[C++] remote.c: Avoid enum arithmetic
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45
46 /* This include file defines the interface between the main part
47 of the debugger, and the part which is target-specific, or
48 specific to the communications interface between us and the
49 target.
50
51 A TARGET is an interface between the debugger and a particular
52 kind of file or process. Targets can be STACKED in STRATA,
53 so that more than one target can potentially respond to a request.
54 In particular, memory accesses will walk down the stack of targets
55 until they find a target that is interested in handling that particular
56 address. STRATA are artificial boundaries on the stack, within
57 which particular kinds of targets live. Strata exist so that
58 people don't get confused by pushing e.g. a process target and then
59 a file target, and wondering why they can't see the current values
60 of variables any more (the file target is handling them and they
61 never get to the process target). So when you push a file target,
62 it goes into the file stratum, which is always below the process
63 stratum. */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "command.h"
76
77 #include "break-common.h" /* For enum target_hw_bp_type. */
78
79 enum strata
80 {
81 dummy_stratum, /* The lowest of the low */
82 file_stratum, /* Executable files, etc */
83 process_stratum, /* Executing processes or core dump files */
84 thread_stratum, /* Executing threads */
85 record_stratum, /* Support record debugging */
86 arch_stratum /* Architecture overrides */
87 };
88
89 enum thread_control_capabilities
90 {
91 tc_none = 0, /* Default: can't control thread execution. */
92 tc_schedlock = 1, /* Can lock the thread scheduler. */
93 };
94
95 /* The structure below stores information about a system call.
96 It is basically used in the "catch syscall" command, and in
97 every function that gives information about a system call.
98
99 It's also good to mention that its fields represent everything
100 that we currently know about a syscall in GDB. */
101 struct syscall
102 {
103 /* The syscall number. */
104 int number;
105
106 /* The syscall name. */
107 const char *name;
108 };
109
110 /* Return a pretty printed form of target_waitstatus.
111 Space for the result is malloc'd, caller must free. */
112 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE,
203 /* Branch trace configuration, in XML format. */
204 TARGET_OBJECT_BTRACE_CONF,
205 /* The pathname of the executable file that was run to create
206 a specified process. ANNEX should be a string representation
207 of the process ID of the process in question, in hexadecimal
208 format. */
209 TARGET_OBJECT_EXEC_FILE,
210 /* Possible future objects: TARGET_OBJECT_FILE, ... */
211 };
212
213 /* Possible values returned by target_xfer_partial, etc. */
214
215 enum target_xfer_status
216 {
217 /* Some bytes are transferred. */
218 TARGET_XFER_OK = 1,
219
220 /* No further transfer is possible. */
221 TARGET_XFER_EOF = 0,
222
223 /* The piece of the object requested is unavailable. */
224 TARGET_XFER_UNAVAILABLE = 2,
225
226 /* Generic I/O error. Note that it's important that this is '-1',
227 as we still have target_xfer-related code returning hardcoded
228 '-1' on error. */
229 TARGET_XFER_E_IO = -1,
230
231 /* Keep list in sync with target_xfer_status_to_string. */
232 };
233
234 /* Return the string form of STATUS. */
235
236 extern const char *
237 target_xfer_status_to_string (enum target_xfer_status status);
238
239 /* Enumeration of the kinds of traceframe searches that a target may
240 be able to perform. */
241
242 enum trace_find_type
243 {
244 tfind_number,
245 tfind_pc,
246 tfind_tp,
247 tfind_range,
248 tfind_outside,
249 };
250
251 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
252 DEF_VEC_P(static_tracepoint_marker_p);
253
254 typedef enum target_xfer_status
255 target_xfer_partial_ftype (struct target_ops *ops,
256 enum target_object object,
257 const char *annex,
258 gdb_byte *readbuf,
259 const gdb_byte *writebuf,
260 ULONGEST offset,
261 ULONGEST len,
262 ULONGEST *xfered_len);
263
264 enum target_xfer_status
265 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
266 const gdb_byte *writebuf, ULONGEST memaddr,
267 LONGEST len, ULONGEST *xfered_len);
268
269 /* Request that OPS transfer up to LEN addressable units of the target's
270 OBJECT. When reading from a memory object, the size of an addressable unit
271 is architecture dependent and can be found using
272 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
273 byte long. BUF should point to a buffer large enough to hold the read data,
274 taking into account the addressable unit size. The OFFSET, for a seekable
275 object, specifies the starting point. The ANNEX can be used to provide
276 additional data-specific information to the target.
277
278 Return the number of addressable units actually transferred, or a negative
279 error code (an 'enum target_xfer_error' value) if the transfer is not
280 supported or otherwise fails. Return of a positive value less than
281 LEN indicates that no further transfer is possible. Unlike the raw
282 to_xfer_partial interface, callers of these functions do not need
283 to retry partial transfers. */
284
285 extern LONGEST target_read (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 struct memory_read_result
291 {
292 /* First address that was read. */
293 ULONGEST begin;
294 /* Past-the-end address. */
295 ULONGEST end;
296 /* The data. */
297 gdb_byte *data;
298 };
299 typedef struct memory_read_result memory_read_result_s;
300 DEF_VEC_O(memory_read_result_s);
301
302 extern void free_memory_read_result_vector (void *);
303
304 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
305 const ULONGEST offset,
306 const LONGEST len);
307
308 /* Request that OPS transfer up to LEN addressable units from BUF to the
309 target's OBJECT. When writing to a memory object, the addressable unit
310 size is architecture dependent and can be found using
311 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
312 byte long. The OFFSET, for a seekable object, specifies the starting point.
313 The ANNEX can be used to provide additional data-specific information to
314 the target.
315
316 Return the number of addressable units actually transferred, or a negative
317 error code (an 'enum target_xfer_status' value) if the transfer is not
318 supported or otherwise fails. Return of a positive value less than
319 LEN indicates that no further transfer is possible. Unlike the raw
320 to_xfer_partial interface, callers of these functions do not need to
321 retry partial transfers. */
322
323 extern LONGEST target_write (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len);
327
328 /* Similar to target_write, except that it also calls PROGRESS with
329 the number of bytes written and the opaque BATON after every
330 successful partial write (and before the first write). This is
331 useful for progress reporting and user interaction while writing
332 data. To abort the transfer, the progress callback can throw an
333 exception. */
334
335 LONGEST target_write_with_progress (struct target_ops *ops,
336 enum target_object object,
337 const char *annex, const gdb_byte *buf,
338 ULONGEST offset, LONGEST len,
339 void (*progress) (ULONGEST, void *),
340 void *baton);
341
342 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
343 be read using OPS. The return value will be -1 if the transfer
344 fails or is not supported; 0 if the object is empty; or the length
345 of the object otherwise. If a positive value is returned, a
346 sufficiently large buffer will be allocated using xmalloc and
347 returned in *BUF_P containing the contents of the object.
348
349 This method should be used for objects sufficiently small to store
350 in a single xmalloc'd buffer, when no fixed bound on the object's
351 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
352 through this function. */
353
354 extern LONGEST target_read_alloc (struct target_ops *ops,
355 enum target_object object,
356 const char *annex, gdb_byte **buf_p);
357
358 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
359 returned as a string, allocated using xmalloc. If an error occurs
360 or the transfer is unsupported, NULL is returned. Empty objects
361 are returned as allocated but empty strings. A warning is issued
362 if the result contains any embedded NUL bytes. */
363
364 extern char *target_read_stralloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex);
367
368 /* See target_ops->to_xfer_partial. */
369 extern target_xfer_partial_ftype target_xfer_partial;
370
371 /* Wrappers to target read/write that perform memory transfers. They
372 throw an error if the memory transfer fails.
373
374 NOTE: cagney/2003-10-23: The naming schema is lifted from
375 "frame.h". The parameter order is lifted from get_frame_memory,
376 which in turn lifted it from read_memory. */
377
378 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
379 gdb_byte *buf, LONGEST len);
380 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
381 CORE_ADDR addr, int len,
382 enum bfd_endian byte_order);
383 \f
384 struct thread_info; /* fwd decl for parameter list below: */
385
386 /* The type of the callback to the to_async method. */
387
388 typedef void async_callback_ftype (enum inferior_event_type event_type,
389 void *context);
390
391 /* Normally target debug printing is purely type-based. However,
392 sometimes it is necessary to override the debug printing on a
393 per-argument basis. This macro can be used, attribute-style, to
394 name the target debug printing function for a particular method
395 argument. FUNC is the name of the function. The macro's
396 definition is empty because it is only used by the
397 make-target-delegates script. */
398
399 #define TARGET_DEBUG_PRINTER(FUNC)
400
401 /* These defines are used to mark target_ops methods. The script
402 make-target-delegates scans these and auto-generates the base
403 method implementations. There are four macros that can be used:
404
405 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
406 does nothing. This is only valid if the method return type is
407 'void'.
408
409 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
410 'tcomplain ()'. The base method simply makes this call, which is
411 assumed not to return.
412
413 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
414 base method returns this expression's value.
415
416 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
417 make-target-delegates does not generate a base method in this case,
418 but instead uses the argument function as the base method. */
419
420 #define TARGET_DEFAULT_IGNORE()
421 #define TARGET_DEFAULT_NORETURN(ARG)
422 #define TARGET_DEFAULT_RETURN(ARG)
423 #define TARGET_DEFAULT_FUNC(ARG)
424
425 struct target_ops
426 {
427 struct target_ops *beneath; /* To the target under this one. */
428 const char *to_shortname; /* Name this target type */
429 const char *to_longname; /* Name for printing */
430 const char *to_doc; /* Documentation. Does not include trailing
431 newline, and starts with a one-line descrip-
432 tion (probably similar to to_longname). */
433 /* Per-target scratch pad. */
434 void *to_data;
435 /* The open routine takes the rest of the parameters from the
436 command, and (if successful) pushes a new target onto the
437 stack. Targets should supply this routine, if only to provide
438 an error message. */
439 void (*to_open) (const char *, int);
440 /* Old targets with a static target vector provide "to_close".
