gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "gdbsupport/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "gdbsupport/gdb_signals.h"
78 #include "btrace.h"
79 #include "record.h"
80 #include "command.h"
81 #include "disasm.h"
82 #include "tracepoint.h"
83 #include "displaced-stepping.h"
84
85 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (int target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
141 TARGET_OBJECT_MEMORY,
142 /* Memory, avoiding GDB's data cache and trusting the executable.
143 Target implementations of to_xfer_partial never need to handle
144 this object, and most callers should not use it. */
145 TARGET_OBJECT_RAW_MEMORY,
146 /* Memory known to be part of the target's stack. This is cached even
147 if it is not in a region marked as such, since it is known to be
148 "normal" RAM. */
149 TARGET_OBJECT_STACK_MEMORY,
150 /* Memory known to be part of the target code. This is cached even
151 if it is not in a region marked as such. */
152 TARGET_OBJECT_CODE_MEMORY,
153 /* Kernel Unwind Table. See "ia64-tdep.c". */
154 TARGET_OBJECT_UNWIND_TABLE,
155 /* Transfer auxilliary vector. */
156 TARGET_OBJECT_AUXV,
157 /* StackGhost cookie. See "sparc-tdep.c". */
158 TARGET_OBJECT_WCOOKIE,
159 /* Target memory map in XML format. */
160 TARGET_OBJECT_MEMORY_MAP,
161 /* Flash memory. This object can be used to write contents to
162 a previously erased flash memory. Using it without erasing
163 flash can have unexpected results. Addresses are physical
164 address on target, and not relative to flash start. */
165 TARGET_OBJECT_FLASH,
166 /* Available target-specific features, e.g. registers and coprocessors.
167 See "target-descriptions.c". ANNEX should never be empty. */
168 TARGET_OBJECT_AVAILABLE_FEATURES,
169 /* Currently loaded libraries, in XML format. */
170 TARGET_OBJECT_LIBRARIES,
171 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_SVR4,
173 /* Currently loaded libraries specific to AIX systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_AIX,
175 /* Get OS specific data. The ANNEX specifies the type (running
176 processes, etc.). The data being transfered is expected to follow
177 the DTD specified in features/osdata.dtd. */
178 TARGET_OBJECT_OSDATA,
179 /* Extra signal info. Usually the contents of `siginfo_t' on unix
180 platforms. */
181 TARGET_OBJECT_SIGNAL_INFO,
182 /* The list of threads that are being debugged. */
183 TARGET_OBJECT_THREADS,
184 /* Collected static trace data. */
185 TARGET_OBJECT_STATIC_TRACE_DATA,
186 /* Traceframe info, in XML format. */
187 TARGET_OBJECT_TRACEFRAME_INFO,
188 /* Load maps for FDPIC systems. */
189 TARGET_OBJECT_FDPIC,
190 /* Darwin dynamic linker info data. */
191 TARGET_OBJECT_DARWIN_DYLD_INFO,
192 /* OpenVMS Unwind Information Block. */
193 TARGET_OBJECT_OPENVMS_UIB,
194 /* Branch trace data, in XML format. */
195 TARGET_OBJECT_BTRACE,
196 /* Branch trace configuration, in XML format. */
197 TARGET_OBJECT_BTRACE_CONF,
198 /* The pathname of the executable file that was run to create
199 a specified process. ANNEX should be a string representation
200 of the process ID of the process in question, in hexadecimal
201 format. */
202 TARGET_OBJECT_EXEC_FILE,
203 /* FreeBSD virtual memory mappings. */
204 TARGET_OBJECT_FREEBSD_VMMAP,
205 /* FreeBSD process strings. */
206 TARGET_OBJECT_FREEBSD_PS_STRINGS,
207 /* Possible future objects: TARGET_OBJECT_FILE, ... */
208 };
209
210 /* Possible values returned by target_xfer_partial, etc. */
211
212 enum target_xfer_status
213 {
214 /* Some bytes are transferred. */
215 TARGET_XFER_OK = 1,
216
217 /* No further transfer is possible. */
218 TARGET_XFER_EOF = 0,
219
220 /* The piece of the object requested is unavailable. */
221 TARGET_XFER_UNAVAILABLE = 2,
222
223 /* Generic I/O error. Note that it's important that this is '-1',
224 as we still have target_xfer-related code returning hardcoded
225 '-1' on error. */
226 TARGET_XFER_E_IO = -1,
227
228 /* Keep list in sync with target_xfer_status_to_string. */
229 };
230
231 /* Return the string form of STATUS. */
232
233 extern const char *
234 target_xfer_status_to_string (enum target_xfer_status status);
235
236 typedef enum target_xfer_status
237 target_xfer_partial_ftype (struct target_ops *ops,
238 enum target_object object,
239 const char *annex,
240 gdb_byte *readbuf,
241 const gdb_byte *writebuf,
242 ULONGEST offset,
243 ULONGEST len,
244 ULONGEST *xfered_len);
245
246 enum target_xfer_status
247 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
248 const gdb_byte *writebuf, ULONGEST memaddr,
249 LONGEST len, ULONGEST *xfered_len);
250
251 /* Request that OPS transfer up to LEN addressable units of the target's
252 OBJECT. When reading from a memory object, the size of an addressable unit
253 is architecture dependent and can be found using
254 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
255 byte long. BUF should point to a buffer large enough to hold the read data,
256 taking into account the addressable unit size. The OFFSET, for a seekable
257 object, specifies the starting point. The ANNEX can be used to provide
258 additional data-specific information to the target.
259
260 Return the number of addressable units actually transferred, or a negative
261 error code (an 'enum target_xfer_error' value) if the transfer is not
262 supported or otherwise fails. Return of a positive value less than
263 LEN indicates that no further transfer is possible. Unlike the raw
264 to_xfer_partial interface, callers of these functions do not need
265 to retry partial transfers. */
266
267 extern LONGEST target_read (struct target_ops *ops,
268 enum target_object object,
269 const char *annex, gdb_byte *buf,
270 ULONGEST offset, LONGEST len);
271
272 struct memory_read_result
273 {
274 memory_read_result (ULONGEST begin_, ULONGEST end_,
275 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
276 : begin (begin_),
277 end (end_),
278 data (std::move (data_))
279 {
280 }
281
282 ~memory_read_result () = default;
283
284 memory_read_result (memory_read_result &&other) = default;
285
286 DISABLE_COPY_AND_ASSIGN (memory_read_result);
287
288 /* First address that was read. */
289 ULONGEST begin;
290 /* Past-the-end address. */
291 ULONGEST end;
292 /* The data. */
293 gdb::unique_xmalloc_ptr<gdb_byte> data;
294 };
295
296 extern std::vector<memory_read_result> read_memory_robust
297 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
298
299 /* Request that OPS transfer up to LEN addressable units from BUF to the
300 target's OBJECT. When writing to a memory object, the addressable unit
301 size is architecture dependent and can be found using
302 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
303 byte long. The OFFSET, for a seekable object, specifies the starting point.
304 The ANNEX can be used to provide additional data-specific information to
305 the target.
306
307 Return the number of addressable units actually transferred, or a negative
308 error code (an 'enum target_xfer_status' value) if the transfer is not
309 supported or otherwise fails. Return of a positive value less than
310 LEN indicates that no further transfer is possible. Unlike the raw
311 to_xfer_partial interface, callers of these functions do not need to
312 retry partial transfers. */
313
314 extern LONGEST target_write (struct target_ops *ops,
315 enum target_object object,
316 const char *annex, const gdb_byte *buf,
317 ULONGEST offset, LONGEST len);
318
319 /* Similar to target_write, except that it also calls PROGRESS with
320 the number of bytes written and the opaque BATON after every
321 successful partial write (and before the first write). This is
322 useful for progress reporting and user interaction while writing
323 data. To abort the transfer, the progress callback can throw an
324 exception. */
325
326 LONGEST target_write_with_progress (struct target_ops *ops,
327 enum target_object object,
328 const char *annex, const gdb_byte *buf,
329 ULONGEST offset, LONGEST len,
330 void (*progress) (ULONGEST, void *),
331 void *baton);
332
333 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
334 using OPS. The return value will be uninstantiated if the transfer fails or
335 is not supported.
336
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
341
342 extern gdb::optional<gdb::byte_vector> target_read_alloc
343 (struct target_ops *ops, enum target_object object, const char *annex);
344
345 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
346 (therefore usable as a NUL-terminated string). If an error occurs or the
347 transfer is unsupported, the return value will be uninstantiated. Empty
348 objects are returned as allocated but empty strings. Therefore, on success,
349 the returned vector is guaranteed to have at least one element. A warning is
350 issued if the result contains any embedded NUL bytes. */
351
352 extern gdb::optional<gdb::char_vector> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
354
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
357
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
360
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
364
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
370 \f
371 struct thread_info; /* fwd decl for parameter list below: */
372
373 /* The type of the callback to the to_async method. */
374
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
377
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
385
386 #define TARGET_DEBUG_PRINTER(FUNC)
387
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
391
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
395
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
399
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
402
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
406
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
411
412 /* Each target that can be activated with "target TARGET_NAME" passes
413 the address of one of these objects to add_target, which uses the
414 object's address as unique identifier, and registers the "target
415 TARGET_NAME" command using SHORTNAME as target name. */
416
417 struct target_info
418 {
419 /* Name of this target. */
420 const char *shortname;
421
422 /* Name for printing. */
423 const char *longname;
424
425 /* Documentation. Does not include trailing newline, and starts
426 with a one-line description (probably similar to longname). */
427 const char *doc;
428 };
429
430 struct target_ops
431 {
432 /* Return this target's stratum. */
433 virtual strata stratum () const = 0;
434
435 /* To the target under this one. */
436 target_ops *beneath () const;
437
438 /* Free resources associated with the target. Note that singleton
439 targets, like e.g., native targets, are global objects, not
440 heap allocated, and are thus only deleted on GDB exit. The
441 main teardown entry point is the "close" method, below. */
442 virtual ~target_ops () {}
443
444 /* Return a reference to this target's unique target_info
445 object. */
446 virtual const target_info &info () const = 0;
447
448 /* Name this target type. */
449 const char *shortname ()
450 { return info ().shortname; }
451
452 const char *longname ()
453 { return info ().longname; }
454
455 /* Close the target. This is where the target can handle
456 teardown. Heap-allocated targets should delete themselves
457 before returning. */
458 virtual void close ();
459
460 /* Attaches to a process on the target side. Arguments are as
461 passed to the `attach' command by the user. This routine can
462 be called when the target is not on the target-stack, if the
463 target_ops::can_run method returns 1; in that case, it must push
464 itself onto the stack. Upon exit, the target should be ready
465 for normal operations, and should be ready to deliver the
466 status of the process immediately (without waiting) to an
467 upcoming target_wait call. */
468 virtual bool can_attach ();
469 virtual void attach (const char *, int);
470 virtual void post_attach (int)
471 TARGET_DEFAULT_IGNORE ();
472 virtual void detach (inferior *, int)
473 TARGET_DEFAULT_IGNORE ();
474 virtual void disconnect (const char *, int)
475 TARGET_DEFAULT_NORETURN (tcomplain ());
476 virtual void resume (ptid_t,
477 int TARGET_DEBUG_PRINTER (target_debug_print_step),
478 enum gdb_signal)
479 TARGET_DEFAULT_NORETURN (noprocess ());
480 virtual void commit_resume ()
481 TARGET_DEFAULT_IGNORE ();
482 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
483 int TARGET_DEBUG_PRINTER (target_debug_print_options))
484 TARGET_DEFAULT_FUNC (default_target_wait);
485 virtual void fetch_registers (struct regcache *, int)
486 TARGET_DEFAULT_IGNORE ();
487 virtual void store_registers (struct regcache *, int)
488 TARGET_DEFAULT_NORETURN (noprocess ());
489 virtual void prepare_to_store (struct regcache *)
490 TARGET_DEFAULT_NORETURN (noprocess ());
491
492 virtual void files_info ()
493 TARGET_DEFAULT_IGNORE ();
494 virtual int insert_breakpoint (struct gdbarch *,
495 struct bp_target_info *)
496 TARGET_DEFAULT_NORETURN (noprocess ());
497 virtual int remove_breakpoint (struct gdbarch *,
498 struct bp_target_info *,
499 enum remove_bp_reason)
500 TARGET_DEFAULT_NORETURN (noprocess ());
501
502 /* Returns true if the target stopped because it executed a
503 software breakpoint. This is necessary for correct background
504 execution / non-stop mode operation, and for correct PC
505 adjustment on targets where the PC needs to be adjusted when a
506 software breakpoint triggers. In these modes, by the time GDB
507 processes a breakpoint event, the breakpoint may already be
508 done from the target, so GDB needs to be able to tell whether
509 it should ignore the event and whether it should adjust the PC.
