gdb/
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #if !defined (TARGET_H)
27 #define TARGET_H
28
29 struct objfile;
30 struct ui_file;
31 struct mem_attrib;
32 struct target_ops;
33 struct bp_target_info;
34
35 /* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54 #include "bfd.h"
55 #include "symtab.h"
56 #include "dcache.h"
57 #include "memattr.h"
58 #include "vec.h"
59
60 enum strata
61 {
62 dummy_stratum, /* The lowest of the low */
63 file_stratum, /* Executable files, etc */
64 core_stratum, /* Core dump files */
65 download_stratum, /* Downloading of remote targets */
66 process_stratum, /* Executing processes */
67 thread_stratum /* Executing threads */
68 };
69
70 enum thread_control_capabilities
71 {
72 tc_none = 0, /* Default: can't control thread execution. */
73 tc_schedlock = 1, /* Can lock the thread scheduler. */
74 tc_switch = 2 /* Can switch the running thread on demand. */
75 };
76
77 /* Stuff for target_wait. */
78
79 /* Generally, what has the program done? */
80 enum target_waitkind
81 {
82 /* The program has exited. The exit status is in value.integer. */
83 TARGET_WAITKIND_EXITED,
84
85 /* The program has stopped with a signal. Which signal is in
86 value.sig. */
87 TARGET_WAITKIND_STOPPED,
88
89 /* The program has terminated with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_SIGNALLED,
92
93 /* The program is letting us know that it dynamically loaded something
94 (e.g. it called load(2) on AIX). */
95 TARGET_WAITKIND_LOADED,
96
97 /* The program has forked. A "related" process' ID is in
98 value.related_pid. I.e., if the child forks, value.related_pid
99 is the parent's ID. */
100
101 TARGET_WAITKIND_FORKED,
102
103 /* The program has vforked. A "related" process's ID is in
104 value.related_pid. */
105
106 TARGET_WAITKIND_VFORKED,
107
108 /* The program has exec'ed a new executable file. The new file's
109 pathname is pointed to by value.execd_pathname. */
110
111 TARGET_WAITKIND_EXECD,
112
113 /* The program has entered or returned from a system call. On
114 HP-UX, this is used in the hardware watchpoint implementation.
115 The syscall's unique integer ID number is in value.syscall_id */
116
117 TARGET_WAITKIND_SYSCALL_ENTRY,
118 TARGET_WAITKIND_SYSCALL_RETURN,
119
120 /* Nothing happened, but we stopped anyway. This perhaps should be handled
121 within target_wait, but I'm not sure target_wait should be resuming the
122 inferior. */
123 TARGET_WAITKIND_SPURIOUS,
124
125 /* An event has occured, but we should wait again.
126 Remote_async_wait() returns this when there is an event
127 on the inferior, but the rest of the world is not interested in
128 it. The inferior has not stopped, but has just sent some output
129 to the console, for instance. In this case, we want to go back
130 to the event loop and wait there for another event from the
131 inferior, rather than being stuck in the remote_async_wait()
132 function. This way the event loop is responsive to other events,
133 like for instance the user typing. */
134 TARGET_WAITKIND_IGNORE
135 };
136
137 struct target_waitstatus
138 {
139 enum target_waitkind kind;
140
141 /* Forked child pid, execd pathname, exit status or signal number. */
142 union
143 {
144 int integer;
145 enum target_signal sig;
146 int related_pid;
147 char *execd_pathname;
148 int syscall_id;
149 }
150 value;
151 };
152
153 /* Possible types of events that the inferior handler will have to
154 deal with. */
155 enum inferior_event_type
156 {
157 /* There is a request to quit the inferior, abandon it. */
158 INF_QUIT_REQ,
159 /* Process a normal inferior event which will result in target_wait
160 being called. */
161 INF_REG_EVENT,
162 /* Deal with an error on the inferior. */
163 INF_ERROR,
164 /* We are called because a timer went off. */
165 INF_TIMER,
166 /* We are called to do stuff after the inferior stops. */
167 INF_EXEC_COMPLETE,
168 /* We are called to do some stuff after the inferior stops, but we
169 are expected to reenter the proceed() and
170 handle_inferior_event() functions. This is used only in case of
171 'step n' like commands. */
172 INF_EXEC_CONTINUE
173 };
174
175 /* Return the string for a signal. */
176 extern char *target_signal_to_string (enum target_signal);
177
178 /* Return the name (SIGHUP, etc.) for a signal. */
179 extern char *target_signal_to_name (enum target_signal);
180
181 /* Given a name (SIGHUP, etc.), return its signal. */
182 enum target_signal target_signal_from_name (char *);
183 \f
184 /* Target objects which can be transfered using target_read,
185 target_write, et cetera. */
186
187 enum target_object
188 {
189 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
190 TARGET_OBJECT_AVR,
191 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
192 TARGET_OBJECT_MEMORY,
193 /* Memory, avoiding GDB's data cache and trusting the executable.
194 Target implementations of to_xfer_partial never need to handle
195 this object, and most callers should not use it. */
196 TARGET_OBJECT_RAW_MEMORY,
197 /* Kernel Unwind Table. See "ia64-tdep.c". */
198 TARGET_OBJECT_UNWIND_TABLE,
199 /* Transfer auxilliary vector. */
200 TARGET_OBJECT_AUXV,
201 /* StackGhost cookie. See "sparc-tdep.c". */
202 TARGET_OBJECT_WCOOKIE,
203 /* Target memory map in XML format. */
204 TARGET_OBJECT_MEMORY_MAP,
205
206 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
207 };
208
209 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
210 OBJECT. The OFFSET, for a seekable object, specifies the
211 starting point. The ANNEX can be used to provide additional
212 data-specific information to the target.
