gdb/
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42 of the debugger, and the part which is target-specific, or
43 specific to the communications interface between us and the
44 target.
45
46 A TARGET is an interface between the debugger and a particular
47 kind of file or process. Targets can be STACKED in STRATA,
48 so that more than one target can potentially respond to a request.
49 In particular, memory accesses will walk down the stack of targets
50 until they find a target that is interested in handling that particular
51 address. STRATA are artificial boundaries on the stack, within
52 which particular kinds of targets live. Strata exist so that
53 people don't get confused by pushing e.g. a process target and then
54 a file target, and wondering why they can't see the current values
55 of variables any more (the file target is handling them and they
56 never get to the process target). So when you push a file target,
57 it goes into the file stratum, which is always below the process
58 stratum. */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65
66 enum strata
67 {
68 dummy_stratum, /* The lowest of the low */
69 file_stratum, /* Executable files, etc */
70 process_stratum, /* Executing processes or core dump files */
71 thread_stratum, /* Executing threads */
72 record_stratum, /* Support record debugging */
73 arch_stratum /* Architecture overrides */
74 };
75
76 enum thread_control_capabilities
77 {
78 tc_none = 0, /* Default: can't control thread execution. */
79 tc_schedlock = 1, /* Can lock the thread scheduler. */
80 };
81
82 /* Stuff for target_wait. */
83
84 /* Generally, what has the program done? */
85 enum target_waitkind
86 {
87 /* The program has exited. The exit status is in value.integer. */
88 TARGET_WAITKIND_EXITED,
89
90 /* The program has stopped with a signal. Which signal is in
91 value.sig. */
92 TARGET_WAITKIND_STOPPED,
93
94 /* The program has terminated with a signal. Which signal is in
95 value.sig. */
96 TARGET_WAITKIND_SIGNALLED,
97
98 /* The program is letting us know that it dynamically loaded something
99 (e.g. it called load(2) on AIX). */
100 TARGET_WAITKIND_LOADED,
101
102 /* The program has forked. A "related" process' PTID is in
103 value.related_pid. I.e., if the child forks, value.related_pid
104 is the parent's ID. */
105
106 TARGET_WAITKIND_FORKED,
107
108 /* The program has vforked. A "related" process's PTID is in
109 value.related_pid. */
110
111 TARGET_WAITKIND_VFORKED,
112
113 /* The program has exec'ed a new executable file. The new file's
114 pathname is pointed to by value.execd_pathname. */
115
116 TARGET_WAITKIND_EXECD,
117
118 /* The program had previously vforked, and now the child is done
119 with the shared memory region, because it exec'ed or exited.
120 Note that the event is reported to the vfork parent. This is
121 only used if GDB did not stay attached to the vfork child,
122 otherwise, a TARGET_WAITKIND_EXECD or
123 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
124 has the same effect. */
125 TARGET_WAITKIND_VFORK_DONE,
126
127 /* The program has entered or returned from a system call. On
128 HP-UX, this is used in the hardware watchpoint implementation.
129 The syscall's unique integer ID number is in value.syscall_id. */
130
131 TARGET_WAITKIND_SYSCALL_ENTRY,
132 TARGET_WAITKIND_SYSCALL_RETURN,
133
134 /* Nothing happened, but we stopped anyway. This perhaps should be handled
135 within target_wait, but I'm not sure target_wait should be resuming the
136 inferior. */
137 TARGET_WAITKIND_SPURIOUS,
138
139 /* An event has occured, but we should wait again.
140 Remote_async_wait() returns this when there is an event
141 on the inferior, but the rest of the world is not interested in
142 it. The inferior has not stopped, but has just sent some output
143 to the console, for instance. In this case, we want to go back
144 to the event loop and wait there for another event from the
145 inferior, rather than being stuck in the remote_async_wait()
146 function. sThis way the event loop is responsive to other events,
147 like for instance the user typing. */
148 TARGET_WAITKIND_IGNORE,
149
150 /* The target has run out of history information,
151 and cannot run backward any further. */
152 TARGET_WAITKIND_NO_HISTORY,
153
154 /* There are no resumed children left in the program. */
155 TARGET_WAITKIND_NO_RESUMED
156 };
157
158 struct target_waitstatus
159 {
160 enum target_waitkind kind;
161
162 /* Forked child pid, execd pathname, exit status, signal number or
163 syscall number. */
164 union
165 {
166 int integer;
167 enum gdb_signal sig;
168 ptid_t related_pid;
169 char *execd_pathname;
170 int syscall_number;
171 }
172 value;
173 };
174
175 /* Options that can be passed to target_wait. */
176
177 /* Return immediately if there's no event already queued. If this
178 options is not requested, target_wait blocks waiting for an
179 event. */
180 #define TARGET_WNOHANG 1
181
182 /* The structure below stores information about a system call.
183 It is basically used in the "catch syscall" command, and in
184 every function that gives information about a system call.
185
186 It's also good to mention that its fields represent everything
187 that we currently know about a syscall in GDB. */
188 struct syscall
189 {
190 /* The syscall number. */
191 int number;
192
193 /* The syscall name. */
194 const char *name;
195 };
196
197 /* Return a pretty printed form of target_waitstatus.
198 Space for the result is malloc'd, caller must free. */
199 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
200
201 /* Possible types of events that the inferior handler will have to
202 deal with. */
203 enum inferior_event_type
204 {
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* We are called because a timer went off. */
209 INF_TIMER,
210 /* We are called to do stuff after the inferior stops. */
211 INF_EXEC_COMPLETE,
212 /* We are called to do some stuff after the inferior stops, but we
213 are expected to reenter the proceed() and
214 handle_inferior_event() functions. This is used only in case of
215 'step n' like commands. */
216 INF_EXEC_CONTINUE
217 };
218 \f
219 /* Target objects which can be transfered using target_read,
220 target_write, et cetera. */
221
222 enum target_object
223 {
224 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
225 TARGET_OBJECT_AVR,
226 /* SPU target specific transfer. See "spu-tdep.c". */
227 TARGET_OBJECT_SPU,
228 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
229 TARGET_OBJECT_MEMORY,
230 /* Memory, avoiding GDB's data cache and trusting the executable.
231 Target implementations of to_xfer_partial never need to handle
232 this object, and most callers should not use it. */
233 TARGET_OBJECT_RAW_MEMORY,
234 /* Memory known to be part of the target's stack. This is cached even
235 if it is not in a region marked as such, since it is known to be
236 "normal" RAM. */
237 TARGET_OBJECT_STACK_MEMORY,
238 /* Kernel Unwind Table. See "ia64-tdep.c". */
239 TARGET_OBJECT_UNWIND_TABLE,
240 /* Transfer auxilliary vector. */
241 TARGET_OBJECT_AUXV,
242 /* StackGhost cookie. See "sparc-tdep.c". */
243 TARGET_OBJECT_WCOOKIE,
244 /* Target memory map in XML format. */
245 TARGET_OBJECT_MEMORY_MAP,
246 /* Flash memory. This object can be used to write contents to
247 a previously erased flash memory. Using it without erasing
248 flash can have unexpected results. Addresses are physical
249 address on target, and not relative to flash start. */
250 TARGET_OBJECT_FLASH,
251 /* Available target-specific features, e.g. registers and coprocessors.
252 See "target-descriptions.c". ANNEX should never be empty. */
253 TARGET_OBJECT_AVAILABLE_FEATURES,
254 /* Currently loaded libraries, in XML format. */
255 TARGET_OBJECT_LIBRARIES,
256 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
257 TARGET_OBJECT_LIBRARIES_SVR4,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* The HP-UX shared library linkage pointer. ANNEX should be a string
273 image of the code address whose linkage pointer we are looking for.