510 See adjust_pc_after_break. */
511 virtual bool stopped_by_sw_breakpoint ()
512 TARGET_DEFAULT_RETURN (false);
513 /* Returns true if the above method is supported. */
514 virtual bool supports_stopped_by_sw_breakpoint ()
515 TARGET_DEFAULT_RETURN (false);
516
517 /* Returns true if the target stopped for a hardware breakpoint.
518 Likewise, if the target supports hardware breakpoints, this
519 method is necessary for correct background execution / non-stop
520 mode operation. Even though hardware breakpoints do not
521 require PC adjustment, GDB needs to be able to tell whether the
522 hardware breakpoint event is a delayed event for a breakpoint
523 that is already gone and should thus be ignored. */
524 virtual bool stopped_by_hw_breakpoint ()
525 TARGET_DEFAULT_RETURN (false);
526 /* Returns true if the above method is supported. */
527 virtual bool supports_stopped_by_hw_breakpoint ()
528 TARGET_DEFAULT_RETURN (false);
529
530 virtual int can_use_hw_breakpoint (enum bptype, int, int)
531 TARGET_DEFAULT_RETURN (0);
532 virtual int ranged_break_num_registers ()
533 TARGET_DEFAULT_RETURN (-1);
534 virtual int insert_hw_breakpoint (struct gdbarch *,
535 struct bp_target_info *)
536 TARGET_DEFAULT_RETURN (-1);
537 virtual int remove_hw_breakpoint (struct gdbarch *,
538 struct bp_target_info *)
539 TARGET_DEFAULT_RETURN (-1);
540
541 /* Documentation of what the two routines below are expected to do is
542 provided with the corresponding target_* macros. */
543 virtual int remove_watchpoint (CORE_ADDR, int,
544 enum target_hw_bp_type, struct expression *)
545 TARGET_DEFAULT_RETURN (-1);
546 virtual int insert_watchpoint (CORE_ADDR, int,
547 enum target_hw_bp_type, struct expression *)
548 TARGET_DEFAULT_RETURN (-1);
549
550 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
551 enum target_hw_bp_type)
552 TARGET_DEFAULT_RETURN (1);
553 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
554 enum target_hw_bp_type)
555 TARGET_DEFAULT_RETURN (1);
556 virtual bool stopped_by_watchpoint ()
557 TARGET_DEFAULT_RETURN (false);
558 virtual bool have_steppable_watchpoint ()
559 TARGET_DEFAULT_RETURN (false);
560 virtual bool stopped_data_address (CORE_ADDR *)
561 TARGET_DEFAULT_RETURN (false);
562 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
563 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
564
565 /* Documentation of this routine is provided with the corresponding
566 target_* macro. */
567 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
568 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
569
570 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
571 struct expression *)
572 TARGET_DEFAULT_RETURN (false);
573 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
574 TARGET_DEFAULT_RETURN (-1);
575
576 /* Return 1 for sure target can do single step. Return -1 for
577 unknown. Return 0 for target can't do. */
578 virtual int can_do_single_step ()
579 TARGET_DEFAULT_RETURN (-1);
580
581 virtual bool supports_terminal_ours ()
582 TARGET_DEFAULT_RETURN (false);
583 virtual void terminal_init ()
584 TARGET_DEFAULT_IGNORE ();
585 virtual void terminal_inferior ()
586 TARGET_DEFAULT_IGNORE ();
587 virtual void terminal_save_inferior ()
588 TARGET_DEFAULT_IGNORE ();
589 virtual void terminal_ours_for_output ()
590 TARGET_DEFAULT_IGNORE ();
591 virtual void terminal_ours ()
592 TARGET_DEFAULT_IGNORE ();
593 virtual void terminal_info (const char *, int)
594 TARGET_DEFAULT_FUNC (default_terminal_info);
595 virtual void kill ()
596 TARGET_DEFAULT_NORETURN (noprocess ());
597 virtual void load (const char *, int)
598 TARGET_DEFAULT_NORETURN (tcomplain ());
599 /* Start an inferior process and set inferior_ptid to its pid.
600 EXEC_FILE is the file to run.
601 ALLARGS is a string containing the arguments to the program.
602 ENV is the environment vector to pass. Errors reported with error().
603 On VxWorks and various standalone systems, we ignore exec_file. */
604 virtual bool can_create_inferior ();
605 virtual void create_inferior (const char *, const std::string &,
606 char **, int);
607 virtual void post_startup_inferior (ptid_t)
608 TARGET_DEFAULT_IGNORE ();
609 virtual int insert_fork_catchpoint (int)
610 TARGET_DEFAULT_RETURN (1);
611 virtual int remove_fork_catchpoint (int)
612 TARGET_DEFAULT_RETURN (1);
613 virtual int insert_vfork_catchpoint (int)
614 TARGET_DEFAULT_RETURN (1);
615 virtual int remove_vfork_catchpoint (int)
616 TARGET_DEFAULT_RETURN (1);
617 virtual int follow_fork (int, int)
618 TARGET_DEFAULT_FUNC (default_follow_fork);
619 virtual int insert_exec_catchpoint (int)
620 TARGET_DEFAULT_RETURN (1);
621 virtual int remove_exec_catchpoint (int)
622 TARGET_DEFAULT_RETURN (1);
623 virtual void follow_exec (struct inferior *, const char *)
624 TARGET_DEFAULT_IGNORE ();
625 virtual int set_syscall_catchpoint (int, bool, int,
626 gdb::array_view<const int>)
627 TARGET_DEFAULT_RETURN (1);
628 virtual void mourn_inferior ()
629 TARGET_DEFAULT_FUNC (default_mourn_inferior);
630
631 /* Note that can_run is special and can be invoked on an unpushed
632 target. Targets defining this method must also define
633 to_can_async_p and to_supports_non_stop. */
634 virtual bool can_run ();
635
636 /* Documentation of this routine is provided with the corresponding
637 target_* macro. */
638 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
639 TARGET_DEFAULT_IGNORE ();
640
641 /* Documentation of this routine is provided with the
642 corresponding target_* function. */
643 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
644 TARGET_DEFAULT_IGNORE ();
645
646 virtual bool thread_alive (ptid_t ptid)
647 TARGET_DEFAULT_RETURN (false);
648 virtual void update_thread_list ()
649 TARGET_DEFAULT_IGNORE ();
650 virtual std::string pid_to_str (ptid_t)
651 TARGET_DEFAULT_FUNC (default_pid_to_str);
652 virtual const char *extra_thread_info (thread_info *)
653 TARGET_DEFAULT_RETURN (NULL);
654 virtual const char *thread_name (thread_info *)
655 TARGET_DEFAULT_RETURN (NULL);
656 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
657 int,
658 inferior *inf)
659 TARGET_DEFAULT_RETURN (NULL);
660 /* See target_thread_info_to_thread_handle. */
661 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
662 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
663 virtual void stop (ptid_t)
664 TARGET_DEFAULT_IGNORE ();
665 virtual void interrupt ()
666 TARGET_DEFAULT_IGNORE ();
667 virtual void pass_ctrlc ()
668 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
669 virtual void rcmd (const char *command, struct ui_file *output)
670 TARGET_DEFAULT_FUNC (default_rcmd);
671 virtual char *pid_to_exec_file (int pid)
672 TARGET_DEFAULT_RETURN (NULL);
673 virtual void log_command (const char *)
674 TARGET_DEFAULT_IGNORE ();
675 virtual struct target_section_table *get_section_table ()
676 TARGET_DEFAULT_RETURN (NULL);
677
678 /* Provide default values for all "must have" methods. */
679 virtual bool has_all_memory () { return false; }
680 virtual bool has_memory () { return false; }
681 virtual bool has_stack () { return false; }
682 virtual bool has_registers () { return false; }
683 virtual bool has_execution (ptid_t) { return false; }
684
685 /* Control thread execution. */
686 virtual thread_control_capabilities get_thread_control_capabilities ()
687 TARGET_DEFAULT_RETURN (tc_none);
688 virtual bool attach_no_wait ()
689 TARGET_DEFAULT_RETURN (0);
690 /* This method must be implemented in some situations. See the
691 comment on 'can_run'. */
692 virtual bool can_async_p ()
693 TARGET_DEFAULT_RETURN (false);
694 virtual bool is_async_p ()
695 TARGET_DEFAULT_RETURN (false);
696 virtual void async (int)
697 TARGET_DEFAULT_NORETURN (tcomplain ());
698 virtual void thread_events (int)
699 TARGET_DEFAULT_IGNORE ();
700 /* This method must be implemented in some situations. See the
701 comment on 'can_run'. */
702 virtual bool supports_non_stop ()
703 TARGET_DEFAULT_RETURN (false);
704 /* Return true if the target operates in non-stop mode even with
705 "set non-stop off". */
706 virtual bool always_non_stop_p ()
707 TARGET_DEFAULT_RETURN (false);
708 /* find_memory_regions support method for gcore */
709 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
710 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
711 /* make_corefile_notes support method for gcore */
712 virtual char *make_corefile_notes (bfd *, int *)
713 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
714 /* get_bookmark support method for bookmarks */
715 virtual gdb_byte *get_bookmark (const char *, int)
716 TARGET_DEFAULT_NORETURN (tcomplain ());
717 /* goto_bookmark support method for bookmarks */
718 virtual void goto_bookmark (const gdb_byte *, int)
719 TARGET_DEFAULT_NORETURN (tcomplain ());
720 /* Return the thread-local address at OFFSET in the
721 thread-local storage for the thread PTID and the shared library
722 or executable file given by LOAD_MODULE_ADDR. If that block of
723 thread-local storage hasn't been allocated yet, this function
724 may throw an error. LOAD_MODULE_ADDR may be zero for statically
725 linked multithreaded inferiors. */
726 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
727 CORE_ADDR load_module_addr,
728 CORE_ADDR offset)
729 TARGET_DEFAULT_NORETURN (generic_tls_error ());
730
731 /* Request that OPS transfer up to LEN addressable units of the target's
732 OBJECT. When reading from a memory object, the size of an addressable
733 unit is architecture dependent and can be found using
734 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
735 1 byte long. The OFFSET, for a seekable object, specifies the
736 starting point. The ANNEX can be used to provide additional
737 data-specific information to the target.