213
214 Return the number of bytes actually transfered, or -1 if the
215 transfer is not supported or otherwise fails. Return of a positive
216 value less than LEN indicates that no further transfer is possible.
217 Unlike the raw to_xfer_partial interface, callers of these
218 functions do not need to retry partial transfers. */
219
220 extern LONGEST target_read (struct target_ops *ops,
221 enum target_object object,
222 const char *annex, gdb_byte *buf,
223 ULONGEST offset, LONGEST len);
224
225 extern LONGEST target_write (struct target_ops *ops,
226 enum target_object object,
227 const char *annex, const gdb_byte *buf,
228 ULONGEST offset, LONGEST len);
229
230 /* Similar to target_write, except that it also calls PROGRESS
231 with the number of bytes written and the opaque BATON after
232 every partial write. This is useful for progress reporting
233 and user interaction while writing data. To abort the transfer,
234 the progress callback can throw an exception. */
235 LONGEST target_write_with_progress (struct target_ops *ops,
236 enum target_object object,
237 const char *annex, const gdb_byte *buf,
238 ULONGEST offset, LONGEST len,
239 void (*progress) (ULONGEST, void *),
240 void *baton);
241
242 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
243 be read using OPS. The return value will be -1 if the transfer
244 fails or is not supported; 0 if the object is empty; or the length
245 of the object otherwise. If a positive value is returned, a
246 sufficiently large buffer will be allocated using xmalloc and
247 returned in *BUF_P containing the contents of the object.
248
249 This method should be used for objects sufficiently small to store
250 in a single xmalloc'd buffer, when no fixed bound on the object's
251 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
252 through this function. */
253
254 extern LONGEST target_read_alloc (struct target_ops *ops,
255 enum target_object object,
256 const char *annex, gdb_byte **buf_p);
257
258 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
259 returned as a string, allocated using xmalloc. If an error occurs
260 or the transfer is unsupported, NULL is returned. Empty objects
261 are returned as allocated but empty strings. A warning is issued
262 if the result contains any embedded NUL bytes. */
263
264 extern char *target_read_stralloc (struct target_ops *ops,
265 enum target_object object,
266 const char *annex);
267
268 /* Wrappers to target read/write that perform memory transfers. They
269 throw an error if the memory transfer fails.
270
271 NOTE: cagney/2003-10-23: The naming schema is lifted from
272 "frame.h". The parameter order is lifted from get_frame_memory,
273 which in turn lifted it from read_memory. */
274
275 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
276 gdb_byte *buf, LONGEST len);
277 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
278 CORE_ADDR addr, int len);
279 \f
280
281 /* If certain kinds of activity happen, target_wait should perform
282 callbacks. */
283 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
284 on TARGET_ACTIVITY_FD. */
285 extern int target_activity_fd;
286 /* Returns zero to leave the inferior alone, one to interrupt it. */
287 extern int (*target_activity_function) (void);
288 \f
289 struct thread_info; /* fwd decl for parameter list below: */
290
291 struct target_ops
292 {
293 struct target_ops *beneath; /* To the target under this one. */
294 char *to_shortname; /* Name this target type */
295 char *to_longname; /* Name for printing */
296 char *to_doc; /* Documentation. Does not include trailing
297 newline, and starts with a one-line descrip-
298 tion (probably similar to to_longname). */
299 /* Per-target scratch pad. */
300 void *to_data;
301 /* The open routine takes the rest of the parameters from the
302 command, and (if successful) pushes a new target onto the
303 stack. Targets should supply this routine, if only to provide
304 an error message. */
305 void (*to_open) (char *, int);
306 /* Old targets with a static target vector provide "to_close".
307 New re-entrant targets provide "to_xclose" and that is expected
308 to xfree everything (including the "struct target_ops"). */
309 void (*to_xclose) (struct target_ops *targ, int quitting);
310 void (*to_close) (int);
311 void (*to_attach) (char *, int);
312 void (*to_post_attach) (int);
313 void (*to_detach) (char *, int);
314 void (*to_disconnect) (struct target_ops *, char *, int);
315 void (*to_resume) (ptid_t, int, enum target_signal);
316 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
317 void (*to_fetch_registers) (int);
318 void (*to_store_registers) (int);
319 void (*to_prepare_to_store) (void);
320
321 /* Transfer LEN bytes of memory between GDB address MYADDR and
322 target address MEMADDR. If WRITE, transfer them to the target, else
323 transfer them from the target. TARGET is the target from which we
324 get this function.
325
326 Return value, N, is one of the following:
327
328 0 means that we can't handle this. If errno has been set, it is the
329 error which prevented us from doing it (FIXME: What about bfd_error?).
330
331 positive (call it N) means that we have transferred N bytes
332 starting at MEMADDR. We might be able to handle more bytes
333 beyond this length, but no promises.
334
335 negative (call its absolute value N) means that we cannot
336 transfer right at MEMADDR, but we could transfer at least
337 something at MEMADDR + N.