274
275 The size of the data transfered is always 8 bytes (the size of an
276 address on ia64). */
277 TARGET_OBJECT_HPUX_SOLIB_GOT,
278 /* Traceframe info, in XML format. */
279 TARGET_OBJECT_TRACEFRAME_INFO,
280 /* Load maps for FDPIC systems. */
281 TARGET_OBJECT_FDPIC,
282 /* Darwin dynamic linker info data. */
283 TARGET_OBJECT_DARWIN_DYLD_INFO,
284 /* OpenVMS Unwind Information Block. */
285 TARGET_OBJECT_OPENVMS_UIB
286 /* Possible future objects: TARGET_OBJECT_FILE, ... */
287 };
288
289 /* Enumeration of the kinds of traceframe searches that a target may
290 be able to perform. */
291
292 enum trace_find_type
293 {
294 tfind_number,
295 tfind_pc,
296 tfind_tp,
297 tfind_range,
298 tfind_outside,
299 };
300
301 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
302 DEF_VEC_P(static_tracepoint_marker_p);
303
304 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
305 OBJECT. The OFFSET, for a seekable object, specifies the
306 starting point. The ANNEX can be used to provide additional
307 data-specific information to the target.
308
309 Return the number of bytes actually transfered, or -1 if the
310 transfer is not supported or otherwise fails. Return of a positive
311 value less than LEN indicates that no further transfer is possible.
312 Unlike the raw to_xfer_partial interface, callers of these
313 functions do not need to retry partial transfers. */
314
315 extern LONGEST target_read (struct target_ops *ops,
316 enum target_object object,
317 const char *annex, gdb_byte *buf,
318 ULONGEST offset, LONGEST len);
319
320 struct memory_read_result
321 {
322 /* First address that was read. */
323 ULONGEST begin;
324 /* Past-the-end address. */
325 ULONGEST end;
326 /* The data. */
327 gdb_byte *data;
328 };
329 typedef struct memory_read_result memory_read_result_s;
330 DEF_VEC_O(memory_read_result_s);
331
332 extern void free_memory_read_result_vector (void *);
333
334 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
335 ULONGEST offset,
336 LONGEST len);
337
338 extern LONGEST target_write (struct target_ops *ops,
339 enum target_object object,
340 const char *annex, const gdb_byte *buf,
341 ULONGEST offset, LONGEST len);
342
343 /* Similar to target_write, except that it also calls PROGRESS with
344 the number of bytes written and the opaque BATON after every
345 successful partial write (and before the first write). This is
346 useful for progress reporting and user interaction while writing
347 data. To abort the transfer, the progress callback can throw an
348 exception. */
349
350 LONGEST target_write_with_progress (struct target_ops *ops,
351 enum target_object object,
352 const char *annex, const gdb_byte *buf,
353 ULONGEST offset, LONGEST len,
354 void (*progress) (ULONGEST, void *),
355 void *baton);
356
357 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
358 be read using OPS. The return value will be -1 if the transfer
359 fails or is not supported; 0 if the object is empty; or the length
360 of the object otherwise. If a positive value is returned, a
361 sufficiently large buffer will be allocated using xmalloc and
362 returned in *BUF_P containing the contents of the object.
363
364 This method should be used for objects sufficiently small to store
365 in a single xmalloc'd buffer, when no fixed bound on the object's
366 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
367 through this function. */
368
369 extern LONGEST target_read_alloc (struct target_ops *ops,
370 enum target_object object,
371 const char *annex, gdb_byte **buf_p);
372
373 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
374 returned as a string, allocated using xmalloc. If an error occurs
375 or the transfer is unsupported, NULL is returned. Empty objects
376 are returned as allocated but empty strings. A warning is issued
377 if the result contains any embedded NUL bytes. */
378
379 extern char *target_read_stralloc (struct target_ops *ops,
380 enum target_object object,
381 const char *annex);
382
383 /* Wrappers to target read/write that perform memory transfers. They
384 throw an error if the memory transfer fails.
385
386 NOTE: cagney/2003-10-23: The naming schema is lifted from
387 "frame.h". The parameter order is lifted from get_frame_memory,
388 which in turn lifted it from read_memory. */
389
390 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
391 gdb_byte *buf, LONGEST len);
392 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
393 CORE_ADDR addr, int len,
394 enum bfd_endian byte_order);
395 \f
396 struct thread_info; /* fwd decl for parameter list below: */
397
398 struct target_ops
399 {
400 struct target_ops *beneath; /* To the target under this one. */
401 char *to_shortname; /* Name this target type */
402 char *to_longname; /* Name for printing */
403 char *to_doc; /* Documentation. Does not include trailing
404 newline, and starts with a one-line descrip-
405 tion (probably similar to to_longname). */
406 /* Per-target scratch pad. */
407 void *to_data;
408 /* The open routine takes the rest of the parameters from the
409 command, and (if successful) pushes a new target onto the
410 stack. Targets should supply this routine, if only to provide
411 an error message. */
412 void (*to_open) (char *, int);
413 /* Old targets with a static target vector provide "to_close".
414 New re-entrant targets provide "to_xclose" and that is expected
415 to xfree everything (including the "struct target_ops"). */
416 void (*to_xclose) (struct target_ops *targ, int quitting);
417 void (*to_close) (int);
418 void (*to_attach) (struct target_ops *ops, char *, int);
419 void (*to_post_attach) (int);
420 void (*to_detach) (struct target_ops *ops, char *, int);
421 void (*to_disconnect) (struct target_ops *, char *, int);
422 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
423 ptid_t (*to_wait) (struct target_ops *,
424 ptid_t, struct target_waitstatus *, int);
425 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
426 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
427 void (*to_prepare_to_store) (struct regcache *);
428
429 /* Transfer LEN bytes of memory between GDB address MYADDR and
430 target address MEMADDR. If WRITE, transfer them to the target, else
431 transfer them from the target. TARGET is the target from which we
432 get this function.
433
434 Return value, N, is one of the following:
435
436 0 means that we can't handle this. If errno has been set, it is the
437 error which prevented us from doing it (FIXME: What about bfd_error?).
438
439 positive (call it N) means that we have transferred N bytes
440 starting at MEMADDR. We might be able to handle more bytes
441 beyond this length, but no promises.
442
443 negative (call its absolute value N) means that we cannot
444 transfer right at MEMADDR, but we could transfer at least
445 something at MEMADDR + N.
