convert to_prepare_to_store
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *);
451 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
452 struct bp_target_info *)
453 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
454 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
455 struct bp_target_info *)
456 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
457 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
458 int (*to_ranged_break_num_registers) (struct target_ops *);
459 int (*to_insert_hw_breakpoint) (struct target_ops *,
460 struct gdbarch *, struct bp_target_info *);
461 int (*to_remove_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *);
463
464 /* Documentation of what the two routines below are expected to do is
465 provided with the corresponding target_* macros. */
466 int (*to_remove_watchpoint) (struct target_ops *,
467 CORE_ADDR, int, int, struct expression *);
468 int (*to_insert_watchpoint) (struct target_ops *,
469 CORE_ADDR, int, int, struct expression *);
470
471 int (*to_insert_mask_watchpoint) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int);
473 int (*to_remove_mask_watchpoint) (struct target_ops *,
474 CORE_ADDR, CORE_ADDR, int);
475 int (*to_stopped_by_watchpoint) (struct target_ops *)
476 TARGET_DEFAULT_RETURN (0);
477 int to_have_steppable_watchpoint;
478 int to_have_continuable_watchpoint;
479 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
480 TARGET_DEFAULT_RETURN (0);
481 int (*to_watchpoint_addr_within_range) (struct target_ops *,
482 CORE_ADDR, CORE_ADDR, int);
483
484 /* Documentation of this routine is provided with the corresponding
485 target_* macro. */
486 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
487 CORE_ADDR, int);
488
489 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
490 CORE_ADDR, int, int,
491 struct expression *);
492 int (*to_masked_watch_num_registers) (struct target_ops *,
493 CORE_ADDR, CORE_ADDR);
494 void (*to_terminal_init) (struct target_ops *);
495 void (*to_terminal_inferior) (struct target_ops *);
496 void (*to_terminal_ours_for_output) (struct target_ops *);
497 void (*to_terminal_ours) (struct target_ops *);
498 void (*to_terminal_save_ours) (struct target_ops *);
499 void (*to_terminal_info) (struct target_ops *, const char *, int);
500 void (*to_kill) (struct target_ops *);
501 void (*to_load) (struct target_ops *, char *, int);
502 void (*to_create_inferior) (struct target_ops *,
503 char *, char *, char **, int);
504 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
505 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
506 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
507 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
508 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
509 int (*to_follow_fork) (struct target_ops *, int, int);
510 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
511 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
512 int (*to_set_syscall_catchpoint) (struct target_ops *,
513 int, int, int, int, int *);
514 int (*to_has_exited) (struct target_ops *, int, int, int *);
515 void (*to_mourn_inferior) (struct target_ops *);
516 int (*to_can_run) (struct target_ops *);
517
518 /* Documentation of this routine is provided with the corresponding
519 target_* macro. */
520 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
521
522 /* Documentation of this routine is provided with the
523 corresponding target_* function. */
524 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
525
526 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
527 void (*to_find_new_threads) (struct target_ops *);
528 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
529 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
530 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
531 void (*to_stop) (struct target_ops *, ptid_t);
532 void (*to_rcmd) (struct target_ops *,
533 char *command, struct ui_file *output)
534 TARGET_DEFAULT_FUNC (default_rcmd);
535 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
536 void (*to_log_command) (struct target_ops *, const char *);
537 struct target_section_table *(*to_get_section_table) (struct target_ops *);
538 enum strata to_stratum;
539 int (*to_has_all_memory) (struct target_ops *);
540 int (*to_has_memory) (struct target_ops *);
541 int (*to_has_stack) (struct target_ops *);
542 int (*to_has_registers) (struct target_ops *);
543 int (*to_has_execution) (struct target_ops *, ptid_t);
544 int to_has_thread_control; /* control thread execution */
545 int to_attach_no_wait;
546 /* ASYNC target controls */
547 int (*to_can_async_p) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (find_default_can_async_p);
549 int (*to_is_async_p) (struct target_ops *)
550 TARGET_DEFAULT_FUNC (find_default_is_async_p);
551 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
552 TARGET_DEFAULT_NORETURN (tcomplain ());
553 int (*to_supports_non_stop) (struct target_ops *);
554 /* find_memory_regions support method for gcore */
555 int (*to_find_memory_regions) (struct target_ops *,
556 find_memory_region_ftype func, void *data);
557 /* make_corefile_notes support method for gcore */
558 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
559 /* get_bookmark support method for bookmarks */
560 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
561 /* goto_bookmark support method for bookmarks */
562 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
563 /* Return the thread-local address at OFFSET in the
564 thread-local storage for the thread PTID and the shared library
565 or executable file given by OBJFILE. If that block of
566 thread-local storage hasn't been allocated yet, this function
567 may return an error. */
568 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
569 ptid_t ptid,
570 CORE_ADDR load_module_addr,
571 CORE_ADDR offset);
572
573 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
574 OBJECT. The OFFSET, for a seekable object, specifies the
575 starting point. The ANNEX can be used to provide additional
576 data-specific information to the target.
577
578 Return the transferred status, error or OK (an
579 'enum target_xfer_status' value). Save the number of bytes
580 actually transferred in *XFERED_LEN if transfer is successful
581 (TARGET_XFER_OK) or the number unavailable bytes if the requested
582 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
583 smaller than LEN does not indicate the end of the object, only
584 the end of the transfer; higher level code should continue
585 transferring if desired. This is handled in target.c.
586
587 The interface does not support a "retry" mechanism. Instead it
588 assumes that at least one byte will be transfered on each
589 successful call.
590
591 NOTE: cagney/2003-10-17: The current interface can lead to
592 fragmented transfers. Lower target levels should not implement
593 hacks, such as enlarging the transfer, in an attempt to
594 compensate for this. Instead, the target stack should be
595 extended so that it implements supply/collect methods and a
596 look-aside object cache. With that available, the lowest
597 target can safely and freely "push" data up the stack.
598
599 See target_read and target_write for more information. One,
600 and only one, of readbuf or writebuf must be non-NULL. */
601
602 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
603 enum target_object object,
604 const char *annex,
605 gdb_byte *readbuf,
606 const gdb_byte *writebuf,
607 ULONGEST offset, ULONGEST len,
608 ULONGEST *xfered_len)
609 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
610
611 /* Returns the memory map for the target. A return value of NULL
612 means that no memory map is available. If a memory address
613 does not fall within any returned regions, it's assumed to be
614 RAM. The returned memory regions should not overlap.
615
616 The order of regions does not matter; target_memory_map will
617 sort regions by starting address. For that reason, this
618 function should not be called directly except via
619 target_memory_map.
620
621 This method should not cache data; if the memory map could
622 change unexpectedly, it should be invalidated, and higher
623 layers will re-fetch it. */
624 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
625
626 /* Erases the region of flash memory starting at ADDRESS, of
627 length LENGTH.
628
629 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
630 on flash block boundaries, as reported by 'to_memory_map'. */
631 void (*to_flash_erase) (struct target_ops *,
632 ULONGEST address, LONGEST length);
633
634 /* Finishes a flash memory write sequence. After this operation
635 all flash memory should be available for writing and the result
636 of reading from areas written by 'to_flash_write' should be
637 equal to what was written. */
638 void (*to_flash_done) (struct target_ops *);
639
640 /* Describe the architecture-specific features of this target.
