Remove GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
[deliverable/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2016 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "osabi.h"
48 #include "tic6x-tdep.h"
49 #include "language.h"
50 #include "target-descriptions.h"
51 #include <algorithm>
52
53 #include "features/tic6x-c64xp.c"
54 #include "features/tic6x-c64x.c"
55 #include "features/tic6x-c62x.c"
56
57 #define TIC6X_OPCODE_SIZE 4
58 #define TIC6X_FETCH_PACKET_SIZE 32
59
60 #define INST_S_BIT(INST) ((INST >> 1) & 1)
61 #define INST_X_BIT(INST) ((INST >> 12) & 1)
62
63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
65
66 struct tic6x_unwind_cache
67 {
68 /* The frame's base, optionally used by the high-level debug info. */
69 CORE_ADDR base;
70
71 /* The previous frame's inner most stack address. Used as this
72 frame ID's stack_addr. */
73 CORE_ADDR cfa;
74
75 /* The address of the first instruction in this function */
76 CORE_ADDR pc;
77
78 /* Which register holds the return address for the frame. */
79 int return_regnum;
80
81 /* The offset of register saved on stack. If register is not saved, the
82 corresponding element is -1. */
83 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
84 };
85
86
87 /* Name of TI C6x core registers. */
88 static const char *const tic6x_register_names[] =
89 {
90 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
91 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
92 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
93 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
94 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
95 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
96 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
97 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
98 "CSR", "PC", /* 32 33 */
99 };
100
101 /* This array maps the arguments to the register number which passes argument
102 in function call according to C6000 ELF ABI. */
103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
104
105 /* This is the implementation of gdbarch method register_name. */
106
107 static const char *
108 tic6x_register_name (struct gdbarch *gdbarch, int regno)
109 {
110 if (regno < 0)
111 return NULL;
112
113 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
114 return tdesc_register_name (gdbarch, regno);
115 else if (regno >= ARRAY_SIZE (tic6x_register_names))
116 return "";
117 else
118 return tic6x_register_names[regno];
119 }
120
121 /* This is the implementation of gdbarch method register_type. */
122
123 static struct type *
124 tic6x_register_type (struct gdbarch *gdbarch, int regno)
125 {
126
127 if (regno == TIC6X_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129 else
130 return builtin_type (gdbarch)->builtin_uint32;
131 }
132
133 static void
134 tic6x_setup_default (struct tic6x_unwind_cache *cache)
135 {
136 int i;
137
138 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
139 cache->reg_saved[i] = -1;
140 }
141
142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
143 static int tic6x_register_number (int reg, int side, int crosspath);
144
145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
146 Bail out early if CURRENT_PC is reached. Returns the address of the first
147 instruction after the prologue. */
148
149 static CORE_ADDR
150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
151 const CORE_ADDR current_pc,
152 struct tic6x_unwind_cache *cache,
153 struct frame_info *this_frame)
154 {
155 unsigned long inst;
156 unsigned int src_reg, base_reg, dst_reg;
157 int i;
158 CORE_ADDR pc = start_pc;
159 CORE_ADDR return_pc = start_pc;
160 int frame_base_offset_to_sp = 0;
161 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
162 int non_stw_insn_counter = 0;
163
164 if (start_pc >= current_pc)
165 return_pc = current_pc;
166
167 cache->base = 0;
168
169 /* The landmarks in prologue is one or two SUB instructions to SP.