446
447 NOTE: cagney/2004-10-01: This has been entirely superseeded by
448 to_xfer_partial and inferior inheritance. */
449
450 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
451 int len, int write,
452 struct mem_attrib *attrib,
453 struct target_ops *target);
454
455 void (*to_files_info) (struct target_ops *);
456 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
458 int (*to_can_use_hw_breakpoint) (int, int, int);
459 int (*to_ranged_break_num_registers) (struct target_ops *);
460 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
461 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
462
463 /* Documentation of what the two routines below are expected to do is
464 provided with the corresponding target_* macros. */
465 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
466 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
467
468 int (*to_insert_mask_watchpoint) (struct target_ops *,
469 CORE_ADDR, CORE_ADDR, int);
470 int (*to_remove_mask_watchpoint) (struct target_ops *,
471 CORE_ADDR, CORE_ADDR, int);
472 int (*to_stopped_by_watchpoint) (void);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
476 int (*to_watchpoint_addr_within_range) (struct target_ops *,
477 CORE_ADDR, CORE_ADDR, int);
478
479 /* Documentation of this routine is provided with the corresponding
480 target_* macro. */
481 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
482
483 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
484 struct expression *);
485 int (*to_masked_watch_num_registers) (struct target_ops *,
486 CORE_ADDR, CORE_ADDR);
487 void (*to_terminal_init) (void);
488 void (*to_terminal_inferior) (void);
489 void (*to_terminal_ours_for_output) (void);
490 void (*to_terminal_ours) (void);
491 void (*to_terminal_save_ours) (void);
492 void (*to_terminal_info) (char *, int);
493 void (*to_kill) (struct target_ops *);
494 void (*to_load) (char *, int);
495 void (*to_create_inferior) (struct target_ops *,
496 char *, char *, char **, int);
497 void (*to_post_startup_inferior) (ptid_t);
498 int (*to_insert_fork_catchpoint) (int);
499 int (*to_remove_fork_catchpoint) (int);
500 int (*to_insert_vfork_catchpoint) (int);
501 int (*to_remove_vfork_catchpoint) (int);
502 int (*to_follow_fork) (struct target_ops *, int);
503 int (*to_insert_exec_catchpoint) (int);
504 int (*to_remove_exec_catchpoint) (int);
505 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
506 int (*to_has_exited) (int, int, int *);
507 void (*to_mourn_inferior) (struct target_ops *);
508 int (*to_can_run) (void);
509
510 /* Documentation of this routine is provided with the corresponding
511 target_* macro. */
512 void (*to_pass_signals) (int, unsigned char *);
513
514 /* Documentation of this routine is provided with the
515 corresponding target_* function. */
516 void (*to_program_signals) (int, unsigned char *);
517
518 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
519 void (*to_find_new_threads) (struct target_ops *);
520 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
521 char *(*to_extra_thread_info) (struct thread_info *);
522 char *(*to_thread_name) (struct thread_info *);
523 void (*to_stop) (ptid_t);
524 void (*to_rcmd) (char *command, struct ui_file *output);
525 char *(*to_pid_to_exec_file) (int pid);
526 void (*to_log_command) (const char *);
527 struct target_section_table *(*to_get_section_table) (struct target_ops *);
528 enum strata to_stratum;
529 int (*to_has_all_memory) (struct target_ops *);
530 int (*to_has_memory) (struct target_ops *);
531 int (*to_has_stack) (struct target_ops *);
532 int (*to_has_registers) (struct target_ops *);
533 int (*to_has_execution) (struct target_ops *, ptid_t);
534 int to_has_thread_control; /* control thread execution */
535 int to_attach_no_wait;
536 /* ASYNC target controls */
537 int (*to_can_async_p) (void);
538 int (*to_is_async_p) (void);
539 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
540 int (*to_supports_non_stop) (void);
541 /* find_memory_regions support method for gcore */
542 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
543 /* make_corefile_notes support method for gcore */
544 char * (*to_make_corefile_notes) (bfd *, int *);
545 /* get_bookmark support method for bookmarks */
546 gdb_byte * (*to_get_bookmark) (char *, int);
547 /* goto_bookmark support method for bookmarks */
548 void (*to_goto_bookmark) (gdb_byte *, int);
549 /* Return the thread-local address at OFFSET in the
550 thread-local storage for the thread PTID and the shared library
551 or executable file given by OBJFILE. If that block of
552 thread-local storage hasn't been allocated yet, this function
553 may return an error. */
554 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
555 ptid_t ptid,
556 CORE_ADDR load_module_addr,
557 CORE_ADDR offset);
558
559 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
560 OBJECT. The OFFSET, for a seekable object, specifies the
561 starting point. The ANNEX can be used to provide additional
562 data-specific information to the target.
563
564 Return the number of bytes actually transfered, zero when no
565 further transfer is possible, and -1 when the transfer is not
566 supported. Return of a positive value smaller than LEN does
567 not indicate the end of the object, only the end of the
568 transfer; higher level code should continue transferring if
569 desired. This is handled in target.c.
570
571 The interface does not support a "retry" mechanism. Instead it
572 assumes that at least one byte will be transfered on each
573 successful call.
574
575 NOTE: cagney/2003-10-17: The current interface can lead to
576 fragmented transfers. Lower target levels should not implement
577 hacks, such as enlarging the transfer, in an attempt to
578 compensate for this. Instead, the target stack should be
579 extended so that it implements supply/collect methods and a
580 look-aside object cache. With that available, the lowest
581 target can safely and freely "push" data up the stack.
582
583 See target_read and target_write for more information. One,
584 and only one, of readbuf or writebuf must be non-NULL. */
585
586 LONGEST (*to_xfer_partial) (struct target_ops *ops,
587 enum target_object object, const char *annex,
588 gdb_byte *readbuf, const gdb_byte *writebuf,
589 ULONGEST offset, LONGEST len);
590
591 /* Returns the memory map for the target. A return value of NULL
592 means that no memory map is available. If a memory address
593 does not fall within any returned regions, it's assumed to be
594 RAM. The returned memory regions should not overlap.
595
596 The order of regions does not matter; target_memory_map will
597 sort regions by starting address. For that reason, this
598 function should not be called directly except via
599 target_memory_map.
600
601 This method should not cache data; if the memory map could
602 change unexpectedly, it should be invalidated, and higher
603 layers will re-fetch it. */
604 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
605
606 /* Erases the region of flash memory starting at ADDRESS, of
607 length LENGTH.
608
609 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
610 on flash block boundaries, as reported by 'to_memory_map'. */
611 void (*to_flash_erase) (struct target_ops *,
612 ULONGEST address, LONGEST length);
613
614 /* Finishes a flash memory write sequence. After this operation
615 all flash memory should be available for writing and the result
616 of reading from areas written by 'to_flash_write' should be
617 equal to what was written. */
618 void (*to_flash_done) (struct target_ops *);
619
620 /* Describe the architecture-specific features of this target.
621 Returns the description found, or NULL if no description
622 was available. */
623 const struct target_desc *(*to_read_description) (struct target_ops *ops);
624
625 /* Build the PTID of the thread on which a given task is running,
626 based on LWP and THREAD. These values are extracted from the
627 task Private_Data section of the Ada Task Control Block, and
628 their interpretation depends on the target. */
629 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
630
631 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
632 Return 0 if *READPTR is already at the end of the buffer.
633 Return -1 if there is insufficient buffer for a whole entry.
634 Return 1 if an entry was read into *TYPEP and *VALP. */
635 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
636 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
637
638 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
639 sequence of bytes in PATTERN with length PATTERN_LEN.
640
641 The result is 1 if found, 0 if not found, and -1 if there was an error
642 requiring halting of the search (e.g. memory read error).
643 If the pattern is found the address is recorded in FOUND_ADDRP. */
644 int (*to_search_memory) (struct target_ops *ops,
645 CORE_ADDR start_addr, ULONGEST search_space_len,
646 const gdb_byte *pattern, ULONGEST pattern_len,
647 CORE_ADDR *found_addrp);
648
649 /* Can target execute in reverse? */
650 int (*to_can_execute_reverse) (void);
651
652 /* The direction the target is currently executing. Must be
653 implemented on targets that support reverse execution and async
654 mode. The default simply returns forward execution. */
655 enum exec_direction_kind (*to_execution_direction) (void);
656
657 /* Does this target support debugging multiple processes
658 simultaneously? */
659 int (*to_supports_multi_process) (void);
660
661 /* Does this target support enabling and disabling tracepoints while a trace
662 experiment is running? */
663 int (*to_supports_enable_disable_tracepoint) (void);
664
665 /* Does this target support disabling address space randomization? */
666 int (*to_supports_disable_randomization) (void);
667
668 /* Does this target support the tracenz bytecode for string collection? */
669 int (*to_supports_string_tracing) (void);
670
671 /* Does this target support evaluation of breakpoint conditions on its
672 end? */
673 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
674
675 /* Determine current architecture of thread PTID.
676
677 The target is supposed to determine the architecture of the code where
678 the target is currently stopped at (on Cell, if a target is in spu_run,
679 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
680 This is architecture used to perform decr_pc_after_break adjustment,
681 and also determines the frame architecture of the innermost frame.
682 ptrace operations need to operate according to target_gdbarch.
683
684 The default implementation always returns target_gdbarch. */
685 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
686
687 /* Determine current address space of thread PTID.
688
689 The default implementation always returns the inferior's
690 address space. */
691 struct address_space *(*to_thread_address_space) (struct target_ops *,
692 ptid_t);
693
694 /* Target file operations. */
695
696 /* Open FILENAME on the target, using FLAGS and MODE. Return a
697 target file descriptor, or -1 if an error occurs (and set
698 *TARGET_ERRNO). */
699 int (*to_fileio_open) (const char *filename, int flags, int mode,
700 int *target_errno);
701
702 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
703 Return the number of bytes written, or -1 if an error occurs
704 (and set *TARGET_ERRNO). */
705 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
706 ULONGEST offset, int *target_errno);
707
708 /* Read up to LEN bytes FD on the target into READ_BUF.
