Heap-allocate core_target instances
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum. */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
80
81 #include "break-common.h" /* For enum target_hw_bp_type. */
82
83 enum strata
84 {
85 dummy_stratum, /* The lowest of the low */
86 file_stratum, /* Executable files, etc */
87 process_stratum, /* Executing processes or core dump files */
88 thread_stratum, /* Executing threads */
89 record_stratum, /* Support record debugging */
90 arch_stratum, /* Architecture overrides */
91 debug_stratum /* Target debug. Must be last. */
92 };
93
94 enum thread_control_capabilities
95 {
96 tc_none = 0, /* Default: can't control thread execution. */
97 tc_schedlock = 1, /* Can lock the thread scheduler. */
98 };
99
100 /* The structure below stores information about a system call.
101 It is basically used in the "catch syscall" command, and in
102 every function that gives information about a system call.
103
104 It's also good to mention that its fields represent everything
105 that we currently know about a syscall in GDB. */
106 struct syscall
107 {
108 /* The syscall number. */
109 int number;
110
111 /* The syscall name. */
112 const char *name;
113 };
114
115 /* Return a pretty printed form of TARGET_OPTIONS.
116 Space for the result is malloc'd, caller must free. */
117 extern char *target_options_to_string (int target_options);
118
119 /* Possible types of events that the inferior handler will have to
120 deal with. */
121 enum inferior_event_type
122 {
123 /* Process a normal inferior event which will result in target_wait
124 being called. */
125 INF_REG_EVENT,
126 /* We are called to do stuff after the inferior stops. */
127 INF_EXEC_COMPLETE,
128 };
129 \f
130 /* Target objects which can be transfered using target_read,
131 target_write, et cetera. */
132
133 enum target_object
134 {
135 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
136 TARGET_OBJECT_AVR,
137 /* SPU target specific transfer. See "spu-tdep.c". */
138 TARGET_OBJECT_SPU,
139 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
140 TARGET_OBJECT_MEMORY,
141 /* Memory, avoiding GDB's data cache and trusting the executable.
142 Target implementations of to_xfer_partial never need to handle
143 this object, and most callers should not use it. */
144 TARGET_OBJECT_RAW_MEMORY,
145 /* Memory known to be part of the target's stack. This is cached even
146 if it is not in a region marked as such, since it is known to be
147 "normal" RAM. */
148 TARGET_OBJECT_STACK_MEMORY,
149 /* Memory known to be part of the target code. This is cached even
150 if it is not in a region marked as such. */
151 TARGET_OBJECT_CODE_MEMORY,
152 /* Kernel Unwind Table. See "ia64-tdep.c". */
153 TARGET_OBJECT_UNWIND_TABLE,
154 /* Transfer auxilliary vector. */
155 TARGET_OBJECT_AUXV,
156 /* StackGhost cookie. See "sparc-tdep.c". */
157 TARGET_OBJECT_WCOOKIE,
158 /* Target memory map in XML format. */
159 TARGET_OBJECT_MEMORY_MAP,
160 /* Flash memory. This object can be used to write contents to
161 a previously erased flash memory. Using it without erasing
162 flash can have unexpected results. Addresses are physical
163 address on target, and not relative to flash start. */
164 TARGET_OBJECT_FLASH,
165 /* Available target-specific features, e.g. registers and coprocessors.
166 See "target-descriptions.c". ANNEX should never be empty. */
167 TARGET_OBJECT_AVAILABLE_FEATURES,
168 /* Currently loaded libraries, in XML format. */
169 TARGET_OBJECT_LIBRARIES,
170 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
171 TARGET_OBJECT_LIBRARIES_SVR4,
172 /* Currently loaded libraries specific to AIX systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_AIX,
174 /* Get OS specific data. The ANNEX specifies the type (running
175 processes, etc.). The data being transfered is expected to follow
176 the DTD specified in features/osdata.dtd. */
177 TARGET_OBJECT_OSDATA,
178 /* Extra signal info. Usually the contents of `siginfo_t' on unix
179 platforms. */
180 TARGET_OBJECT_SIGNAL_INFO,
181 /* The list of threads that are being debugged. */
182 TARGET_OBJECT_THREADS,
183 /* Collected static trace data. */
184 TARGET_OBJECT_STATIC_TRACE_DATA,
185 /* Traceframe info, in XML format. */
186 TARGET_OBJECT_TRACEFRAME_INFO,
187 /* Load maps for FDPIC systems. */
188 TARGET_OBJECT_FDPIC,
189 /* Darwin dynamic linker info data. */
190 TARGET_OBJECT_DARWIN_DYLD_INFO,
191 /* OpenVMS Unwind Information Block. */
192 TARGET_OBJECT_OPENVMS_UIB,
193 /* Branch trace data, in XML format. */
194 TARGET_OBJECT_BTRACE,
195 /* Branch trace configuration, in XML format. */
196 TARGET_OBJECT_BTRACE_CONF,
197 /* The pathname of the executable file that was run to create
198 a specified process. ANNEX should be a string representation
199 of the process ID of the process in question, in hexadecimal
200 format. */
201 TARGET_OBJECT_EXEC_FILE,
202 /* Possible future objects: TARGET_OBJECT_FILE, ... */
203 };
204
205 /* Possible values returned by target_xfer_partial, etc. */
206
207 enum target_xfer_status
208 {
209 /* Some bytes are transferred. */
210 TARGET_XFER_OK = 1,
211
212 /* No further transfer is possible. */
213 TARGET_XFER_EOF = 0,
214
215 /* The piece of the object requested is unavailable. */
216 TARGET_XFER_UNAVAILABLE = 2,
217
218 /* Generic I/O error. Note that it's important that this is '-1',
219 as we still have target_xfer-related code returning hardcoded
220 '-1' on error. */
221 TARGET_XFER_E_IO = -1,
222
223 /* Keep list in sync with target_xfer_status_to_string. */
224 };
225
226 /* Return the string form of STATUS. */
227
228 extern const char *
229 target_xfer_status_to_string (enum target_xfer_status status);
230
231 typedef enum target_xfer_status
232 target_xfer_partial_ftype (struct target_ops *ops,
233 enum target_object object,
234 const char *annex,
235 gdb_byte *readbuf,
236 const gdb_byte *writebuf,
237 ULONGEST offset,
238 ULONGEST len,
239 ULONGEST *xfered_len);
240
241 enum target_xfer_status
242 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
243 const gdb_byte *writebuf, ULONGEST memaddr,
244 LONGEST len, ULONGEST *xfered_len);
245
246 /* Request that OPS transfer up to LEN addressable units of the target's
247 OBJECT. When reading from a memory object, the size of an addressable unit
248 is architecture dependent and can be found using
249 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
250 byte long. BUF should point to a buffer large enough to hold the read data,
251 taking into account the addressable unit size. The OFFSET, for a seekable
252 object, specifies the starting point. The ANNEX can be used to provide
253 additional data-specific information to the target.
254
255 Return the number of addressable units actually transferred, or a negative
256 error code (an 'enum target_xfer_error' value) if the transfer is not
257 supported or otherwise fails. Return of a positive value less than
258 LEN indicates that no further transfer is possible. Unlike the raw
259 to_xfer_partial interface, callers of these functions do not need
260 to retry partial transfers. */
261
262 extern LONGEST target_read (struct target_ops *ops,
263 enum target_object object,
264 const char *annex, gdb_byte *buf,
265 ULONGEST offset, LONGEST len);
266
267 struct memory_read_result
268 {
269 memory_read_result (ULONGEST begin_, ULONGEST end_,
270 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
271 : begin (begin_),
272 end (end_),
273 data (std::move (data_))
274 {
275 }
276
277 ~memory_read_result () = default;
278
279 memory_read_result (memory_read_result &&other) = default;
280
281 DISABLE_COPY_AND_ASSIGN (memory_read_result);
282
283 /* First address that was read. */
284 ULONGEST begin;
285 /* Past-the-end address. */
286 ULONGEST end;
287 /* The data. */
288 gdb::unique_xmalloc_ptr<gdb_byte> data;
289 };
290
291 extern std::vector<memory_read_result> read_memory_robust
292 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
293
294 /* Request that OPS transfer up to LEN addressable units from BUF to the
295 target's OBJECT. When writing to a memory object, the addressable unit
296 size is architecture dependent and can be found using
297 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
298 byte long. The OFFSET, for a seekable object, specifies the starting point.
299 The ANNEX can be used to provide additional data-specific information to
300 the target.
301
302 Return the number of addressable units actually transferred, or a negative
303 error code (an 'enum target_xfer_status' value) if the transfer is not
304 supported or otherwise fails. Return of a positive value less than
305 LEN indicates that no further transfer is possible. Unlike the raw
306 to_xfer_partial interface, callers of these functions do not need to
307 retry partial transfers. */
308
309 extern LONGEST target_write (struct target_ops *ops,
310 enum target_object object,
311 const char *annex, const gdb_byte *buf,
312 ULONGEST offset, LONGEST len);
313
314 /* Similar to target_write, except that it also calls PROGRESS with
315 the number of bytes written and the opaque BATON after every
316 successful partial write (and before the first write). This is
317 useful for progress reporting and user interaction while writing
318 data. To abort the transfer, the progress callback can throw an
319 exception. */
320
321 LONGEST target_write_with_progress (struct target_ops *ops,
322 enum target_object object,
323 const char *annex, const gdb_byte *buf,
324 ULONGEST offset, LONGEST len,
325 void (*progress) (ULONGEST, void *),
326 void *baton);
327
328 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
329 using OPS. The return value will be uninstantiated if the transfer fails or
330 is not supported.
331
332 This method should be used for objects sufficiently small to store
333 in a single xmalloc'd buffer, when no fixed bound on the object's
334 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
335 through this function. */
336
337 extern gdb::optional<gdb::byte_vector> target_read_alloc
338 (struct target_ops *ops, enum target_object object, const char *annex);
339
340 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
341 (therefore usable as a NUL-terminated string). If an error occurs or the
342 transfer is unsupported, the return value will be uninstantiated. Empty
343 objects are returned as allocated but empty strings. Therefore, on success,
344 the returned vector is guaranteed to have at least one element. A warning is
345 issued if the result contains any embedded NUL bytes. */
346
347 extern gdb::optional<gdb::char_vector> target_read_stralloc
348 (struct target_ops *ops, enum target_object object, const char *annex);
349
350 /* See target_ops->to_xfer_partial. */
351 extern target_xfer_partial_ftype target_xfer_partial;
352
353 /* Wrappers to target read/write that perform memory transfers. They
354 throw an error if the memory transfer fails.
355
356 NOTE: cagney/2003-10-23: The naming schema is lifted from
357 "frame.h". The parameter order is lifted from get_frame_memory,
358 which in turn lifted it from read_memory. */
359
360 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
361 gdb_byte *buf, LONGEST len);
362 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
363 CORE_ADDR addr, int len,
364 enum bfd_endian byte_order);
365 \f
366 struct thread_info; /* fwd decl for parameter list below: */
367
368 /* The type of the callback to the to_async method. */
369
370 typedef void async_callback_ftype (enum inferior_event_type event_type,
371 void *context);
372
373 /* Normally target debug printing is purely type-based. However,
374 sometimes it is necessary to override the debug printing on a
375 per-argument basis. This macro can be used, attribute-style, to
376 name the target debug printing function for a particular method
377 argument. FUNC is the name of the function. The macro's
378 definition is empty because it is only used by the
379 make-target-delegates script. */
380
381 #define TARGET_DEBUG_PRINTER(FUNC)
382
383 /* These defines are used to mark target_ops methods. The script
384 make-target-delegates scans these and auto-generates the base
385 method implementations. There are four macros that can be used:
386
387 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
388 does nothing. This is only valid if the method return type is
389 'void'.