641 Returns the description found, or NULL if no description
642 was available. */
643 const struct target_desc *(*to_read_description) (struct target_ops *ops);
644
645 /* Build the PTID of the thread on which a given task is running,
646 based on LWP and THREAD. These values are extracted from the
647 task Private_Data section of the Ada Task Control Block, and
648 their interpretation depends on the target. */
649 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
650 long lwp, long thread);
651
652 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
653 Return 0 if *READPTR is already at the end of the buffer.
654 Return -1 if there is insufficient buffer for a whole entry.
655 Return 1 if an entry was read into *TYPEP and *VALP. */
656 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
657 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
658
659 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
660 sequence of bytes in PATTERN with length PATTERN_LEN.
661
662 The result is 1 if found, 0 if not found, and -1 if there was an error
663 requiring halting of the search (e.g. memory read error).
664 If the pattern is found the address is recorded in FOUND_ADDRP. */
665 int (*to_search_memory) (struct target_ops *ops,
666 CORE_ADDR start_addr, ULONGEST search_space_len,
667 const gdb_byte *pattern, ULONGEST pattern_len,
668 CORE_ADDR *found_addrp);
669
670 /* Can target execute in reverse? */
671 int (*to_can_execute_reverse) (struct target_ops *);
672
673 /* The direction the target is currently executing. Must be
674 implemented on targets that support reverse execution and async
675 mode. The default simply returns forward execution. */
676 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
677
678 /* Does this target support debugging multiple processes
679 simultaneously? */
680 int (*to_supports_multi_process) (struct target_ops *);
681
682 /* Does this target support enabling and disabling tracepoints while a trace
683 experiment is running? */
684 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
685
686 /* Does this target support disabling address space randomization? */
687 int (*to_supports_disable_randomization) (struct target_ops *);
688
689 /* Does this target support the tracenz bytecode for string collection? */
690 int (*to_supports_string_tracing) (struct target_ops *);
691
692 /* Does this target support evaluation of breakpoint conditions on its
693 end? */
694 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
695
696 /* Does this target support evaluation of breakpoint commands on its
697 end? */
698 int (*to_can_run_breakpoint_commands) (struct target_ops *);
699
700 /* Determine current architecture of thread PTID.
701
702 The target is supposed to determine the architecture of the code where
703 the target is currently stopped at (on Cell, if a target is in spu_run,
704 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
705 This is architecture used to perform decr_pc_after_break adjustment,
706 and also determines the frame architecture of the innermost frame.
707 ptrace operations need to operate according to target_gdbarch ().
708
709 The default implementation always returns target_gdbarch (). */
710 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
711
712 /* Determine current address space of thread PTID.
713
714 The default implementation always returns the inferior's
715 address space. */
716 struct address_space *(*to_thread_address_space) (struct target_ops *,
717 ptid_t);
718
719 /* Target file operations. */
720
721 /* Open FILENAME on the target, using FLAGS and MODE. Return a
722 target file descriptor, or -1 if an error occurs (and set
723 *TARGET_ERRNO). */
724 int (*to_fileio_open) (struct target_ops *,
725 const char *filename, int flags, int mode,
726 int *target_errno);
727
728 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
729 Return the number of bytes written, or -1 if an error occurs
730 (and set *TARGET_ERRNO). */
731 int (*to_fileio_pwrite) (struct target_ops *,
732 int fd, const gdb_byte *write_buf, int len,
733 ULONGEST offset, int *target_errno);
734
735 /* Read up to LEN bytes FD on the target into READ_BUF.
736 Return the number of bytes read, or -1 if an error occurs
737 (and set *TARGET_ERRNO). */
738 int (*to_fileio_pread) (struct target_ops *,
739 int fd, gdb_byte *read_buf, int len,
740 ULONGEST offset, int *target_errno);
741
742 /* Close FD on the target. Return 0, or -1 if an error occurs
743 (and set *TARGET_ERRNO). */
744 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
745
746 /* Unlink FILENAME on the target. Return 0, or -1 if an error
747 occurs (and set *TARGET_ERRNO). */
748 int (*to_fileio_unlink) (struct target_ops *,
749 const char *filename, int *target_errno);
750
751 /* Read value of symbolic link FILENAME on the target. Return a
752 null-terminated string allocated via xmalloc, or NULL if an error
753 occurs (and set *TARGET_ERRNO). */
754 char *(*to_fileio_readlink) (struct target_ops *,
755 const char *filename, int *target_errno);
756
757
758 /* Implement the "info proc" command. */
759 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
760
761 /* Tracepoint-related operations. */
762
763 /* Prepare the target for a tracing run. */
764 void (*to_trace_init) (struct target_ops *);
765
766 /* Send full details of a tracepoint location to the target. */
767 void (*to_download_tracepoint) (struct target_ops *,
768 struct bp_location *location);
769
770 /* Is the target able to download tracepoint locations in current
771 state? */
772 int (*to_can_download_tracepoint) (struct target_ops *);
773
774 /* Send full details of a trace state variable to the target. */
775 void (*to_download_trace_state_variable) (struct target_ops *,
776 struct trace_state_variable *tsv);
777
778 /* Enable a tracepoint on the target. */
779 void (*to_enable_tracepoint) (struct target_ops *,
780 struct bp_location *location);
781
782 /* Disable a tracepoint on the target. */
783 void (*to_disable_tracepoint) (struct target_ops *,
784 struct bp_location *location);
785
786 /* Inform the target info of memory regions that are readonly
787 (such as text sections), and so it should return data from
788 those rather than look in the trace buffer. */
789 void (*to_trace_set_readonly_regions) (struct target_ops *);
790
791 /* Start a trace run. */
792 void (*to_trace_start) (struct target_ops *);
793
794 /* Get the current status of a tracing run. */
795 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
796
797 void (*to_get_tracepoint_status) (struct target_ops *,
798 struct breakpoint *tp,
799 struct uploaded_tp *utp);
800
801 /* Stop a trace run. */
802 void (*to_trace_stop) (struct target_ops *);
803
804 /* Ask the target to find a trace frame of the given type TYPE,
805 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
806 number of the trace frame, and also the tracepoint number at
807 TPP. If no trace frame matches, return -1. May throw if the
808 operation fails. */
809 int (*to_trace_find) (struct target_ops *,
810 enum trace_find_type type, int num,
811 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
812
813 /* Get the value of the trace state variable number TSV, returning
814 1 if the value is known and writing the value itself into the
815 location pointed to by VAL, else returning 0. */
816 int (*to_get_trace_state_variable_value) (struct target_ops *,
817 int tsv, LONGEST *val);
818
819 int (*to_save_trace_data) (struct target_ops *, const char *filename);
820
821 int (*to_upload_tracepoints) (struct target_ops *,
822 struct uploaded_tp **utpp);
823
824 int (*to_upload_trace_state_variables) (struct target_ops *,
825 struct uploaded_tsv **utsvp);
826
827 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
828 ULONGEST offset, LONGEST len);
829
830 /* Get the minimum length of instruction on which a fast tracepoint
831 may be set on the target. If this operation is unsupported,
832 return -1. If for some reason the minimum length cannot be
833 determined, return 0. */
834 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
835
836 /* Set the target's tracing behavior in response to unexpected
837 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
838 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
839 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
840 /* Set the size of trace buffer in the target. */
841 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
842
843 /* Add/change textual notes about the trace run, returning 1 if
844 successful, 0 otherwise. */
845 int (*to_set_trace_notes) (struct target_ops *,
846 const char *user, const char *notes,
847 const char *stopnotes);
848
849 /* Return the processor core that thread PTID was last seen on.
