695950326589b8d41124eabff833deed8187c84b
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42 of the debugger, and the part which is target-specific, or
43 specific to the communications interface between us and the
44 target.
45
46 A TARGET is an interface between the debugger and a particular
47 kind of file or process. Targets can be STACKED in STRATA,
48 so that more than one target can potentially respond to a request.
49 In particular, memory accesses will walk down the stack of targets
50 until they find a target that is interested in handling that particular
51 address. STRATA are artificial boundaries on the stack, within
52 which particular kinds of targets live. Strata exist so that
53 people don't get confused by pushing e.g. a process target and then
54 a file target, and wondering why they can't see the current values
55 of variables any more (the file target is handling them and they
56 never get to the process target). So when you push a file target,
57 it goes into the file stratum, which is always below the process
58 stratum. */
59
60 #include "target/resume.h"
61 #include "target/wait.h"
62 #include "target/waitstatus.h"
63 #include "bfd.h"
64 #include "symtab.h"
65 #include "memattr.h"
66 #include "vec.h"
67 #include "gdb_signals.h"
68 #include "btrace.h"
69 #include "command.h"
70
71 enum strata
72 {
73 dummy_stratum, /* The lowest of the low */
74 file_stratum, /* Executable files, etc */
75 process_stratum, /* Executing processes or core dump files */
76 thread_stratum, /* Executing threads */
77 record_stratum, /* Support record debugging */
78 arch_stratum /* Architecture overrides */
79 };
80
81 enum thread_control_capabilities
82 {
83 tc_none = 0, /* Default: can't control thread execution. */
84 tc_schedlock = 1, /* Can lock the thread scheduler. */
85 };
86
87 /* The structure below stores information about a system call.
88 It is basically used in the "catch syscall" command, and in
89 every function that gives information about a system call.
90
91 It's also good to mention that its fields represent everything
92 that we currently know about a syscall in GDB. */
93 struct syscall
94 {
95 /* The syscall number. */
96 int number;
97
98 /* The syscall name. */
99 const char *name;
100 };
101
102 /* Return a pretty printed form of target_waitstatus.
103 Space for the result is malloc'd, caller must free. */
104 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
105
106 /* Return a pretty printed form of TARGET_OPTIONS.
107 Space for the result is malloc'd, caller must free. */
108 extern char *target_options_to_string (int target_options);
109
110 /* Possible types of events that the inferior handler will have to
111 deal with. */
112 enum inferior_event_type
113 {
114 /* Process a normal inferior event which will result in target_wait
115 being called. */
116 INF_REG_EVENT,
117 /* We are called because a timer went off. */
118 INF_TIMER,
119 /* We are called to do stuff after the inferior stops. */
120 INF_EXEC_COMPLETE,
121 /* We are called to do some stuff after the inferior stops, but we
122 are expected to reenter the proceed() and
123 handle_inferior_event() functions. This is used only in case of
124 'step n' like commands. */
125 INF_EXEC_CONTINUE
126 };
127 \f
128 /* Target objects which can be transfered using target_read,
129 target_write, et cetera. */
130
131 enum target_object
132 {
133 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
134 TARGET_OBJECT_AVR,
135 /* SPU target specific transfer. See "spu-tdep.c". */
136 TARGET_OBJECT_SPU,
137 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
138 TARGET_OBJECT_MEMORY,
139 /* Memory, avoiding GDB's data cache and trusting the executable.
140 Target implementations of to_xfer_partial never need to handle
141 this object, and most callers should not use it. */
142 TARGET_OBJECT_RAW_MEMORY,
143 /* Memory known to be part of the target's stack. This is cached even
144 if it is not in a region marked as such, since it is known to be
145 "normal" RAM. */
146 TARGET_OBJECT_STACK_MEMORY,
147 /* Kernel Unwind Table. See "ia64-tdep.c". */
148 TARGET_OBJECT_UNWIND_TABLE,
149 /* Transfer auxilliary vector. */
150 TARGET_OBJECT_AUXV,
151 /* StackGhost cookie. See "sparc-tdep.c". */
152 TARGET_OBJECT_WCOOKIE,
153 /* Target memory map in XML format. */
154 TARGET_OBJECT_MEMORY_MAP,
155 /* Flash memory. This object can be used to write contents to
156 a previously erased flash memory. Using it without erasing
157 flash can have unexpected results. Addresses are physical
158 address on target, and not relative to flash start. */
159 TARGET_OBJECT_FLASH,
160 /* Available target-specific features, e.g. registers and coprocessors.
161 See "target-descriptions.c". ANNEX should never be empty. */
162 TARGET_OBJECT_AVAILABLE_FEATURES,
163 /* Currently loaded libraries, in XML format. */
164 TARGET_OBJECT_LIBRARIES,
165 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
166 TARGET_OBJECT_LIBRARIES_SVR4,
167 /* Currently loaded libraries specific to AIX systems, in XML format. */
168 TARGET_OBJECT_LIBRARIES_AIX,
169 /* Get OS specific data. The ANNEX specifies the type (running
170 processes, etc.). The data being transfered is expected to follow
171 the DTD specified in features/osdata.dtd. */
172 TARGET_OBJECT_OSDATA,
173 /* Extra signal info. Usually the contents of `siginfo_t' on unix
174 platforms. */
175 TARGET_OBJECT_SIGNAL_INFO,
176 /* The list of threads that are being debugged. */
177 TARGET_OBJECT_THREADS,
178 /* Collected static trace data. */
179 TARGET_OBJECT_STATIC_TRACE_DATA,
180 /* The HP-UX registers (those that can be obtained or modified by using
181 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
182 TARGET_OBJECT_HPUX_UREGS,
183 /* The HP-UX shared library linkage pointer. ANNEX should be a string
184 image of the code address whose linkage pointer we are looking for.
185
186 The size of the data transfered is always 8 bytes (the size of an
187 address on ia64). */
188 TARGET_OBJECT_HPUX_SOLIB_GOT,
189 /* Traceframe info, in XML format. */
190 TARGET_OBJECT_TRACEFRAME_INFO,
191 /* Load maps for FDPIC systems. */
192 TARGET_OBJECT_FDPIC,
193 /* Darwin dynamic linker info data. */
194 TARGET_OBJECT_DARWIN_DYLD_INFO,
195 /* OpenVMS Unwind Information Block. */
196 TARGET_OBJECT_OPENVMS_UIB,
197 /* Branch trace data, in XML format. */
198 TARGET_OBJECT_BTRACE
199 /* Possible future objects: TARGET_OBJECT_FILE, ... */
200 };
201
202 /* Possible error codes returned by target_xfer_partial, etc. */
203
204 enum target_xfer_error
205 {
206 /* Generic I/O error. Note that it's important that this is '-1',
207 as we still have target_xfer-related code returning hardcoded
208 '-1' on error. */
209 TARGET_XFER_E_IO = -1,
210
211 /* Transfer failed because the piece of the object requested is
212 unavailable. */
213 TARGET_XFER_E_UNAVAILABLE = -2,
214
215 /* Keep list in sync with target_xfer_error_to_string. */
216 };
217
218 /* Return the string form of ERR. */
219
220 extern const char *target_xfer_error_to_string (enum target_xfer_error err);
221
222 /* Enumeration of the kinds of traceframe searches that a target may
223 be able to perform. */
224
225 enum trace_find_type
226 {
227 tfind_number,
228 tfind_pc,
229 tfind_tp,
230 tfind_range,
231 tfind_outside,
232 };
233
234 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
235 DEF_VEC_P(static_tracepoint_marker_p);
236
237 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
238 OBJECT. The OFFSET, for a seekable object, specifies the
239 starting point. The ANNEX can be used to provide additional
240 data-specific information to the target.
241
242 Return the number of bytes actually transfered, or -1 if the
243 transfer is not supported or otherwise fails. Return of a positive
244 value less than LEN indicates that no further transfer is possible.
245 Unlike the raw to_xfer_partial interface, callers of these
246 functions do not need to retry partial transfers. */
247
248 extern LONGEST target_read (struct target_ops *ops,
249 enum target_object object,
250 const char *annex, gdb_byte *buf,
251 ULONGEST offset, LONGEST len);
252
253 struct memory_read_result
254 {
255 /* First address that was read. */
256 ULONGEST begin;
257 /* Past-the-end address. */
258 ULONGEST end;
259 /* The data. */
260 gdb_byte *data;
261 };
262 typedef struct memory_read_result memory_read_result_s;
263 DEF_VEC_O(memory_read_result_s);
264
265 extern void free_memory_read_result_vector (void *);
266
267 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
268 ULONGEST offset,
269 LONGEST len);
270
271 extern LONGEST target_write (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, const gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 /* Similar to target_write, except that it also calls PROGRESS with
277 the number of bytes written and the opaque BATON after every
278 successful partial write (and before the first write). This is
279 useful for progress reporting and user interaction while writing
280 data. To abort the transfer, the progress callback can throw an
281 exception. */
282
283 LONGEST target_write_with_progress (struct target_ops *ops,
284 enum target_object object,
285 const char *annex, const gdb_byte *buf,
286 ULONGEST offset, LONGEST len,
287 void (*progress) (ULONGEST, void *),
288 void *baton);
289
290 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
291 be read using OPS. The return value will be -1 if the transfer
292 fails or is not supported; 0 if the object is empty; or the length
293 of the object otherwise. If a positive value is returned, a
294 sufficiently large buffer will be allocated using xmalloc and
295 returned in *BUF_P containing the contents of the object.
