convert to_get_thread_local_address to use target delegation
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* The piece of the object requested is unavailable. */
217 TARGET_XFER_UNAVAILABLE = 2,
218
219 /* Generic I/O error. Note that it's important that this is '-1',
220 as we still have target_xfer-related code returning hardcoded
221 '-1' on error. */
222 TARGET_XFER_E_IO = -1,
223
224 /* Keep list in sync with target_xfer_status_to_string. */
225 };
226
227 /* Return the string form of STATUS. */
228
229 extern const char *
230 target_xfer_status_to_string (enum target_xfer_status status);
231
232 /* Enumeration of the kinds of traceframe searches that a target may
233 be able to perform. */
234
235 enum trace_find_type
236 {
237 tfind_number,
238 tfind_pc,
239 tfind_tp,
240 tfind_range,
241 tfind_outside,
242 };
243
244 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
245 DEF_VEC_P(static_tracepoint_marker_p);
246
247 typedef enum target_xfer_status
248 target_xfer_partial_ftype (struct target_ops *ops,
249 enum target_object object,
250 const char *annex,
251 gdb_byte *readbuf,
252 const gdb_byte *writebuf,
253 ULONGEST offset,
254 ULONGEST len,
255 ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
258 OBJECT. The OFFSET, for a seekable object, specifies the
259 starting point. The ANNEX can be used to provide additional
260 data-specific information to the target.
261
262 Return the number of bytes actually transfered, or a negative error
263 code (an 'enum target_xfer_error' value) if the transfer is not
264 supported or otherwise fails. Return of a positive value less than
265 LEN indicates that no further transfer is possible. Unlike the raw
266 to_xfer_partial interface, callers of these functions do not need
267 to retry partial transfers. */
268
269 extern LONGEST target_read (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte *buf,
272 ULONGEST offset, LONGEST len);
273
274 struct memory_read_result
275 {
276 /* First address that was read. */
277 ULONGEST begin;
278 /* Past-the-end address. */
279 ULONGEST end;
280 /* The data. */
281 gdb_byte *data;
282 };
283 typedef struct memory_read_result memory_read_result_s;
284 DEF_VEC_O(memory_read_result_s);
285
286 extern void free_memory_read_result_vector (void *);
287
288 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
289 ULONGEST offset,
290 LONGEST len);
291
292 extern LONGEST target_write (struct target_ops *ops,
293 enum target_object object,
294 const char *annex, const gdb_byte *buf,
295 ULONGEST offset, LONGEST len);
296
297 /* Similar to target_write, except that it also calls PROGRESS with
298 the number of bytes written and the opaque BATON after every
299 successful partial write (and before the first write). This is
300 useful for progress reporting and user interaction while writing
301 data. To abort the transfer, the progress callback can throw an
302 exception. */
303
304 LONGEST target_write_with_progress (struct target_ops *ops,
305 enum target_object object,
306 const char *annex, const gdb_byte *buf,
307 ULONGEST offset, LONGEST len,
308 void (*progress) (ULONGEST, void *),
309 void *baton);
310
311 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
312 be read using OPS. The return value will be -1 if the transfer
313 fails or is not supported; 0 if the object is empty; or the length
314 of the object otherwise. If a positive value is returned, a
315 sufficiently large buffer will be allocated using xmalloc and
316 returned in *BUF_P containing the contents of the object.
317
318 This method should be used for objects sufficiently small to store
319 in a single xmalloc'd buffer, when no fixed bound on the object's
320 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
321 through this function. */
322
323 extern LONGEST target_read_alloc (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, gdb_byte **buf_p);
326
327 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
328 returned as a string, allocated using xmalloc. If an error occurs
329 or the transfer is unsupported, NULL is returned. Empty objects
330 are returned as allocated but empty strings. A warning is issued
331 if the result contains any embedded NUL bytes. */
332
333 extern char *target_read_stralloc (struct target_ops *ops,
334 enum target_object object,
335 const char *annex);
336
337 /* See target_ops->to_xfer_partial. */
338 extern target_xfer_partial_ftype target_xfer_partial;
339
340 /* Wrappers to target read/write that perform memory transfers. They
341 throw an error if the memory transfer fails.
342
343 NOTE: cagney/2003-10-23: The naming schema is lifted from
344 "frame.h". The parameter order is lifted from get_frame_memory,
345 which in turn lifted it from read_memory. */
346
347 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
348 gdb_byte *buf, LONGEST len);
349 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
350 CORE_ADDR addr, int len,
351 enum bfd_endian byte_order);
352 \f
353 struct thread_info; /* fwd decl for parameter list below: */
354
355 /* The type of the callback to the to_async method. */
356
357 typedef void async_callback_ftype (enum inferior_event_type event_type,
358 void *context);
359
360 /* These defines are used to mark target_ops methods. The script
361 make-target-delegates scans these and auto-generates the base
362 method implementations. There are four macros that can be used:
363
364 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
365 does nothing. This is only valid if the method return type is
366 'void'.
367
368 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
369 'tcomplain ()'. The base method simply makes this call, which is
370 assumed not to return.
371
372 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
373 base method returns this expression's value.
374
375 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
376 make-target-delegates does not generate a base method in this case,
377 but instead uses the argument function as the base method. */
378
379 #define TARGET_DEFAULT_IGNORE()
380 #define TARGET_DEFAULT_NORETURN(ARG)
381 #define TARGET_DEFAULT_RETURN(ARG)
382 #define TARGET_DEFAULT_FUNC(ARG)
383
384 struct target_ops
385 {
386 struct target_ops *beneath; /* To the target under this one. */
387 char *to_shortname; /* Name this target type */
388 char *to_longname; /* Name for printing */
389 char *to_doc; /* Documentation. Does not include trailing
390 newline, and starts with a one-line descrip-
391 tion (probably similar to to_longname). */
392 /* Per-target scratch pad. */
393 void *to_data;
394 /* The open routine takes the rest of the parameters from the
395 command, and (if successful) pushes a new target onto the
396 stack. Targets should supply this routine, if only to provide
397 an error message. */
398 void (*to_open) (char *, int);
399 /* Old targets with a static target vector provide "to_close".
400 New re-entrant targets provide "to_xclose" and that is expected
401 to xfree everything (including the "struct target_ops"). */
402 void (*to_xclose) (struct target_ops *targ);
403 void (*to_close) (struct target_ops *);
404 /* Attaches to a process on the target side. Arguments are as
405 passed to the `attach' command by the user. This routine can
406 be called when the target is not on the target-stack, if the
407 target_can_run routine returns 1; in that case, it must push
408 itself onto the stack. Upon exit, the target should be ready
409 for normal operations, and should be ready to deliver the
410 status of the process immediately (without waiting) to an
411 upcoming target_wait call. */
412 void (*to_attach) (struct target_ops *ops, const char *, int);
413 void (*to_post_attach) (struct target_ops *, int)
414 TARGET_DEFAULT_IGNORE ();
415 void (*to_detach) (struct target_ops *ops, const char *, int)
416 TARGET_DEFAULT_IGNORE ();
417 void (*to_disconnect) (struct target_ops *, const char *, int)
418 TARGET_DEFAULT_NORETURN (tcomplain ());
419 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 ptid_t (*to_wait) (struct target_ops *,
422 ptid_t, struct target_waitstatus *, int)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
425 TARGET_DEFAULT_IGNORE ();
426 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
427 TARGET_DEFAULT_NORETURN (noprocess ());
428 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
429 TARGET_DEFAULT_NORETURN (noprocess ());
430
431 void (*to_files_info) (struct target_ops *)
432 TARGET_DEFAULT_IGNORE ();
433 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
434 struct bp_target_info *)
435 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
436 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
437 struct bp_target_info *)
438 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
439 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
440 TARGET_DEFAULT_RETURN (0);
441 int (*to_ranged_break_num_registers) (struct target_ops *)
442 TARGET_DEFAULT_RETURN (-1);
443 int (*to_insert_hw_breakpoint) (struct target_ops *,
444 struct gdbarch *, struct bp_target_info *)
445 TARGET_DEFAULT_RETURN (-1);
446 int (*to_remove_hw_breakpoint) (struct target_ops *,
447 struct gdbarch *, struct bp_target_info *)
448 TARGET_DEFAULT_RETURN (-1);
449
450 /* Documentation of what the two routines below are expected to do is
451 provided with the corresponding target_* macros. */
452 int (*to_remove_watchpoint) (struct target_ops *,
453 CORE_ADDR, int, int, struct expression *)
454 TARGET_DEFAULT_RETURN (-1);
455 int (*to_insert_watchpoint) (struct target_ops *,
456 CORE_ADDR, int, int, struct expression *)
457 TARGET_DEFAULT_RETURN (-1);
458
459 int (*to_insert_mask_watchpoint) (struct target_ops *,
460 CORE_ADDR, CORE_ADDR, int)
461 TARGET_DEFAULT_RETURN (1);
462 int (*to_remove_mask_watchpoint) (struct target_ops *,
463 CORE_ADDR, CORE_ADDR, int)
464 TARGET_DEFAULT_RETURN (1);
465 int (*to_stopped_by_watchpoint) (struct target_ops *)
466 TARGET_DEFAULT_RETURN (0);
467 int to_have_steppable_watchpoint;
468 int to_have_continuable_watchpoint;
469 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
470 TARGET_DEFAULT_RETURN (0);
471 int (*to_watchpoint_addr_within_range) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int)
473 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
474
475 /* Documentation of this routine is provided with the corresponding
476 target_* macro. */
477 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
478 CORE_ADDR, int)
479 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
480
481 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
482 CORE_ADDR, int, int,
483 struct expression *)
484 TARGET_DEFAULT_RETURN (0);
485 int (*to_masked_watch_num_registers) (struct target_ops *,
486 CORE_ADDR, CORE_ADDR)
487 TARGET_DEFAULT_RETURN (-1);
488 void (*to_terminal_init) (struct target_ops *)
489 TARGET_DEFAULT_IGNORE ();
490 void (*to_terminal_inferior) (struct target_ops *)
491 TARGET_DEFAULT_IGNORE ();
492 void (*to_terminal_ours_for_output) (struct target_ops *)
493 TARGET_DEFAULT_IGNORE ();
494 void (*to_terminal_ours) (struct target_ops *)
495 TARGET_DEFAULT_IGNORE ();
496 void (*to_terminal_save_ours) (struct target_ops *)
497 TARGET_DEFAULT_IGNORE ();
498 void (*to_terminal_info) (struct target_ops *, const char *, int)
499 TARGET_DEFAULT_FUNC (default_terminal_info);
500 void (*to_kill) (struct target_ops *)
501 TARGET_DEFAULT_NORETURN (noprocess ());
502 void (*to_load) (struct target_ops *, const char *, int)
503 TARGET_DEFAULT_NORETURN (tcomplain ());
504 /* Start an inferior process and set inferior_ptid to its pid.
