-Wwrite-strings: The Rest
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45
46 /* This include file defines the interface between the main part
47 of the debugger, and the part which is target-specific, or
48 specific to the communications interface between us and the
49 target.
50
51 A TARGET is an interface between the debugger and a particular
52 kind of file or process. Targets can be STACKED in STRATA,
53 so that more than one target can potentially respond to a request.
54 In particular, memory accesses will walk down the stack of targets
55 until they find a target that is interested in handling that particular
56 address. STRATA are artificial boundaries on the stack, within
57 which particular kinds of targets live. Strata exist so that
58 people don't get confused by pushing e.g. a process target and then
59 a file target, and wondering why they can't see the current values
60 of variables any more (the file target is handling them and they
61 never get to the process target). So when you push a file target,
62 it goes into the file stratum, which is always below the process
63 stratum. */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "record.h"
76 #include "command.h"
77
78 #include "break-common.h" /* For enum target_hw_bp_type. */
79
80 enum strata
81 {
82 dummy_stratum, /* The lowest of the low */
83 file_stratum, /* Executable files, etc */
84 process_stratum, /* Executing processes or core dump files */
85 thread_stratum, /* Executing threads */
86 record_stratum, /* Support record debugging */
87 arch_stratum /* Architecture overrides */
88 };
89
90 enum thread_control_capabilities
91 {
92 tc_none = 0, /* Default: can't control thread execution. */
93 tc_schedlock = 1, /* Can lock the thread scheduler. */
94 };
95
96 /* The structure below stores information about a system call.
97 It is basically used in the "catch syscall" command, and in
98 every function that gives information about a system call.
99
100 It's also good to mention that its fields represent everything
101 that we currently know about a syscall in GDB. */
102 struct syscall
103 {
104 /* The syscall number. */
105 int number;
106
107 /* The syscall name. */
108 const char *name;
109 };
110
111 /* Return a pretty printed form of target_waitstatus.
112 Space for the result is malloc'd, caller must free. */
113 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
114
115 /* Return a pretty printed form of TARGET_OPTIONS.
116 Space for the result is malloc'd, caller must free. */
117 extern char *target_options_to_string (int target_options);
118
119 /* Possible types of events that the inferior handler will have to
120 deal with. */
121 enum inferior_event_type
122 {
123 /* Process a normal inferior event which will result in target_wait
124 being called. */
125 INF_REG_EVENT,
126 /* We are called to do stuff after the inferior stops. */
127 INF_EXEC_COMPLETE,
128 };
129 \f
130 /* Target objects which can be transfered using target_read,
131 target_write, et cetera. */
132
133 enum target_object
134 {
135 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
136 TARGET_OBJECT_AVR,
137 /* SPU target specific transfer. See "spu-tdep.c". */
138 TARGET_OBJECT_SPU,
139 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
140 TARGET_OBJECT_MEMORY,
141 /* Memory, avoiding GDB's data cache and trusting the executable.
142 Target implementations of to_xfer_partial never need to handle
143 this object, and most callers should not use it. */
144 TARGET_OBJECT_RAW_MEMORY,
145 /* Memory known to be part of the target's stack. This is cached even
146 if it is not in a region marked as such, since it is known to be
147 "normal" RAM. */
148 TARGET_OBJECT_STACK_MEMORY,
149 /* Memory known to be part of the target code. This is cached even
150 if it is not in a region marked as such. */
151 TARGET_OBJECT_CODE_MEMORY,
152 /* Kernel Unwind Table. See "ia64-tdep.c". */
153 TARGET_OBJECT_UNWIND_TABLE,
154 /* Transfer auxilliary vector. */
155 TARGET_OBJECT_AUXV,
156 /* StackGhost cookie. See "sparc-tdep.c". */
157 TARGET_OBJECT_WCOOKIE,
158 /* Target memory map in XML format. */
159 TARGET_OBJECT_MEMORY_MAP,
160 /* Flash memory. This object can be used to write contents to
161 a previously erased flash memory. Using it without erasing
162 flash can have unexpected results. Addresses are physical
163 address on target, and not relative to flash start. */
164 TARGET_OBJECT_FLASH,
165 /* Available target-specific features, e.g. registers and coprocessors.
166 See "target-descriptions.c". ANNEX should never be empty. */
167 TARGET_OBJECT_AVAILABLE_FEATURES,
168 /* Currently loaded libraries, in XML format. */
169 TARGET_OBJECT_LIBRARIES,
170 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
171 TARGET_OBJECT_LIBRARIES_SVR4,
172 /* Currently loaded libraries specific to AIX systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_AIX,
174 /* Get OS specific data. The ANNEX specifies the type (running
175 processes, etc.). The data being transfered is expected to follow
176 the DTD specified in features/osdata.dtd. */
177 TARGET_OBJECT_OSDATA,
178 /* Extra signal info. Usually the contents of `siginfo_t' on unix
179 platforms. */
180 TARGET_OBJECT_SIGNAL_INFO,
181 /* The list of threads that are being debugged. */
182 TARGET_OBJECT_THREADS,
183 /* Collected static trace data. */
184 TARGET_OBJECT_STATIC_TRACE_DATA,
185 /* The HP-UX registers (those that can be obtained or modified by using
186 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
187 TARGET_OBJECT_HPUX_UREGS,
188 /* The HP-UX shared library linkage pointer. ANNEX should be a string
189 image of the code address whose linkage pointer we are looking for.
190
191 The size of the data transfered is always 8 bytes (the size of an
192 address on ia64). */
193 TARGET_OBJECT_HPUX_SOLIB_GOT,
194 /* Traceframe info, in XML format. */
195 TARGET_OBJECT_TRACEFRAME_INFO,
196 /* Load maps for FDPIC systems. */
197 TARGET_OBJECT_FDPIC,
198 /* Darwin dynamic linker info data. */
199 TARGET_OBJECT_DARWIN_DYLD_INFO,
200 /* OpenVMS Unwind Information Block. */
201 TARGET_OBJECT_OPENVMS_UIB,
202 /* Branch trace data, in XML format. */
203 TARGET_OBJECT_BTRACE,
204 /* Branch trace configuration, in XML format. */
205 TARGET_OBJECT_BTRACE_CONF,
206 /* The pathname of the executable file that was run to create
207 a specified process. ANNEX should be a string representation
208 of the process ID of the process in question, in hexadecimal
209 format. */
210 TARGET_OBJECT_EXEC_FILE,
211 /* Possible future objects: TARGET_OBJECT_FILE, ... */
212 };
213
214 /* Possible values returned by target_xfer_partial, etc. */
215
216 enum target_xfer_status
217 {
218 /* Some bytes are transferred. */
219 TARGET_XFER_OK = 1,
220
221 /* No further transfer is possible. */
222 TARGET_XFER_EOF = 0,
223
224 /* The piece of the object requested is unavailable. */
225 TARGET_XFER_UNAVAILABLE = 2,
226
227 /* Generic I/O error. Note that it's important that this is '-1',
228 as we still have target_xfer-related code returning hardcoded
229 '-1' on error. */
230 TARGET_XFER_E_IO = -1,
231
232 /* Keep list in sync with target_xfer_status_to_string. */
233 };
234
235 /* Return the string form of STATUS. */
236
237 extern const char *
238 target_xfer_status_to_string (enum target_xfer_status status);
239
240 /* Enumeration of the kinds of traceframe searches that a target may
241 be able to perform. */
242
243 enum trace_find_type
244 {
245 tfind_number,
246 tfind_pc,
247 tfind_tp,
248 tfind_range,
249 tfind_outside,
250 };
251
252 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
253 DEF_VEC_P(static_tracepoint_marker_p);
254
255 typedef enum target_xfer_status
256 target_xfer_partial_ftype (struct target_ops *ops,
257 enum target_object object,
258 const char *annex,
259 gdb_byte *readbuf,
260 const gdb_byte *writebuf,
261 ULONGEST offset,
262 ULONGEST len,
263 ULONGEST *xfered_len);
264
265 enum target_xfer_status
266 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
267 const gdb_byte *writebuf, ULONGEST memaddr,
268 LONGEST len, ULONGEST *xfered_len);
269
270 /* Request that OPS transfer up to LEN addressable units of the target's
271 OBJECT. When reading from a memory object, the size of an addressable unit
272 is architecture dependent and can be found using
273 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
274 byte long. BUF should point to a buffer large enough to hold the read data,
275 taking into account the addressable unit size. The OFFSET, for a seekable
276 object, specifies the starting point. The ANNEX can be used to provide
277 additional data-specific information to the target.
278
279 Return the number of addressable units actually transferred, or a negative
280 error code (an 'enum target_xfer_error' value) if the transfer is not
281 supported or otherwise fails. Return of a positive value less than
282 LEN indicates that no further transfer is possible. Unlike the raw
283 to_xfer_partial interface, callers of these functions do not need
284 to retry partial transfers. */
285
286 extern LONGEST target_read (struct target_ops *ops,
287 enum target_object object,
288 const char *annex, gdb_byte *buf,
289 ULONGEST offset, LONGEST len);
290
291 struct memory_read_result
292 {
293 /* First address that was read. */
294 ULONGEST begin;
295 /* Past-the-end address. */
296 ULONGEST end;
297 /* The data. */
298 gdb_byte *data;
299 };
300 typedef struct memory_read_result memory_read_result_s;
301 DEF_VEC_O(memory_read_result_s);
302
303 extern void free_memory_read_result_vector (void *);
304
305 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
306 const ULONGEST offset,
307 const LONGEST len);
308
309 /* Request that OPS transfer up to LEN addressable units from BUF to the
310 target's OBJECT. When writing to a memory object, the addressable unit
311 size is architecture dependent and can be found using
312 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
313 byte long. The OFFSET, for a seekable object, specifies the starting point.
314 The ANNEX can be used to provide additional data-specific information to
315 the target.
316
317 Return the number of addressable units actually transferred, or a negative
318 error code (an 'enum target_xfer_status' value) if the transfer is not
319 supported or otherwise fails. Return of a positive value less than
320 LEN indicates that no further transfer is possible. Unlike the raw
321 to_xfer_partial interface, callers of these functions do not need to
322 retry partial transfers. */
323
324 extern LONGEST target_write (struct target_ops *ops,
325 enum target_object object,
326 const char *annex, const gdb_byte *buf,
327 ULONGEST offset, LONGEST len);
328
329 /* Similar to target_write, except that it also calls PROGRESS with
330 the number of bytes written and the opaque BATON after every
331 successful partial write (and before the first write). This is
332 useful for progress reporting and user interaction while writing
333 data. To abort the transfer, the progress callback can throw an
334 exception. */
335
336 LONGEST target_write_with_progress (struct target_ops *ops,
337 enum target_object object,
338 const char *annex, const gdb_byte *buf,
339 ULONGEST offset, LONGEST len,
340 void (*progress) (ULONGEST, void *),
341 void *baton);
342
343 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
344 be read using OPS. The return value will be -1 if the transfer
345 fails or is not supported; 0 if the object is empty; or the length
346 of the object otherwise. If a positive value is returned, a
347 sufficiently large buffer will be allocated using xmalloc and
348 returned in *BUF_P containing the contents of the object.
349
350 This method should be used for objects sufficiently small to store
351 in a single xmalloc'd buffer, when no fixed bound on the object's
352 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
353 through this function. */
354
355 extern LONGEST target_read_alloc (struct target_ops *ops,
356 enum target_object object,
357 const char *annex, gdb_byte **buf_p);
358
359 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
360 returned as a string, allocated using xmalloc. If an error occurs
361 or the transfer is unsupported, NULL is returned. Empty objects
362 are returned as allocated but empty strings. A warning is issued
363 if the result contains any embedded NUL bytes. */
364
365 extern char *target_read_stralloc (struct target_ops *ops,
366 enum target_object object,
367 const char *annex);
368
369 /* See target_ops->to_xfer_partial. */
370 extern target_xfer_partial_ftype target_xfer_partial;
371
372 /* Wrappers to target read/write that perform memory transfers. They
373 throw an error if the memory transfer fails.