390
391 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
392 'tcomplain ()'. The base method simply makes this call, which is
393 assumed not to return.
394
395 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
396 base method returns this expression's value.
397
398 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
399 make-target-delegates does not generate a base method in this case,
400 but instead uses the argument function as the base method. */
401
402 #define TARGET_DEFAULT_IGNORE()
403 #define TARGET_DEFAULT_NORETURN(ARG)
404 #define TARGET_DEFAULT_RETURN(ARG)
405 #define TARGET_DEFAULT_FUNC(ARG)
406
407 /* Each target that can be activated with "target TARGET_NAME" passes
408 the address of one of these objects to add_target, which uses the
409 object's address as unique identifier, and registers the "target
410 TARGET_NAME" command using SHORTNAME as target name. */
411
412 struct target_info
413 {
414 /* Name of this target. */
415 const char *shortname;
416
417 /* Name for printing. */
418 const char *longname;
419
420 /* Documentation. Does not include trailing newline, and starts
421 with a one-line description (probably similar to longname). */
422 const char *doc;
423 };
424
425 struct target_ops
426 {
427 struct target_ops *beneath; /* To the target under this one. */
428
429 /* Free resources associated with the target. Note that singleton
430 targets, like e.g., native targets, are global objects, not
431 heap allocated, and are thus only deleted on GDB exit. The
432 main teardown entry point is the "close" method, below. */
433 virtual ~target_ops () {}
434
435 /* Return a reference to this target's unique target_info
436 object. */
437 virtual const target_info &info () const = 0;
438
439 /* Name this target type. */
440 const char *shortname ()
441 { return info ().shortname; }
442
443 const char *longname ()
444 { return info ().longname; }
445
446 /* Close the target. This is where the target can handle
447 teardown. Heap-allocated targets should delete themselves
448 before returning. */
449 virtual void close ();
450
451 /* Attaches to a process on the target side. Arguments are as
452 passed to the `attach' command by the user. This routine can
453 be called when the target is not on the target-stack, if the
454 target_ops::can_run method returns 1; in that case, it must push
455 itself onto the stack. Upon exit, the target should be ready
456 for normal operations, and should be ready to deliver the
457 status of the process immediately (without waiting) to an
458 upcoming target_wait call. */
459 virtual bool can_attach ();
460 virtual void attach (const char *, int);
461 virtual void post_attach (int)
462 TARGET_DEFAULT_IGNORE ();
463 virtual void detach (inferior *, int)
464 TARGET_DEFAULT_IGNORE ();
465 virtual void disconnect (const char *, int)
466 TARGET_DEFAULT_NORETURN (tcomplain ());
467 virtual void resume (ptid_t,
468 int TARGET_DEBUG_PRINTER (target_debug_print_step),
469 enum gdb_signal)
470 TARGET_DEFAULT_NORETURN (noprocess ());
471 virtual void commit_resume ()
472 TARGET_DEFAULT_IGNORE ();
473 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
474 int TARGET_DEBUG_PRINTER (target_debug_print_options))
475 TARGET_DEFAULT_FUNC (default_target_wait);
476 virtual void fetch_registers (struct regcache *, int)
477 TARGET_DEFAULT_IGNORE ();
478 virtual void store_registers (struct regcache *, int)
479 TARGET_DEFAULT_NORETURN (noprocess ());
480 virtual void prepare_to_store (struct regcache *)
481 TARGET_DEFAULT_NORETURN (noprocess ());
482
483 virtual void files_info ()
484 TARGET_DEFAULT_IGNORE ();
485 virtual int insert_breakpoint (struct gdbarch *,
486 struct bp_target_info *)
487 TARGET_DEFAULT_NORETURN (noprocess ());
488 virtual int remove_breakpoint (struct gdbarch *,
489 struct bp_target_info *,
490 enum remove_bp_reason)
491 TARGET_DEFAULT_NORETURN (noprocess ());
492
493 /* Returns true if the target stopped because it executed a
494 software breakpoint. This is necessary for correct background
495 execution / non-stop mode operation, and for correct PC
496 adjustment on targets where the PC needs to be adjusted when a
497 software breakpoint triggers. In these modes, by the time GDB
498 processes a breakpoint event, the breakpoint may already be
499 done from the target, so GDB needs to be able to tell whether
500 it should ignore the event and whether it should adjust the PC.
501 See adjust_pc_after_break. */
502 virtual bool stopped_by_sw_breakpoint ()
503 TARGET_DEFAULT_RETURN (false);
504 /* Returns true if the above method is supported. */
505 virtual bool supports_stopped_by_sw_breakpoint ()
506 TARGET_DEFAULT_RETURN (false);
507
508 /* Returns true if the target stopped for a hardware breakpoint.
509 Likewise, if the target supports hardware breakpoints, this
510 method is necessary for correct background execution / non-stop
511 mode operation. Even though hardware breakpoints do not
512 require PC adjustment, GDB needs to be able to tell whether the
513 hardware breakpoint event is a delayed event for a breakpoint
514 that is already gone and should thus be ignored. */
515 virtual bool stopped_by_hw_breakpoint ()
516 TARGET_DEFAULT_RETURN (false);
517 /* Returns true if the above method is supported. */
518 virtual bool supports_stopped_by_hw_breakpoint ()
519 TARGET_DEFAULT_RETURN (false);
520
521 virtual int can_use_hw_breakpoint (enum bptype, int, int)
522 TARGET_DEFAULT_RETURN (0);
523 virtual int ranged_break_num_registers ()
524 TARGET_DEFAULT_RETURN (-1);
525 virtual int insert_hw_breakpoint (struct gdbarch *,
526 struct bp_target_info *)
527 TARGET_DEFAULT_RETURN (-1);
528 virtual int remove_hw_breakpoint (struct gdbarch *,
529 struct bp_target_info *)
530 TARGET_DEFAULT_RETURN (-1);
531
532 /* Documentation of what the two routines below are expected to do is
533 provided with the corresponding target_* macros. */
534 virtual int remove_watchpoint (CORE_ADDR, int,
535 enum target_hw_bp_type, struct expression *)
536 TARGET_DEFAULT_RETURN (-1);
537 virtual int insert_watchpoint (CORE_ADDR, int,
538 enum target_hw_bp_type, struct expression *)
539 TARGET_DEFAULT_RETURN (-1);
540
541 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
542 enum target_hw_bp_type)
543 TARGET_DEFAULT_RETURN (1);
544 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
545 enum target_hw_bp_type)
546 TARGET_DEFAULT_RETURN (1);
547 virtual bool stopped_by_watchpoint ()
548 TARGET_DEFAULT_RETURN (false);
549 virtual int have_steppable_watchpoint ()
550 TARGET_DEFAULT_RETURN (false);
551 virtual bool have_continuable_watchpoint ()
552 TARGET_DEFAULT_RETURN (false);
553 virtual bool stopped_data_address (CORE_ADDR *)
554 TARGET_DEFAULT_RETURN (false);
555 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
556 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
557
558 /* Documentation of this routine is provided with the corresponding
559 target_* macro. */
560 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
561 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
562
563 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
564 struct expression *)
565 TARGET_DEFAULT_RETURN (false);
566 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
567 TARGET_DEFAULT_RETURN (-1);
568
569 /* Return 1 for sure target can do single step. Return -1 for
570 unknown. Return 0 for target can't do. */
571 virtual int can_do_single_step ()
572 TARGET_DEFAULT_RETURN (-1);
573
574 virtual bool supports_terminal_ours ()
575 TARGET_DEFAULT_RETURN (false);
576 virtual void terminal_init ()
577 TARGET_DEFAULT_IGNORE ();
578 virtual void terminal_inferior ()
579 TARGET_DEFAULT_IGNORE ();
580 virtual void terminal_save_inferior ()
581 TARGET_DEFAULT_IGNORE ();
582 virtual void terminal_ours_for_output ()
583 TARGET_DEFAULT_IGNORE ();
584 virtual void terminal_ours ()
585 TARGET_DEFAULT_IGNORE ();
586 virtual void terminal_info (const char *, int)
587 TARGET_DEFAULT_FUNC (default_terminal_info);
588 virtual void kill ()
589 TARGET_DEFAULT_NORETURN (noprocess ());
590 virtual void load (const char *, int)
591 TARGET_DEFAULT_NORETURN (tcomplain ());
592 /* Start an inferior process and set inferior_ptid to its pid.
593 EXEC_FILE is the file to run.
594 ALLARGS is a string containing the arguments to the program.
595 ENV is the environment vector to pass. Errors reported with error().
596 On VxWorks and various standalone systems, we ignore exec_file. */
597 virtual bool can_create_inferior ();
598 virtual void create_inferior (const char *, const std::string &,
599 char **, int);
600 virtual void post_startup_inferior (ptid_t)
601 TARGET_DEFAULT_IGNORE ();
602 virtual int insert_fork_catchpoint (int)
603 TARGET_DEFAULT_RETURN (1);
604 virtual int remove_fork_catchpoint (int)
605 TARGET_DEFAULT_RETURN (1);
606 virtual int insert_vfork_catchpoint (int)
607 TARGET_DEFAULT_RETURN (1);
608 virtual int remove_vfork_catchpoint (int)
609 TARGET_DEFAULT_RETURN (1);
610 virtual int follow_fork (int, int)
611 TARGET_DEFAULT_FUNC (default_follow_fork);
612 virtual int insert_exec_catchpoint (int)
613 TARGET_DEFAULT_RETURN (1);
614 virtual int remove_exec_catchpoint (int)
615 TARGET_DEFAULT_RETURN (1);
616 virtual void follow_exec (struct inferior *, char *)
617 TARGET_DEFAULT_IGNORE ();
618 virtual int set_syscall_catchpoint (int, bool, int,
619 gdb::array_view<const int>)
620 TARGET_DEFAULT_RETURN (1);
621 virtual void mourn_inferior ()
622 TARGET_DEFAULT_FUNC (default_mourn_inferior);
623
624 /* Note that can_run is special and can be invoked on an unpushed
625 target. Targets defining this method must also define
626 to_can_async_p and to_supports_non_stop. */
627 virtual bool can_run ();
628
629 /* Documentation of this routine is provided with the corresponding
630 target_* macro. */
631 virtual void pass_signals (int,
632 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
633 TARGET_DEFAULT_IGNORE ();
634
635 /* Documentation of this routine is provided with the
636 corresponding target_* function. */
637 virtual void program_signals (int,
638 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
639 TARGET_DEFAULT_IGNORE ();
640
641 virtual bool thread_alive (ptid_t ptid)
642 TARGET_DEFAULT_RETURN (false);
643 virtual void update_thread_list ()
644 TARGET_DEFAULT_IGNORE ();
645 virtual const char *pid_to_str (ptid_t)
646 TARGET_DEFAULT_FUNC (default_pid_to_str);
647 virtual const char *extra_thread_info (thread_info *)
648 TARGET_DEFAULT_RETURN (NULL);
649 virtual const char *thread_name (thread_info *)
650 TARGET_DEFAULT_RETURN (NULL);
651 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
652 int,
653 inferior *inf)
654 TARGET_DEFAULT_RETURN (NULL);
655 virtual void stop (ptid_t)
656 TARGET_DEFAULT_IGNORE ();
657 virtual void interrupt ()
658 TARGET_DEFAULT_IGNORE ();
659 virtual void pass_ctrlc ()
660 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
661 virtual void rcmd (const char *command, struct ui_file *output)
662 TARGET_DEFAULT_FUNC (default_rcmd);
663 virtual char *pid_to_exec_file (int pid)
664 TARGET_DEFAULT_RETURN (NULL);
665 virtual void log_command (const char *)
666 TARGET_DEFAULT_IGNORE ();
667 virtual struct target_section_table *get_section_table ()
668 TARGET_DEFAULT_RETURN (NULL);
669 enum strata to_stratum;
670
671 /* Provide default values for all "must have" methods. */
672 virtual bool has_all_memory () { return false; }
673 virtual bool has_memory () { return false; }
674 virtual bool has_stack () { return false; }
675 virtual bool has_registers () { return false; }
676 virtual bool has_execution (ptid_t) { return false; }
677
678 /* Control thread execution. */
679 virtual thread_control_capabilities get_thread_control_capabilities ()
680 TARGET_DEFAULT_RETURN (tc_none);
681 virtual bool attach_no_wait ()
682 TARGET_DEFAULT_RETURN (0);
683 /* This method must be implemented in some situations. See the
684 comment on 'can_run'. */
685 virtual bool can_async_p ()
686 TARGET_DEFAULT_RETURN (false);
687 virtual bool is_async_p ()
688 TARGET_DEFAULT_RETURN (false);
689 virtual void async (int)
690 TARGET_DEFAULT_NORETURN (tcomplain ());
691 virtual void thread_events (int)
692 TARGET_DEFAULT_IGNORE ();
693 /* This method must be implemented in some situations. See the
694 comment on 'can_run'. */
695 virtual bool supports_non_stop ()
696 TARGET_DEFAULT_RETURN (false);
697 /* Return true if the target operates in non-stop mode even with
698 "set non-stop off". */
699 virtual bool always_non_stop_p ()
700 TARGET_DEFAULT_RETURN (false);
701 /* find_memory_regions support method for gcore */
702 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
703 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
704 /* make_corefile_notes support method for gcore */
705 virtual char *make_corefile_notes (bfd *, int *)
706 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
707 /* get_bookmark support method for bookmarks */
708 virtual gdb_byte *get_bookmark (const char *, int)
709 TARGET_DEFAULT_NORETURN (tcomplain ());
710 /* goto_bookmark support method for bookmarks */
711 virtual void goto_bookmark (const gdb_byte *, int)
712 TARGET_DEFAULT_NORETURN (tcomplain ());
713 /* Return the thread-local address at OFFSET in the
714 thread-local storage for the thread PTID and the shared library
715 or executable file given by OBJFILE. If that block of
716 thread-local storage hasn't been allocated yet, this function
717 may return an error. LOAD_MODULE_ADDR may be zero for statically
718 linked multithreaded inferiors. */
719 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
720 CORE_ADDR load_module_addr,
721 CORE_ADDR offset)
722 TARGET_DEFAULT_NORETURN (generic_tls_error ());
723
724 /* Request that OPS transfer up to LEN addressable units of the target's
725 OBJECT. When reading from a memory object, the size of an addressable
726 unit is architecture dependent and can be found using
727 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
728 1 byte long. The OFFSET, for a seekable object, specifies the
729 starting point. The ANNEX can be used to provide additional
730 data-specific information to the target.