505 EXEC_FILE is the file to run.
506 ALLARGS is a string containing the arguments to the program.
507 ENV is the environment vector to pass. Errors reported with error().
508 On VxWorks and various standalone systems, we ignore exec_file. */
509 void (*to_create_inferior) (struct target_ops *,
510 char *, char *, char **, int);
511 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
512 TARGET_DEFAULT_IGNORE ();
513 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
514 TARGET_DEFAULT_RETURN (1);
515 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
516 TARGET_DEFAULT_RETURN (1);
517 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
518 TARGET_DEFAULT_RETURN (1);
519 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
520 TARGET_DEFAULT_RETURN (1);
521 int (*to_follow_fork) (struct target_ops *, int, int)
522 TARGET_DEFAULT_FUNC (default_follow_fork);
523 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
524 TARGET_DEFAULT_RETURN (1);
525 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
526 TARGET_DEFAULT_RETURN (1);
527 int (*to_set_syscall_catchpoint) (struct target_ops *,
528 int, int, int, int, int *)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_has_exited) (struct target_ops *, int, int, int *)
531 TARGET_DEFAULT_RETURN (0);
532 void (*to_mourn_inferior) (struct target_ops *)
533 TARGET_DEFAULT_FUNC (default_mourn_inferior);
534 /* Note that to_can_run is special and can be invoked on an
535 unpushed target. Targets defining this method must also define
536 to_can_async_p and to_supports_non_stop. */
537 int (*to_can_run) (struct target_ops *)
538 TARGET_DEFAULT_RETURN (0);
539
540 /* Documentation of this routine is provided with the corresponding
541 target_* macro. */
542 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
543 TARGET_DEFAULT_IGNORE ();
544
545 /* Documentation of this routine is provided with the
546 corresponding target_* function. */
547 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
548 TARGET_DEFAULT_IGNORE ();
549
550 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
551 TARGET_DEFAULT_RETURN (0);
552 void (*to_find_new_threads) (struct target_ops *)
553 TARGET_DEFAULT_IGNORE ();
554 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
555 TARGET_DEFAULT_FUNC (default_pid_to_str);
556 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (NULL);
558 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
559 TARGET_DEFAULT_RETURN (NULL);
560 void (*to_stop) (struct target_ops *, ptid_t)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_rcmd) (struct target_ops *,
563 const char *command, struct ui_file *output)
564 TARGET_DEFAULT_FUNC (default_rcmd);
565 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
566 TARGET_DEFAULT_RETURN (NULL);
567 void (*to_log_command) (struct target_ops *, const char *)
568 TARGET_DEFAULT_IGNORE ();
569 struct target_section_table *(*to_get_section_table) (struct target_ops *)
570 TARGET_DEFAULT_RETURN (NULL);
571 enum strata to_stratum;
572 int (*to_has_all_memory) (struct target_ops *);
573 int (*to_has_memory) (struct target_ops *);
574 int (*to_has_stack) (struct target_ops *);
575 int (*to_has_registers) (struct target_ops *);
576 int (*to_has_execution) (struct target_ops *, ptid_t);
577 int to_has_thread_control; /* control thread execution */
578 int to_attach_no_wait;
579 /* This method must be implemented in some situations. See the
580 comment on 'to_can_run'. */
581 int (*to_can_async_p) (struct target_ops *)
582 TARGET_DEFAULT_RETURN (0);
583 int (*to_is_async_p) (struct target_ops *)
584 TARGET_DEFAULT_RETURN (0);
585 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
586 TARGET_DEFAULT_NORETURN (tcomplain ());
587 /* This method must be implemented in some situations. See the
588 comment on 'to_can_run'. */
589 int (*to_supports_non_stop) (struct target_ops *)
590 TARGET_DEFAULT_RETURN (0);
591 /* find_memory_regions support method for gcore */
592 int (*to_find_memory_regions) (struct target_ops *,
593 find_memory_region_ftype func, void *data)
594 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
595 /* make_corefile_notes support method for gcore */
596 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
597 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
598 /* get_bookmark support method for bookmarks */
599 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
600 TARGET_DEFAULT_NORETURN (tcomplain ());
601 /* goto_bookmark support method for bookmarks */
602 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
603 TARGET_DEFAULT_NORETURN (tcomplain ());
604 /* Return the thread-local address at OFFSET in the
605 thread-local storage for the thread PTID and the shared library
606 or executable file given by OBJFILE. If that block of
607 thread-local storage hasn't been allocated yet, this function
608 may return an error. LOAD_MODULE_ADDR may be zero for statically
609 linked multithreaded inferiors. */
610 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
611 ptid_t ptid,
612 CORE_ADDR load_module_addr,
613 CORE_ADDR offset)
614 TARGET_DEFAULT_NORETURN (generic_tls_error ());
615
616 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
617 OBJECT. The OFFSET, for a seekable object, specifies the
618 starting point. The ANNEX can be used to provide additional
619 data-specific information to the target.
620
621 Return the transferred status, error or OK (an
622 'enum target_xfer_status' value). Save the number of bytes
623 actually transferred in *XFERED_LEN if transfer is successful
624 (TARGET_XFER_OK) or the number unavailable bytes if the requested
625 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
626 smaller than LEN does not indicate the end of the object, only
627 the end of the transfer; higher level code should continue
628 transferring if desired. This is handled in target.c.
629
630 The interface does not support a "retry" mechanism. Instead it
631 assumes that at least one byte will be transfered on each
632 successful call.
633
634 NOTE: cagney/2003-10-17: The current interface can lead to
635 fragmented transfers. Lower target levels should not implement
636 hacks, such as enlarging the transfer, in an attempt to
637 compensate for this. Instead, the target stack should be
638 extended so that it implements supply/collect methods and a
639 look-aside object cache. With that available, the lowest
640 target can safely and freely "push" data up the stack.
641
642 See target_read and target_write for more information. One,
643 and only one, of readbuf or writebuf must be non-NULL. */
644
645 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
646 enum target_object object,
647 const char *annex,
648 gdb_byte *readbuf,
649 const gdb_byte *writebuf,
650 ULONGEST offset, ULONGEST len,
651 ULONGEST *xfered_len)
652 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
653
654 /* Returns the memory map for the target. A return value of NULL
655 means that no memory map is available. If a memory address
656 does not fall within any returned regions, it's assumed to be
657 RAM. The returned memory regions should not overlap.
658
659 The order of regions does not matter; target_memory_map will
660 sort regions by starting address. For that reason, this
661 function should not be called directly except via
662 target_memory_map.
663
664 This method should not cache data; if the memory map could
665 change unexpectedly, it should be invalidated, and higher
666 layers will re-fetch it. */
667 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
668 TARGET_DEFAULT_RETURN (NULL);
669
670 /* Erases the region of flash memory starting at ADDRESS, of
671 length LENGTH.
672
673 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
674 on flash block boundaries, as reported by 'to_memory_map'. */
675 void (*to_flash_erase) (struct target_ops *,
676 ULONGEST address, LONGEST length)
677 TARGET_DEFAULT_NORETURN (tcomplain ());
678
679 /* Finishes a flash memory write sequence. After this operation
680 all flash memory should be available for writing and the result
681 of reading from areas written by 'to_flash_write' should be
682 equal to what was written. */
683 void (*to_flash_done) (struct target_ops *)
684 TARGET_DEFAULT_NORETURN (tcomplain ());
685
686 /* Describe the architecture-specific features of this target. If
687 OPS doesn't have a description, this should delegate to the
688 "beneath" target. Returns the description found, or NULL if no
689 description was available. */
690 const struct target_desc *(*to_read_description) (struct target_ops *ops)
691 TARGET_DEFAULT_RETURN (NULL);
692
693 /* Build the PTID of the thread on which a given task is running,
694 based on LWP and THREAD. These values are extracted from the
695 task Private_Data section of the Ada Task Control Block, and
696 their interpretation depends on the target. */
697 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
698 long lwp, long thread)
699 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
700
701 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
702 Return 0 if *READPTR is already at the end of the buffer.
703 Return -1 if there is insufficient buffer for a whole entry.
704 Return 1 if an entry was read into *TYPEP and *VALP. */
705 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
706 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
707 TARGET_DEFAULT_FUNC (default_auxv_parse);
708
709 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
710 sequence of bytes in PATTERN with length PATTERN_LEN.