850 This information is updated only when:
851 - update_thread_list is called
852 - thread stops
853 If the core cannot be determined -- either for the specified
854 thread, or right now, or in this debug session, or for this
855 target -- return -1. */
856 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
857
858 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
859 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
860 a match, 0 if there's a mismatch, and -1 if an error is
861 encountered while reading memory. */
862 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
863 CORE_ADDR memaddr, ULONGEST size);
864
865 /* Return the address of the start of the Thread Information Block
866 a Windows OS specific feature. */
867 int (*to_get_tib_address) (struct target_ops *,
868 ptid_t ptid, CORE_ADDR *addr);
869
870 /* Send the new settings of write permission variables. */
871 void (*to_set_permissions) (struct target_ops *);
872
873 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
874 with its details. Return 1 on success, 0 on failure. */
875 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
876 struct static_tracepoint_marker *marker);
877
878 /* Return a vector of all tracepoints markers string id ID, or all
879 markers if ID is NULL. */
880 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
881 (struct target_ops *, const char *id);
882
883 /* Return a traceframe info object describing the current
884 traceframe's contents. If the target doesn't support
885 traceframe info, return NULL. If the current traceframe is not
886 selected (the current traceframe number is -1), the target can
887 choose to return either NULL or an empty traceframe info. If
888 NULL is returned, for example in remote target, GDB will read
889 from the live inferior. If an empty traceframe info is
890 returned, for example in tfile target, which means the
891 traceframe info is available, but the requested memory is not
892 available in it. GDB will try to see if the requested memory
893 is available in the read-only sections. This method should not
894 cache data; higher layers take care of caching, invalidating,
895 and re-fetching when necessary. */
896 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
897
898 /* Ask the target to use or not to use agent according to USE. Return 1
899 successful, 0 otherwise. */
900 int (*to_use_agent) (struct target_ops *, int use);
901
902 /* Is the target able to use agent in current state? */
903 int (*to_can_use_agent) (struct target_ops *);
904
905 /* Check whether the target supports branch tracing. */
906 int (*to_supports_btrace) (struct target_ops *)
907 TARGET_DEFAULT_RETURN (0);
908
909 /* Enable branch tracing for PTID and allocate a branch trace target
910 information struct for reading and for disabling branch trace. */
911 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
912 ptid_t ptid);
913
914 /* Disable branch tracing and deallocate TINFO. */
915 void (*to_disable_btrace) (struct target_ops *,
916 struct btrace_target_info *tinfo);
917
918 /* Disable branch tracing and deallocate TINFO. This function is similar
919 to to_disable_btrace, except that it is called during teardown and is
920 only allowed to perform actions that are safe. A counter-example would
921 be attempting to talk to a remote target. */
922 void (*to_teardown_btrace) (struct target_ops *,
923 struct btrace_target_info *tinfo);
924
925 /* Read branch trace data for the thread indicated by BTINFO into DATA.
926 DATA is cleared before new trace is added.
927 The branch trace will start with the most recent block and continue
928 towards older blocks. */
929 enum btrace_error (*to_read_btrace) (struct target_ops *self,
930 VEC (btrace_block_s) **data,
931 struct btrace_target_info *btinfo,
932 enum btrace_read_type type);
933
934 /* Stop trace recording. */
935 void (*to_stop_recording) (struct target_ops *);
936
937 /* Print information about the recording. */
938 void (*to_info_record) (struct target_ops *);
939
940 /* Save the recorded execution trace into a file. */
941 void (*to_save_record) (struct target_ops *, const char *filename);
942
943 /* Delete the recorded execution trace from the current position onwards. */
944 void (*to_delete_record) (struct target_ops *);
945
946 /* Query if the record target is currently replaying. */
947 int (*to_record_is_replaying) (struct target_ops *);
948
949 /* Go to the begin of the execution trace. */
950 void (*to_goto_record_begin) (struct target_ops *);
951
952 /* Go to the end of the execution trace. */
953 void (*to_goto_record_end) (struct target_ops *);
954
955 /* Go to a specific location in the recorded execution trace. */
956 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
957
958 /* Disassemble SIZE instructions in the recorded execution trace from
959 the current position.
960 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
961 disassemble SIZE succeeding instructions. */
962 void (*to_insn_history) (struct target_ops *, int size, int flags);
963
964 /* Disassemble SIZE instructions in the recorded execution trace around
965 FROM.
966 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
967 disassemble SIZE instructions after FROM. */
968 void (*to_insn_history_from) (struct target_ops *,
969 ULONGEST from, int size, int flags);
970
971 /* Disassemble a section of the recorded execution trace from instruction
972 BEGIN (inclusive) to instruction END (inclusive). */
973 void (*to_insn_history_range) (struct target_ops *,
974 ULONGEST begin, ULONGEST end, int flags);
975
976 /* Print a function trace of the recorded execution trace.
977 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
978 succeeding functions. */
979 void (*to_call_history) (struct target_ops *, int size, int flags);
980
981 /* Print a function trace of the recorded execution trace starting
982 at function FROM.
983 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
984 SIZE functions after FROM. */
985 void (*to_call_history_from) (struct target_ops *,
986 ULONGEST begin, int size, int flags);
987
988 /* Print a function trace of an execution trace section from function BEGIN
989 (inclusive) to function END (inclusive). */
990 void (*to_call_history_range) (struct target_ops *,
991 ULONGEST begin, ULONGEST end, int flags);
992
993 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
994 non-empty annex. */
995 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
996
997 /* Those unwinders are tried before any other arch unwinders. Use NULL if
998 it is not used. */
999 const struct frame_unwind *to_get_unwinder;
1000 const struct frame_unwind *to_get_tailcall_unwinder;
1001
1002 /* Return the number of bytes by which the PC needs to be decremented
1003 after executing a breakpoint instruction.
1004 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1005 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1006 struct gdbarch *gdbarch);
1007
1008 int to_magic;
1009 /* Need sub-structure for target machine related rather than comm related?
1010 */
1011 };
1012
1013 /* Magic number for checking ops size. If a struct doesn't end with this
1014 number, somebody changed the declaration but didn't change all the
1015 places that initialize one. */
1016
1017 #define OPS_MAGIC 3840
1018
1019 /* The ops structure for our "current" target process. This should
1020 never be NULL. If there is no target, it points to the dummy_target. */
1021
1022 extern struct target_ops current_target;
1023
1024 /* Define easy words for doing these operations on our current target. */
1025
1026 #define target_shortname (current_target.to_shortname)
1027 #define target_longname (current_target.to_longname)
1028
1029 /* Does whatever cleanup is required for a target that we are no
1030 longer going to be calling. This routine is automatically always
1031 called after popping the target off the target stack - the target's
1032 own methods are no longer available through the target vector.
1033 Closing file descriptors and freeing all memory allocated memory are
1034 typical things it should do. */
1035
1036 void target_close (struct target_ops *targ);
1037
1038 /* Attaches to a process on the target side. Arguments are as passed
1039 to the `attach' command by the user. This routine can be called
1040 when the target is not on the target-stack, if the target_can_run
1041 routine returns 1; in that case, it must push itself onto the stack.
1042 Upon exit, the target should be ready for normal operations, and
1043 should be ready to deliver the status of the process immediately
1044 (without waiting) to an upcoming target_wait call. */
1045
1046 void target_attach (char *, int);
1047
1048 /* Some targets don't generate traps when attaching to the inferior,
1049 or their target_attach implementation takes care of the waiting.
1050 These targets must set to_attach_no_wait. */
1051
1052 #define target_attach_no_wait \
1053 (current_target.to_attach_no_wait)
1054
1055 /* The target_attach operation places a process under debugger control,
1056 and stops the process.