731
732 Return the transferred status, error or OK (an
733 'enum target_xfer_status' value). Save the number of addressable units
734 actually transferred in *XFERED_LEN if transfer is successful
735 (TARGET_XFER_OK) or the number unavailable units if the requested
736 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
737 smaller than LEN does not indicate the end of the object, only
738 the end of the transfer; higher level code should continue
739 transferring if desired. This is handled in target.c.
740
741 The interface does not support a "retry" mechanism. Instead it
742 assumes that at least one addressable unit will be transfered on each
743 successful call.
744
745 NOTE: cagney/2003-10-17: The current interface can lead to
746 fragmented transfers. Lower target levels should not implement
747 hacks, such as enlarging the transfer, in an attempt to
748 compensate for this. Instead, the target stack should be
749 extended so that it implements supply/collect methods and a
750 look-aside object cache. With that available, the lowest
751 target can safely and freely "push" data up the stack.
752
753 See target_read and target_write for more information. One,
754 and only one, of readbuf or writebuf must be non-NULL. */
755
756 virtual enum target_xfer_status xfer_partial (enum target_object object,
757 const char *annex,
758 gdb_byte *readbuf,
759 const gdb_byte *writebuf,
760 ULONGEST offset, ULONGEST len,
761 ULONGEST *xfered_len)
762 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
763
764 /* Return the limit on the size of any single memory transfer
765 for the target. */
766
767 virtual ULONGEST get_memory_xfer_limit ()
768 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
769
770 /* Returns the memory map for the target. A return value of NULL
771 means that no memory map is available. If a memory address
772 does not fall within any returned regions, it's assumed to be
773 RAM. The returned memory regions should not overlap.
774
775 The order of regions does not matter; target_memory_map will
776 sort regions by starting address. For that reason, this
777 function should not be called directly except via
778 target_memory_map.
779
780 This method should not cache data; if the memory map could
781 change unexpectedly, it should be invalidated, and higher
782 layers will re-fetch it. */
783 virtual std::vector<mem_region> memory_map ()
784 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
785
786 /* Erases the region of flash memory starting at ADDRESS, of
787 length LENGTH.
788
789 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
790 on flash block boundaries, as reported by 'to_memory_map'. */
791 virtual void flash_erase (ULONGEST address, LONGEST length)
792 TARGET_DEFAULT_NORETURN (tcomplain ());
793
794 /* Finishes a flash memory write sequence. After this operation
795 all flash memory should be available for writing and the result
796 of reading from areas written by 'to_flash_write' should be
797 equal to what was written. */
798 virtual void flash_done ()
799 TARGET_DEFAULT_NORETURN (tcomplain ());
800
801 /* Describe the architecture-specific features of this target. If
802 OPS doesn't have a description, this should delegate to the
803 "beneath" target. Returns the description found, or NULL if no
804 description was available. */
805 virtual const struct target_desc *read_description ()
806 TARGET_DEFAULT_RETURN (NULL);
807
808 /* Build the PTID of the thread on which a given task is running,
809 based on LWP and THREAD. These values are extracted from the
810 task Private_Data section of the Ada Task Control Block, and
811 their interpretation depends on the target. */
812 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
813 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
814
815 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
816 Return 0 if *READPTR is already at the end of the buffer.
817 Return -1 if there is insufficient buffer for a whole entry.
818 Return 1 if an entry was read into *TYPEP and *VALP. */
819 virtual int auxv_parse (gdb_byte **readptr,
820 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
821 TARGET_DEFAULT_FUNC (default_auxv_parse);
822
823 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
824 sequence of bytes in PATTERN with length PATTERN_LEN.
825
826 The result is 1 if found, 0 if not found, and -1 if there was an error
827 requiring halting of the search (e.g. memory read error).
828 If the pattern is found the address is recorded in FOUND_ADDRP. */
829 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
830 const gdb_byte *pattern, ULONGEST pattern_len,
831 CORE_ADDR *found_addrp)
832 TARGET_DEFAULT_FUNC (default_search_memory);
833
834 /* Can target execute in reverse? */
835 virtual bool can_execute_reverse ()
836 TARGET_DEFAULT_RETURN (false);
837
838 /* The direction the target is currently executing. Must be
839 implemented on targets that support reverse execution and async
840 mode. The default simply returns forward execution. */
841 virtual enum exec_direction_kind execution_direction ()
842 TARGET_DEFAULT_FUNC (default_execution_direction);
843
844 /* Does this target support debugging multiple processes
845 simultaneously? */
846 virtual bool supports_multi_process ()
847 TARGET_DEFAULT_RETURN (false);
848
849 /* Does this target support enabling and disabling tracepoints while a trace
850 experiment is running? */
851 virtual bool supports_enable_disable_tracepoint ()
852 TARGET_DEFAULT_RETURN (false);
853
854 /* Does this target support disabling address space randomization? */
855 virtual bool supports_disable_randomization ()
856 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
857
858 /* Does this target support the tracenz bytecode for string collection? */
859 virtual bool supports_string_tracing ()
860 TARGET_DEFAULT_RETURN (false);
861
862 /* Does this target support evaluation of breakpoint conditions on its
863 end? */
864 virtual bool supports_evaluation_of_breakpoint_conditions ()
865 TARGET_DEFAULT_RETURN (false);
866
867 /* Does this target support evaluation of breakpoint commands on its
868 end? */
869 virtual bool can_run_breakpoint_commands ()
870 TARGET_DEFAULT_RETURN (false);
871
872 /* Determine current architecture of thread PTID.
873
874 The target is supposed to determine the architecture of the code where
875 the target is currently stopped at (on Cell, if a target is in spu_run,
876 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
877 This is architecture used to perform decr_pc_after_break adjustment,
878 and also determines the frame architecture of the innermost frame.
879 ptrace operations need to operate according to target_gdbarch ().
880
881 The default implementation always returns target_gdbarch (). */
882 virtual struct gdbarch *thread_architecture (ptid_t)
883 TARGET_DEFAULT_FUNC (default_thread_architecture);
884
885 /* Determine current address space of thread PTID.
886
887 The default implementation always returns the inferior's
888 address space. */
889 virtual struct address_space *thread_address_space (ptid_t)
890 TARGET_DEFAULT_FUNC (default_thread_address_space);
891
892 /* Target file operations. */
893
894 /* Return nonzero if the filesystem seen by the current inferior
895 is the local filesystem, zero otherwise. */
896 virtual bool filesystem_is_local ()
897 TARGET_DEFAULT_RETURN (true);
898
899 /* Open FILENAME on the target, in the filesystem as seen by INF,
900 using FLAGS and MODE. If INF is NULL, use the filesystem seen
901 by the debugger (GDB or, for remote targets, the remote stub).
902 If WARN_IF_SLOW is nonzero, print a warning message if the file
903 is being accessed over a link that may be slow. Return a
904 target file descriptor, or -1 if an error occurs (and set
905 *TARGET_ERRNO). */
906 virtual int fileio_open (struct inferior *inf, const char *filename,
907 int flags, int mode, int warn_if_slow,
908 int *target_errno);
909
910 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
911 Return the number of bytes written, or -1 if an error occurs
912 (and set *TARGET_ERRNO). */
913 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
914 ULONGEST offset, int *target_errno);
915
916 /* Read up to LEN bytes FD on the target into READ_BUF.