296
297 This method should be used for objects sufficiently small to store
298 in a single xmalloc'd buffer, when no fixed bound on the object's
299 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
300 through this function. */
301
302 extern LONGEST target_read_alloc (struct target_ops *ops,
303 enum target_object object,
304 const char *annex, gdb_byte **buf_p);
305
306 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
307 returned as a string, allocated using xmalloc. If an error occurs
308 or the transfer is unsupported, NULL is returned. Empty objects
309 are returned as allocated but empty strings. A warning is issued
310 if the result contains any embedded NUL bytes. */
311
312 extern char *target_read_stralloc (struct target_ops *ops,
313 enum target_object object,
314 const char *annex);
315
316 /* See target_ops->to_xfer_partial. */
317
318 extern LONGEST target_xfer_partial (struct target_ops *ops,
319 enum target_object object,
320 const char *annex,
321 void *readbuf, const void *writebuf,
322 ULONGEST offset, LONGEST len);
323
324 /* Wrappers to target read/write that perform memory transfers. They
325 throw an error if the memory transfer fails.
326
327 NOTE: cagney/2003-10-23: The naming schema is lifted from
328 "frame.h". The parameter order is lifted from get_frame_memory,
329 which in turn lifted it from read_memory. */
330
331 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
332 gdb_byte *buf, LONGEST len);
333 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
334 CORE_ADDR addr, int len,
335 enum bfd_endian byte_order);
336 \f
337 struct thread_info; /* fwd decl for parameter list below: */
338
339 struct target_ops
340 {
341 struct target_ops *beneath; /* To the target under this one. */
342 char *to_shortname; /* Name this target type */
343 char *to_longname; /* Name for printing */
344 char *to_doc; /* Documentation. Does not include trailing
345 newline, and starts with a one-line descrip-
346 tion (probably similar to to_longname). */
347 /* Per-target scratch pad. */
348 void *to_data;
349 /* The open routine takes the rest of the parameters from the
350 command, and (if successful) pushes a new target onto the
351 stack. Targets should supply this routine, if only to provide
352 an error message. */
353 void (*to_open) (char *, int);
354 /* Old targets with a static target vector provide "to_close".
355 New re-entrant targets provide "to_xclose" and that is expected
356 to xfree everything (including the "struct target_ops"). */
357 void (*to_xclose) (struct target_ops *targ);
358 void (*to_close) (void);
359 void (*to_attach) (struct target_ops *ops, char *, int);
360 void (*to_post_attach) (int);
361 void (*to_detach) (struct target_ops *ops, char *, int);
362 void (*to_disconnect) (struct target_ops *, char *, int);
363 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
364 ptid_t (*to_wait) (struct target_ops *,
365 ptid_t, struct target_waitstatus *, int);
366 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
367 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
368 void (*to_prepare_to_store) (struct regcache *);
369
370 /* Transfer LEN bytes of memory between GDB address MYADDR and
371 target address MEMADDR. If WRITE, transfer them to the target, else
372 transfer them from the target. TARGET is the target from which we
373 get this function.
374
375 Return value, N, is one of the following:
376
377 0 means that we can't handle this. If errno has been set, it is the
378 error which prevented us from doing it (FIXME: What about bfd_error?).
379
380 positive (call it N) means that we have transferred N bytes
381 starting at MEMADDR. We might be able to handle more bytes
382 beyond this length, but no promises.
383
384 negative (call its absolute value N) means that we cannot
385 transfer right at MEMADDR, but we could transfer at least
386 something at MEMADDR + N.
387
388 NOTE: cagney/2004-10-01: This has been entirely superseeded by
389 to_xfer_partial and inferior inheritance. */
390
391 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
392 int len, int write,
393 struct mem_attrib *attrib,
394 struct target_ops *target);
395
396 void (*to_files_info) (struct target_ops *);
397 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
398 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
399 int (*to_can_use_hw_breakpoint) (int, int, int);
400 int (*to_ranged_break_num_registers) (struct target_ops *);
401 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
402 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
403
404 /* Documentation of what the two routines below are expected to do is
405 provided with the corresponding target_* macros. */
406 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
407 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
408
409 int (*to_insert_mask_watchpoint) (struct target_ops *,
410 CORE_ADDR, CORE_ADDR, int);
411 int (*to_remove_mask_watchpoint) (struct target_ops *,
412 CORE_ADDR, CORE_ADDR, int);
413 int (*to_stopped_by_watchpoint) (void);
414 int to_have_steppable_watchpoint;
415 int to_have_continuable_watchpoint;
416 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
417 int (*to_watchpoint_addr_within_range) (struct target_ops *,
418 CORE_ADDR, CORE_ADDR, int);
419
420 /* Documentation of this routine is provided with the corresponding
421 target_* macro. */
422 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
423
424 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
425 struct expression *);
426 int (*to_masked_watch_num_registers) (struct target_ops *,
427 CORE_ADDR, CORE_ADDR);
428 void (*to_terminal_init) (void);
429 void (*to_terminal_inferior) (void);
430 void (*to_terminal_ours_for_output) (void);
431 void (*to_terminal_ours) (void);
432 void (*to_terminal_save_ours) (void);
433 void (*to_terminal_info) (const char *, int);
434 void (*to_kill) (struct target_ops *);
435 void (*to_load) (char *, int);
436 void (*to_create_inferior) (struct target_ops *,
437 char *, char *, char **, int);
438 void (*to_post_startup_inferior) (ptid_t);
439 int (*to_insert_fork_catchpoint) (int);
440 int (*to_remove_fork_catchpoint) (int);
441 int (*to_insert_vfork_catchpoint) (int);
442 int (*to_remove_vfork_catchpoint) (int);
443 int (*to_follow_fork) (struct target_ops *, int);
444 int (*to_insert_exec_catchpoint) (int);
445 int (*to_remove_exec_catchpoint) (int);
446 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
447 int (*to_has_exited) (int, int, int *);
448 void (*to_mourn_inferior) (struct target_ops *);
449 int (*to_can_run) (void);
450
451 /* Documentation of this routine is provided with the corresponding
452 target_* macro. */
453 void (*to_pass_signals) (int, unsigned char *);
454
455 /* Documentation of this routine is provided with the
456 corresponding target_* function. */
457 void (*to_program_signals) (int, unsigned char *);
458
459 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
460 void (*to_find_new_threads) (struct target_ops *);
461 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
462 char *(*to_extra_thread_info) (struct thread_info *);
463 char *(*to_thread_name) (struct thread_info *);
464 void (*to_stop) (ptid_t);
465 void (*to_rcmd) (char *command, struct ui_file *output);
466 char *(*to_pid_to_exec_file) (int pid);
467 void (*to_log_command) (const char *);
468 struct target_section_table *(*to_get_section_table) (struct target_ops *);
469 enum strata to_stratum;
470 int (*to_has_all_memory) (struct target_ops *);
471 int (*to_has_memory) (struct target_ops *);
472 int (*to_has_stack) (struct target_ops *);
473 int (*to_has_registers) (struct target_ops *);
474 int (*to_has_execution) (struct target_ops *, ptid_t);
475 int to_has_thread_control; /* control thread execution */
476 int to_attach_no_wait;
477 /* ASYNC target controls */
478 int (*to_can_async_p) (void);
479 int (*to_is_async_p) (void);
480 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
481 int (*to_supports_non_stop) (void);
482 /* find_memory_regions support method for gcore */
483 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
484 /* make_corefile_notes support method for gcore */
485 char * (*to_make_corefile_notes) (bfd *, int *);
486 /* get_bookmark support method for bookmarks */
487 gdb_byte * (*to_get_bookmark) (char *, int);
488 /* goto_bookmark support method for bookmarks */
489 void (*to_goto_bookmark) (gdb_byte *, int);
490 /* Return the thread-local address at OFFSET in the
491 thread-local storage for the thread PTID and the shared library
492 or executable file given by OBJFILE. If that block of
493 thread-local storage hasn't been allocated yet, this function
494 may return an error. */
495 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
496 ptid_t ptid,
497 CORE_ADDR load_module_addr,
498 CORE_ADDR offset);
499
500 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
501 OBJECT. The OFFSET, for a seekable object, specifies the
502 starting point. The ANNEX can be used to provide additional
503 data-specific information to the target.