738
739 Return the transferred status, error or OK (an
740 'enum target_xfer_status' value). Save the number of addressable units
741 actually transferred in *XFERED_LEN if transfer is successful
742 (TARGET_XFER_OK) or the number unavailable units if the requested
743 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
744 smaller than LEN does not indicate the end of the object, only
745 the end of the transfer; higher level code should continue
746 transferring if desired. This is handled in target.c.
747
748 The interface does not support a "retry" mechanism. Instead it
749 assumes that at least one addressable unit will be transfered on each
750 successful call.
751
752 NOTE: cagney/2003-10-17: The current interface can lead to
753 fragmented transfers. Lower target levels should not implement
754 hacks, such as enlarging the transfer, in an attempt to
755 compensate for this. Instead, the target stack should be
756 extended so that it implements supply/collect methods and a
757 look-aside object cache. With that available, the lowest
758 target can safely and freely "push" data up the stack.
759
760 See target_read and target_write for more information. One,
761 and only one, of readbuf or writebuf must be non-NULL. */
762
763 virtual enum target_xfer_status xfer_partial (enum target_object object,
764 const char *annex,
765 gdb_byte *readbuf,
766 const gdb_byte *writebuf,
767 ULONGEST offset, ULONGEST len,
768 ULONGEST *xfered_len)
769 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
770
771 /* Return the limit on the size of any single memory transfer
772 for the target. */
773
774 virtual ULONGEST get_memory_xfer_limit ()
775 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
776
777 /* Returns the memory map for the target. A return value of NULL
778 means that no memory map is available. If a memory address
779 does not fall within any returned regions, it's assumed to be
780 RAM. The returned memory regions should not overlap.
781
782 The order of regions does not matter; target_memory_map will
783 sort regions by starting address. For that reason, this
784 function should not be called directly except via
785 target_memory_map.
786
787 This method should not cache data; if the memory map could
788 change unexpectedly, it should be invalidated, and higher
789 layers will re-fetch it. */
790 virtual std::vector<mem_region> memory_map ()
791 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
792
793 /* Erases the region of flash memory starting at ADDRESS, of
794 length LENGTH.
795
796 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
797 on flash block boundaries, as reported by 'to_memory_map'. */
798 virtual void flash_erase (ULONGEST address, LONGEST length)
799 TARGET_DEFAULT_NORETURN (tcomplain ());
800
801 /* Finishes a flash memory write sequence. After this operation
802 all flash memory should be available for writing and the result
803 of reading from areas written by 'to_flash_write' should be
804 equal to what was written. */
805 virtual void flash_done ()
806 TARGET_DEFAULT_NORETURN (tcomplain ());
807
808 /* Describe the architecture-specific features of this target. If
809 OPS doesn't have a description, this should delegate to the
810 "beneath" target. Returns the description found, or NULL if no
811 description was available. */
812 virtual const struct target_desc *read_description ()
813 TARGET_DEFAULT_RETURN (NULL);
814
815 /* Build the PTID of the thread on which a given task is running,
816 based on LWP and THREAD. These values are extracted from the
817 task Private_Data section of the Ada Task Control Block, and
818 their interpretation depends on the target. */
819 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
820 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
821
822 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
823 Return 0 if *READPTR is already at the end of the buffer.
824 Return -1 if there is insufficient buffer for a whole entry.
825 Return 1 if an entry was read into *TYPEP and *VALP. */
826 virtual int auxv_parse (gdb_byte **readptr,
827 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
828 TARGET_DEFAULT_FUNC (default_auxv_parse);
829
830 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
831 sequence of bytes in PATTERN with length PATTERN_LEN.
832
833 The result is 1 if found, 0 if not found, and -1 if there was an error
834 requiring halting of the search (e.g. memory read error).
835 If the pattern is found the address is recorded in FOUND_ADDRP. */
836 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
837 const gdb_byte *pattern, ULONGEST pattern_len,
838 CORE_ADDR *found_addrp)
839 TARGET_DEFAULT_FUNC (default_search_memory);
840
841 /* Can target execute in reverse? */
842 virtual bool can_execute_reverse ()
843 TARGET_DEFAULT_RETURN (false);
844
845 /* The direction the target is currently executing. Must be
846 implemented on targets that support reverse execution and async
847 mode. The default simply returns forward execution. */
848 virtual enum exec_direction_kind execution_direction ()
849 TARGET_DEFAULT_FUNC (default_execution_direction);
850
851 /* Does this target support debugging multiple processes
852 simultaneously? */
853 virtual bool supports_multi_process ()
854 TARGET_DEFAULT_RETURN (false);
855
856 /* Does this target support enabling and disabling tracepoints while a trace
857 experiment is running? */
858 virtual bool supports_enable_disable_tracepoint ()
859 TARGET_DEFAULT_RETURN (false);
860
861 /* Does this target support disabling address space randomization? */
862 virtual bool supports_disable_randomization ()
863 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
864
865 /* Does this target support the tracenz bytecode for string collection? */
866 virtual bool supports_string_tracing ()
867 TARGET_DEFAULT_RETURN (false);
868
869 /* Does this target support evaluation of breakpoint conditions on its
870 end? */
871 virtual bool supports_evaluation_of_breakpoint_conditions ()
872 TARGET_DEFAULT_RETURN (false);
873
874 /* Does this target support evaluation of breakpoint commands on its
875 end? */
876 virtual bool can_run_breakpoint_commands ()
877 TARGET_DEFAULT_RETURN (false);
878
879 /* Determine current architecture of thread PTID.
880
881 The target is supposed to determine the architecture of the code where
882 the target is currently stopped at (on Cell, if a target is in spu_run,
883 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
884 This is architecture used to perform decr_pc_after_break adjustment,
885 and also determines the frame architecture of the innermost frame.
886 ptrace operations need to operate according to target_gdbarch (). */
887 virtual struct gdbarch *thread_architecture (ptid_t)
888 TARGET_DEFAULT_RETURN (NULL);
889
890 /* Determine current address space of thread PTID. */
891 virtual struct address_space *thread_address_space (ptid_t)
892 TARGET_DEFAULT_RETURN (NULL);
893
894 /* Target file operations. */
895
896 /* Return nonzero if the filesystem seen by the current inferior
897 is the local filesystem, zero otherwise. */
898 virtual bool filesystem_is_local ()
899 TARGET_DEFAULT_RETURN (true);
900
901 /* Open FILENAME on the target, in the filesystem as seen by INF,
902 using FLAGS and MODE. If INF is NULL, use the filesystem seen
903 by the debugger (GDB or, for remote targets, the remote stub).
904 If WARN_IF_SLOW is nonzero, print a warning message if the file
905 is being accessed over a link that may be slow. Return a
906 target file descriptor, or -1 if an error occurs (and set
907 *TARGET_ERRNO). */
908 virtual int fileio_open (struct inferior *inf, const char *filename,
909 int flags, int mode, int warn_if_slow,
910 int *target_errno);
911
912 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
913 Return the number of bytes written, or -1 if an error occurs
914 (and set *TARGET_ERRNO). */
915 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
916 ULONGEST offset, int *target_errno);
917
918 /* Read up to LEN bytes FD on the target into READ_BUF.
919 Return the number of bytes read, or -1 if an error occurs
920 (and set *TARGET_ERRNO). */
921 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
922 ULONGEST offset, int *target_errno);
923
924 /* Get information about the file opened as FD and put it in
925 SB. Return 0 on success, or -1 if an error occurs (and set
926 *TARGET_ERRNO). */
927 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
928
929 /* Close FD on the target. Return 0, or -1 if an error occurs
930 (and set *TARGET_ERRNO). */
931 virtual int fileio_close (int fd, int *target_errno);
932
933 /* Unlink FILENAME on the target, in the filesystem as seen by
934 INF. If INF is NULL, use the filesystem seen by the debugger
935 (GDB or, for remote targets, the remote stub). Return 0, or
936 -1 if an error occurs (and set *TARGET_ERRNO). */
937 virtual int fileio_unlink (struct inferior *inf,
938 const char *filename,
939 int *target_errno);
940
941 /* Read value of symbolic link FILENAME on the target, in the
942 filesystem as seen by INF. If INF is NULL, use the filesystem
943 seen by the debugger (GDB or, for remote targets, the remote
944 stub). Return a string, or an empty optional if an error
945 occurs (and set *TARGET_ERRNO). */
946 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
947 const char *filename,
948 int *target_errno);
949
950 /* Implement the "info proc" command. Returns true if the target
951 actually implemented the command, false otherwise. */
952 virtual bool info_proc (const char *, enum info_proc_what);
953
954 /* Tracepoint-related operations. */
955
956 /* Prepare the target for a tracing run. */
957 virtual void trace_init ()
958 TARGET_DEFAULT_NORETURN (tcomplain ());
959
960 /* Send full details of a tracepoint location to the target. */
961 virtual void download_tracepoint (struct bp_location *location)
962 TARGET_DEFAULT_NORETURN (tcomplain ());
963
964 /* Is the target able to download tracepoint locations in current
965 state? */
966 virtual bool can_download_tracepoint ()
967 TARGET_DEFAULT_RETURN (false);
968
969 /* Send full details of a trace state variable to the target. */
970 virtual void download_trace_state_variable (const trace_state_variable &tsv)
971 TARGET_DEFAULT_NORETURN (tcomplain ());
972
973 /* Enable a tracepoint on the target. */
974 virtual void enable_tracepoint (struct bp_location *location)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Disable a tracepoint on the target. */
978 virtual void disable_tracepoint (struct bp_location *location)
979 TARGET_DEFAULT_NORETURN (tcomplain ());
980
981 /* Inform the target info of memory regions that are readonly
982 (such as text sections), and so it should return data from
983 those rather than look in the trace buffer. */
984 virtual void trace_set_readonly_regions ()
985 TARGET_DEFAULT_NORETURN (tcomplain ());
986
987 /* Start a trace run. */
988 virtual void trace_start ()
989 TARGET_DEFAULT_NORETURN (tcomplain ());
990
991 /* Get the current status of a tracing run. */
992 virtual int get_trace_status (struct trace_status *ts)
993 TARGET_DEFAULT_RETURN (-1);
994
995 virtual void get_tracepoint_status (struct breakpoint *tp,
996 struct uploaded_tp *utp)
997 TARGET_DEFAULT_NORETURN (tcomplain ());
998
999 /* Stop a trace run. */
1000 virtual void trace_stop ()
1001 TARGET_DEFAULT_NORETURN (tcomplain ());
1002
1003 /* Ask the target to find a trace frame of the given type TYPE,
1004 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1005 number of the trace frame, and also the tracepoint number at
1006 TPP. If no trace frame matches, return -1. May throw if the
1007 operation fails. */
1008 virtual int trace_find (enum trace_find_type type, int num,
1009 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1010 TARGET_DEFAULT_RETURN (-1);
1011
1012 /* Get the value of the trace state variable number TSV, returning
1013 1 if the value is known and writing the value itself into the
1014 location pointed to by VAL, else returning 0. */
1015 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1016 TARGET_DEFAULT_RETURN (false);
1017
1018 virtual int save_trace_data (const char *filename)
1019 TARGET_DEFAULT_NORETURN (tcomplain ());
1020
1021 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1022 TARGET_DEFAULT_RETURN (0);
1023
1024 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1025 TARGET_DEFAULT_RETURN (0);
1026
1027 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1028 ULONGEST offset, LONGEST len)
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1030
1031 /* Get the minimum length of instruction on which a fast tracepoint
1032 may be set on the target. If this operation is unsupported,
1033 return -1. If for some reason the minimum length cannot be
1034 determined, return 0. */
1035 virtual int get_min_fast_tracepoint_insn_len ()
1036 TARGET_DEFAULT_RETURN (-1);
1037
1038 /* Set the target's tracing behavior in response to unexpected
1039 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1040 virtual void set_disconnected_tracing (int val)
1041 TARGET_DEFAULT_IGNORE ();
1042 virtual void set_circular_trace_buffer (int val)
1043 TARGET_DEFAULT_IGNORE ();
1044 /* Set the size of trace buffer in the target. */
1045 virtual void set_trace_buffer_size (LONGEST val)
1046 TARGET_DEFAULT_IGNORE ();
1047
1048 /* Add/change textual notes about the trace run, returning 1 if
1049 successful, 0 otherwise. */
1050 virtual bool set_trace_notes (const char *user, const char *notes,
1051 const char *stopnotes)
1052 TARGET_DEFAULT_RETURN (false);
1053
1054 /* Return the processor core that thread PTID was last seen on.