711
712 The result is 1 if found, 0 if not found, and -1 if there was an error
713 requiring halting of the search (e.g. memory read error).
714 If the pattern is found the address is recorded in FOUND_ADDRP. */
715 int (*to_search_memory) (struct target_ops *ops,
716 CORE_ADDR start_addr, ULONGEST search_space_len,
717 const gdb_byte *pattern, ULONGEST pattern_len,
718 CORE_ADDR *found_addrp)
719 TARGET_DEFAULT_FUNC (default_search_memory);
720
721 /* Can target execute in reverse? */
722 int (*to_can_execute_reverse) (struct target_ops *)
723 TARGET_DEFAULT_RETURN (0);
724
725 /* The direction the target is currently executing. Must be
726 implemented on targets that support reverse execution and async
727 mode. The default simply returns forward execution. */
728 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
729 TARGET_DEFAULT_FUNC (default_execution_direction);
730
731 /* Does this target support debugging multiple processes
732 simultaneously? */
733 int (*to_supports_multi_process) (struct target_ops *)
734 TARGET_DEFAULT_RETURN (0);
735
736 /* Does this target support enabling and disabling tracepoints while a trace
737 experiment is running? */
738 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
739 TARGET_DEFAULT_RETURN (0);
740
741 /* Does this target support disabling address space randomization? */
742 int (*to_supports_disable_randomization) (struct target_ops *);
743
744 /* Does this target support the tracenz bytecode for string collection? */
745 int (*to_supports_string_tracing) (struct target_ops *)
746 TARGET_DEFAULT_RETURN (0);
747
748 /* Does this target support evaluation of breakpoint conditions on its
749 end? */
750 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
751 TARGET_DEFAULT_RETURN (0);
752
753 /* Does this target support evaluation of breakpoint commands on its
754 end? */
755 int (*to_can_run_breakpoint_commands) (struct target_ops *)
756 TARGET_DEFAULT_RETURN (0);
757
758 /* Determine current architecture of thread PTID.
759
760 The target is supposed to determine the architecture of the code where
761 the target is currently stopped at (on Cell, if a target is in spu_run,
762 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
763 This is architecture used to perform decr_pc_after_break adjustment,
764 and also determines the frame architecture of the innermost frame.
765 ptrace operations need to operate according to target_gdbarch ().
766
767 The default implementation always returns target_gdbarch (). */
768 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
769 TARGET_DEFAULT_FUNC (default_thread_architecture);
770
771 /* Determine current address space of thread PTID.
772
773 The default implementation always returns the inferior's
774 address space. */
775 struct address_space *(*to_thread_address_space) (struct target_ops *,
776 ptid_t)
777 TARGET_DEFAULT_FUNC (default_thread_address_space);
778
779 /* Target file operations. */
780
781 /* Open FILENAME on the target, using FLAGS and MODE. Return a
782 target file descriptor, or -1 if an error occurs (and set
783 *TARGET_ERRNO). */
784 int (*to_fileio_open) (struct target_ops *,
785 const char *filename, int flags, int mode,
786 int *target_errno);
787
788 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
789 Return the number of bytes written, or -1 if an error occurs
790 (and set *TARGET_ERRNO). */
791 int (*to_fileio_pwrite) (struct target_ops *,
792 int fd, const gdb_byte *write_buf, int len,
793 ULONGEST offset, int *target_errno);
794
795 /* Read up to LEN bytes FD on the target into READ_BUF.
796 Return the number of bytes read, or -1 if an error occurs
797 (and set *TARGET_ERRNO). */
798 int (*to_fileio_pread) (struct target_ops *,
799 int fd, gdb_byte *read_buf, int len,
800 ULONGEST offset, int *target_errno);
801
802 /* Close FD on the target. Return 0, or -1 if an error occurs
803 (and set *TARGET_ERRNO). */
804 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
805
806 /* Unlink FILENAME on the target. Return 0, or -1 if an error
807 occurs (and set *TARGET_ERRNO). */
808 int (*to_fileio_unlink) (struct target_ops *,
809 const char *filename, int *target_errno);
810
811 /* Read value of symbolic link FILENAME on the target. Return a
812 null-terminated string allocated via xmalloc, or NULL if an error
813 occurs (and set *TARGET_ERRNO). */
814 char *(*to_fileio_readlink) (struct target_ops *,
815 const char *filename, int *target_errno);
816
817
818 /* Implement the "info proc" command. */
819 void (*to_info_proc) (struct target_ops *, const char *,
820 enum info_proc_what);
821
822 /* Tracepoint-related operations. */
823
824 /* Prepare the target for a tracing run. */
825 void (*to_trace_init) (struct target_ops *)
826 TARGET_DEFAULT_NORETURN (tcomplain ());
827
828 /* Send full details of a tracepoint location to the target. */
829 void (*to_download_tracepoint) (struct target_ops *,
830 struct bp_location *location)
831 TARGET_DEFAULT_NORETURN (tcomplain ());
832
833 /* Is the target able to download tracepoint locations in current
834 state? */
835 int (*to_can_download_tracepoint) (struct target_ops *)
836 TARGET_DEFAULT_RETURN (0);
837
838 /* Send full details of a trace state variable to the target. */
839 void (*to_download_trace_state_variable) (struct target_ops *,
840 struct trace_state_variable *tsv)
841 TARGET_DEFAULT_NORETURN (tcomplain ());
842
843 /* Enable a tracepoint on the target. */
844 void (*to_enable_tracepoint) (struct target_ops *,
845 struct bp_location *location)
846 TARGET_DEFAULT_NORETURN (tcomplain ());
847
848 /* Disable a tracepoint on the target. */
849 void (*to_disable_tracepoint) (struct target_ops *,
850 struct bp_location *location)
851 TARGET_DEFAULT_NORETURN (tcomplain ());
852
853 /* Inform the target info of memory regions that are readonly
854 (such as text sections), and so it should return data from
855 those rather than look in the trace buffer. */
856 void (*to_trace_set_readonly_regions) (struct target_ops *)
857 TARGET_DEFAULT_NORETURN (tcomplain ());
858
859 /* Start a trace run. */
860 void (*to_trace_start) (struct target_ops *)
861 TARGET_DEFAULT_NORETURN (tcomplain ());
862
863 /* Get the current status of a tracing run. */
864 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
865 TARGET_DEFAULT_RETURN (-1);
866
867 void (*to_get_tracepoint_status) (struct target_ops *,
868 struct breakpoint *tp,
869 struct uploaded_tp *utp)
870 TARGET_DEFAULT_NORETURN (tcomplain ());
871
872 /* Stop a trace run. */
873 void (*to_trace_stop) (struct target_ops *)
874 TARGET_DEFAULT_NORETURN (tcomplain ());
875
876 /* Ask the target to find a trace frame of the given type TYPE,
877 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
878 number of the trace frame, and also the tracepoint number at
879 TPP. If no trace frame matches, return -1. May throw if the
880 operation fails. */
881 int (*to_trace_find) (struct target_ops *,
882 enum trace_find_type type, int num,
883 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
884 TARGET_DEFAULT_RETURN (-1);
885
886 /* Get the value of the trace state variable number TSV, returning
887 1 if the value is known and writing the value itself into the
888 location pointed to by VAL, else returning 0. */
889 int (*to_get_trace_state_variable_value) (struct target_ops *,
890 int tsv, LONGEST *val)
891 TARGET_DEFAULT_RETURN (0);
892
893 int (*to_save_trace_data) (struct target_ops *, const char *filename)
894 TARGET_DEFAULT_NORETURN (tcomplain ());
895
896 int (*to_upload_tracepoints) (struct target_ops *,
897 struct uploaded_tp **utpp)
898 TARGET_DEFAULT_RETURN (0);
899
900 int (*to_upload_trace_state_variables) (struct target_ops *,
901 struct uploaded_tsv **utsvp)
902 TARGET_DEFAULT_RETURN (0);
903
904 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
905 ULONGEST offset, LONGEST len)
906 TARGET_DEFAULT_NORETURN (tcomplain ());
907
908 /* Get the minimum length of instruction on which a fast tracepoint
909 may be set on the target. If this operation is unsupported,
910 return -1. If for some reason the minimum length cannot be
911 determined, return 0. */
912 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
913 TARGET_DEFAULT_RETURN (-1);
914
915 /* Set the target's tracing behavior in response to unexpected
916 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
917 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
918 TARGET_DEFAULT_IGNORE ();
919 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
920 TARGET_DEFAULT_IGNORE ();
921 /* Set the size of trace buffer in the target. */
922 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
923 TARGET_DEFAULT_IGNORE ();
924
925 /* Add/change textual notes about the trace run, returning 1 if
926 successful, 0 otherwise. */
927 int (*to_set_trace_notes) (struct target_ops *,
928 const char *user, const char *notes,
929 const char *stopnotes)
930 TARGET_DEFAULT_RETURN (0);
931
932 /* Return the processor core that thread PTID was last seen on.