441 New re-entrant targets provide "to_xclose" and that is expected
442 to xfree everything (including the "struct target_ops"). */
443 void (*to_xclose) (struct target_ops *targ);
444 void (*to_close) (struct target_ops *);
445 /* Attaches to a process on the target side. Arguments are as
446 passed to the `attach' command by the user. This routine can
447 be called when the target is not on the target-stack, if the
448 target_can_run routine returns 1; in that case, it must push
449 itself onto the stack. Upon exit, the target should be ready
450 for normal operations, and should be ready to deliver the
451 status of the process immediately (without waiting) to an
452 upcoming target_wait call. */
453 void (*to_attach) (struct target_ops *ops, const char *, int);
454 void (*to_post_attach) (struct target_ops *, int)
455 TARGET_DEFAULT_IGNORE ();
456 void (*to_detach) (struct target_ops *ops, const char *, int)
457 TARGET_DEFAULT_IGNORE ();
458 void (*to_disconnect) (struct target_ops *, const char *, int)
459 TARGET_DEFAULT_NORETURN (tcomplain ());
460 void (*to_resume) (struct target_ops *, ptid_t,
461 int TARGET_DEBUG_PRINTER (target_debug_print_step),
462 enum gdb_signal)
463 TARGET_DEFAULT_NORETURN (noprocess ());
464 ptid_t (*to_wait) (struct target_ops *,
465 ptid_t, struct target_waitstatus *,
466 int TARGET_DEBUG_PRINTER (target_debug_print_options))
467 TARGET_DEFAULT_FUNC (default_target_wait);
468 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
469 TARGET_DEFAULT_IGNORE ();
470 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
471 TARGET_DEFAULT_NORETURN (noprocess ());
472 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
473 TARGET_DEFAULT_NORETURN (noprocess ());
474
475 void (*to_files_info) (struct target_ops *)
476 TARGET_DEFAULT_IGNORE ();
477 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
478 struct bp_target_info *)
479 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
480 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
481 struct bp_target_info *)
482 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
483
484 /* Returns true if the target stopped because it executed a
485 software breakpoint. This is necessary for correct background
486 execution / non-stop mode operation, and for correct PC
487 adjustment on targets where the PC needs to be adjusted when a
488 software breakpoint triggers. In these modes, by the time GDB
489 processes a breakpoint event, the breakpoint may already be
490 done from the target, so GDB needs to be able to tell whether
491 it should ignore the event and whether it should adjust the PC.
492 See adjust_pc_after_break. */
493 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
494 TARGET_DEFAULT_RETURN (0);
495 /* Returns true if the above method is supported. */
496 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498
499 /* Returns true if the target stopped for a hardware breakpoint.
500 Likewise, if the target supports hardware breakpoints, this
501 method is necessary for correct background execution / non-stop
502 mode operation. Even though hardware breakpoints do not
503 require PC adjustment, GDB needs to be able to tell whether the
504 hardware breakpoint event is a delayed event for a breakpoint
505 that is already gone and should thus be ignored. */
506 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
507 TARGET_DEFAULT_RETURN (0);
508 /* Returns true if the above method is supported. */
509 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
510 TARGET_DEFAULT_RETURN (0);
511
512 int (*to_can_use_hw_breakpoint) (struct target_ops *,
513 enum bptype, int, int)
514 TARGET_DEFAULT_RETURN (0);
515 int (*to_ranged_break_num_registers) (struct target_ops *)
516 TARGET_DEFAULT_RETURN (-1);
517 int (*to_insert_hw_breakpoint) (struct target_ops *,
518 struct gdbarch *, struct bp_target_info *)
519 TARGET_DEFAULT_RETURN (-1);
520 int (*to_remove_hw_breakpoint) (struct target_ops *,
521 struct gdbarch *, struct bp_target_info *)
522 TARGET_DEFAULT_RETURN (-1);
523
524 /* Documentation of what the two routines below are expected to do is
525 provided with the corresponding target_* macros. */
526 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
527 enum target_hw_bp_type, struct expression *)
528 TARGET_DEFAULT_RETURN (-1);
529 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
530 enum target_hw_bp_type, struct expression *)
531 TARGET_DEFAULT_RETURN (-1);
532
533 int (*to_insert_mask_watchpoint) (struct target_ops *,
534 CORE_ADDR, CORE_ADDR,
535 enum target_hw_bp_type)
536 TARGET_DEFAULT_RETURN (1);
537 int (*to_remove_mask_watchpoint) (struct target_ops *,
538 CORE_ADDR, CORE_ADDR,
539 enum target_hw_bp_type)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_stopped_by_watchpoint) (struct target_ops *)
542 TARGET_DEFAULT_RETURN (0);
543 int to_have_steppable_watchpoint;
544 int to_have_continuable_watchpoint;
545 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
546 TARGET_DEFAULT_RETURN (0);
547 int (*to_watchpoint_addr_within_range) (struct target_ops *,
548 CORE_ADDR, CORE_ADDR, int)
549 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
554 CORE_ADDR, int)
555 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
556
557 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
558 CORE_ADDR, int, int,
559 struct expression *)
560 TARGET_DEFAULT_RETURN (0);
561 int (*to_masked_watch_num_registers) (struct target_ops *,
562 CORE_ADDR, CORE_ADDR)
563 TARGET_DEFAULT_RETURN (-1);
564
565 /* Return 1 for sure target can do single step. Return -1 for
566 unknown. Return 0 for target can't do. */
567 int (*to_can_do_single_step) (struct target_ops *)
568 TARGET_DEFAULT_RETURN (-1);
569
570 void (*to_terminal_init) (struct target_ops *)
571 TARGET_DEFAULT_IGNORE ();
572 void (*to_terminal_inferior) (struct target_ops *)
573 TARGET_DEFAULT_IGNORE ();
574 void (*to_terminal_ours_for_output) (struct target_ops *)
575 TARGET_DEFAULT_IGNORE ();
576 void (*to_terminal_ours) (struct target_ops *)
577 TARGET_DEFAULT_IGNORE ();
578 void (*to_terminal_info) (struct target_ops *, const char *, int)
579 TARGET_DEFAULT_FUNC (default_terminal_info);
580 void (*to_kill) (struct target_ops *)
581 TARGET_DEFAULT_NORETURN (noprocess ());
582 void (*to_load) (struct target_ops *, const char *, int)
583 TARGET_DEFAULT_NORETURN (tcomplain ());
584 /* Start an inferior process and set inferior_ptid to its pid.
585 EXEC_FILE is the file to run.
586 ALLARGS is a string containing the arguments to the program.
587 ENV is the environment vector to pass. Errors reported with error().
588 On VxWorks and various standalone systems, we ignore exec_file. */
589 void (*to_create_inferior) (struct target_ops *,
590 char *, char *, char **, int);
591 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
592 TARGET_DEFAULT_IGNORE ();
593 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
594 TARGET_DEFAULT_RETURN (1);
595 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
596 TARGET_DEFAULT_RETURN (1);
597 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
598 TARGET_DEFAULT_RETURN (1);
599 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
600 TARGET_DEFAULT_RETURN (1);
601 int (*to_follow_fork) (struct target_ops *, int, int)
602 TARGET_DEFAULT_FUNC (default_follow_fork);
603 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
604 TARGET_DEFAULT_RETURN (1);
605 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
606 TARGET_DEFAULT_RETURN (1);
607 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
608 TARGET_DEFAULT_IGNORE ();
609 int (*to_set_syscall_catchpoint) (struct target_ops *,
610 int, int, int, int, int *)
611 TARGET_DEFAULT_RETURN (1);
612 int (*to_has_exited) (struct target_ops *, int, int, int *)
613 TARGET_DEFAULT_RETURN (0);
614 void (*to_mourn_inferior) (struct target_ops *)
615 TARGET_DEFAULT_FUNC (default_mourn_inferior);
616 /* Note that to_can_run is special and can be invoked on an
617 unpushed target. Targets defining this method must also define
618 to_can_async_p and to_supports_non_stop. */
619 int (*to_can_run) (struct target_ops *)
620 TARGET_DEFAULT_RETURN (0);
621
622 /* Documentation of this routine is provided with the corresponding
623 target_* macro. */
624 void (*to_pass_signals) (struct target_ops *, int,
625 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
626 TARGET_DEFAULT_IGNORE ();
627
628 /* Documentation of this routine is provided with the
629 corresponding target_* function. */
630 void (*to_program_signals) (struct target_ops *, int,
631 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
632 TARGET_DEFAULT_IGNORE ();
633
634 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
635 TARGET_DEFAULT_RETURN (0);
636 void (*to_update_thread_list) (struct target_ops *)
637 TARGET_DEFAULT_IGNORE ();
638 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
639 TARGET_DEFAULT_FUNC (default_pid_to_str);
640 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
641 TARGET_DEFAULT_RETURN (NULL);
642 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
643 TARGET_DEFAULT_RETURN (NULL);
644 void (*to_stop) (struct target_ops *, ptid_t)
645 TARGET_DEFAULT_IGNORE ();
646 void (*to_interrupt) (struct target_ops *, ptid_t)
647 TARGET_DEFAULT_IGNORE ();
648 void (*to_check_pending_interrupt) (struct target_ops *)
649 TARGET_DEFAULT_IGNORE ();
650 void (*to_rcmd) (struct target_ops *,
651 const char *command, struct ui_file *output)
652 TARGET_DEFAULT_FUNC (default_rcmd);
653 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
654 TARGET_DEFAULT_RETURN (NULL);
655 void (*to_log_command) (struct target_ops *, const char *)
656 TARGET_DEFAULT_IGNORE ();
657 struct target_section_table *(*to_get_section_table) (struct target_ops *)
658 TARGET_DEFAULT_RETURN (NULL);
659 enum strata to_stratum;
660 int (*to_has_all_memory) (struct target_ops *);
661 int (*to_has_memory) (struct target_ops *);
662 int (*to_has_stack) (struct target_ops *);
663 int (*to_has_registers) (struct target_ops *);
664 int (*to_has_execution) (struct target_ops *, ptid_t);
665 int to_has_thread_control; /* control thread execution */
666 int to_attach_no_wait;
667 /* This method must be implemented in some situations. See the
668 comment on 'to_can_run'. */
669 int (*to_can_async_p) (struct target_ops *)
670 TARGET_DEFAULT_RETURN (0);
671 int (*to_is_async_p) (struct target_ops *)
672 TARGET_DEFAULT_RETURN (0);
673 void (*to_async) (struct target_ops *, int)
674 TARGET_DEFAULT_NORETURN (tcomplain ());
675 /* This method must be implemented in some situations. See the
676 comment on 'to_can_run'. */
677 int (*to_supports_non_stop) (struct target_ops *)
678 TARGET_DEFAULT_RETURN (0);
679 /* Return true if the target operates in non-stop mode even with
680 "set non-stop off". */
681 int (*to_always_non_stop_p) (struct target_ops *)
682 TARGET_DEFAULT_RETURN (0);
683 /* find_memory_regions support method for gcore */
684 int (*to_find_memory_regions) (struct target_ops *,
685 find_memory_region_ftype func, void *data)
686 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
687 /* make_corefile_notes support method for gcore */
688 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
689 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
690 /* get_bookmark support method for bookmarks */
691 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
692 TARGET_DEFAULT_NORETURN (tcomplain ());
693 /* goto_bookmark support method for bookmarks */
694 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
695 TARGET_DEFAULT_NORETURN (tcomplain ());
696 /* Return the thread-local address at OFFSET in the
697 thread-local storage for the thread PTID and the shared library
698 or executable file given by OBJFILE. If that block of
699 thread-local storage hasn't been allocated yet, this function
700 may return an error. LOAD_MODULE_ADDR may be zero for statically
701 linked multithreaded inferiors. */
702 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
703 ptid_t ptid,
704 CORE_ADDR load_module_addr,
705 CORE_ADDR offset)
706 TARGET_DEFAULT_NORETURN (generic_tls_error ());
707
708 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
709 OBJECT. The OFFSET, for a seekable object, specifies the
710 starting point. The ANNEX can be used to provide additional
711 data-specific information to the target.