709 Return the number of bytes read, or -1 if an error occurs
710 (and set *TARGET_ERRNO). */
711 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
712 ULONGEST offset, int *target_errno);
713
714 /* Close FD on the target. Return 0, or -1 if an error occurs
715 (and set *TARGET_ERRNO). */
716 int (*to_fileio_close) (int fd, int *target_errno);
717
718 /* Unlink FILENAME on the target. Return 0, or -1 if an error
719 occurs (and set *TARGET_ERRNO). */
720 int (*to_fileio_unlink) (const char *filename, int *target_errno);
721
722 /* Read value of symbolic link FILENAME on the target. Return a
723 null-terminated string allocated via xmalloc, or NULL if an error
724 occurs (and set *TARGET_ERRNO). */
725 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
726
727
728 /* Implement the "info proc" command. */
729 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
730
731 /* Tracepoint-related operations. */
732
733 /* Prepare the target for a tracing run. */
734 void (*to_trace_init) (void);
735
736 /* Send full details of a tracepoint location to the target. */
737 void (*to_download_tracepoint) (struct bp_location *location);
738
739 /* Is the target able to download tracepoint locations in current
740 state? */
741 int (*to_can_download_tracepoint) (void);
742
743 /* Send full details of a trace state variable to the target. */
744 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
745
746 /* Enable a tracepoint on the target. */
747 void (*to_enable_tracepoint) (struct bp_location *location);
748
749 /* Disable a tracepoint on the target. */
750 void (*to_disable_tracepoint) (struct bp_location *location);
751
752 /* Inform the target info of memory regions that are readonly
753 (such as text sections), and so it should return data from
754 those rather than look in the trace buffer. */
755 void (*to_trace_set_readonly_regions) (void);
756
757 /* Start a trace run. */
758 void (*to_trace_start) (void);
759
760 /* Get the current status of a tracing run. */
761 int (*to_get_trace_status) (struct trace_status *ts);
762
763 void (*to_get_tracepoint_status) (struct breakpoint *tp,
764 struct uploaded_tp *utp);
765
766 /* Stop a trace run. */
767 void (*to_trace_stop) (void);
768
769 /* Ask the target to find a trace frame of the given type TYPE,
770 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
771 number of the trace frame, and also the tracepoint number at
772 TPP. If no trace frame matches, return -1. May throw if the
773 operation fails. */
774 int (*to_trace_find) (enum trace_find_type type, int num,
775 ULONGEST addr1, ULONGEST addr2, int *tpp);
776
777 /* Get the value of the trace state variable number TSV, returning
778 1 if the value is known and writing the value itself into the
779 location pointed to by VAL, else returning 0. */
780 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
781
782 int (*to_save_trace_data) (const char *filename);
783
784 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
785
786 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
787
788 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
789 ULONGEST offset, LONGEST len);
790
791 /* Get the minimum length of instruction on which a fast tracepoint
792 may be set on the target. If this operation is unsupported,
793 return -1. If for some reason the minimum length cannot be
794 determined, return 0. */
795 int (*to_get_min_fast_tracepoint_insn_len) (void);
796
797 /* Set the target's tracing behavior in response to unexpected
798 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
799 void (*to_set_disconnected_tracing) (int val);
800 void (*to_set_circular_trace_buffer) (int val);
801
802 /* Add/change textual notes about the trace run, returning 1 if
803 successful, 0 otherwise. */
804 int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
805
806 /* Return the processor core that thread PTID was last seen on.
807 This information is updated only when:
808 - update_thread_list is called
809 - thread stops
810 If the core cannot be determined -- either for the specified
811 thread, or right now, or in this debug session, or for this
812 target -- return -1. */
813 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
814
815 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
816 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
817 a match, 0 if there's a mismatch, and -1 if an error is
818 encountered while reading memory. */
819 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
820 CORE_ADDR memaddr, ULONGEST size);
821
822 /* Return the address of the start of the Thread Information Block
823 a Windows OS specific feature. */
824 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
825
826 /* Send the new settings of write permission variables. */
827 void (*to_set_permissions) (void);
828
829 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
830 with its details. Return 1 on success, 0 on failure. */
831 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
832 struct static_tracepoint_marker *marker);
833
834 /* Return a vector of all tracepoints markers string id ID, or all
835 markers if ID is NULL. */
836 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
837 (const char *id);
838
839 /* Return a traceframe info object describing the current
840 traceframe's contents. This method should not cache data;
841 higher layers take care of caching, invalidating, and
842 re-fetching when necessary. */
843 struct traceframe_info *(*to_traceframe_info) (void);
844
845 /* Ask the target to use or not to use agent according to USE. Return 1
846 successful, 0 otherwise. */
847 int (*to_use_agent) (int use);
848
849 /* Is the target able to use agent in current state? */
850 int (*to_can_use_agent) (void);
851
852 int to_magic;
853 /* Need sub-structure for target machine related rather than comm related?
854 */
855 };
856
857 /* Magic number for checking ops size. If a struct doesn't end with this
858 number, somebody changed the declaration but didn't change all the
859 places that initialize one. */
860
861 #define OPS_MAGIC 3840
862
863 /* The ops structure for our "current" target process. This should
864 never be NULL. If there is no target, it points to the dummy_target. */
865
866 extern struct target_ops current_target;
867
868 /* Define easy words for doing these operations on our current target. */
869
870 #define target_shortname (current_target.to_shortname)
871 #define target_longname (current_target.to_longname)
872
873 /* Does whatever cleanup is required for a target that we are no
874 longer going to be calling. QUITTING indicates that GDB is exiting
875 and should not get hung on an error (otherwise it is important to
876 perform clean termination, even if it takes a while). This routine
877 is automatically always called after popping the target off the
878 target stack - the target's own methods are no longer available
879 through the target vector. Closing file descriptors and freeing all
880 memory allocated memory are typical things it should do. */
881
882 void target_close (struct target_ops *targ, int quitting);
883
884 /* Attaches to a process on the target side. Arguments are as passed
885 to the `attach' command by the user. This routine can be called
886 when the target is not on the target-stack, if the target_can_run
887 routine returns 1; in that case, it must push itself onto the stack.
888 Upon exit, the target should be ready for normal operations, and
889 should be ready to deliver the status of the process immediately
890 (without waiting) to an upcoming target_wait call. */
891
892 void target_attach (char *, int);
893
894 /* Some targets don't generate traps when attaching to the inferior,
895 or their target_attach implementation takes care of the waiting.
896 These targets must set to_attach_no_wait. */
897
898 #define target_attach_no_wait \
899 (current_target.to_attach_no_wait)
900
901 /* The target_attach operation places a process under debugger control,
902 and stops the process.
903
904 This operation provides a target-specific hook that allows the
905 necessary bookkeeping to be performed after an attach completes. */
906 #define target_post_attach(pid) \
907 (*current_target.to_post_attach) (pid)
908
909 /* Takes a program previously attached to and detaches it.
910 The program may resume execution (some targets do, some don't) and will
911 no longer stop on signals, etc. We better not have left any breakpoints
912 in the program or it'll die when it hits one. ARGS is arguments
913 typed by the user (e.g. a signal to send the process). FROM_TTY
914 says whether to be verbose or not. */
915
916 extern void target_detach (char *, int);
917
918 /* Disconnect from the current target without resuming it (leaving it
919 waiting for a debugger). */
920
921 extern void target_disconnect (char *, int);
922
923 /* Resume execution of the target process PTID (or a group of
924 threads). STEP says whether to single-step or to run free; SIGGNAL
925 is the signal to be given to the target, or GDB_SIGNAL_0 for no
926 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
927 PTID means `step/resume only this process id'. A wildcard PTID
928 (all threads, or all threads of process) means `step/resume
929 INFERIOR_PTID, and let other threads (for which the wildcard PTID
930 matches) resume with their 'thread->suspend.stop_signal' signal
931 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
932 if in "no pass" state. */
933
934 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
935
936 /* Wait for process pid to do something. PTID = -1 to wait for any
937 pid to do something. Return pid of child, or -1 in case of error;
938 store status through argument pointer STATUS. Note that it is
939 _NOT_ OK to throw_exception() out of target_wait() without popping
940 the debugging target from the stack; GDB isn't prepared to get back
941 to the prompt with a debugging target but without the frame cache,
942 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
943 options. */
944
945 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
946 int options);
947
948 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
949
950 extern void target_fetch_registers (struct regcache *regcache, int regno);
951
952 /* Store at least register REGNO, or all regs if REGNO == -1.