1057
1058 This operation provides a target-specific hook that allows the
1059 necessary bookkeeping to be performed after an attach completes. */
1060 #define target_post_attach(pid) \
1061 (*current_target.to_post_attach) (&current_target, pid)
1062
1063 /* Takes a program previously attached to and detaches it.
1064 The program may resume execution (some targets do, some don't) and will
1065 no longer stop on signals, etc. We better not have left any breakpoints
1066 in the program or it'll die when it hits one. ARGS is arguments
1067 typed by the user (e.g. a signal to send the process). FROM_TTY
1068 says whether to be verbose or not. */
1069
1070 extern void target_detach (const char *, int);
1071
1072 /* Disconnect from the current target without resuming it (leaving it
1073 waiting for a debugger). */
1074
1075 extern void target_disconnect (char *, int);
1076
1077 /* Resume execution of the target process PTID (or a group of
1078 threads). STEP says whether to single-step or to run free; SIGGNAL
1079 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1080 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1081 PTID means `step/resume only this process id'. A wildcard PTID
1082 (all threads, or all threads of process) means `step/resume
1083 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1084 matches) resume with their 'thread->suspend.stop_signal' signal
1085 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1086 if in "no pass" state. */
1087
1088 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1089
1090 /* Wait for process pid to do something. PTID = -1 to wait for any
1091 pid to do something. Return pid of child, or -1 in case of error;
1092 store status through argument pointer STATUS. Note that it is
1093 _NOT_ OK to throw_exception() out of target_wait() without popping
1094 the debugging target from the stack; GDB isn't prepared to get back
1095 to the prompt with a debugging target but without the frame cache,
1096 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1097 options. */
1098
1099 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1100 int options);
1101
1102 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1103
1104 extern void target_fetch_registers (struct regcache *regcache, int regno);
1105
1106 /* Store at least register REGNO, or all regs if REGNO == -1.
1107 It can store as many registers as it wants to, so target_prepare_to_store
1108 must have been previously called. Calls error() if there are problems. */
1109
1110 extern void target_store_registers (struct regcache *regcache, int regs);
1111
1112 /* Get ready to modify the registers array. On machines which store
1113 individual registers, this doesn't need to do anything. On machines
1114 which store all the registers in one fell swoop, this makes sure
1115 that REGISTERS contains all the registers from the program being
1116 debugged. */
1117
1118 #define target_prepare_to_store(regcache) \
1119 (*current_target.to_prepare_to_store) (&current_target, regcache)
1120
1121 /* Determine current address space of thread PTID. */
1122
1123 struct address_space *target_thread_address_space (ptid_t);
1124
1125 /* Implement the "info proc" command. This returns one if the request
1126 was handled, and zero otherwise. It can also throw an exception if
1127 an error was encountered while attempting to handle the
1128 request. */
1129
1130 int target_info_proc (char *, enum info_proc_what);
1131
1132 /* Returns true if this target can debug multiple processes
1133 simultaneously. */
1134
1135 #define target_supports_multi_process() \
1136 (*current_target.to_supports_multi_process) (&current_target)
1137
1138 /* Returns true if this target can disable address space randomization. */
1139
1140 int target_supports_disable_randomization (void);
1141
1142 /* Returns true if this target can enable and disable tracepoints
1143 while a trace experiment is running. */
1144
1145 #define target_supports_enable_disable_tracepoint() \
1146 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1147
1148 #define target_supports_string_tracing() \
1149 (*current_target.to_supports_string_tracing) (&current_target)
1150
1151 /* Returns true if this target can handle breakpoint conditions
1152 on its end. */
1153
1154 #define target_supports_evaluation_of_breakpoint_conditions() \
1155 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1156
1157 /* Returns true if this target can handle breakpoint commands
1158 on its end. */
1159
1160 #define target_can_run_breakpoint_commands() \
1161 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1162
1163 extern int target_read_string (CORE_ADDR, char **, int, int *);
1164
1165 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1166 ssize_t len);
1167
1168 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1169 ssize_t len);
1170
1171 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1172
1173 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1174
1175 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1176 ssize_t len);
1177
1178 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1179 ssize_t len);
1180
1181 /* Fetches the target's memory map. If one is found it is sorted
1182 and returned, after some consistency checking. Otherwise, NULL
1183 is returned. */
1184 VEC(mem_region_s) *target_memory_map (void);
1185
1186 /* Erase the specified flash region. */
1187 void target_flash_erase (ULONGEST address, LONGEST length);
1188
1189 /* Finish a sequence of flash operations. */
1190 void target_flash_done (void);
1191
1192 /* Describes a request for a memory write operation. */
1193 struct memory_write_request
1194 {
1195 /* Begining address that must be written. */
1196 ULONGEST begin;
1197 /* Past-the-end address. */
1198 ULONGEST end;
1199 /* The data to write. */
1200 gdb_byte *data;
1201 /* A callback baton for progress reporting for this request. */
1202 void *baton;
1203 };
1204 typedef struct memory_write_request memory_write_request_s;
1205 DEF_VEC_O(memory_write_request_s);
1206
1207 /* Enumeration specifying different flash preservation behaviour. */
1208 enum flash_preserve_mode
1209 {
1210 flash_preserve,
1211 flash_discard
1212 };
1213
1214 /* Write several memory blocks at once. This version can be more
1215 efficient than making several calls to target_write_memory, in
1216 particular because it can optimize accesses to flash memory.
1217
1218 Moreover, this is currently the only memory access function in gdb
1219 that supports writing to flash memory, and it should be used for
1220 all cases where access to flash memory is desirable.
1221
1222 REQUESTS is the vector (see vec.h) of memory_write_request.
1223 PRESERVE_FLASH_P indicates what to do with blocks which must be
1224 erased, but not completely rewritten.
1225 PROGRESS_CB is a function that will be periodically called to provide
1226 feedback to user. It will be called with the baton corresponding
1227 to the request currently being written. It may also be called
1228 with a NULL baton, when preserved flash sectors are being rewritten.
1229
1230 The function returns 0 on success, and error otherwise. */
1231 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1232 enum flash_preserve_mode preserve_flash_p,
1233 void (*progress_cb) (ULONGEST, void *));
1234
1235 /* Print a line about the current target. */
1236
1237 #define target_files_info() \
1238 (*current_target.to_files_info) (&current_target)
1239
1240 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1241 the target machine. Returns 0 for success, and returns non-zero or
1242 throws an error (with a detailed failure reason error code and
1243 message) otherwise. */
1244
1245 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1246 struct bp_target_info *bp_tgt);
1247
1248 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1249 machine. Result is 0 for success, non-zero for error. */
1250
1251 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1252 struct bp_target_info *bp_tgt);
1253
1254 /* Initialize the terminal settings we record for the inferior,
1255 before we actually run the inferior. */
1256
1257 #define target_terminal_init() \
1258 (*current_target.to_terminal_init) (&current_target)
1259
1260 /* Put the inferior's terminal settings into effect.
1261 This is preparation for starting or resuming the inferior. */
1262
1263 extern void target_terminal_inferior (void);
1264
1265 /* Put some of our terminal settings into effect,
1266 enough to get proper results from our output,
1267 but do not change into or out of RAW mode
1268 so that no input is discarded.
1269
1270 After doing this, either terminal_ours or terminal_inferior
1271 should be called to get back to a normal state of affairs. */
1272
1273 #define target_terminal_ours_for_output() \
1274 (*current_target.to_terminal_ours_for_output) (&current_target)
1275
1276 /* Put our terminal settings into effect.