374
375 NOTE: cagney/2003-10-23: The naming schema is lifted from
376 "frame.h". The parameter order is lifted from get_frame_memory,
377 which in turn lifted it from read_memory. */
378
379 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
380 gdb_byte *buf, LONGEST len);
381 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
382 CORE_ADDR addr, int len,
383 enum bfd_endian byte_order);
384 \f
385 struct thread_info; /* fwd decl for parameter list below: */
386
387 /* The type of the callback to the to_async method. */
388
389 typedef void async_callback_ftype (enum inferior_event_type event_type,
390 void *context);
391
392 /* Normally target debug printing is purely type-based. However,
393 sometimes it is necessary to override the debug printing on a
394 per-argument basis. This macro can be used, attribute-style, to
395 name the target debug printing function for a particular method
396 argument. FUNC is the name of the function. The macro's
397 definition is empty because it is only used by the
398 make-target-delegates script. */
399
400 #define TARGET_DEBUG_PRINTER(FUNC)
401
402 /* These defines are used to mark target_ops methods. The script
403 make-target-delegates scans these and auto-generates the base
404 method implementations. There are four macros that can be used:
405
406 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
407 does nothing. This is only valid if the method return type is
408 'void'.
409
410 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
411 'tcomplain ()'. The base method simply makes this call, which is
412 assumed not to return.
413
414 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
415 base method returns this expression's value.
416
417 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
418 make-target-delegates does not generate a base method in this case,
419 but instead uses the argument function as the base method. */
420
421 #define TARGET_DEFAULT_IGNORE()
422 #define TARGET_DEFAULT_NORETURN(ARG)
423 #define TARGET_DEFAULT_RETURN(ARG)
424 #define TARGET_DEFAULT_FUNC(ARG)
425
426 struct target_ops
427 {
428 struct target_ops *beneath; /* To the target under this one. */
429 const char *to_shortname; /* Name this target type */
430 const char *to_longname; /* Name for printing */
431 const char *to_doc; /* Documentation. Does not include trailing
432 newline, and starts with a one-line descrip-
433 tion (probably similar to to_longname). */
434 /* Per-target scratch pad. */
435 void *to_data;
436 /* The open routine takes the rest of the parameters from the
437 command, and (if successful) pushes a new target onto the
438 stack. Targets should supply this routine, if only to provide
439 an error message. */
440 void (*to_open) (const char *, int);
441 /* Old targets with a static target vector provide "to_close".
442 New re-entrant targets provide "to_xclose" and that is expected
443 to xfree everything (including the "struct target_ops"). */
444 void (*to_xclose) (struct target_ops *targ);
445 void (*to_close) (struct target_ops *);
446 /* Attaches to a process on the target side. Arguments are as
447 passed to the `attach' command by the user. This routine can
448 be called when the target is not on the target-stack, if the
449 target_can_run routine returns 1; in that case, it must push
450 itself onto the stack. Upon exit, the target should be ready
451 for normal operations, and should be ready to deliver the
452 status of the process immediately (without waiting) to an
453 upcoming target_wait call. */
454 void (*to_attach) (struct target_ops *ops, const char *, int);
455 void (*to_post_attach) (struct target_ops *, int)
456 TARGET_DEFAULT_IGNORE ();
457 void (*to_detach) (struct target_ops *ops, const char *, int)
458 TARGET_DEFAULT_IGNORE ();
459 void (*to_disconnect) (struct target_ops *, const char *, int)
460 TARGET_DEFAULT_NORETURN (tcomplain ());
461 void (*to_resume) (struct target_ops *, ptid_t,
462 int TARGET_DEBUG_PRINTER (target_debug_print_step),
463 enum gdb_signal)
464 TARGET_DEFAULT_NORETURN (noprocess ());
465 void (*to_commit_resume) (struct target_ops *)
466 TARGET_DEFAULT_IGNORE ();
467 ptid_t (*to_wait) (struct target_ops *,
468 ptid_t, struct target_waitstatus *,
469 int TARGET_DEBUG_PRINTER (target_debug_print_options))
470 TARGET_DEFAULT_FUNC (default_target_wait);
471 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
472 TARGET_DEFAULT_IGNORE ();
473 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
474 TARGET_DEFAULT_NORETURN (noprocess ());
475 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
476 TARGET_DEFAULT_NORETURN (noprocess ());
477
478 void (*to_files_info) (struct target_ops *)
479 TARGET_DEFAULT_IGNORE ();
480 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
481 struct bp_target_info *)
482 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
483 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
484 struct bp_target_info *,
485 enum remove_bp_reason)
486 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
487
488 /* Returns true if the target stopped because it executed a
489 software breakpoint. This is necessary for correct background
490 execution / non-stop mode operation, and for correct PC
491 adjustment on targets where the PC needs to be adjusted when a
492 software breakpoint triggers. In these modes, by the time GDB
493 processes a breakpoint event, the breakpoint may already be
494 done from the target, so GDB needs to be able to tell whether
495 it should ignore the event and whether it should adjust the PC.
496 See adjust_pc_after_break. */
497 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
498 TARGET_DEFAULT_RETURN (0);
499 /* Returns true if the above method is supported. */
500 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
501 TARGET_DEFAULT_RETURN (0);
502
503 /* Returns true if the target stopped for a hardware breakpoint.
504 Likewise, if the target supports hardware breakpoints, this
505 method is necessary for correct background execution / non-stop
506 mode operation. Even though hardware breakpoints do not
507 require PC adjustment, GDB needs to be able to tell whether the
508 hardware breakpoint event is a delayed event for a breakpoint
509 that is already gone and should thus be ignored. */
510 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
511 TARGET_DEFAULT_RETURN (0);
512 /* Returns true if the above method is supported. */
513 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
514 TARGET_DEFAULT_RETURN (0);
515
516 int (*to_can_use_hw_breakpoint) (struct target_ops *,
517 enum bptype, int, int)
518 TARGET_DEFAULT_RETURN (0);
519 int (*to_ranged_break_num_registers) (struct target_ops *)
520 TARGET_DEFAULT_RETURN (-1);
521 int (*to_insert_hw_breakpoint) (struct target_ops *,
522 struct gdbarch *, struct bp_target_info *)
523 TARGET_DEFAULT_RETURN (-1);
524 int (*to_remove_hw_breakpoint) (struct target_ops *,
525 struct gdbarch *, struct bp_target_info *)
526 TARGET_DEFAULT_RETURN (-1);
527
528 /* Documentation of what the two routines below are expected to do is
529 provided with the corresponding target_* macros. */
530 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
531 enum target_hw_bp_type, struct expression *)
532 TARGET_DEFAULT_RETURN (-1);
533 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
534 enum target_hw_bp_type, struct expression *)
535 TARGET_DEFAULT_RETURN (-1);
536
537 int (*to_insert_mask_watchpoint) (struct target_ops *,
538 CORE_ADDR, CORE_ADDR,
539 enum target_hw_bp_type)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_remove_mask_watchpoint) (struct target_ops *,
542 CORE_ADDR, CORE_ADDR,
543 enum target_hw_bp_type)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_stopped_by_watchpoint) (struct target_ops *)
546 TARGET_DEFAULT_RETURN (0);
547 int to_have_steppable_watchpoint;
548 int to_have_continuable_watchpoint;
549 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
550 TARGET_DEFAULT_RETURN (0);
551 int (*to_watchpoint_addr_within_range) (struct target_ops *,
552 CORE_ADDR, CORE_ADDR, int)
553 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
554
555 /* Documentation of this routine is provided with the corresponding
556 target_* macro. */
557 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
558 CORE_ADDR, int)
559 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
560
561 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
562 CORE_ADDR, int, int,
563 struct expression *)
564 TARGET_DEFAULT_RETURN (0);
565 int (*to_masked_watch_num_registers) (struct target_ops *,
566 CORE_ADDR, CORE_ADDR)
567 TARGET_DEFAULT_RETURN (-1);
568
569 /* Return 1 for sure target can do single step. Return -1 for
570 unknown. Return 0 for target can't do. */
571 int (*to_can_do_single_step) (struct target_ops *)
572 TARGET_DEFAULT_RETURN (-1);
573
574 void (*to_terminal_init) (struct target_ops *)
575 TARGET_DEFAULT_IGNORE ();
576 void (*to_terminal_inferior) (struct target_ops *)
577 TARGET_DEFAULT_IGNORE ();
578 void (*to_terminal_ours_for_output) (struct target_ops *)
579 TARGET_DEFAULT_IGNORE ();
580 void (*to_terminal_ours) (struct target_ops *)
581 TARGET_DEFAULT_IGNORE ();
582 void (*to_terminal_info) (struct target_ops *, const char *, int)
583 TARGET_DEFAULT_FUNC (default_terminal_info);
584 void (*to_kill) (struct target_ops *)
585 TARGET_DEFAULT_NORETURN (noprocess ());
586 void (*to_load) (struct target_ops *, const char *, int)
587 TARGET_DEFAULT_NORETURN (tcomplain ());
588 /* Start an inferior process and set inferior_ptid to its pid.