933 This information is updated only when:
934 - update_thread_list is called
935 - thread stops
936 If the core cannot be determined -- either for the specified
937 thread, or right now, or in this debug session, or for this
938 target -- return -1. */
939 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
940 TARGET_DEFAULT_RETURN (-1);
941
942 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
943 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
944 a match, 0 if there's a mismatch, and -1 if an error is
945 encountered while reading memory. */
946 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
947 CORE_ADDR memaddr, ULONGEST size)
948 TARGET_DEFAULT_FUNC (default_verify_memory);
949
950 /* Return the address of the start of the Thread Information Block
951 a Windows OS specific feature. */
952 int (*to_get_tib_address) (struct target_ops *,
953 ptid_t ptid, CORE_ADDR *addr)
954 TARGET_DEFAULT_NORETURN (tcomplain ());
955
956 /* Send the new settings of write permission variables. */
957 void (*to_set_permissions) (struct target_ops *)
958 TARGET_DEFAULT_IGNORE ();
959
960 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
961 with its details. Return 1 on success, 0 on failure. */
962 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
963 struct static_tracepoint_marker *marker)
964 TARGET_DEFAULT_RETURN (0);
965
966 /* Return a vector of all tracepoints markers string id ID, or all
967 markers if ID is NULL. */
968 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
969 TARGET_DEFAULT_NORETURN (tcomplain ());
970
971 /* Return a traceframe info object describing the current
972 traceframe's contents. This method should not cache data;
973 higher layers take care of caching, invalidating, and
974 re-fetching when necessary. */
975 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Ask the target to use or not to use agent according to USE. Return 1
979 successful, 0 otherwise. */
980 int (*to_use_agent) (struct target_ops *, int use)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Is the target able to use agent in current state? */
984 int (*to_can_use_agent) (struct target_ops *)
985 TARGET_DEFAULT_RETURN (0);
986
987 /* Check whether the target supports branch tracing. */
988 int (*to_supports_btrace) (struct target_ops *)
989 TARGET_DEFAULT_RETURN (0);
990
991 /* Enable branch tracing for PTID and allocate a branch trace target
992 information struct for reading and for disabling branch trace. */
993 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
994 ptid_t ptid)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Disable branch tracing and deallocate TINFO. */
998 void (*to_disable_btrace) (struct target_ops *,
999 struct btrace_target_info *tinfo)
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 /* Disable branch tracing and deallocate TINFO. This function is similar
1003 to to_disable_btrace, except that it is called during teardown and is
1004 only allowed to perform actions that are safe. A counter-example would
1005 be attempting to talk to a remote target. */
1006 void (*to_teardown_btrace) (struct target_ops *,
1007 struct btrace_target_info *tinfo)
1008 TARGET_DEFAULT_NORETURN (tcomplain ());
1009
1010 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1011 DATA is cleared before new trace is added.
1012 The branch trace will start with the most recent block and continue
1013 towards older blocks. */
1014 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1015 VEC (btrace_block_s) **data,
1016 struct btrace_target_info *btinfo,
1017 enum btrace_read_type type)
1018 TARGET_DEFAULT_NORETURN (tcomplain ());
1019
1020 /* Stop trace recording. */
1021 void (*to_stop_recording) (struct target_ops *)
1022 TARGET_DEFAULT_IGNORE ();
1023
1024 /* Print information about the recording. */
1025 void (*to_info_record) (struct target_ops *);
1026
1027 /* Save the recorded execution trace into a file. */
1028 void (*to_save_record) (struct target_ops *, const char *filename)
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1030
1031 /* Delete the recorded execution trace from the current position onwards. */
1032 void (*to_delete_record) (struct target_ops *)
1033 TARGET_DEFAULT_NORETURN (tcomplain ());
1034
1035 /* Query if the record target is currently replaying. */
1036 int (*to_record_is_replaying) (struct target_ops *)
1037 TARGET_DEFAULT_RETURN (0);
1038
1039 /* Go to the begin of the execution trace. */
1040 void (*to_goto_record_begin) (struct target_ops *)
1041 TARGET_DEFAULT_NORETURN (tcomplain ());
1042
1043 /* Go to the end of the execution trace. */
1044 void (*to_goto_record_end) (struct target_ops *)
1045 TARGET_DEFAULT_NORETURN (tcomplain ());
1046
1047 /* Go to a specific location in the recorded execution trace. */
1048 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1049 TARGET_DEFAULT_NORETURN (tcomplain ());
1050
1051 /* Disassemble SIZE instructions in the recorded execution trace from
1052 the current position.
1053 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1054 disassemble SIZE succeeding instructions. */
1055 void (*to_insn_history) (struct target_ops *, int size, int flags)
1056 TARGET_DEFAULT_NORETURN (tcomplain ());
1057
1058 /* Disassemble SIZE instructions in the recorded execution trace around
1059 FROM.
1060 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1061 disassemble SIZE instructions after FROM. */
1062 void (*to_insn_history_from) (struct target_ops *,
1063 ULONGEST from, int size, int flags)
1064 TARGET_DEFAULT_NORETURN (tcomplain ());
1065
1066 /* Disassemble a section of the recorded execution trace from instruction
1067 BEGIN (inclusive) to instruction END (inclusive). */
1068 void (*to_insn_history_range) (struct target_ops *,
1069 ULONGEST begin, ULONGEST end, int flags)
1070 TARGET_DEFAULT_NORETURN (tcomplain ());
1071
1072 /* Print a function trace of the recorded execution trace.
1073 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1074 succeeding functions. */
1075 void (*to_call_history) (struct target_ops *, int size, int flags)
1076 TARGET_DEFAULT_NORETURN (tcomplain ());
1077
1078 /* Print a function trace of the recorded execution trace starting
1079 at function FROM.
1080 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1081 SIZE functions after FROM. */
1082 void (*to_call_history_from) (struct target_ops *,
1083 ULONGEST begin, int size, int flags)
1084 TARGET_DEFAULT_NORETURN (tcomplain ());
1085
1086 /* Print a function trace of an execution trace section from function BEGIN
1087 (inclusive) to function END (inclusive). */
1088 void (*to_call_history_range) (struct target_ops *,
1089 ULONGEST begin, ULONGEST end, int flags)
1090 TARGET_DEFAULT_NORETURN (tcomplain ());
1091
1092 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1093 non-empty annex. */
1094 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1095 TARGET_DEFAULT_RETURN (0);
1096
1097 /* Those unwinders are tried before any other arch unwinders. If
1098 SELF doesn't have unwinders, it should delegate to the
1099 "beneath" target. */
1100 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1101 TARGET_DEFAULT_RETURN (NULL);
1102
1103 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1104 TARGET_DEFAULT_RETURN (NULL);
1105
1106 /* Return the number of bytes by which the PC needs to be decremented
1107 after executing a breakpoint instruction.
1108 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1109 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1110 struct gdbarch *gdbarch)
1111 TARGET_DEFAULT_FUNC (default_target_decr_pc_after_break);
1112
1113 /* Prepare to generate a core file. */
1114 void (*to_prepare_to_generate_core) (struct target_ops *)
1115 TARGET_DEFAULT_IGNORE ();
1116
1117 /* Cleanup after generating a core file. */
1118 void (*to_done_generating_core) (struct target_ops *)
1119 TARGET_DEFAULT_IGNORE ();
1120
1121 int to_magic;
1122 /* Need sub-structure for target machine related rather than comm related?
1123 */
1124 };
1125
1126 /* Magic number for checking ops size. If a struct doesn't end with this
1127 number, somebody changed the declaration but didn't change all the
1128 places that initialize one. */
1129
1130 #define OPS_MAGIC 3840
1131
1132 /* The ops structure for our "current" target process. This should
1133 never be NULL. If there is no target, it points to the dummy_target. */
1134
1135 extern struct target_ops current_target;
1136
1137 /* Define easy words for doing these operations on our current target. */
1138
1139 #define target_shortname (current_target.to_shortname)
1140 #define target_longname (current_target.to_longname)
1141
1142 /* Does whatever cleanup is required for a target that we are no
1143 longer going to be calling. This routine is automatically always
1144 called after popping the target off the target stack - the target's
1145 own methods are no longer available through the target vector.
1146 Closing file descriptors and freeing all memory allocated memory are
1147 typical things it should do. */
1148
1149 void target_close (struct target_ops *targ);
1150
1151 /* Find the correct target to use for "attach". If a target on the
1152 current stack supports attaching, then it is returned. Otherwise,
1153 the default run target is returned. */
1154
1155 extern struct target_ops *find_attach_target (void);
1156
1157 /* Find the correct target to use for "run". If a target on the
1158 current stack supports creating a new inferior, then it is
1159 returned. Otherwise, the default run target is returned. */
1160
1161 extern struct target_ops *find_run_target (void);
1162
1163 /* Some targets don't generate traps when attaching to the inferior,
1164 or their target_attach implementation takes care of the waiting.
1165 These targets must set to_attach_no_wait. */
1166
1167 #define target_attach_no_wait \
1168 (current_target.to_attach_no_wait)
1169
1170 /* The target_attach operation places a process under debugger control,
1171 and stops the process.
1172
1173 This operation provides a target-specific hook that allows the
1174 necessary bookkeeping to be performed after an attach completes. */
1175 #define target_post_attach(pid) \
1176 (*current_target.to_post_attach) (&current_target, pid)
1177
1178 /* Takes a program previously attached to and detaches it.