504
505 Return the number of bytes actually transfered, zero when no
506 further transfer is possible, and a negative error code (really
507 an 'enum target_xfer_error' value) when the transfer is not
508 supported. Return of a positive value smaller than LEN does
509 not indicate the end of the object, only the end of the
510 transfer; higher level code should continue transferring if
511 desired. This is handled in target.c.
512
513 The interface does not support a "retry" mechanism. Instead it
514 assumes that at least one byte will be transfered on each
515 successful call.
516
517 NOTE: cagney/2003-10-17: The current interface can lead to
518 fragmented transfers. Lower target levels should not implement
519 hacks, such as enlarging the transfer, in an attempt to
520 compensate for this. Instead, the target stack should be
521 extended so that it implements supply/collect methods and a
522 look-aside object cache. With that available, the lowest
523 target can safely and freely "push" data up the stack.
524
525 See target_read and target_write for more information. One,
526 and only one, of readbuf or writebuf must be non-NULL. */
527
528 LONGEST (*to_xfer_partial) (struct target_ops *ops,
529 enum target_object object, const char *annex,
530 gdb_byte *readbuf, const gdb_byte *writebuf,
531 ULONGEST offset, LONGEST len);
532
533 /* Returns the memory map for the target. A return value of NULL
534 means that no memory map is available. If a memory address
535 does not fall within any returned regions, it's assumed to be
536 RAM. The returned memory regions should not overlap.
537
538 The order of regions does not matter; target_memory_map will
539 sort regions by starting address. For that reason, this
540 function should not be called directly except via
541 target_memory_map.
542
543 This method should not cache data; if the memory map could
544 change unexpectedly, it should be invalidated, and higher
545 layers will re-fetch it. */
546 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
547
548 /* Erases the region of flash memory starting at ADDRESS, of
549 length LENGTH.
550
551 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
552 on flash block boundaries, as reported by 'to_memory_map'. */
553 void (*to_flash_erase) (struct target_ops *,
554 ULONGEST address, LONGEST length);
555
556 /* Finishes a flash memory write sequence. After this operation
557 all flash memory should be available for writing and the result
558 of reading from areas written by 'to_flash_write' should be
559 equal to what was written. */
560 void (*to_flash_done) (struct target_ops *);
561
562 /* Describe the architecture-specific features of this target.
563 Returns the description found, or NULL if no description
564 was available. */
565 const struct target_desc *(*to_read_description) (struct target_ops *ops);
566
567 /* Build the PTID of the thread on which a given task is running,
568 based on LWP and THREAD. These values are extracted from the
569 task Private_Data section of the Ada Task Control Block, and
570 their interpretation depends on the target. */
571 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
572
573 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
574 Return 0 if *READPTR is already at the end of the buffer.
575 Return -1 if there is insufficient buffer for a whole entry.
576 Return 1 if an entry was read into *TYPEP and *VALP. */
577 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
578 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
579
580 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
581 sequence of bytes in PATTERN with length PATTERN_LEN.
582
583 The result is 1 if found, 0 if not found, and -1 if there was an error
584 requiring halting of the search (e.g. memory read error).
585 If the pattern is found the address is recorded in FOUND_ADDRP. */
586 int (*to_search_memory) (struct target_ops *ops,
587 CORE_ADDR start_addr, ULONGEST search_space_len,
588 const gdb_byte *pattern, ULONGEST pattern_len,
589 CORE_ADDR *found_addrp);
590
591 /* Can target execute in reverse? */
592 int (*to_can_execute_reverse) (void);
593
594 /* The direction the target is currently executing. Must be
595 implemented on targets that support reverse execution and async
596 mode. The default simply returns forward execution. */
597 enum exec_direction_kind (*to_execution_direction) (void);
598
599 /* Does this target support debugging multiple processes
600 simultaneously? */
601 int (*to_supports_multi_process) (void);
602
603 /* Does this target support enabling and disabling tracepoints while a trace
604 experiment is running? */
605 int (*to_supports_enable_disable_tracepoint) (void);
606
607 /* Does this target support disabling address space randomization? */
608 int (*to_supports_disable_randomization) (void);
609
610 /* Does this target support the tracenz bytecode for string collection? */
611 int (*to_supports_string_tracing) (void);
612
613 /* Does this target support evaluation of breakpoint conditions on its
614 end? */
615 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
616
617 /* Does this target support evaluation of breakpoint commands on its
618 end? */
619 int (*to_can_run_breakpoint_commands) (void);
620
621 /* Determine current architecture of thread PTID.
622
623 The target is supposed to determine the architecture of the code where
624 the target is currently stopped at (on Cell, if a target is in spu_run,
625 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
626 This is architecture used to perform decr_pc_after_break adjustment,
627 and also determines the frame architecture of the innermost frame.
628 ptrace operations need to operate according to target_gdbarch ().
629
630 The default implementation always returns target_gdbarch (). */
631 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
632
633 /* Determine current address space of thread PTID.
634
635 The default implementation always returns the inferior's
636 address space. */
637 struct address_space *(*to_thread_address_space) (struct target_ops *,
638 ptid_t);
639
640 /* Target file operations. */
641
642 /* Open FILENAME on the target, using FLAGS and MODE. Return a
643 target file descriptor, or -1 if an error occurs (and set
644 *TARGET_ERRNO). */
645 int (*to_fileio_open) (const char *filename, int flags, int mode,
646 int *target_errno);
647
648 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
649 Return the number of bytes written, or -1 if an error occurs
650 (and set *TARGET_ERRNO). */
651 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
652 ULONGEST offset, int *target_errno);
653
654 /* Read up to LEN bytes FD on the target into READ_BUF.
655 Return the number of bytes read, or -1 if an error occurs
656 (and set *TARGET_ERRNO). */
657 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
658 ULONGEST offset, int *target_errno);
659
660 /* Close FD on the target. Return 0, or -1 if an error occurs
661 (and set *TARGET_ERRNO). */
662 int (*to_fileio_close) (int fd, int *target_errno);
663
664 /* Unlink FILENAME on the target. Return 0, or -1 if an error
665 occurs (and set *TARGET_ERRNO). */
666 int (*to_fileio_unlink) (const char *filename, int *target_errno);
667
668 /* Read value of symbolic link FILENAME on the target. Return a
669 null-terminated string allocated via xmalloc, or NULL if an error
670 occurs (and set *TARGET_ERRNO). */
671 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
672
673
674 /* Implement the "info proc" command. */
675 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
676
677 /* Tracepoint-related operations. */
678
679 /* Prepare the target for a tracing run. */
680 void (*to_trace_init) (void);
681
682 /* Send full details of a tracepoint location to the target. */
683 void (*to_download_tracepoint) (struct bp_location *location);
684
685 /* Is the target able to download tracepoint locations in current
686 state? */
687 int (*to_can_download_tracepoint) (void);
688
689 /* Send full details of a trace state variable to the target. */
690 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
691
692 /* Enable a tracepoint on the target. */
693 void (*to_enable_tracepoint) (struct bp_location *location);
694
695 /* Disable a tracepoint on the target. */
696 void (*to_disable_tracepoint) (struct bp_location *location);
697
698 /* Inform the target info of memory regions that are readonly
699 (such as text sections), and so it should return data from
700 those rather than look in the trace buffer. */
701 void (*to_trace_set_readonly_regions) (void);
702
703 /* Start a trace run. */
704 void (*to_trace_start) (void);
705
706 /* Get the current status of a tracing run. */
707 int (*to_get_trace_status) (struct trace_status *ts);
708
709 void (*to_get_tracepoint_status) (struct breakpoint *tp,
710 struct uploaded_tp *utp);
711
712 /* Stop a trace run. */
713 void (*to_trace_stop) (void);
714
715 /* Ask the target to find a trace frame of the given type TYPE,
716 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
717 number of the trace frame, and also the tracepoint number at
718 TPP. If no trace frame matches, return -1. May throw if the
719 operation fails. */
720 int (*to_trace_find) (enum trace_find_type type, int num,
721 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
722
723 /* Get the value of the trace state variable number TSV, returning
724 1 if the value is known and writing the value itself into the
725 location pointed to by VAL, else returning 0. */
726 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
727
728 int (*to_save_trace_data) (const char *filename);
729
730 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
731
732 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
733
734 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
735 ULONGEST offset, LONGEST len);
736
737 /* Get the minimum length of instruction on which a fast tracepoint
738 may be set on the target. If this operation is unsupported,
739 return -1. If for some reason the minimum length cannot be
740 determined, return 0. */
741 int (*to_get_min_fast_tracepoint_insn_len) (void);
742
743 /* Set the target's tracing behavior in response to unexpected
744 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
745 void (*to_set_disconnected_tracing) (int val);
746 void (*to_set_circular_trace_buffer) (int val);
747 /* Set the size of trace buffer in the target. */
748 void (*to_set_trace_buffer_size) (LONGEST val);
749
750 /* Add/change textual notes about the trace run, returning 1 if
751 successful, 0 otherwise. */
752 int (*to_set_trace_notes) (const char *user, const char *notes,
753 const char *stopnotes);
754
755 /* Return the processor core that thread PTID was last seen on.