170 Instructions on setting up dsbt are in the last part of prologue, if
171 needed. In maxim, prologue can be divided to three parts by two
172 `sub sp, xx, sp' insns. */
173
174 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
175 2nd one is optional. */
176 while (pc < current_pc)
177 {
178 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
179
180 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
181 || (inst & 0x0ffc) == 0x9c0)
182 {
183 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
184 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
185 INST_S_BIT (inst), 0);
186 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
187 INST_S_BIT (inst), 0);
188
189 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
190 {
191 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
192 offset. The constant offset is decoded in bit 13-17 in all
193 these three kinds of instructions. */
194 unsigned int ucst5 = (inst >> 13) & 0x1f;
195
196 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
197 frame_base_offset_to_sp += ucst5 << 2;
198 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
199 frame_base_offset_to_sp += ucst5 << 1;
200 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
201 frame_base_offset_to_sp += ucst5;
202 else
203 gdb_assert_not_reached ("unexpected instruction");
204
205 return_pc = pc + 4;
206 }
207 }
208 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
209 {
210 /* The y bit determines which file base is read from. */
211 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
212 (inst >> 7) & 1, 0);
213
214 if (base_reg == TIC6X_SP_REGNUM)
215 {
216 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
217 INST_S_BIT (inst), 0);
218
219 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
220
221 return_pc = pc + 4;
222 }
223 non_stw_insn_counter = 0;
224 }
225 else
226 {
227 non_stw_insn_counter++;
228 /* Following instruction sequence may be emitted in prologue:
229
230 <+0>: subah .D2 b15,28,b15
231 <+4>: or .L2X 0,a4,b0
232 <+8>: || stw .D2T2 b14,*+b15(56)
233 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
234 <+16>:|| stw .D2T1 a10,*+b15(48)
235 <+20>:stw .D2T2 b3,*+b15(52)
236 <+24>:stw .D2T1 a4,*+b15(40)
237
238 we should look forward for next instruction instead of breaking loop
239 here. So far, we allow almost two sequential non-stw instructions
240 in prologue. */
241 if (non_stw_insn_counter >= 2)
242 break;
243 }
244
245
246 pc += 4;
247 }
248 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
249 ldw .D2T2 *+b14(0),b14 */
250 inst = tic6x_fetch_instruction (gdbarch, pc);
251 /* The s bit determines which file dst will be loaded into, same effect as
252 other places. */
253 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
254 /* The y bit (bit 7), instead of s bit, determines which file base be
255 used. */
256 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
257
258 if ((inst & 0x164) == 0x64 /* ldw */
259 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
260 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
261 {
262 return_pc = pc + 4;
263 }
264
265 if (this_frame)
266 {
267 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
268
269 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
270 {
271 /* If the FP now holds an offset from the CFA then this is a frame
272 which uses the frame pointer. */
273
274 cache->cfa = get_frame_register_unsigned (this_frame,
275 TIC6X_FP_REGNUM);
276 }
277 else
278 {
279 /* FP doesn't hold an offset from the CFA. If SP still holds an
280 offset from the CFA then we might be in a function which omits
281 the frame pointer. */
282
283 cache->cfa = cache->base + frame_base_offset_to_sp;
284 }
285 }
286
287 /* Adjust all the saved registers such that they contain addresses
288 instead of offsets. */
289 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
290 if (cache->reg_saved[i] != -1)
291 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
292
293 return return_pc;
294 }
295
296 /* This is the implementation of gdbarch method skip_prologue. */
297
298 static CORE_ADDR
299 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
300 {
301 CORE_ADDR func_addr;
302 struct tic6x_unwind_cache cache;
303
304 /* See if we can determine the end of the prologue via the symbol table.