712
713 Return the transferred status, error or OK (an
714 'enum target_xfer_status' value). Save the number of bytes
715 actually transferred in *XFERED_LEN if transfer is successful
716 (TARGET_XFER_OK) or the number unavailable bytes if the requested
717 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
718 smaller than LEN does not indicate the end of the object, only
719 the end of the transfer; higher level code should continue
720 transferring if desired. This is handled in target.c.
721
722 The interface does not support a "retry" mechanism. Instead it
723 assumes that at least one byte will be transfered on each
724 successful call.
725
726 NOTE: cagney/2003-10-17: The current interface can lead to
727 fragmented transfers. Lower target levels should not implement
728 hacks, such as enlarging the transfer, in an attempt to
729 compensate for this. Instead, the target stack should be
730 extended so that it implements supply/collect methods and a
731 look-aside object cache. With that available, the lowest
732 target can safely and freely "push" data up the stack.
733
734 See target_read and target_write for more information. One,
735 and only one, of readbuf or writebuf must be non-NULL. */
736
737 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
738 enum target_object object,
739 const char *annex,
740 gdb_byte *readbuf,
741 const gdb_byte *writebuf,
742 ULONGEST offset, ULONGEST len,
743 ULONGEST *xfered_len)
744 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
745
746 /* Returns the memory map for the target. A return value of NULL
747 means that no memory map is available. If a memory address
748 does not fall within any returned regions, it's assumed to be
749 RAM. The returned memory regions should not overlap.
750
751 The order of regions does not matter; target_memory_map will
752 sort regions by starting address. For that reason, this
753 function should not be called directly except via
754 target_memory_map.
755
756 This method should not cache data; if the memory map could
757 change unexpectedly, it should be invalidated, and higher
758 layers will re-fetch it. */
759 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
760 TARGET_DEFAULT_RETURN (NULL);
761
762 /* Erases the region of flash memory starting at ADDRESS, of
763 length LENGTH.
764
765 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
766 on flash block boundaries, as reported by 'to_memory_map'. */
767 void (*to_flash_erase) (struct target_ops *,
768 ULONGEST address, LONGEST length)
769 TARGET_DEFAULT_NORETURN (tcomplain ());
770
771 /* Finishes a flash memory write sequence. After this operation
772 all flash memory should be available for writing and the result
773 of reading from areas written by 'to_flash_write' should be
774 equal to what was written. */
775 void (*to_flash_done) (struct target_ops *)
776 TARGET_DEFAULT_NORETURN (tcomplain ());
777
778 /* Describe the architecture-specific features of this target. If
779 OPS doesn't have a description, this should delegate to the
780 "beneath" target. Returns the description found, or NULL if no
781 description was available. */
782 const struct target_desc *(*to_read_description) (struct target_ops *ops)
783 TARGET_DEFAULT_RETURN (NULL);
784
785 /* Build the PTID of the thread on which a given task is running,
786 based on LWP and THREAD. These values are extracted from the
787 task Private_Data section of the Ada Task Control Block, and
788 their interpretation depends on the target. */
789 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
790 long lwp, long thread)
791 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
792
793 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
794 Return 0 if *READPTR is already at the end of the buffer.
795 Return -1 if there is insufficient buffer for a whole entry.
796 Return 1 if an entry was read into *TYPEP and *VALP. */
797 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
798 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
799 TARGET_DEFAULT_FUNC (default_auxv_parse);
800
801 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
802 sequence of bytes in PATTERN with length PATTERN_LEN.
803
804 The result is 1 if found, 0 if not found, and -1 if there was an error
805 requiring halting of the search (e.g. memory read error).
806 If the pattern is found the address is recorded in FOUND_ADDRP. */
807 int (*to_search_memory) (struct target_ops *ops,
808 CORE_ADDR start_addr, ULONGEST search_space_len,
809 const gdb_byte *pattern, ULONGEST pattern_len,
810 CORE_ADDR *found_addrp)
811 TARGET_DEFAULT_FUNC (default_search_memory);
812
813 /* Can target execute in reverse? */
814 int (*to_can_execute_reverse) (struct target_ops *)
815 TARGET_DEFAULT_RETURN (0);
816
817 /* The direction the target is currently executing. Must be
818 implemented on targets that support reverse execution and async
819 mode. The default simply returns forward execution. */
820 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
821 TARGET_DEFAULT_FUNC (default_execution_direction);
822
823 /* Does this target support debugging multiple processes
824 simultaneously? */
825 int (*to_supports_multi_process) (struct target_ops *)
826 TARGET_DEFAULT_RETURN (0);
827
828 /* Does this target support enabling and disabling tracepoints while a trace
829 experiment is running? */
830 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
831 TARGET_DEFAULT_RETURN (0);
832
833 /* Does this target support disabling address space randomization? */
834 int (*to_supports_disable_randomization) (struct target_ops *);
835
836 /* Does this target support the tracenz bytecode for string collection? */
837 int (*to_supports_string_tracing) (struct target_ops *)
838 TARGET_DEFAULT_RETURN (0);
839
840 /* Does this target support evaluation of breakpoint conditions on its
841 end? */
842 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
843 TARGET_DEFAULT_RETURN (0);
844
845 /* Does this target support evaluation of breakpoint commands on its
846 end? */
847 int (*to_can_run_breakpoint_commands) (struct target_ops *)
848 TARGET_DEFAULT_RETURN (0);
849
850 /* Determine current architecture of thread PTID.
851
852 The target is supposed to determine the architecture of the code where
853 the target is currently stopped at (on Cell, if a target is in spu_run,
854 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
855 This is architecture used to perform decr_pc_after_break adjustment,
856 and also determines the frame architecture of the innermost frame.
857 ptrace operations need to operate according to target_gdbarch ().
858
859 The default implementation always returns target_gdbarch (). */
860 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
861 TARGET_DEFAULT_FUNC (default_thread_architecture);
862
863 /* Determine current address space of thread PTID.
864
865 The default implementation always returns the inferior's
866 address space. */
867 struct address_space *(*to_thread_address_space) (struct target_ops *,
868 ptid_t)
869 TARGET_DEFAULT_FUNC (default_thread_address_space);
870
871 /* Target file operations. */
872
873 /* Return nonzero if the filesystem seen by the current inferior
874 is the local filesystem, zero otherwise. */
875 int (*to_filesystem_is_local) (struct target_ops *)
876 TARGET_DEFAULT_RETURN (1);
877
878 /* Open FILENAME on the target, in the filesystem as seen by INF,
879 using FLAGS and MODE. If INF is NULL, use the filesystem seen
880 by the debugger (GDB or, for remote targets, the remote stub).
881 If WARN_IF_SLOW is nonzero, print a warning message if the file
882 is being accessed over a link that may be slow. Return a
883 target file descriptor, or -1 if an error occurs (and set
884 *TARGET_ERRNO). */
885 int (*to_fileio_open) (struct target_ops *,
886 struct inferior *inf, const char *filename,
887 int flags, int mode, int warn_if_slow,
888 int *target_errno);
889
890 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
891 Return the number of bytes written, or -1 if an error occurs
892 (and set *TARGET_ERRNO). */
893 int (*to_fileio_pwrite) (struct target_ops *,
894 int fd, const gdb_byte *write_buf, int len,
895 ULONGEST offset, int *target_errno);
896
897 /* Read up to LEN bytes FD on the target into READ_BUF.
898 Return the number of bytes read, or -1 if an error occurs
899 (and set *TARGET_ERRNO). */
900 int (*to_fileio_pread) (struct target_ops *,
901 int fd, gdb_byte *read_buf, int len,
902 ULONGEST offset, int *target_errno);
903
904 /* Get information about the file opened as FD and put it in
905 SB. Return 0 on success, or -1 if an error occurs (and set
906 *TARGET_ERRNO). */
907 int (*to_fileio_fstat) (struct target_ops *,
908 int fd, struct stat *sb, int *target_errno);
909
910 /* Close FD on the target. Return 0, or -1 if an error occurs
911 (and set *TARGET_ERRNO). */
912 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
913
914 /* Unlink FILENAME on the target, in the filesystem as seen by
915 INF. If INF is NULL, use the filesystem seen by the debugger
916 (GDB or, for remote targets, the remote stub). Return 0, or
917 -1 if an error occurs (and set *TARGET_ERRNO). */
918 int (*to_fileio_unlink) (struct target_ops *,
919 struct inferior *inf,
920 const char *filename,
921 int *target_errno);
922
923 /* Read value of symbolic link FILENAME on the target, in the
924 filesystem as seen by INF. If INF is NULL, use the filesystem
925 seen by the debugger (GDB or, for remote targets, the remote
926 stub). Return a null-terminated string allocated via xmalloc,
927 or NULL if an error occurs (and set *TARGET_ERRNO). */
928 char *(*to_fileio_readlink) (struct target_ops *,
929 struct inferior *inf,
930 const char *filename,
931 int *target_errno);
932
933
934 /* Implement the "info proc" command. */
935 void (*to_info_proc) (struct target_ops *, const char *,
936 enum info_proc_what);
937
938 /* Tracepoint-related operations. */
939
940 /* Prepare the target for a tracing run. */
941 void (*to_trace_init) (struct target_ops *)
942 TARGET_DEFAULT_NORETURN (tcomplain ());
943
944 /* Send full details of a tracepoint location to the target. */
945 void (*to_download_tracepoint) (struct target_ops *,
946 struct bp_location *location)
947 TARGET_DEFAULT_NORETURN (tcomplain ());
948
949 /* Is the target able to download tracepoint locations in current
950 state? */
951 int (*to_can_download_tracepoint) (struct target_ops *)
952 TARGET_DEFAULT_RETURN (0);
953
954 /* Send full details of a trace state variable to the target. */
955 void (*to_download_trace_state_variable) (struct target_ops *,
956 struct trace_state_variable *tsv)
957 TARGET_DEFAULT_NORETURN (tcomplain ());
958
959 /* Enable a tracepoint on the target. */
960 void (*to_enable_tracepoint) (struct target_ops *,
961 struct bp_location *location)
962 TARGET_DEFAULT_NORETURN (tcomplain ());
963
964 /* Disable a tracepoint on the target. */
965 void (*to_disable_tracepoint) (struct target_ops *,
966 struct bp_location *location)
967 TARGET_DEFAULT_NORETURN (tcomplain ());
968
969 /* Inform the target info of memory regions that are readonly
970 (such as text sections), and so it should return data from
971 those rather than look in the trace buffer. */
972 void (*to_trace_set_readonly_regions) (struct target_ops *)
973 TARGET_DEFAULT_NORETURN (tcomplain ());
974
975 /* Start a trace run. */
976 void (*to_trace_start) (struct target_ops *)
977 TARGET_DEFAULT_NORETURN (tcomplain ());
978
979 /* Get the current status of a tracing run. */
980 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
981 TARGET_DEFAULT_RETURN (-1);
982
983 void (*to_get_tracepoint_status) (struct target_ops *,
984 struct breakpoint *tp,
985 struct uploaded_tp *utp)
986 TARGET_DEFAULT_NORETURN (tcomplain ());
987
988 /* Stop a trace run. */
989 void (*to_trace_stop) (struct target_ops *)
990 TARGET_DEFAULT_NORETURN (tcomplain ());
991
992 /* Ask the target to find a trace frame of the given type TYPE,
993 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
994 number of the trace frame, and also the tracepoint number at
995 TPP. If no trace frame matches, return -1. May throw if the
996 operation fails. */
997 int (*to_trace_find) (struct target_ops *,
998 enum trace_find_type type, int num,
999 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1000 TARGET_DEFAULT_RETURN (-1);
1001
1002 /* Get the value of the trace state variable number TSV, returning
1003 1 if the value is known and writing the value itself into the
1004 location pointed to by VAL, else returning 0. */
1005 int (*to_get_trace_state_variable_value) (struct target_ops *,
1006 int tsv, LONGEST *val)
1007 TARGET_DEFAULT_RETURN (0);
1008
1009 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1010 TARGET_DEFAULT_NORETURN (tcomplain ());
1011
1012 int (*to_upload_tracepoints) (struct target_ops *,
1013 struct uploaded_tp **utpp)
1014 TARGET_DEFAULT_RETURN (0);
1015
1016 int (*to_upload_trace_state_variables) (struct target_ops *,
1017 struct uploaded_tsv **utsvp)
1018 TARGET_DEFAULT_RETURN (0);
1019
1020 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1021 ULONGEST offset, LONGEST len)
1022 TARGET_DEFAULT_NORETURN (tcomplain ());
1023
1024 /* Get the minimum length of instruction on which a fast tracepoint
1025 may be set on the target. If this operation is unsupported,
1026 return -1. If for some reason the minimum length cannot be
1027 determined, return 0. */
1028 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1029 TARGET_DEFAULT_RETURN (-1);
1030
1031 /* Set the target's tracing behavior in response to unexpected
1032 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1033 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1034 TARGET_DEFAULT_IGNORE ();
1035 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1036 TARGET_DEFAULT_IGNORE ();
1037 /* Set the size of trace buffer in the target. */
1038 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1039 TARGET_DEFAULT_IGNORE ();
1040
1041 /* Add/change textual notes about the trace run, returning 1 if
1042 successful, 0 otherwise. */
1043 int (*to_set_trace_notes) (struct target_ops *,
1044 const char *user, const char *notes,
1045 const char *stopnotes)
1046 TARGET_DEFAULT_RETURN (0);
1047
1048 /* Return the processor core that thread PTID was last seen on.