1055 This information is updated only when:
1056 - update_thread_list is called
1057 - thread stops
1058 If the core cannot be determined -- either for the specified
1059 thread, or right now, or in this debug session, or for this
1060 target -- return -1. */
1061 virtual int core_of_thread (ptid_t ptid)
1062 TARGET_DEFAULT_RETURN (-1);
1063
1064 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1065 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1066 a match, 0 if there's a mismatch, and -1 if an error is
1067 encountered while reading memory. */
1068 virtual int verify_memory (const gdb_byte *data,
1069 CORE_ADDR memaddr, ULONGEST size)
1070 TARGET_DEFAULT_FUNC (default_verify_memory);
1071
1072 /* Return the address of the start of the Thread Information Block
1073 a Windows OS specific feature. */
1074 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1075 TARGET_DEFAULT_NORETURN (tcomplain ());
1076
1077 /* Send the new settings of write permission variables. */
1078 virtual void set_permissions ()
1079 TARGET_DEFAULT_IGNORE ();
1080
1081 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1082 with its details. Return true on success, false on failure. */
1083 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1084 static_tracepoint_marker *marker)
1085 TARGET_DEFAULT_RETURN (false);
1086
1087 /* Return a vector of all tracepoints markers string id ID, or all
1088 markers if ID is NULL. */
1089 virtual std::vector<static_tracepoint_marker>
1090 static_tracepoint_markers_by_strid (const char *id)
1091 TARGET_DEFAULT_NORETURN (tcomplain ());
1092
1093 /* Return a traceframe info object describing the current
1094 traceframe's contents. This method should not cache data;
1095 higher layers take care of caching, invalidating, and
1096 re-fetching when necessary. */
1097 virtual traceframe_info_up traceframe_info ()
1098 TARGET_DEFAULT_NORETURN (tcomplain ());
1099
1100 /* Ask the target to use or not to use agent according to USE.
1101 Return true if successful, false otherwise. */
1102 virtual bool use_agent (bool use)
1103 TARGET_DEFAULT_NORETURN (tcomplain ());
1104
1105 /* Is the target able to use agent in current state? */
1106 virtual bool can_use_agent ()
1107 TARGET_DEFAULT_RETURN (false);
1108
1109 /* Enable branch tracing for PTID using CONF configuration.
1110 Return a branch trace target information struct for reading and for
1111 disabling branch trace. */
1112 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1113 const struct btrace_config *conf)
1114 TARGET_DEFAULT_NORETURN (tcomplain ());
1115
1116 /* Disable branch tracing and deallocate TINFO. */
1117 virtual void disable_btrace (struct btrace_target_info *tinfo)
1118 TARGET_DEFAULT_NORETURN (tcomplain ());
1119
1120 /* Disable branch tracing and deallocate TINFO. This function is similar
1121 to to_disable_btrace, except that it is called during teardown and is
1122 only allowed to perform actions that are safe. A counter-example would
1123 be attempting to talk to a remote target. */
1124 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1125 TARGET_DEFAULT_NORETURN (tcomplain ());
1126
1127 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1128 DATA is cleared before new trace is added. */
1129 virtual enum btrace_error read_btrace (struct btrace_data *data,
1130 struct btrace_target_info *btinfo,
1131 enum btrace_read_type type)
1132 TARGET_DEFAULT_NORETURN (tcomplain ());
1133
1134 /* Get the branch trace configuration. */
1135 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1136 TARGET_DEFAULT_RETURN (NULL);
1137
1138 /* Current recording method. */
1139 virtual enum record_method record_method (ptid_t ptid)
1140 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1141
1142 /* Stop trace recording. */
1143 virtual void stop_recording ()
1144 TARGET_DEFAULT_IGNORE ();
1145
1146 /* Print information about the recording. */
1147 virtual void info_record ()
1148 TARGET_DEFAULT_IGNORE ();
1149
1150 /* Save the recorded execution trace into a file. */
1151 virtual void save_record (const char *filename)
1152 TARGET_DEFAULT_NORETURN (tcomplain ());
1153
1154 /* Delete the recorded execution trace from the current position
1155 onwards. */
1156 virtual bool supports_delete_record ()
1157 TARGET_DEFAULT_RETURN (false);
1158 virtual void delete_record ()
1159 TARGET_DEFAULT_NORETURN (tcomplain ());
1160
1161 /* Query if the record target is currently replaying PTID. */
1162 virtual bool record_is_replaying (ptid_t ptid)
1163 TARGET_DEFAULT_RETURN (false);
1164
1165 /* Query if the record target will replay PTID if it were resumed in
1166 execution direction DIR. */
1167 virtual bool record_will_replay (ptid_t ptid, int dir)
1168 TARGET_DEFAULT_RETURN (false);
1169
1170 /* Stop replaying. */
1171 virtual void record_stop_replaying ()
1172 TARGET_DEFAULT_IGNORE ();
1173
1174 /* Go to the begin of the execution trace. */
1175 virtual void goto_record_begin ()
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178 /* Go to the end of the execution trace. */
1179 virtual void goto_record_end ()
1180 TARGET_DEFAULT_NORETURN (tcomplain ());
1181
1182 /* Go to a specific location in the recorded execution trace. */
1183 virtual void goto_record (ULONGEST insn)
1184 TARGET_DEFAULT_NORETURN (tcomplain ());
1185
1186 /* Disassemble SIZE instructions in the recorded execution trace from
1187 the current position.
1188 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1189 disassemble SIZE succeeding instructions. */
1190 virtual void insn_history (int size, gdb_disassembly_flags flags)
1191 TARGET_DEFAULT_NORETURN (tcomplain ());
1192
1193 /* Disassemble SIZE instructions in the recorded execution trace around
1194 FROM.
1195 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1196 disassemble SIZE instructions after FROM. */
1197 virtual void insn_history_from (ULONGEST from, int size,
1198 gdb_disassembly_flags flags)
1199 TARGET_DEFAULT_NORETURN (tcomplain ());
1200
1201 /* Disassemble a section of the recorded execution trace from instruction
1202 BEGIN (inclusive) to instruction END (inclusive). */
1203 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1204 gdb_disassembly_flags flags)
1205 TARGET_DEFAULT_NORETURN (tcomplain ());
1206
1207 /* Print a function trace of the recorded execution trace.
1208 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1209 succeeding functions. */
1210 virtual void call_history (int size, record_print_flags flags)
1211 TARGET_DEFAULT_NORETURN (tcomplain ());
1212
1213 /* Print a function trace of the recorded execution trace starting
1214 at function FROM.
1215 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1216 SIZE functions after FROM. */
1217 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1218 TARGET_DEFAULT_NORETURN (tcomplain ());
1219
1220 /* Print a function trace of an execution trace section from function BEGIN
1221 (inclusive) to function END (inclusive). */
1222 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1223 TARGET_DEFAULT_NORETURN (tcomplain ());
1224
1225 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1226 non-empty annex. */
1227 virtual bool augmented_libraries_svr4_read ()
1228 TARGET_DEFAULT_RETURN (false);
1229
1230 /* Those unwinders are tried before any other arch unwinders. If
1231 SELF doesn't have unwinders, it should delegate to the
1232 "beneath" target. */
1233 virtual const struct frame_unwind *get_unwinder ()
1234 TARGET_DEFAULT_RETURN (NULL);
1235
1236 virtual const struct frame_unwind *get_tailcall_unwinder ()
1237 TARGET_DEFAULT_RETURN (NULL);
1238
1239 /* Prepare to generate a core file. */
1240 virtual void prepare_to_generate_core ()
1241 TARGET_DEFAULT_IGNORE ();
1242
1243 /* Cleanup after generating a core file. */
1244 virtual void done_generating_core ()
1245 TARGET_DEFAULT_IGNORE ();
1246
1247 virtual bool supports_displaced_step (thread_info *thread)
1248 TARGET_DEFAULT_FUNC (default_supports_displaced_step);
1249
1250 virtual displaced_step_prepare_status displaced_step_prepare (thread_info *thread)
1251 TARGET_DEFAULT_FUNC (default_displaced_step_prepare);
1252
1253 virtual displaced_step_finish_status displaced_step_finish (thread_info *thread, gdb_signal sig)
1254 TARGET_DEFAULT_FUNC (default_displaced_step_finish);
1255 };
1256
1257 /* Deleter for std::unique_ptr. See comments in
1258 target_ops::~target_ops and target_ops::close about heap-allocated
1259 targets. */
1260 struct target_ops_deleter
1261 {
1262 void operator() (target_ops *target)
1263 {
1264 target->close ();
1265 }
1266 };
1267
1268 /* A unique pointer for target_ops. */
1269 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1270
1271 /* Native target backends call this once at initialization time to
1272 inform the core about which is the target that can respond to "run"
1273 or "attach". Note: native targets are always singletons. */
1274 extern void set_native_target (target_ops *target);
1275
1276 /* Get the registered native target, if there's one. Otherwise return
1277 NULL. */
1278 extern target_ops *get_native_target ();
1279
1280 /* Type that manages a target stack. See description of target stacks
1281 and strata at the top of the file. */
1282
1283 class target_stack
1284 {
1285 public:
1286 target_stack () = default;
1287 DISABLE_COPY_AND_ASSIGN (target_stack);
1288
1289 /* Push a new target into the stack of the existing target
1290 accessors, possibly superseding some existing accessor. */
1291 void push (target_ops *t);
1292
1293 /* Remove a target from the stack, wherever it may be. Return true
1294 if it was removed, false otherwise. */
1295 bool unpush (target_ops *t);
1296
1297 /* Returns true if T is pushed on the target stack. */
1298 bool is_pushed (target_ops *t) const
1299 { return at (t->stratum ()) == t; }
1300
1301 /* Return the target at STRATUM. */
1302 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1303
1304 /* Return the target at the top of the stack. */
1305 target_ops *top () const { return at (m_top); }
1306
1307 /* Find the next target down the stack from the specified target. */
1308 target_ops *find_beneath (const target_ops *t) const;
1309
1310 private:
1311 /* The stratum of the top target. */
1312 enum strata m_top {};
1313
1314 /* The stack, represented as an array, with one slot per stratum.