305 If so, then return either PC, or the PC after the prologue, whichever is
306 greater. */
307 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
308 {
309 CORE_ADDR post_prologue_pc
310 = skip_prologue_using_sal (gdbarch, func_addr);
311 if (post_prologue_pc != 0)
312 return std::max (start_pc, post_prologue_pc);
313 }
314
315 /* Can't determine prologue from the symbol table, need to examine
316 instructions. */
317 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
318 NULL);
319 }
320
321 /* Implement the breakpoint_kind_from_pc gdbarch method. */
322
323 static int
324 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
325 {
326 return 4;
327 }
328
329 /* Implement the sw_breakpoint_from_kind gdbarch method. */
330
331 static const gdb_byte *
332 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
333 {
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335
336 *size = kind;
337
338 if (tdep == NULL || tdep->breakpoint == NULL)
339 {
340 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
341 return tic6x_bkpt_illegal_opcode_be;
342 else
343 return tic6x_bkpt_illegal_opcode_le;
344 }
345 else
346 return tdep->breakpoint;
347 }
348
349 /* This is the implementation of gdbarch method print_insn. */
350
351 static int
352 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
353 {
354 return print_insn_tic6x (memaddr, info);
355 }
356
357 static void
358 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
359 struct dwarf2_frame_state_reg *reg,
360 struct frame_info *this_frame)
361 {
362 /* Mark the PC as the destination for the return address. */
363 if (regnum == gdbarch_pc_regnum (gdbarch))
364 reg->how = DWARF2_FRAME_REG_RA;
365
366 /* Mark the stack pointer as the call frame address. */
367 else if (regnum == gdbarch_sp_regnum (gdbarch))
368 reg->how = DWARF2_FRAME_REG_CFA;
369
370 /* The above was taken from the default init_reg in dwarf2-frame.c
371 while the below is c6x specific. */
372
373 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
374 callee-save. */
375 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
376 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
377 else
378 /* All other registers are caller-save. */
379 reg->how = DWARF2_FRAME_REG_UNDEFINED;
380 }
381
382 /* This is the implementation of gdbarch method unwind_pc. */
383
384 static CORE_ADDR
385 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
386 {
387 gdb_byte buf[8];
388
389 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
390 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
391 }
392
393 /* This is the implementation of gdbarch method unwind_sp. */
394
395 static CORE_ADDR
396 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
397 {
398 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
399 }
400
401
402 /* Frame base handling. */
403
404 static struct tic6x_unwind_cache*
405 tic6x_frame_unwind_cache (struct frame_info *this_frame,
406 void **this_prologue_cache)
407 {
408 struct gdbarch *gdbarch = get_frame_arch (this_frame);
409 CORE_ADDR current_pc;
410 struct tic6x_unwind_cache *cache;
411
412 if (*this_prologue_cache)
413 return (struct tic6x_unwind_cache *) *this_prologue_cache;
414
415 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
416 (*this_prologue_cache) = cache;
417
418 cache->return_regnum = TIC6X_RA_REGNUM;
419
420 tic6x_setup_default (cache);
421
422 cache->pc = get_frame_func (this_frame);
423 current_pc = get_frame_pc (this_frame);
424
425 /* Prologue analysis does the rest... */
426 if (cache->pc != 0)
427 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
428
429 return cache;
430 }
431
432 static void
433 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
434 struct frame_id *this_id)
435 {
436 struct tic6x_unwind_cache *cache =
437 tic6x_frame_unwind_cache (this_frame, this_cache);
438
439 /* This marks the outermost frame. */
440 if (cache->base == 0)
441 return;
442
443 (*this_id) = frame_id_build (cache->cfa, cache->pc);
444 }
445
446 static struct value *
447 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
448 int regnum)
449 {
450 struct tic6x_unwind_cache *cache =
451 tic6x_frame_unwind_cache (this_frame, this_cache);
452
453 gdb_assert (regnum >= 0);
454
455 /* The PC of the previous frame is stored in the RA register of
456 the current frame. Frob regnum so that we pull the value from
457 the correct place. */
458 if (regnum == TIC6X_PC_REGNUM)
459 regnum = cache->return_regnum;
460
461 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
462 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
463