338
339 NOTE: cagney/2004-10-01: This has been entirely superseeded by
340 to_xfer_partial and inferior inheritance. */
341
342 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
343 int len, int write,
344 struct mem_attrib *attrib,
345 struct target_ops *target);
346
347 void (*to_files_info) (struct target_ops *);
348 int (*to_insert_breakpoint) (struct bp_target_info *);
349 int (*to_remove_breakpoint) (struct bp_target_info *);
350 int (*to_can_use_hw_breakpoint) (int, int, int);
351 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
352 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
353 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
354 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
355 int (*to_stopped_by_watchpoint) (void);
356 int to_have_continuable_watchpoint;
357 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
358 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
359 void (*to_terminal_init) (void);
360 void (*to_terminal_inferior) (void);
361 void (*to_terminal_ours_for_output) (void);
362 void (*to_terminal_ours) (void);
363 void (*to_terminal_save_ours) (void);
364 void (*to_terminal_info) (char *, int);
365 void (*to_kill) (void);
366 void (*to_load) (char *, int);
367 int (*to_lookup_symbol) (char *, CORE_ADDR *);
368 void (*to_create_inferior) (char *, char *, char **, int);
369 void (*to_post_startup_inferior) (ptid_t);
370 void (*to_acknowledge_created_inferior) (int);
371 void (*to_insert_fork_catchpoint) (int);
372 int (*to_remove_fork_catchpoint) (int);
373 void (*to_insert_vfork_catchpoint) (int);
374 int (*to_remove_vfork_catchpoint) (int);
375 int (*to_follow_fork) (struct target_ops *, int);
376 void (*to_insert_exec_catchpoint) (int);
377 int (*to_remove_exec_catchpoint) (int);
378 int (*to_reported_exec_events_per_exec_call) (void);
379 int (*to_has_exited) (int, int, int *);
380 void (*to_mourn_inferior) (void);
381 int (*to_can_run) (void);
382 void (*to_notice_signals) (ptid_t ptid);
383 int (*to_thread_alive) (ptid_t ptid);
384 void (*to_find_new_threads) (void);
385 char *(*to_pid_to_str) (ptid_t);
386 char *(*to_extra_thread_info) (struct thread_info *);
387 void (*to_stop) (void);
388 void (*to_rcmd) (char *command, struct ui_file *output);
389 struct symtab_and_line *(*to_enable_exception_callback) (enum
390 exception_event_kind,
391 int);
392 struct exception_event_record *(*to_get_current_exception_event) (void);
393 char *(*to_pid_to_exec_file) (int pid);
394 enum strata to_stratum;
395 int to_has_all_memory;
396 int to_has_memory;
397 int to_has_stack;
398 int to_has_registers;
399 int to_has_execution;
400 int to_has_thread_control; /* control thread execution */
401 struct section_table
402 *to_sections;
403 struct section_table
404 *to_sections_end;
405 /* ASYNC target controls */
406 int (*to_can_async_p) (void);
407 int (*to_is_async_p) (void);
408 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
409 void *context);
410 int to_async_mask_value;
411 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
412 unsigned long,
413 int, int, int,
414 void *),
415 void *);
416 char * (*to_make_corefile_notes) (bfd *, int *);
417
418 /* Return the thread-local address at OFFSET in the
419 thread-local storage for the thread PTID and the shared library
420 or executable file given by OBJFILE. If that block of
421 thread-local storage hasn't been allocated yet, this function
422 may return an error. */
423 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
424 CORE_ADDR load_module_addr,
425 CORE_ADDR offset);
426
427 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
428 OBJECT. The OFFSET, for a seekable object, specifies the
429 starting point. The ANNEX can be used to provide additional
430 data-specific information to the target.
431
432 Return the number of bytes actually transfered, zero when no
433 further transfer is possible, and -1 when the transfer is not
434 supported. Return of a positive value smaller than LEN does
435 not indicate the end of the object, only the end of the
436 transfer; higher level code should continue transferring if
437 desired. This is handled in target.c.
438
439 The interface does not support a "retry" mechanism. Instead it
440 assumes that at least one byte will be transfered on each
441 successful call.
442
443 NOTE: cagney/2003-10-17: The current interface can lead to
444 fragmented transfers. Lower target levels should not implement
445 hacks, such as enlarging the transfer, in an attempt to
446 compensate for this. Instead, the target stack should be
447 extended so that it implements supply/collect methods and a
448 look-aside object cache. With that available, the lowest
449 target can safely and freely "push" data up the stack.
450
451 See target_read and target_write for more information. One,
452 and only one, of readbuf or writebuf must be non-NULL. */
453
454 LONGEST (*to_xfer_partial) (struct target_ops *ops,
455 enum target_object object, const char *annex,
456 gdb_byte *readbuf, const gdb_byte *writebuf,
457 ULONGEST offset, LONGEST len);
458
459 /* Returns the memory map for the target. A return value of NULL
460 means that no memory map is available. If a memory address
461 does not fall within any returned regions, it's assumed to be
462 RAM. The returned memory regions should not overlap.
463
464 The order of regions does not matter; target_memory_map will
465 sort regions by starting address. For that reason, this
466 function should not be called directly except via
467 target_memory_map.
468
469 This method should not cache data; if the memory map could
470 change unexpectedly, it should be invalidated, and higher
471 layers will re-fetch it. */
472 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
473
474 int to_magic;
475 /* Need sub-structure for target machine related rather than comm related?