1049 This information is updated only when:
1050 - update_thread_list is called
1051 - thread stops
1052 If the core cannot be determined -- either for the specified
1053 thread, or right now, or in this debug session, or for this
1054 target -- return -1. */
1055 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1056 TARGET_DEFAULT_RETURN (-1);
1057
1058 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1059 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1060 a match, 0 if there's a mismatch, and -1 if an error is
1061 encountered while reading memory. */
1062 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1063 CORE_ADDR memaddr, ULONGEST size)
1064 TARGET_DEFAULT_FUNC (default_verify_memory);
1065
1066 /* Return the address of the start of the Thread Information Block
1067 a Windows OS specific feature. */
1068 int (*to_get_tib_address) (struct target_ops *,
1069 ptid_t ptid, CORE_ADDR *addr)
1070 TARGET_DEFAULT_NORETURN (tcomplain ());
1071
1072 /* Send the new settings of write permission variables. */
1073 void (*to_set_permissions) (struct target_ops *)
1074 TARGET_DEFAULT_IGNORE ();
1075
1076 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1077 with its details. Return 1 on success, 0 on failure. */
1078 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1079 struct static_tracepoint_marker *marker)
1080 TARGET_DEFAULT_RETURN (0);
1081
1082 /* Return a vector of all tracepoints markers string id ID, or all
1083 markers if ID is NULL. */
1084 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1085 TARGET_DEFAULT_NORETURN (tcomplain ());
1086
1087 /* Return a traceframe info object describing the current
1088 traceframe's contents. This method should not cache data;
1089 higher layers take care of caching, invalidating, and
1090 re-fetching when necessary. */
1091 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1092 TARGET_DEFAULT_NORETURN (tcomplain ());
1093
1094 /* Ask the target to use or not to use agent according to USE. Return 1
1095 successful, 0 otherwise. */
1096 int (*to_use_agent) (struct target_ops *, int use)
1097 TARGET_DEFAULT_NORETURN (tcomplain ());
1098
1099 /* Is the target able to use agent in current state? */
1100 int (*to_can_use_agent) (struct target_ops *)
1101 TARGET_DEFAULT_RETURN (0);
1102
1103 /* Check whether the target supports branch tracing. */
1104 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1105 TARGET_DEFAULT_RETURN (0);
1106
1107 /* Enable branch tracing for PTID using CONF configuration.
1108 Return a branch trace target information struct for reading and for
1109 disabling branch trace. */
1110 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1111 ptid_t ptid,
1112 const struct btrace_config *conf)
1113 TARGET_DEFAULT_NORETURN (tcomplain ());
1114
1115 /* Disable branch tracing and deallocate TINFO. */
1116 void (*to_disable_btrace) (struct target_ops *,
1117 struct btrace_target_info *tinfo)
1118 TARGET_DEFAULT_NORETURN (tcomplain ());
1119
1120 /* Disable branch tracing and deallocate TINFO. This function is similar
1121 to to_disable_btrace, except that it is called during teardown and is
1122 only allowed to perform actions that are safe. A counter-example would
1123 be attempting to talk to a remote target. */
1124 void (*to_teardown_btrace) (struct target_ops *,
1125 struct btrace_target_info *tinfo)
1126 TARGET_DEFAULT_NORETURN (tcomplain ());
1127
1128 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1129 DATA is cleared before new trace is added. */
1130 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1131 struct btrace_data *data,
1132 struct btrace_target_info *btinfo,
1133 enum btrace_read_type type)
1134 TARGET_DEFAULT_NORETURN (tcomplain ());
1135
1136 /* Get the branch trace configuration. */
1137 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1138 const struct btrace_target_info *)
1139 TARGET_DEFAULT_RETURN (NULL);
1140
1141 /* Stop trace recording. */
1142 void (*to_stop_recording) (struct target_ops *)
1143 TARGET_DEFAULT_IGNORE ();
1144
1145 /* Print information about the recording. */
1146 void (*to_info_record) (struct target_ops *)
1147 TARGET_DEFAULT_IGNORE ();
1148
1149 /* Save the recorded execution trace into a file. */
1150 void (*to_save_record) (struct target_ops *, const char *filename)
1151 TARGET_DEFAULT_NORETURN (tcomplain ());
1152
1153 /* Delete the recorded execution trace from the current position
1154 onwards. */
1155 void (*to_delete_record) (struct target_ops *)
1156 TARGET_DEFAULT_NORETURN (tcomplain ());
1157
1158 /* Query if the record target is currently replaying PTID. */
1159 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1160 TARGET_DEFAULT_RETURN (0);
1161
1162 /* Query if the record target will replay PTID if it were resumed in
1163 execution direction DIR. */
1164 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1165 TARGET_DEFAULT_RETURN (0);
1166
1167 /* Stop replaying. */
1168 void (*to_record_stop_replaying) (struct target_ops *)
1169 TARGET_DEFAULT_IGNORE ();
1170
1171 /* Go to the begin of the execution trace. */
1172 void (*to_goto_record_begin) (struct target_ops *)
1173 TARGET_DEFAULT_NORETURN (tcomplain ());
1174
1175 /* Go to the end of the execution trace. */
1176 void (*to_goto_record_end) (struct target_ops *)
1177 TARGET_DEFAULT_NORETURN (tcomplain ());
1178
1179 /* Go to a specific location in the recorded execution trace. */
1180 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1181 TARGET_DEFAULT_NORETURN (tcomplain ());
1182
1183 /* Disassemble SIZE instructions in the recorded execution trace from
1184 the current position.
1185 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1186 disassemble SIZE succeeding instructions. */
1187 void (*to_insn_history) (struct target_ops *, int size, int flags)
1188 TARGET_DEFAULT_NORETURN (tcomplain ());
1189
1190 /* Disassemble SIZE instructions in the recorded execution trace around
1191 FROM.
1192 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1193 disassemble SIZE instructions after FROM. */
1194 void (*to_insn_history_from) (struct target_ops *,
1195 ULONGEST from, int size, int flags)
1196 TARGET_DEFAULT_NORETURN (tcomplain ());
1197
1198 /* Disassemble a section of the recorded execution trace from instruction
1199 BEGIN (inclusive) to instruction END (inclusive). */
1200 void (*to_insn_history_range) (struct target_ops *,
1201 ULONGEST begin, ULONGEST end, int flags)
1202 TARGET_DEFAULT_NORETURN (tcomplain ());
1203
1204 /* Print a function trace of the recorded execution trace.
1205 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1206 succeeding functions. */
1207 void (*to_call_history) (struct target_ops *, int size, int flags)
1208 TARGET_DEFAULT_NORETURN (tcomplain ());
1209
1210 /* Print a function trace of the recorded execution trace starting
1211 at function FROM.
1212 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1213 SIZE functions after FROM. */
1214 void (*to_call_history_from) (struct target_ops *,
1215 ULONGEST begin, int size, int flags)
1216 TARGET_DEFAULT_NORETURN (tcomplain ());
1217
1218 /* Print a function trace of an execution trace section from function BEGIN
1219 (inclusive) to function END (inclusive). */
1220 void (*to_call_history_range) (struct target_ops *,
1221 ULONGEST begin, ULONGEST end, int flags)
1222 TARGET_DEFAULT_NORETURN (tcomplain ());
1223
1224 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1225 non-empty annex. */
1226 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1227 TARGET_DEFAULT_RETURN (0);
1228
1229 /* Those unwinders are tried before any other arch unwinders. If
1230 SELF doesn't have unwinders, it should delegate to the
1231 "beneath" target. */
1232 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1233 TARGET_DEFAULT_RETURN (NULL);
1234
1235 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1236 TARGET_DEFAULT_RETURN (NULL);
1237
1238 /* Prepare to generate a core file. */
1239 void (*to_prepare_to_generate_core) (struct target_ops *)
1240 TARGET_DEFAULT_IGNORE ();
1241
1242 /* Cleanup after generating a core file. */
1243 void (*to_done_generating_core) (struct target_ops *)
1244 TARGET_DEFAULT_IGNORE ();
1245
1246 int to_magic;
1247 /* Need sub-structure for target machine related rather than comm related?