1277 First record the inferior's terminal settings
1278 so they can be restored properly later. */
1279
1280 #define target_terminal_ours() \
1281 (*current_target.to_terminal_ours) (&current_target)
1282
1283 /* Save our terminal settings.
1284 This is called from TUI after entering or leaving the curses
1285 mode. Since curses modifies our terminal this call is here
1286 to take this change into account. */
1287
1288 #define target_terminal_save_ours() \
1289 (*current_target.to_terminal_save_ours) (&current_target)
1290
1291 /* Print useful information about our terminal status, if such a thing
1292 exists. */
1293
1294 #define target_terminal_info(arg, from_tty) \
1295 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1296
1297 /* Kill the inferior process. Make it go away. */
1298
1299 extern void target_kill (void);
1300
1301 /* Load an executable file into the target process. This is expected
1302 to not only bring new code into the target process, but also to
1303 update GDB's symbol tables to match.
1304
1305 ARG contains command-line arguments, to be broken down with
1306 buildargv (). The first non-switch argument is the filename to
1307 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1308 0)), which is an offset to apply to the load addresses of FILE's
1309 sections. The target may define switches, or other non-switch
1310 arguments, as it pleases. */
1311
1312 extern void target_load (char *arg, int from_tty);
1313
1314 /* Start an inferior process and set inferior_ptid to its pid.
1315 EXEC_FILE is the file to run.
1316 ALLARGS is a string containing the arguments to the program.
1317 ENV is the environment vector to pass. Errors reported with error().
1318 On VxWorks and various standalone systems, we ignore exec_file. */
1319
1320 void target_create_inferior (char *exec_file, char *args,
1321 char **env, int from_tty);
1322
1323 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1324 notification of inferior events such as fork and vork immediately
1325 after the inferior is created. (This because of how gdb gets an
1326 inferior created via invoking a shell to do it. In such a scenario,
1327 if the shell init file has commands in it, the shell will fork and
1328 exec for each of those commands, and we will see each such fork
1329 event. Very bad.)
1330
1331 Such targets will supply an appropriate definition for this function. */
1332
1333 #define target_post_startup_inferior(ptid) \
1334 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1335
1336 /* On some targets, we can catch an inferior fork or vfork event when
1337 it occurs. These functions insert/remove an already-created
1338 catchpoint for such events. They return 0 for success, 1 if the
1339 catchpoint type is not supported and -1 for failure. */
1340
1341 #define target_insert_fork_catchpoint(pid) \
1342 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1343
1344 #define target_remove_fork_catchpoint(pid) \
1345 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1346
1347 #define target_insert_vfork_catchpoint(pid) \
1348 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1349
1350 #define target_remove_vfork_catchpoint(pid) \
1351 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1352
1353 /* If the inferior forks or vforks, this function will be called at
1354 the next resume in order to perform any bookkeeping and fiddling
1355 necessary to continue debugging either the parent or child, as
1356 requested, and releasing the other. Information about the fork
1357 or vfork event is available via get_last_target_status ().
1358 This function returns 1 if the inferior should not be resumed
1359 (i.e. there is another event pending). */
1360
1361 int target_follow_fork (int follow_child, int detach_fork);
1362
1363 /* On some targets, we can catch an inferior exec event when it
1364 occurs. These functions insert/remove an already-created
1365 catchpoint for such events. They return 0 for success, 1 if the
1366 catchpoint type is not supported and -1 for failure. */
1367
1368 #define target_insert_exec_catchpoint(pid) \
1369 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1370
1371 #define target_remove_exec_catchpoint(pid) \
1372 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1373
1374 /* Syscall catch.
1375
1376 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1377 If NEEDED is zero, it means the target can disable the mechanism to
1378 catch system calls because there are no more catchpoints of this type.
1379
1380 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1381 being requested. In this case, both TABLE_SIZE and TABLE should
1382 be ignored.
1383
1384 TABLE_SIZE is the number of elements in TABLE. It only matters if
1385 ANY_COUNT is zero.
1386
1387 TABLE is an array of ints, indexed by syscall number. An element in
1388 this array is nonzero if that syscall should be caught. This argument
1389 only matters if ANY_COUNT is zero.
1390
1391 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1392 for failure. */
1393
1394 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1395 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1396 pid, needed, any_count, \
1397 table_size, table)
1398
1399 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1400 exit code of PID, if any. */
1401
1402 #define target_has_exited(pid,wait_status,exit_status) \
1403 (*current_target.to_has_exited) (&current_target, \
1404 pid,wait_status,exit_status)
1405
1406 /* The debugger has completed a blocking wait() call. There is now
1407 some process event that must be processed. This function should
1408 be defined by those targets that require the debugger to perform
1409 cleanup or internal state changes in response to the process event. */
1410
1411 /* The inferior process has died. Do what is right. */
1412
1413 void target_mourn_inferior (void);
1414
1415 /* Does target have enough data to do a run or attach command? */
1416
1417 #define target_can_run(t) \
1418 ((t)->to_can_run) (t)
1419
1420 /* Set list of signals to be handled in the target.
1421
1422 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1423 (enum gdb_signal). For every signal whose entry in this array is
1424 non-zero, the target is allowed -but not required- to skip reporting
1425 arrival of the signal to the GDB core by returning from target_wait,
1426 and to pass the signal directly to the inferior instead.
1427
1428 However, if the target is hardware single-stepping a thread that is
1429 about to receive a signal, it needs to be reported in any case, even
1430 if mentioned in a previous target_pass_signals call. */
1431
1432 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1433
1434 /* Set list of signals the target may pass to the inferior. This
1435 directly maps to the "handle SIGNAL pass/nopass" setting.
1436
1437 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1438 number (enum gdb_signal). For every signal whose entry in this
1439 array is non-zero, the target is allowed to pass the signal to the
1440 inferior. Signals not present in the array shall be silently
1441 discarded. This does not influence whether to pass signals to the
1442 inferior as a result of a target_resume call. This is useful in
1443 scenarios where the target needs to decide whether to pass or not a
1444 signal to the inferior without GDB core involvement, such as for
1445 example, when detaching (as threads may have been suspended with
1446 pending signals not reported to GDB). */
1447
1448 extern void target_program_signals (int nsig, unsigned char *program_signals);
1449
1450 /* Check to see if a thread is still alive. */
1451
1452 extern int target_thread_alive (ptid_t ptid);
1453
1454 /* Query for new threads and add them to the thread list. */
1455
1456 extern void target_find_new_threads (void);
1457
1458 /* Make target stop in a continuable fashion. (For instance, under
1459 Unix, this should act like SIGSTOP). This function is normally
1460 used by GUIs to implement a stop button. */
1461
1462 extern void target_stop (ptid_t ptid);
1463
1464 /* Send the specified COMMAND to the target's monitor
1465 (shell,interpreter) for execution. The result of the query is
1466 placed in OUTBUF. */
1467
1468 #define target_rcmd(command, outbuf) \
1469 (*current_target.to_rcmd) (&current_target, command, outbuf)
1470
1471
1472 /* Does the target include all of memory, or only part of it? This
1473 determines whether we look up the target chain for other parts of
1474 memory if this target can't satisfy a request. */
1475
1476 extern int target_has_all_memory_1 (void);
1477 #define target_has_all_memory target_has_all_memory_1 ()
1478
1479 /* Does the target include memory? (Dummy targets don't.) */
1480
1481 extern int target_has_memory_1 (void);
1482 #define target_has_memory target_has_memory_1 ()
1483
1484 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1485 we start a process.) */
1486
1487 extern int target_has_stack_1 (void);
1488 #define target_has_stack target_has_stack_1 ()
1489
1490 /* Does the target have registers? (Exec files don't.) */
1491
1492 extern int target_has_registers_1 (void);
1493 #define target_has_registers target_has_registers_1 ()
1494
1495 /* Does the target have execution? Can we make it jump (through
1496 hoops), or pop its stack a few times? This means that the current
1497 target is currently executing; for some targets, that's the same as
1498 whether or not the target is capable of execution, but there are
1499 also targets which can be current while not executing. In that
1500 case this will become true after target_create_inferior or
1501 target_attach. */
1502
1503 extern int target_has_execution_1 (ptid_t);
1504
1505 /* Like target_has_execution_1, but always passes inferior_ptid. */
1506
1507 extern int target_has_execution_current (void);
1508
1509 #define target_has_execution target_has_execution_current ()
1510
1511 /* Default implementations for process_stratum targets. Return true
1512 if there's a selected inferior, false otherwise. */
1513
1514 extern int default_child_has_all_memory (struct target_ops *ops);
1515 extern int default_child_has_memory (struct target_ops *ops);
1516 extern int default_child_has_stack (struct target_ops *ops);
1517 extern int default_child_has_registers (struct target_ops *ops);
1518 extern int default_child_has_execution (struct target_ops *ops,
1519 ptid_t the_ptid);
1520
1521 /* Can the target support the debugger control of thread execution?