476 */
477 };
478
479 /* Magic number for checking ops size. If a struct doesn't end with this
480 number, somebody changed the declaration but didn't change all the
481 places that initialize one. */
482
483 #define OPS_MAGIC 3840
484
485 /* The ops structure for our "current" target process. This should
486 never be NULL. If there is no target, it points to the dummy_target. */
487
488 extern struct target_ops current_target;
489
490 /* Define easy words for doing these operations on our current target. */
491
492 #define target_shortname (current_target.to_shortname)
493 #define target_longname (current_target.to_longname)
494
495 /* Does whatever cleanup is required for a target that we are no
496 longer going to be calling. QUITTING indicates that GDB is exiting
497 and should not get hung on an error (otherwise it is important to
498 perform clean termination, even if it takes a while). This routine
499 is automatically always called when popping the target off the
500 target stack (to_beneath is undefined). Closing file descriptors
501 and freeing all memory allocated memory are typical things it
502 should do. */
503
504 void target_close (struct target_ops *targ, int quitting);
505
506 /* Attaches to a process on the target side. Arguments are as passed
507 to the `attach' command by the user. This routine can be called
508 when the target is not on the target-stack, if the target_can_run
509 routine returns 1; in that case, it must push itself onto the stack.
510 Upon exit, the target should be ready for normal operations, and
511 should be ready to deliver the status of the process immediately
512 (without waiting) to an upcoming target_wait call. */
513
514 #define target_attach(args, from_tty) \
515 (*current_target.to_attach) (args, from_tty)
516
517 /* The target_attach operation places a process under debugger control,
518 and stops the process.
519
520 This operation provides a target-specific hook that allows the
521 necessary bookkeeping to be performed after an attach completes. */
522 #define target_post_attach(pid) \
523 (*current_target.to_post_attach) (pid)
524
525 /* Takes a program previously attached to and detaches it.
526 The program may resume execution (some targets do, some don't) and will
527 no longer stop on signals, etc. We better not have left any breakpoints
528 in the program or it'll die when it hits one. ARGS is arguments
529 typed by the user (e.g. a signal to send the process). FROM_TTY
530 says whether to be verbose or not. */
531
532 extern void target_detach (char *, int);
533
534 /* Disconnect from the current target without resuming it (leaving it
535 waiting for a debugger). */
536
537 extern void target_disconnect (char *, int);
538
539 /* Resume execution of the target process PTID. STEP says whether to
540 single-step or to run free; SIGGNAL is the signal to be given to
541 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
542 pass TARGET_SIGNAL_DEFAULT. */
543
544 #define target_resume(ptid, step, siggnal) \
545 do { \
546 dcache_invalidate(target_dcache); \
547 (*current_target.to_resume) (ptid, step, siggnal); \
548 } while (0)
549
550 /* Wait for process pid to do something. PTID = -1 to wait for any
551 pid to do something. Return pid of child, or -1 in case of error;
552 store status through argument pointer STATUS. Note that it is
553 _NOT_ OK to throw_exception() out of target_wait() without popping
554 the debugging target from the stack; GDB isn't prepared to get back
555 to the prompt with a debugging target but without the frame cache,
556 stop_pc, etc., set up. */
557
558 #define target_wait(ptid, status) \
559 (*current_target.to_wait) (ptid, status)
560
561 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
562
563 #define target_fetch_registers(regno) \
564 (*current_target.to_fetch_registers) (regno)
565
566 /* Store at least register REGNO, or all regs if REGNO == -1.
567 It can store as many registers as it wants to, so target_prepare_to_store
568 must have been previously called. Calls error() if there are problems. */
569
570 #define target_store_registers(regs) \
571 (*current_target.to_store_registers) (regs)
572
573 /* Get ready to modify the registers array. On machines which store
574 individual registers, this doesn't need to do anything. On machines
575 which store all the registers in one fell swoop, this makes sure
576 that REGISTERS contains all the registers from the program being
577 debugged. */
578
579 #define target_prepare_to_store() \
580 (*current_target.to_prepare_to_store) ()
581
582 extern DCACHE *target_dcache;
583
584 extern int target_read_string (CORE_ADDR, char **, int, int *);
585
586 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
587
588 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
589 int len);
590
591 extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
592 struct mem_attrib *, struct target_ops *);
593
594 extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
595 struct mem_attrib *, struct target_ops *);
596
597 /* Fetches the target's memory map. If one is found it is sorted
598 and returned, after some consistency checking. Otherwise, NULL
599 is returned. */
600 VEC(mem_region_s) *target_memory_map (void);
601
602 extern char *child_pid_to_exec_file (int);
603
604 extern char *child_core_file_to_sym_file (char *);
605
606 #if defined(CHILD_POST_ATTACH)
607 extern void child_post_attach (int);
608 #endif
609
610 extern void child_post_startup_inferior (ptid_t);
611
612 extern void child_acknowledge_created_inferior (int);
613
614 extern void child_insert_fork_catchpoint (int);
615
616 extern int child_remove_fork_catchpoint (int);
617
618 extern void child_insert_vfork_catchpoint (int);
619
620 extern int child_remove_vfork_catchpoint (int);
621
622 extern void child_acknowledge_created_inferior (int);
623
624 extern int child_follow_fork (struct target_ops *, int);
625
626 extern void child_insert_exec_catchpoint (int);
627
628 extern int child_remove_exec_catchpoint (int);
629
630 extern int child_reported_exec_events_per_exec_call (void);
631
632 extern int child_has_exited (int, int, int *);
633
634 extern int child_thread_alive (ptid_t);
635
636 /* From infrun.c. */
637
638 extern int inferior_has_forked (int pid, int *child_pid);
639
640 extern int inferior_has_vforked (int pid, int *child_pid);
641
642 extern int inferior_has_execd (int pid, char **execd_pathname);
643
644 /* From exec.c */
645
646 extern void print_section_info (struct target_ops *, bfd *);
647
648 /* Print a line about the current target. */
649
650 #define target_files_info() \
651 (*current_target.to_files_info) (&current_target)
652
653 /* Insert a breakpoint at address BP_TGT->placed_address in the target
654 machine. Result is 0 for success, or an errno value. */
655
656 #define target_insert_breakpoint(bp_tgt) \
657 (*current_target.to_insert_breakpoint) (bp_tgt)
658
659 /* Remove a breakpoint at address BP_TGT->placed_address in the target
660 machine. Result is 0 for success, or an errno value. */
661
662 #define target_remove_breakpoint(bp_tgt) \
663 (*current_target.to_remove_breakpoint) (bp_tgt)
664
665 /* Initialize the terminal settings we record for the inferior,
666 before we actually run the inferior. */
667
668 #define target_terminal_init() \
669 (*current_target.to_terminal_init) ()
670
671 /* Put the inferior's terminal settings into effect.