1179 The program may resume execution (some targets do, some don't) and will
1180 no longer stop on signals, etc. We better not have left any breakpoints
1181 in the program or it'll die when it hits one. ARGS is arguments
1182 typed by the user (e.g. a signal to send the process). FROM_TTY
1183 says whether to be verbose or not. */
1184
1185 extern void target_detach (const char *, int);
1186
1187 /* Disconnect from the current target without resuming it (leaving it
1188 waiting for a debugger). */
1189
1190 extern void target_disconnect (const char *, int);
1191
1192 /* Resume execution of the target process PTID (or a group of
1193 threads). STEP says whether to single-step or to run free; SIGGNAL
1194 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1195 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1196 PTID means `step/resume only this process id'. A wildcard PTID
1197 (all threads, or all threads of process) means `step/resume
1198 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1199 matches) resume with their 'thread->suspend.stop_signal' signal
1200 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1201 if in "no pass" state. */
1202
1203 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1204
1205 /* Wait for process pid to do something. PTID = -1 to wait for any
1206 pid to do something. Return pid of child, or -1 in case of error;
1207 store status through argument pointer STATUS. Note that it is
1208 _NOT_ OK to throw_exception() out of target_wait() without popping
1209 the debugging target from the stack; GDB isn't prepared to get back
1210 to the prompt with a debugging target but without the frame cache,
1211 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1212 options. */
1213
1214 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1215 int options);
1216
1217 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1218
1219 extern void target_fetch_registers (struct regcache *regcache, int regno);
1220
1221 /* Store at least register REGNO, or all regs if REGNO == -1.
1222 It can store as many registers as it wants to, so target_prepare_to_store
1223 must have been previously called. Calls error() if there are problems. */
1224
1225 extern void target_store_registers (struct regcache *regcache, int regs);
1226
1227 /* Get ready to modify the registers array. On machines which store
1228 individual registers, this doesn't need to do anything. On machines
1229 which store all the registers in one fell swoop, this makes sure
1230 that REGISTERS contains all the registers from the program being
1231 debugged. */
1232
1233 #define target_prepare_to_store(regcache) \
1234 (*current_target.to_prepare_to_store) (&current_target, regcache)
1235
1236 /* Determine current address space of thread PTID. */
1237
1238 struct address_space *target_thread_address_space (ptid_t);
1239
1240 /* Implement the "info proc" command. This returns one if the request
1241 was handled, and zero otherwise. It can also throw an exception if
1242 an error was encountered while attempting to handle the
1243 request. */
1244
1245 int target_info_proc (const char *, enum info_proc_what);
1246
1247 /* Returns true if this target can debug multiple processes
1248 simultaneously. */
1249
1250 #define target_supports_multi_process() \
1251 (*current_target.to_supports_multi_process) (&current_target)
1252
1253 /* Returns true if this target can disable address space randomization. */
1254
1255 int target_supports_disable_randomization (void);
1256
1257 /* Returns true if this target can enable and disable tracepoints
1258 while a trace experiment is running. */
1259
1260 #define target_supports_enable_disable_tracepoint() \
1261 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1262
1263 #define target_supports_string_tracing() \
1264 (*current_target.to_supports_string_tracing) (&current_target)
1265
1266 /* Returns true if this target can handle breakpoint conditions
1267 on its end. */
1268
1269 #define target_supports_evaluation_of_breakpoint_conditions() \
1270 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1271
1272 /* Returns true if this target can handle breakpoint commands
1273 on its end. */
1274
1275 #define target_can_run_breakpoint_commands() \
1276 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1277
1278 extern int target_read_string (CORE_ADDR, char **, int, int *);
1279
1280 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1281 ssize_t len);
1282
1283 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1284 ssize_t len);
1285
1286 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1287
1288 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1289
1290 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1291 ssize_t len);
1292
1293 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1294 ssize_t len);
1295
1296 /* Fetches the target's memory map. If one is found it is sorted
1297 and returned, after some consistency checking. Otherwise, NULL
1298 is returned. */
1299 VEC(mem_region_s) *target_memory_map (void);
1300
1301 /* Erase the specified flash region. */
1302 void target_flash_erase (ULONGEST address, LONGEST length);
1303
1304 /* Finish a sequence of flash operations. */
1305 void target_flash_done (void);
1306
1307 /* Describes a request for a memory write operation. */
1308 struct memory_write_request
1309 {
1310 /* Begining address that must be written. */
1311 ULONGEST begin;
1312 /* Past-the-end address. */
1313 ULONGEST end;
1314 /* The data to write. */
1315 gdb_byte *data;
1316 /* A callback baton for progress reporting for this request. */
1317 void *baton;
1318 };
1319 typedef struct memory_write_request memory_write_request_s;
1320 DEF_VEC_O(memory_write_request_s);
1321
1322 /* Enumeration specifying different flash preservation behaviour. */
1323 enum flash_preserve_mode
1324 {
1325 flash_preserve,
1326 flash_discard
1327 };
1328
1329 /* Write several memory blocks at once. This version can be more
1330 efficient than making several calls to target_write_memory, in
1331 particular because it can optimize accesses to flash memory.
1332
1333 Moreover, this is currently the only memory access function in gdb
1334 that supports writing to flash memory, and it should be used for
1335 all cases where access to flash memory is desirable.
1336
1337 REQUESTS is the vector (see vec.h) of memory_write_request.
1338 PRESERVE_FLASH_P indicates what to do with blocks which must be
1339 erased, but not completely rewritten.
1340 PROGRESS_CB is a function that will be periodically called to provide
1341 feedback to user. It will be called with the baton corresponding
1342 to the request currently being written. It may also be called
1343 with a NULL baton, when preserved flash sectors are being rewritten.
1344
1345 The function returns 0 on success, and error otherwise. */
1346 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1347 enum flash_preserve_mode preserve_flash_p,
1348 void (*progress_cb) (ULONGEST, void *));
1349
1350 /* Print a line about the current target. */
1351
1352 #define target_files_info() \
1353 (*current_target.to_files_info) (&current_target)
1354
1355 /* Insert a breakpoint at address BP_TGT->placed_address in
1356 the target machine. Returns 0 for success, and returns non-zero or
1357 throws an error (with a detailed failure reason error code and
1358 message) otherwise. */
1359
1360 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1361 struct bp_target_info *bp_tgt);
1362
1363 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1364 machine. Result is 0 for success, non-zero for error. */
1365
1366 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1367 struct bp_target_info *bp_tgt);
1368
1369 /* Initialize the terminal settings we record for the inferior,
1370 before we actually run the inferior. */
1371
1372 #define target_terminal_init() \
1373 (*current_target.to_terminal_init) (&current_target)
1374
1375 /* Put the inferior's terminal settings into effect.
1376 This is preparation for starting or resuming the inferior. */
1377
1378 extern void target_terminal_inferior (void);
1379
1380 /* Put some of our terminal settings into effect,
1381 enough to get proper results from our output,
1382 but do not change into or out of RAW mode
1383 so that no input is discarded.
1384
1385 After doing this, either terminal_ours or terminal_inferior
1386 should be called to get back to a normal state of affairs. */
1387
1388 #define target_terminal_ours_for_output() \
1389 (*current_target.to_terminal_ours_for_output) (&current_target)
1390
1391 /* Put our terminal settings into effect.
1392 First record the inferior's terminal settings
1393 so they can be restored properly later. */
1394
1395 #define target_terminal_ours() \
1396 (*current_target.to_terminal_ours) (&current_target)
1397
1398 /* Save our terminal settings.
1399 This is called from TUI after entering or leaving the curses
1400 mode. Since curses modifies our terminal this call is here
1401 to take this change into account. */
1402
1403 #define target_terminal_save_ours() \
1404 (*current_target.to_terminal_save_ours) (&current_target)
1405
1406 /* Print useful information about our terminal status, if such a thing
1407 exists. */
1408
1409 #define target_terminal_info(arg, from_tty) \
1410 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1411
1412 /* Kill the inferior process. Make it go away. */
1413
1414 extern void target_kill (void);
1415
1416 /* Load an executable file into the target process. This is expected
1417 to not only bring new code into the target process, but also to
1418 update GDB's symbol tables to match.
1419
1420 ARG contains command-line arguments, to be broken down with
1421 buildargv (). The first non-switch argument is the filename to
1422 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1423 0)), which is an offset to apply to the load addresses of FILE's
1424 sections. The target may define switches, or other non-switch
1425 arguments, as it pleases. */
1426
1427 extern void target_load (const char *arg, int from_tty);
1428
1429 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1430 notification of inferior events such as fork and vork immediately
1431 after the inferior is created. (This because of how gdb gets an
1432 inferior created via invoking a shell to do it. In such a scenario,
1433 if the shell init file has commands in it, the shell will fork and
1434 exec for each of those commands, and we will see each such fork
1435 event. Very bad.)