756 This information is updated only when:
757 - update_thread_list is called
758 - thread stops
759 If the core cannot be determined -- either for the specified
760 thread, or right now, or in this debug session, or for this
761 target -- return -1. */
762 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
763
764 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
765 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
766 a match, 0 if there's a mismatch, and -1 if an error is
767 encountered while reading memory. */
768 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
769 CORE_ADDR memaddr, ULONGEST size);
770
771 /* Return the address of the start of the Thread Information Block
772 a Windows OS specific feature. */
773 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
774
775 /* Send the new settings of write permission variables. */
776 void (*to_set_permissions) (void);
777
778 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
779 with its details. Return 1 on success, 0 on failure. */
780 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
781 struct static_tracepoint_marker *marker);
782
783 /* Return a vector of all tracepoints markers string id ID, or all
784 markers if ID is NULL. */
785 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
786 (const char *id);
787
788 /* Return a traceframe info object describing the current
789 traceframe's contents. If the target doesn't support
790 traceframe info, return NULL. If the current traceframe is not
791 selected (the current traceframe number is -1), the target can
792 choose to return either NULL or an empty traceframe info. If
793 NULL is returned, for example in remote target, GDB will read
794 from the live inferior. If an empty traceframe info is
795 returned, for example in tfile target, which means the
796 traceframe info is available, but the requested memory is not
797 available in it. GDB will try to see if the requested memory
798 is available in the read-only sections. This method should not
799 cache data; higher layers take care of caching, invalidating,
800 and re-fetching when necessary. */
801 struct traceframe_info *(*to_traceframe_info) (void);
802
803 /* Ask the target to use or not to use agent according to USE. Return 1
804 successful, 0 otherwise. */
805 int (*to_use_agent) (int use);
806
807 /* Is the target able to use agent in current state? */
808 int (*to_can_use_agent) (void);
809
810 /* Check whether the target supports branch tracing. */
811 int (*to_supports_btrace) (void);
812
813 /* Enable branch tracing for PTID and allocate a branch trace target
814 information struct for reading and for disabling branch trace. */
815 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
816
817 /* Disable branch tracing and deallocate TINFO. */
818 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
819
820 /* Disable branch tracing and deallocate TINFO. This function is similar
821 to to_disable_btrace, except that it is called during teardown and is
822 only allowed to perform actions that are safe. A counter-example would
823 be attempting to talk to a remote target. */
824 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
825
826 /* Read branch trace data. */
827 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
828 enum btrace_read_type);
829
830 /* Stop trace recording. */
831 void (*to_stop_recording) (void);
832
833 /* Print information about the recording. */
834 void (*to_info_record) (void);
835
836 /* Save the recorded execution trace into a file. */
837 void (*to_save_record) (const char *filename);
838
839 /* Delete the recorded execution trace from the current position onwards. */
840 void (*to_delete_record) (void);
841
842 /* Query if the record target is currently replaying. */
843 int (*to_record_is_replaying) (void);
844
845 /* Go to the begin of the execution trace. */
846 void (*to_goto_record_begin) (void);
847
848 /* Go to the end of the execution trace. */
849 void (*to_goto_record_end) (void);
850
851 /* Go to a specific location in the recorded execution trace. */
852 void (*to_goto_record) (ULONGEST insn);
853
854 /* Disassemble SIZE instructions in the recorded execution trace from
855 the current position.
856 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
857 disassemble SIZE succeeding instructions. */
858 void (*to_insn_history) (int size, int flags);
859
860 /* Disassemble SIZE instructions in the recorded execution trace around
861 FROM.
862 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
863 disassemble SIZE instructions after FROM. */
864 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
865
866 /* Disassemble a section of the recorded execution trace from instruction
867 BEGIN (inclusive) to instruction END (exclusive). */
868 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
869
870 /* Print a function trace of the recorded execution trace.
871 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
872 succeeding functions. */
873 void (*to_call_history) (int size, int flags);
874
875 /* Print a function trace of the recorded execution trace starting
876 at function FROM.
877 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
878 SIZE functions after FROM. */
879 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
880
881 /* Print a function trace of an execution trace section from function BEGIN
882 (inclusive) to function END (exclusive). */
883 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
884
885 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
886 non-empty annex. */
887 int (*to_augmented_libraries_svr4_read) (void);
888
889 int to_magic;
890 /* Need sub-structure for target machine related rather than comm related?
891 */
892 };
893
894 /* Magic number for checking ops size. If a struct doesn't end with this
895 number, somebody changed the declaration but didn't change all the
896 places that initialize one. */
897
898 #define OPS_MAGIC 3840
899
900 /* The ops structure for our "current" target process. This should
901 never be NULL. If there is no target, it points to the dummy_target. */
902
903 extern struct target_ops current_target;
904
905 /* Define easy words for doing these operations on our current target. */
906
907 #define target_shortname (current_target.to_shortname)
908 #define target_longname (current_target.to_longname)
909
910 /* Does whatever cleanup is required for a target that we are no
911 longer going to be calling. This routine is automatically always
912 called after popping the target off the target stack - the target's
913 own methods are no longer available through the target vector.
914 Closing file descriptors and freeing all memory allocated memory are
915 typical things it should do. */
916
917 void target_close (struct target_ops *targ);
918
919 /* Attaches to a process on the target side. Arguments are as passed
920 to the `attach' command by the user. This routine can be called
921 when the target is not on the target-stack, if the target_can_run
922 routine returns 1; in that case, it must push itself onto the stack.
923 Upon exit, the target should be ready for normal operations, and
924 should be ready to deliver the status of the process immediately
925 (without waiting) to an upcoming target_wait call. */
926
927 void target_attach (char *, int);
928
929 /* Some targets don't generate traps when attaching to the inferior,
930 or their target_attach implementation takes care of the waiting.
931 These targets must set to_attach_no_wait. */
932
933 #define target_attach_no_wait \
934 (current_target.to_attach_no_wait)
935
936 /* The target_attach operation places a process under debugger control,
937 and stops the process.
938
939 This operation provides a target-specific hook that allows the
940 necessary bookkeeping to be performed after an attach completes. */
941 #define target_post_attach(pid) \
942 (*current_target.to_post_attach) (pid)
943
944 /* Takes a program previously attached to and detaches it.
945 The program may resume execution (some targets do, some don't) and will
946 no longer stop on signals, etc. We better not have left any breakpoints
947 in the program or it'll die when it hits one. ARGS is arguments
948 typed by the user (e.g. a signal to send the process). FROM_TTY
949 says whether to be verbose or not. */
950
951 extern void target_detach (char *, int);
952
953 /* Disconnect from the current target without resuming it (leaving it
954 waiting for a debugger). */
955
956 extern void target_disconnect (char *, int);
957
958 /* Resume execution of the target process PTID (or a group of
959 threads). STEP says whether to single-step or to run free; SIGGNAL
960 is the signal to be given to the target, or GDB_SIGNAL_0 for no
961 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
962 PTID means `step/resume only this process id'. A wildcard PTID
963 (all threads, or all threads of process) means `step/resume
964 INFERIOR_PTID, and let other threads (for which the wildcard PTID
965 matches) resume with their 'thread->suspend.stop_signal' signal
966 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
967 if in "no pass" state. */
968
969 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
970
971 /* Wait for process pid to do something. PTID = -1 to wait for any
972 pid to do something. Return pid of child, or -1 in case of error;
973 store status through argument pointer STATUS. Note that it is
974 _NOT_ OK to throw_exception() out of target_wait() without popping
975 the debugging target from the stack; GDB isn't prepared to get back
976 to the prompt with a debugging target but without the frame cache,
977 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
978 options. */
979
980 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
981 int options);
982
983 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
984
985 extern void target_fetch_registers (struct regcache *regcache, int regno);
986
987 /* Store at least register REGNO, or all regs if REGNO == -1.