672 This is preparation for starting or resuming the inferior. */
673
674 #define target_terminal_inferior() \
675 (*current_target.to_terminal_inferior) ()
676
677 /* Put some of our terminal settings into effect,
678 enough to get proper results from our output,
679 but do not change into or out of RAW mode
680 so that no input is discarded.
681
682 After doing this, either terminal_ours or terminal_inferior
683 should be called to get back to a normal state of affairs. */
684
685 #define target_terminal_ours_for_output() \
686 (*current_target.to_terminal_ours_for_output) ()
687
688 /* Put our terminal settings into effect.
689 First record the inferior's terminal settings
690 so they can be restored properly later. */
691
692 #define target_terminal_ours() \
693 (*current_target.to_terminal_ours) ()
694
695 /* Save our terminal settings.
696 This is called from TUI after entering or leaving the curses
697 mode. Since curses modifies our terminal this call is here
698 to take this change into account. */
699
700 #define target_terminal_save_ours() \
701 (*current_target.to_terminal_save_ours) ()
702
703 /* Print useful information about our terminal status, if such a thing
704 exists. */
705
706 #define target_terminal_info(arg, from_tty) \
707 (*current_target.to_terminal_info) (arg, from_tty)
708
709 /* Kill the inferior process. Make it go away. */
710
711 #define target_kill() \
712 (*current_target.to_kill) ()
713
714 /* Load an executable file into the target process. This is expected
715 to not only bring new code into the target process, but also to
716 update GDB's symbol tables to match.
717
718 ARG contains command-line arguments, to be broken down with
719 buildargv (). The first non-switch argument is the filename to
720 load, FILE; the second is a number (as parsed by strtoul (..., ...,
721 0)), which is an offset to apply to the load addresses of FILE's
722 sections. The target may define switches, or other non-switch
723 arguments, as it pleases. */
724
725 extern void target_load (char *arg, int from_tty);
726
727 /* Look up a symbol in the target's symbol table. NAME is the symbol
728 name. ADDRP is a CORE_ADDR * pointing to where the value of the
729 symbol should be returned. The result is 0 if successful, nonzero
730 if the symbol does not exist in the target environment. This
731 function should not call error() if communication with the target
732 is interrupted, since it is called from symbol reading, but should
733 return nonzero, possibly doing a complain(). */
734
735 #define target_lookup_symbol(name, addrp) \
736 (*current_target.to_lookup_symbol) (name, addrp)
737
738 /* Start an inferior process and set inferior_ptid to its pid.
739 EXEC_FILE is the file to run.
740 ALLARGS is a string containing the arguments to the program.
741 ENV is the environment vector to pass. Errors reported with error().
742 On VxWorks and various standalone systems, we ignore exec_file. */
743
744 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
745 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
746
747
748 /* Some targets (such as ttrace-based HPUX) don't allow us to request
749 notification of inferior events such as fork and vork immediately
750 after the inferior is created. (This because of how gdb gets an
751 inferior created via invoking a shell to do it. In such a scenario,
752 if the shell init file has commands in it, the shell will fork and
753 exec for each of those commands, and we will see each such fork
754 event. Very bad.)
755
756 Such targets will supply an appropriate definition for this function. */
757
758 #define target_post_startup_inferior(ptid) \
759 (*current_target.to_post_startup_inferior) (ptid)
760
761 /* On some targets, the sequence of starting up an inferior requires
762 some synchronization between gdb and the new inferior process, PID. */
763
764 #define target_acknowledge_created_inferior(pid) \
765 (*current_target.to_acknowledge_created_inferior) (pid)
766
767 /* On some targets, we can catch an inferior fork or vfork event when
768 it occurs. These functions insert/remove an already-created
769 catchpoint for such events. */
770
771 #define target_insert_fork_catchpoint(pid) \
772 (*current_target.to_insert_fork_catchpoint) (pid)
773
774 #define target_remove_fork_catchpoint(pid) \
775 (*current_target.to_remove_fork_catchpoint) (pid)
776
777 #define target_insert_vfork_catchpoint(pid) \
778 (*current_target.to_insert_vfork_catchpoint) (pid)
779
780 #define target_remove_vfork_catchpoint(pid) \
781 (*current_target.to_remove_vfork_catchpoint) (pid)
782
783 /* If the inferior forks or vforks, this function will be called at
784 the next resume in order to perform any bookkeeping and fiddling
785 necessary to continue debugging either the parent or child, as
786 requested, and releasing the other. Information about the fork
787 or vfork event is available via get_last_target_status ().