1248 */
1249 };
1250
1251 /* Magic number for checking ops size. If a struct doesn't end with this
1252 number, somebody changed the declaration but didn't change all the
1253 places that initialize one. */
1254
1255 #define OPS_MAGIC 3840
1256
1257 /* The ops structure for our "current" target process. This should
1258 never be NULL. If there is no target, it points to the dummy_target. */
1259
1260 extern struct target_ops current_target;
1261
1262 /* Define easy words for doing these operations on our current target. */
1263
1264 #define target_shortname (current_target.to_shortname)
1265 #define target_longname (current_target.to_longname)
1266
1267 /* Does whatever cleanup is required for a target that we are no
1268 longer going to be calling. This routine is automatically always
1269 called after popping the target off the target stack - the target's
1270 own methods are no longer available through the target vector.
1271 Closing file descriptors and freeing all memory allocated memory are
1272 typical things it should do. */
1273
1274 void target_close (struct target_ops *targ);
1275
1276 /* Find the correct target to use for "attach". If a target on the
1277 current stack supports attaching, then it is returned. Otherwise,
1278 the default run target is returned. */
1279
1280 extern struct target_ops *find_attach_target (void);
1281
1282 /* Find the correct target to use for "run". If a target on the
1283 current stack supports creating a new inferior, then it is
1284 returned. Otherwise, the default run target is returned. */
1285
1286 extern struct target_ops *find_run_target (void);
1287
1288 /* Some targets don't generate traps when attaching to the inferior,
1289 or their target_attach implementation takes care of the waiting.
1290 These targets must set to_attach_no_wait. */
1291
1292 #define target_attach_no_wait \
1293 (current_target.to_attach_no_wait)
1294
1295 /* The target_attach operation places a process under debugger control,
1296 and stops the process.
1297
1298 This operation provides a target-specific hook that allows the
1299 necessary bookkeeping to be performed after an attach completes. */
1300 #define target_post_attach(pid) \
1301 (*current_target.to_post_attach) (&current_target, pid)
1302
1303 /* Takes a program previously attached to and detaches it.
1304 The program may resume execution (some targets do, some don't) and will
1305 no longer stop on signals, etc. We better not have left any breakpoints
1306 in the program or it'll die when it hits one. ARGS is arguments
1307 typed by the user (e.g. a signal to send the process). FROM_TTY
1308 says whether to be verbose or not. */
1309
1310 extern void target_detach (const char *, int);
1311
1312 /* Disconnect from the current target without resuming it (leaving it
1313 waiting for a debugger). */
1314
1315 extern void target_disconnect (const char *, int);
1316
1317 /* Resume execution of the target process PTID (or a group of
1318 threads). STEP says whether to hardware single-step or to run free;
1319 SIGGNAL is the signal to be given to the target, or GDB_SIGNAL_0 for no
1320 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1321 PTID means `step/resume only this process id'. A wildcard PTID
1322 (all threads, or all threads of process) means `step/resume
1323 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1324 matches) resume with their 'thread->suspend.stop_signal' signal
1325 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1326 if in "no pass" state. */
1327
1328 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1329
1330 /* Wait for process pid to do something. PTID = -1 to wait for any
1331 pid to do something. Return pid of child, or -1 in case of error;
1332 store status through argument pointer STATUS. Note that it is
1333 _NOT_ OK to throw_exception() out of target_wait() without popping
1334 the debugging target from the stack; GDB isn't prepared to get back
1335 to the prompt with a debugging target but without the frame cache,
1336 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1337 options. */
1338
1339 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1340 int options);
1341
1342 /* The default target_ops::to_wait implementation. */
1343
1344 extern ptid_t default_target_wait (struct target_ops *ops,
1345 ptid_t ptid,
1346 struct target_waitstatus *status,
1347 int options);
1348
1349 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1350
1351 extern void target_fetch_registers (struct regcache *regcache, int regno);
1352
1353 /* Store at least register REGNO, or all regs if REGNO == -1.
1354 It can store as many registers as it wants to, so target_prepare_to_store
1355 must have been previously called. Calls error() if there are problems. */
1356
1357 extern void target_store_registers (struct regcache *regcache, int regs);
1358
1359 /* Get ready to modify the registers array. On machines which store
1360 individual registers, this doesn't need to do anything. On machines
1361 which store all the registers in one fell swoop, this makes sure
1362 that REGISTERS contains all the registers from the program being
1363 debugged. */
1364
1365 #define target_prepare_to_store(regcache) \
1366 (*current_target.to_prepare_to_store) (&current_target, regcache)
1367
1368 /* Determine current address space of thread PTID. */
1369
1370 struct address_space *target_thread_address_space (ptid_t);
1371
1372 /* Implement the "info proc" command. This returns one if the request
1373 was handled, and zero otherwise. It can also throw an exception if
1374 an error was encountered while attempting to handle the
1375 request. */
1376
1377 int target_info_proc (const char *, enum info_proc_what);
1378
1379 /* Returns true if this target can debug multiple processes
1380 simultaneously. */
1381
1382 #define target_supports_multi_process() \
1383 (*current_target.to_supports_multi_process) (&current_target)
1384
1385 /* Returns true if this target can disable address space randomization. */
1386
1387 int target_supports_disable_randomization (void);
1388
1389 /* Returns true if this target can enable and disable tracepoints
1390 while a trace experiment is running. */
1391
1392 #define target_supports_enable_disable_tracepoint() \
1393 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1394
1395 #define target_supports_string_tracing() \
1396 (*current_target.to_supports_string_tracing) (&current_target)
1397
1398 /* Returns true if this target can handle breakpoint conditions
1399 on its end. */
1400
1401 #define target_supports_evaluation_of_breakpoint_conditions() \
1402 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1403
1404 /* Returns true if this target can handle breakpoint commands
1405 on its end. */
1406
1407 #define target_can_run_breakpoint_commands() \
1408 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1409
1410 extern int target_read_string (CORE_ADDR, char **, int, int *);
1411
1412 /* For target_read_memory see target/target.h. */
1413
1414 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1415 ssize_t len);
1416
1417 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1418
1419 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1420
1421 /* For target_write_memory see target/target.h. */
1422
1423 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1424 ssize_t len);
1425
1426 /* Fetches the target's memory map. If one is found it is sorted
1427 and returned, after some consistency checking. Otherwise, NULL
1428 is returned. */
1429 VEC(mem_region_s) *target_memory_map (void);
1430
1431 /* Erase the specified flash region. */
1432 void target_flash_erase (ULONGEST address, LONGEST length);
1433
1434 /* Finish a sequence of flash operations. */
1435 void target_flash_done (void);
1436
1437 /* Describes a request for a memory write operation. */
1438 struct memory_write_request
1439 {
1440 /* Begining address that must be written. */
1441 ULONGEST begin;
1442 /* Past-the-end address. */
1443 ULONGEST end;
1444 /* The data to write. */
1445 gdb_byte *data;
1446 /* A callback baton for progress reporting for this request. */
1447 void *baton;
1448 };
1449 typedef struct memory_write_request memory_write_request_s;
1450 DEF_VEC_O(memory_write_request_s);
1451
1452 /* Enumeration specifying different flash preservation behaviour. */
1453 enum flash_preserve_mode
1454 {
1455 flash_preserve,
1456 flash_discard
1457 };
1458
1459 /* Write several memory blocks at once. This version can be more
1460 efficient than making several calls to target_write_memory, in
1461 particular because it can optimize accesses to flash memory.
1462
1463 Moreover, this is currently the only memory access function in gdb
1464 that supports writing to flash memory, and it should be used for
1465 all cases where access to flash memory is desirable.
1466
1467 REQUESTS is the vector (see vec.h) of memory_write_request.
1468 PRESERVE_FLASH_P indicates what to do with blocks which must be
1469 erased, but not completely rewritten.
1470 PROGRESS_CB is a function that will be periodically called to provide
1471 feedback to user. It will be called with the baton corresponding
1472 to the request currently being written. It may also be called
1473 with a NULL baton, when preserved flash sectors are being rewritten.
1474
1475 The function returns 0 on success, and error otherwise. */
1476 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1477 enum flash_preserve_mode preserve_flash_p,
1478 void (*progress_cb) (ULONGEST, void *));
1479
1480 /* Print a line about the current target. */
1481
1482 #define target_files_info() \
1483 (*current_target.to_files_info) (&current_target)
1484
1485 /* Insert a breakpoint at address BP_TGT->placed_address in
1486 the target machine. Returns 0 for success, and returns non-zero or
1487 throws an error (with a detailed failure reason error code and
1488 message) otherwise. */
1489
1490 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1491 struct bp_target_info *bp_tgt);
1492
1493 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1494 machine. Result is 0 for success, non-zero for error. */
1495
1496 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1497 struct bp_target_info *bp_tgt);
1498
1499 /* Returns true if the terminal settings of the inferior are in
1500 effect. */
1501
1502 extern int target_terminal_is_inferior (void);
1503
1504 /* Initialize the terminal settings we record for the inferior,
1505 before we actually run the inferior. */
1506
1507 extern void target_terminal_init (void);
1508
1509 /* Put the inferior's terminal settings into effect.
1510 This is preparation for starting or resuming the inferior. */
1511
1512 extern void target_terminal_inferior (void);
1513
1514 /* Put some of our terminal settings into effect, enough to get proper
1515 results from our output, but do not change into or out of RAW mode
1516 so that no input is discarded. This is a no-op if terminal_ours
1517 was most recently called. */
1518
1519 extern void target_terminal_ours_for_output (void);
1520
1521 /* Put our terminal settings into effect.
1522 First record the inferior's terminal settings
1523 so they can be restored properly later. */
1524
1525 extern void target_terminal_ours (void);
1526
1527 /* Return true if the target stack has a non-default
1528 "to_terminal_ours" method. */
1529
1530 extern int target_supports_terminal_ours (void);
1531
1532 /* Make a cleanup that restores the state of the terminal to the current
1533 state. */
1534 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1535
1536 /* Print useful information about our terminal status, if such a thing
1537 exists. */
1538
1539 #define target_terminal_info(arg, from_tty) \
1540 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1541
1542 /* Kill the inferior process. Make it go away. */
1543
1544 extern void target_kill (void);
1545
1546 /* Load an executable file into the target process. This is expected
1547 to not only bring new code into the target process, but also to
1548 update GDB's symbol tables to match.