988 It can store as many registers as it wants to, so target_prepare_to_store
989 must have been previously called. Calls error() if there are problems. */
990
991 extern void target_store_registers (struct regcache *regcache, int regs);
992
993 /* Get ready to modify the registers array. On machines which store
994 individual registers, this doesn't need to do anything. On machines
995 which store all the registers in one fell swoop, this makes sure
996 that REGISTERS contains all the registers from the program being
997 debugged. */
998
999 #define target_prepare_to_store(regcache) \
1000 (*current_target.to_prepare_to_store) (regcache)
1001
1002 /* Determine current address space of thread PTID. */
1003
1004 struct address_space *target_thread_address_space (ptid_t);
1005
1006 /* Implement the "info proc" command. This returns one if the request
1007 was handled, and zero otherwise. It can also throw an exception if
1008 an error was encountered while attempting to handle the
1009 request. */
1010
1011 int target_info_proc (char *, enum info_proc_what);
1012
1013 /* Returns true if this target can debug multiple processes
1014 simultaneously. */
1015
1016 #define target_supports_multi_process() \
1017 (*current_target.to_supports_multi_process) ()
1018
1019 /* Returns true if this target can disable address space randomization. */
1020
1021 int target_supports_disable_randomization (void);
1022
1023 /* Returns true if this target can enable and disable tracepoints
1024 while a trace experiment is running. */
1025
1026 #define target_supports_enable_disable_tracepoint() \
1027 (*current_target.to_supports_enable_disable_tracepoint) ()
1028
1029 #define target_supports_string_tracing() \
1030 (*current_target.to_supports_string_tracing) ()
1031
1032 /* Returns true if this target can handle breakpoint conditions
1033 on its end. */
1034
1035 #define target_supports_evaluation_of_breakpoint_conditions() \
1036 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1037
1038 /* Returns true if this target can handle breakpoint commands
1039 on its end. */
1040
1041 #define target_can_run_breakpoint_commands() \
1042 (*current_target.to_can_run_breakpoint_commands) ()
1043
1044 /* Invalidate all target dcaches. */
1045 extern void target_dcache_invalidate (void);
1046
1047 extern int target_read_string (CORE_ADDR, char **, int, int *);
1048
1049 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1050 ssize_t len);
1051
1052 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1053
1054 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1055 ssize_t len);
1056
1057 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1058 ssize_t len);
1059
1060 /* Fetches the target's memory map. If one is found it is sorted
1061 and returned, after some consistency checking. Otherwise, NULL
1062 is returned. */
1063 VEC(mem_region_s) *target_memory_map (void);
1064
1065 /* Erase the specified flash region. */
1066 void target_flash_erase (ULONGEST address, LONGEST length);
1067
1068 /* Finish a sequence of flash operations. */
1069 void target_flash_done (void);
1070
1071 /* Describes a request for a memory write operation. */
1072 struct memory_write_request
1073 {
1074 /* Begining address that must be written. */
1075 ULONGEST begin;
1076 /* Past-the-end address. */
1077 ULONGEST end;
1078 /* The data to write. */
1079 gdb_byte *data;
1080 /* A callback baton for progress reporting for this request. */
1081 void *baton;
1082 };
1083 typedef struct memory_write_request memory_write_request_s;
1084 DEF_VEC_O(memory_write_request_s);
1085
1086 /* Enumeration specifying different flash preservation behaviour. */
1087 enum flash_preserve_mode
1088 {
1089 flash_preserve,
1090 flash_discard
1091 };
1092
1093 /* Write several memory blocks at once. This version can be more
1094 efficient than making several calls to target_write_memory, in
1095 particular because it can optimize accesses to flash memory.
1096
1097 Moreover, this is currently the only memory access function in gdb
1098 that supports writing to flash memory, and it should be used for
1099 all cases where access to flash memory is desirable.
1100
1101 REQUESTS is the vector (see vec.h) of memory_write_request.
1102 PRESERVE_FLASH_P indicates what to do with blocks which must be
1103 erased, but not completely rewritten.
1104 PROGRESS_CB is a function that will be periodically called to provide
1105 feedback to user. It will be called with the baton corresponding
1106 to the request currently being written. It may also be called
1107 with a NULL baton, when preserved flash sectors are being rewritten.
1108
1109 The function returns 0 on success, and error otherwise. */
1110 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1111 enum flash_preserve_mode preserve_flash_p,
1112 void (*progress_cb) (ULONGEST, void *));
1113
1114 /* Print a line about the current target. */
1115
1116 #define target_files_info() \
1117 (*current_target.to_files_info) (&current_target)
1118
1119 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1120 machine. Result is 0 for success, or an errno value. */
1121
1122 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1123 struct bp_target_info *bp_tgt);
1124
1125 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1126 machine. Result is 0 for success, or an errno value. */
1127
1128 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1129 struct bp_target_info *bp_tgt);
1130
1131 /* Initialize the terminal settings we record for the inferior,
1132 before we actually run the inferior. */
1133
1134 #define target_terminal_init() \
1135 (*current_target.to_terminal_init) ()
1136
1137 /* Put the inferior's terminal settings into effect.
1138 This is preparation for starting or resuming the inferior. */
1139
1140 extern void target_terminal_inferior (void);
1141
1142 /* Put some of our terminal settings into effect,
1143 enough to get proper results from our output,
1144 but do not change into or out of RAW mode
1145 so that no input is discarded.
1146
1147 After doing this, either terminal_ours or terminal_inferior
1148 should be called to get back to a normal state of affairs. */
1149
1150 #define target_terminal_ours_for_output() \
1151 (*current_target.to_terminal_ours_for_output) ()
1152
1153 /* Put our terminal settings into effect.
1154 First record the inferior's terminal settings
1155 so they can be restored properly later. */
1156
1157 #define target_terminal_ours() \
1158 (*current_target.to_terminal_ours) ()
1159
1160 /* Save our terminal settings.
1161 This is called from TUI after entering or leaving the curses
1162 mode. Since curses modifies our terminal this call is here
1163 to take this change into account. */
1164
1165 #define target_terminal_save_ours() \
1166 (*current_target.to_terminal_save_ours) ()
1167
1168 /* Print useful information about our terminal status, if such a thing
1169 exists. */
1170
1171 #define target_terminal_info(arg, from_tty) \
1172 (*current_target.to_terminal_info) (arg, from_tty)
1173
1174 /* Kill the inferior process. Make it go away. */
1175
1176 extern void target_kill (void);
1177
1178 /* Load an executable file into the target process. This is expected
1179 to not only bring new code into the target process, but also to
1180 update GDB's symbol tables to match.
1181
1182 ARG contains command-line arguments, to be broken down with
1183 buildargv (). The first non-switch argument is the filename to
1184 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1185 0)), which is an offset to apply to the load addresses of FILE's
1186 sections. The target may define switches, or other non-switch
1187 arguments, as it pleases. */
1188
1189 extern void target_load (char *arg, int from_tty);
1190
1191 /* Start an inferior process and set inferior_ptid to its pid.
1192 EXEC_FILE is the file to run.
1193 ALLARGS is a string containing the arguments to the program.
1194 ENV is the environment vector to pass. Errors reported with error().
1195 On VxWorks and various standalone systems, we ignore exec_file. */
1196
1197 void target_create_inferior (char *exec_file, char *args,
1198 char **env, int from_tty);
1199
1200 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1201 notification of inferior events such as fork and vork immediately
1202 after the inferior is created. (This because of how gdb gets an
1203 inferior created via invoking a shell to do it. In such a scenario,
1204 if the shell init file has commands in it, the shell will fork and
1205 exec for each of those commands, and we will see each such fork
1206 event. Very bad.)
1207
1208 Such targets will supply an appropriate definition for this function. */
1209
1210 #define target_post_startup_inferior(ptid) \
1211 (*current_target.to_post_startup_inferior) (ptid)
1212
1213 /* On some targets, we can catch an inferior fork or vfork event when
1214 it occurs. These functions insert/remove an already-created
1215 catchpoint for such events. They return 0 for success, 1 if the
1216 catchpoint type is not supported and -1 for failure. */
1217
1218 #define target_insert_fork_catchpoint(pid) \
1219 (*current_target.to_insert_fork_catchpoint) (pid)
1220
1221 #define target_remove_fork_catchpoint(pid) \
1222 (*current_target.to_remove_fork_catchpoint) (pid)
1223
1224 #define target_insert_vfork_catchpoint(pid) \
1225 (*current_target.to_insert_vfork_catchpoint) (pid)
1226
1227 #define target_remove_vfork_catchpoint(pid) \
1228 (*current_target.to_remove_vfork_catchpoint) (pid)
1229
1230 /* If the inferior forks or vforks, this function will be called at
1231 the next resume in order to perform any bookkeeping and fiddling
1232 necessary to continue debugging either the parent or child, as
1233 requested, and releasing the other. Information about the fork
1234 or vfork event is available via get_last_target_status ().