1436
1437 Such targets will supply an appropriate definition for this function. */
1438
1439 #define target_post_startup_inferior(ptid) \
1440 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1441
1442 /* On some targets, we can catch an inferior fork or vfork event when
1443 it occurs. These functions insert/remove an already-created
1444 catchpoint for such events. They return 0 for success, 1 if the
1445 catchpoint type is not supported and -1 for failure. */
1446
1447 #define target_insert_fork_catchpoint(pid) \
1448 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1449
1450 #define target_remove_fork_catchpoint(pid) \
1451 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1452
1453 #define target_insert_vfork_catchpoint(pid) \
1454 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1455
1456 #define target_remove_vfork_catchpoint(pid) \
1457 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1458
1459 /* If the inferior forks or vforks, this function will be called at
1460 the next resume in order to perform any bookkeeping and fiddling
1461 necessary to continue debugging either the parent or child, as
1462 requested, and releasing the other. Information about the fork
1463 or vfork event is available via get_last_target_status ().
1464 This function returns 1 if the inferior should not be resumed
1465 (i.e. there is another event pending). */
1466
1467 int target_follow_fork (int follow_child, int detach_fork);
1468
1469 /* On some targets, we can catch an inferior exec event when it
1470 occurs. These functions insert/remove an already-created
1471 catchpoint for such events. They return 0 for success, 1 if the
1472 catchpoint type is not supported and -1 for failure. */
1473
1474 #define target_insert_exec_catchpoint(pid) \
1475 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1476
1477 #define target_remove_exec_catchpoint(pid) \
1478 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1479
1480 /* Syscall catch.
1481
1482 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1483 If NEEDED is zero, it means the target can disable the mechanism to
1484 catch system calls because there are no more catchpoints of this type.
1485
1486 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1487 being requested. In this case, both TABLE_SIZE and TABLE should
1488 be ignored.
1489
1490 TABLE_SIZE is the number of elements in TABLE. It only matters if
1491 ANY_COUNT is zero.
1492
1493 TABLE is an array of ints, indexed by syscall number. An element in
1494 this array is nonzero if that syscall should be caught. This argument
1495 only matters if ANY_COUNT is zero.
1496
1497 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1498 for failure. */
1499
1500 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1501 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1502 pid, needed, any_count, \
1503 table_size, table)
1504
1505 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1506 exit code of PID, if any. */
1507
1508 #define target_has_exited(pid,wait_status,exit_status) \
1509 (*current_target.to_has_exited) (&current_target, \
1510 pid,wait_status,exit_status)
1511
1512 /* The debugger has completed a blocking wait() call. There is now
1513 some process event that must be processed. This function should
1514 be defined by those targets that require the debugger to perform
1515 cleanup or internal state changes in response to the process event. */
1516
1517 /* The inferior process has died. Do what is right. */
1518
1519 void target_mourn_inferior (void);
1520
1521 /* Does target have enough data to do a run or attach command? */
1522
1523 #define target_can_run(t) \
1524 ((t)->to_can_run) (t)
1525
1526 /* Set list of signals to be handled in the target.
1527
1528 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1529 (enum gdb_signal). For every signal whose entry in this array is
1530 non-zero, the target is allowed -but not required- to skip reporting
1531 arrival of the signal to the GDB core by returning from target_wait,
1532 and to pass the signal directly to the inferior instead.
1533
1534 However, if the target is hardware single-stepping a thread that is
1535 about to receive a signal, it needs to be reported in any case, even
1536 if mentioned in a previous target_pass_signals call. */
1537
1538 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1539
1540 /* Set list of signals the target may pass to the inferior. This
1541 directly maps to the "handle SIGNAL pass/nopass" setting.
1542
1543 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1544 number (enum gdb_signal). For every signal whose entry in this
1545 array is non-zero, the target is allowed to pass the signal to the
1546 inferior. Signals not present in the array shall be silently
1547 discarded. This does not influence whether to pass signals to the
1548 inferior as a result of a target_resume call. This is useful in
1549 scenarios where the target needs to decide whether to pass or not a
1550 signal to the inferior without GDB core involvement, such as for
1551 example, when detaching (as threads may have been suspended with
1552 pending signals not reported to GDB). */
1553
1554 extern void target_program_signals (int nsig, unsigned char *program_signals);
1555
1556 /* Check to see if a thread is still alive. */
1557
1558 extern int target_thread_alive (ptid_t ptid);
1559
1560 /* Query for new threads and add them to the thread list. */
1561
1562 extern void target_find_new_threads (void);
1563
1564 /* Make target stop in a continuable fashion. (For instance, under
1565 Unix, this should act like SIGSTOP). This function is normally
1566 used by GUIs to implement a stop button. */
1567
1568 extern void target_stop (ptid_t ptid);
1569
1570 /* Send the specified COMMAND to the target's monitor
1571 (shell,interpreter) for execution. The result of the query is
1572 placed in OUTBUF. */
1573
1574 #define target_rcmd(command, outbuf) \
1575 (*current_target.to_rcmd) (&current_target, command, outbuf)
1576
1577
1578 /* Does the target include all of memory, or only part of it? This
1579 determines whether we look up the target chain for other parts of
1580 memory if this target can't satisfy a request. */
1581
1582 extern int target_has_all_memory_1 (void);
1583 #define target_has_all_memory target_has_all_memory_1 ()
1584
1585 /* Does the target include memory? (Dummy targets don't.) */
1586
1587 extern int target_has_memory_1 (void);
1588 #define target_has_memory target_has_memory_1 ()
1589
1590 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1591 we start a process.) */
1592
1593 extern int target_has_stack_1 (void);
1594 #define target_has_stack target_has_stack_1 ()
1595
1596 /* Does the target have registers? (Exec files don't.) */
1597
1598 extern int target_has_registers_1 (void);
1599 #define target_has_registers target_has_registers_1 ()
1600
1601 /* Does the target have execution? Can we make it jump (through
1602 hoops), or pop its stack a few times? This means that the current
1603 target is currently executing; for some targets, that's the same as
1604 whether or not the target is capable of execution, but there are
1605 also targets which can be current while not executing. In that
1606 case this will become true after to_create_inferior or
1607 to_attach. */
1608
1609 extern int target_has_execution_1 (ptid_t);
1610
1611 /* Like target_has_execution_1, but always passes inferior_ptid. */
1612
1613 extern int target_has_execution_current (void);
1614
1615 #define target_has_execution target_has_execution_current ()
1616
1617 /* Default implementations for process_stratum targets. Return true
1618 if there's a selected inferior, false otherwise. */
1619
1620 extern int default_child_has_all_memory (struct target_ops *ops);
1621 extern int default_child_has_memory (struct target_ops *ops);
1622 extern int default_child_has_stack (struct target_ops *ops);
1623 extern int default_child_has_registers (struct target_ops *ops);
1624 extern int default_child_has_execution (struct target_ops *ops,
1625 ptid_t the_ptid);
1626
1627 /* Can the target support the debugger control of thread execution?
1628 Can it lock the thread scheduler? */
1629
1630 #define target_can_lock_scheduler \
1631 (current_target.to_has_thread_control & tc_schedlock)
1632
1633 /* Controls whether async mode is permitted. */
1634 extern int target_async_permitted;
1635
1636 /* Can the target support asynchronous execution? */
1637 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1638
1639 /* Is the target in asynchronous execution mode? */
1640 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1641
1642 /* Put the target in async mode with the specified callback function. */
1643 #define target_async(CALLBACK,CONTEXT) \
1644 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1645
1646 #define target_execution_direction() \
1647 (current_target.to_execution_direction (&current_target))
1648
1649 /* Converts a process id to a string. Usually, the string just contains
1650 `process xyz', but on some systems it may contain
1651 `process xyz thread abc'. */
1652
1653 extern char *target_pid_to_str (ptid_t ptid);
1654
1655 extern char *normal_pid_to_str (ptid_t ptid);
1656
1657 /* Return a short string describing extra information about PID,
1658 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1659 is okay. */
1660
1661 #define target_extra_thread_info(TP) \
1662 (current_target.to_extra_thread_info (&current_target, TP))
1663
1664 /* Return the thread's name. A NULL result means that the target
1665 could not determine this thread's name. */
1666
1667 extern char *target_thread_name (struct thread_info *);
1668
1669 /* Attempts to find the pathname of the executable file
1670 that was run to create a specified process.
1671
1672 The process PID must be stopped when this operation is used.
1673
1674 If the executable file cannot be determined, NULL is returned.
1675
1676 Else, a pointer to a character string containing the pathname
1677 is returned. This string should be copied into a buffer by
1678 the client if the string will not be immediately used, or if
1679 it must persist. */
1680
1681 #define target_pid_to_exec_file(pid) \
1682 (current_target.to_pid_to_exec_file) (&current_target, pid)
1683
1684 /* See the to_thread_architecture description in struct target_ops. */
1685
1686 #define target_thread_architecture(ptid) \
1687 (current_target.to_thread_architecture (&current_target, ptid))
1688
1689 /*
1690 * Iterator function for target memory regions.
1691 * Calls a callback function once for each memory region 'mapped'
1692 * in the child process. Defined as a simple macro rather than
1693 * as a function macro so that it can be tested for nullity.
1694 */
1695
1696 #define target_find_memory_regions(FUNC, DATA) \
1697 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1698
1699 /*
1700 * Compose corefile .note section.