788 This function returns 1 if the inferior should not be resumed
789 (i.e. there is another event pending). */
790
791 int target_follow_fork (int follow_child);
792
793 /* On some targets, we can catch an inferior exec event when it
794 occurs. These functions insert/remove an already-created
795 catchpoint for such events. */
796
797 #define target_insert_exec_catchpoint(pid) \
798 (*current_target.to_insert_exec_catchpoint) (pid)
799
800 #define target_remove_exec_catchpoint(pid) \
801 (*current_target.to_remove_exec_catchpoint) (pid)
802
803 /* Returns the number of exec events that are reported when a process
804 invokes a flavor of the exec() system call on this target, if exec
805 events are being reported. */
806
807 #define target_reported_exec_events_per_exec_call() \
808 (*current_target.to_reported_exec_events_per_exec_call) ()
809
810 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
811 exit code of PID, if any. */
812
813 #define target_has_exited(pid,wait_status,exit_status) \
814 (*current_target.to_has_exited) (pid,wait_status,exit_status)
815
816 /* The debugger has completed a blocking wait() call. There is now
817 some process event that must be processed. This function should
818 be defined by those targets that require the debugger to perform
819 cleanup or internal state changes in response to the process event. */
820
821 /* The inferior process has died. Do what is right. */
822
823 #define target_mourn_inferior() \
824 (*current_target.to_mourn_inferior) ()
825
826 /* Does target have enough data to do a run or attach command? */
827
828 #define target_can_run(t) \
829 ((t)->to_can_run) ()
830
831 /* post process changes to signal handling in the inferior. */
832
833 #define target_notice_signals(ptid) \
834 (*current_target.to_notice_signals) (ptid)
835
836 /* Check to see if a thread is still alive. */
837
838 #define target_thread_alive(ptid) \
839 (*current_target.to_thread_alive) (ptid)
840
841 /* Query for new threads and add them to the thread list. */
842
843 #define target_find_new_threads() \
844 (*current_target.to_find_new_threads) (); \
845
846 /* Make target stop in a continuable fashion. (For instance, under
847 Unix, this should act like SIGSTOP). This function is normally
848 used by GUIs to implement a stop button. */
849
850 #define target_stop current_target.to_stop
851
852 /* Send the specified COMMAND to the target's monitor
853 (shell,interpreter) for execution. The result of the query is
854 placed in OUTBUF. */
855
856 #define target_rcmd(command, outbuf) \
857 (*current_target.to_rcmd) (command, outbuf)
858
859
860 /* Get the symbol information for a breakpointable routine called when
861 an exception event occurs.
862 Intended mainly for C++, and for those
863 platforms/implementations where such a callback mechanism is available,
864 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
865 different mechanisms for debugging exceptions. */
866
867 #define target_enable_exception_callback(kind, enable) \
868 (*current_target.to_enable_exception_callback) (kind, enable)
869
870 /* Get the current exception event kind -- throw or catch, etc. */
871
872 #define target_get_current_exception_event() \
873 (*current_target.to_get_current_exception_event) ()
874
875 /* Does the target include all of memory, or only part of it? This
876 determines whether we look up the target chain for other parts of
877 memory if this target can't satisfy a request. */
878
879 #define target_has_all_memory \
880 (current_target.to_has_all_memory)
881
882 /* Does the target include memory? (Dummy targets don't.) */
883
884 #define target_has_memory \
885 (current_target.to_has_memory)
886
887 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
888 we start a process.) */
889
890 #define target_has_stack \
891 (current_target.to_has_stack)
892
893 /* Does the target have registers? (Exec files don't.) */
894
895 #define target_has_registers \
896 (current_target.to_has_registers)
897
898 /* Does the target have execution? Can we make it jump (through
899 hoops), or pop its stack a few times? FIXME: If this is to work that
900 way, it needs to check whether an inferior actually exists.
901 remote-udi.c and probably other targets can be the current target
902 when the inferior doesn't actually exist at the moment. Right now
903 this just tells us whether this target is *capable* of execution. */
904
905 #define target_has_execution \
906 (current_target.to_has_execution)
907
908 /* Can the target support the debugger control of thread execution?
909 a) Can it lock the thread scheduler?