464 /* If we've worked out where a register is stored then load it from
465 there. */
466 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
467 return frame_unwind_got_memory (this_frame, regnum,
468 cache->reg_saved[regnum]);
469
470 return frame_unwind_got_register (this_frame, regnum, regnum);
471 }
472
473 static CORE_ADDR
474 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
475 {
476 struct tic6x_unwind_cache *info
477 = tic6x_frame_unwind_cache (this_frame, this_cache);
478 return info->base;
479 }
480
481 static const struct frame_unwind tic6x_frame_unwind =
482 {
483 NORMAL_FRAME,
484 default_frame_unwind_stop_reason,
485 tic6x_frame_this_id,
486 tic6x_frame_prev_register,
487 NULL,
488 default_frame_sniffer
489 };
490
491 static const struct frame_base tic6x_frame_base =
492 {
493 &tic6x_frame_unwind,
494 tic6x_frame_base_address,
495 tic6x_frame_base_address,
496 tic6x_frame_base_address
497 };
498
499
500 static struct tic6x_unwind_cache *
501 tic6x_make_stub_cache (struct frame_info *this_frame)
502 {
503 struct tic6x_unwind_cache *cache;
504
505 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
506
507 cache->return_regnum = TIC6X_RA_REGNUM;
508
509 tic6x_setup_default (cache);
510
511 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
512
513 return cache;
514 }
515
516 static void
517 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
518 struct frame_id *this_id)
519 {
520 struct tic6x_unwind_cache *cache;
521
522 if (*this_cache == NULL)
523 *this_cache = tic6x_make_stub_cache (this_frame);
524 cache = (struct tic6x_unwind_cache *) *this_cache;
525
526 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
527 }
528
529 static int
530 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
531 struct frame_info *this_frame,
532 void **this_prologue_cache)
533 {
534 CORE_ADDR addr_in_block;
535
536 addr_in_block = get_frame_address_in_block (this_frame);
537 if (in_plt_section (addr_in_block))
538 return 1;
539
540 return 0;
541 }
542
543 static const struct frame_unwind tic6x_stub_unwind =
544 {
545 NORMAL_FRAME,
546 default_frame_unwind_stop_reason,
547 tic6x_stub_this_id,
548 tic6x_frame_prev_register,
549 NULL,
550 tic6x_stub_unwind_sniffer
551 };
552
553 /* Return the instruction on address PC. */
554
555 static unsigned long
556 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
557 {
558 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
559 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
560 }
561
562 /* Compute the condition of INST if it is a conditional instruction. Always
563 return 1 if INST is not a conditional instruction. */
564
565 static int
566 tic6x_condition_true (struct frame_info *frame, unsigned long inst)
567 {
568 int register_number;
569 int register_value;
570 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
571
572 register_number = register_numbers[(inst >> 29) & 7];
573 if (register_number == -1)
574 return 1;
575
576 register_value = get_frame_register_signed (frame, register_number);
577 if ((inst & 0x10000000) != 0)
578 return register_value == 0;
579 return register_value != 0;
580 }
581
582 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
583 instruction. */
584
585 static int
586 tic6x_register_number (int reg, int side, int crosspath)
587 {
588 int r = (reg & 15) | ((crosspath ^ side) << 4);
589 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
590 r += 37;
591 return r;
592 }
593
594 static int
595 tic6x_extract_signed_field (int value, int low_bit, int bits)
596 {
597 int mask = (1 << bits) - 1;
598 int r = (value >> low_bit) & mask;
599 if ((r & (1 << (bits - 1))) != 0)
600 r -= mask + 1;
601 return r;
602 }
603
604 /* Determine where to set a single step breakpoint. */
605
606 static CORE_ADDR
607 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
608 {
609 struct gdbarch *gdbarch = get_frame_arch (frame);
610 unsigned long inst;
611 int register_number;
612 int last = 0;
613
614 do
615 {
616 inst = tic6x_fetch_instruction (gdbarch, pc);
617
618 last = !(inst & 1);
619
620 if (inst == TIC6X_INST_SWE)
621 {
622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
623
624 if (tdep->syscall_next_pc != NULL)
625 return tdep->syscall_next_pc (frame);
626 }
627
628 if (tic6x_condition_true (frame, inst))
629 {
630 if ((inst & 0x0000007c) == 0x00000010)
631 {
632 /* B with displacement */
633 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
634 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
635 break;
636 }
637 if ((inst & 0x0f83effc) == 0x00000360)
638 {
639 /* B with register */
640