589 EXEC_FILE is the file to run.
590 ALLARGS is a string containing the arguments to the program.
591 ENV is the environment vector to pass. Errors reported with error().
592 On VxWorks and various standalone systems, we ignore exec_file. */
593 void (*to_create_inferior) (struct target_ops *,
594 char *, char *, char **, int);
595 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
596 TARGET_DEFAULT_IGNORE ();
597 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
598 TARGET_DEFAULT_RETURN (1);
599 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
600 TARGET_DEFAULT_RETURN (1);
601 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
602 TARGET_DEFAULT_RETURN (1);
603 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
604 TARGET_DEFAULT_RETURN (1);
605 int (*to_follow_fork) (struct target_ops *, int, int)
606 TARGET_DEFAULT_FUNC (default_follow_fork);
607 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
608 TARGET_DEFAULT_RETURN (1);
609 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
610 TARGET_DEFAULT_RETURN (1);
611 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
612 TARGET_DEFAULT_IGNORE ();
613 int (*to_set_syscall_catchpoint) (struct target_ops *,
614 int, int, int, int, int *)
615 TARGET_DEFAULT_RETURN (1);
616 int (*to_has_exited) (struct target_ops *, int, int, int *)
617 TARGET_DEFAULT_RETURN (0);
618 void (*to_mourn_inferior) (struct target_ops *)
619 TARGET_DEFAULT_FUNC (default_mourn_inferior);
620 /* Note that to_can_run is special and can be invoked on an
621 unpushed target. Targets defining this method must also define
622 to_can_async_p and to_supports_non_stop. */
623 int (*to_can_run) (struct target_ops *)
624 TARGET_DEFAULT_RETURN (0);
625
626 /* Documentation of this routine is provided with the corresponding
627 target_* macro. */
628 void (*to_pass_signals) (struct target_ops *, int,
629 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
630 TARGET_DEFAULT_IGNORE ();
631
632 /* Documentation of this routine is provided with the
633 corresponding target_* function. */
634 void (*to_program_signals) (struct target_ops *, int,
635 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
636 TARGET_DEFAULT_IGNORE ();
637
638 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
639 TARGET_DEFAULT_RETURN (0);
640 void (*to_update_thread_list) (struct target_ops *)
641 TARGET_DEFAULT_IGNORE ();
642 const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
643 TARGET_DEFAULT_FUNC (default_pid_to_str);
644 const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
645 TARGET_DEFAULT_RETURN (NULL);
646 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
647 TARGET_DEFAULT_RETURN (NULL);
648 void (*to_stop) (struct target_ops *, ptid_t)
649 TARGET_DEFAULT_IGNORE ();
650 void (*to_interrupt) (struct target_ops *, ptid_t)
651 TARGET_DEFAULT_IGNORE ();
652 void (*to_pass_ctrlc) (struct target_ops *)
653 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
654 void (*to_rcmd) (struct target_ops *,
655 const char *command, struct ui_file *output)
656 TARGET_DEFAULT_FUNC (default_rcmd);
657 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
658 TARGET_DEFAULT_RETURN (NULL);
659 void (*to_log_command) (struct target_ops *, const char *)
660 TARGET_DEFAULT_IGNORE ();
661 struct target_section_table *(*to_get_section_table) (struct target_ops *)
662 TARGET_DEFAULT_RETURN (NULL);
663 enum strata to_stratum;
664 int (*to_has_all_memory) (struct target_ops *);
665 int (*to_has_memory) (struct target_ops *);
666 int (*to_has_stack) (struct target_ops *);
667 int (*to_has_registers) (struct target_ops *);
668 int (*to_has_execution) (struct target_ops *, ptid_t);
669 int to_has_thread_control; /* control thread execution */
670 int to_attach_no_wait;
671 /* This method must be implemented in some situations. See the
672 comment on 'to_can_run'. */
673 int (*to_can_async_p) (struct target_ops *)
674 TARGET_DEFAULT_RETURN (0);
675 int (*to_is_async_p) (struct target_ops *)
676 TARGET_DEFAULT_RETURN (0);
677 void (*to_async) (struct target_ops *, int)
678 TARGET_DEFAULT_NORETURN (tcomplain ());
679 void (*to_thread_events) (struct target_ops *, int)
680 TARGET_DEFAULT_IGNORE ();
681 /* This method must be implemented in some situations. See the
682 comment on 'to_can_run'. */
683 int (*to_supports_non_stop) (struct target_ops *)
684 TARGET_DEFAULT_RETURN (0);
685 /* Return true if the target operates in non-stop mode even with
686 "set non-stop off". */
687 int (*to_always_non_stop_p) (struct target_ops *)
688 TARGET_DEFAULT_RETURN (0);
689 /* find_memory_regions support method for gcore */
690 int (*to_find_memory_regions) (struct target_ops *,
691 find_memory_region_ftype func, void *data)
692 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
693 /* make_corefile_notes support method for gcore */
694 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
695 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
696 /* get_bookmark support method for bookmarks */
697 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
698 TARGET_DEFAULT_NORETURN (tcomplain ());
699 /* goto_bookmark support method for bookmarks */
700 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
701 TARGET_DEFAULT_NORETURN (tcomplain ());
702 /* Return the thread-local address at OFFSET in the
703 thread-local storage for the thread PTID and the shared library
704 or executable file given by OBJFILE. If that block of
705 thread-local storage hasn't been allocated yet, this function
706 may return an error. LOAD_MODULE_ADDR may be zero for statically
707 linked multithreaded inferiors. */
708 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
709 ptid_t ptid,
710 CORE_ADDR load_module_addr,
711 CORE_ADDR offset)
712 TARGET_DEFAULT_NORETURN (generic_tls_error ());
713
714 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
715 OBJECT. The OFFSET, for a seekable object, specifies the
716 starting point. The ANNEX can be used to provide additional
717 data-specific information to the target.
718
719 Return the transferred status, error or OK (an
720 'enum target_xfer_status' value). Save the number of bytes
721 actually transferred in *XFERED_LEN if transfer is successful
722 (TARGET_XFER_OK) or the number unavailable bytes if the requested
723 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
724 smaller than LEN does not indicate the end of the object, only
725 the end of the transfer; higher level code should continue
726 transferring if desired. This is handled in target.c.
727
728 The interface does not support a "retry" mechanism. Instead it
729 assumes that at least one byte will be transfered on each
730 successful call.
731
732 NOTE: cagney/2003-10-17: The current interface can lead to
733 fragmented transfers. Lower target levels should not implement
734 hacks, such as enlarging the transfer, in an attempt to
735 compensate for this. Instead, the target stack should be
736 extended so that it implements supply/collect methods and a
737 look-aside object cache. With that available, the lowest
738 target can safely and freely "push" data up the stack.
739
740 See target_read and target_write for more information. One,
741 and only one, of readbuf or writebuf must be non-NULL. */
742
743 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
744 enum target_object object,
745 const char *annex,
746 gdb_byte *readbuf,
747 const gdb_byte *writebuf,
748 ULONGEST offset, ULONGEST len,
749 ULONGEST *xfered_len)
750 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
751
752 /* Return the limit on the size of any single memory transfer
753 for the target. */
754
755 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
756 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
757
758 /* Returns the memory map for the target. A return value of NULL
759 means that no memory map is available. If a memory address
760 does not fall within any returned regions, it's assumed to be
761 RAM. The returned memory regions should not overlap.
762
763 The order of regions does not matter; target_memory_map will
764 sort regions by starting address. For that reason, this
765 function should not be called directly except via
766 target_memory_map.
767
768 This method should not cache data; if the memory map could
769 change unexpectedly, it should be invalidated, and higher
770 layers will re-fetch it. */
771 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
772 TARGET_DEFAULT_RETURN (NULL);
773
774 /* Erases the region of flash memory starting at ADDRESS, of
775 length LENGTH.
776
777 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
778 on flash block boundaries, as reported by 'to_memory_map'. */
779 void (*to_flash_erase) (struct target_ops *,
780 ULONGEST address, LONGEST length)
781 TARGET_DEFAULT_NORETURN (tcomplain ());
782
783 /* Finishes a flash memory write sequence. After this operation
784 all flash memory should be available for writing and the result
785 of reading from areas written by 'to_flash_write' should be
786 equal to what was written. */
787 void (*to_flash_done) (struct target_ops *)
788 TARGET_DEFAULT_NORETURN (tcomplain ());
789
790 /* Describe the architecture-specific features of this target. If
791 OPS doesn't have a description, this should delegate to the
792 "beneath" target. Returns the description found, or NULL if no
793 description was available. */
794 const struct target_desc *(*to_read_description) (struct target_ops *ops)
795 TARGET_DEFAULT_RETURN (NULL);
796
797 /* Build the PTID of the thread on which a given task is running,
798 based on LWP and THREAD. These values are extracted from the
799 task Private_Data section of the Ada Task Control Block, and
800 their interpretation depends on the target. */
801 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
802 long lwp, long thread)
803 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
804
805 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
806 Return 0 if *READPTR is already at the end of the buffer.
807 Return -1 if there is insufficient buffer for a whole entry.
808 Return 1 if an entry was read into *TYPEP and *VALP. */
809 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
810 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
811 TARGET_DEFAULT_FUNC (default_auxv_parse);
812
813 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
814 sequence of bytes in PATTERN with length PATTERN_LEN.
815
816 The result is 1 if found, 0 if not found, and -1 if there was an error
817 requiring halting of the search (e.g. memory read error).
818 If the pattern is found the address is recorded in FOUND_ADDRP. */
819 int (*to_search_memory) (struct target_ops *ops,
820 CORE_ADDR start_addr, ULONGEST search_space_len,
821 const gdb_byte *pattern, ULONGEST pattern_len,
822 CORE_ADDR *found_addrp)
823 TARGET_DEFAULT_FUNC (default_search_memory);
824
825 /* Can target execute in reverse? */
826 int (*to_can_execute_reverse) (struct target_ops *)
827 TARGET_DEFAULT_RETURN (0);
828
829 /* The direction the target is currently executing. Must be
830 implemented on targets that support reverse execution and async
831 mode. The default simply returns forward execution. */
832 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
833 TARGET_DEFAULT_FUNC (default_execution_direction);
834
835 /* Does this target support debugging multiple processes
836 simultaneously? */
837 int (*to_supports_multi_process) (struct target_ops *)
838 TARGET_DEFAULT_RETURN (0);
839
840 /* Does this target support enabling and disabling tracepoints while a trace
841 experiment is running? */
842 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
843 TARGET_DEFAULT_RETURN (0);
844
845 /* Does this target support disabling address space randomization? */
846 int (*to_supports_disable_randomization) (struct target_ops *);
847
848 /* Does this target support the tracenz bytecode for string collection? */
849 int (*to_supports_string_tracing) (struct target_ops *)
850 TARGET_DEFAULT_RETURN (0);
851
852 /* Does this target support evaluation of breakpoint conditions on its
853 end? */
854 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
855 TARGET_DEFAULT_RETURN (0);
856
857 /* Does this target support evaluation of breakpoint commands on its
858 end? */
859 int (*to_can_run_breakpoint_commands) (struct target_ops *)
860 TARGET_DEFAULT_RETURN (0);
861
862 /* Determine current architecture of thread PTID.
863
864 The target is supposed to determine the architecture of the code where
865 the target is currently stopped at (on Cell, if a target is in spu_run,
866 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
867 This is architecture used to perform decr_pc_after_break adjustment,
868 and also determines the frame architecture of the innermost frame.
869 ptrace operations need to operate according to target_gdbarch ().
870
871 The default implementation always returns target_gdbarch (). */
872 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
873 TARGET_DEFAULT_FUNC (default_thread_architecture);
874
875 /* Determine current address space of thread PTID.
876
877 The default implementation always returns the inferior's
878 address space. */
879 struct address_space *(*to_thread_address_space) (struct target_ops *,
880 ptid_t)
881 TARGET_DEFAULT_FUNC (default_thread_address_space);
882
883 /* Target file operations. */
884
885 /* Return nonzero if the filesystem seen by the current inferior
886 is the local filesystem, zero otherwise. */
887 int (*to_filesystem_is_local) (struct target_ops *)
888 TARGET_DEFAULT_RETURN (1);
889
890 /* Open FILENAME on the target, in the filesystem as seen by INF,
891 using FLAGS and MODE. If INF is NULL, use the filesystem seen
892 by the debugger (GDB or, for remote targets, the remote stub).
893 If WARN_IF_SLOW is nonzero, print a warning message if the file
894 is being accessed over a link that may be slow. Return a
895 target file descriptor, or -1 if an error occurs (and set
896 *TARGET_ERRNO). */
897 int (*to_fileio_open) (struct target_ops *,
898 struct inferior *inf, const char *filename,
899 int flags, int mode, int warn_if_slow,
900 int *target_errno);
901
902 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
903 Return the number of bytes written, or -1 if an error occurs
904 (and set *TARGET_ERRNO). */
905 int (*to_fileio_pwrite) (struct target_ops *,
906 int fd, const gdb_byte *write_buf, int len,
907 ULONGEST offset, int *target_errno);
908
909 /* Read up to LEN bytes FD on the target into READ_BUF.