917 Return the number of bytes read, or -1 if an error occurs
918 (and set *TARGET_ERRNO). */
919 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
920 ULONGEST offset, int *target_errno);
921
922 /* Get information about the file opened as FD and put it in
923 SB. Return 0 on success, or -1 if an error occurs (and set
924 *TARGET_ERRNO). */
925 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
926
927 /* Close FD on the target. Return 0, or -1 if an error occurs
928 (and set *TARGET_ERRNO). */
929 virtual int fileio_close (int fd, int *target_errno);
930
931 /* Unlink FILENAME on the target, in the filesystem as seen by
932 INF. If INF is NULL, use the filesystem seen by the debugger
933 (GDB or, for remote targets, the remote stub). Return 0, or
934 -1 if an error occurs (and set *TARGET_ERRNO). */
935 virtual int fileio_unlink (struct inferior *inf,
936 const char *filename,
937 int *target_errno);
938
939 /* Read value of symbolic link FILENAME on the target, in the
940 filesystem as seen by INF. If INF is NULL, use the filesystem
941 seen by the debugger (GDB or, for remote targets, the remote
942 stub). Return a string, or an empty optional if an error
943 occurs (and set *TARGET_ERRNO). */
944 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
945 const char *filename,
946 int *target_errno);
947
948 /* Implement the "info proc" command. Returns true if the target
949 actually implemented the command, false otherwise. */
950 virtual bool info_proc (const char *, enum info_proc_what);
951
952 /* Tracepoint-related operations. */
953
954 /* Prepare the target for a tracing run. */
955 virtual void trace_init ()
956 TARGET_DEFAULT_NORETURN (tcomplain ());
957
958 /* Send full details of a tracepoint location to the target. */
959 virtual void download_tracepoint (struct bp_location *location)
960 TARGET_DEFAULT_NORETURN (tcomplain ());
961
962 /* Is the target able to download tracepoint locations in current
963 state? */
964 virtual bool can_download_tracepoint ()
965 TARGET_DEFAULT_RETURN (false);
966
967 /* Send full details of a trace state variable to the target. */
968 virtual void download_trace_state_variable (const trace_state_variable &tsv)
969 TARGET_DEFAULT_NORETURN (tcomplain ());
970
971 /* Enable a tracepoint on the target. */
972 virtual void enable_tracepoint (struct bp_location *location)
973 TARGET_DEFAULT_NORETURN (tcomplain ());
974
975 /* Disable a tracepoint on the target. */
976 virtual void disable_tracepoint (struct bp_location *location)
977 TARGET_DEFAULT_NORETURN (tcomplain ());
978
979 /* Inform the target info of memory regions that are readonly
980 (such as text sections), and so it should return data from
981 those rather than look in the trace buffer. */
982 virtual void trace_set_readonly_regions ()
983 TARGET_DEFAULT_NORETURN (tcomplain ());
984
985 /* Start a trace run. */
986 virtual void trace_start ()
987 TARGET_DEFAULT_NORETURN (tcomplain ());
988
989 /* Get the current status of a tracing run. */
990 virtual int get_trace_status (struct trace_status *ts)
991 TARGET_DEFAULT_RETURN (-1);
992
993 virtual void get_tracepoint_status (struct breakpoint *tp,
994 struct uploaded_tp *utp)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Stop a trace run. */
998 virtual void trace_stop ()
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Ask the target to find a trace frame of the given type TYPE,
1002 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1003 number of the trace frame, and also the tracepoint number at
1004 TPP. If no trace frame matches, return -1. May throw if the
1005 operation fails. */
1006 virtual int trace_find (enum trace_find_type type, int num,
1007 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1008 TARGET_DEFAULT_RETURN (-1);
1009
1010 /* Get the value of the trace state variable number TSV, returning
1011 1 if the value is known and writing the value itself into the
1012 location pointed to by VAL, else returning 0. */
1013 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1014 TARGET_DEFAULT_RETURN (false);
1015
1016 virtual int save_trace_data (const char *filename)
1017 TARGET_DEFAULT_NORETURN (tcomplain ());
1018
1019 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1020 TARGET_DEFAULT_RETURN (0);
1021
1022 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1023 TARGET_DEFAULT_RETURN (0);
1024
1025 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1026 ULONGEST offset, LONGEST len)
1027 TARGET_DEFAULT_NORETURN (tcomplain ());
1028
1029 /* Get the minimum length of instruction on which a fast tracepoint
1030 may be set on the target. If this operation is unsupported,
1031 return -1. If for some reason the minimum length cannot be
1032 determined, return 0. */
1033 virtual int get_min_fast_tracepoint_insn_len ()
1034 TARGET_DEFAULT_RETURN (-1);
1035
1036 /* Set the target's tracing behavior in response to unexpected
1037 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1038 virtual void set_disconnected_tracing (int val)
1039 TARGET_DEFAULT_IGNORE ();
1040 virtual void set_circular_trace_buffer (int val)
1041 TARGET_DEFAULT_IGNORE ();
1042 /* Set the size of trace buffer in the target. */
1043 virtual void set_trace_buffer_size (LONGEST val)
1044 TARGET_DEFAULT_IGNORE ();
1045
1046 /* Add/change textual notes about the trace run, returning 1 if
1047 successful, 0 otherwise. */
1048 virtual bool set_trace_notes (const char *user, const char *notes,
1049 const char *stopnotes)
1050 TARGET_DEFAULT_RETURN (false);
1051
1052 /* Return the processor core that thread PTID was last seen on.
1053 This information is updated only when:
1054 - update_thread_list is called
1055 - thread stops
1056 If the core cannot be determined -- either for the specified
1057 thread, or right now, or in this debug session, or for this
1058 target -- return -1. */
1059 virtual int core_of_thread (ptid_t ptid)
1060 TARGET_DEFAULT_RETURN (-1);
1061
1062 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1063 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1064 a match, 0 if there's a mismatch, and -1 if an error is
1065 encountered while reading memory. */
1066 virtual int verify_memory (const gdb_byte *data,
1067 CORE_ADDR memaddr, ULONGEST size)
1068 TARGET_DEFAULT_FUNC (default_verify_memory);
1069
1070 /* Return the address of the start of the Thread Information Block
1071 a Windows OS specific feature. */
1072 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1073 TARGET_DEFAULT_NORETURN (tcomplain ());
1074
1075 /* Send the new settings of write permission variables. */
1076 virtual void set_permissions ()
1077 TARGET_DEFAULT_IGNORE ();
1078
1079 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1080 with its details. Return true on success, false on failure. */
1081 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1082 static_tracepoint_marker *marker)
1083 TARGET_DEFAULT_RETURN (false);
1084
1085 /* Return a vector of all tracepoints markers string id ID, or all
1086 markers if ID is NULL. */
1087 virtual std::vector<static_tracepoint_marker>
1088 static_tracepoint_markers_by_strid (const char *id)
1089 TARGET_DEFAULT_NORETURN (tcomplain ());
1090
1091 /* Return a traceframe info object describing the current
1092 traceframe's contents. This method should not cache data;
1093 higher layers take care of caching, invalidating, and
1094 re-fetching when necessary. */
1095 virtual traceframe_info_up traceframe_info ()
1096 TARGET_DEFAULT_NORETURN (tcomplain ());
1097
1098 /* Ask the target to use or not to use agent according to USE.
1099 Return true if successful, false otherwise. */
1100 virtual bool use_agent (bool use)
1101 TARGET_DEFAULT_NORETURN (tcomplain ());
1102
1103 /* Is the target able to use agent in current state? */
1104 virtual bool can_use_agent ()
1105 TARGET_DEFAULT_RETURN (false);
1106
1107 /* Enable branch tracing for PTID using CONF configuration.
1108 Return a branch trace target information struct for reading and for
1109 disabling branch trace. */
1110 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1111 const struct btrace_config *conf)
1112 TARGET_DEFAULT_NORETURN (tcomplain ());
1113
1114 /* Disable branch tracing and deallocate TINFO. */
1115 virtual void disable_btrace (struct btrace_target_info *tinfo)
1116 TARGET_DEFAULT_NORETURN (tcomplain ());
1117
1118 /* Disable branch tracing and deallocate TINFO. This function is similar
1119 to to_disable_btrace, except that it is called during teardown and is
1120 only allowed to perform actions that are safe. A counter-example would
1121 be attempting to talk to a remote target. */
1122 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1123 TARGET_DEFAULT_NORETURN (tcomplain ());
1124
1125 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1126 DATA is cleared before new trace is added. */
1127 virtual enum btrace_error read_btrace (struct btrace_data *data,
1128 struct btrace_target_info *btinfo,
1129 enum btrace_read_type type)
1130 TARGET_DEFAULT_NORETURN (tcomplain ());
1131
1132 /* Get the branch trace configuration. */
1133 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1134 TARGET_DEFAULT_RETURN (NULL);
1135
1136 /* Current recording method. */
1137 virtual enum record_method record_method (ptid_t ptid)
1138 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1139
1140 /* Stop trace recording. */
1141 virtual void stop_recording ()
1142 TARGET_DEFAULT_IGNORE ();
1143
1144 /* Print information about the recording. */
1145 virtual void info_record ()
1146 TARGET_DEFAULT_IGNORE ();
1147
1148 /* Save the recorded execution trace into a file. */
1149 virtual void save_record (const char *filename)
1150 TARGET_DEFAULT_NORETURN (tcomplain ());
1151
1152 /* Delete the recorded execution trace from the current position
1153 onwards. */
1154 virtual bool supports_delete_record ()
1155 TARGET_DEFAULT_RETURN (false);
1156 virtual void delete_record ()
1157 TARGET_DEFAULT_NORETURN (tcomplain ());
1158
1159 /* Query if the record target is currently replaying PTID. */
1160 virtual bool record_is_replaying (ptid_t ptid)
1161 TARGET_DEFAULT_RETURN (false);
1162
1163 /* Query if the record target will replay PTID if it were resumed in
1164 execution direction DIR. */
1165 virtual bool record_will_replay (ptid_t ptid, int dir)
1166 TARGET_DEFAULT_RETURN (false);
1167
1168 /* Stop replaying. */
1169 virtual void record_stop_replaying ()
1170 TARGET_DEFAULT_IGNORE ();
1171
1172 /* Go to the begin of the execution trace. */
1173 virtual void goto_record_begin ()
1174 TARGET_DEFAULT_NORETURN (tcomplain ());
1175
1176 /* Go to the end of the execution trace. */
1177 virtual void goto_record_end ()
1178 TARGET_DEFAULT_NORETURN (tcomplain ());
1179
1180 /* Go to a specific location in the recorded execution trace. */
1181 virtual void goto_record (ULONGEST insn)
1182 TARGET_DEFAULT_NORETURN (tcomplain ());
1183
1184 /* Disassemble SIZE instructions in the recorded execution trace from
1185 the current position.
1186 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1187 disassemble SIZE succeeding instructions. */
1188 virtual void insn_history (int size, gdb_disassembly_flags flags)
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191 /* Disassemble SIZE instructions in the recorded execution trace around
1192 FROM.
1193 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1194 disassemble SIZE instructions after FROM. */
1195 virtual void insn_history_from (ULONGEST from, int size,
1196 gdb_disassembly_flags flags)
1197 TARGET_DEFAULT_NORETURN (tcomplain ());
1198
1199 /* Disassemble a section of the recorded execution trace from instruction
1200 BEGIN (inclusive) to instruction END (inclusive). */
1201 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1202 gdb_disassembly_flags flags)
1203 TARGET_DEFAULT_NORETURN (tcomplain ());
1204
1205 /* Print a function trace of the recorded execution trace.
1206 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1207 succeeding functions. */
1208 virtual void call_history (int size, record_print_flags flags)
1209 TARGET_DEFAULT_NORETURN (tcomplain ());
1210
1211 /* Print a function trace of the recorded execution trace starting
1212 at function FROM.
1213 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1214 SIZE functions after FROM. */
1215 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1216 TARGET_DEFAULT_NORETURN (tcomplain ());
1217
1218 /* Print a function trace of an execution trace section from function BEGIN
1219 (inclusive) to function END (inclusive). */
1220 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1221 TARGET_DEFAULT_NORETURN (tcomplain ());
1222
1223 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1224 non-empty annex. */
1225 virtual bool augmented_libraries_svr4_read ()
1226 TARGET_DEFAULT_RETURN (false);
1227
1228 /* Those unwinders are tried before any other arch unwinders. If
1229 SELF doesn't have unwinders, it should delegate to the
1230 "beneath" target. */
1231 virtual const struct frame_unwind *get_unwinder ()
1232 TARGET_DEFAULT_RETURN (NULL);
1233
1234 virtual const struct frame_unwind *get_tailcall_unwinder ()
1235 TARGET_DEFAULT_RETURN (NULL);
1236
1237 /* Prepare to generate a core file. */
1238 virtual void prepare_to_generate_core ()
1239 TARGET_DEFAULT_IGNORE ();
1240
1241 /* Cleanup after generating a core file. */
1242 virtual void done_generating_core ()
1243 TARGET_DEFAULT_IGNORE ();
1244 };
1245
1246 /* Deleter for std::unique_ptr. See comments in
1247 target_ops::~target_ops and target_ops::close about heap-allocated
1248 targets. */
1249 struct target_ops_deleter
1250 {
1251 void operator() (target_ops *target)
1252 {
1253 target->close ();
1254 }
1255 };
1256
1257 /* A unique pointer for target_ops. */
1258 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1259
1260 /* Native target backends call this once at initialization time to
1261 inform the core about which is the target that can respond to "run"
1262 or "attach". Note: native targets are always singletons. */
1263 extern void set_native_target (target_ops *target);
1264
1265 /* Get the registered native target, if there's one. Otherwise return
1266 NULL. */
1267 extern target_ops *get_native_target ();
1268
1269 /* The ops structure for our "current" target process. This should
1270 never be NULL. If there is no target, it points to the dummy_target. */
1271
1272 extern struct target_ops *target_stack;
1273
1274 /* Define easy words for doing these operations on our current target. */
1275
1276 #define target_shortname (target_stack->shortname ())
1277 #define target_longname (target_stack->longname ())
1278
1279 /* Does whatever cleanup is required for a target that we are no
1280 longer going to be calling. This routine is automatically always
1281 called after popping the target off the target stack - the target's
1282 own methods are no longer available through the target vector.