1549
1550 ARG contains command-line arguments, to be broken down with
1551 buildargv (). The first non-switch argument is the filename to
1552 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1553 0)), which is an offset to apply to the load addresses of FILE's
1554 sections. The target may define switches, or other non-switch
1555 arguments, as it pleases. */
1556
1557 extern void target_load (const char *arg, int from_tty);
1558
1559 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1560 notification of inferior events such as fork and vork immediately
1561 after the inferior is created. (This because of how gdb gets an
1562 inferior created via invoking a shell to do it. In such a scenario,
1563 if the shell init file has commands in it, the shell will fork and
1564 exec for each of those commands, and we will see each such fork
1565 event. Very bad.)
1566
1567 Such targets will supply an appropriate definition for this function. */
1568
1569 #define target_post_startup_inferior(ptid) \
1570 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1571
1572 /* On some targets, we can catch an inferior fork or vfork event when
1573 it occurs. These functions insert/remove an already-created
1574 catchpoint for such events. They return 0 for success, 1 if the
1575 catchpoint type is not supported and -1 for failure. */
1576
1577 #define target_insert_fork_catchpoint(pid) \
1578 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1579
1580 #define target_remove_fork_catchpoint(pid) \
1581 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1582
1583 #define target_insert_vfork_catchpoint(pid) \
1584 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1585
1586 #define target_remove_vfork_catchpoint(pid) \
1587 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1588
1589 /* If the inferior forks or vforks, this function will be called at
1590 the next resume in order to perform any bookkeeping and fiddling
1591 necessary to continue debugging either the parent or child, as
1592 requested, and releasing the other. Information about the fork
1593 or vfork event is available via get_last_target_status ().
1594 This function returns 1 if the inferior should not be resumed
1595 (i.e. there is another event pending). */
1596
1597 int target_follow_fork (int follow_child, int detach_fork);
1598
1599 /* Handle the target-specific bookkeeping required when the inferior
1600 makes an exec call. INF is the exec'd inferior. */
1601
1602 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1603
1604 /* On some targets, we can catch an inferior exec event when it
1605 occurs. These functions insert/remove an already-created
1606 catchpoint for such events. They return 0 for success, 1 if the
1607 catchpoint type is not supported and -1 for failure. */
1608
1609 #define target_insert_exec_catchpoint(pid) \
1610 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1611
1612 #define target_remove_exec_catchpoint(pid) \
1613 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1614
1615 /* Syscall catch.
1616
1617 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1618 If NEEDED is zero, it means the target can disable the mechanism to
1619 catch system calls because there are no more catchpoints of this type.
1620
1621 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1622 being requested. In this case, both TABLE_SIZE and TABLE should
1623 be ignored.
1624
1625 TABLE_SIZE is the number of elements in TABLE. It only matters if
1626 ANY_COUNT is zero.
1627
1628 TABLE is an array of ints, indexed by syscall number. An element in
1629 this array is nonzero if that syscall should be caught. This argument
1630 only matters if ANY_COUNT is zero.
1631
1632 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1633 for failure. */
1634
1635 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1636 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1637 pid, needed, any_count, \
1638 table_size, table)
1639
1640 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1641 exit code of PID, if any. */
1642
1643 #define target_has_exited(pid,wait_status,exit_status) \
1644 (*current_target.to_has_exited) (&current_target, \
1645 pid,wait_status,exit_status)
1646
1647 /* The debugger has completed a blocking wait() call. There is now
1648 some process event that must be processed. This function should
1649 be defined by those targets that require the debugger to perform
1650 cleanup or internal state changes in response to the process event. */
1651
1652 /* The inferior process has died. Do what is right. */
1653
1654 void target_mourn_inferior (void);
1655
1656 /* Does target have enough data to do a run or attach command? */
1657
1658 #define target_can_run(t) \
1659 ((t)->to_can_run) (t)
1660
1661 /* Set list of signals to be handled in the target.
1662
1663 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1664 (enum gdb_signal). For every signal whose entry in this array is
1665 non-zero, the target is allowed -but not required- to skip reporting
1666 arrival of the signal to the GDB core by returning from target_wait,
1667 and to pass the signal directly to the inferior instead.
1668
1669 However, if the target is hardware single-stepping a thread that is
1670 about to receive a signal, it needs to be reported in any case, even
1671 if mentioned in a previous target_pass_signals call. */
1672
1673 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1674
1675 /* Set list of signals the target may pass to the inferior. This
1676 directly maps to the "handle SIGNAL pass/nopass" setting.
1677
1678 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1679 number (enum gdb_signal). For every signal whose entry in this
1680 array is non-zero, the target is allowed to pass the signal to the
1681 inferior. Signals not present in the array shall be silently
1682 discarded. This does not influence whether to pass signals to the
1683 inferior as a result of a target_resume call. This is useful in
1684 scenarios where the target needs to decide whether to pass or not a
1685 signal to the inferior without GDB core involvement, such as for
1686 example, when detaching (as threads may have been suspended with
1687 pending signals not reported to GDB). */
1688
1689 extern void target_program_signals (int nsig, unsigned char *program_signals);
1690
1691 /* Check to see if a thread is still alive. */
1692
1693 extern int target_thread_alive (ptid_t ptid);
1694
1695 /* Sync the target's threads with GDB's thread list. */
1696
1697 extern void target_update_thread_list (void);
1698
1699 /* Make target stop in a continuable fashion. (For instance, under
1700 Unix, this should act like SIGSTOP). Note that this function is
1701 asynchronous: it does not wait for the target to become stopped
1702 before returning. If this is the behavior you want please use
1703 target_stop_and_wait. */
1704
1705 extern void target_stop (ptid_t ptid);
1706
1707 /* Interrupt the target just like the user typed a ^C on the
1708 inferior's controlling terminal. (For instance, under Unix, this
1709 should act like SIGINT). This function is asynchronous. */
1710
1711 extern void target_interrupt (ptid_t ptid);
1712
1713 /* Some targets install their own SIGINT handler while the target is
1714 running. This method is called from the QUIT macro to give such
1715 targets a chance to process a Ctrl-C. The target may e.g., choose
1716 to interrupt the (potentially) long running operation, or give up
1717 waiting and disconnect. */
1718
1719 extern void target_check_pending_interrupt (void);
1720
1721 /* Send the specified COMMAND to the target's monitor
1722 (shell,interpreter) for execution. The result of the query is
1723 placed in OUTBUF. */
1724
1725 #define target_rcmd(command, outbuf) \
1726 (*current_target.to_rcmd) (&current_target, command, outbuf)
1727
1728
1729 /* Does the target include all of memory, or only part of it? This
1730 determines whether we look up the target chain for other parts of
1731 memory if this target can't satisfy a request. */
1732
1733 extern int target_has_all_memory_1 (void);
1734 #define target_has_all_memory target_has_all_memory_1 ()
1735
1736 /* Does the target include memory? (Dummy targets don't.) */
1737
1738 extern int target_has_memory_1 (void);
1739 #define target_has_memory target_has_memory_1 ()
1740
1741 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1742 we start a process.) */
1743
1744 extern int target_has_stack_1 (void);
1745 #define target_has_stack target_has_stack_1 ()
1746
1747 /* Does the target have registers? (Exec files don't.) */
1748
1749 extern int target_has_registers_1 (void);
1750 #define target_has_registers target_has_registers_1 ()
1751
1752 /* Does the target have execution? Can we make it jump (through
1753 hoops), or pop its stack a few times? This means that the current
1754 target is currently executing; for some targets, that's the same as
1755 whether or not the target is capable of execution, but there are
1756 also targets which can be current while not executing. In that
1757 case this will become true after to_create_inferior or
1758 to_attach. */
1759
1760 extern int target_has_execution_1 (ptid_t);
1761
1762 /* Like target_has_execution_1, but always passes inferior_ptid. */
1763
1764 extern int target_has_execution_current (void);
1765
1766 #define target_has_execution target_has_execution_current ()
1767
1768 /* Default implementations for process_stratum targets. Return true
1769 if there's a selected inferior, false otherwise. */
1770
1771 extern int default_child_has_all_memory (struct target_ops *ops);
1772 extern int default_child_has_memory (struct target_ops *ops);
1773 extern int default_child_has_stack (struct target_ops *ops);
1774 extern int default_child_has_registers (struct target_ops *ops);
1775 extern int default_child_has_execution (struct target_ops *ops,
1776 ptid_t the_ptid);
1777
1778 /* Can the target support the debugger control of thread execution?
1779 Can it lock the thread scheduler? */
1780
1781 #define target_can_lock_scheduler \
1782 (current_target.to_has_thread_control & tc_schedlock)
1783
1784 /* Controls whether async mode is permitted. */
1785 extern int target_async_permitted;
1786
1787 /* Can the target support asynchronous execution? */
1788 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1789
1790 /* Is the target in asynchronous execution mode? */
1791 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1792
1793 /* Enables/disabled async target events. */
1794 extern void target_async (int enable);
1795
1796 /* Whether support for controlling the target backends always in
1797 non-stop mode is enabled. */
1798 extern enum auto_boolean target_non_stop_enabled;
1799
1800 /* Is the target in non-stop mode? Some targets control the inferior
1801 in non-stop mode even with "set non-stop off". Always true if "set
1802 non-stop" is on. */
1803 extern int target_is_non_stop_p (void);
1804
1805 #define target_execution_direction() \
1806 (current_target.to_execution_direction (&current_target))
1807
1808 /* Converts a process id to a string. Usually, the string just contains
1809 `process xyz', but on some systems it may contain
1810 `process xyz thread abc'. */
1811
1812 extern char *target_pid_to_str (ptid_t ptid);
1813
1814 extern char *normal_pid_to_str (ptid_t ptid);
1815
1816 /* Return a short string describing extra information about PID,
1817 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1818 is okay. */
1819
1820 #define target_extra_thread_info(TP) \
1821 (current_target.to_extra_thread_info (&current_target, TP))
1822
1823 /* Return the thread's name. A NULL result means that the target
1824 could not determine this thread's name. */
1825
1826 extern char *target_thread_name (struct thread_info *);
1827
1828 /* Attempts to find the pathname of the executable file
1829 that was run to create a specified process.
1830
1831 The process PID must be stopped when this operation is used.
1832
1833 If the executable file cannot be determined, NULL is returned.
1834
1835 Else, a pointer to a character string containing the pathname
1836 is returned. This string should be copied into a buffer by
1837 the client if the string will not be immediately used, or if
1838 it must persist. */
1839
1840 #define target_pid_to_exec_file(pid) \
1841 (current_target.to_pid_to_exec_file) (&current_target, pid)
1842
1843 /* See the to_thread_architecture description in struct target_ops. */
1844
1845 #define target_thread_architecture(ptid) \
1846 (current_target.to_thread_architecture (&current_target, ptid))
1847
1848 /*
1849 * Iterator function for target memory regions.
1850 * Calls a callback function once for each memory region 'mapped'
1851 * in the child process. Defined as a simple macro rather than
1852 * as a function macro so that it can be tested for nullity.