910 Return the number of bytes read, or -1 if an error occurs
911 (and set *TARGET_ERRNO). */
912 int (*to_fileio_pread) (struct target_ops *,
913 int fd, gdb_byte *read_buf, int len,
914 ULONGEST offset, int *target_errno);
915
916 /* Get information about the file opened as FD and put it in
917 SB. Return 0 on success, or -1 if an error occurs (and set
918 *TARGET_ERRNO). */
919 int (*to_fileio_fstat) (struct target_ops *,
920 int fd, struct stat *sb, int *target_errno);
921
922 /* Close FD on the target. Return 0, or -1 if an error occurs
923 (and set *TARGET_ERRNO). */
924 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
925
926 /* Unlink FILENAME on the target, in the filesystem as seen by
927 INF. If INF is NULL, use the filesystem seen by the debugger
928 (GDB or, for remote targets, the remote stub). Return 0, or
929 -1 if an error occurs (and set *TARGET_ERRNO). */
930 int (*to_fileio_unlink) (struct target_ops *,
931 struct inferior *inf,
932 const char *filename,
933 int *target_errno);
934
935 /* Read value of symbolic link FILENAME on the target, in the
936 filesystem as seen by INF. If INF is NULL, use the filesystem
937 seen by the debugger (GDB or, for remote targets, the remote
938 stub). Return a null-terminated string allocated via xmalloc,
939 or NULL if an error occurs (and set *TARGET_ERRNO). */
940 char *(*to_fileio_readlink) (struct target_ops *,
941 struct inferior *inf,
942 const char *filename,
943 int *target_errno);
944
945
946 /* Implement the "info proc" command. */
947 void (*to_info_proc) (struct target_ops *, const char *,
948 enum info_proc_what);
949
950 /* Tracepoint-related operations. */
951
952 /* Prepare the target for a tracing run. */
953 void (*to_trace_init) (struct target_ops *)
954 TARGET_DEFAULT_NORETURN (tcomplain ());
955
956 /* Send full details of a tracepoint location to the target. */
957 void (*to_download_tracepoint) (struct target_ops *,
958 struct bp_location *location)
959 TARGET_DEFAULT_NORETURN (tcomplain ());
960
961 /* Is the target able to download tracepoint locations in current
962 state? */
963 int (*to_can_download_tracepoint) (struct target_ops *)
964 TARGET_DEFAULT_RETURN (0);
965
966 /* Send full details of a trace state variable to the target. */
967 void (*to_download_trace_state_variable) (struct target_ops *,
968 struct trace_state_variable *tsv)
969 TARGET_DEFAULT_NORETURN (tcomplain ());
970
971 /* Enable a tracepoint on the target. */
972 void (*to_enable_tracepoint) (struct target_ops *,
973 struct bp_location *location)
974 TARGET_DEFAULT_NORETURN (tcomplain ());
975
976 /* Disable a tracepoint on the target. */
977 void (*to_disable_tracepoint) (struct target_ops *,
978 struct bp_location *location)
979 TARGET_DEFAULT_NORETURN (tcomplain ());
980
981 /* Inform the target info of memory regions that are readonly
982 (such as text sections), and so it should return data from
983 those rather than look in the trace buffer. */
984 void (*to_trace_set_readonly_regions) (struct target_ops *)
985 TARGET_DEFAULT_NORETURN (tcomplain ());
986
987 /* Start a trace run. */
988 void (*to_trace_start) (struct target_ops *)
989 TARGET_DEFAULT_NORETURN (tcomplain ());
990
991 /* Get the current status of a tracing run. */
992 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
993 TARGET_DEFAULT_RETURN (-1);
994
995 void (*to_get_tracepoint_status) (struct target_ops *,
996 struct breakpoint *tp,
997 struct uploaded_tp *utp)
998 TARGET_DEFAULT_NORETURN (tcomplain ());
999
1000 /* Stop a trace run. */
1001 void (*to_trace_stop) (struct target_ops *)
1002 TARGET_DEFAULT_NORETURN (tcomplain ());
1003
1004 /* Ask the target to find a trace frame of the given type TYPE,
1005 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1006 number of the trace frame, and also the tracepoint number at
1007 TPP. If no trace frame matches, return -1. May throw if the
1008 operation fails. */
1009 int (*to_trace_find) (struct target_ops *,
1010 enum trace_find_type type, int num,
1011 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1012 TARGET_DEFAULT_RETURN (-1);
1013
1014 /* Get the value of the trace state variable number TSV, returning
1015 1 if the value is known and writing the value itself into the
1016 location pointed to by VAL, else returning 0. */
1017 int (*to_get_trace_state_variable_value) (struct target_ops *,
1018 int tsv, LONGEST *val)
1019 TARGET_DEFAULT_RETURN (0);
1020
1021 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1022 TARGET_DEFAULT_NORETURN (tcomplain ());
1023
1024 int (*to_upload_tracepoints) (struct target_ops *,
1025 struct uploaded_tp **utpp)
1026 TARGET_DEFAULT_RETURN (0);
1027
1028 int (*to_upload_trace_state_variables) (struct target_ops *,
1029 struct uploaded_tsv **utsvp)
1030 TARGET_DEFAULT_RETURN (0);
1031
1032 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1033 ULONGEST offset, LONGEST len)
1034 TARGET_DEFAULT_NORETURN (tcomplain ());
1035
1036 /* Get the minimum length of instruction on which a fast tracepoint
1037 may be set on the target. If this operation is unsupported,
1038 return -1. If for some reason the minimum length cannot be
1039 determined, return 0. */
1040 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1041 TARGET_DEFAULT_RETURN (-1);
1042
1043 /* Set the target's tracing behavior in response to unexpected
1044 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1045 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1046 TARGET_DEFAULT_IGNORE ();
1047 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1048 TARGET_DEFAULT_IGNORE ();
1049 /* Set the size of trace buffer in the target. */
1050 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1051 TARGET_DEFAULT_IGNORE ();
1052
1053 /* Add/change textual notes about the trace run, returning 1 if
1054 successful, 0 otherwise. */
1055 int (*to_set_trace_notes) (struct target_ops *,
1056 const char *user, const char *notes,
1057 const char *stopnotes)
1058 TARGET_DEFAULT_RETURN (0);
1059
1060 /* Return the processor core that thread PTID was last seen on.
1061 This information is updated only when:
1062 - update_thread_list is called
1063 - thread stops
1064 If the core cannot be determined -- either for the specified
1065 thread, or right now, or in this debug session, or for this
1066 target -- return -1. */
1067 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1068 TARGET_DEFAULT_RETURN (-1);
1069
1070 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1071 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1072 a match, 0 if there's a mismatch, and -1 if an error is
1073 encountered while reading memory. */
1074 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1075 CORE_ADDR memaddr, ULONGEST size)
1076 TARGET_DEFAULT_FUNC (default_verify_memory);
1077
1078 /* Return the address of the start of the Thread Information Block
1079 a Windows OS specific feature. */
1080 int (*to_get_tib_address) (struct target_ops *,
1081 ptid_t ptid, CORE_ADDR *addr)
1082 TARGET_DEFAULT_NORETURN (tcomplain ());
1083
1084 /* Send the new settings of write permission variables. */
1085 void (*to_set_permissions) (struct target_ops *)
1086 TARGET_DEFAULT_IGNORE ();
1087
1088 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1089 with its details. Return 1 on success, 0 on failure. */
1090 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1091 struct static_tracepoint_marker *marker)
1092 TARGET_DEFAULT_RETURN (0);
1093
1094 /* Return a vector of all tracepoints markers string id ID, or all
1095 markers if ID is NULL. */
1096 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1097 TARGET_DEFAULT_NORETURN (tcomplain ());
1098
1099 /* Return a traceframe info object describing the current
1100 traceframe's contents. This method should not cache data;
1101 higher layers take care of caching, invalidating, and
1102 re-fetching when necessary. */
1103 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1104 TARGET_DEFAULT_NORETURN (tcomplain ());
1105
1106 /* Ask the target to use or not to use agent according to USE. Return 1
1107 successful, 0 otherwise. */
1108 int (*to_use_agent) (struct target_ops *, int use)
1109 TARGET_DEFAULT_NORETURN (tcomplain ());
1110
1111 /* Is the target able to use agent in current state? */
1112 int (*to_can_use_agent) (struct target_ops *)
1113 TARGET_DEFAULT_RETURN (0);
1114
1115 /* Check whether the target supports branch tracing. */
1116 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1117 TARGET_DEFAULT_RETURN (0);
1118
1119 /* Enable branch tracing for PTID using CONF configuration.
1120 Return a branch trace target information struct for reading and for
1121 disabling branch trace. */
1122 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1123 ptid_t ptid,
1124 const struct btrace_config *conf)
1125 TARGET_DEFAULT_NORETURN (tcomplain ());
1126
1127 /* Disable branch tracing and deallocate TINFO. */
1128 void (*to_disable_btrace) (struct target_ops *,
1129 struct btrace_target_info *tinfo)
1130 TARGET_DEFAULT_NORETURN (tcomplain ());
1131
1132 /* Disable branch tracing and deallocate TINFO. This function is similar
1133 to to_disable_btrace, except that it is called during teardown and is
1134 only allowed to perform actions that are safe. A counter-example would
1135 be attempting to talk to a remote target. */
1136 void (*to_teardown_btrace) (struct target_ops *,
1137 struct btrace_target_info *tinfo)
1138 TARGET_DEFAULT_NORETURN (tcomplain ());
1139
1140 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1141 DATA is cleared before new trace is added. */
1142 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1143 struct btrace_data *data,
1144 struct btrace_target_info *btinfo,
1145 enum btrace_read_type type)
1146 TARGET_DEFAULT_NORETURN (tcomplain ());
1147
1148 /* Get the branch trace configuration. */
1149 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1150 const struct btrace_target_info *)
1151 TARGET_DEFAULT_RETURN (NULL);
1152
1153 /* Current recording method. */
1154 enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1155 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1156
1157 /* Stop trace recording. */
1158 void (*to_stop_recording) (struct target_ops *)
1159 TARGET_DEFAULT_IGNORE ();
1160
1161 /* Print information about the recording. */
1162 void (*to_info_record) (struct target_ops *)
1163 TARGET_DEFAULT_IGNORE ();
1164
1165 /* Save the recorded execution trace into a file. */
1166 void (*to_save_record) (struct target_ops *, const char *filename)
1167 TARGET_DEFAULT_NORETURN (tcomplain ());
1168
1169 /* Delete the recorded execution trace from the current position
1170 onwards. */
1171 void (*to_delete_record) (struct target_ops *)
1172 TARGET_DEFAULT_NORETURN (tcomplain ());
1173
1174 /* Query if the record target is currently replaying PTID. */
1175 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1176 TARGET_DEFAULT_RETURN (0);
1177
1178 /* Query if the record target will replay PTID if it were resumed in
1179 execution direction DIR. */
1180 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1181 TARGET_DEFAULT_RETURN (0);
1182
1183 /* Stop replaying. */
1184 void (*to_record_stop_replaying) (struct target_ops *)
1185 TARGET_DEFAULT_IGNORE ();
1186
1187 /* Go to the begin of the execution trace. */
1188 void (*to_goto_record_begin) (struct target_ops *)
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191 /* Go to the end of the execution trace. */
1192 void (*to_goto_record_end) (struct target_ops *)
1193 TARGET_DEFAULT_NORETURN (tcomplain ());
1194
1195 /* Go to a specific location in the recorded execution trace. */
1196 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1197 TARGET_DEFAULT_NORETURN (tcomplain ());
1198
1199 /* Disassemble SIZE instructions in the recorded execution trace from
1200 the current position.
1201 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1202 disassemble SIZE succeeding instructions. */
1203 void (*to_insn_history) (struct target_ops *, int size, int flags)
1204 TARGET_DEFAULT_NORETURN (tcomplain ());
1205
1206 /* Disassemble SIZE instructions in the recorded execution trace around
1207 FROM.
1208 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1209 disassemble SIZE instructions after FROM. */
1210 void (*to_insn_history_from) (struct target_ops *,
1211 ULONGEST from, int size, int flags)
1212 TARGET_DEFAULT_NORETURN (tcomplain ());
1213
1214 /* Disassemble a section of the recorded execution trace from instruction
1215 BEGIN (inclusive) to instruction END (inclusive). */
1216 void (*to_insn_history_range) (struct target_ops *,
1217 ULONGEST begin, ULONGEST end, int flags)
1218 TARGET_DEFAULT_NORETURN (tcomplain ());
1219
1220 /* Print a function trace of the recorded execution trace.