1315 If no target is pushed at some stratum, the corresponding slot is
1316 null. */
1317 target_ops *m_stack[(int) debug_stratum + 1] {};
1318 };
1319
1320 /* The ops structure for our "current" target process. This should
1321 never be NULL. If there is no target, it points to the dummy_target. */
1322
1323 extern target_ops *current_top_target ();
1324
1325 /* Define easy words for doing these operations on our current target. */
1326
1327 #define target_shortname (current_top_target ()->shortname ())
1328 #define target_longname (current_top_target ()->longname ())
1329
1330 /* Does whatever cleanup is required for a target that we are no
1331 longer going to be calling. This routine is automatically always
1332 called after popping the target off the target stack - the target's
1333 own methods are no longer available through the target vector.
1334 Closing file descriptors and freeing all memory allocated memory are
1335 typical things it should do. */
1336
1337 void target_close (struct target_ops *targ);
1338
1339 /* Find the correct target to use for "attach". If a target on the
1340 current stack supports attaching, then it is returned. Otherwise,
1341 the default run target is returned. */
1342
1343 extern struct target_ops *find_attach_target (void);
1344
1345 /* Find the correct target to use for "run". If a target on the
1346 current stack supports creating a new inferior, then it is
1347 returned. Otherwise, the default run target is returned. */
1348
1349 extern struct target_ops *find_run_target (void);
1350
1351 /* Some targets don't generate traps when attaching to the inferior,
1352 or their target_attach implementation takes care of the waiting.
1353 These targets must set to_attach_no_wait. */
1354
1355 #define target_attach_no_wait() \
1356 (current_top_target ()->attach_no_wait ())
1357
1358 /* The target_attach operation places a process under debugger control,
1359 and stops the process.
1360
1361 This operation provides a target-specific hook that allows the
1362 necessary bookkeeping to be performed after an attach completes. */
1363 #define target_post_attach(pid) \
1364 (current_top_target ()->post_attach) (pid)
1365
1366 /* Display a message indicating we're about to detach from the current
1367 inferior process. */
1368
1369 extern void target_announce_detach (int from_tty);
1370
1371 /* Takes a program previously attached to and detaches it.
1372 The program may resume execution (some targets do, some don't) and will
1373 no longer stop on signals, etc. We better not have left any breakpoints
1374 in the program or it'll die when it hits one. FROM_TTY says whether to be
1375 verbose or not. */
1376
1377 extern void target_detach (inferior *inf, int from_tty);
1378
1379 /* Disconnect from the current target without resuming it (leaving it
1380 waiting for a debugger). */
1381
1382 extern void target_disconnect (const char *, int);
1383
1384 /* Resume execution (or prepare for execution) of a target thread,
1385 process or all processes. STEP says whether to hardware
1386 single-step or to run free; SIGGNAL is the signal to be given to
1387 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1388 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1389 process id'. A wildcard PTID (all threads, or all threads of
1390 process) means `step/resume INFERIOR_PTID, and let other threads
1391 (for which the wildcard PTID matches) resume with their
1392 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1393 is in "pass" state, or with no signal if in "no pass" state.
1394
1395 In order to efficiently handle batches of resumption requests,
1396 targets may implement this method such that it records the
1397 resumption request, but defers the actual resumption to the
1398 target_commit_resume method implementation. See
1399 target_commit_resume below. */
1400 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1401
1402 /* Commit a series of resumption requests previously prepared with
1403 target_resume calls.
1404
1405 GDB always calls target_commit_resume after calling target_resume
1406 one or more times. A target may thus use this method in
1407 coordination with the target_resume method to batch target-side
1408 resumption requests. In that case, the target doesn't actually
1409 resume in its target_resume implementation. Instead, it prepares
1410 the resumption in target_resume, and defers the actual resumption
1411 to target_commit_resume. E.g., the remote target uses this to
1412 coalesce multiple resumption requests in a single vCont packet. */
1413 extern void target_commit_resume ();
1414
1415 /* Setup to defer target_commit_resume calls, and reactivate
1416 target_commit_resume on destruction, if it was previously
1417 active. */
1418 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1419
1420 /* For target_read_memory see target/target.h. */
1421
1422 /* The default target_ops::to_wait implementation. */
1423
1424 extern ptid_t default_target_wait (struct target_ops *ops,
1425 ptid_t ptid,
1426 struct target_waitstatus *status,
1427 int options);
1428
1429 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1430
1431 extern void target_fetch_registers (struct regcache *regcache, int regno);
1432
1433 /* Store at least register REGNO, or all regs if REGNO == -1.
1434 It can store as many registers as it wants to, so target_prepare_to_store
1435 must have been previously called. Calls error() if there are problems. */
1436
1437 extern void target_store_registers (struct regcache *regcache, int regs);
1438
1439 /* Get ready to modify the registers array. On machines which store
1440 individual registers, this doesn't need to do anything. On machines
1441 which store all the registers in one fell swoop, this makes sure
1442 that REGISTERS contains all the registers from the program being
1443 debugged. */
1444
1445 #define target_prepare_to_store(regcache) \
1446 (current_top_target ()->prepare_to_store) (regcache)
1447
1448 /* Determine current address space of thread PTID. */
1449
1450 struct address_space *target_thread_address_space (ptid_t);
1451
1452 /* Implement the "info proc" command. This returns one if the request
1453 was handled, and zero otherwise. It can also throw an exception if
1454 an error was encountered while attempting to handle the
1455 request. */
1456
1457 int target_info_proc (const char *, enum info_proc_what);
1458
1459 /* Returns true if this target can disable address space randomization. */
1460
1461 int target_supports_disable_randomization (void);
1462
1463 /* Returns true if this target can enable and disable tracepoints
1464 while a trace experiment is running. */
1465
1466 #define target_supports_enable_disable_tracepoint() \
1467 (current_top_target ()->supports_enable_disable_tracepoint) ()
1468
1469 #define target_supports_string_tracing() \
1470 (current_top_target ()->supports_string_tracing) ()
1471
1472 /* Returns true if this target can handle breakpoint conditions
1473 on its end. */
1474
1475 #define target_supports_evaluation_of_breakpoint_conditions() \
1476 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1477
1478 /* Returns true if this target can handle breakpoint commands
1479 on its end. */
1480
1481 #define target_can_run_breakpoint_commands() \
1482 (current_top_target ()->can_run_breakpoint_commands) ()
1483
1484 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1485 int, int *);
1486
1487 /* For target_read_memory see target/target.h. */
1488
1489 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1490 ssize_t len);
1491
1492 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1493
1494 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1495
1496 /* For target_write_memory see target/target.h. */
1497
1498 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1499 ssize_t len);
1500
1501 /* Fetches the target's memory map. If one is found it is sorted
1502 and returned, after some consistency checking. Otherwise, NULL
1503 is returned. */
1504 std::vector<mem_region> target_memory_map (void);
1505
1506 /* Erases all flash memory regions on the target. */
1507 void flash_erase_command (const char *cmd, int from_tty);
1508
1509 /* Erase the specified flash region. */
1510 void target_flash_erase (ULONGEST address, LONGEST length);
1511
1512 /* Finish a sequence of flash operations. */
1513 void target_flash_done (void);
1514
1515 /* Describes a request for a memory write operation. */
1516 struct memory_write_request
1517 {
1518 memory_write_request (ULONGEST begin_, ULONGEST end_,
1519 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1520 : begin (begin_), end (end_), data (data_), baton (baton_)
1521 {}
1522
1523 /* Begining address that must be written. */
1524 ULONGEST begin;
1525 /* Past-the-end address. */
1526 ULONGEST end;
1527 /* The data to write. */
1528 gdb_byte *data;
1529 /* A callback baton for progress reporting for this request. */
1530 void *baton;
1531 };
1532
1533 /* Enumeration specifying different flash preservation behaviour. */
1534 enum flash_preserve_mode
1535 {
1536 flash_preserve,
1537 flash_discard
1538 };
1539
1540 /* Write several memory blocks at once. This version can be more
1541 efficient than making several calls to target_write_memory, in
1542 particular because it can optimize accesses to flash memory.
1543
1544 Moreover, this is currently the only memory access function in gdb
1545 that supports writing to flash memory, and it should be used for
1546 all cases where access to flash memory is desirable.
1547
1548 REQUESTS is the vector of memory_write_request.
1549 PRESERVE_FLASH_P indicates what to do with blocks which must be
1550 erased, but not completely rewritten.
1551 PROGRESS_CB is a function that will be periodically called to provide
1552 feedback to user. It will be called with the baton corresponding
1553 to the request currently being written. It may also be called
1554 with a NULL baton, when preserved flash sectors are being rewritten.
1555
1556 The function returns 0 on success, and error otherwise. */
1557 int target_write_memory_blocks
1558 (const std::vector<memory_write_request> &requests,
1559 enum flash_preserve_mode preserve_flash_p,
1560 void (*progress_cb) (ULONGEST, void *));
1561
1562 /* Print a line about the current target. */
1563
1564 #define target_files_info() \
1565 (current_top_target ()->files_info) ()
1566
1567 /* Insert a breakpoint at address BP_TGT->placed_address in
1568 the target machine. Returns 0 for success, and returns non-zero or
1569 throws an error (with a detailed failure reason error code and
1570 message) otherwise. */
1571
1572 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1573 struct bp_target_info *bp_tgt);
1574
1575 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1576 machine. Result is 0 for success, non-zero for error. */
1577
1578 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1579 struct bp_target_info *bp_tgt,
1580 enum remove_bp_reason reason);
1581
1582 /* Return true if the target stack has a non-default
1583 "terminal_ours" method. */
1584
1585 extern bool target_supports_terminal_ours (void);
1586
1587 /* Kill the inferior process. Make it go away. */
1588
1589 extern void target_kill (void);
1590
1591 /* Load an executable file into the target process. This is expected
1592 to not only bring new code into the target process, but also to
1593 update GDB's symbol tables to match.
1594
1595 ARG contains command-line arguments, to be broken down with
1596 buildargv (). The first non-switch argument is the filename to
1597 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1598 0)), which is an offset to apply to the load addresses of FILE's
1599 sections. The target may define switches, or other non-switch
1600 arguments, as it pleases. */
1601
1602 extern void target_load (const char *arg, int from_tty);
1603
1604 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1605 notification of inferior events such as fork and vork immediately
1606 after the inferior is created. (This because of how gdb gets an
1607 inferior created via invoking a shell to do it. In such a scenario,
1608 if the shell init file has commands in it, the shell will fork and
1609 exec for each of those commands, and we will see each such fork
1610 event. Very bad.)
1611
1612 Such targets will supply an appropriate definition for this function. */
1613
1614 #define target_post_startup_inferior(ptid) \
1615 (current_top_target ()->post_startup_inferior) (ptid)
1616
1617 /* On some targets, we can catch an inferior fork or vfork event when
1618 it occurs. These functions insert/remove an already-created
1619 catchpoint for such events. They return 0 for success, 1 if the
1620 catchpoint type is not supported and -1 for failure. */
1621
1622 #define target_insert_fork_catchpoint(pid) \
1623 (current_top_target ()->insert_fork_catchpoint) (pid)
1624
1625 #define target_remove_fork_catchpoint(pid) \
1626 (current_top_target ()->remove_fork_catchpoint) (pid)
1627
1628 #define target_insert_vfork_catchpoint(pid) \
1629 (current_top_target ()->insert_vfork_catchpoint) (pid)
1630
1631 #define target_remove_vfork_catchpoint(pid) \
1632 (current_top_target ()->remove_vfork_catchpoint) (pid)
1633
1634 /* If the inferior forks or vforks, this function will be called at
1635 the next resume in order to perform any bookkeeping and fiddling
1636 necessary to continue debugging either the parent or child, as
1637 requested, and releasing the other. Information about the fork
1638 or vfork event is available via get_last_target_status ().
