ops. */
2187 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2188 struct btrace_target_info *,
2189 enum btrace_read_type);
2190
2191 /* See to_stop_recording in struct target_ops. */
2192 extern void target_stop_recording (void);
2193
2194 /* See to_info_record in struct target_ops. */
2195 extern void target_info_record (void);
2196
2197 /* See to_save_record in struct target_ops. */
2198 extern void target_save_record (const char *filename);
2199
2200 /* Query if the target supports deleting the execution log. */
2201 extern int target_supports_delete_record (void);
2202
2203 /* See to_delete_record in struct target_ops. */
2204 extern void target_delete_record (void);
2205
2206 /* See to_record_is_replaying in struct target_ops. */
2207 extern int target_record_is_replaying (void);
2208
2209 /* See to_goto_record_begin in struct target_ops. */
2210 extern void target_goto_record_begin (void);
2211
2212 /* See to_goto_record_end in struct target_ops. */
2213 extern void target_goto_record_end (void);
2214
2215 /* See to_goto_record in struct target_ops. */
2216 extern void target_goto_record (ULONGEST insn);
2217
2218 /* See to_insn_history. */
2219 extern void target_insn_history (int size, int flags);
2220
2221 /* See to_insn_history_from. */
2222 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2223
2224 /* See to_insn_history_range. */
2225 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2226
2227 /* See to_call_history. */
2228 extern void target_call_history (int size, int flags);
2229
2230 /* See to_call_history_from. */
2231 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2232
2233 /* See to_call_history_range. */
2234 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2235
2236 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2237 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2238 struct gdbarch *gdbarch);
2239
2240 /* See to_decr_pc_after_break. */
2241 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2242
2243 #endif /* !defined (TARGET_H) */
This page took 0.081531 seconds and 4 git commands to generate.