1221 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1222 succeeding functions. */
1223 void (*to_call_history) (struct target_ops *, int size, int flags)
1224 TARGET_DEFAULT_NORETURN (tcomplain ());
1225
1226 /* Print a function trace of the recorded execution trace starting
1227 at function FROM.
1228 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1229 SIZE functions after FROM. */
1230 void (*to_call_history_from) (struct target_ops *,
1231 ULONGEST begin, int size, int flags)
1232 TARGET_DEFAULT_NORETURN (tcomplain ());
1233
1234 /* Print a function trace of an execution trace section from function BEGIN
1235 (inclusive) to function END (inclusive). */
1236 void (*to_call_history_range) (struct target_ops *,
1237 ULONGEST begin, ULONGEST end, int flags)
1238 TARGET_DEFAULT_NORETURN (tcomplain ());
1239
1240 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1241 non-empty annex. */
1242 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1243 TARGET_DEFAULT_RETURN (0);
1244
1245 /* Those unwinders are tried before any other arch unwinders. If
1246 SELF doesn't have unwinders, it should delegate to the
1247 "beneath" target. */
1248 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1249 TARGET_DEFAULT_RETURN (NULL);
1250
1251 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1252 TARGET_DEFAULT_RETURN (NULL);
1253
1254 /* Prepare to generate a core file. */
1255 void (*to_prepare_to_generate_core) (struct target_ops *)
1256 TARGET_DEFAULT_IGNORE ();
1257
1258 /* Cleanup after generating a core file. */
1259 void (*to_done_generating_core) (struct target_ops *)
1260 TARGET_DEFAULT_IGNORE ();
1261
1262 int to_magic;
1263 /* Need sub-structure for target machine related rather than comm related?
1264 */
1265 };
1266
1267 /* Magic number for checking ops size. If a struct doesn't end with this
1268 number, somebody changed the declaration but didn't change all the
1269 places that initialize one. */
1270
1271 #define OPS_MAGIC 3840
1272
1273 /* The ops structure for our "current" target process. This should
1274 never be NULL. If there is no target, it points to the dummy_target. */
1275
1276 extern struct target_ops current_target;
1277
1278 /* Define easy words for doing these operations on our current target. */
1279
1280 #define target_shortname (current_target.to_shortname)
1281 #define target_longname (current_target.to_longname)
1282
1283 /* Does whatever cleanup is required for a target that we are no
1284 longer going to be calling. This routine is automatically always
1285 called after popping the target off the target stack - the target's
1286 own methods are no longer available through the target vector.
1287 Closing file descriptors and freeing all memory allocated memory are
1288 typical things it should do. */
1289
1290 void target_close (struct target_ops *targ);
1291
1292 /* Find the correct target to use for "attach". If a target on the
1293 current stack supports attaching, then it is returned. Otherwise,
1294 the default run target is returned. */
1295
1296 extern struct target_ops *find_attach_target (void);
1297
1298 /* Find the correct target to use for "run". If a target on the
1299 current stack supports creating a new inferior, then it is
1300 returned. Otherwise, the default run target is returned. */
1301
1302 extern struct target_ops *find_run_target (void);
1303
1304 /* Some targets don't generate traps when attaching to the inferior,
1305 or their target_attach implementation takes care of the waiting.
1306 These targets must set to_attach_no_wait. */
1307
1308 #define target_attach_no_wait \
1309 (current_target.to_attach_no_wait)
1310
1311 /* The target_attach operation places a process under debugger control,
1312 and stops the process.
1313
1314 This operation provides a target-specific hook that allows the
1315 necessary bookkeeping to be performed after an attach completes. */
1316 #define target_post_attach(pid) \
1317 (*current_target.to_post_attach) (&current_target, pid)
1318
1319 /* Display a message indicating we're about to detach from the current
1320 inferior process. */
1321
1322 extern void target_announce_detach (int from_tty);
1323
1324 /* Takes a program previously attached to and detaches it.
1325 The program may resume execution (some targets do, some don't) and will
1326 no longer stop on signals, etc. We better not have left any breakpoints
1327 in the program or it'll die when it hits one. ARGS is arguments
1328 typed by the user (e.g. a signal to send the process). FROM_TTY
1329 says whether to be verbose or not. */
1330
1331 extern void target_detach (const char *, int);
1332
1333 /* Disconnect from the current target without resuming it (leaving it
1334 waiting for a debugger). */
1335
1336 extern void target_disconnect (const char *, int);
1337
1338 /* Resume execution (or prepare for execution) of a target thread,
1339 process or all processes. STEP says whether to hardware
1340 single-step or to run free; SIGGNAL is the signal to be given to
1341 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1342 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1343 process id'. A wildcard PTID (all threads, or all threads of
1344 process) means `step/resume INFERIOR_PTID, and let other threads
1345 (for which the wildcard PTID matches) resume with their
1346 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1347 is in "pass" state, or with no signal if in "no pass" state.
1348
1349 In order to efficiently handle batches of resumption requests,
1350 targets may implement this method such that it records the
1351 resumption request, but defers the actual resumption to the
1352 target_commit_resume method implementation. See
1353 target_commit_resume below. */
1354 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1355
1356 /* Commit a series of resumption requests previously prepared with
1357 target_resume calls.
1358
1359 GDB always calls target_commit_resume after calling target_resume
1360 one or more times. A target may thus use this method in
1361 coordination with the target_resume method to batch target-side
1362 resumption requests. In that case, the target doesn't actually
1363 resume in its target_resume implementation. Instead, it prepares
1364 the resumption in target_resume, and defers the actual resumption
1365 to target_commit_resume. E.g., the remote target uses this to
1366 coalesce multiple resumption requests in a single vCont packet. */
1367 extern void target_commit_resume ();
1368
1369 /* Setup to defer target_commit_resume calls, and return a cleanup
1370 that reactivates target_commit_resume, if it was previously
1371 active. */
1372 struct cleanup *make_cleanup_defer_target_commit_resume ();
1373
1374 /* For target_read_memory see target/target.h. */
1375
1376 /* The default target_ops::to_wait implementation. */
1377
1378 extern ptid_t default_target_wait (struct target_ops *ops,
1379 ptid_t ptid,
1380 struct target_waitstatus *status,
1381 int options);
1382
1383 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1384
1385 extern void target_fetch_registers (struct regcache *regcache, int regno);
1386
1387 /* Store at least register REGNO, or all regs if REGNO == -1.
1388 It can store as many registers as it wants to, so target_prepare_to_store
1389 must have been previously called. Calls error() if there are problems. */
1390
1391 extern void target_store_registers (struct regcache *regcache, int regs);
1392
1393 /* Get ready to modify the registers array. On machines which store
1394 individual registers, this doesn't need to do anything. On machines
1395 which store all the registers in one fell swoop, this makes sure
1396 that REGISTERS contains all the registers from the program being
1397 debugged. */
1398
1399 #define target_prepare_to_store(regcache) \
1400 (*current_target.to_prepare_to_store) (&current_target, regcache)
1401
1402 /* Determine current address space of thread PTID. */
1403
1404 struct address_space *target_thread_address_space (ptid_t);
1405
1406 /* Implement the "info proc" command. This returns one if the request
1407 was handled, and zero otherwise. It can also throw an exception if
1408 an error was encountered while attempting to handle the
1409 request. */
1410
1411 int target_info_proc (const char *, enum info_proc_what);
1412
1413 /* Returns true if this target can disable address space randomization. */
1414
1415 int target_supports_disable_randomization (void);
1416
1417 /* Returns true if this target can enable and disable tracepoints
1418 while a trace experiment is running. */
1419
1420 #define target_supports_enable_disable_tracepoint() \
1421 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1422
1423 #define target_supports_string_tracing() \
1424 (*current_target.to_supports_string_tracing) (&current_target)
1425
1426 /* Returns true if this target can handle breakpoint conditions
1427 on its end. */
1428
1429 #define target_supports_evaluation_of_breakpoint_conditions() \
1430 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1431
1432 /* Returns true if this target can handle breakpoint commands
1433 on its end. */
1434
1435 #define target_can_run_breakpoint_commands() \
1436 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1437
1438 extern int target_read_string (CORE_ADDR, char **, int, int *);
1439
1440 /* For target_read_memory see target/target.h. */
1441
1442 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1443 ssize_t len);
1444
1445 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1446
1447 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1448
1449 /* For target_write_memory see target/target.h. */
1450
1451 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1452 ssize_t len);
1453
1454 /* Fetches the target's memory map. If one is found it is sorted
1455 and returned, after some consistency checking. Otherwise, NULL
1456 is returned. */
1457 VEC(mem_region_s) *target_memory_map (void);
1458
1459 /* Erases all flash memory regions on the target. */
1460 void flash_erase_command (char *cmd, int from_tty);
1461
1462 /* Erase the specified flash region. */
1463 void target_flash_erase (ULONGEST address, LONGEST length);
1464
1465 /* Finish a sequence of flash operations. */
1466 void target_flash_done (void);
1467
1468 /* Describes a request for a memory write operation. */
1469 struct memory_write_request
1470 {
1471 /* Begining address that must be written. */
1472 ULONGEST begin;
1473 /* Past-the-end address. */
1474 ULONGEST end;
1475 /* The data to write. */
1476 gdb_byte *data;
1477 /* A callback baton for progress reporting for this request. */
1478 void *baton;
1479 };
1480 typedef struct memory_write_request memory_write_request_s;
1481 DEF_VEC_O(memory_write_request_s);
1482
1483 /* Enumeration specifying different flash preservation behaviour. */
1484 enum flash_preserve_mode
1485 {
1486 flash_preserve,
1487 flash_discard
1488 };
1489
1490 /* Write several memory blocks at once. This version can be more
1491 efficient than making several calls to target_write_memory, in
1492 particular because it can optimize accesses to flash memory.
1493
1494 Moreover, this is currently the only memory access function in gdb
1495 that supports writing to flash memory, and it should be used for
1496 all cases where access to flash memory is desirable.
1497
1498 REQUESTS is the vector (see vec.h) of memory_write_request.
1499 PRESERVE_FLASH_P indicates what to do with blocks which must be
1500 erased, but not completely rewritten.
1501 PROGRESS_CB is a function that will be periodically called to provide
1502 feedback to user. It will be called with the baton corresponding
1503 to the request currently being written. It may also be called
1504 with a NULL baton, when preserved flash sectors are being rewritten.