1522 Can it lock the thread scheduler? */
1523
1524 #define target_can_lock_scheduler \
1525 (current_target.to_has_thread_control & tc_schedlock)
1526
1527 /* Should the target enable async mode if it is supported? Temporary
1528 cludge until async mode is a strict superset of sync mode. */
1529 extern int target_async_permitted;
1530
1531 /* Can the target support asynchronous execution? */
1532 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1533
1534 /* Is the target in asynchronous execution mode? */
1535 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1536
1537 int target_supports_non_stop (void);
1538
1539 /* Put the target in async mode with the specified callback function. */
1540 #define target_async(CALLBACK,CONTEXT) \
1541 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1542
1543 #define target_execution_direction() \
1544 (current_target.to_execution_direction (&current_target))
1545
1546 /* Converts a process id to a string. Usually, the string just contains
1547 `process xyz', but on some systems it may contain
1548 `process xyz thread abc'. */
1549
1550 extern char *target_pid_to_str (ptid_t ptid);
1551
1552 extern char *normal_pid_to_str (ptid_t ptid);
1553
1554 /* Return a short string describing extra information about PID,
1555 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1556 is okay. */
1557
1558 #define target_extra_thread_info(TP) \
1559 (current_target.to_extra_thread_info (&current_target, TP))
1560
1561 /* Return the thread's name. A NULL result means that the target
1562 could not determine this thread's name. */
1563
1564 extern char *target_thread_name (struct thread_info *);
1565
1566 /* Attempts to find the pathname of the executable file
1567 that was run to create a specified process.
1568
1569 The process PID must be stopped when this operation is used.
1570
1571 If the executable file cannot be determined, NULL is returned.
1572
1573 Else, a pointer to a character string containing the pathname
1574 is returned. This string should be copied into a buffer by
1575 the client if the string will not be immediately used, or if
1576 it must persist. */
1577
1578 #define target_pid_to_exec_file(pid) \
1579 (current_target.to_pid_to_exec_file) (&current_target, pid)
1580
1581 /* See the to_thread_architecture description in struct target_ops. */
1582
1583 #define target_thread_architecture(ptid) \
1584 (current_target.to_thread_architecture (&current_target, ptid))
1585
1586 /*
1587 * Iterator function for target memory regions.
1588 * Calls a callback function once for each memory region 'mapped'
1589 * in the child process. Defined as a simple macro rather than
1590 * as a function macro so that it can be tested for nullity.
1591 */
1592
1593 #define target_find_memory_regions(FUNC, DATA) \
1594 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1595
1596 /*
1597 * Compose corefile .note section.
1598 */
1599
1600 #define target_make_corefile_notes(BFD, SIZE_P) \
1601 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1602
1603 /* Bookmark interfaces. */
1604 #define target_get_bookmark(ARGS, FROM_TTY) \
1605 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1606
1607 #define target_goto_bookmark(ARG, FROM_TTY) \
1608 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1609
1610 /* Hardware watchpoint interfaces. */
1611
1612 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1613 write). Only the INFERIOR_PTID task is being queried. */
1614
1615 #define target_stopped_by_watchpoint() \
1616 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1617
1618 /* Non-zero if we have steppable watchpoints */
1619
1620 #define target_have_steppable_watchpoint \
1621 (current_target.to_have_steppable_watchpoint)
1622
1623 /* Non-zero if we have continuable watchpoints */
1624
1625 #define target_have_continuable_watchpoint \
1626 (current_target.to_have_continuable_watchpoint)
1627
1628 /* Provide defaults for hardware watchpoint functions. */
1629
1630 /* If the *_hw_beakpoint functions have not been defined
1631 elsewhere use the definitions in the target vector. */
1632
1633 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1634 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1635 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1636 (including this one?). OTHERTYPE is who knows what... */
1637
1638 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1639 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1640 TYPE, CNT, OTHERTYPE);
1641
1642 /* Returns the number of debug registers needed to watch the given
1643 memory region, or zero if not supported. */
1644
1645 #define target_region_ok_for_hw_watchpoint(addr, len) \
1646 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1647 addr, len)
1648
1649
1650 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1651 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1652 COND is the expression for its condition, or NULL if there's none.
1653 Returns 0 for success, 1 if the watchpoint type is not supported,
1654 -1 for failure. */
1655
1656 #define target_insert_watchpoint(addr, len, type, cond) \
1657 (*current_target.to_insert_watchpoint) (&current_target, \
1658 addr, len, type, cond)
1659
1660 #define target_remove_watchpoint(addr, len, type, cond) \
1661 (*current_target.to_remove_watchpoint) (&current_target, \
1662 addr, len, type, cond)
1663
1664 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1665 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1666 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1667 masked watchpoints are not supported, -1 for failure. */
1668
1669 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1670
1671 /* Remove a masked watchpoint at ADDR with the mask MASK.
1672 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1673 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1674 for failure. */
1675
1676 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1677
1678 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1679 the target machine. Returns 0 for success, and returns non-zero or
1680 throws an error (with a detailed failure reason error code and
1681 message) otherwise. */
1682
1683 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1684 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1685 gdbarch, bp_tgt)
1686
1687 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1688 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1689 gdbarch, bp_tgt)
1690
1691 /* Return number of debug registers needed for a ranged breakpoint,
1692 or -1 if ranged breakpoints are not supported. */
1693
1694 extern int target_ranged_break_num_registers (void);
1695
1696 /* Return non-zero if target knows the data address which triggered this
1697 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1698 INFERIOR_PTID task is being queried. */
1699 #define target_stopped_data_address(target, addr_p) \
1700 (*target.to_stopped_data_address) (target, addr_p)
1701
1702 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1703 LENGTH bytes beginning at START. */
1704 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1705 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1706
1707 /* Return non-zero if the target is capable of using hardware to evaluate
1708 the condition expression. In this case, if the condition is false when
1709 the watched memory location changes, execution may continue without the
1710 debugger being notified.
1711
1712 Due to limitations in the hardware implementation, it may be capable of
1713 avoiding triggering the watchpoint in some cases where the condition
1714 expression is false, but may report some false positives as well.