1701 */
1702
1703 #define target_make_corefile_notes(BFD, SIZE_P) \
1704 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1705
1706 /* Bookmark interfaces. */
1707 #define target_get_bookmark(ARGS, FROM_TTY) \
1708 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1709
1710 #define target_goto_bookmark(ARG, FROM_TTY) \
1711 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1712
1713 /* Hardware watchpoint interfaces. */
1714
1715 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1716 write). Only the INFERIOR_PTID task is being queried. */
1717
1718 #define target_stopped_by_watchpoint() \
1719 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1720
1721 /* Non-zero if we have steppable watchpoints */
1722
1723 #define target_have_steppable_watchpoint \
1724 (current_target.to_have_steppable_watchpoint)
1725
1726 /* Non-zero if we have continuable watchpoints */
1727
1728 #define target_have_continuable_watchpoint \
1729 (current_target.to_have_continuable_watchpoint)
1730
1731 /* Provide defaults for hardware watchpoint functions. */
1732
1733 /* If the *_hw_beakpoint functions have not been defined
1734 elsewhere use the definitions in the target vector. */
1735
1736 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1737 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1738 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1739 (including this one?). OTHERTYPE is who knows what... */
1740
1741 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1742 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1743 TYPE, CNT, OTHERTYPE);
1744
1745 /* Returns the number of debug registers needed to watch the given
1746 memory region, or zero if not supported. */
1747
1748 #define target_region_ok_for_hw_watchpoint(addr, len) \
1749 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1750 addr, len)
1751
1752
1753 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1754 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1755 COND is the expression for its condition, or NULL if there's none.
1756 Returns 0 for success, 1 if the watchpoint type is not supported,
1757 -1 for failure. */
1758
1759 #define target_insert_watchpoint(addr, len, type, cond) \
1760 (*current_target.to_insert_watchpoint) (&current_target, \
1761 addr, len, type, cond)
1762
1763 #define target_remove_watchpoint(addr, len, type, cond) \
1764 (*current_target.to_remove_watchpoint) (&current_target, \
1765 addr, len, type, cond)
1766
1767 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1768 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1769 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1770 masked watchpoints are not supported, -1 for failure. */
1771
1772 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1773
1774 /* Remove a masked watchpoint at ADDR with the mask MASK.
1775 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1776 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1777 for failure. */
1778
1779 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1780
1781 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1782 the target machine. Returns 0 for success, and returns non-zero or
1783 throws an error (with a detailed failure reason error code and
1784 message) otherwise. */
1785
1786 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1787 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1788 gdbarch, bp_tgt)
1789
1790 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1791 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1792 gdbarch, bp_tgt)
1793
1794 /* Return number of debug registers needed for a ranged breakpoint,
1795 or -1 if ranged breakpoints are not supported. */
1796
1797 extern int target_ranged_break_num_registers (void);
1798
1799 /* Return non-zero if target knows the data address which triggered this
1800 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1801 INFERIOR_PTID task is being queried. */
1802 #define target_stopped_data_address(target, addr_p) \
1803 (*target.to_stopped_data_address) (target, addr_p)
1804
1805 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1806 LENGTH bytes beginning at START. */
1807 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1808 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1809
1810 /* Return non-zero if the target is capable of using hardware to evaluate
1811 the condition expression. In this case, if the condition is false when
1812 the watched memory location changes, execution may continue without the
1813 debugger being notified.
1814
1815 Due to limitations in the hardware implementation, it may be capable of
1816 avoiding triggering the watchpoint in some cases where the condition
1817 expression is false, but may report some false positives as well.
1818 For this reason, GDB will still evaluate the condition expression when
1819 the watchpoint triggers. */
1820 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1821 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1822 addr, len, type, cond)
1823
1824 /* Return number of debug registers needed for a masked watchpoint,
1825 -1 if masked watchpoints are not supported or -2 if the given address
1826 and mask combination cannot be used. */
1827
1828 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1829
1830 /* Target can execute in reverse? */
1831 #define target_can_execute_reverse \
1832 current_target.to_can_execute_reverse (&current_target)
1833
1834 extern const struct target_desc *target_read_description (struct target_ops *);
1835
1836 #define target_get_ada_task_ptid(lwp, tid) \
1837 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1838
1839 /* Utility implementation of searching memory. */
1840 extern int simple_search_memory (struct target_ops* ops,
1841 CORE_ADDR start_addr,
1842 ULONGEST search_space_len,
1843 const gdb_byte *pattern,
1844 ULONGEST pattern_len,
1845 CORE_ADDR *found_addrp);
1846
1847 /* Main entry point for searching memory. */
1848 extern int target_search_memory (CORE_ADDR start_addr,
1849 ULONGEST search_space_len,
1850 const gdb_byte *pattern,
1851 ULONGEST pattern_len,
1852 CORE_ADDR *found_addrp);
1853
1854 /* Target file operations. */
1855
1856 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1857 target file descriptor, or -1 if an error occurs (and set
1858 *TARGET_ERRNO). */
1859 extern int target_fileio_open (const char *filename, int flags, int mode,
1860 int *target_errno);
1861
1862 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1863 Return the number of bytes written, or -1 if an error occurs
1864 (and set *TARGET_ERRNO). */
1865 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1866 ULONGEST offset, int *target_errno);
1867
1868 /* Read up to LEN bytes FD on the target into READ_BUF.
1869 Return the number of bytes read, or -1 if an error occurs
1870 (and set *TARGET_ERRNO). */
1871 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1872 ULONGEST offset, int *target_errno);
1873
1874 /* Close FD on the target. Return 0, or -1 if an error occurs
1875 (and set *TARGET_ERRNO). */
1876 extern int target_fileio_close (int fd, int *target_errno);
1877
1878 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1879 occurs (and set *TARGET_ERRNO). */
1880 extern int target_fileio_unlink (const char *filename, int *target_errno);
1881
1882 /* Read value of symbolic link FILENAME on the target. Return a
1883 null-terminated string allocated via xmalloc, or NULL if an error
1884 occurs (and set *TARGET_ERRNO). */
1885 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1886
1887 /* Read target file FILENAME. The return value will be -1 if the transfer
1888 fails or is not supported; 0 if the object is empty; or the length
1889 of the object otherwise. If a positive value is returned, a
1890 sufficiently large buffer will be allocated using xmalloc and
1891 returned in *BUF_P containing the contents of the object.
1892
1893 This method should be used for objects sufficiently small to store
1894 in a single xmalloc'd buffer, when no fixed bound on the object's
1895 size is known in advance. */
1896 extern LONGEST target_fileio_read_alloc (const char *filename,
1897 gdb_byte **buf_p);
1898
1899 /* Read target file FILENAME. The result is NUL-terminated and
1900 returned as a string, allocated using xmalloc. If an error occurs
1901 or the transfer is unsupported, NULL is returned. Empty objects
1902 are returned as allocated but empty strings. A warning is issued
1903 if the result contains any embedded NUL bytes. */
1904 extern char *target_fileio_read_stralloc (const char *filename);
1905
1906
1907 /* Tracepoint-related operations. */
1908
1909 #define target_trace_init() \
1910 (*current_target.to_trace_init) (&current_target)
1911
1912 #define target_download_tracepoint(t) \
1913 (*current_target.to_download_tracepoint) (&current_target, t)
1914
1915 #define target_can_download_tracepoint() \
1916 (*current_target.to_can_download_tracepoint) (&current_target)
1917
1918 #define target_download_trace_state_variable(tsv) \
1919 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1920
1921 #define target_enable_tracepoint(loc) \
1922 (*current_target.to_enable_tracepoint) (&current_target, loc)
1923
1924 #define target_disable_tracepoint(loc) \
1925 (*current_target.to_disable_tracepoint) (&current_target, loc)
1926
1927 #define target_trace_start() \
1928 (*current_target.to_trace_start) (&current_target)
1929
1930 #define target_trace_set_readonly_regions() \
1931 (*current_target.to_trace_set_readonly_regions) (&current_target)
1932
1933 #define target_get_trace_status(ts) \
1934 (*current_target.to_get_trace_status) (&current_target, ts)
1935
1936 #define target_get_tracepoint_status(tp,utp) \
1937 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1938
1939 #define target_trace_stop() \
1940 (*current_target.to_trace_stop) (&current_target)
1941
1942 #define target_trace_find(type,num,addr1,addr2,tpp) \
1943 (*current_target.to_trace_find) (&current_target, \
1944 (type), (num), (addr1), (addr2), (tpp))
1945
1946 #define target_get_trace_state_variable_value(tsv,val) \
1947 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1948 (tsv), (val))
1949
1950 #define target_save_trace_data(filename) \
1951 (*current_target.to_save_trace_data) (&current_target, filename)
1952
1953 #define target_upload_tracepoints(utpp) \
1954 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1955
1956 #define target_upload_trace_state_variables(utsvp) \
1957 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1958
1959 #define target_get_raw_trace_data(buf,offset,len) \
1960 (*current_target.to_get_raw_trace_data) (&current_target, \
1961 (buf), (offset), (len))
1962
1963 #define target_get_min_fast_tracepoint_insn_len() \
1964 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1965
1966 #define target_set_disconnected_tracing(val) \
1967 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1968
1969 #define target_set_circular_trace_buffer(val) \
1970 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1971
1972 #define target_set_trace_buffer_size(val) \
1973 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1974
1975 #define target_set_trace_notes(user,notes,stopnotes) \
1976 (*current_target.to_set_trace_notes) (&current_target, \
1977 (user), (notes), (stopnotes))
1978
1979 #define target_get_tib_address(ptid, addr) \
1980 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1981
1982 #define target_set_permissions() \
1983 (*current_target.to_set_permissions) (&current_target)
1984
1985 #define target_static_tracepoint_marker_at(addr, marker) \
1986 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1987 addr, marker)
1988
1989 #define target_static_tracepoint_markers_by_strid(marker_id) \
1990 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1991 marker_id)
1992
1993 #define target_traceframe_info() \
1994 (*current_target.to_traceframe_info) (&current_target)
1995
1996 #define target_use_agent(use) \
1997 (*current_target.to_use_agent) (&current_target, use)
1998
1999 #define target_can_use_agent() \
2000 (*current_target.to_can_use_agent) (&current_target)
2001
2002 #define target_augmented_libraries_svr4_read() \
2003 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2004
2005 /* Command logging facility. */
2006
2007 #define target_log_command(p) \
2008 (*current_target.to_log_command) (&current_target, p)
2009
2010
2011 extern int target_core_of_thread (ptid_t ptid);
2012
2013 /* See to_get_unwinder in struct target_ops. */
2014 extern const struct frame_unwind *target_get_unwinder (void);
2015
2016 /* See to_get_tailcall_unwinder in struct target_ops. */
2017 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2018
2019 /* This implements basic memory verification, reading target memory
2020 and performing the comparison here (as opposed to accelerated
2021 verification making use of the qCRC packet, for example). */
2022
2023 extern int simple_verify_memory (struct target_ops* ops,
2024 const gdb_byte *data,
2025 CORE_ADDR memaddr, ULONGEST size);
2026
2027 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2028 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2029 if there's a mismatch, and -1 if an error is encountered while
2030 reading memory. Throws an error if the functionality is found not
2031 to be supported by the current target. */
2032 int target_verify_memory (const gdb_byte *data,
2033 CORE_ADDR memaddr, ULONGEST size);
2034
2035 /* Routines for maintenance of the target structures...