910 b) Can it switch the currently running thread? */
911
912 #define target_can_lock_scheduler \
913 (current_target.to_has_thread_control & tc_schedlock)
914
915 #define target_can_switch_threads \
916 (current_target.to_has_thread_control & tc_switch)
917
918 /* Can the target support asynchronous execution? */
919 #define target_can_async_p() (current_target.to_can_async_p ())
920
921 /* Is the target in asynchronous execution mode? */
922 #define target_is_async_p() (current_target.to_is_async_p())
923
924 /* Put the target in async mode with the specified callback function. */
925 #define target_async(CALLBACK,CONTEXT) \
926 (current_target.to_async((CALLBACK), (CONTEXT)))
927
928 /* This is to be used ONLY within call_function_by_hand(). It provides
929 a workaround, to have inferior function calls done in sychronous
930 mode, even though the target is asynchronous. After
931 target_async_mask(0) is called, calls to target_can_async_p() will
932 return FALSE , so that target_resume() will not try to start the
933 target asynchronously. After the inferior stops, we IMMEDIATELY
934 restore the previous nature of the target, by calling
935 target_async_mask(1). After that, target_can_async_p() will return
936 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
937
938 FIXME ezannoni 1999-12-13: we won't need this once we move
939 the turning async on and off to the single execution commands,
940 from where it is done currently, in remote_resume(). */
941
942 #define target_async_mask_value \
943 (current_target.to_async_mask_value)
944
945 extern int target_async_mask (int mask);
946
947 /* Converts a process id to a string. Usually, the string just contains
948 `process xyz', but on some systems it may contain
949 `process xyz thread abc'. */
950
951 #undef target_pid_to_str
952 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
953
954 #ifndef target_tid_to_str
955 #define target_tid_to_str(PID) \
956 target_pid_to_str (PID)
957 extern char *normal_pid_to_str (ptid_t ptid);
958 #endif
959
960 /* Return a short string describing extra information about PID,
961 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
962 is okay. */
963
964 #define target_extra_thread_info(TP) \
965 (current_target.to_extra_thread_info (TP))
966
967 /*
968 * New Objfile Event Hook:
969 *
970 * Sometimes a GDB component wants to get notified whenever a new
971 * objfile is loaded. Mainly this is used by thread-debugging
972 * implementations that need to know when symbols for the target
973 * thread implemenation are available.
974 *
975 * The old way of doing this is to define a macro 'target_new_objfile'
976 * that points to the function that you want to be called on every
977 * objfile/shlib load.
978
979 The new way is to grab the function pointer,
980 'deprecated_target_new_objfile_hook', and point it to the function
981 that you want to be called on every objfile/shlib load.
982
983 If multiple clients are willing to be cooperative, they can each
984 save a pointer to the previous value of
985 deprecated_target_new_objfile_hook before modifying it, and arrange
986 for their function to call the previous function in the chain. In
987 that way, multiple clients can receive this notification (something
988 like with signal handlers). */
989
990 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
991
992 #ifndef target_pid_or_tid_to_str
993 #define target_pid_or_tid_to_str(ID) \
994 target_pid_to_str (ID)
995 #endif
996
997 /* Attempts to find the pathname of the executable file
998 that was run to create a specified process.
999
1000 The process PID must be stopped when this operation is used.
1001
1002 If the executable file cannot be determined, NULL is returned.
1003
1004 Else, a pointer to a character string containing the pathname
1005 is returned. This string should be copied into a buffer by
1006 the client if the string will not be immediately used, or if
1007 it must persist. */
1008
1009 #define target_pid_to_exec_file(pid) \
1010 (current_target.to_pid_to_exec_file) (pid)
1011
1012 /*
1013 * Iterator function for target memory regions.
1014 * Calls a callback function once for each memory region 'mapped'
1015 * in the child process. Defined as a simple macro rather than
1016 * as a function macro so that it can be tested for nullity.
1017 */
1018
1019 #define target_find_memory_regions(FUNC, DATA) \
1020 (current_target.to_find_memory_regions) (FUNC, DATA)
1021
1022 /*
1023 * Compose corefile .note section.
1024 */
1025
1026 #define target_make_corefile_notes(BFD, SIZE_P) \
1027 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1028
1029 /* Thread-local values. */
1030 #define target_get_thread_local_address \
1031 (current_target.to_get_thread_local_address)
1032 #define target_get_thread_local_address_p() \
1033 (target_get_thread_local_address != NULL)
1034
1035 /* Hook to call target dependent code just after inferior target process has
1036 started. */
1037
1038 #ifndef TARGET_CREATE_INFERIOR_HOOK
1039 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1040 #endif
1041
1042 /* Hardware watchpoint interfaces. */
1043
1044 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1045 write). */
1046
1047 #ifndef STOPPED_BY_WATCHPOINT
1048 #define STOPPED_BY_WATCHPOINT(w) \
1049 (*current_target.to_stopped_by_watchpoint) ()
1050 #endif
1051
1052 /* Non-zero if we have continuable watchpoints */
1053
1054 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1055 #define HAVE_CONTINUABLE_WATCHPOINT \
1056 (current_target.to_have_continuable_watchpoint)
1057 #endif
1058
1059 /* Provide defaults for hardware watchpoint functions. */
1060
1061 /* If the *_hw_beakpoint functions have not been defined
1062 elsewhere use the definitions in the target vector. */
1063
1064 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1065 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1066 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1067 (including this one?). OTHERTYPE is who knows what... */
1068
1069 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1070 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1071 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1072 #endif
1073
1074 #ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1075 #define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1076 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1077 #endif
1078
1079
1080 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1081 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1082 success, non-zero for failure. */
1083
1084 #ifndef target_insert_watchpoint
1085 #define target_insert_watchpoint(addr, len, type) \
1086 (*current_target.to_insert_watchpoint) (addr, len, type)
1087
1088 #define target_remove_watchpoint(addr, len, type) \
1089 (*current_target.to_remove_watchpoint) (addr, len, type)
1090 #endif
1091
1092 #ifndef target_insert_hw_breakpoint
1093 #define target_insert_hw_breakpoint(bp_tgt) \
1094 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
1095
1096 #define target_remove_hw_breakpoint(bp_tgt) \
1097 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
1098 #endif
1099
1100 extern int target_stopped_data_address_p (struct target_ops *);
1101
1102 #ifndef target_stopped_data_address
1103 #define target_stopped_data_address(target, x) \
1104 (*target.to_stopped_data_address) (target, x)
1105 #else
1106 /* Horrible hack to get around existing macros :-(. */
1107 #define target_stopped_data_address_p(CURRENT_TARGET) (1)
1108 #endif
1109
1110 /* This will only be defined by a target that supports catching vfork events,
1111 such as HP-UX.