1639 This function returns 1 if the inferior should not be resumed
1640 (i.e. there is another event pending). */
1641
1642 int target_follow_fork (int follow_child, int detach_fork);
1643
1644 /* Handle the target-specific bookkeeping required when the inferior
1645 makes an exec call. INF is the exec'd inferior. */
1646
1647 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1648
1649 /* On some targets, we can catch an inferior exec event when it
1650 occurs. These functions insert/remove an already-created
1651 catchpoint for such events. They return 0 for success, 1 if the
1652 catchpoint type is not supported and -1 for failure. */
1653
1654 #define target_insert_exec_catchpoint(pid) \
1655 (current_top_target ()->insert_exec_catchpoint) (pid)
1656
1657 #define target_remove_exec_catchpoint(pid) \
1658 (current_top_target ()->remove_exec_catchpoint) (pid)
1659
1660 /* Syscall catch.
1661
1662 NEEDED is true if any syscall catch (of any kind) is requested.
1663 If NEEDED is false, it means the target can disable the mechanism to
1664 catch system calls because there are no more catchpoints of this type.
1665
1666 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1667 being requested. In this case, SYSCALL_COUNTS should be ignored.
1668
1669 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1670 element in this array is nonzero if that syscall should be caught.
1671 This argument only matters if ANY_COUNT is zero.
1672
1673 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1674 for failure. */
1675
1676 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1677 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1678 syscall_counts)
1679
1680 /* The debugger has completed a blocking wait() call. There is now
1681 some process event that must be processed. This function should
1682 be defined by those targets that require the debugger to perform
1683 cleanup or internal state changes in response to the process event. */
1684
1685 /* For target_mourn_inferior see target/target.h. */
1686
1687 /* Does target have enough data to do a run or attach command? */
1688
1689 extern int target_can_run ();
1690
1691 /* Set list of signals to be handled in the target.
1692
1693 PASS_SIGNALS is an array indexed by target signal number
1694 (enum gdb_signal). For every signal whose entry in this array is
1695 non-zero, the target is allowed -but not required- to skip reporting
1696 arrival of the signal to the GDB core by returning from target_wait,
1697 and to pass the signal directly to the inferior instead.
1698
1699 However, if the target is hardware single-stepping a thread that is
1700 about to receive a signal, it needs to be reported in any case, even
1701 if mentioned in a previous target_pass_signals call. */
1702
1703 extern void target_pass_signals
1704 (gdb::array_view<const unsigned char> pass_signals);
1705
1706 /* Set list of signals the target may pass to the inferior. This
1707 directly maps to the "handle SIGNAL pass/nopass" setting.
1708
1709 PROGRAM_SIGNALS is an array indexed by target signal
1710 number (enum gdb_signal). For every signal whose entry in this
1711 array is non-zero, the target is allowed to pass the signal to the
1712 inferior. Signals not present in the array shall be silently
1713 discarded. This does not influence whether to pass signals to the
1714 inferior as a result of a target_resume call. This is useful in
1715 scenarios where the target needs to decide whether to pass or not a
1716 signal to the inferior without GDB core involvement, such as for
1717 example, when detaching (as threads may have been suspended with
1718 pending signals not reported to GDB). */
1719
1720 extern void target_program_signals
1721 (gdb::array_view<const unsigned char> program_signals);
1722
1723 /* Check to see if a thread is still alive. */
1724
1725 extern int target_thread_alive (ptid_t ptid);
1726
1727 /* Sync the target's threads with GDB's thread list. */
1728
1729 extern void target_update_thread_list (void);
1730
1731 /* Make target stop in a continuable fashion. (For instance, under
1732 Unix, this should act like SIGSTOP). Note that this function is
1733 asynchronous: it does not wait for the target to become stopped
1734 before returning. If this is the behavior you want please use
1735 target_stop_and_wait. */
1736
1737 extern void target_stop (ptid_t ptid);
1738
1739 /* Interrupt the target. Unlike target_stop, this does not specify
1740 which thread/process reports the stop. For most target this acts
1741 like raising a SIGINT, though that's not absolutely required. This
1742 function is asynchronous. */
1743
1744 extern void target_interrupt ();
1745
1746 /* Pass a ^C, as determined to have been pressed by checking the quit
1747 flag, to the target, as if the user had typed the ^C on the
1748 inferior's controlling terminal while the inferior was in the
1749 foreground. Remote targets may take the opportunity to detect the
1750 remote side is not responding and offer to disconnect. */
1751
1752 extern void target_pass_ctrlc (void);
1753
1754 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1755 target_interrupt. */
1756 extern void default_target_pass_ctrlc (struct target_ops *ops);
1757
1758 /* Send the specified COMMAND to the target's monitor
1759 (shell,interpreter) for execution. The result of the query is
1760 placed in OUTBUF. */
1761
1762 #define target_rcmd(command, outbuf) \
1763 (current_top_target ()->rcmd) (command, outbuf)
1764
1765
1766 /* Does the target include all of memory, or only part of it? This
1767 determines whether we look up the target chain for other parts of
1768 memory if this target can't satisfy a request. */
1769
1770 extern int target_has_all_memory_1 (void);
1771 #define target_has_all_memory target_has_all_memory_1 ()
1772
1773 /* Does the target include memory? (Dummy targets don't.) */
1774
1775 extern int target_has_memory_1 (void);
1776 #define target_has_memory target_has_memory_1 ()
1777
1778 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1779 we start a process.) */
1780
1781 extern int target_has_stack_1 (void);
1782 #define target_has_stack target_has_stack_1 ()
1783
1784 /* Does the target have registers? (Exec files don't.) */
1785
1786 extern int target_has_registers_1 (void);
1787 #define target_has_registers target_has_registers_1 ()
1788
1789 /* Does the target have execution? Can we make it jump (through
1790 hoops), or pop its stack a few times? This means that the current
1791 target is currently executing; for some targets, that's the same as
1792 whether or not the target is capable of execution, but there are
1793 also targets which can be current while not executing. In that
1794 case this will become true after to_create_inferior or
1795 to_attach. */
1796
1797 extern int target_has_execution_1 (ptid_t);
1798
1799 /* Like target_has_execution_1, but always passes inferior_ptid. */
1800
1801 extern int target_has_execution_current (void);
1802
1803 #define target_has_execution target_has_execution_current ()
1804
1805 /* Can the target support the debugger control of thread execution?
1806 Can it lock the thread scheduler? */
1807
1808 #define target_can_lock_scheduler \
1809 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1810
1811 /* Controls whether async mode is permitted. */
1812 extern bool target_async_permitted;
1813
1814 /* Can the target support asynchronous execution? */
1815 #define target_can_async_p() (current_top_target ()->can_async_p ())
1816
1817 /* Is the target in asynchronous execution mode? */
1818 #define target_is_async_p() (current_top_target ()->is_async_p ())
1819
1820 /* Enables/disabled async target events. */
1821 extern void target_async (int enable);
1822
1823 /* Enables/disables thread create and exit events. */
1824 extern void target_thread_events (int enable);
1825
1826 /* Whether support for controlling the target backends always in
1827 non-stop mode is enabled. */
1828 extern enum auto_boolean target_non_stop_enabled;
1829
1830 /* Is the target in non-stop mode? Some targets control the inferior
1831 in non-stop mode even with "set non-stop off". Always true if "set
1832 non-stop" is on. */
1833 extern int target_is_non_stop_p (void);
1834
1835 #define target_execution_direction() \
1836 (current_top_target ()->execution_direction ())
1837
1838 /* Converts a process id to a string. Usually, the string just contains
1839 `process xyz', but on some systems it may contain
1840 `process xyz thread abc'. */
1841
1842 extern std::string target_pid_to_str (ptid_t ptid);
1843
1844 extern std::string normal_pid_to_str (ptid_t ptid);
1845
1846 /* Return a short string describing extra information about PID,
1847 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1848 is okay. */
1849
1850 #define target_extra_thread_info(TP) \
1851 (current_top_target ()->extra_thread_info (TP))
1852
1853 /* Return the thread's name, or NULL if the target is unable to determine it.
1854 The returned value must not be freed by the caller. */
1855
1856 extern const char *target_thread_name (struct thread_info *);
1857
1858 /* Given a pointer to a thread library specific thread handle and
1859 its length, return a pointer to the corresponding thread_info struct. */
1860
1861 extern struct thread_info *target_thread_handle_to_thread_info
1862 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1863
1864 /* Given a thread, return the thread handle, a target-specific sequence of
1865 bytes which serves as a thread identifier within the program being
1866 debugged. */
1867 extern gdb::byte_vector target_thread_info_to_thread_handle
1868 (struct thread_info *);
1869
1870 /* Attempts to find the pathname of the executable file
1871 that was run to create a specified process.
1872
1873 The process PID must be stopped when this operation is used.
1874
1875 If the executable file cannot be determined, NULL is returned.
1876
1877 Else, a pointer to a character string containing the pathname
1878 is returned. This string should be copied into a buffer by
1879 the client if the string will not be immediately used, or if
1880 it must persist. */
1881
1882 #define target_pid_to_exec_file(pid) \
1883 (current_top_target ()->pid_to_exec_file) (pid)
1884
1885 /* See the to_thread_architecture description in struct target_ops. */
1886
1887 #define target_thread_architecture(ptid) \
1888 (current_top_target ()->thread_architecture (ptid))
1889
1890 /*
1891 * Iterator function for target memory regions.
1892 * Calls a callback function once for each memory region 'mapped'
1893 * in the child process. Defined as a simple macro rather than
1894 * as a function macro so that it can be tested for nullity.
1895 */
1896
1897 #define target_find_memory_regions(FUNC, DATA) \
1898 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1899
1900 /*
1901 * Compose corefile .note section.
1902 */
1903
1904 #define target_make_corefile_notes(BFD, SIZE_P) \
1905 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1906
1907 /* Bookmark interfaces. */
1908 #define target_get_bookmark(ARGS, FROM_TTY) \
1909 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1910
1911 #define target_goto_bookmark(ARG, FROM_TTY) \
1912 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1913
1914 /* Hardware watchpoint interfaces. */
1915
1916 /* GDB's current model is that there are three "kinds" of watchpoints,
1917 with respect to when they trigger and how you can move past them.
1918
1919 Those are: continuable, steppable, and non-steppable.
1920
1921 Continuable watchpoints are like x86's -- those trigger after the
1922 memory access's side effects are fully committed to memory. I.e.,
1923 they trap with the PC pointing at the next instruction already.
1924 Continuing past such a watchpoint is doable by just normally
1925 continuing, hence the name.
1926
1927 Both steppable and non-steppable watchpoints trap before the memory
1928 access. I.e, the PC points at the instruction that is accessing
1929 the memory. So GDB needs to single-step once past the current
1930 instruction in order to make the access effective and check whether
1931 the instruction's side effects change the watched expression.