641 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
642 INST_S_BIT (inst),
643 INST_X_BIT (inst));
644 pc = get_frame_register_unsigned (frame, register_number);
645 break;
646 }
647 if ((inst & 0x00001ffc) == 0x00001020)
648 {
649 /* BDEC */
650 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
651 INST_S_BIT (inst), 0);
652 if (get_frame_register_signed (frame, register_number) >= 0)
653 {
654 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
655 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
656 }
657 break;
658 }
659 if ((inst & 0x00001ffc) == 0x00000120)
660 {
661 /* BNOP with displacement */
662 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
663 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
664 break;
665 }
666 if ((inst & 0x0f830ffe) == 0x00800362)
667 {
668 /* BNOP with register */
669 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
670 1, INST_X_BIT (inst));
671 pc = get_frame_register_unsigned (frame, register_number);
672 break;
673 }
674 if ((inst & 0x00001ffc) == 0x00000020)
675 {
676 /* BPOS */
677 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
678 INST_S_BIT (inst), 0);
679 if (get_frame_register_signed (frame, register_number) >= 0)
680 {
681 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
682 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
683 }
684 break;
685 }
686 if ((inst & 0xf000007c) == 0x10000010)
687 {
688 /* CALLP */
689 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
690 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
691 break;
692 }
693 }
694 pc += TIC6X_OPCODE_SIZE;
695 }
696 while (!last);
697 return pc;
698 }
699
700 /* This is the implementation of gdbarch method software_single_step. */
701
702 static int
703 tic6x_software_single_step (struct frame_info *frame)
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 struct address_space *aspace = get_frame_address_space (frame);
707 CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame));
708
709 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
710
711 return 1;
712 }
713
714 /* This is the implementation of gdbarch method frame_align. */
715
716 static CORE_ADDR
717 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
718 {
719 return align_down (addr, 8);
720 }
721
722 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
723 value into VALBUF. */
724
725 static void
726 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
727 enum bfd_endian byte_order, gdb_byte *valbuf)
728 {
729 int len = TYPE_LENGTH (valtype);
730
731 /* pointer types are returned in register A4,
732 up to 32-bit types in A4
733 up to 64-bit types in A5:A4 */
734 if (len <= 4)
735 {
736 /* In big-endian,
737 - one-byte structure or union occupies the LSB of single even register.
738 - for two-byte structure or union, the first byte occupies byte 1 of
739 register and the second byte occupies byte 0.
740 so, we read the contents in VAL from the LSBs of register. */
741 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
742 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
743 valbuf);
744 else
745 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
746 }
747 else if (len <= 8)
748 {
749 /* For a 5-8 byte structure or union in big-endian, the first byte
750 occupies byte 3 (the MSB) of the upper (odd) register and the
751 remaining bytes fill the decreasingly significant bytes. 5-7
752 byte structures or unions have padding in the LSBs of the
753 lower (even) register. */
754 if (byte_order == BFD_ENDIAN_BIG)
755 {
756 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
757 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
758 }
759 else
760 {
761 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
762 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
763 }
764 }
765 }
766
767 /* Write into appropriate registers a function return value
768 of type TYPE, given in virtual format. */
769
770 static void
771 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
772 enum bfd_endian byte_order, const gdb_byte *valbuf)
773 {
774 int len = TYPE_LENGTH (valtype);
775
776 /* return values of up to 8 bytes are returned in A5:A4 */
777
778 if (len <= 4)
779 {
780 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
781 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
782 valbuf);
783 else
784 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
785 }
786 else if (len <= 8)
787 {
788 if (byte_order == BFD_ENDIAN_BIG)
789 {
790 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
791 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
792 }
793 else
794 {