1853 */
1854
1855 #define target_find_memory_regions(FUNC, DATA) \
1856 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1857
1858 /*
1859 * Compose corefile .note section.
1860 */
1861
1862 #define target_make_corefile_notes(BFD, SIZE_P) \
1863 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1864
1865 /* Bookmark interfaces. */
1866 #define target_get_bookmark(ARGS, FROM_TTY) \
1867 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1868
1869 #define target_goto_bookmark(ARG, FROM_TTY) \
1870 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1871
1872 /* Hardware watchpoint interfaces. */
1873
1874 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1875 write). Only the INFERIOR_PTID task is being queried. */
1876
1877 #define target_stopped_by_watchpoint() \
1878 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1879
1880 /* Returns non-zero if the target stopped because it executed a
1881 software breakpoint instruction. */
1882
1883 #define target_stopped_by_sw_breakpoint() \
1884 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1885
1886 #define target_supports_stopped_by_sw_breakpoint() \
1887 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1888
1889 #define target_stopped_by_hw_breakpoint() \
1890 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1891
1892 #define target_supports_stopped_by_hw_breakpoint() \
1893 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1894
1895 /* Non-zero if we have steppable watchpoints */
1896
1897 #define target_have_steppable_watchpoint \
1898 (current_target.to_have_steppable_watchpoint)
1899
1900 /* Non-zero if we have continuable watchpoints */
1901
1902 #define target_have_continuable_watchpoint \
1903 (current_target.to_have_continuable_watchpoint)
1904
1905 /* Provide defaults for hardware watchpoint functions. */
1906
1907 /* If the *_hw_beakpoint functions have not been defined
1908 elsewhere use the definitions in the target vector. */
1909
1910 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1911 Returns negative if the target doesn't have enough hardware debug
1912 registers available. Return zero if hardware watchpoint of type
1913 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1914 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1915 CNT is the number of such watchpoints used so far, including this
1916 one. OTHERTYPE is who knows what... */
1917
1918 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1919 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1920 TYPE, CNT, OTHERTYPE)
1921
1922 /* Returns the number of debug registers needed to watch the given
1923 memory region, or zero if not supported. */
1924
1925 #define target_region_ok_for_hw_watchpoint(addr, len) \
1926 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1927 addr, len)
1928
1929
1930 #define target_can_do_single_step() \
1931 (*current_target.to_can_do_single_step) (&current_target)
1932
1933 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1934 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1935 COND is the expression for its condition, or NULL if there's none.
1936 Returns 0 for success, 1 if the watchpoint type is not supported,
1937 -1 for failure. */
1938
1939 #define target_insert_watchpoint(addr, len, type, cond) \
1940 (*current_target.to_insert_watchpoint) (&current_target, \
1941 addr, len, type, cond)
1942
1943 #define target_remove_watchpoint(addr, len, type, cond) \
1944 (*current_target.to_remove_watchpoint) (&current_target, \
1945 addr, len, type, cond)
1946
1947 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1948 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1949 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1950 masked watchpoints are not supported, -1 for failure. */
1951
1952 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1953 enum target_hw_bp_type);
1954
1955 /* Remove a masked watchpoint at ADDR with the mask MASK.
1956 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1957 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1958 for failure. */
1959
1960 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1961 enum target_hw_bp_type);
1962
1963 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1964 the target machine. Returns 0 for success, and returns non-zero or
1965 throws an error (with a detailed failure reason error code and
1966 message) otherwise. */
1967
1968 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1969 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1970 gdbarch, bp_tgt)
1971
1972 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1973 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1974 gdbarch, bp_tgt)
1975
1976 /* Return number of debug registers needed for a ranged breakpoint,
1977 or -1 if ranged breakpoints are not supported. */
1978
1979 extern int target_ranged_break_num_registers (void);
1980
1981 /* Return non-zero if target knows the data address which triggered this
1982 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1983 INFERIOR_PTID task is being queried. */
1984 #define target_stopped_data_address(target, addr_p) \
1985 (*(target)->to_stopped_data_address) (target, addr_p)
1986
1987 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1988 LENGTH bytes beginning at START. */
1989 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1990 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1991
1992 /* Return non-zero if the target is capable of using hardware to evaluate
1993 the condition expression. In this case, if the condition is false when
1994 the watched memory location changes, execution may continue without the
1995 debugger being notified.
1996
1997 Due to limitations in the hardware implementation, it may be capable of
1998 avoiding triggering the watchpoint in some cases where the condition
1999 expression is false, but may report some false positives as well.
2000 For this reason, GDB will still evaluate the condition expression when
2001 the watchpoint triggers. */
2002 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2003 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2004 addr, len, type, cond)
2005
2006 /* Return number of debug registers needed for a masked watchpoint,
2007 -1 if masked watchpoints are not supported or -2 if the given address
2008 and mask combination cannot be used. */
2009
2010 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2011
2012 /* Target can execute in reverse? */
2013 #define target_can_execute_reverse \
2014 current_target.to_can_execute_reverse (&current_target)
2015
2016 extern const struct target_desc *target_read_description (struct target_ops *);
2017
2018 #define target_get_ada_task_ptid(lwp, tid) \
2019 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2020
2021 /* Utility implementation of searching memory. */
2022 extern int simple_search_memory (struct target_ops* ops,
2023 CORE_ADDR start_addr,
2024 ULONGEST search_space_len,
2025 const gdb_byte *pattern,
2026 ULONGEST pattern_len,
2027 CORE_ADDR *found_addrp);
2028
2029 /* Main entry point for searching memory. */
2030 extern int target_search_memory (CORE_ADDR start_addr,
2031 ULONGEST search_space_len,
2032 const gdb_byte *pattern,
2033 ULONGEST pattern_len,
2034 CORE_ADDR *found_addrp);
2035
2036 /* Target file operations. */
2037
2038 /* Return nonzero if the filesystem seen by the current inferior
2039 is the local filesystem, zero otherwise. */
2040 #define target_filesystem_is_local() \
2041 current_target.to_filesystem_is_local (&current_target)
2042
2043 /* Open FILENAME on the target, in the filesystem as seen by INF,
2044 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2045 by the debugger (GDB or, for remote targets, the remote stub).
2046 Return a target file descriptor, or -1 if an error occurs (and
2047 set *TARGET_ERRNO). */
2048 extern int target_fileio_open (struct inferior *inf,
2049 const char *filename, int flags,
2050 int mode, int *target_errno);
2051
2052 /* Like target_fileio_open, but print a warning message if the
2053 file is being accessed over a link that may be slow. */
2054 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2055 const char *filename,
2056 int flags,
2057 int mode,
2058 int *target_errno);
2059
2060 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2061 Return the number of bytes written, or -1 if an error occurs
2062 (and set *TARGET_ERRNO). */
2063 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2064 ULONGEST offset, int *target_errno);
2065
2066 /* Read up to LEN bytes FD on the target into READ_BUF.
2067 Return the number of bytes read, or -1 if an error occurs
2068 (and set *TARGET_ERRNO). */
2069 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2070 ULONGEST offset, int *target_errno);
2071
2072 /* Get information about the file opened as FD on the target
2073 and put it in SB. Return 0 on success, or -1 if an error
2074 occurs (and set *TARGET_ERRNO). */
2075 extern int target_fileio_fstat (int fd, struct stat *sb,
2076 int *target_errno);
2077
2078 /* Close FD on the target. Return 0, or -1 if an error occurs
2079 (and set *TARGET_ERRNO). */
2080 extern int target_fileio_close (int fd, int *target_errno);
2081
2082 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2083 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2084 for remote targets, the remote stub). Return 0, or -1 if an error
2085 occurs (and set *TARGET_ERRNO). */
2086 extern int target_fileio_unlink (struct inferior *inf,
2087 const char *filename,
2088 int *target_errno);
2089
2090 /* Read value of symbolic link FILENAME on the target, in the
2091 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2092 by the debugger (GDB or, for remote targets, the remote stub).
2093 Return a null-terminated string allocated via xmalloc, or NULL if
2094 an error occurs (and set *TARGET_ERRNO). */
2095 extern char *target_fileio_readlink (struct inferior *inf,
2096 const char *filename,
2097 int *target_errno);
2098
2099 /* Read target file FILENAME, in the filesystem as seen by INF. If
2100 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2101 remote targets, the remote stub). The return value will be -1 if
2102 the transfer fails or is not supported; 0 if the object is empty;
2103 or the length of the object otherwise. If a positive value is
2104 returned, a sufficiently large buffer will be allocated using
2105 xmalloc and returned in *BUF_P containing the contents of the
2106 object.