1235 This function returns 1 if the inferior should not be resumed
1236 (i.e. there is another event pending). */
1237
1238 int target_follow_fork (int follow_child);
1239
1240 /* On some targets, we can catch an inferior exec event when it
1241 occurs. These functions insert/remove an already-created
1242 catchpoint for such events. They return 0 for success, 1 if the
1243 catchpoint type is not supported and -1 for failure. */
1244
1245 #define target_insert_exec_catchpoint(pid) \
1246 (*current_target.to_insert_exec_catchpoint) (pid)
1247
1248 #define target_remove_exec_catchpoint(pid) \
1249 (*current_target.to_remove_exec_catchpoint) (pid)
1250
1251 /* Syscall catch.
1252
1253 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1254 If NEEDED is zero, it means the target can disable the mechanism to
1255 catch system calls because there are no more catchpoints of this type.
1256
1257 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1258 being requested. In this case, both TABLE_SIZE and TABLE should
1259 be ignored.
1260
1261 TABLE_SIZE is the number of elements in TABLE. It only matters if
1262 ANY_COUNT is zero.
1263
1264 TABLE is an array of ints, indexed by syscall number. An element in
1265 this array is nonzero if that syscall should be caught. This argument
1266 only matters if ANY_COUNT is zero.
1267
1268 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1269 for failure. */
1270
1271 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1272 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1273 table_size, table)
1274
1275 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1276 exit code of PID, if any. */
1277
1278 #define target_has_exited(pid,wait_status,exit_status) \
1279 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1280
1281 /* The debugger has completed a blocking wait() call. There is now
1282 some process event that must be processed. This function should
1283 be defined by those targets that require the debugger to perform
1284 cleanup or internal state changes in response to the process event. */
1285
1286 /* The inferior process has died. Do what is right. */
1287
1288 void target_mourn_inferior (void);
1289
1290 /* Does target have enough data to do a run or attach command? */
1291
1292 #define target_can_run(t) \
1293 ((t)->to_can_run) ()
1294
1295 /* Set list of signals to be handled in the target.
1296
1297 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1298 (enum gdb_signal). For every signal whose entry in this array is
1299 non-zero, the target is allowed -but not required- to skip reporting
1300 arrival of the signal to the GDB core by returning from target_wait,
1301 and to pass the signal directly to the inferior instead.
1302
1303 However, if the target is hardware single-stepping a thread that is
1304 about to receive a signal, it needs to be reported in any case, even
1305 if mentioned in a previous target_pass_signals call. */
1306
1307 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1308
1309 /* Set list of signals the target may pass to the inferior. This
1310 directly maps to the "handle SIGNAL pass/nopass" setting.
1311
1312 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1313 number (enum gdb_signal). For every signal whose entry in this
1314 array is non-zero, the target is allowed to pass the signal to the
1315 inferior. Signals not present in the array shall be silently
1316 discarded. This does not influence whether to pass signals to the
1317 inferior as a result of a target_resume call. This is useful in
1318 scenarios where the target needs to decide whether to pass or not a
1319 signal to the inferior without GDB core involvement, such as for
1320 example, when detaching (as threads may have been suspended with
1321 pending signals not reported to GDB). */
1322
1323 extern void target_program_signals (int nsig, unsigned char *program_signals);
1324
1325 /* Check to see if a thread is still alive. */
1326
1327 extern int target_thread_alive (ptid_t ptid);
1328
1329 /* Query for new threads and add them to the thread list. */
1330
1331 extern void target_find_new_threads (void);
1332
1333 /* Make target stop in a continuable fashion. (For instance, under
1334 Unix, this should act like SIGSTOP). This function is normally
1335 used by GUIs to implement a stop button. */
1336
1337 extern void target_stop (ptid_t ptid);
1338
1339 /* Send the specified COMMAND to the target's monitor
1340 (shell,interpreter) for execution. The result of the query is
1341 placed in OUTBUF. */
1342
1343 #define target_rcmd(command, outbuf) \
1344 (*current_target.to_rcmd) (command, outbuf)
1345
1346
1347 /* Does the target include all of memory, or only part of it? This
1348 determines whether we look up the target chain for other parts of
1349 memory if this target can't satisfy a request. */
1350
1351 extern int target_has_all_memory_1 (void);
1352 #define target_has_all_memory target_has_all_memory_1 ()
1353
1354 /* Does the target include memory? (Dummy targets don't.) */
1355
1356 extern int target_has_memory_1 (void);
1357 #define target_has_memory target_has_memory_1 ()
1358
1359 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1360 we start a process.) */
1361
1362 extern int target_has_stack_1 (void);
1363 #define target_has_stack target_has_stack_1 ()
1364
1365 /* Does the target have registers? (Exec files don't.) */
1366
1367 extern int target_has_registers_1 (void);
1368 #define target_has_registers target_has_registers_1 ()
1369
1370 /* Does the target have execution? Can we make it jump (through
1371 hoops), or pop its stack a few times? This means that the current
1372 target is currently executing; for some targets, that's the same as
1373 whether or not the target is capable of execution, but there are
1374 also targets which can be current while not executing. In that
1375 case this will become true after target_create_inferior or
1376 target_attach. */
1377
1378 extern int target_has_execution_1 (ptid_t);
1379
1380 /* Like target_has_execution_1, but always passes inferior_ptid. */
1381
1382 extern int target_has_execution_current (void);
1383
1384 #define target_has_execution target_has_execution_current ()
1385
1386 /* Default implementations for process_stratum targets. Return true
1387 if there's a selected inferior, false otherwise. */
1388
1389 extern int default_child_has_all_memory (struct target_ops *ops);
1390 extern int default_child_has_memory (struct target_ops *ops);
1391 extern int default_child_has_stack (struct target_ops *ops);
1392 extern int default_child_has_registers (struct target_ops *ops);
1393 extern int default_child_has_execution (struct target_ops *ops,
1394 ptid_t the_ptid);
1395
1396 /* Can the target support the debugger control of thread execution?
1397 Can it lock the thread scheduler? */
1398
1399 #define target_can_lock_scheduler \
1400 (current_target.to_has_thread_control & tc_schedlock)
1401
1402 /* Should the target enable async mode if it is supported? Temporary
1403 cludge until async mode is a strict superset of sync mode. */
1404 extern int target_async_permitted;
1405
1406 /* Can the target support asynchronous execution? */
1407 #define target_can_async_p() (current_target.to_can_async_p ())
1408
1409 /* Is the target in asynchronous execution mode? */
1410 #define target_is_async_p() (current_target.to_is_async_p ())
1411
1412 int target_supports_non_stop (void);
1413
1414 /* Put the target in async mode with the specified callback function. */
1415 #define target_async(CALLBACK,CONTEXT) \
1416 (current_target.to_async ((CALLBACK), (CONTEXT)))
1417
1418 #define target_execution_direction() \
1419 (current_target.to_execution_direction ())
1420
1421 /* Converts a process id to a string. Usually, the string just contains
1422 `process xyz', but on some systems it may contain
1423 `process xyz thread abc'. */
1424
1425 extern char *target_pid_to_str (ptid_t ptid);
1426
1427 extern char *normal_pid_to_str (ptid_t ptid);
1428
1429 /* Return a short string describing extra information about PID,
1430 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1431 is okay. */
1432
1433 #define target_extra_thread_info(TP) \
1434 (current_target.to_extra_thread_info (TP))
1435
1436 /* Return the thread's name. A NULL result means that the target
1437 could not determine this thread's name. */
1438
1439 extern char *target_thread_name (struct thread_info *);
1440
1441 /* Attempts to find the pathname of the executable file
1442 that was run to create a specified process.
1443
1444 The process PID must be stopped when this operation is used.
1445
1446 If the executable file cannot be determined, NULL is returned.
1447
1448 Else, a pointer to a character string containing the pathname
1449 is returned. This string should be copied into a buffer by
1450 the client if the string will not be immediately used, or if
1451 it must persist. */
1452
1453 #define target_pid_to_exec_file(pid) \
1454 (current_target.to_pid_to_exec_file) (pid)
1455
1456 /* See the to_thread_architecture description in struct target_ops. */
1457
1458 #define target_thread_architecture(ptid) \
1459 (current_target.to_thread_architecture (&current_target, ptid))
1460
1461 /*
1462 * Iterator function for target memory regions.
1463 * Calls a callback function once for each memory region 'mapped'
1464 * in the child process. Defined as a simple macro rather than
1465 * as a function macro so that it can be tested for nullity.
1466 */
1467
1468 #define target_find_memory_regions(FUNC, DATA) \
1469 (current_target.to_find_memory_regions) (FUNC, DATA)
1470
1471 /*
1472 * Compose corefile .note section.