1505
1506 The function returns 0 on success, and error otherwise. */
1507 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1508 enum flash_preserve_mode preserve_flash_p,
1509 void (*progress_cb) (ULONGEST, void *));
1510
1511 /* Print a line about the current target. */
1512
1513 #define target_files_info() \
1514 (*current_target.to_files_info) (&current_target)
1515
1516 /* Insert a breakpoint at address BP_TGT->placed_address in
1517 the target machine. Returns 0 for success, and returns non-zero or
1518 throws an error (with a detailed failure reason error code and
1519 message) otherwise. */
1520
1521 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1522 struct bp_target_info *bp_tgt);
1523
1524 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1525 machine. Result is 0 for success, non-zero for error. */
1526
1527 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1528 struct bp_target_info *bp_tgt,
1529 enum remove_bp_reason reason);
1530
1531 /* Returns true if the terminal settings of the inferior are in
1532 effect. */
1533
1534 extern int target_terminal_is_inferior (void);
1535
1536 /* Returns true if our terminal settings are in effect. */
1537
1538 extern int target_terminal_is_ours (void);
1539
1540 /* Initialize the terminal settings we record for the inferior,
1541 before we actually run the inferior. */
1542
1543 extern void target_terminal_init (void);
1544
1545 /* Put the inferior's terminal settings into effect. This is
1546 preparation for starting or resuming the inferior. This is a no-op
1547 unless called with the main UI as current UI. */
1548
1549 extern void target_terminal_inferior (void);
1550
1551 /* Put some of our terminal settings into effect, enough to get proper
1552 results from our output, but do not change into or out of RAW mode
1553 so that no input is discarded. This is a no-op if terminal_ours
1554 was most recently called. This is a no-op unless called with the main
1555 UI as current UI. */
1556
1557 extern void target_terminal_ours_for_output (void);
1558
1559 /* Put our terminal settings into effect. First record the inferior's
1560 terminal settings so they can be restored properly later. This is
1561 a no-op unless called with the main UI as current UI. */
1562
1563 extern void target_terminal_ours (void);
1564
1565 /* Return true if the target stack has a non-default
1566 "to_terminal_ours" method. */
1567
1568 extern int target_supports_terminal_ours (void);
1569
1570 /* Make a cleanup that restores the state of the terminal to the current
1571 state. */
1572 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1573
1574 /* Print useful information about our terminal status, if such a thing
1575 exists. */
1576
1577 #define target_terminal_info(arg, from_tty) \
1578 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1579
1580 /* Kill the inferior process. Make it go away. */
1581
1582 extern void target_kill (void);
1583
1584 /* Load an executable file into the target process. This is expected
1585 to not only bring new code into the target process, but also to
1586 update GDB's symbol tables to match.
1587
1588 ARG contains command-line arguments, to be broken down with
1589 buildargv (). The first non-switch argument is the filename to
1590 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1591 0)), which is an offset to apply to the load addresses of FILE's
1592 sections. The target may define switches, or other non-switch
1593 arguments, as it pleases. */
1594
1595 extern void target_load (const char *arg, int from_tty);
1596
1597 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1598 notification of inferior events such as fork and vork immediately
1599 after the inferior is created. (This because of how gdb gets an
1600 inferior created via invoking a shell to do it. In such a scenario,
1601 if the shell init file has commands in it, the shell will fork and
1602 exec for each of those commands, and we will see each such fork
1603 event. Very bad.)
1604
1605 Such targets will supply an appropriate definition for this function. */
1606
1607 #define target_post_startup_inferior(ptid) \
1608 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1609
1610 /* On some targets, we can catch an inferior fork or vfork event when
1611 it occurs. These functions insert/remove an already-created
1612 catchpoint for such events. They return 0 for success, 1 if the
1613 catchpoint type is not supported and -1 for failure. */
1614
1615 #define target_insert_fork_catchpoint(pid) \
1616 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1617
1618 #define target_remove_fork_catchpoint(pid) \
1619 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1620
1621 #define target_insert_vfork_catchpoint(pid) \
1622 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1623
1624 #define target_remove_vfork_catchpoint(pid) \
1625 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1626
1627 /* If the inferior forks or vforks, this function will be called at
1628 the next resume in order to perform any bookkeeping and fiddling
1629 necessary to continue debugging either the parent or child, as
1630 requested, and releasing the other. Information about the fork
1631 or vfork event is available via get_last_target_status ().
1632 This function returns 1 if the inferior should not be resumed
1633 (i.e. there is another event pending). */
1634
1635 int target_follow_fork (int follow_child, int detach_fork);
1636
1637 /* Handle the target-specific bookkeeping required when the inferior
1638 makes an exec call. INF is the exec'd inferior. */
1639
1640 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1641
1642 /* On some targets, we can catch an inferior exec event when it
1643 occurs. These functions insert/remove an already-created
1644 catchpoint for such events. They return 0 for success, 1 if the
1645 catchpoint type is not supported and -1 for failure. */
1646
1647 #define target_insert_exec_catchpoint(pid) \
1648 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1649
1650 #define target_remove_exec_catchpoint(pid) \
1651 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1652
1653 /* Syscall catch.
1654
1655 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1656 If NEEDED is zero, it means the target can disable the mechanism to
1657 catch system calls because there are no more catchpoints of this type.
1658
1659 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1660 being requested. In this case, both TABLE_SIZE and TABLE should
1661 be ignored.
1662
1663 TABLE_SIZE is the number of elements in TABLE. It only matters if
1664 ANY_COUNT is zero.
1665
1666 TABLE is an array of ints, indexed by syscall number. An element in
1667 this array is nonzero if that syscall should be caught. This argument
1668 only matters if ANY_COUNT is zero.
1669
1670 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1671 for failure. */
1672
1673 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1674 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1675 pid, needed, any_count, \
1676 table_size, table)
1677
1678 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1679 exit code of PID, if any. */
1680
1681 #define target_has_exited(pid,wait_status,exit_status) \
1682 (*current_target.to_has_exited) (&current_target, \
1683 pid,wait_status,exit_status)
1684
1685 /* The debugger has completed a blocking wait() call. There is now
1686 some process event that must be processed. This function should
1687 be defined by those targets that require the debugger to perform
1688 cleanup or internal state changes in response to the process event. */
1689
1690 /* For target_mourn_inferior see target/target.h. */
1691
1692 /* Does target have enough data to do a run or attach command? */
1693
1694 #define target_can_run(t) \
1695 ((t)->to_can_run) (t)
1696
1697 /* Set list of signals to be handled in the target.
1698
1699 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1700 (enum gdb_signal). For every signal whose entry in this array is
1701 non-zero, the target is allowed -but not required- to skip reporting
1702 arrival of the signal to the GDB core by returning from target_wait,
1703 and to pass the signal directly to the inferior instead.
1704
1705 However, if the target is hardware single-stepping a thread that is
1706 about to receive a signal, it needs to be reported in any case, even
1707 if mentioned in a previous target_pass_signals call. */
1708
1709 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1710
1711 /* Set list of signals the target may pass to the inferior. This
1712 directly maps to the "handle SIGNAL pass/nopass" setting.
1713
1714 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1715 number (enum gdb_signal). For every signal whose entry in this
1716 array is non-zero, the target is allowed to pass the signal to the
1717 inferior. Signals not present in the array shall be silently
1718 discarded. This does not influence whether to pass signals to the
1719 inferior as a result of a target_resume call. This is useful in
1720 scenarios where the target needs to decide whether to pass or not a
1721 signal to the inferior without GDB core involvement, such as for
1722 example, when detaching (as threads may have been suspended with
1723 pending signals not reported to GDB). */
1724
1725 extern void target_program_signals (int nsig, unsigned char *program_signals);
1726
1727 /* Check to see if a thread is still alive. */
1728
1729 extern int target_thread_alive (ptid_t ptid);
1730
1731 /* Sync the target's threads with GDB's thread list. */
1732
1733 extern void target_update_thread_list (void);
1734
1735 /* Make target stop in a continuable fashion. (For instance, under
1736 Unix, this should act like SIGSTOP). Note that this function is
1737 asynchronous: it does not wait for the target to become stopped
1738 before returning. If this is the behavior you want please use
1739 target_stop_and_wait. */
1740
1741 extern void target_stop (ptid_t ptid);
1742
1743 /* Interrupt the target just like the user typed a ^C on the
1744 inferior's controlling terminal. (For instance, under Unix, this
1745 should act like SIGINT). This function is asynchronous. */
1746
1747 extern void target_interrupt (ptid_t ptid);
1748
1749 /* Pass a ^C, as determined to have been pressed by checking the quit
1750 flag, to the target. Normally calls target_interrupt, but remote
1751 targets may take the opportunity to detect the remote side is not
1752 responding and offer to disconnect. */
1753
1754 extern void target_pass_ctrlc (void);
1755
1756 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1757 target_interrupt. */
1758 extern void default_target_pass_ctrlc (struct target_ops *ops);
1759
1760 /* Send the specified COMMAND to the target's monitor
1761 (shell,interpreter) for execution. The result of the query is
1762 placed in OUTBUF. */
1763
1764 #define target_rcmd(command, outbuf) \
1765 (*current_target.to_rcmd) (&current_target, command, outbuf)
1766
1767
1768 /* Does the target include all of memory, or only part of it? This
1769 determines whether we look up the target chain for other parts of
1770 memory if this target can't satisfy a request. */
1771
1772 extern int target_has_all_memory_1 (void);
1773 #define target_has_all_memory target_has_all_memory_1 ()
1774
1775 /* Does the target include memory? (Dummy targets don't.) */
1776
1777 extern int target_has_memory_1 (void);
1778 #define target_has_memory target_has_memory_1 ()
1779
1780 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1781 we start a process.) */
1782
1783 extern int target_has_stack_1 (void);
1784 #define target_has_stack target_has_stack_1 ()
1785
1786 /* Does the target have registers? (Exec files don't.) */
1787
1788 extern int target_has_registers_1 (void);
1789 #define target_has_registers target_has_registers_1 ()
1790
1791 /* Does the target have execution? Can we make it jump (through
1792 hoops), or pop its stack a few times? This means that the current
1793 target is currently executing; for some targets, that's the same as
1794 whether or not the target is capable of execution, but there are
1795 also targets which can be current while not executing. In that
1796 case this will become true after to_create_inferior or
1797 to_attach. */
1798
1799 extern int target_has_execution_1 (ptid_t);
1800
1801 /* Like target_has_execution_1, but always passes inferior_ptid. */
1802
1803 extern int target_has_execution_current (void);
1804
1805 #define target_has_execution target_has_execution_current ()
1806
1807 /* Default implementations for process_stratum targets. Return true
1808 if there's a selected inferior, false otherwise. */
1809
1810 extern int default_child_has_all_memory (struct target_ops *ops);
1811 extern int default_child_has_memory (struct target_ops *ops);
1812 extern int default_child_has_stack (struct target_ops *ops);
1813 extern int default_child_has_registers (struct target_ops *ops);
1814 extern int default_child_has_execution (struct target_ops *ops,
1815 ptid_t the_ptid);
1816
1817 /* Can the target support the debugger control of thread execution?
1818 Can it lock the thread scheduler? */
1819
1820 #define target_can_lock_scheduler \
1821 (current_target.to_has_thread_control & tc_schedlock)
1822
1823 /* Controls whether async mode is permitted. */
1824 extern int target_async_permitted;
1825
1826 /* Can the target support asynchronous execution? */
1827 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1828
1829 /* Is the target in asynchronous execution mode? */
1830 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1831
1832 /* Enables/disabled async target events. */
1833 extern void target_async (int enable);
1834
1835 /* Enables/disables thread create and exit events. */
1836 extern void target_thread_events (int enable);
1837
1838 /* Whether support for controlling the target backends always in
1839 non-stop mode is enabled. */
1840 extern enum auto_boolean target_non_stop_enabled;
1841
1842 /* Is the target in non-stop mode? Some targets control the inferior
1843 in non-stop mode even with "set non-stop off". Always true if "set
1844 non-stop" is on. */
1845 extern int target_is_non_stop_p (void);
1846
1847 #define target_execution_direction() \
1848 (current_target.to_execution_direction (&current_target))
1849
1850 /* Converts a process id to a string. Usually, the string just contains
1851 `process xyz', but on some systems it may contain
1852 `process xyz thread abc'. */
1853
1854 extern const char *target_pid_to_str (ptid_t ptid);
1855
1856 extern const char *normal_pid_to_str (ptid_t ptid);
1857
1858 /* Return a short string describing extra information about PID,
1859 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1860 is okay. */
1861
1862 #define target_extra_thread_info(TP) \
1863 (current_target.to_extra_thread_info (&current_target, TP))
1864
1865 /* Return the thread's name, or NULL if the target is unable to determine it.