1715 For this reason, GDB will still evaluate the condition expression when
1716 the watchpoint triggers. */
1717 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1718 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1719 addr, len, type, cond)
1720
1721 /* Return number of debug registers needed for a masked watchpoint,
1722 -1 if masked watchpoints are not supported or -2 if the given address
1723 and mask combination cannot be used. */
1724
1725 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1726
1727 /* Target can execute in reverse? */
1728 #define target_can_execute_reverse \
1729 (current_target.to_can_execute_reverse ? \
1730 current_target.to_can_execute_reverse (&current_target) : 0)
1731
1732 extern const struct target_desc *target_read_description (struct target_ops *);
1733
1734 #define target_get_ada_task_ptid(lwp, tid) \
1735 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1736
1737 /* Utility implementation of searching memory. */
1738 extern int simple_search_memory (struct target_ops* ops,
1739 CORE_ADDR start_addr,
1740 ULONGEST search_space_len,
1741 const gdb_byte *pattern,
1742 ULONGEST pattern_len,
1743 CORE_ADDR *found_addrp);
1744
1745 /* Main entry point for searching memory. */
1746 extern int target_search_memory (CORE_ADDR start_addr,
1747 ULONGEST search_space_len,
1748 const gdb_byte *pattern,
1749 ULONGEST pattern_len,
1750 CORE_ADDR *found_addrp);
1751
1752 /* Target file operations. */
1753
1754 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1755 target file descriptor, or -1 if an error occurs (and set
1756 *TARGET_ERRNO). */
1757 extern int target_fileio_open (const char *filename, int flags, int mode,
1758 int *target_errno);
1759
1760 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1761 Return the number of bytes written, or -1 if an error occurs
1762 (and set *TARGET_ERRNO). */
1763 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1764 ULONGEST offset, int *target_errno);
1765
1766 /* Read up to LEN bytes FD on the target into READ_BUF.
1767 Return the number of bytes read, or -1 if an error occurs
1768 (and set *TARGET_ERRNO). */
1769 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1770 ULONGEST offset, int *target_errno);
1771
1772 /* Close FD on the target. Return 0, or -1 if an error occurs
1773 (and set *TARGET_ERRNO). */
1774 extern int target_fileio_close (int fd, int *target_errno);
1775
1776 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1777 occurs (and set *TARGET_ERRNO). */
1778 extern int target_fileio_unlink (const char *filename, int *target_errno);
1779
1780 /* Read value of symbolic link FILENAME on the target. Return a
1781 null-terminated string allocated via xmalloc, or NULL if an error
1782 occurs (and set *TARGET_ERRNO). */
1783 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1784
1785 /* Read target file FILENAME. The return value will be -1 if the transfer
1786 fails or is not supported; 0 if the object is empty; or the length
1787 of the object otherwise. If a positive value is returned, a
1788 sufficiently large buffer will be allocated using xmalloc and
1789 returned in *BUF_P containing the contents of the object.
1790
1791 This method should be used for objects sufficiently small to store
1792 in a single xmalloc'd buffer, when no fixed bound on the object's
1793 size is known in advance. */
1794 extern LONGEST target_fileio_read_alloc (const char *filename,
1795 gdb_byte **buf_p);
1796
1797 /* Read target file FILENAME. The result is NUL-terminated and
1798 returned as a string, allocated using xmalloc. If an error occurs
1799 or the transfer is unsupported, NULL is returned. Empty objects
1800 are returned as allocated but empty strings. A warning is issued
1801 if the result contains any embedded NUL bytes. */
1802 extern char *target_fileio_read_stralloc (const char *filename);
1803
1804
1805 /* Tracepoint-related operations. */
1806
1807 #define target_trace_init() \
1808 (*current_target.to_trace_init) (&current_target)
1809
1810 #define target_download_tracepoint(t) \
1811 (*current_target.to_download_tracepoint) (&current_target, t)
1812
1813 #define target_can_download_tracepoint() \
1814 (*current_target.to_can_download_tracepoint) (&current_target)
1815
1816 #define target_download_trace_state_variable(tsv) \
1817 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1818
1819 #define target_enable_tracepoint(loc) \
1820 (*current_target.to_enable_tracepoint) (&current_target, loc)
1821
1822 #define target_disable_tracepoint(loc) \
1823 (*current_target.to_disable_tracepoint) (&current_target, loc)
1824
1825 #define target_trace_start() \
1826 (*current_target.to_trace_start) (&current_target)
1827
1828 #define target_trace_set_readonly_regions() \
1829 (*current_target.to_trace_set_readonly_regions) (&current_target)
1830
1831 #define target_get_trace_status(ts) \
1832 (*current_target.to_get_trace_status) (&current_target, ts)
1833
1834 #define target_get_tracepoint_status(tp,utp) \
1835 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1836
1837 #define target_trace_stop() \
1838 (*current_target.to_trace_stop) (&current_target)
1839
1840 #define target_trace_find(type,num,addr1,addr2,tpp) \
1841 (*current_target.to_trace_find) (&current_target, \
1842 (type), (num), (addr1), (addr2), (tpp))
1843
1844 #define target_get_trace_state_variable_value(tsv,val) \
1845 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1846 (tsv), (val))
1847
1848 #define target_save_trace_data(filename) \
1849 (*current_target.to_save_trace_data) (&current_target, filename)
1850
1851 #define target_upload_tracepoints(utpp) \
1852 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1853
1854 #define target_upload_trace_state_variables(utsvp) \
1855 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1856
1857 #define target_get_raw_trace_data(buf,offset,len) \
1858 (*current_target.to_get_raw_trace_data) (&current_target, \
1859 (buf), (offset), (len))
1860
1861 #define target_get_min_fast_tracepoint_insn_len() \
1862 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1863
1864 #define target_set_disconnected_tracing(val) \
1865 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1866
1867 #define target_set_circular_trace_buffer(val) \
1868 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1869
1870 #define target_set_trace_buffer_size(val) \
1871 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1872
1873 #define target_set_trace_notes(user,notes,stopnotes) \
1874 (*current_target.to_set_trace_notes) (&current_target, \
1875 (user), (notes), (stopnotes))
1876
1877 #define target_get_tib_address(ptid, addr) \
1878 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1879
1880 #define target_set_permissions() \
1881 (*current_target.to_set_permissions) (&current_target)
1882
1883 #define target_static_tracepoint_marker_at(addr, marker) \
1884 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1885 addr, marker)
1886
1887 #define target_static_tracepoint_markers_by_strid(marker_id) \
1888 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1889 marker_id)
1890
1891 #define target_traceframe_info() \
1892 (*current_target.to_traceframe_info) (&current_target)
1893
1894 #define target_use_agent(use) \
1895 (*current_target.to_use_agent) (&current_target, use)
1896
1897 #define target_can_use_agent() \
1898 (*current_target.to_can_use_agent) (&current_target)
1899
1900 #define target_augmented_libraries_svr4_read() \
1901 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1902
1903 /* Command logging facility. */
1904
1905 #define target_log_command(p) \
1906 do \
1907 if (current_target.to_log_command) \
1908 (*current_target.to_log_command) (&current_target, \
1909 p); \
1910 while (0)
1911
1912
1913 extern int target_core_of_thread (ptid_t ptid);
1914
1915 /* See to_get_unwinder in struct target_ops. */
1916 extern const struct frame_unwind *target_get_unwinder (void);
1917
1918 /* See to_get_tailcall_unwinder in struct target_ops. */
1919 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1920
1921 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1922 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1923 if there's a mismatch, and -1 if an error is encountered while
1924 reading memory. Throws an error if the functionality is found not
1925 to be supported by the current target. */
1926 int target_verify_memory (const gdb_byte *data,
1927 CORE_ADDR memaddr, ULONGEST size);
1928
1929 /* Routines for maintenance of the target structures...