1473 */
1474
1475 #define target_make_corefile_notes(BFD, SIZE_P) \
1476 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1477
1478 /* Bookmark interfaces. */
1479 #define target_get_bookmark(ARGS, FROM_TTY) \
1480 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1481
1482 #define target_goto_bookmark(ARG, FROM_TTY) \
1483 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1484
1485 /* Hardware watchpoint interfaces. */
1486
1487 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1488 write). Only the INFERIOR_PTID task is being queried. */
1489
1490 #define target_stopped_by_watchpoint \
1491 (*current_target.to_stopped_by_watchpoint)
1492
1493 /* Non-zero if we have steppable watchpoints */
1494
1495 #define target_have_steppable_watchpoint \
1496 (current_target.to_have_steppable_watchpoint)
1497
1498 /* Non-zero if we have continuable watchpoints */
1499
1500 #define target_have_continuable_watchpoint \
1501 (current_target.to_have_continuable_watchpoint)
1502
1503 /* Provide defaults for hardware watchpoint functions. */
1504
1505 /* If the *_hw_beakpoint functions have not been defined
1506 elsewhere use the definitions in the target vector. */
1507
1508 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1509 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1510 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1511 (including this one?). OTHERTYPE is who knows what... */
1512
1513 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1514 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1515
1516 /* Returns the number of debug registers needed to watch the given
1517 memory region, or zero if not supported. */
1518
1519 #define target_region_ok_for_hw_watchpoint(addr, len) \
1520 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1521
1522
1523 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1524 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1525 COND is the expression for its condition, or NULL if there's none.
1526 Returns 0 for success, 1 if the watchpoint type is not supported,
1527 -1 for failure. */
1528
1529 #define target_insert_watchpoint(addr, len, type, cond) \
1530 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1531
1532 #define target_remove_watchpoint(addr, len, type, cond) \
1533 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1534
1535 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1536 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1537 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1538 masked watchpoints are not supported, -1 for failure. */
1539
1540 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1541
1542 /* Remove a masked watchpoint at ADDR with the mask MASK.
1543 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1544 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1545 for failure. */
1546
1547 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1548
1549 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1550 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1551
1552 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1553 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1554
1555 /* Return number of debug registers needed for a ranged breakpoint,
1556 or -1 if ranged breakpoints are not supported. */
1557
1558 extern int target_ranged_break_num_registers (void);
1559
1560 /* Return non-zero if target knows the data address which triggered this
1561 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1562 INFERIOR_PTID task is being queried. */
1563 #define target_stopped_data_address(target, addr_p) \
1564 (*target.to_stopped_data_address) (target, addr_p)
1565
1566 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1567 LENGTH bytes beginning at START. */
1568 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1569 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1570
1571 /* Return non-zero if the target is capable of using hardware to evaluate
1572 the condition expression. In this case, if the condition is false when
1573 the watched memory location changes, execution may continue without the
1574 debugger being notified.
1575
1576 Due to limitations in the hardware implementation, it may be capable of
1577 avoiding triggering the watchpoint in some cases where the condition
1578 expression is false, but may report some false positives as well.
1579 For this reason, GDB will still evaluate the condition expression when
1580 the watchpoint triggers. */
1581 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1582 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1583
1584 /* Return number of debug registers needed for a masked watchpoint,
1585 -1 if masked watchpoints are not supported or -2 if the given address
1586 and mask combination cannot be used. */
1587
1588 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1589
1590 /* Target can execute in reverse? */
1591 #define target_can_execute_reverse \
1592 (current_target.to_can_execute_reverse ? \
1593 current_target.to_can_execute_reverse () : 0)
1594
1595 extern const struct target_desc *target_read_description (struct target_ops *);
1596
1597 #define target_get_ada_task_ptid(lwp, tid) \
1598 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1599
1600 /* Utility implementation of searching memory. */
1601 extern int simple_search_memory (struct target_ops* ops,
1602 CORE_ADDR start_addr,
1603 ULONGEST search_space_len,
1604 const gdb_byte *pattern,
1605 ULONGEST pattern_len,
1606 CORE_ADDR *found_addrp);
1607
1608 /* Main entry point for searching memory. */
1609 extern int target_search_memory (CORE_ADDR start_addr,
1610 ULONGEST search_space_len,
1611 const gdb_byte *pattern,
1612 ULONGEST pattern_len,
1613 CORE_ADDR *found_addrp);
1614
1615 /* Target file operations. */
1616
1617 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1618 target file descriptor, or -1 if an error occurs (and set
1619 *TARGET_ERRNO). */
1620 extern int target_fileio_open (const char *filename, int flags, int mode,
1621 int *target_errno);
1622
1623 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1624 Return the number of bytes written, or -1 if an error occurs
1625 (and set *TARGET_ERRNO). */
1626 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1627 ULONGEST offset, int *target_errno);
1628
1629 /* Read up to LEN bytes FD on the target into READ_BUF.
1630 Return the number of bytes read, or -1 if an error occurs
1631 (and set *TARGET_ERRNO). */
1632 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1633 ULONGEST offset, int *target_errno);
1634
1635 /* Close FD on the target. Return 0, or -1 if an error occurs
1636 (and set *TARGET_ERRNO). */
1637 extern int target_fileio_close (int fd, int *target_errno);
1638
1639 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1640 occurs (and set *TARGET_ERRNO). */
1641 extern int target_fileio_unlink (const char *filename, int *target_errno);
1642
1643 /* Read value of symbolic link FILENAME on the target. Return a
1644 null-terminated string allocated via xmalloc, or NULL if an error
1645 occurs (and set *TARGET_ERRNO). */
1646 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1647
1648 /* Read target file FILENAME. The return value will be -1 if the transfer
1649 fails or is not supported; 0 if the object is empty; or the length
1650 of the object otherwise. If a positive value is returned, a
1651 sufficiently large buffer will be allocated using xmalloc and
1652 returned in *BUF_P containing the contents of the object.
1653
1654 This method should be used for objects sufficiently small to store
1655 in a single xmalloc'd buffer, when no fixed bound on the object's
1656 size is known in advance. */
1657 extern LONGEST target_fileio_read_alloc (const char *filename,
1658 gdb_byte **buf_p);
1659
1660 /* Read target file FILENAME. The result is NUL-terminated and
1661 returned as a string, allocated using xmalloc. If an error occurs
1662 or the transfer is unsupported, NULL is returned. Empty objects
1663 are returned as allocated but empty strings. A warning is issued
1664 if the result contains any embedded NUL bytes. */
1665 extern char *target_fileio_read_stralloc (const char *filename);
1666
1667
1668 /* Tracepoint-related operations. */
1669
1670 #define target_trace_init() \
1671 (*current_target.to_trace_init) ()
1672
1673 #define target_download_tracepoint(t) \
1674 (*current_target.to_download_tracepoint) (t)
1675
1676 #define target_can_download_tracepoint() \
1677 (*current_target.to_can_download_tracepoint) ()
1678
1679 #define target_download_trace_state_variable(tsv) \
1680 (*current_target.to_download_trace_state_variable) (tsv)
1681
1682 #define target_enable_tracepoint(loc) \
1683 (*current_target.to_enable_tracepoint) (loc)
1684
1685 #define target_disable_tracepoint(loc) \
1686 (*current_target.to_disable_tracepoint) (loc)
1687
1688 #define target_trace_start() \
1689 (*current_target.to_trace_start) ()
1690
1691 #define target_trace_set_readonly_regions() \
1692 (*current_target.to_trace_set_readonly_regions) ()
1693
1694 #define target_get_trace_status(ts) \
1695 (*current_target.to_get_trace_status) (ts)
1696
1697 #define target_get_tracepoint_status(tp,utp) \
1698 (*current_target.to_get_tracepoint_status) (tp, utp)
1699
1700 #define target_trace_stop() \
1701 (*current_target.to_trace_stop) ()
1702
1703 #define target_trace_find(type,num,addr1,addr2,tpp) \
1704 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1705
1706 #define target_get_trace_state_variable_value(tsv,val) \
1707 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1708
1709 #define target_save_trace_data(filename) \
1710 (*current_target.to_save_trace_data) (filename)
1711
1712 #define target_upload_tracepoints(utpp) \
1713 (*current_target.to_upload_tracepoints) (utpp)
1714
1715 #define target_upload_trace_state_variables(utsvp) \
1716 (*current_target.to_upload_trace_state_variables) (utsvp)
1717
1718 #define target_get_raw_trace_data(buf,offset,len) \
1719 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1720
1721 #define target_get_min_fast_tracepoint_insn_len() \
1722 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1723
1724 #define target_set_disconnected_tracing(val) \
1725 (*current_target.to_set_disconnected_tracing) (val)
1726
1727 #define target_set_circular_trace_buffer(val) \
1728 (*current_target.to_set_circular_trace_buffer) (val)
1729
1730 #define target_set_trace_buffer_size(val) \
1731 (*current_target.to_set_trace_buffer_size) (val)
1732
1733 #define target_set_trace_notes(user,notes,stopnotes) \
1734 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1735
1736 #define target_get_tib_address(ptid, addr) \
1737 (*current_target.to_get_tib_address) ((ptid), (addr))
1738
1739 #define target_set_permissions() \
1740 (*current_target.to_set_permissions) ()
1741
1742 #define target_static_tracepoint_marker_at(addr, marker) \
1743 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1744
1745 #define target_static_tracepoint_markers_by_strid(marker_id) \
1746 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1747
1748 #define target_traceframe_info() \
1749 (*current_target.to_traceframe_info) ()
1750
1751 #define target_use_agent(use) \
1752 (*current_target.to_use_agent) (use)
1753
1754 #define target_can_use_agent() \
1755 (*current_target.to_can_use_agent) ()
1756
1757 #define target_augmented_libraries_svr4_read() \
1758 (*current_target.to_augmented_libraries_svr4_read) ()
1759
1760 /* Command logging facility. */
1761
1762 #define target_log_command(p) \
1763 do \
1764 if (current_target.to_log_command) \
1765 (*current_target.to_log_command) (p); \
1766 while (0)
1767
1768
1769 extern int target_core_of_thread (ptid_t ptid);
1770
1771 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1772 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1773 if there's a mismatch, and -1 if an error is encountered while
1774 reading memory. Throws an error if the functionality is found not
1775 to be supported by the current target. */
1776 int target_verify_memory (const gdb_byte *data,
1777 CORE_ADDR memaddr, ULONGEST size);
1778
1779 /* Routines for maintenance of the target structures...