953 It can store as many registers as it wants to, so target_prepare_to_store
954 must have been previously called. Calls error() if there are problems. */
955
956 extern void target_store_registers (struct regcache *regcache, int regs);
957
958 /* Get ready to modify the registers array. On machines which store
959 individual registers, this doesn't need to do anything. On machines
960 which store all the registers in one fell swoop, this makes sure
961 that REGISTERS contains all the registers from the program being
962 debugged. */
963
964 #define target_prepare_to_store(regcache) \
965 (*current_target.to_prepare_to_store) (regcache)
966
967 /* Determine current address space of thread PTID. */
968
969 struct address_space *target_thread_address_space (ptid_t);
970
971 /* Implement the "info proc" command. */
972
973 void target_info_proc (char *, enum info_proc_what);
974
975 /* Returns true if this target can debug multiple processes
976 simultaneously. */
977
978 #define target_supports_multi_process() \
979 (*current_target.to_supports_multi_process) ()
980
981 /* Returns true if this target can disable address space randomization. */
982
983 int target_supports_disable_randomization (void);
984
985 /* Returns true if this target can enable and disable tracepoints
986 while a trace experiment is running. */
987
988 #define target_supports_enable_disable_tracepoint() \
989 (*current_target.to_supports_enable_disable_tracepoint) ()
990
991 #define target_supports_string_tracing() \
992 (*current_target.to_supports_string_tracing) ()
993
994 /* Returns true if this target can handle breakpoint conditions
995 on its end. */
996
997 #define target_supports_evaluation_of_breakpoint_conditions() \
998 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
999
1000 /* Invalidate all target dcaches. */
1001 extern void target_dcache_invalidate (void);
1002
1003 extern int target_read_string (CORE_ADDR, char **, int, int *);
1004
1005 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1006 ssize_t len);
1007
1008 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1009
1010 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1011 ssize_t len);
1012
1013 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1014 ssize_t len);
1015
1016 /* Fetches the target's memory map. If one is found it is sorted
1017 and returned, after some consistency checking. Otherwise, NULL
1018 is returned. */
1019 VEC(mem_region_s) *target_memory_map (void);
1020
1021 /* Erase the specified flash region. */
1022 void target_flash_erase (ULONGEST address, LONGEST length);
1023
1024 /* Finish a sequence of flash operations. */
1025 void target_flash_done (void);
1026
1027 /* Describes a request for a memory write operation. */
1028 struct memory_write_request
1029 {
1030 /* Begining address that must be written. */
1031 ULONGEST begin;
1032 /* Past-the-end address. */
1033 ULONGEST end;
1034 /* The data to write. */
1035 gdb_byte *data;
1036 /* A callback baton for progress reporting for this request. */
1037 void *baton;
1038 };
1039 typedef struct memory_write_request memory_write_request_s;
1040 DEF_VEC_O(memory_write_request_s);
1041
1042 /* Enumeration specifying different flash preservation behaviour. */
1043 enum flash_preserve_mode
1044 {
1045 flash_preserve,
1046 flash_discard
1047 };
1048
1049 /* Write several memory blocks at once. This version can be more
1050 efficient than making several calls to target_write_memory, in
1051 particular because it can optimize accesses to flash memory.
1052
1053 Moreover, this is currently the only memory access function in gdb
1054 that supports writing to flash memory, and it should be used for
1055 all cases where access to flash memory is desirable.
1056
1057 REQUESTS is the vector (see vec.h) of memory_write_request.
1058 PRESERVE_FLASH_P indicates what to do with blocks which must be
1059 erased, but not completely rewritten.
1060 PROGRESS_CB is a function that will be periodically called to provide
1061 feedback to user. It will be called with the baton corresponding
1062 to the request currently being written. It may also be called
1063 with a NULL baton, when preserved flash sectors are being rewritten.
1064
1065 The function returns 0 on success, and error otherwise. */
1066 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1067 enum flash_preserve_mode preserve_flash_p,
1068 void (*progress_cb) (ULONGEST, void *));
1069
1070 /* From infrun.c. */
1071
1072 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
1073
1074 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
1075
1076 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
1077
1078 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
1079
1080 /* Print a line about the current target. */
1081
1082 #define target_files_info() \
1083 (*current_target.to_files_info) (&current_target)
1084
1085 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1086 machine. Result is 0 for success, or an errno value. */
1087
1088 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1089 struct bp_target_info *bp_tgt);
1090
1091 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1092 machine. Result is 0 for success, or an errno value. */
1093
1094 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1095 struct bp_target_info *bp_tgt);
1096
1097 /* Initialize the terminal settings we record for the inferior,
1098 before we actually run the inferior. */
1099
1100 #define target_terminal_init() \
1101 (*current_target.to_terminal_init) ()
1102
1103 /* Put the inferior's terminal settings into effect.
1104 This is preparation for starting or resuming the inferior. */
1105
1106 extern void target_terminal_inferior (void);
1107
1108 /* Put some of our terminal settings into effect,
1109 enough to get proper results from our output,
1110 but do not change into or out of RAW mode
1111 so that no input is discarded.
1112
1113 After doing this, either terminal_ours or terminal_inferior
1114 should be called to get back to a normal state of affairs. */
1115
1116 #define target_terminal_ours_for_output() \
1117 (*current_target.to_terminal_ours_for_output) ()
1118
1119 /* Put our terminal settings into effect.
1120 First record the inferior's terminal settings
1121 so they can be restored properly later. */
1122
1123 #define target_terminal_ours() \
1124 (*current_target.to_terminal_ours) ()
1125
1126 /* Save our terminal settings.
1127 This is called from TUI after entering or leaving the curses
1128 mode. Since curses modifies our terminal this call is here
1129 to take this change into account. */
1130
1131 #define target_terminal_save_ours() \
1132 (*current_target.to_terminal_save_ours) ()
1133
1134 /* Print useful information about our terminal status, if such a thing
1135 exists. */
1136
1137 #define target_terminal_info(arg, from_tty) \
1138 (*current_target.to_terminal_info) (arg, from_tty)
1139
1140 /* Kill the inferior process. Make it go away. */
1141
1142 extern void target_kill (void);
1143
1144 /* Load an executable file into the target process. This is expected
1145 to not only bring new code into the target process, but also to
1146 update GDB's symbol tables to match.
1147
1148 ARG contains command-line arguments, to be broken down with
1149 buildargv (). The first non-switch argument is the filename to
1150 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1151 0)), which is an offset to apply to the load addresses of FILE's
1152 sections. The target may define switches, or other non-switch
1153 arguments, as it pleases. */
1154
1155 extern void target_load (char *arg, int from_tty);
1156
1157 /* Start an inferior process and set inferior_ptid to its pid.
1158 EXEC_FILE is the file to run.
1159 ALLARGS is a string containing the arguments to the program.
1160 ENV is the environment vector to pass. Errors reported with error().
1161 On VxWorks and various standalone systems, we ignore exec_file. */
1162
1163 void target_create_inferior (char *exec_file, char *args,
1164 char **env, int from_tty);
1165
1166 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1167 notification of inferior events such as fork and vork immediately
1168 after the inferior is created. (This because of how gdb gets an
1169 inferior created via invoking a shell to do it. In such a scenario,
1170 if the shell init file has commands in it, the shell will fork and
1171 exec for each of those commands, and we will see each such fork
1172 event. Very bad.)
1173
1174 Such targets will supply an appropriate definition for this function. */
1175
1176 #define target_post_startup_inferior(ptid) \
1177 (*current_target.to_post_startup_inferior) (ptid)
1178
1179 /* On some targets, we can catch an inferior fork or vfork event when
1180 it occurs. These functions insert/remove an already-created
1181 catchpoint for such events. They return 0 for success, 1 if the
1182 catchpoint type is not supported and -1 for failure. */
1183
1184 #define target_insert_fork_catchpoint(pid) \
1185 (*current_target.to_insert_fork_catchpoint) (pid)
1186
1187 #define target_remove_fork_catchpoint(pid) \
1188 (*current_target.to_remove_fork_catchpoint) (pid)
1189
1190 #define target_insert_vfork_catchpoint(pid) \
1191 (*current_target.to_insert_vfork_catchpoint) (pid)
1192
1193 #define target_remove_vfork_catchpoint(pid) \
1194 (*current_target.to_remove_vfork_catchpoint) (pid)
1195
1196 /* If the inferior forks or vforks, this function will be called at
1197 the next resume in order to perform any bookkeeping and fiddling
1198 necessary to continue debugging either the parent or child, as
1199 requested, and releasing the other. Information about the fork
1200 or vfork event is available via get_last_target_status ().