1866 The returned value must not be freed by the caller. */
1867
1868 extern const char *target_thread_name (struct thread_info *);
1869
1870 /* Attempts to find the pathname of the executable file
1871 that was run to create a specified process.
1872
1873 The process PID must be stopped when this operation is used.
1874
1875 If the executable file cannot be determined, NULL is returned.
1876
1877 Else, a pointer to a character string containing the pathname
1878 is returned. This string should be copied into a buffer by
1879 the client if the string will not be immediately used, or if
1880 it must persist. */
1881
1882 #define target_pid_to_exec_file(pid) \
1883 (current_target.to_pid_to_exec_file) (&current_target, pid)
1884
1885 /* See the to_thread_architecture description in struct target_ops. */
1886
1887 #define target_thread_architecture(ptid) \
1888 (current_target.to_thread_architecture (&current_target, ptid))
1889
1890 /*
1891 * Iterator function for target memory regions.
1892 * Calls a callback function once for each memory region 'mapped'
1893 * in the child process. Defined as a simple macro rather than
1894 * as a function macro so that it can be tested for nullity.
1895 */
1896
1897 #define target_find_memory_regions(FUNC, DATA) \
1898 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1899
1900 /*
1901 * Compose corefile .note section.
1902 */
1903
1904 #define target_make_corefile_notes(BFD, SIZE_P) \
1905 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1906
1907 /* Bookmark interfaces. */
1908 #define target_get_bookmark(ARGS, FROM_TTY) \
1909 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1910
1911 #define target_goto_bookmark(ARG, FROM_TTY) \
1912 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1913
1914 /* Hardware watchpoint interfaces. */
1915
1916 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1917 write). Only the INFERIOR_PTID task is being queried. */
1918
1919 #define target_stopped_by_watchpoint() \
1920 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1921
1922 /* Returns non-zero if the target stopped because it executed a
1923 software breakpoint instruction. */
1924
1925 #define target_stopped_by_sw_breakpoint() \
1926 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1927
1928 #define target_supports_stopped_by_sw_breakpoint() \
1929 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1930
1931 #define target_stopped_by_hw_breakpoint() \
1932 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1933
1934 #define target_supports_stopped_by_hw_breakpoint() \
1935 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1936
1937 /* Non-zero if we have steppable watchpoints */
1938
1939 #define target_have_steppable_watchpoint \
1940 (current_target.to_have_steppable_watchpoint)
1941
1942 /* Non-zero if we have continuable watchpoints */
1943
1944 #define target_have_continuable_watchpoint \
1945 (current_target.to_have_continuable_watchpoint)
1946
1947 /* Provide defaults for hardware watchpoint functions. */
1948
1949 /* If the *_hw_beakpoint functions have not been defined
1950 elsewhere use the definitions in the target vector. */
1951
1952 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1953 Returns negative if the target doesn't have enough hardware debug
1954 registers available. Return zero if hardware watchpoint of type
1955 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1956 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1957 CNT is the number of such watchpoints used so far, including this
1958 one. OTHERTYPE is the number of watchpoints of other types than
1959 this one used so far. */
1960
1961 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1962 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1963 TYPE, CNT, OTHERTYPE)
1964
1965 /* Returns the number of debug registers needed to watch the given
1966 memory region, or zero if not supported. */
1967
1968 #define target_region_ok_for_hw_watchpoint(addr, len) \
1969 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1970 addr, len)
1971
1972
1973 #define target_can_do_single_step() \
1974 (*current_target.to_can_do_single_step) (&current_target)
1975
1976 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1977 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1978 COND is the expression for its condition, or NULL if there's none.
1979 Returns 0 for success, 1 if the watchpoint type is not supported,
1980 -1 for failure. */
1981
1982 #define target_insert_watchpoint(addr, len, type, cond) \
1983 (*current_target.to_insert_watchpoint) (&current_target, \
1984 addr, len, type, cond)
1985
1986 #define target_remove_watchpoint(addr, len, type, cond) \
1987 (*current_target.to_remove_watchpoint) (&current_target, \
1988 addr, len, type, cond)
1989
1990 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1991 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1992 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1993 masked watchpoints are not supported, -1 for failure. */
1994
1995 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1996 enum target_hw_bp_type);
1997
1998 /* Remove a masked watchpoint at ADDR with the mask MASK.
1999 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2000 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2001 for failure. */
2002
2003 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2004 enum target_hw_bp_type);
2005
2006 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2007 the target machine. Returns 0 for success, and returns non-zero or
2008 throws an error (with a detailed failure reason error code and
2009 message) otherwise. */
2010
2011 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2012 (*current_target.to_insert_hw_breakpoint) (&current_target, \
2013 gdbarch, bp_tgt)
2014
2015 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2016 (*current_target.to_remove_hw_breakpoint) (&current_target, \
2017 gdbarch, bp_tgt)
2018
2019 /* Return number of debug registers needed for a ranged breakpoint,
2020 or -1 if ranged breakpoints are not supported. */
2021
2022 extern int target_ranged_break_num_registers (void);
2023
2024 /* Return non-zero if target knows the data address which triggered this
2025 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2026 INFERIOR_PTID task is being queried. */
2027 #define target_stopped_data_address(target, addr_p) \
2028 (*(target)->to_stopped_data_address) (target, addr_p)
2029
2030 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2031 LENGTH bytes beginning at START. */
2032 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2033 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
2034
2035 /* Return non-zero if the target is capable of using hardware to evaluate
2036 the condition expression. In this case, if the condition is false when
2037 the watched memory location changes, execution may continue without the
2038 debugger being notified.
2039
2040 Due to limitations in the hardware implementation, it may be capable of
2041 avoiding triggering the watchpoint in some cases where the condition
2042 expression is false, but may report some false positives as well.
2043 For this reason, GDB will still evaluate the condition expression when
2044 the watchpoint triggers. */
2045 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2046 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2047 addr, len, type, cond)
2048
2049 /* Return number of debug registers needed for a masked watchpoint,
2050 -1 if masked watchpoints are not supported or -2 if the given address
2051 and mask combination cannot be used. */
2052
2053 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2054
2055 /* Target can execute in reverse? */
2056 #define target_can_execute_reverse \
2057 current_target.to_can_execute_reverse (&current_target)
2058
2059 extern const struct target_desc *target_read_description (struct target_ops *);
2060
2061 #define target_get_ada_task_ptid(lwp, tid) \
2062 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2063
2064 /* Utility implementation of searching memory. */
2065 extern int simple_search_memory (struct target_ops* ops,
2066 CORE_ADDR start_addr,
2067 ULONGEST search_space_len,
2068 const gdb_byte *pattern,
2069 ULONGEST pattern_len,
2070 CORE_ADDR *found_addrp);
2071
2072 /* Main entry point for searching memory. */
2073 extern int target_search_memory (CORE_ADDR start_addr,
2074 ULONGEST search_space_len,
2075 const gdb_byte *pattern,
2076 ULONGEST pattern_len,
2077 CORE_ADDR *found_addrp);
2078
2079 /* Target file operations. */
2080
2081 /* Return nonzero if the filesystem seen by the current inferior
2082 is the local filesystem, zero otherwise. */
2083 #define target_filesystem_is_local() \
2084 current_target.to_filesystem_is_local (&current_target)
2085
2086 /* Open FILENAME on the target, in the filesystem as seen by INF,
2087 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2088 by the debugger (GDB or, for remote targets, the remote stub).
2089 Return a target file descriptor, or -1 if an error occurs (and
2090 set *TARGET_ERRNO). */
2091 extern int target_fileio_open (struct inferior *inf,
2092 const char *filename, int flags,
2093 int mode, int *target_errno);
2094
2095 /* Like target_fileio_open, but print a warning message if the
2096 file is being accessed over a link that may be slow. */
2097 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2098 const char *filename,
2099 int flags,
2100 int mode,
2101 int *target_errno);
2102
2103 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2104 Return the number of bytes written, or -1 if an error occurs
2105 (and set *TARGET_ERRNO). */
2106 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2107 ULONGEST offset, int *target_errno);
2108
2109 /* Read up to LEN bytes FD on the target into READ_BUF.
2110 Return the number of bytes read, or -1 if an error occurs
2111 (and set *TARGET_ERRNO). */
2112 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2113 ULONGEST offset, int *target_errno);
2114
2115 /* Get information about the file opened as FD on the target
2116 and put it in SB. Return 0 on success, or -1 if an error
2117 occurs (and set *TARGET_ERRNO). */
2118 extern int target_fileio_fstat (int fd, struct stat *sb,
2119 int *target_errno);
2120
2121 /* Close FD on the target. Return 0, or -1 if an error occurs
2122 (and set *TARGET_ERRNO). */
2123 extern int target_fileio_close (int fd, int *target_errno);
2124
2125 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2126 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2127 for remote targets, the remote stub). Return 0, or -1 if an error
2128 occurs (and set *TARGET_ERRNO). */
2129 extern int target_fileio_unlink (struct inferior *inf,
2130 const char *filename,
2131 int *target_errno);
2132
2133 /* Read value of symbolic link FILENAME on the target, in the
2134 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2135 by the debugger (GDB or, for remote targets, the remote stub).
2136 Return a null-terminated string allocated via xmalloc, or NULL if
2137 an error occurs (and set *TARGET_ERRNO). */
2138 extern char *target_fileio_readlink (struct inferior *inf,
2139 const char *filename,
2140 int *target_errno);
2141
2142 /* Read target file FILENAME, in the filesystem as seen by INF. If
2143 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2144 remote targets, the remote stub). The return value will be -1 if
2145 the transfer fails or is not supported; 0 if the object is empty;
2146 or the length of the object otherwise. If a positive value is
2147 returned, a sufficiently large buffer will be allocated using
2148 xmalloc and returned in *BUF_P containing the contents of the
2149 object.