1283 Closing file descriptors and freeing all memory allocated memory are
1284 typical things it should do. */
1285
1286 void target_close (struct target_ops *targ);
1287
1288 /* Find the correct target to use for "attach". If a target on the
1289 current stack supports attaching, then it is returned. Otherwise,
1290 the default run target is returned. */
1291
1292 extern struct target_ops *find_attach_target (void);
1293
1294 /* Find the correct target to use for "run". If a target on the
1295 current stack supports creating a new inferior, then it is
1296 returned. Otherwise, the default run target is returned. */
1297
1298 extern struct target_ops *find_run_target (void);
1299
1300 /* Some targets don't generate traps when attaching to the inferior,
1301 or their target_attach implementation takes care of the waiting.
1302 These targets must set to_attach_no_wait. */
1303
1304 #define target_attach_no_wait() \
1305 (target_stack->attach_no_wait ())
1306
1307 /* The target_attach operation places a process under debugger control,
1308 and stops the process.
1309
1310 This operation provides a target-specific hook that allows the
1311 necessary bookkeeping to be performed after an attach completes. */
1312 #define target_post_attach(pid) \
1313 (target_stack->post_attach) (pid)
1314
1315 /* Display a message indicating we're about to detach from the current
1316 inferior process. */
1317
1318 extern void target_announce_detach (int from_tty);
1319
1320 /* Takes a program previously attached to and detaches it.
1321 The program may resume execution (some targets do, some don't) and will
1322 no longer stop on signals, etc. We better not have left any breakpoints
1323 in the program or it'll die when it hits one. FROM_TTY says whether to be
1324 verbose or not. */
1325
1326 extern void target_detach (inferior *inf, int from_tty);
1327
1328 /* Disconnect from the current target without resuming it (leaving it
1329 waiting for a debugger). */
1330
1331 extern void target_disconnect (const char *, int);
1332
1333 /* Resume execution (or prepare for execution) of a target thread,
1334 process or all processes. STEP says whether to hardware
1335 single-step or to run free; SIGGNAL is the signal to be given to
1336 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1337 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1338 process id'. A wildcard PTID (all threads, or all threads of
1339 process) means `step/resume INFERIOR_PTID, and let other threads
1340 (for which the wildcard PTID matches) resume with their
1341 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1342 is in "pass" state, or with no signal if in "no pass" state.
1343
1344 In order to efficiently handle batches of resumption requests,
1345 targets may implement this method such that it records the
1346 resumption request, but defers the actual resumption to the
1347 target_commit_resume method implementation. See
1348 target_commit_resume below. */
1349 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1350
1351 /* Commit a series of resumption requests previously prepared with
1352 target_resume calls.
1353
1354 GDB always calls target_commit_resume after calling target_resume
1355 one or more times. A target may thus use this method in
1356 coordination with the target_resume method to batch target-side
1357 resumption requests. In that case, the target doesn't actually
1358 resume in its target_resume implementation. Instead, it prepares
1359 the resumption in target_resume, and defers the actual resumption
1360 to target_commit_resume. E.g., the remote target uses this to
1361 coalesce multiple resumption requests in a single vCont packet. */
1362 extern void target_commit_resume ();
1363
1364 /* Setup to defer target_commit_resume calls, and reactivate
1365 target_commit_resume on destruction, if it was previously
1366 active. */
1367 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1368
1369 /* For target_read_memory see target/target.h. */
1370
1371 /* The default target_ops::to_wait implementation. */
1372
1373 extern ptid_t default_target_wait (struct target_ops *ops,
1374 ptid_t ptid,
1375 struct target_waitstatus *status,
1376 int options);
1377
1378 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1379
1380 extern void target_fetch_registers (struct regcache *regcache, int regno);
1381
1382 /* Store at least register REGNO, or all regs if REGNO == -1.
1383 It can store as many registers as it wants to, so target_prepare_to_store
1384 must have been previously called. Calls error() if there are problems. */
1385
1386 extern void target_store_registers (struct regcache *regcache, int regs);
1387
1388 /* Get ready to modify the registers array. On machines which store
1389 individual registers, this doesn't need to do anything. On machines
1390 which store all the registers in one fell swoop, this makes sure
1391 that REGISTERS contains all the registers from the program being
1392 debugged. */
1393
1394 #define target_prepare_to_store(regcache) \
1395 (target_stack->prepare_to_store) (regcache)
1396
1397 /* Determine current address space of thread PTID. */
1398
1399 struct address_space *target_thread_address_space (ptid_t);
1400
1401 /* Implement the "info proc" command. This returns one if the request
1402 was handled, and zero otherwise. It can also throw an exception if
1403 an error was encountered while attempting to handle the
1404 request. */
1405
1406 int target_info_proc (const char *, enum info_proc_what);
1407
1408 /* Returns true if this target can disable address space randomization. */
1409
1410 int target_supports_disable_randomization (void);
1411
1412 /* Returns true if this target can enable and disable tracepoints
1413 while a trace experiment is running. */
1414
1415 #define target_supports_enable_disable_tracepoint() \
1416 (target_stack->supports_enable_disable_tracepoint) ()
1417
1418 #define target_supports_string_tracing() \
1419 (target_stack->supports_string_tracing) ()
1420
1421 /* Returns true if this target can handle breakpoint conditions
1422 on its end. */
1423
1424 #define target_supports_evaluation_of_breakpoint_conditions() \
1425 (target_stack->supports_evaluation_of_breakpoint_conditions) ()
1426
1427 /* Returns true if this target can handle breakpoint commands
1428 on its end. */
1429
1430 #define target_can_run_breakpoint_commands() \
1431 (target_stack->can_run_breakpoint_commands) ()
1432
1433 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1434 int, int *);
1435
1436 /* For target_read_memory see target/target.h. */
1437
1438 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1439 ssize_t len);
1440
1441 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1442
1443 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1444
1445 /* For target_write_memory see target/target.h. */
1446
1447 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1448 ssize_t len);
1449
1450 /* Fetches the target's memory map. If one is found it is sorted
1451 and returned, after some consistency checking. Otherwise, NULL
1452 is returned. */
1453 std::vector<mem_region> target_memory_map (void);
1454
1455 /* Erases all flash memory regions on the target. */
1456 void flash_erase_command (const char *cmd, int from_tty);
1457
1458 /* Erase the specified flash region. */
1459 void target_flash_erase (ULONGEST address, LONGEST length);
1460
1461 /* Finish a sequence of flash operations. */
1462 void target_flash_done (void);
1463
1464 /* Describes a request for a memory write operation. */
1465 struct memory_write_request
1466 {
1467 memory_write_request (ULONGEST begin_, ULONGEST end_,
1468 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1469 : begin (begin_), end (end_), data (data_), baton (baton_)
1470 {}
1471
1472 /* Begining address that must be written. */
1473 ULONGEST begin;
1474 /* Past-the-end address. */
1475 ULONGEST end;
1476 /* The data to write. */
1477 gdb_byte *data;
1478 /* A callback baton for progress reporting for this request. */
1479 void *baton;
1480 };
1481
1482 /* Enumeration specifying different flash preservation behaviour. */
1483 enum flash_preserve_mode
1484 {
1485 flash_preserve,
1486 flash_discard
1487 };
1488
1489 /* Write several memory blocks at once. This version can be more
1490 efficient than making several calls to target_write_memory, in
1491 particular because it can optimize accesses to flash memory.
1492
1493 Moreover, this is currently the only memory access function in gdb
1494 that supports writing to flash memory, and it should be used for
1495 all cases where access to flash memory is desirable.
1496
1497 REQUESTS is the vector (see vec.h) of memory_write_request.
1498 PRESERVE_FLASH_P indicates what to do with blocks which must be
1499 erased, but not completely rewritten.
1500 PROGRESS_CB is a function that will be periodically called to provide
1501 feedback to user. It will be called with the baton corresponding
1502 to the request currently being written. It may also be called
1503 with a NULL baton, when preserved flash sectors are being rewritten.
1504
1505 The function returns 0 on success, and error otherwise. */
1506 int target_write_memory_blocks
1507 (const std::vector<memory_write_request> &requests,
1508 enum flash_preserve_mode preserve_flash_p,
1509 void (*progress_cb) (ULONGEST, void *));
1510
1511 /* Print a line about the current target. */
1512
1513 #define target_files_info() \
1514 (target_stack->files_info) ()
1515
1516 /* Insert a breakpoint at address BP_TGT->placed_address in
1517 the target machine. Returns 0 for success, and returns non-zero or
1518 throws an error (with a detailed failure reason error code and
1519 message) otherwise. */
1520
1521 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1522 struct bp_target_info *bp_tgt);
1523
1524 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1525 machine. Result is 0 for success, non-zero for error. */
1526
1527 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1528 struct bp_target_info *bp_tgt,
1529 enum remove_bp_reason reason);
1530
1531 /* Return true if the target stack has a non-default
1532 "terminal_ours" method. */
1533
1534 extern int target_supports_terminal_ours (void);
1535
1536 /* Kill the inferior process. Make it go away. */
1537
1538 extern void target_kill (void);
1539
1540 /* Load an executable file into the target process. This is expected
1541 to not only bring new code into the target process, but also to
1542 update GDB's symbol tables to match.
1543
1544 ARG contains command-line arguments, to be broken down with
1545 buildargv (). The first non-switch argument is the filename to
1546 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1547 0)), which is an offset to apply to the load addresses of FILE's
1548 sections. The target may define switches, or other non-switch
1549 arguments, as it pleases. */
1550
1551 extern void target_load (const char *arg, int from_tty);
1552
1553 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1554 notification of inferior events such as fork and vork immediately
1555 after the inferior is created. (This because of how gdb gets an
1556 inferior created via invoking a shell to do it. In such a scenario,
1557 if the shell init file has commands in it, the shell will fork and
1558 exec for each of those commands, and we will see each such fork
1559 event. Very bad.)