1201 This function returns 1 if the inferior should not be resumed
1202 (i.e. there is another event pending). */
1203
1204 int target_follow_fork (int follow_child);
1205
1206 /* On some targets, we can catch an inferior exec event when it
1207 occurs. These functions insert/remove an already-created
1208 catchpoint for such events. They return 0 for success, 1 if the
1209 catchpoint type is not supported and -1 for failure. */
1210
1211 #define target_insert_exec_catchpoint(pid) \
1212 (*current_target.to_insert_exec_catchpoint) (pid)
1213
1214 #define target_remove_exec_catchpoint(pid) \
1215 (*current_target.to_remove_exec_catchpoint) (pid)
1216
1217 /* Syscall catch.
1218
1219 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1220 If NEEDED is zero, it means the target can disable the mechanism to
1221 catch system calls because there are no more catchpoints of this type.
1222
1223 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1224 being requested. In this case, both TABLE_SIZE and TABLE should
1225 be ignored.
1226
1227 TABLE_SIZE is the number of elements in TABLE. It only matters if
1228 ANY_COUNT is zero.
1229
1230 TABLE is an array of ints, indexed by syscall number. An element in
1231 this array is nonzero if that syscall should be caught. This argument
1232 only matters if ANY_COUNT is zero.
1233
1234 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1235 for failure. */
1236
1237 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1238 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1239 table_size, table)
1240
1241 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1242 exit code of PID, if any. */
1243
1244 #define target_has_exited(pid,wait_status,exit_status) \
1245 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1246
1247 /* The debugger has completed a blocking wait() call. There is now
1248 some process event that must be processed. This function should
1249 be defined by those targets that require the debugger to perform
1250 cleanup or internal state changes in response to the process event. */
1251
1252 /* The inferior process has died. Do what is right. */
1253
1254 void target_mourn_inferior (void);
1255
1256 /* Does target have enough data to do a run or attach command? */
1257
1258 #define target_can_run(t) \
1259 ((t)->to_can_run) ()
1260
1261 /* Set list of signals to be handled in the target.
1262
1263 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1264 (enum gdb_signal). For every signal whose entry in this array is
1265 non-zero, the target is allowed -but not required- to skip reporting
1266 arrival of the signal to the GDB core by returning from target_wait,
1267 and to pass the signal directly to the inferior instead.
1268
1269 However, if the target is hardware single-stepping a thread that is
1270 about to receive a signal, it needs to be reported in any case, even
1271 if mentioned in a previous target_pass_signals call. */
1272
1273 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1274
1275 /* Set list of signals the target may pass to the inferior. This
1276 directly maps to the "handle SIGNAL pass/nopass" setting.
1277
1278 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1279 number (enum gdb_signal). For every signal whose entry in this
1280 array is non-zero, the target is allowed to pass the signal to the
1281 inferior. Signals not present in the array shall be silently
1282 discarded. This does not influence whether to pass signals to the
1283 inferior as a result of a target_resume call. This is useful in
1284 scenarios where the target needs to decide whether to pass or not a
1285 signal to the inferior without GDB core involvement, such as for
1286 example, when detaching (as threads may have been suspended with
1287 pending signals not reported to GDB). */
1288
1289 extern void target_program_signals (int nsig, unsigned char *program_signals);
1290
1291 /* Check to see if a thread is still alive. */
1292
1293 extern int target_thread_alive (ptid_t ptid);
1294
1295 /* Query for new threads and add them to the thread list. */
1296
1297 extern void target_find_new_threads (void);
1298
1299 /* Make target stop in a continuable fashion. (For instance, under
1300 Unix, this should act like SIGSTOP). This function is normally
1301 used by GUIs to implement a stop button. */
1302
1303 extern void target_stop (ptid_t ptid);
1304
1305 /* Send the specified COMMAND to the target's monitor
1306 (shell,interpreter) for execution. The result of the query is
1307 placed in OUTBUF. */
1308
1309 #define target_rcmd(command, outbuf) \
1310 (*current_target.to_rcmd) (command, outbuf)
1311
1312
1313 /* Does the target include all of memory, or only part of it? This
1314 determines whether we look up the target chain for other parts of
1315 memory if this target can't satisfy a request. */
1316
1317 extern int target_has_all_memory_1 (void);
1318 #define target_has_all_memory target_has_all_memory_1 ()
1319
1320 /* Does the target include memory? (Dummy targets don't.) */
1321
1322 extern int target_has_memory_1 (void);
1323 #define target_has_memory target_has_memory_1 ()
1324
1325 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1326 we start a process.) */
1327
1328 extern int target_has_stack_1 (void);
1329 #define target_has_stack target_has_stack_1 ()
1330
1331 /* Does the target have registers? (Exec files don't.) */
1332
1333 extern int target_has_registers_1 (void);
1334 #define target_has_registers target_has_registers_1 ()
1335
1336 /* Does the target have execution? Can we make it jump (through
1337 hoops), or pop its stack a few times? This means that the current
1338 target is currently executing; for some targets, that's the same as
1339 whether or not the target is capable of execution, but there are
1340 also targets which can be current while not executing. In that
1341 case this will become true after target_create_inferior or
1342 target_attach. */
1343
1344 extern int target_has_execution_1 (ptid_t);
1345
1346 /* Like target_has_execution_1, but always passes inferior_ptid. */
1347
1348 extern int target_has_execution_current (void);
1349
1350 #define target_has_execution target_has_execution_current ()
1351
1352 /* Default implementations for process_stratum targets. Return true
1353 if there's a selected inferior, false otherwise. */
1354
1355 extern int default_child_has_all_memory (struct target_ops *ops);
1356 extern int default_child_has_memory (struct target_ops *ops);
1357 extern int default_child_has_stack (struct target_ops *ops);
1358 extern int default_child_has_registers (struct target_ops *ops);
1359 extern int default_child_has_execution (struct target_ops *ops,
1360 ptid_t the_ptid);
1361
1362 /* Can the target support the debugger control of thread execution?
1363 Can it lock the thread scheduler? */
1364
1365 #define target_can_lock_scheduler \
1366 (current_target.to_has_thread_control & tc_schedlock)
1367
1368 /* Should the target enable async mode if it is supported? Temporary
1369 cludge until async mode is a strict superset of sync mode. */
1370 extern int target_async_permitted;
1371
1372 /* Can the target support asynchronous execution? */
1373 #define target_can_async_p() (current_target.to_can_async_p ())
1374
1375 /* Is the target in asynchronous execution mode? */
1376 #define target_is_async_p() (current_target.to_is_async_p ())
1377
1378 int target_supports_non_stop (void);
1379
1380 /* Put the target in async mode with the specified callback function. */
1381 #define target_async(CALLBACK,CONTEXT) \
1382 (current_target.to_async ((CALLBACK), (CONTEXT)))
1383
1384 #define target_execution_direction() \
1385 (current_target.to_execution_direction ())
1386
1387 /* Converts a process id to a string. Usually, the string just contains
1388 `process xyz', but on some systems it may contain
1389 `process xyz thread abc'. */
1390
1391 extern char *target_pid_to_str (ptid_t ptid);
1392
1393 extern char *normal_pid_to_str (ptid_t ptid);
1394
1395 /* Return a short string describing extra information about PID,
1396 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1397 is okay. */
1398
1399 #define target_extra_thread_info(TP) \
1400 (current_target.to_extra_thread_info (TP))
1401
1402 /* Return the thread's name. A NULL result means that the target
1403 could not determine this thread's name. */
1404
1405 extern char *target_thread_name (struct thread_info *);
1406
1407 /* Attempts to find the pathname of the executable file
1408 that was run to create a specified process.