1930
1931 complete_target_initialization: Finalize a target_ops by filling in
1932 any fields needed by the target implementation.
1933
1934 add_target: Add a target to the list of all possible targets.
1935
1936 push_target: Make this target the top of the stack of currently used
1937 targets, within its particular stratum of the stack. Result
1938 is 0 if now atop the stack, nonzero if not on top (maybe
1939 should warn user).
1940
1941 unpush_target: Remove this from the stack of currently used targets,
1942 no matter where it is on the list. Returns 0 if no
1943 change, 1 if removed from stack. */
1944
1945 extern void add_target (struct target_ops *);
1946
1947 extern void add_target_with_completer (struct target_ops *t,
1948 completer_ftype *completer);
1949
1950 extern void complete_target_initialization (struct target_ops *t);
1951
1952 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1953 for maintaining backwards compatibility when renaming targets. */
1954
1955 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1956
1957 extern void push_target (struct target_ops *);
1958
1959 extern int unpush_target (struct target_ops *);
1960
1961 extern void target_pre_inferior (int);
1962
1963 extern void target_preopen (int);
1964
1965 /* Does whatever cleanup is required to get rid of all pushed targets. */
1966 extern void pop_all_targets (void);
1967
1968 /* Like pop_all_targets, but pops only targets whose stratum is
1969 strictly above ABOVE_STRATUM. */
1970 extern void pop_all_targets_above (enum strata above_stratum);
1971
1972 extern int target_is_pushed (struct target_ops *t);
1973
1974 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1975 CORE_ADDR offset);
1976
1977 /* Struct target_section maps address ranges to file sections. It is
1978 mostly used with BFD files, but can be used without (e.g. for handling
1979 raw disks, or files not in formats handled by BFD). */
1980
1981 struct target_section
1982 {
1983 CORE_ADDR addr; /* Lowest address in section */
1984 CORE_ADDR endaddr; /* 1+highest address in section */
1985
1986 struct bfd_section *the_bfd_section;
1987
1988 /* The "owner" of the section.
1989 It can be any unique value. It is set by add_target_sections
1990 and used by remove_target_sections.
1991 For example, for executables it is a pointer to exec_bfd and
1992 for shlibs it is the so_list pointer. */
1993 void *owner;
1994 };
1995
1996 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1997
1998 struct target_section_table
1999 {
2000 struct target_section *sections;
2001 struct target_section *sections_end;
2002 };
2003
2004 /* Return the "section" containing the specified address. */
2005 struct target_section *target_section_by_addr (struct target_ops *target,
2006 CORE_ADDR addr);
2007
2008 /* Return the target section table this target (or the targets
2009 beneath) currently manipulate. */
2010
2011 extern struct target_section_table *target_get_section_table
2012 (struct target_ops *target);
2013
2014 /* From mem-break.c */
2015
2016 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2017 struct bp_target_info *);
2018
2019 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2020 struct bp_target_info *);
2021
2022 extern int default_memory_remove_breakpoint (struct gdbarch *,
2023 struct bp_target_info *);
2024
2025 extern int default_memory_insert_breakpoint (struct gdbarch *,
2026 struct bp_target_info *);
2027
2028
2029 /* From target.c */
2030
2031 extern void initialize_targets (void);
2032
2033 extern void noprocess (void) ATTRIBUTE_NORETURN;
2034
2035 extern void target_require_runnable (void);
2036
2037 extern void find_default_attach (struct target_ops *, char *, int);
2038
2039 extern void find_default_create_inferior (struct target_ops *,
2040 char *, char *, char **, int);
2041
2042 extern struct target_ops *find_target_beneath (struct target_ops *);
2043
2044 /* Find the target at STRATUM. If no target is at that stratum,
2045 return NULL. */
2046
2047 struct target_ops *find_target_at (enum strata stratum);
2048
2049 /* Read OS data object of type TYPE from the target, and return it in
2050 XML format. The result is NUL-terminated and returned as a string,
2051 allocated using xmalloc. If an error occurs or the transfer is
2052 unsupported, NULL is returned. Empty objects are returned as
2053 allocated but empty strings. */
2054
2055 extern char *target_get_osdata (const char *type);
2056
2057 \f
2058 /* Stuff that should be shared among the various remote targets. */
2059
2060 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2061 information (higher values, more information). */
2062 extern int remote_debug;
2063
2064 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2065 extern int baud_rate;
2066 /* Timeout limit for response from target. */
2067 extern int remote_timeout;
2068
2069 \f
2070
2071 /* Set the show memory breakpoints mode to show, and installs a cleanup
2072 to restore it back to the current value. */
2073 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2074
2075 extern int may_write_registers;
2076 extern int may_write_memory;
2077 extern int may_insert_breakpoints;
2078 extern int may_insert_tracepoints;
2079 extern int may_insert_fast_tracepoints;
2080 extern int may_stop;
2081
2082 extern void update_target_permissions (void);
2083
2084 \f
2085 /* Imported from machine dependent code. */
2086
2087 /* Blank target vector entries are initialized to target_ignore. */
2088 void target_ignore (void);
2089
2090 /* See to_supports_btrace in struct target_ops. */
2091 #define target_supports_btrace() \
2092 (current_target.to_supports_btrace (&current_target))
2093
2094 /* See to_enable_btrace in struct target_ops. */
2095 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2096
2097 /* See to_disable_btrace in struct target_ops. */
2098 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2099
2100 /* See to_teardown_btrace in struct target_ops. */
2101 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2102
2103 /* See to_read_btrace in struct target_ops. */
2104 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2105 struct btrace_target_info *,
2106 enum btrace_read_type);
2107
2108 /* See to_stop_recording in struct target_ops. */
2109 extern void target_stop_recording (void);
2110
2111 /* See to_info_record in struct target_ops. */
2112 extern void target_info_record (void);
2113
2114 /* See to_save_record in struct target_ops. */
2115 extern void target_save_record (const char *filename);
2116
2117 /* Query if the target supports deleting the execution log. */
2118 extern int target_supports_delete_record (void);
2119
2120 /* See to_delete_record in struct target_ops. */
2121 extern void target_delete_record (void);
2122
2123 /* See to_record_is_replaying in struct target_ops. */
2124 extern int target_record_is_replaying (void);
2125
2126 /* See to_goto_record_begin in struct target_ops. */
2127 extern void target_goto_record_begin (void);
2128
2129 /* See to_goto_record_end in struct target_ops. */
2130 extern void target_goto_record_end (void);
2131
2132 /* See to_goto_record in struct target_ops. */
2133 extern void target_goto_record (ULONGEST insn);
2134
2135 /* See to_insn_history. */
2136 extern void target_insn_history (int size, int flags);
2137
2138 /* See to_insn_history_from. */
2139 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2140
2141 /* See to_insn_history_range. */
2142 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2143
2144 /* See to_call_history. */
2145 extern void target_call_history (int size, int flags);
2146
2147 /* See to_call_history_from. */
2148 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2149
2150 /* See to_call_history_range. */
2151 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2152
2153 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2154 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2155 struct gdbarch *gdbarch);
2156
2157 /* See to_decr_pc_after_break. */
2158 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2159
2160 #endif /* !defined (TARGET_H) */
This page took 0.074028 seconds and 4 git commands to generate.