2107
2108 This method should be used for objects sufficiently small to store
2109 in a single xmalloc'd buffer, when no fixed bound on the object's
2110 size is known in advance. */
2111 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2112 const char *filename,
2113 gdb_byte **buf_p);
2114
2115 /* Read target file FILENAME, in the filesystem as seen by INF. If
2116 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2117 remote targets, the remote stub). The result is NUL-terminated and
2118 returned as a string, allocated using xmalloc. If an error occurs
2119 or the transfer is unsupported, NULL is returned. Empty objects
2120 are returned as allocated but empty strings. A warning is issued
2121 if the result contains any embedded NUL bytes. */
2122 extern char *target_fileio_read_stralloc (struct inferior *inf,
2123 const char *filename);
2124
2125
2126 /* Tracepoint-related operations. */
2127
2128 #define target_trace_init() \
2129 (*current_target.to_trace_init) (&current_target)
2130
2131 #define target_download_tracepoint(t) \
2132 (*current_target.to_download_tracepoint) (&current_target, t)
2133
2134 #define target_can_download_tracepoint() \
2135 (*current_target.to_can_download_tracepoint) (&current_target)
2136
2137 #define target_download_trace_state_variable(tsv) \
2138 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2139
2140 #define target_enable_tracepoint(loc) \
2141 (*current_target.to_enable_tracepoint) (&current_target, loc)
2142
2143 #define target_disable_tracepoint(loc) \
2144 (*current_target.to_disable_tracepoint) (&current_target, loc)
2145
2146 #define target_trace_start() \
2147 (*current_target.to_trace_start) (&current_target)
2148
2149 #define target_trace_set_readonly_regions() \
2150 (*current_target.to_trace_set_readonly_regions) (&current_target)
2151
2152 #define target_get_trace_status(ts) \
2153 (*current_target.to_get_trace_status) (&current_target, ts)
2154
2155 #define target_get_tracepoint_status(tp,utp) \
2156 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2157
2158 #define target_trace_stop() \
2159 (*current_target.to_trace_stop) (&current_target)
2160
2161 #define target_trace_find(type,num,addr1,addr2,tpp) \
2162 (*current_target.to_trace_find) (&current_target, \
2163 (type), (num), (addr1), (addr2), (tpp))
2164
2165 #define target_get_trace_state_variable_value(tsv,val) \
2166 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2167 (tsv), (val))
2168
2169 #define target_save_trace_data(filename) \
2170 (*current_target.to_save_trace_data) (&current_target, filename)
2171
2172 #define target_upload_tracepoints(utpp) \
2173 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2174
2175 #define target_upload_trace_state_variables(utsvp) \
2176 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2177
2178 #define target_get_raw_trace_data(buf,offset,len) \
2179 (*current_target.to_get_raw_trace_data) (&current_target, \
2180 (buf), (offset), (len))
2181
2182 #define target_get_min_fast_tracepoint_insn_len() \
2183 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2184
2185 #define target_set_disconnected_tracing(val) \
2186 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2187
2188 #define target_set_circular_trace_buffer(val) \
2189 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2190
2191 #define target_set_trace_buffer_size(val) \
2192 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2193
2194 #define target_set_trace_notes(user,notes,stopnotes) \
2195 (*current_target.to_set_trace_notes) (&current_target, \
2196 (user), (notes), (stopnotes))
2197
2198 #define target_get_tib_address(ptid, addr) \
2199 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2200
2201 #define target_set_permissions() \
2202 (*current_target.to_set_permissions) (&current_target)
2203
2204 #define target_static_tracepoint_marker_at(addr, marker) \
2205 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2206 addr, marker)
2207
2208 #define target_static_tracepoint_markers_by_strid(marker_id) \
2209 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2210 marker_id)
2211
2212 #define target_traceframe_info() \
2213 (*current_target.to_traceframe_info) (&current_target)
2214
2215 #define target_use_agent(use) \
2216 (*current_target.to_use_agent) (&current_target, use)
2217
2218 #define target_can_use_agent() \
2219 (*current_target.to_can_use_agent) (&current_target)
2220
2221 #define target_augmented_libraries_svr4_read() \
2222 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2223
2224 /* Command logging facility. */
2225
2226 #define target_log_command(p) \
2227 (*current_target.to_log_command) (&current_target, p)
2228
2229
2230 extern int target_core_of_thread (ptid_t ptid);
2231
2232 /* See to_get_unwinder in struct target_ops. */
2233 extern const struct frame_unwind *target_get_unwinder (void);
2234
2235 /* See to_get_tailcall_unwinder in struct target_ops. */
2236 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2237
2238 /* This implements basic memory verification, reading target memory
2239 and performing the comparison here (as opposed to accelerated
2240 verification making use of the qCRC packet, for example). */
2241
2242 extern int simple_verify_memory (struct target_ops* ops,
2243 const gdb_byte *data,
2244 CORE_ADDR memaddr, ULONGEST size);
2245
2246 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2247 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2248 if there's a mismatch, and -1 if an error is encountered while
2249 reading memory. Throws an error if the functionality is found not
2250 to be supported by the current target. */
2251 int target_verify_memory (const gdb_byte *data,
2252 CORE_ADDR memaddr, ULONGEST size);
2253
2254 /* Routines for maintenance of the target structures...
2255
2256 complete_target_initialization: Finalize a target_ops by filling in
2257 any fields needed by the target implementation. Unnecessary for
2258 targets which are registered via add_target, as this part gets
2259 taken care of then.
2260
2261 add_target: Add a target to the list of all possible targets.
2262 This only makes sense for targets that should be activated using
2263 the "target TARGET_NAME ..." command.
2264
2265 push_target: Make this target the top of the stack of currently used
2266 targets, within its particular stratum of the stack. Result
2267 is 0 if now atop the stack, nonzero if not on top (maybe
2268 should warn user).
2269
2270 unpush_target: Remove this from the stack of currently used targets,
2271 no matter where it is on the list. Returns 0 if no
2272 change, 1 if removed from stack. */
2273
2274 extern void add_target (struct target_ops *);
2275
2276 extern void add_target_with_completer (struct target_ops *t,
2277 completer_ftype *completer);
2278
2279 extern void complete_target_initialization (struct target_ops *t);
2280
2281 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2282 for maintaining backwards compatibility when renaming targets. */
2283
2284 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2285
2286 extern void push_target (struct target_ops *);
2287
2288 extern int unpush_target (struct target_ops *);
2289
2290 extern void target_pre_inferior (int);
2291
2292 extern void target_preopen (int);
2293
2294 /* Does whatever cleanup is required to get rid of all pushed targets. */
2295 extern void pop_all_targets (void);
2296
2297 /* Like pop_all_targets, but pops only targets whose stratum is at or
2298 above STRATUM. */
2299 extern void pop_all_targets_at_and_above (enum strata stratum);
2300
2301 /* Like pop_all_targets, but pops only targets whose stratum is
2302 strictly above ABOVE_STRATUM. */
2303 extern void pop_all_targets_above (enum strata above_stratum);
2304
2305 extern int target_is_pushed (struct target_ops *t);
2306
2307 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2308 CORE_ADDR offset);
2309
2310 /* Struct target_section maps address ranges to file sections. It is
2311 mostly used with BFD files, but can be used without (e.g. for handling
2312 raw disks, or files not in formats handled by BFD). */
2313
2314 struct target_section
2315 {
2316 CORE_ADDR addr; /* Lowest address in section */
2317 CORE_ADDR endaddr; /* 1+highest address in section */
2318
2319 struct bfd_section *the_bfd_section;
2320
2321 /* The "owner" of the section.
2322 It can be any unique value. It is set by add_target_sections
2323 and used by remove_target_sections.
2324 For example, for executables it is a pointer to exec_bfd and
2325 for shlibs it is the so_list pointer. */
2326 void *owner;
2327 };
2328
2329 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2330
2331 struct target_section_table
2332 {
2333 struct target_section *sections;
2334 struct target_section *sections_end;
2335 };
2336
2337 /* Return the "section" containing the specified address. */
2338 struct target_section *target_section_by_addr (struct target_ops *target,
2339 CORE_ADDR addr);
2340
2341 /* Return the target section table this target (or the targets
2342 beneath) currently manipulate. */
2343
2344 extern struct target_section_table *target_get_section_table
2345 (struct target_ops *target);
2346
2347 /* From mem-break.c */
2348
2349 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2350 struct bp_target_info *);
2351
2352 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2353 struct bp_target_info *);
2354
2355 /* Check whether the memory at the breakpoint's placed address still
2356 contains the expected breakpoint instruction. */
2357
2358 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2359 struct bp_target_info *bp_tgt);
2360
2361 extern int default_memory_remove_breakpoint (struct gdbarch *,
2362 struct bp_target_info *);
2363
2364 extern int default_memory_insert_breakpoint (struct gdbarch *,
2365 struct bp_target_info *);
2366
2367
2368 /* From target.c */
2369
2370 extern void initialize_targets (void);
2371
2372 extern void noprocess (void) ATTRIBUTE_NORETURN;
2373
2374 extern void target_require_runnable (void);
2375
2376 extern struct target_ops *find_target_beneath (struct target_ops *);
2377
2378 /* Find the target at STRATUM. If no target is at that stratum,
2379 return NULL. */
2380
2381 struct target_ops *find_target_at (enum strata stratum);
2382
2383 /* Read OS data object of type TYPE from the target, and return it in
2384 XML format. The result is NUL-terminated and returned as a string,
2385 allocated using xmalloc. If an error occurs or the transfer is
2386 unsupported, NULL is returned. Empty objects are returned as
2387 allocated but empty strings. */
2388
2389 extern char *target_get_osdata (const char *type);
2390
2391 \f
2392 /* Stuff that should be shared among the various remote targets. */
2393
2394 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2395 information (higher values, more information). */
2396 extern int remote_debug;
2397
2398 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2399 extern int baud_rate;
2400
2401 /* Parity for serial port */
2402 extern int serial_parity;
2403
2404 /* Timeout limit for response from target. */
2405 extern int remote_timeout;
2406
2407 \f
2408
2409 /* Set the show memory breakpoints mode to show, and installs a cleanup
2410 to restore it back to the current value. */
2411 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2412
2413 extern int may_write_registers;
2414 extern int may_write_memory;
2415 extern int may_insert_breakpoints;
2416 extern int may_insert_tracepoints;
2417 extern int may_insert_fast_tracepoints;
2418 extern int may_stop;
2419
2420 extern void update_target_permissions (void);
2421
2422 \f
2423 /* Imported from machine dependent code. */
2424
2425 /* See to_supports_btrace in struct target_ops. */
2426 extern int target_supports_btrace (enum btrace_format);
2427
2428 /* See to_enable_btrace in struct target_ops. */
2429 extern struct btrace_target_info *
2430 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2431
2432 /* See to_disable_btrace in struct target_ops. */
2433 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2434
2435 /* See to_teardown_btrace in struct target_ops. */
2436 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2437
2438 /* See to_read_btrace in struct target_ops. */
2439 extern enum btrace_error target_read_btrace (struct btrace_data *,
2440 struct btrace_target_info *,
2441 enum btrace_read_type);
2442
2443 /* See to_btrace_conf in struct target_ops. */
2444 extern const struct btrace_config *
2445 target_btrace_conf (const struct btrace_target_info *);
2446
2447 /* See to_stop_recording in struct target_ops. */
2448 extern void target_stop_recording (void);
2449
2450 /* See to_save_record in struct target_ops. */
2451 extern void target_save_record (const char *filename);
2452
2453 /* Query if the target supports deleting the execution log. */
2454 extern int target_supports_delete_record (void);
2455
2456 /* See to_delete_record in struct target_ops. */
2457 extern void target_delete_record (void);
2458
2459 /* See to_record_is_replaying in struct target_ops. */
2460 extern int target_record_is_replaying (ptid_t ptid);
2461
2462 /* See to_record_will_replay in struct target_ops. */
2463 extern int target_record_will_replay (ptid_t ptid, int dir);
2464
2465 /* See to_record_stop_replaying in struct target_ops. */
2466 extern void target_record_stop_replaying (void);
2467
2468 /* See to_goto_record_begin in struct target_ops. */
2469 extern void target_goto_record_begin (void);
2470
2471 /* See to_goto_record_end in struct target_ops. */
2472 extern void target_goto_record_end (void);
2473
2474 /* See to_goto_record in struct target_ops. */
2475 extern void target_goto_record (ULONGEST insn);
2476
2477 /* See to_insn_history. */
2478 extern void target_insn_history (int size, int flags);
2479
2480 /* See to_insn_history_from. */
2481 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2482
2483 /* See to_insn_history_range. */
2484 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2485
2486 /* See to_call_history. */
2487 extern void target_call_history (int size, int flags);
2488
2489 /* See to_call_history_from. */
2490 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2491
2492 /* See to_call_history_range. */
2493 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2494
2495 /* See to_prepare_to_generate_core. */
2496 extern void target_prepare_to_generate_core (void);
2497
2498 /* See to_done_generating_core. */
2499 extern void target_done_generating_core (void);
2500
2501 #endif /* !defined (TARGET_H) */
This page took 0.078974 seconds and 5 git commands to generate.