1780
1781 complete_target_initialization: Finalize a target_ops by filling in
1782 any fields needed by the target implementation.
1783
1784 add_target: Add a target to the list of all possible targets.
1785
1786 push_target: Make this target the top of the stack of currently used
1787 targets, within its particular stratum of the stack. Result
1788 is 0 if now atop the stack, nonzero if not on top (maybe
1789 should warn user).
1790
1791 unpush_target: Remove this from the stack of currently used targets,
1792 no matter where it is on the list. Returns 0 if no
1793 change, 1 if removed from stack. */
1794
1795 extern void add_target (struct target_ops *);
1796
1797 extern void add_target_with_completer (struct target_ops *t,
1798 completer_ftype *completer);
1799
1800 extern void complete_target_initialization (struct target_ops *t);
1801
1802 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1803 for maintaining backwards compatibility when renaming targets. */
1804
1805 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1806
1807 extern void push_target (struct target_ops *);
1808
1809 extern int unpush_target (struct target_ops *);
1810
1811 extern void target_pre_inferior (int);
1812
1813 extern void target_preopen (int);
1814
1815 /* Does whatever cleanup is required to get rid of all pushed targets. */
1816 extern void pop_all_targets (void);
1817
1818 /* Like pop_all_targets, but pops only targets whose stratum is
1819 strictly above ABOVE_STRATUM. */
1820 extern void pop_all_targets_above (enum strata above_stratum);
1821
1822 extern int target_is_pushed (struct target_ops *t);
1823
1824 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1825 CORE_ADDR offset);
1826
1827 /* Struct target_section maps address ranges to file sections. It is
1828 mostly used with BFD files, but can be used without (e.g. for handling
1829 raw disks, or files not in formats handled by BFD). */
1830
1831 struct target_section
1832 {
1833 CORE_ADDR addr; /* Lowest address in section */
1834 CORE_ADDR endaddr; /* 1+highest address in section */
1835
1836 struct bfd_section *the_bfd_section;
1837
1838 /* The "owner" of the section.
1839 It can be any unique value. It is set by add_target_sections
1840 and used by remove_target_sections.
1841 For example, for executables it is a pointer to exec_bfd and
1842 for shlibs it is the so_list pointer. */
1843 void *owner;
1844 };
1845
1846 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1847
1848 struct target_section_table
1849 {
1850 struct target_section *sections;
1851 struct target_section *sections_end;
1852 };
1853
1854 /* Return the "section" containing the specified address. */
1855 struct target_section *target_section_by_addr (struct target_ops *target,
1856 CORE_ADDR addr);
1857
1858 /* Return the target section table this target (or the targets
1859 beneath) currently manipulate. */
1860
1861 extern struct target_section_table *target_get_section_table
1862 (struct target_ops *target);
1863
1864 /* From mem-break.c */
1865
1866 extern int memory_remove_breakpoint (struct gdbarch *,
1867 struct bp_target_info *);
1868
1869 extern int memory_insert_breakpoint (struct gdbarch *,
1870 struct bp_target_info *);
1871
1872 extern int default_memory_remove_breakpoint (struct gdbarch *,
1873 struct bp_target_info *);
1874
1875 extern int default_memory_insert_breakpoint (struct gdbarch *,
1876 struct bp_target_info *);
1877
1878
1879 /* From target.c */
1880
1881 extern void initialize_targets (void);
1882
1883 extern void noprocess (void) ATTRIBUTE_NORETURN;
1884
1885 extern void target_require_runnable (void);
1886
1887 extern void find_default_attach (struct target_ops *, char *, int);
1888
1889 extern void find_default_create_inferior (struct target_ops *,
1890 char *, char *, char **, int);
1891
1892 extern struct target_ops *find_target_beneath (struct target_ops *);
1893
1894 /* Read OS data object of type TYPE from the target, and return it in
1895 XML format. The result is NUL-terminated and returned as a string,
1896 allocated using xmalloc. If an error occurs or the transfer is
1897 unsupported, NULL is returned. Empty objects are returned as
1898 allocated but empty strings. */
1899
1900 extern char *target_get_osdata (const char *type);
1901
1902 \f
1903 /* Stuff that should be shared among the various remote targets. */
1904
1905 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1906 information (higher values, more information). */
1907 extern int remote_debug;
1908
1909 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1910 extern int baud_rate;
1911 /* Timeout limit for response from target. */
1912 extern int remote_timeout;
1913
1914 \f
1915
1916 /* Set the show memory breakpoints mode to show, and installs a cleanup
1917 to restore it back to the current value. */
1918 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1919
1920 extern int may_write_registers;
1921 extern int may_write_memory;
1922 extern int may_insert_breakpoints;
1923 extern int may_insert_tracepoints;
1924 extern int may_insert_fast_tracepoints;
1925 extern int may_stop;
1926
1927 extern void update_target_permissions (void);
1928
1929 \f
1930 /* Imported from machine dependent code. */
1931
1932 /* Blank target vector entries are initialized to target_ignore. */
1933 void target_ignore (void);
1934
1935 /* See to_supports_btrace in struct target_ops. */
1936 extern int target_supports_btrace (void);
1937
1938 /* See to_enable_btrace in struct target_ops. */
1939 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1940
1941 /* See to_disable_btrace in struct target_ops. */
1942 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1943
1944 /* See to_teardown_btrace in struct target_ops. */
1945 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1946
1947 /* See to_read_btrace in struct target_ops. */
1948 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
1949 enum btrace_read_type);
1950
1951 /* See to_stop_recording in struct target_ops. */
1952 extern void target_stop_recording (void);
1953
1954 /* See to_info_record in struct target_ops. */
1955 extern void target_info_record (void);
1956
1957 /* See to_save_record in struct target_ops. */
1958 extern void target_save_record (const char *filename);
1959
1960 /* Query if the target supports deleting the execution log. */
1961 extern int target_supports_delete_record (void);
1962
1963 /* See to_delete_record in struct target_ops. */
1964 extern void target_delete_record (void);
1965
1966 /* See to_record_is_replaying in struct target_ops. */
1967 extern int target_record_is_replaying (void);
1968
1969 /* See to_goto_record_begin in struct target_ops. */
1970 extern void target_goto_record_begin (void);
1971
1972 /* See to_goto_record_end in struct target_ops. */
1973 extern void target_goto_record_end (void);
1974
1975 /* See to_goto_record in struct target_ops. */
1976 extern void target_goto_record (ULONGEST insn);
1977
1978 /* See to_insn_history. */
1979 extern void target_insn_history (int size, int flags);
1980
1981 /* See to_insn_history_from. */
1982 extern void target_insn_history_from (ULONGEST from, int size, int flags);
1983
1984 /* See to_insn_history_range. */
1985 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
1986
1987 /* See to_call_history. */
1988 extern void target_call_history (int size, int flags);
1989
1990 /* See to_call_history_from. */
1991 extern void target_call_history_from (ULONGEST begin, int size, int flags);
1992
1993 /* See to_call_history_range. */
1994 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
1995
1996 #endif /* !defined (TARGET_H) */
This page took 0.122875 seconds and 4 git commands to generate.