1112
1113 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1114 child process after it has exec'd, causes the parent process to resume as
1115 well. To prevent the parent from running spontaneously, such targets should
1116 define this to a function that prevents that from happening. */
1117 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1118 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1119 #endif
1120
1121 /* This will only be defined by a target that supports catching vfork events,
1122 such as HP-UX.
1123
1124 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1125 process must be resumed when it delivers its exec event, before the parent
1126 vfork event will be delivered to us. */
1127
1128 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1129 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1130 #endif
1131
1132 /* Routines for maintenance of the target structures...
1133
1134 add_target: Add a target to the list of all possible targets.
1135
1136 push_target: Make this target the top of the stack of currently used
1137 targets, within its particular stratum of the stack. Result
1138 is 0 if now atop the stack, nonzero if not on top (maybe
1139 should warn user).
1140
1141 unpush_target: Remove this from the stack of currently used targets,
1142 no matter where it is on the list. Returns 0 if no
1143 change, 1 if removed from stack.
1144
1145 pop_target: Remove the top thing on the stack of current targets. */
1146
1147 extern void add_target (struct target_ops *);
1148
1149 extern int push_target (struct target_ops *);
1150
1151 extern int unpush_target (struct target_ops *);
1152
1153 extern void target_pre_inferior (int);
1154
1155 extern void target_preopen (int);
1156
1157 extern void pop_target (void);
1158
1159 /* Struct section_table maps address ranges to file sections. It is
1160 mostly used with BFD files, but can be used without (e.g. for handling
1161 raw disks, or files not in formats handled by BFD). */
1162
1163 struct section_table
1164 {
1165 CORE_ADDR addr; /* Lowest address in section */
1166 CORE_ADDR endaddr; /* 1+highest address in section */
1167
1168 struct bfd_section *the_bfd_section;
1169
1170 bfd *bfd; /* BFD file pointer */
1171 };
1172
1173 /* Return the "section" containing the specified address. */
1174 struct section_table *target_section_by_addr (struct target_ops *target,
1175 CORE_ADDR addr);
1176
1177
1178 /* From mem-break.c */
1179
1180 extern int memory_remove_breakpoint (struct bp_target_info *);
1181
1182 extern int memory_insert_breakpoint (struct bp_target_info *);
1183
1184 extern int default_memory_remove_breakpoint (struct bp_target_info *);
1185
1186 extern int default_memory_insert_breakpoint (struct bp_target_info *);
1187
1188
1189 /* From target.c */
1190
1191 extern void initialize_targets (void);
1192
1193 extern void noprocess (void);
1194
1195 extern void find_default_attach (char *, int);
1196
1197 extern void find_default_create_inferior (char *, char *, char **, int);
1198
1199 extern struct target_ops *find_run_target (void);
1200
1201 extern struct target_ops *find_core_target (void);
1202
1203 extern struct target_ops *find_target_beneath (struct target_ops *);
1204
1205 extern int target_resize_to_sections (struct target_ops *target,
1206 int num_added);
1207
1208 extern void remove_target_sections (bfd *abfd);
1209
1210 \f
1211 /* Stuff that should be shared among the various remote targets. */
1212
1213 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1214 information (higher values, more information). */
1215 extern int remote_debug;
1216
1217 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1218 extern int baud_rate;
1219 /* Timeout limit for response from target. */
1220 extern int remote_timeout;
1221
1222 \f
1223 /* Functions for helping to write a native target. */
1224
1225 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1226 extern void store_waitstatus (struct target_waitstatus *, int);
1227
1228 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1229 targ_signal SIGNO has an equivalent ``host'' representation. */
1230 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1231 to the shorter target_signal_p() because it is far less ambigious.
1232 In this context ``target_signal'' refers to GDB's internal
1233 representation of the target's set of signals while ``host signal''
1234 refers to the target operating system's signal. Confused? */
1235
1236 extern int target_signal_to_host_p (enum target_signal signo);
1237
1238 /* Convert between host signal numbers and enum target_signal's.
1239 target_signal_to_host() returns 0 and prints a warning() on GDB's
1240 console if SIGNO has no equivalent host representation. */
1241 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1242 refering to the target operating system's signal numbering.
1243 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1244 gdb_signal'' would probably be better as it is refering to GDB's
1245 internal representation of a target operating system's signal. */
1246
1247 extern enum target_signal target_signal_from_host (int);
1248 extern int target_signal_to_host (enum target_signal);
1249
1250 /* Convert from a number used in a GDB command to an enum target_signal. */
1251 extern enum target_signal target_signal_from_command (int);
1252
1253 /* Any target can call this to switch to remote protocol (in remote.c). */
1254 extern void push_remote_target (char *name, int from_tty);
1255 \f
1256 /* Imported from machine dependent code */
1257
1258 /* Blank target vector entries are initialized to target_ignore. */
1259 void target_ignore (void);
1260
1261 extern struct target_ops deprecated_child_ops;
1262
1263 #endif /* !defined (TARGET_H) */
This page took 0.071062 seconds and 4 git commands to generate.