2036
2037 complete_target_initialization: Finalize a target_ops by filling in
2038 any fields needed by the target implementation. Unnecessary for
2039 targets which are registered via add_target, as this part gets
2040 taken care of then.
2041
2042 add_target: Add a target to the list of all possible targets.
2043 This only makes sense for targets that should be activated using
2044 the "target TARGET_NAME ..." command.
2045
2046 push_target: Make this target the top of the stack of currently used
2047 targets, within its particular stratum of the stack. Result
2048 is 0 if now atop the stack, nonzero if not on top (maybe
2049 should warn user).
2050
2051 unpush_target: Remove this from the stack of currently used targets,
2052 no matter where it is on the list. Returns 0 if no
2053 change, 1 if removed from stack. */
2054
2055 extern void add_target (struct target_ops *);
2056
2057 extern void add_target_with_completer (struct target_ops *t,
2058 completer_ftype *completer);
2059
2060 extern void complete_target_initialization (struct target_ops *t);
2061
2062 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2063 for maintaining backwards compatibility when renaming targets. */
2064
2065 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2066
2067 extern void push_target (struct target_ops *);
2068
2069 extern int unpush_target (struct target_ops *);
2070
2071 extern void target_pre_inferior (int);
2072
2073 extern void target_preopen (int);
2074
2075 /* Does whatever cleanup is required to get rid of all pushed targets. */
2076 extern void pop_all_targets (void);
2077
2078 /* Like pop_all_targets, but pops only targets whose stratum is
2079 strictly above ABOVE_STRATUM. */
2080 extern void pop_all_targets_above (enum strata above_stratum);
2081
2082 extern int target_is_pushed (struct target_ops *t);
2083
2084 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2085 CORE_ADDR offset);
2086
2087 /* Struct target_section maps address ranges to file sections. It is
2088 mostly used with BFD files, but can be used without (e.g. for handling
2089 raw disks, or files not in formats handled by BFD). */
2090
2091 struct target_section
2092 {
2093 CORE_ADDR addr; /* Lowest address in section */
2094 CORE_ADDR endaddr; /* 1+highest address in section */
2095
2096 struct bfd_section *the_bfd_section;
2097
2098 /* The "owner" of the section.
2099 It can be any unique value. It is set by add_target_sections
2100 and used by remove_target_sections.
2101 For example, for executables it is a pointer to exec_bfd and
2102 for shlibs it is the so_list pointer. */
2103 void *owner;
2104 };
2105
2106 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2107
2108 struct target_section_table
2109 {
2110 struct target_section *sections;
2111 struct target_section *sections_end;
2112 };
2113
2114 /* Return the "section" containing the specified address. */
2115 struct target_section *target_section_by_addr (struct target_ops *target,
2116 CORE_ADDR addr);
2117
2118 /* Return the target section table this target (or the targets
2119 beneath) currently manipulate. */
2120
2121 extern struct target_section_table *target_get_section_table
2122 (struct target_ops *target);
2123
2124 /* From mem-break.c */
2125
2126 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2127 struct bp_target_info *);
2128
2129 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2130 struct bp_target_info *);
2131
2132 /* Check whether the memory at the breakpoint's placed address still
2133 contains the expected breakpoint instruction. */
2134
2135 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2136 struct bp_target_info *bp_tgt);
2137
2138 extern int default_memory_remove_breakpoint (struct gdbarch *,
2139 struct bp_target_info *);
2140
2141 extern int default_memory_insert_breakpoint (struct gdbarch *,
2142 struct bp_target_info *);
2143
2144
2145 /* From target.c */
2146
2147 extern void initialize_targets (void);
2148
2149 extern void noprocess (void) ATTRIBUTE_NORETURN;
2150
2151 extern void target_require_runnable (void);
2152
2153 extern void find_default_attach (struct target_ops *, const char *, int);
2154
2155 extern void find_default_create_inferior (struct target_ops *,
2156 char *, char *, char **, int);
2157
2158 extern struct target_ops *find_target_beneath (struct target_ops *);
2159
2160 /* Find the target at STRATUM. If no target is at that stratum,
2161 return NULL. */
2162
2163 struct target_ops *find_target_at (enum strata stratum);
2164
2165 /* Read OS data object of type TYPE from the target, and return it in
2166 XML format. The result is NUL-terminated and returned as a string,
2167 allocated using xmalloc. If an error occurs or the transfer is
2168 unsupported, NULL is returned. Empty objects are returned as
2169 allocated but empty strings. */
2170
2171 extern char *target_get_osdata (const char *type);
2172
2173 \f
2174 /* Stuff that should be shared among the various remote targets. */
2175
2176 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2177 information (higher values, more information). */
2178 extern int remote_debug;
2179
2180 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2181 extern int baud_rate;
2182 /* Timeout limit for response from target. */
2183 extern int remote_timeout;
2184
2185 \f
2186
2187 /* Set the show memory breakpoints mode to show, and installs a cleanup
2188 to restore it back to the current value. */
2189 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2190
2191 extern int may_write_registers;
2192 extern int may_write_memory;
2193 extern int may_insert_breakpoints;
2194 extern int may_insert_tracepoints;
2195 extern int may_insert_fast_tracepoints;
2196 extern int may_stop;
2197
2198 extern void update_target_permissions (void);
2199
2200 \f
2201 /* Imported from machine dependent code. */
2202
2203 /* See to_supports_btrace in struct target_ops. */
2204 #define target_supports_btrace() \
2205 (current_target.to_supports_btrace (&current_target))
2206
2207 /* See to_enable_btrace in struct target_ops. */
2208 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2209
2210 /* See to_disable_btrace in struct target_ops. */
2211 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2212
2213 /* See to_teardown_btrace in struct target_ops. */
2214 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2215
2216 /* See to_read_btrace in struct target_ops. */
2217 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2218 struct btrace_target_info *,
2219 enum btrace_read_type);
2220
2221 /* See to_stop_recording in struct target_ops. */
2222 extern void target_stop_recording (void);
2223
2224 /* See to_info_record in struct target_ops. */
2225 extern void target_info_record (void);
2226
2227 /* See to_save_record in struct target_ops. */
2228 extern void target_save_record (const char *filename);
2229
2230 /* Query if the target supports deleting the execution log. */
2231 extern int target_supports_delete_record (void);
2232
2233 /* See to_delete_record in struct target_ops. */
2234 extern void target_delete_record (void);
2235
2236 /* See to_record_is_replaying in struct target_ops. */
2237 extern int target_record_is_replaying (void);
2238
2239 /* See to_goto_record_begin in struct target_ops. */
2240 extern void target_goto_record_begin (void);
2241
2242 /* See to_goto_record_end in struct target_ops. */
2243 extern void target_goto_record_end (void);
2244
2245 /* See to_goto_record in struct target_ops. */
2246 extern void target_goto_record (ULONGEST insn);
2247
2248 /* See to_insn_history. */
2249 extern void target_insn_history (int size, int flags);
2250
2251 /* See to_insn_history_from. */
2252 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2253
2254 /* See to_insn_history_range. */
2255 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2256
2257 /* See to_call_history. */
2258 extern void target_call_history (int size, int flags);
2259
2260 /* See to_call_history_from. */
2261 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2262
2263 /* See to_call_history_range. */
2264 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2265
2266 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2267 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2268 struct gdbarch *gdbarch);
2269
2270 /* See to_decr_pc_after_break. */
2271 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2272
2273 /* See to_prepare_to_generate_core. */
2274 extern void target_prepare_to_generate_core (void);
2275
2276 /* See to_done_generating_core. */
2277 extern void target_done_generating_core (void);
2278
2279 #endif /* !defined (TARGET_H) */
This page took 0.076605 seconds and 4 git commands to generate.