1560
1561 Such targets will supply an appropriate definition for this function. */
1562
1563 #define target_post_startup_inferior(ptid) \
1564 (target_stack->post_startup_inferior) (ptid)
1565
1566 /* On some targets, we can catch an inferior fork or vfork event when
1567 it occurs. These functions insert/remove an already-created
1568 catchpoint for such events. They return 0 for success, 1 if the
1569 catchpoint type is not supported and -1 for failure. */
1570
1571 #define target_insert_fork_catchpoint(pid) \
1572 (target_stack->insert_fork_catchpoint) (pid)
1573
1574 #define target_remove_fork_catchpoint(pid) \
1575 (target_stack->remove_fork_catchpoint) (pid)
1576
1577 #define target_insert_vfork_catchpoint(pid) \
1578 (target_stack->insert_vfork_catchpoint) (pid)
1579
1580 #define target_remove_vfork_catchpoint(pid) \
1581 (target_stack->remove_vfork_catchpoint) (pid)
1582
1583 /* If the inferior forks or vforks, this function will be called at
1584 the next resume in order to perform any bookkeeping and fiddling
1585 necessary to continue debugging either the parent or child, as
1586 requested, and releasing the other. Information about the fork
1587 or vfork event is available via get_last_target_status ().
1588 This function returns 1 if the inferior should not be resumed
1589 (i.e. there is another event pending). */
1590
1591 int target_follow_fork (int follow_child, int detach_fork);
1592
1593 /* Handle the target-specific bookkeeping required when the inferior
1594 makes an exec call. INF is the exec'd inferior. */
1595
1596 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1597
1598 /* On some targets, we can catch an inferior exec event when it
1599 occurs. These functions insert/remove an already-created
1600 catchpoint for such events. They return 0 for success, 1 if the
1601 catchpoint type is not supported and -1 for failure. */
1602
1603 #define target_insert_exec_catchpoint(pid) \
1604 (target_stack->insert_exec_catchpoint) (pid)
1605
1606 #define target_remove_exec_catchpoint(pid) \
1607 (target_stack->remove_exec_catchpoint) (pid)
1608
1609 /* Syscall catch.
1610
1611 NEEDED is true if any syscall catch (of any kind) is requested.
1612 If NEEDED is false, it means the target can disable the mechanism to
1613 catch system calls because there are no more catchpoints of this type.
1614
1615 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1616 being requested. In this case, SYSCALL_COUNTS should be ignored.
1617
1618 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1619 element in this array is nonzero if that syscall should be caught.
1620 This argument only matters if ANY_COUNT is zero.
1621
1622 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1623 for failure. */
1624
1625 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1626 (target_stack->set_syscall_catchpoint) (pid, needed, any_count, \
1627 syscall_counts)
1628
1629 /* The debugger has completed a blocking wait() call. There is now
1630 some process event that must be processed. This function should
1631 be defined by those targets that require the debugger to perform
1632 cleanup or internal state changes in response to the process event. */
1633
1634 /* For target_mourn_inferior see target/target.h. */
1635
1636 /* Does target have enough data to do a run or attach command? */
1637
1638 extern int target_can_run ();
1639
1640 /* Set list of signals to be handled in the target.
1641
1642 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1643 (enum gdb_signal). For every signal whose entry in this array is
1644 non-zero, the target is allowed -but not required- to skip reporting
1645 arrival of the signal to the GDB core by returning from target_wait,
1646 and to pass the signal directly to the inferior instead.
1647
1648 However, if the target is hardware single-stepping a thread that is
1649 about to receive a signal, it needs to be reported in any case, even
1650 if mentioned in a previous target_pass_signals call. */
1651
1652 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1653
1654 /* Set list of signals the target may pass to the inferior. This
1655 directly maps to the "handle SIGNAL pass/nopass" setting.
1656
1657 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1658 number (enum gdb_signal). For every signal whose entry in this
1659 array is non-zero, the target is allowed to pass the signal to the
1660 inferior. Signals not present in the array shall be silently
1661 discarded. This does not influence whether to pass signals to the
1662 inferior as a result of a target_resume call. This is useful in
1663 scenarios where the target needs to decide whether to pass or not a
1664 signal to the inferior without GDB core involvement, such as for
1665 example, when detaching (as threads may have been suspended with
1666 pending signals not reported to GDB). */
1667
1668 extern void target_program_signals (int nsig, unsigned char *program_signals);
1669
1670 /* Check to see if a thread is still alive. */
1671
1672 extern int target_thread_alive (ptid_t ptid);
1673
1674 /* Sync the target's threads with GDB's thread list. */
1675
1676 extern void target_update_thread_list (void);
1677
1678 /* Make target stop in a continuable fashion. (For instance, under
1679 Unix, this should act like SIGSTOP). Note that this function is
1680 asynchronous: it does not wait for the target to become stopped
1681 before returning. If this is the behavior you want please use
1682 target_stop_and_wait. */
1683
1684 extern void target_stop (ptid_t ptid);
1685
1686 /* Interrupt the target. Unlike target_stop, this does not specify
1687 which thread/process reports the stop. For most target this acts
1688 like raising a SIGINT, though that's not absolutely required. This
1689 function is asynchronous. */
1690
1691 extern void target_interrupt ();
1692
1693 /* Pass a ^C, as determined to have been pressed by checking the quit
1694 flag, to the target, as if the user had typed the ^C on the
1695 inferior's controlling terminal while the inferior was in the
1696 foreground. Remote targets may take the opportunity to detect the
1697 remote side is not responding and offer to disconnect. */
1698
1699 extern void target_pass_ctrlc (void);
1700
1701 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1702 target_interrupt. */
1703 extern void default_target_pass_ctrlc (struct target_ops *ops);
1704
1705 /* Send the specified COMMAND to the target's monitor
1706 (shell,interpreter) for execution. The result of the query is
1707 placed in OUTBUF. */
1708
1709 #define target_rcmd(command, outbuf) \
1710 (target_stack->rcmd) (command, outbuf)
1711
1712
1713 /* Does the target include all of memory, or only part of it? This
1714 determines whether we look up the target chain for other parts of
1715 memory if this target can't satisfy a request. */
1716
1717 extern int target_has_all_memory_1 (void);
1718 #define target_has_all_memory target_has_all_memory_1 ()
1719
1720 /* Does the target include memory? (Dummy targets don't.) */
1721
1722 extern int target_has_memory_1 (void);
1723 #define target_has_memory target_has_memory_1 ()
1724
1725 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1726 we start a process.) */
1727
1728 extern int target_has_stack_1 (void);
1729 #define target_has_stack target_has_stack_1 ()
1730
1731 /* Does the target have registers? (Exec files don't.) */
1732
1733 extern int target_has_registers_1 (void);
1734 #define target_has_registers target_has_registers_1 ()
1735
1736 /* Does the target have execution? Can we make it jump (through
1737 hoops), or pop its stack a few times? This means that the current
1738 target is currently executing; for some targets, that's the same as
1739 whether or not the target is capable of execution, but there are
1740 also targets which can be current while not executing. In that
1741 case this will become true after to_create_inferior or
1742 to_attach. */
1743
1744 extern int target_has_execution_1 (ptid_t);
1745
1746 /* Like target_has_execution_1, but always passes inferior_ptid. */
1747
1748 extern int target_has_execution_current (void);
1749
1750 #define target_has_execution target_has_execution_current ()
1751
1752 /* Default implementations for process_stratum targets. Return true
1753 if there's a selected inferior, false otherwise. */
1754
1755 extern int default_child_has_all_memory ();
1756 extern int default_child_has_memory ();
1757 extern int default_child_has_stack ();
1758 extern int default_child_has_registers ();
1759 extern int default_child_has_execution (ptid_t the_ptid);
1760
1761 /* Can the target support the debugger control of thread execution?
1762 Can it lock the thread scheduler? */
1763
1764 #define target_can_lock_scheduler \
1765 (target_stack->get_thread_control_capabilities () & tc_schedlock)
1766
1767 /* Controls whether async mode is permitted. */
1768 extern int target_async_permitted;
1769
1770 /* Can the target support asynchronous execution? */
1771 #define target_can_async_p() (target_stack->can_async_p ())
1772
1773 /* Is the target in asynchronous execution mode? */
1774 #define target_is_async_p() (target_stack->is_async_p ())
1775
1776 /* Enables/disabled async target events. */
1777 extern void target_async (int enable);
1778
1779 /* Enables/disables thread create and exit events. */
1780 extern void target_thread_events (int enable);
1781
1782 /* Whether support for controlling the target backends always in
1783 non-stop mode is enabled. */
1784 extern enum auto_boolean target_non_stop_enabled;
1785
1786 /* Is the target in non-stop mode? Some targets control the inferior
1787 in non-stop mode even with "set non-stop off". Always true if "set
1788 non-stop" is on. */
1789 extern int target_is_non_stop_p (void);
1790
1791 #define target_execution_direction() \
1792 (target_stack->execution_direction ())
1793
1794 /* Converts a process id to a string. Usually, the string just contains
1795 `process xyz', but on some systems it may contain
1796 `process xyz thread abc'. */
1797
1798 extern const char *target_pid_to_str (ptid_t ptid);
1799
1800 extern const char *normal_pid_to_str (ptid_t ptid);
1801
1802 /* Return a short string describing extra information about PID,
1803 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1804 is okay. */
1805
1806 #define target_extra_thread_info(TP) \
1807 (target_stack->extra_thread_info (TP))
1808
1809 /* Return the thread's name, or NULL if the target is unable to determine it.
1810 The returned value must not be freed by the caller. */
1811
1812 extern const char *target_thread_name (struct thread_info *);
1813
1814 /* Given a pointer to a thread library specific thread handle and
1815 its length, return a pointer to the corresponding thread_info struct. */
1816
1817 extern struct thread_info *target_thread_handle_to_thread_info
1818 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1819
1820 /* Attempts to find the pathname of the executable file
1821 that was run to create a specified process.
1822
1823 The process PID must be stopped when this operation is used.
1824
1825 If the executable file cannot be determined, NULL is returned.
1826
1827 Else, a pointer to a character string containing the pathname
1828 is returned. This string should be copied into a buffer by
1829 the client if the string will not be immediately used, or if
1830 it must persist. */
1831
1832 #define target_pid_to_exec_file(pid) \
1833 (target_stack->pid_to_exec_file) (pid)
1834
1835 /* See the to_thread_architecture description in struct target_ops. */
1836
1837 #define target_thread_architecture(ptid) \
1838 (target_stack->thread_architecture (ptid))
1839
1840 /*
1841 * Iterator function for target memory regions.
1842 * Calls a callback function once for each memory region 'mapped'
1843 * in the child process. Defined as a simple macro rather than
1844 * as a function macro so that it can be tested for nullity.
1845 */
1846
1847 #define target_find_memory_regions(FUNC, DATA) \
1848 (target_stack->find_memory_regions) (FUNC, DATA)
1849
1850 /*
1851 * Compose corefile .note section.