2150
2151 This method should be used for objects sufficiently small to store
2152 in a single xmalloc'd buffer, when no fixed bound on the object's
2153 size is known in advance. */
2154 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2155 const char *filename,
2156 gdb_byte **buf_p);
2157
2158 /* Read target file FILENAME, in the filesystem as seen by INF. If
2159 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2160 remote targets, the remote stub). The result is NUL-terminated and
2161 returned as a string, allocated using xmalloc. If an error occurs
2162 or the transfer is unsupported, NULL is returned. Empty objects
2163 are returned as allocated but empty strings. A warning is issued
2164 if the result contains any embedded NUL bytes. */
2165 extern char *target_fileio_read_stralloc (struct inferior *inf,
2166 const char *filename);
2167
2168
2169 /* Tracepoint-related operations. */
2170
2171 #define target_trace_init() \
2172 (*current_target.to_trace_init) (&current_target)
2173
2174 #define target_download_tracepoint(t) \
2175 (*current_target.to_download_tracepoint) (&current_target, t)
2176
2177 #define target_can_download_tracepoint() \
2178 (*current_target.to_can_download_tracepoint) (&current_target)
2179
2180 #define target_download_trace_state_variable(tsv) \
2181 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2182
2183 #define target_enable_tracepoint(loc) \
2184 (*current_target.to_enable_tracepoint) (&current_target, loc)
2185
2186 #define target_disable_tracepoint(loc) \
2187 (*current_target.to_disable_tracepoint) (&current_target, loc)
2188
2189 #define target_trace_start() \
2190 (*current_target.to_trace_start) (&current_target)
2191
2192 #define target_trace_set_readonly_regions() \
2193 (*current_target.to_trace_set_readonly_regions) (&current_target)
2194
2195 #define target_get_trace_status(ts) \
2196 (*current_target.to_get_trace_status) (&current_target, ts)
2197
2198 #define target_get_tracepoint_status(tp,utp) \
2199 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2200
2201 #define target_trace_stop() \
2202 (*current_target.to_trace_stop) (&current_target)
2203
2204 #define target_trace_find(type,num,addr1,addr2,tpp) \
2205 (*current_target.to_trace_find) (&current_target, \
2206 (type), (num), (addr1), (addr2), (tpp))
2207
2208 #define target_get_trace_state_variable_value(tsv,val) \
2209 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2210 (tsv), (val))
2211
2212 #define target_save_trace_data(filename) \
2213 (*current_target.to_save_trace_data) (&current_target, filename)
2214
2215 #define target_upload_tracepoints(utpp) \
2216 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2217
2218 #define target_upload_trace_state_variables(utsvp) \
2219 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2220
2221 #define target_get_raw_trace_data(buf,offset,len) \
2222 (*current_target.to_get_raw_trace_data) (&current_target, \
2223 (buf), (offset), (len))
2224
2225 #define target_get_min_fast_tracepoint_insn_len() \
2226 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2227
2228 #define target_set_disconnected_tracing(val) \
2229 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2230
2231 #define target_set_circular_trace_buffer(val) \
2232 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2233
2234 #define target_set_trace_buffer_size(val) \
2235 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2236
2237 #define target_set_trace_notes(user,notes,stopnotes) \
2238 (*current_target.to_set_trace_notes) (&current_target, \
2239 (user), (notes), (stopnotes))
2240
2241 #define target_get_tib_address(ptid, addr) \
2242 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2243
2244 #define target_set_permissions() \
2245 (*current_target.to_set_permissions) (&current_target)
2246
2247 #define target_static_tracepoint_marker_at(addr, marker) \
2248 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2249 addr, marker)
2250
2251 #define target_static_tracepoint_markers_by_strid(marker_id) \
2252 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2253 marker_id)
2254
2255 #define target_traceframe_info() \
2256 (*current_target.to_traceframe_info) (&current_target)
2257
2258 #define target_use_agent(use) \
2259 (*current_target.to_use_agent) (&current_target, use)
2260
2261 #define target_can_use_agent() \
2262 (*current_target.to_can_use_agent) (&current_target)
2263
2264 #define target_augmented_libraries_svr4_read() \
2265 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2266
2267 /* Command logging facility. */
2268
2269 #define target_log_command(p) \
2270 (*current_target.to_log_command) (&current_target, p)
2271
2272
2273 extern int target_core_of_thread (ptid_t ptid);
2274
2275 /* See to_get_unwinder in struct target_ops. */
2276 extern const struct frame_unwind *target_get_unwinder (void);
2277
2278 /* See to_get_tailcall_unwinder in struct target_ops. */
2279 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2280
2281 /* This implements basic memory verification, reading target memory
2282 and performing the comparison here (as opposed to accelerated
2283 verification making use of the qCRC packet, for example). */
2284
2285 extern int simple_verify_memory (struct target_ops* ops,
2286 const gdb_byte *data,
2287 CORE_ADDR memaddr, ULONGEST size);
2288
2289 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2290 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2291 if there's a mismatch, and -1 if an error is encountered while
2292 reading memory. Throws an error if the functionality is found not
2293 to be supported by the current target. */
2294 int target_verify_memory (const gdb_byte *data,
2295 CORE_ADDR memaddr, ULONGEST size);
2296
2297 /* Routines for maintenance of the target structures...
2298
2299 complete_target_initialization: Finalize a target_ops by filling in
2300 any fields needed by the target implementation. Unnecessary for
2301 targets which are registered via add_target, as this part gets
2302 taken care of then.
2303
2304 add_target: Add a target to the list of all possible targets.
2305 This only makes sense for targets that should be activated using
2306 the "target TARGET_NAME ..." command.
2307
2308 push_target: Make this target the top of the stack of currently used
2309 targets, within its particular stratum of the stack. Result
2310 is 0 if now atop the stack, nonzero if not on top (maybe
2311 should warn user).
2312
2313 unpush_target: Remove this from the stack of currently used targets,
2314 no matter where it is on the list. Returns 0 if no
2315 change, 1 if removed from stack. */
2316
2317 extern void add_target (struct target_ops *);
2318
2319 extern void add_target_with_completer (struct target_ops *t,
2320 completer_ftype *completer);
2321
2322 extern void complete_target_initialization (struct target_ops *t);
2323
2324 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2325 for maintaining backwards compatibility when renaming targets. */
2326
2327 extern void add_deprecated_target_alias (struct target_ops *t,
2328 const char *alias);
2329
2330 extern void push_target (struct target_ops *);
2331
2332 extern int unpush_target (struct target_ops *);
2333
2334 extern void target_pre_inferior (int);
2335
2336 extern void target_preopen (int);
2337
2338 /* Does whatever cleanup is required to get rid of all pushed targets. */
2339 extern void pop_all_targets (void);
2340
2341 /* Like pop_all_targets, but pops only targets whose stratum is at or
2342 above STRATUM. */
2343 extern void pop_all_targets_at_and_above (enum strata stratum);
2344
2345 /* Like pop_all_targets, but pops only targets whose stratum is
2346 strictly above ABOVE_STRATUM. */
2347 extern void pop_all_targets_above (enum strata above_stratum);
2348
2349 extern int target_is_pushed (struct target_ops *t);
2350
2351 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2352 CORE_ADDR offset);
2353
2354 /* Struct target_section maps address ranges to file sections. It is
2355 mostly used with BFD files, but can be used without (e.g. for handling
2356 raw disks, or files not in formats handled by BFD). */
2357
2358 struct target_section
2359 {
2360 CORE_ADDR addr; /* Lowest address in section */
2361 CORE_ADDR endaddr; /* 1+highest address in section */
2362
2363 struct bfd_section *the_bfd_section;
2364
2365 /* The "owner" of the section.
2366 It can be any unique value. It is set by add_target_sections
2367 and used by remove_target_sections.
2368 For example, for executables it is a pointer to exec_bfd and
2369 for shlibs it is the so_list pointer. */
2370 void *owner;
2371 };
2372
2373 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2374
2375 struct target_section_table
2376 {
2377 struct target_section *sections;
2378 struct target_section *sections_end;
2379 };
2380
2381 /* Return the "section" containing the specified address. */
2382 struct target_section *target_section_by_addr (struct target_ops *target,
2383 CORE_ADDR addr);
2384
2385 /* Return the target section table this target (or the targets
2386 beneath) currently manipulate. */
2387
2388 extern struct target_section_table *target_get_section_table
2389 (struct target_ops *target);
2390
2391 /* From mem-break.c */
2392
2393 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2394 struct bp_target_info *,
2395 enum remove_bp_reason);
2396
2397 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2398 struct bp_target_info *);
2399
2400 /* Check whether the memory at the breakpoint's placed address still
2401 contains the expected breakpoint instruction. */
2402
2403 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2404 struct bp_target_info *bp_tgt);
2405
2406 extern int default_memory_remove_breakpoint (struct gdbarch *,
2407 struct bp_target_info *);
2408
2409 extern int default_memory_insert_breakpoint (struct gdbarch *,
2410 struct bp_target_info *);
2411
2412
2413 /* From target.c */
2414
2415 extern void initialize_targets (void);
2416
2417 extern void noprocess (void) ATTRIBUTE_NORETURN;
2418
2419 extern void target_require_runnable (void);
2420
2421 extern struct target_ops *find_target_beneath (struct target_ops *);
2422
2423 /* Find the target at STRATUM. If no target is at that stratum,
2424 return NULL. */
2425
2426 struct target_ops *find_target_at (enum strata stratum);
2427
2428 /* Read OS data object of type TYPE from the target, and return it in
2429 XML format. The result is NUL-terminated and returned as a string,
2430 allocated using xmalloc. If an error occurs or the transfer is
2431 unsupported, NULL is returned. Empty objects are returned as
2432 allocated but empty strings. */
2433
2434 extern char *target_get_osdata (const char *type);
2435
2436 \f
2437 /* Stuff that should be shared among the various remote targets. */
2438
2439 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2440 information (higher values, more information). */
2441 extern int remote_debug;
2442
2443 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2444 extern int baud_rate;
2445
2446 /* Parity for serial port */
2447 extern int serial_parity;
2448
2449 /* Timeout limit for response from target. */
2450 extern int remote_timeout;
2451
2452 \f
2453
2454 /* Set the show memory breakpoints mode to show, and installs a cleanup
2455 to restore it back to the current value. */
2456 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2457
2458 extern int may_write_registers;
2459 extern int may_write_memory;
2460 extern int may_insert_breakpoints;
2461 extern int may_insert_tracepoints;
2462 extern int may_insert_fast_tracepoints;
2463 extern int may_stop;
2464
2465 extern void update_target_permissions (void);
2466
2467 \f
2468 /* Imported from machine dependent code. */
2469
2470 /* See to_supports_btrace in struct target_ops. */
2471 extern int target_supports_btrace (enum btrace_format);
2472
2473 /* See to_enable_btrace in struct target_ops. */
2474 extern struct btrace_target_info *
2475 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2476
2477 /* See to_disable_btrace in struct target_ops. */
2478 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2479
2480 /* See to_teardown_btrace in struct target_ops. */
2481 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2482
2483 /* See to_read_btrace in struct target_ops. */
2484 extern enum btrace_error target_read_btrace (struct btrace_data *,
2485 struct btrace_target_info *,
2486 enum btrace_read_type);
2487
2488 /* See to_btrace_conf in struct target_ops. */
2489 extern const struct btrace_config *
2490 target_btrace_conf (const struct btrace_target_info *);
2491
2492 /* See to_stop_recording in struct target_ops. */
2493 extern void target_stop_recording (void);
2494
2495 /* See to_save_record in struct target_ops. */
2496 extern void target_save_record (const char *filename);
2497
2498 /* Query if the target supports deleting the execution log. */
2499 extern int target_supports_delete_record (void);
2500
2501 /* See to_delete_record in struct target_ops. */
2502 extern void target_delete_record (void);
2503
2504 /* See to_record_method. */
2505 extern enum record_method target_record_method (ptid_t ptid);
2506
2507 /* See to_record_is_replaying in struct target_ops. */
2508 extern int target_record_is_replaying (ptid_t ptid);
2509
2510 /* See to_record_will_replay in struct target_ops. */
2511 extern int target_record_will_replay (ptid_t ptid, int dir);
2512
2513 /* See to_record_stop_replaying in struct target_ops. */
2514 extern void target_record_stop_replaying (void);
2515
2516 /* See to_goto_record_begin in struct target_ops. */
2517 extern void target_goto_record_begin (void);
2518
2519 /* See to_goto_record_end in struct target_ops. */
2520 extern void target_goto_record_end (void);
2521
2522 /* See to_goto_record in struct target_ops. */
2523 extern void target_goto_record (ULONGEST insn);
2524
2525 /* See to_insn_history. */
2526 extern void target_insn_history (int size, int flags);
2527
2528 /* See to_insn_history_from. */
2529 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2530
2531 /* See to_insn_history_range. */
2532 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2533
2534 /* See to_call_history. */
2535 extern void target_call_history (int size, int flags);
2536
2537 /* See to_call_history_from. */
2538 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2539
2540 /* See to_call_history_range. */
2541 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2542
2543 /* See to_prepare_to_generate_core. */
2544 extern void target_prepare_to_generate_core (void);
2545
2546 /* See to_done_generating_core. */
2547 extern void target_done_generating_core (void);
2548
2549 #endif /* !defined (TARGET_H) */
This page took 0.085504 seconds and 5 git commands to generate.