1932
1933 Now, in order to step past that instruction, depending on
1934 architecture and target, you can have two situations:
1935
1936 - steppable watchpoints: you can single-step with the watchpoint
1937 still armed, and the watchpoint won't trigger again.
1938
1939 - non-steppable watchpoints: if you try to single-step with the
1940 watchpoint still armed, you'd trap the watchpoint again and the
1941 thread wouldn't make any progress. So GDB needs to temporarily
1942 remove the watchpoint in order to step past it.
1943
1944 If your target/architecture does not signal that it has either
1945 steppable or non-steppable watchpoints via either
1946 target_have_steppable_watchpoint or
1947 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1948 watchpoints. */
1949
1950 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1951 write). Only the INFERIOR_PTID task is being queried. */
1952
1953 #define target_stopped_by_watchpoint() \
1954 ((current_top_target ()->stopped_by_watchpoint) ())
1955
1956 /* Returns non-zero if the target stopped because it executed a
1957 software breakpoint instruction. */
1958
1959 #define target_stopped_by_sw_breakpoint() \
1960 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1961
1962 #define target_supports_stopped_by_sw_breakpoint() \
1963 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1964
1965 #define target_stopped_by_hw_breakpoint() \
1966 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1967
1968 #define target_supports_stopped_by_hw_breakpoint() \
1969 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1970
1971 /* Non-zero if we have steppable watchpoints */
1972
1973 #define target_have_steppable_watchpoint \
1974 (current_top_target ()->have_steppable_watchpoint ())
1975
1976 /* Provide defaults for hardware watchpoint functions. */
1977
1978 /* If the *_hw_beakpoint functions have not been defined
1979 elsewhere use the definitions in the target vector. */
1980
1981 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1982 Returns negative if the target doesn't have enough hardware debug
1983 registers available. Return zero if hardware watchpoint of type
1984 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1985 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1986 CNT is the number of such watchpoints used so far, including this
1987 one. OTHERTYPE is the number of watchpoints of other types than
1988 this one used so far. */
1989
1990 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1991 (current_top_target ()->can_use_hw_breakpoint) ( \
1992 TYPE, CNT, OTHERTYPE)
1993
1994 /* Returns the number of debug registers needed to watch the given
1995 memory region, or zero if not supported. */
1996
1997 #define target_region_ok_for_hw_watchpoint(addr, len) \
1998 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1999
2000
2001 #define target_can_do_single_step() \
2002 (current_top_target ()->can_do_single_step) ()
2003
2004 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2005 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2006 COND is the expression for its condition, or NULL if there's none.
2007 Returns 0 for success, 1 if the watchpoint type is not supported,
2008 -1 for failure. */
2009
2010 #define target_insert_watchpoint(addr, len, type, cond) \
2011 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2012
2013 #define target_remove_watchpoint(addr, len, type, cond) \
2014 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2015
2016 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2017 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2018 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2019 masked watchpoints are not supported, -1 for failure. */
2020
2021 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2022 enum target_hw_bp_type);
2023
2024 /* Remove a masked watchpoint at ADDR with the mask MASK.
2025 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2026 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2027 for failure. */
2028
2029 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2030 enum target_hw_bp_type);
2031
2032 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2033 the target machine. Returns 0 for success, and returns non-zero or
2034 throws an error (with a detailed failure reason error code and
2035 message) otherwise. */
2036
2037 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2038 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2039
2040 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2041 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2042
2043 /* Return number of debug registers needed for a ranged breakpoint,
2044 or -1 if ranged breakpoints are not supported. */
2045
2046 extern int target_ranged_break_num_registers (void);
2047
2048 /* Return non-zero if target knows the data address which triggered this
2049 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2050 INFERIOR_PTID task is being queried. */
2051 #define target_stopped_data_address(target, addr_p) \
2052 (target)->stopped_data_address (addr_p)
2053
2054 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2055 LENGTH bytes beginning at START. */
2056 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2057 (target)->watchpoint_addr_within_range (addr, start, length)
2058
2059 /* Return non-zero if the target is capable of using hardware to evaluate
2060 the condition expression. In this case, if the condition is false when
2061 the watched memory location changes, execution may continue without the
2062 debugger being notified.
2063
2064 Due to limitations in the hardware implementation, it may be capable of
2065 avoiding triggering the watchpoint in some cases where the condition
2066 expression is false, but may report some false positives as well.
2067 For this reason, GDB will still evaluate the condition expression when
2068 the watchpoint triggers. */
2069 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2070 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2071
2072 /* Return number of debug registers needed for a masked watchpoint,
2073 -1 if masked watchpoints are not supported or -2 if the given address
2074 and mask combination cannot be used. */
2075
2076 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2077
2078 /* Target can execute in reverse? */
2079 #define target_can_execute_reverse \
2080 current_top_target ()->can_execute_reverse ()
2081
2082 extern const struct target_desc *target_read_description (struct target_ops *);
2083
2084 #define target_get_ada_task_ptid(lwp, tid) \
2085 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2086
2087 /* Utility implementation of searching memory. */
2088 extern int simple_search_memory (struct target_ops* ops,
2089 CORE_ADDR start_addr,
2090 ULONGEST search_space_len,
2091 const gdb_byte *pattern,
2092 ULONGEST pattern_len,
2093 CORE_ADDR *found_addrp);
2094
2095 /* Main entry point for searching memory. */
2096 extern int target_search_memory (CORE_ADDR start_addr,
2097 ULONGEST search_space_len,
2098 const gdb_byte *pattern,
2099 ULONGEST pattern_len,
2100 CORE_ADDR *found_addrp);
2101
2102 /* Target file operations. */
2103
2104 /* Return nonzero if the filesystem seen by the current inferior
2105 is the local filesystem, zero otherwise. */
2106 #define target_filesystem_is_local() \
2107 current_top_target ()->filesystem_is_local ()
2108
2109 /* Open FILENAME on the target, in the filesystem as seen by INF,
2110 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2111 by the debugger (GDB or, for remote targets, the remote stub).
2112 Return a target file descriptor, or -1 if an error occurs (and
2113 set *TARGET_ERRNO). */
2114 extern int target_fileio_open (struct inferior *inf,
2115 const char *filename, int flags,
2116 int mode, int *target_errno);
2117
2118 /* Like target_fileio_open, but print a warning message if the
2119 file is being accessed over a link that may be slow. */
2120 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2121 const char *filename,
2122 int flags,
2123 int mode,
2124 int *target_errno);
2125
2126 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2127 Return the number of bytes written, or -1 if an error occurs
2128 (and set *TARGET_ERRNO). */
2129 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2130 ULONGEST offset, int *target_errno);
2131
2132 /* Read up to LEN bytes FD on the target into READ_BUF.
2133 Return the number of bytes read, or -1 if an error occurs
2134 (and set *TARGET_ERRNO). */
2135 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2136 ULONGEST offset, int *target_errno);
2137
2138 /* Get information about the file opened as FD on the target
2139 and put it in SB. Return 0 on success, or -1 if an error
2140 occurs (and set *TARGET_ERRNO). */
2141 extern int target_fileio_fstat (int fd, struct stat *sb,
2142 int *target_errno);
2143
2144 /* Close FD on the target. Return 0, or -1 if an error occurs
2145 (and set *TARGET_ERRNO). */
2146 extern int target_fileio_close (int fd, int *target_errno);
2147
2148 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2149 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2150 for remote targets, the remote stub). Return 0, or -1 if an error
2151 occurs (and set *TARGET_ERRNO). */
2152 extern int target_fileio_unlink (struct inferior *inf,
2153 const char *filename,
2154 int *target_errno);
2155
2156 /* Read value of symbolic link FILENAME on the target, in the
2157 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2158 by the debugger (GDB or, for remote targets, the remote stub).
2159 Return a null-terminated string allocated via xmalloc, or NULL if
2160 an error occurs (and set *TARGET_ERRNO). */
2161 extern gdb::optional<std::string> target_fileio_readlink
2162 (struct inferior *inf, const char *filename, int *target_errno);
2163
2164 /* Read target file FILENAME, in the filesystem as seen by INF. If
2165 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2166 remote targets, the remote stub). The return value will be -1 if
2167 the transfer fails or is not supported; 0 if the object is empty;
2168 or the length of the object otherwise. If a positive value is
2169 returned, a sufficiently large buffer will be allocated using
2170 xmalloc and returned in *BUF_P containing the contents of the
2171 object.
2172
2173 This method should be used for objects sufficiently small to store
2174 in a single xmalloc'd buffer, when no fixed bound on the object's
2175 size is known in advance. */
2176 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2177 const char *filename,
2178 gdb_byte **buf_p);
2179
2180 /* Read target file FILENAME, in the filesystem as seen by INF. If
2181 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2182 remote targets, the remote stub). The result is NUL-terminated and
2183 returned as a string, allocated using xmalloc. If an error occurs
2184 or the transfer is unsupported, NULL is returned. Empty objects
2185 are returned as allocated but empty strings. A warning is issued
2186 if the result contains any embedded NUL bytes. */
2187 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2188 (struct inferior *inf, const char *filename);
2189
2190
2191 /* Tracepoint-related operations. */
2192
2193 #define target_trace_init() \
2194 (current_top_target ()->trace_init) ()
2195
2196 #define target_download_tracepoint(t) \
2197 (current_top_target ()->download_tracepoint) (t)
2198
2199 #define target_can_download_tracepoint() \
2200 (current_top_target ()->can_download_tracepoint) ()
2201
2202 #define target_download_trace_state_variable(tsv) \
2203 (current_top_target ()->download_trace_state_variable) (tsv)
2204
2205 #define target_enable_tracepoint(loc) \
2206 (current_top_target ()->enable_tracepoint) (loc)
2207
2208 #define target_disable_tracepoint(loc) \
2209 (current_top_target ()->disable_tracepoint) (loc)
2210
2211 #define target_trace_start() \
2212 (current_top_target ()->trace_start) ()
2213
2214 #define target_trace_set_readonly_regions() \
2215 (current_top_target ()->trace_set_readonly_regions) ()
2216
2217 #define target_get_trace_status(ts) \
2218 (current_top_target ()->get_trace_status) (ts)
2219
2220 #define target_get_tracepoint_status(tp,utp) \
2221 (current_top_target ()->get_tracepoint_status) (tp, utp)
2222
2223 #define target_trace_stop() \
2224 (current_top_target ()->trace_stop) ()
2225
2226 #define target_trace_find(type,num,addr1,addr2,tpp) \
2227 (current_top_target ()->trace_find) (\
2228 (type), (num), (addr1), (addr2), (tpp))
2229
2230 #define target_get_trace_state_variable_value(tsv,val) \
2231 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2232
2233 #define target_save_trace_data(filename) \
2234 (current_top_target ()->save_trace_data) (filename)
2235
2236 #define target_upload_tracepoints(utpp) \
2237 (current_top_target ()->upload_tracepoints) (utpp)
2238
2239 #define target_upload_trace_state_variables(utsvp) \
2240 (current_top_target ()->upload_trace_state_variables) (utsvp)
2241
2242 #define target_get_raw_trace_data(buf,offset,len) \
2243 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2244
2245 #define target_get_min_fast_tracepoint_insn_len() \
2246 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2247
2248 #define target_set_disconnected_tracing(val) \
2249 (current_top_target ()->set_disconnected_tracing) (val)
2250
2251 #define target_set_circular_trace_buffer(val) \
2252 (current_top_target ()->set_circular_trace_buffer) (val)
2253
2254 #define target_set_trace_buffer_size(val) \
2255 (current_top_target ()->set_trace_buffer_size) (val)
2256
2257 #define target_set_trace_notes(user,notes,stopnotes) \
2258 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2259
2260 #define target_get_tib_address(ptid, addr) \
2261 (current_top_target ()->get_tib_address) ((ptid), (addr))
2262
2263 #define target_set_permissions() \
2264 (current_top_target ()->set_permissions) ()
2265
2266 #define target_static_tracepoint_marker_at(addr, marker) \
2267 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2268
2269 #define target_static_tracepoint_markers_by_strid(marker_id) \
2270 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2271
2272 #define target_traceframe_info() \
2273 (current_top_target ()->traceframe_info) ()
2274
2275 #define target_use_agent(use) \
2276 (current_top_target ()->use_agent) (use)
2277
2278 #define target_can_use_agent() \
2279 (current_top_target ()->can_use_agent) ()
2280
2281 #define target_augmented_libraries_svr4_read() \
2282 (current_top_target ()->augmented_libraries_svr4_read) ()
2283
2284 /* Command logging facility. */
2285
2286 #define target_log_command(p) \
2287 (current_top_target ()->log_command) (p)
2288
2289
2290 extern int target_core_of_thread (ptid_t ptid);
2291
2292 /* See to_get_unwinder in struct target_ops. */
2293 extern const struct frame_unwind *target_get_unwinder (void);
2294
2295 /* See to_get_tailcall_unwinder in struct target_ops. */
2296 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2297
2298 /* This implements basic memory verification, reading target memory
2299 and performing the comparison here (as opposed to accelerated
2300 verification making use of the qCRC packet, for example). */
2301
2302 extern int simple_verify_memory (struct target_ops* ops,
2303 const gdb_byte *data,
2304 CORE_ADDR memaddr, ULONGEST size);
2305
2306 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2307 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2308 if there's a mismatch, and -1 if an error is encountered while
2309 reading memory. Throws an error if the functionality is found not
2310 to be supported by the current target. */
2311 int target_verify_memory (const gdb_byte *data,
2312 CORE_ADDR memaddr, ULONGEST size);
2313
2314 /* Routines for maintenance of the target structures...