1852 */
1853
1854 #define target_make_corefile_notes(BFD, SIZE_P) \
1855 (target_stack->make_corefile_notes) (BFD, SIZE_P)
1856
1857 /* Bookmark interfaces. */
1858 #define target_get_bookmark(ARGS, FROM_TTY) \
1859 (target_stack->get_bookmark) (ARGS, FROM_TTY)
1860
1861 #define target_goto_bookmark(ARG, FROM_TTY) \
1862 (target_stack->goto_bookmark) (ARG, FROM_TTY)
1863
1864 /* Hardware watchpoint interfaces. */
1865
1866 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1867 write). Only the INFERIOR_PTID task is being queried. */
1868
1869 #define target_stopped_by_watchpoint() \
1870 ((target_stack->stopped_by_watchpoint) ())
1871
1872 /* Returns non-zero if the target stopped because it executed a
1873 software breakpoint instruction. */
1874
1875 #define target_stopped_by_sw_breakpoint() \
1876 ((target_stack->stopped_by_sw_breakpoint) ())
1877
1878 #define target_supports_stopped_by_sw_breakpoint() \
1879 ((target_stack->supports_stopped_by_sw_breakpoint) ())
1880
1881 #define target_stopped_by_hw_breakpoint() \
1882 ((target_stack->stopped_by_hw_breakpoint) ())
1883
1884 #define target_supports_stopped_by_hw_breakpoint() \
1885 ((target_stack->supports_stopped_by_hw_breakpoint) ())
1886
1887 /* Non-zero if we have steppable watchpoints */
1888
1889 #define target_have_steppable_watchpoint \
1890 (target_stack->have_steppable_watchpoint ())
1891
1892 /* Non-zero if we have continuable watchpoints */
1893
1894 #define target_have_continuable_watchpoint \
1895 (target_stack->have_continuable_watchpoint ())
1896
1897 /* Provide defaults for hardware watchpoint functions. */
1898
1899 /* If the *_hw_beakpoint functions have not been defined
1900 elsewhere use the definitions in the target vector. */
1901
1902 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1903 Returns negative if the target doesn't have enough hardware debug
1904 registers available. Return zero if hardware watchpoint of type
1905 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1906 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1907 CNT is the number of such watchpoints used so far, including this
1908 one. OTHERTYPE is the number of watchpoints of other types than
1909 this one used so far. */
1910
1911 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1912 (target_stack->can_use_hw_breakpoint) ( \
1913 TYPE, CNT, OTHERTYPE)
1914
1915 /* Returns the number of debug registers needed to watch the given
1916 memory region, or zero if not supported. */
1917
1918 #define target_region_ok_for_hw_watchpoint(addr, len) \
1919 (target_stack->region_ok_for_hw_watchpoint) (addr, len)
1920
1921
1922 #define target_can_do_single_step() \
1923 (target_stack->can_do_single_step) ()
1924
1925 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1926 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1927 COND is the expression for its condition, or NULL if there's none.
1928 Returns 0 for success, 1 if the watchpoint type is not supported,
1929 -1 for failure. */
1930
1931 #define target_insert_watchpoint(addr, len, type, cond) \
1932 (target_stack->insert_watchpoint) (addr, len, type, cond)
1933
1934 #define target_remove_watchpoint(addr, len, type, cond) \
1935 (target_stack->remove_watchpoint) (addr, len, type, cond)
1936
1937 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1938 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1939 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1940 masked watchpoints are not supported, -1 for failure. */
1941
1942 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1943 enum target_hw_bp_type);
1944
1945 /* Remove a masked watchpoint at ADDR with the mask MASK.
1946 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1947 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1948 for failure. */
1949
1950 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1951 enum target_hw_bp_type);
1952
1953 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1954 the target machine. Returns 0 for success, and returns non-zero or
1955 throws an error (with a detailed failure reason error code and
1956 message) otherwise. */
1957
1958 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1959 (target_stack->insert_hw_breakpoint) (gdbarch, bp_tgt)
1960
1961 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1962 (target_stack->remove_hw_breakpoint) (gdbarch, bp_tgt)
1963
1964 /* Return number of debug registers needed for a ranged breakpoint,
1965 or -1 if ranged breakpoints are not supported. */
1966
1967 extern int target_ranged_break_num_registers (void);
1968
1969 /* Return non-zero if target knows the data address which triggered this
1970 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1971 INFERIOR_PTID task is being queried. */
1972 #define target_stopped_data_address(target, addr_p) \
1973 (target)->stopped_data_address (addr_p)
1974
1975 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1976 LENGTH bytes beginning at START. */
1977 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1978 (target)->watchpoint_addr_within_range (addr, start, length)
1979
1980 /* Return non-zero if the target is capable of using hardware to evaluate
1981 the condition expression. In this case, if the condition is false when
1982 the watched memory location changes, execution may continue without the
1983 debugger being notified.
1984
1985 Due to limitations in the hardware implementation, it may be capable of
1986 avoiding triggering the watchpoint in some cases where the condition
1987 expression is false, but may report some false positives as well.
1988 For this reason, GDB will still evaluate the condition expression when
1989 the watchpoint triggers. */
1990 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1991 (target_stack->can_accel_watchpoint_condition) (addr, len, type, cond)
1992
1993 /* Return number of debug registers needed for a masked watchpoint,
1994 -1 if masked watchpoints are not supported or -2 if the given address
1995 and mask combination cannot be used. */
1996
1997 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1998
1999 /* Target can execute in reverse? */
2000 #define target_can_execute_reverse \
2001 target_stack->can_execute_reverse ()
2002
2003 extern const struct target_desc *target_read_description (struct target_ops *);
2004
2005 #define target_get_ada_task_ptid(lwp, tid) \
2006 (target_stack->get_ada_task_ptid) (lwp,tid)
2007
2008 /* Utility implementation of searching memory. */
2009 extern int simple_search_memory (struct target_ops* ops,
2010 CORE_ADDR start_addr,
2011 ULONGEST search_space_len,
2012 const gdb_byte *pattern,
2013 ULONGEST pattern_len,
2014 CORE_ADDR *found_addrp);
2015
2016 /* Main entry point for searching memory. */
2017 extern int target_search_memory (CORE_ADDR start_addr,
2018 ULONGEST search_space_len,
2019 const gdb_byte *pattern,
2020 ULONGEST pattern_len,
2021 CORE_ADDR *found_addrp);
2022
2023 /* Target file operations. */
2024
2025 /* Return nonzero if the filesystem seen by the current inferior
2026 is the local filesystem, zero otherwise. */
2027 #define target_filesystem_is_local() \
2028 target_stack->filesystem_is_local ()
2029
2030 /* Open FILENAME on the target, in the filesystem as seen by INF,
2031 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2032 by the debugger (GDB or, for remote targets, the remote stub).
2033 Return a target file descriptor, or -1 if an error occurs (and
2034 set *TARGET_ERRNO). */
2035 extern int target_fileio_open (struct inferior *inf,
2036 const char *filename, int flags,
2037 int mode, int *target_errno);
2038
2039 /* Like target_fileio_open, but print a warning message if the
2040 file is being accessed over a link that may be slow. */
2041 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2042 const char *filename,
2043 int flags,
2044 int mode,
2045 int *target_errno);
2046
2047 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2048 Return the number of bytes written, or -1 if an error occurs
2049 (and set *TARGET_ERRNO). */
2050 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2051 ULONGEST offset, int *target_errno);
2052
2053 /* Read up to LEN bytes FD on the target into READ_BUF.
2054 Return the number of bytes read, or -1 if an error occurs
2055 (and set *TARGET_ERRNO). */
2056 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2057 ULONGEST offset, int *target_errno);
2058
2059 /* Get information about the file opened as FD on the target
2060 and put it in SB. Return 0 on success, or -1 if an error
2061 occurs (and set *TARGET_ERRNO). */
2062 extern int target_fileio_fstat (int fd, struct stat *sb,
2063 int *target_errno);
2064
2065 /* Close FD on the target. Return 0, or -1 if an error occurs
2066 (and set *TARGET_ERRNO). */
2067 extern int target_fileio_close (int fd, int *target_errno);
2068
2069 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2070 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2071 for remote targets, the remote stub). Return 0, or -1 if an error
2072 occurs (and set *TARGET_ERRNO). */
2073 extern int target_fileio_unlink (struct inferior *inf,
2074 const char *filename,
2075 int *target_errno);
2076
2077 /* Read value of symbolic link FILENAME on the target, in the
2078 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2079 by the debugger (GDB or, for remote targets, the remote stub).
2080 Return a null-terminated string allocated via xmalloc, or NULL if
2081 an error occurs (and set *TARGET_ERRNO). */
2082 extern gdb::optional<std::string> target_fileio_readlink
2083 (struct inferior *inf, const char *filename, int *target_errno);
2084
2085 /* Read target file FILENAME, in the filesystem as seen by INF. If
2086 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2087 remote targets, the remote stub). The return value will be -1 if
2088 the transfer fails or is not supported; 0 if the object is empty;
2089 or the length of the object otherwise. If a positive value is
2090 returned, a sufficiently large buffer will be allocated using
2091 xmalloc and returned in *BUF_P containing the contents of the
2092 object.
2093
2094 This method should be used for objects sufficiently small to store
2095 in a single xmalloc'd buffer, when no fixed bound on the object's
2096 size is known in advance. */
2097 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2098 const char *filename,
2099 gdb_byte **buf_p);
2100
2101 /* Read target file FILENAME, in the filesystem as seen by INF. If
2102 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2103 remote targets, the remote stub). The result is NUL-terminated and
2104 returned as a string, allocated using xmalloc. If an error occurs
2105 or the transfer is unsupported, NULL is returned. Empty objects
2106 are returned as allocated but empty strings. A warning is issued
2107 if the result contains any embedded NUL bytes. */
2108 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2109 (struct inferior *inf, const char *filename);
2110
2111
2112 /* Tracepoint-related operations. */
2113
2114 #define target_trace_init() \
2115 (target_stack->trace_init) ()
2116
2117 #define target_download_tracepoint(t) \
2118 (target_stack->download_tracepoint) (t)
2119
2120 #define target_can_download_tracepoint() \
2121 (target_stack->can_download_tracepoint) ()
2122
2123 #define target_download_trace_state_variable(tsv) \
2124 (target_stack->download_trace_state_variable) (tsv)
2125
2126 #define target_enable_tracepoint(loc) \
2127 (target_stack->enable_tracepoint) (loc)
2128
2129 #define target_disable_tracepoint(loc) \
2130 (target_stack->disable_tracepoint) (loc)
2131
2132 #define target_trace_start() \
2133 (target_stack->trace_start) ()
2134
2135 #define target_trace_set_readonly_regions() \
2136 (target_stack->trace_set_readonly_regions) ()
2137
2138 #define target_get_trace_status(ts) \
2139 (target_stack->get_trace_status) (ts)
2140
2141 #define target_get_tracepoint_status(tp,utp) \
2142 (target_stack->get_tracepoint_status) (tp, utp)
2143
2144 #define target_trace_stop() \
2145 (target_stack->trace_stop) ()
2146
2147 #define target_trace_find(type,num,addr1,addr2,tpp) \
2148 (target_stack->trace_find) (\
2149 (type), (num), (addr1), (addr2), (tpp))
2150
2151 #define target_get_trace_state_variable_value(tsv,val) \
2152 (target_stack->get_trace_state_variable_value) ((tsv), (val))
2153
2154 #define target_save_trace_data(filename) \
2155 (target_stack->save_trace_data) (filename)
2156
2157 #define target_upload_tracepoints(utpp) \
2158 (target_stack->upload_tracepoints) (utpp)
2159
2160 #define target_upload_trace_state_variables(utsvp) \
2161 (target_stack->upload_trace_state_variables) (utsvp)
2162
2163 #define target_get_raw_trace_data(buf,offset,len) \
2164 (target_stack->get_raw_trace_data) ((buf), (offset), (len))
2165
2166 #define target_get_min_fast_tracepoint_insn_len() \
2167 (target_stack->get_min_fast_tracepoint_insn_len) ()
2168
2169 #define target_set_disconnected_tracing(val) \
2170 (target_stack->set_disconnected_tracing) (val)
2171
2172 #define target_set_circular_trace_buffer(val) \
2173 (target_stack->set_circular_trace_buffer) (val)
2174
2175 #define target_set_trace_buffer_size(val) \
2176 (target_stack->set_trace_buffer_size) (val)
2177
2178 #define target_set_trace_notes(user,notes,stopnotes) \
2179 (target_stack->set_trace_notes) ((user), (notes), (stopnotes))
2180
2181 #define target_get_tib_address(ptid, addr) \
2182 (target_stack->get_tib_address) ((ptid), (addr))
2183
2184 #define target_set_permissions() \
2185 (target_stack->set_permissions) ()
2186
2187 #define target_static_tracepoint_marker_at(addr, marker) \
2188 (target_stack->static_tracepoint_marker_at) (addr, marker)
2189
2190 #define target_static_tracepoint_markers_by_strid(marker_id) \
2191 (target_stack->static_tracepoint_markers_by_strid) (marker_id)
2192
2193 #define target_traceframe_info() \
2194 (target_stack->traceframe_info) ()
2195
2196 #define target_use_agent(use) \
2197 (target_stack->use_agent) (use)
2198
2199 #define target_can_use_agent() \
2200 (target_stack->can_use_agent) ()
2201
2202 #define target_augmented_libraries_svr4_read() \
2203 (target_stack->augmented_libraries_svr4_read) ()
2204
2205 /* Command logging facility. */
2206
2207 #define target_log_command(p) \
2208 (target_stack->log_command) (p)
2209
2210
2211 extern int target_core_of_thread (ptid_t ptid);
2212
2213 /* See to_get_unwinder in struct target_ops. */
2214 extern const struct frame_unwind *target_get_unwinder (void);
2215
2216 /* See to_get_tailcall_unwinder in struct target_ops. */
2217 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2218
2219 /* This implements basic memory verification, reading target memory
2220 and performing the comparison here (as opposed to accelerated
2221 verification making use of the qCRC packet, for example). */
2222
2223 extern int simple_verify_memory (struct target_ops* ops,
2224 const gdb_byte *data,
2225 CORE_ADDR memaddr, ULONGEST size);
2226
2227 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2228 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2229 if there's a mismatch, and -1 if an error is encountered while
2230 reading memory. Throws an error if the functionality is found not
2231 to be supported by the current target. */
2232 int target_verify_memory (const gdb_byte *data,
2233 CORE_ADDR memaddr, ULONGEST size);
2234
2235 /* Routines for maintenance of the target structures...