1409
1410 The process PID must be stopped when this operation is used.
1411
1412 If the executable file cannot be determined, NULL is returned.
1413
1414 Else, a pointer to a character string containing the pathname
1415 is returned. This string should be copied into a buffer by
1416 the client if the string will not be immediately used, or if
1417 it must persist. */
1418
1419 #define target_pid_to_exec_file(pid) \
1420 (current_target.to_pid_to_exec_file) (pid)
1421
1422 /* See the to_thread_architecture description in struct target_ops. */
1423
1424 #define target_thread_architecture(ptid) \
1425 (current_target.to_thread_architecture (&current_target, ptid))
1426
1427 /*
1428 * Iterator function for target memory regions.
1429 * Calls a callback function once for each memory region 'mapped'
1430 * in the child process. Defined as a simple macro rather than
1431 * as a function macro so that it can be tested for nullity.
1432 */
1433
1434 #define target_find_memory_regions(FUNC, DATA) \
1435 (current_target.to_find_memory_regions) (FUNC, DATA)
1436
1437 /*
1438 * Compose corefile .note section.
1439 */
1440
1441 #define target_make_corefile_notes(BFD, SIZE_P) \
1442 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1443
1444 /* Bookmark interfaces. */
1445 #define target_get_bookmark(ARGS, FROM_TTY) \
1446 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1447
1448 #define target_goto_bookmark(ARG, FROM_TTY) \
1449 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1450
1451 /* Hardware watchpoint interfaces. */
1452
1453 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1454 write). Only the INFERIOR_PTID task is being queried. */
1455
1456 #define target_stopped_by_watchpoint \
1457 (*current_target.to_stopped_by_watchpoint)
1458
1459 /* Non-zero if we have steppable watchpoints */
1460
1461 #define target_have_steppable_watchpoint \
1462 (current_target.to_have_steppable_watchpoint)
1463
1464 /* Non-zero if we have continuable watchpoints */
1465
1466 #define target_have_continuable_watchpoint \
1467 (current_target.to_have_continuable_watchpoint)
1468
1469 /* Provide defaults for hardware watchpoint functions. */
1470
1471 /* If the *_hw_beakpoint functions have not been defined
1472 elsewhere use the definitions in the target vector. */
1473
1474 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1475 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1476 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1477 (including this one?). OTHERTYPE is who knows what... */
1478
1479 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1480 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1481
1482 /* Returns the number of debug registers needed to watch the given
1483 memory region, or zero if not supported. */
1484
1485 #define target_region_ok_for_hw_watchpoint(addr, len) \
1486 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1487
1488
1489 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1490 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1491 COND is the expression for its condition, or NULL if there's none.
1492 Returns 0 for success, 1 if the watchpoint type is not supported,
1493 -1 for failure. */
1494
1495 #define target_insert_watchpoint(addr, len, type, cond) \
1496 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1497
1498 #define target_remove_watchpoint(addr, len, type, cond) \
1499 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1500
1501 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1502 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1503 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1504 masked watchpoints are not supported, -1 for failure. */
1505
1506 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1507
1508 /* Remove a masked watchpoint at ADDR with the mask MASK.
1509 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1510 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1511 for failure. */
1512
1513 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1514
1515 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1516 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1517
1518 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1519 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1520
1521 /* Return number of debug registers needed for a ranged breakpoint,
1522 or -1 if ranged breakpoints are not supported. */
1523
1524 extern int target_ranged_break_num_registers (void);
1525
1526 /* Return non-zero if target knows the data address which triggered this
1527 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1528 INFERIOR_PTID task is being queried. */
1529 #define target_stopped_data_address(target, addr_p) \
1530 (*target.to_stopped_data_address) (target, addr_p)
1531
1532 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1533 LENGTH bytes beginning at START. */
1534 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1535 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1536
1537 /* Return non-zero if the target is capable of using hardware to evaluate
1538 the condition expression. In this case, if the condition is false when
1539 the watched memory location changes, execution may continue without the
1540 debugger being notified.
1541
1542 Due to limitations in the hardware implementation, it may be capable of
1543 avoiding triggering the watchpoint in some cases where the condition
1544 expression is false, but may report some false positives as well.
1545 For this reason, GDB will still evaluate the condition expression when
1546 the watchpoint triggers. */
1547 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1548 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1549
1550 /* Return number of debug registers needed for a masked watchpoint,
1551 -1 if masked watchpoints are not supported or -2 if the given address
1552 and mask combination cannot be used. */
1553
1554 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1555
1556 /* Target can execute in reverse? */
1557 #define target_can_execute_reverse \
1558 (current_target.to_can_execute_reverse ? \
1559 current_target.to_can_execute_reverse () : 0)
1560
1561 extern const struct target_desc *target_read_description (struct target_ops *);
1562
1563 #define target_get_ada_task_ptid(lwp, tid) \
1564 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1565
1566 /* Utility implementation of searching memory. */
1567 extern int simple_search_memory (struct target_ops* ops,
1568 CORE_ADDR start_addr,
1569 ULONGEST search_space_len,
1570 const gdb_byte *pattern,
1571 ULONGEST pattern_len,
1572 CORE_ADDR *found_addrp);
1573
1574 /* Main entry point for searching memory. */
1575 extern int target_search_memory (CORE_ADDR start_addr,
1576 ULONGEST search_space_len,
1577 const gdb_byte *pattern,
1578 ULONGEST pattern_len,
1579 CORE_ADDR *found_addrp);
1580
1581 /* Target file operations. */
1582
1583 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1584 target file descriptor, or -1 if an error occurs (and set
1585 *TARGET_ERRNO). */
1586 extern int target_fileio_open (const char *filename, int flags, int mode,
1587 int *target_errno);
1588
1589 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1590 Return the number of bytes written, or -1 if an error occurs
1591 (and set *TARGET_ERRNO). */
1592 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1593 ULONGEST offset, int *target_errno);
1594
1595 /* Read up to LEN bytes FD on the target into READ_BUF.
1596 Return the number of bytes read, or -1 if an error occurs
1597 (and set *TARGET_ERRNO). */
1598 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1599 ULONGEST offset, int *target_errno);
1600
1601 /* Close FD on the target. Return 0, or -1 if an error occurs
1602 (and set *TARGET_ERRNO). */
1603 extern int target_fileio_close (int fd, int *target_errno);
1604
1605 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1606 occurs (and set *TARGET_ERRNO). */
1607 extern int target_fileio_unlink (const char *filename, int *target_errno);
1608
1609 /* Read value of symbolic link FILENAME on the target. Return a
1610 null-terminated string allocated via xmalloc, or NULL if an error
1611 occurs (and set *TARGET_ERRNO). */
1612 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1613
1614 /* Read target file FILENAME. The return value will be -1 if the transfer
1615 fails or is not supported; 0 if the object is empty; or the length
1616 of the object otherwise. If a positive value is returned, a
1617 sufficiently large buffer will be allocated using xmalloc and
1618 returned in *BUF_P containing the contents of the object.