2315
2316 add_target: Add a target to the list of all possible targets.
2317 This only makes sense for targets that should be activated using
2318 the "target TARGET_NAME ..." command.
2319
2320 push_target: Make this target the top of the stack of currently used
2321 targets, within its particular stratum of the stack. Result
2322 is 0 if now atop the stack, nonzero if not on top (maybe
2323 should warn user).
2324
2325 unpush_target: Remove this from the stack of currently used targets,
2326 no matter where it is on the list. Returns 0 if no
2327 change, 1 if removed from stack. */
2328
2329 /* Type of callback called when the user activates a target with
2330 "target TARGET_NAME". The callback routine takes the rest of the
2331 parameters from the command, and (if successful) pushes a new
2332 target onto the stack. */
2333 typedef void target_open_ftype (const char *args, int from_tty);
2334
2335 /* Add the target described by INFO to the list of possible targets
2336 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2337 as the command's completer if not NULL. */
2338
2339 extern void add_target (const target_info &info,
2340 target_open_ftype *func,
2341 completer_ftype *completer = NULL);
2342
2343 /* Adds a command ALIAS for the target described by INFO and marks it
2344 deprecated. This is useful for maintaining backwards compatibility
2345 when renaming targets. */
2346
2347 extern void add_deprecated_target_alias (const target_info &info,
2348 const char *alias);
2349
2350 extern void push_target (struct target_ops *);
2351
2352 /* An overload that deletes the target on failure. */
2353 extern void push_target (target_ops_up &&);
2354
2355 extern int unpush_target (struct target_ops *);
2356
2357 extern void target_pre_inferior (int);
2358
2359 extern void target_preopen (int);
2360
2361 /* Does whatever cleanup is required to get rid of all pushed targets. */
2362 extern void pop_all_targets (void);
2363
2364 /* Like pop_all_targets, but pops only targets whose stratum is at or
2365 above STRATUM. */
2366 extern void pop_all_targets_at_and_above (enum strata stratum);
2367
2368 /* Like pop_all_targets, but pops only targets whose stratum is
2369 strictly above ABOVE_STRATUM. */
2370 extern void pop_all_targets_above (enum strata above_stratum);
2371
2372 extern int target_is_pushed (struct target_ops *t);
2373
2374 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2375 CORE_ADDR offset);
2376
2377 /* Struct target_section maps address ranges to file sections. It is
2378 mostly used with BFD files, but can be used without (e.g. for handling
2379 raw disks, or files not in formats handled by BFD). */
2380
2381 struct target_section
2382 {
2383 CORE_ADDR addr; /* Lowest address in section */
2384 CORE_ADDR endaddr; /* 1+highest address in section */
2385
2386 struct bfd_section *the_bfd_section;
2387
2388 /* The "owner" of the section.
2389 It can be any unique value. It is set by add_target_sections
2390 and used by remove_target_sections.
2391 For example, for executables it is a pointer to exec_bfd and
2392 for shlibs it is the so_list pointer. */
2393 void *owner;
2394 };
2395
2396 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2397
2398 struct target_section_table
2399 {
2400 struct target_section *sections;
2401 struct target_section *sections_end;
2402 };
2403
2404 /* Return the "section" containing the specified address. */
2405 struct target_section *target_section_by_addr (struct target_ops *target,
2406 CORE_ADDR addr);
2407
2408 /* Return the target section table this target (or the targets
2409 beneath) currently manipulate. */
2410
2411 extern struct target_section_table *target_get_section_table
2412 (struct target_ops *target);
2413
2414 /* From mem-break.c */
2415
2416 extern int memory_remove_breakpoint (struct target_ops *,
2417 struct gdbarch *, struct bp_target_info *,
2418 enum remove_bp_reason);
2419
2420 extern int memory_insert_breakpoint (struct target_ops *,
2421 struct gdbarch *, struct bp_target_info *);
2422
2423 /* Convenience template use to add memory breakpoints support to a
2424 target. */
2425
2426 template <typename BaseTarget>
2427 struct memory_breakpoint_target : public BaseTarget
2428 {
2429 int insert_breakpoint (struct gdbarch *gdbarch,
2430 struct bp_target_info *bp_tgt) override
2431 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2432
2433 int remove_breakpoint (struct gdbarch *gdbarch,
2434 struct bp_target_info *bp_tgt,
2435 enum remove_bp_reason reason) override
2436 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2437 };
2438
2439 /* Check whether the memory at the breakpoint's placed address still
2440 contains the expected breakpoint instruction. */
2441
2442 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2443 struct bp_target_info *bp_tgt);
2444
2445 extern int default_memory_remove_breakpoint (struct gdbarch *,
2446 struct bp_target_info *);
2447
2448 extern int default_memory_insert_breakpoint (struct gdbarch *,
2449 struct bp_target_info *);
2450
2451
2452 /* From target.c */
2453
2454 extern void initialize_targets (void);
2455
2456 extern void noprocess (void) ATTRIBUTE_NORETURN;
2457
2458 extern void target_require_runnable (void);
2459
2460 /* Find the target at STRATUM. If no target is at that stratum,
2461 return NULL. */
2462
2463 struct target_ops *find_target_at (enum strata stratum);
2464
2465 /* Read OS data object of type TYPE from the target, and return it in XML
2466 format. The return value follows the same rules as target_read_stralloc. */
2467
2468 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2469
2470 /* Stuff that should be shared among the various remote targets. */
2471
2472 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2473 information (higher values, more information). */
2474 extern int remote_debug;
2475
2476 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2477 extern int baud_rate;
2478
2479 /* Parity for serial port */
2480 extern int serial_parity;
2481
2482 /* Timeout limit for response from target. */
2483 extern int remote_timeout;
2484
2485 \f
2486
2487 /* Set the show memory breakpoints mode to show, and return a
2488 scoped_restore to restore it back to the current value. */
2489 extern scoped_restore_tmpl<int>
2490 make_scoped_restore_show_memory_breakpoints (int show);
2491
2492 extern bool may_write_registers;
2493 extern bool may_write_memory;
2494 extern bool may_insert_breakpoints;
2495 extern bool may_insert_tracepoints;
2496 extern bool may_insert_fast_tracepoints;
2497 extern bool may_stop;
2498
2499 extern void update_target_permissions (void);
2500
2501 \f
2502 /* Imported from machine dependent code. */
2503
2504 /* See to_enable_btrace in struct target_ops. */
2505 extern struct btrace_target_info *
2506 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2507
2508 /* See to_disable_btrace in struct target_ops. */
2509 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2510
2511 /* See to_teardown_btrace in struct target_ops. */
2512 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2513
2514 /* See to_read_btrace in struct target_ops. */
2515 extern enum btrace_error target_read_btrace (struct btrace_data *,
2516 struct btrace_target_info *,
2517 enum btrace_read_type);
2518
2519 /* See to_btrace_conf in struct target_ops. */
2520 extern const struct btrace_config *
2521 target_btrace_conf (const struct btrace_target_info *);
2522
2523 /* See to_stop_recording in struct target_ops. */
2524 extern void target_stop_recording (void);
2525
2526 /* See to_save_record in struct target_ops. */
2527 extern void target_save_record (const char *filename);
2528
2529 /* Query if the target supports deleting the execution log. */
2530 extern int target_supports_delete_record (void);
2531
2532 /* See to_delete_record in struct target_ops. */
2533 extern void target_delete_record (void);
2534
2535 /* See to_record_method. */
2536 extern enum record_method target_record_method (ptid_t ptid);
2537
2538 /* See to_record_is_replaying in struct target_ops. */
2539 extern int target_record_is_replaying (ptid_t ptid);
2540
2541 /* See to_record_will_replay in struct target_ops. */
2542 extern int target_record_will_replay (ptid_t ptid, int dir);
2543
2544 /* See to_record_stop_replaying in struct target_ops. */
2545 extern void target_record_stop_replaying (void);
2546
2547 /* See to_goto_record_begin in struct target_ops. */
2548 extern void target_goto_record_begin (void);
2549
2550 /* See to_goto_record_end in struct target_ops. */
2551 extern void target_goto_record_end (void);
2552
2553 /* See to_goto_record in struct target_ops. */
2554 extern void target_goto_record (ULONGEST insn);
2555
2556 /* See to_insn_history. */
2557 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2558
2559 /* See to_insn_history_from. */
2560 extern void target_insn_history_from (ULONGEST from, int size,
2561 gdb_disassembly_flags flags);
2562
2563 /* See to_insn_history_range. */
2564 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2565 gdb_disassembly_flags flags);
2566
2567 /* See to_call_history. */
2568 extern void target_call_history (int size, record_print_flags flags);
2569
2570 /* See to_call_history_from. */
2571 extern void target_call_history_from (ULONGEST begin, int size,
2572 record_print_flags flags);
2573
2574 /* See to_call_history_range. */
2575 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2576 record_print_flags flags);
2577
2578 /* See to_prepare_to_generate_core. */
2579 extern void target_prepare_to_generate_core (void);
2580
2581 /* See to_done_generating_core. */
2582 extern void target_done_generating_core (void);
2583
2584 #endif /* !defined (TARGET_H) */
This page took 0.086031 seconds and 4 git commands to generate.