2236
2237 add_target: Add a target to the list of all possible targets.
2238 This only makes sense for targets that should be activated using
2239 the "target TARGET_NAME ..." command.
2240
2241 push_target: Make this target the top of the stack of currently used
2242 targets, within its particular stratum of the stack. Result
2243 is 0 if now atop the stack, nonzero if not on top (maybe
2244 should warn user).
2245
2246 unpush_target: Remove this from the stack of currently used targets,
2247 no matter where it is on the list. Returns 0 if no
2248 change, 1 if removed from stack. */
2249
2250 /* Type of callback called when the user activates a target with
2251 "target TARGET_NAME". The callback routine takes the rest of the
2252 parameters from the command, and (if successful) pushes a new
2253 target onto the stack. */
2254 typedef void target_open_ftype (const char *args, int from_tty);
2255
2256 /* Add the target described by INFO to the list of possible targets
2257 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2258 as the command's completer if not NULL. */
2259
2260 extern void add_target (const target_info &info,
2261 target_open_ftype *func,
2262 completer_ftype *completer = NULL);
2263
2264 /* Adds a command ALIAS for the target described by INFO and marks it
2265 deprecated. This is useful for maintaining backwards compatibility
2266 when renaming targets. */
2267
2268 extern void add_deprecated_target_alias (const target_info &info,
2269 const char *alias);
2270
2271 extern void push_target (struct target_ops *);
2272
2273 extern int unpush_target (struct target_ops *);
2274
2275 extern void target_pre_inferior (int);
2276
2277 extern void target_preopen (int);
2278
2279 /* Does whatever cleanup is required to get rid of all pushed targets. */
2280 extern void pop_all_targets (void);
2281
2282 /* Like pop_all_targets, but pops only targets whose stratum is at or
2283 above STRATUM. */
2284 extern void pop_all_targets_at_and_above (enum strata stratum);
2285
2286 /* Like pop_all_targets, but pops only targets whose stratum is
2287 strictly above ABOVE_STRATUM. */
2288 extern void pop_all_targets_above (enum strata above_stratum);
2289
2290 extern int target_is_pushed (struct target_ops *t);
2291
2292 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2293 CORE_ADDR offset);
2294
2295 /* Struct target_section maps address ranges to file sections. It is
2296 mostly used with BFD files, but can be used without (e.g. for handling
2297 raw disks, or files not in formats handled by BFD). */
2298
2299 struct target_section
2300 {
2301 CORE_ADDR addr; /* Lowest address in section */
2302 CORE_ADDR endaddr; /* 1+highest address in section */
2303
2304 struct bfd_section *the_bfd_section;
2305
2306 /* The "owner" of the section.
2307 It can be any unique value. It is set by add_target_sections
2308 and used by remove_target_sections.
2309 For example, for executables it is a pointer to exec_bfd and
2310 for shlibs it is the so_list pointer. */
2311 void *owner;
2312 };
2313
2314 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2315
2316 struct target_section_table
2317 {
2318 struct target_section *sections;
2319 struct target_section *sections_end;
2320 };
2321
2322 /* Return the "section" containing the specified address. */
2323 struct target_section *target_section_by_addr (struct target_ops *target,
2324 CORE_ADDR addr);
2325
2326 /* Return the target section table this target (or the targets
2327 beneath) currently manipulate. */
2328
2329 extern struct target_section_table *target_get_section_table
2330 (struct target_ops *target);
2331
2332 /* From mem-break.c */
2333
2334 extern int memory_remove_breakpoint (struct target_ops *,
2335 struct gdbarch *, struct bp_target_info *,
2336 enum remove_bp_reason);
2337
2338 extern int memory_insert_breakpoint (struct target_ops *,
2339 struct gdbarch *, struct bp_target_info *);
2340
2341 /* Convenience template use to add memory breakpoints support to a
2342 target. */
2343
2344 template <typename BaseTarget>
2345 struct memory_breakpoint_target : public BaseTarget
2346 {
2347 int insert_breakpoint (struct gdbarch *gdbarch,
2348 struct bp_target_info *bp_tgt) override
2349 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2350
2351 int remove_breakpoint (struct gdbarch *gdbarch,
2352 struct bp_target_info *bp_tgt,
2353 enum remove_bp_reason reason) override
2354 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2355 };
2356
2357 /* Check whether the memory at the breakpoint's placed address still
2358 contains the expected breakpoint instruction. */
2359
2360 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2361 struct bp_target_info *bp_tgt);
2362
2363 extern int default_memory_remove_breakpoint (struct gdbarch *,
2364 struct bp_target_info *);
2365
2366 extern int default_memory_insert_breakpoint (struct gdbarch *,
2367 struct bp_target_info *);
2368
2369
2370 /* From target.c */
2371
2372 extern void initialize_targets (void);
2373
2374 extern void noprocess (void) ATTRIBUTE_NORETURN;
2375
2376 extern void target_require_runnable (void);
2377
2378 extern struct target_ops *find_target_beneath (struct target_ops *);
2379
2380 /* Find the target at STRATUM. If no target is at that stratum,
2381 return NULL. */
2382
2383 struct target_ops *find_target_at (enum strata stratum);
2384
2385 /* Read OS data object of type TYPE from the target, and return it in XML
2386 format. The return value follows the same rules as target_read_stralloc. */
2387
2388 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2389
2390 /* Stuff that should be shared among the various remote targets. */
2391
2392 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2393 information (higher values, more information). */
2394 extern int remote_debug;
2395
2396 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2397 extern int baud_rate;
2398
2399 /* Parity for serial port */
2400 extern int serial_parity;
2401
2402 /* Timeout limit for response from target. */
2403 extern int remote_timeout;
2404
2405 \f
2406
2407 /* Set the show memory breakpoints mode to show, and return a
2408 scoped_restore to restore it back to the current value. */
2409 extern scoped_restore_tmpl<int>
2410 make_scoped_restore_show_memory_breakpoints (int show);
2411
2412 extern int may_write_registers;
2413 extern int may_write_memory;
2414 extern int may_insert_breakpoints;
2415 extern int may_insert_tracepoints;
2416 extern int may_insert_fast_tracepoints;
2417 extern int may_stop;
2418
2419 extern void update_target_permissions (void);
2420
2421 \f
2422 /* Imported from machine dependent code. */
2423
2424 /* See to_enable_btrace in struct target_ops. */
2425 extern struct btrace_target_info *
2426 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2427
2428 /* See to_disable_btrace in struct target_ops. */
2429 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2430
2431 /* See to_teardown_btrace in struct target_ops. */
2432 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2433
2434 /* See to_read_btrace in struct target_ops. */
2435 extern enum btrace_error target_read_btrace (struct btrace_data *,
2436 struct btrace_target_info *,
2437 enum btrace_read_type);
2438
2439 /* See to_btrace_conf in struct target_ops. */
2440 extern const struct btrace_config *
2441 target_btrace_conf (const struct btrace_target_info *);
2442
2443 /* See to_stop_recording in struct target_ops. */
2444 extern void target_stop_recording (void);
2445
2446 /* See to_save_record in struct target_ops. */
2447 extern void target_save_record (const char *filename);
2448
2449 /* Query if the target supports deleting the execution log. */
2450 extern int target_supports_delete_record (void);
2451
2452 /* See to_delete_record in struct target_ops. */
2453 extern void target_delete_record (void);
2454
2455 /* See to_record_method. */
2456 extern enum record_method target_record_method (ptid_t ptid);
2457
2458 /* See to_record_is_replaying in struct target_ops. */
2459 extern int target_record_is_replaying (ptid_t ptid);
2460
2461 /* See to_record_will_replay in struct target_ops. */
2462 extern int target_record_will_replay (ptid_t ptid, int dir);
2463
2464 /* See to_record_stop_replaying in struct target_ops. */
2465 extern void target_record_stop_replaying (void);
2466
2467 /* See to_goto_record_begin in struct target_ops. */
2468 extern void target_goto_record_begin (void);
2469
2470 /* See to_goto_record_end in struct target_ops. */
2471 extern void target_goto_record_end (void);
2472
2473 /* See to_goto_record in struct target_ops. */
2474 extern void target_goto_record (ULONGEST insn);
2475
2476 /* See to_insn_history. */
2477 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2478
2479 /* See to_insn_history_from. */
2480 extern void target_insn_history_from (ULONGEST from, int size,
2481 gdb_disassembly_flags flags);
2482
2483 /* See to_insn_history_range. */
2484 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2485 gdb_disassembly_flags flags);
2486
2487 /* See to_call_history. */
2488 extern void target_call_history (int size, record_print_flags flags);
2489
2490 /* See to_call_history_from. */
2491 extern void target_call_history_from (ULONGEST begin, int size,
2492 record_print_flags flags);
2493
2494 /* See to_call_history_range. */
2495 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2496 record_print_flags flags);
2497
2498 /* See to_prepare_to_generate_core. */
2499 extern void target_prepare_to_generate_core (void);
2500
2501 /* See to_done_generating_core. */
2502 extern void target_done_generating_core (void);
2503
2504 #if GDB_SELF_TEST
2505 namespace selftests {
2506
2507 /* A mock process_stratum target_ops that doesn't read/write registers
2508 anywhere. */
2509
2510 class test_target_ops : public target_ops
2511 {
2512 public:
2513 test_target_ops ()
2514 : target_ops {}
2515 {
2516 to_stratum = process_stratum;
2517 }
2518
2519 const target_info &info () const override;
2520
2521 bool has_registers () override
2522 {
2523 return true;
2524 }
2525
2526 bool has_stack () override
2527 {
2528 return true;
2529 }
2530
2531 bool has_memory () override
2532 {
2533 return true;
2534 }
2535
2536 void prepare_to_store (regcache *regs) override
2537 {
2538 }
2539
2540 void store_registers (regcache *regs, int regno) override
2541 {
2542 }
2543 };
2544
2545
2546 } // namespace selftests
2547 #endif /* GDB_SELF_TEST */
2548
2549 #endif /* !defined (TARGET_H) */
This page took 0.081022 seconds and 5 git commands to generate.