1619
1620 This method should be used for objects sufficiently small to store
1621 in a single xmalloc'd buffer, when no fixed bound on the object's
1622 size is known in advance. */
1623 extern LONGEST target_fileio_read_alloc (const char *filename,
1624 gdb_byte **buf_p);
1625
1626 /* Read target file FILENAME. The result is NUL-terminated and
1627 returned as a string, allocated using xmalloc. If an error occurs
1628 or the transfer is unsupported, NULL is returned. Empty objects
1629 are returned as allocated but empty strings. A warning is issued
1630 if the result contains any embedded NUL bytes. */
1631 extern char *target_fileio_read_stralloc (const char *filename);
1632
1633
1634 /* Tracepoint-related operations. */
1635
1636 #define target_trace_init() \
1637 (*current_target.to_trace_init) ()
1638
1639 #define target_download_tracepoint(t) \
1640 (*current_target.to_download_tracepoint) (t)
1641
1642 #define target_can_download_tracepoint() \
1643 (*current_target.to_can_download_tracepoint) ()
1644
1645 #define target_download_trace_state_variable(tsv) \
1646 (*current_target.to_download_trace_state_variable) (tsv)
1647
1648 #define target_enable_tracepoint(loc) \
1649 (*current_target.to_enable_tracepoint) (loc)
1650
1651 #define target_disable_tracepoint(loc) \
1652 (*current_target.to_disable_tracepoint) (loc)
1653
1654 #define target_trace_start() \
1655 (*current_target.to_trace_start) ()
1656
1657 #define target_trace_set_readonly_regions() \
1658 (*current_target.to_trace_set_readonly_regions) ()
1659
1660 #define target_get_trace_status(ts) \
1661 (*current_target.to_get_trace_status) (ts)
1662
1663 #define target_get_tracepoint_status(tp,utp) \
1664 (*current_target.to_get_tracepoint_status) (tp, utp)
1665
1666 #define target_trace_stop() \
1667 (*current_target.to_trace_stop) ()
1668
1669 #define target_trace_find(type,num,addr1,addr2,tpp) \
1670 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1671
1672 #define target_get_trace_state_variable_value(tsv,val) \
1673 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1674
1675 #define target_save_trace_data(filename) \
1676 (*current_target.to_save_trace_data) (filename)
1677
1678 #define target_upload_tracepoints(utpp) \
1679 (*current_target.to_upload_tracepoints) (utpp)
1680
1681 #define target_upload_trace_state_variables(utsvp) \
1682 (*current_target.to_upload_trace_state_variables) (utsvp)
1683
1684 #define target_get_raw_trace_data(buf,offset,len) \
1685 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1686
1687 #define target_get_min_fast_tracepoint_insn_len() \
1688 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1689
1690 #define target_set_disconnected_tracing(val) \
1691 (*current_target.to_set_disconnected_tracing) (val)
1692
1693 #define target_set_circular_trace_buffer(val) \
1694 (*current_target.to_set_circular_trace_buffer) (val)
1695
1696 #define target_set_trace_notes(user,notes,stopnotes) \
1697 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1698
1699 #define target_get_tib_address(ptid, addr) \
1700 (*current_target.to_get_tib_address) ((ptid), (addr))
1701
1702 #define target_set_permissions() \
1703 (*current_target.to_set_permissions) ()
1704
1705 #define target_static_tracepoint_marker_at(addr, marker) \
1706 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1707
1708 #define target_static_tracepoint_markers_by_strid(marker_id) \
1709 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1710
1711 #define target_traceframe_info() \
1712 (*current_target.to_traceframe_info) ()
1713
1714 #define target_use_agent(use) \
1715 (*current_target.to_use_agent) (use)
1716
1717 #define target_can_use_agent() \
1718 (*current_target.to_can_use_agent) ()
1719
1720 /* Command logging facility. */
1721
1722 #define target_log_command(p) \
1723 do \
1724 if (current_target.to_log_command) \
1725 (*current_target.to_log_command) (p); \
1726 while (0)
1727
1728
1729 extern int target_core_of_thread (ptid_t ptid);
1730
1731 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1732 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1733 if there's a mismatch, and -1 if an error is encountered while
1734 reading memory. Throws an error if the functionality is found not
1735 to be supported by the current target. */
1736 int target_verify_memory (const gdb_byte *data,
1737 CORE_ADDR memaddr, ULONGEST size);
1738
1739 /* Routines for maintenance of the target structures...
1740
1741 add_target: Add a target to the list of all possible targets.
1742
1743 push_target: Make this target the top of the stack of currently used
1744 targets, within its particular stratum of the stack. Result
1745 is 0 if now atop the stack, nonzero if not on top (maybe
1746 should warn user).
1747
1748 unpush_target: Remove this from the stack of currently used targets,
1749 no matter where it is on the list. Returns 0 if no
1750 change, 1 if removed from stack.
1751
1752 pop_target: Remove the top thing on the stack of current targets. */
1753
1754 extern void add_target (struct target_ops *);
1755
1756 extern void push_target (struct target_ops *);
1757
1758 extern int unpush_target (struct target_ops *);
1759
1760 extern void target_pre_inferior (int);
1761
1762 extern void target_preopen (int);
1763
1764 extern void pop_target (void);
1765
1766 /* Does whatever cleanup is required to get rid of all pushed targets.
1767 QUITTING is propagated to target_close; it indicates that GDB is
1768 exiting and should not get hung on an error (otherwise it is
1769 important to perform clean termination, even if it takes a
1770 while). */
1771 extern void pop_all_targets (int quitting);
1772
1773 /* Like pop_all_targets, but pops only targets whose stratum is
1774 strictly above ABOVE_STRATUM. */
1775 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1776
1777 extern int target_is_pushed (struct target_ops *t);
1778
1779 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1780 CORE_ADDR offset);
1781
1782 /* Struct target_section maps address ranges to file sections. It is
1783 mostly used with BFD files, but can be used without (e.g. for handling
1784 raw disks, or files not in formats handled by BFD). */
1785
1786 struct target_section
1787 {
1788 CORE_ADDR addr; /* Lowest address in section */
1789 CORE_ADDR endaddr; /* 1+highest address in section */
1790
1791 struct bfd_section *the_bfd_section;
1792
1793 bfd *bfd; /* BFD file pointer */
1794 };
1795
1796 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1797
1798 struct target_section_table
1799 {
1800 struct target_section *sections;
1801 struct target_section *sections_end;
1802 };
1803
1804 /* Return the "section" containing the specified address. */
1805 struct target_section *target_section_by_addr (struct target_ops *target,
1806 CORE_ADDR addr);
1807
1808 /* Return the target section table this target (or the targets
1809 beneath) currently manipulate. */
1810
1811 extern struct target_section_table *target_get_section_table
1812 (struct target_ops *target);
1813
1814 /* From mem-break.c */
1815
1816 extern int memory_remove_breakpoint (struct gdbarch *,
1817 struct bp_target_info *);
1818
1819 extern int memory_insert_breakpoint (struct gdbarch *,
1820 struct bp_target_info *);
1821
1822 extern int default_memory_remove_breakpoint (struct gdbarch *,
1823 struct bp_target_info *);
1824
1825 extern int default_memory_insert_breakpoint (struct gdbarch *,
1826 struct bp_target_info *);
1827
1828
1829 /* From target.c */
1830
1831 extern void initialize_targets (void);
1832
1833 extern void noprocess (void) ATTRIBUTE_NORETURN;
1834
1835 extern void target_require_runnable (void);
1836
1837 extern void find_default_attach (struct target_ops *, char *, int);
1838
1839 extern void find_default_create_inferior (struct target_ops *,
1840 char *, char *, char **, int);
1841
1842 extern struct target_ops *find_run_target (void);
1843
1844 extern struct target_ops *find_target_beneath (struct target_ops *);
1845
1846 /* Read OS data object of type TYPE from the target, and return it in
1847 XML format. The result is NUL-terminated and returned as a string,
1848 allocated using xmalloc. If an error occurs or the transfer is
1849 unsupported, NULL is returned. Empty objects are returned as
1850 allocated but empty strings. */
1851
1852 extern char *target_get_osdata (const char *type);
1853
1854 \f
1855 /* Stuff that should be shared among the various remote targets. */
1856
1857 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1858 information (higher values, more information). */
1859 extern int remote_debug;
1860
1861 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1862 extern int baud_rate;
1863 /* Timeout limit for response from target. */
1864 extern int remote_timeout;
1865
1866 \f
1867
1868 /* Set the show memory breakpoints mode to show, and installs a cleanup
1869 to restore it back to the current value. */
1870 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1871
1872 extern int may_write_registers;
1873 extern int may_write_memory;
1874 extern int may_insert_breakpoints;
1875 extern int may_insert_tracepoints;
1876 extern int may_insert_fast_tracepoints;
1877 extern int may_stop;
1878
1879 extern void update_target_permissions (void);
1880
1881 \f
1882 /* Imported from machine dependent code. */
1883
1884 /* Blank target vector entries are initialized to target_ignore. */
1885 void target_ignore (void);
1886
1887 #endif /* !defined (TARGET_H) */
This page took 0.069614 seconds and 4 git commands to generate.