795 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
796 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
797 }
798 }
799 }
800
801 /* This is the implementation of gdbarch method return_value. */
802
803 static enum return_value_convention
804 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
805 struct type *type, struct regcache *regcache,
806 gdb_byte *readbuf, const gdb_byte *writebuf)
807 {
808 /* In C++, when function returns an object, even its size is small
809 enough, it stii has to be passed via reference, pointed by register
810 A3. */
811 if (current_language->la_language == language_cplus)
812 {
813 if (type != NULL)
814 {
815 type = check_typedef (type);
816 if (language_pass_by_reference (type))
817 return RETURN_VALUE_STRUCT_CONVENTION;
818 }
819 }
820
821 if (TYPE_LENGTH (type) > 8)
822 return RETURN_VALUE_STRUCT_CONVENTION;
823
824 if (readbuf)
825 tic6x_extract_return_value (type, regcache,
826 gdbarch_byte_order (gdbarch), readbuf);
827 if (writebuf)
828 tic6x_store_return_value (type, regcache,
829 gdbarch_byte_order (gdbarch), writebuf);
830
831 return RETURN_VALUE_REGISTER_CONVENTION;
832 }
833
834 /* This is the implementation of gdbarch method dummy_id. */
835
836 static struct frame_id
837 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
838 {
839 return frame_id_build
840 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
841 get_frame_pc (this_frame));
842 }
843
844 /* Get the alignment requirement of TYPE. */
845
846 static int
847 tic6x_arg_type_alignment (struct type *type)
848 {
849 int len = TYPE_LENGTH (check_typedef (type));
850 enum type_code typecode = TYPE_CODE (check_typedef (type));
851
852 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
853 {
854 /* The stack alignment of a structure (and union) passed by value is the
855 smallest power of two greater than or equal to its size.
856 This cannot exceed 8 bytes, which is the largest allowable size for
857 a structure passed by value. */
858
859 if (len <= 2)
860 return len;
861 else if (len <= 4)
862 return 4;
863 else if (len <= 8)
864 return 8;
865 else
866 gdb_assert_not_reached ("unexpected length of data");
867 }
868 else
869 {
870 if (len <= 4)
871 return 4;
872 else if (len == 8)
873 {
874 if (typecode == TYPE_CODE_COMPLEX)
875 return 4;
876 else
877 return 8;
878 }
879 else if (len == 16)
880 {
881 if (typecode == TYPE_CODE_COMPLEX)
882 return 8;
883 else
884 return 16;
885 }
886 else
887 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
888 len);
889 }
890 }
891
892 /* This is the implementation of gdbarch method push_dummy_call. */
893
894 static CORE_ADDR
895 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
896 struct regcache *regcache, CORE_ADDR bp_addr,
897 int nargs, struct value **args, CORE_ADDR sp,
898 int struct_return, CORE_ADDR struct_addr)
899 {
900 int argreg = 0;
901 int argnum;
902 int stack_offset = 4;
903 int references_offset = 4;
904 CORE_ADDR func_addr = find_function_addr (function, NULL);
905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
906 struct type *func_type = value_type (function);
907 /* The first arg passed on stack. Mostly the first 10 args are passed by
908 registers. */
909 int first_arg_on_stack = 10;
910
911 /* Set the return address register to point to the entry point of
912 the program, where a breakpoint lies in wait. */
913 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
914
915 /* The caller must pass an argument in A3 containing a destination address
916 for the returned value. The callee returns the object by copying it to
917 the address in A3. */
918 if (struct_return)
919 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
920
921 /* Determine the type of this function. */
922 func_type = check_typedef (func_type);
923 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
924 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
925
926 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
927 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
928
929 /* For a variadic C function, the last explicitly declared argument and all
930 remaining arguments are passed on the stack. */
931 if (TYPE_VARARGS (func_type))
932 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
933
934 /* Now make space on the stack for the args. */
935 for (argnum = 0; argnum < nargs; argnum++)
936 {
937 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
938 if (argnum >= 10 - argreg)
939 references_offset += len;
940 stack_offset += len;
941 }
942 sp -= stack_offset;
943 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
944 Stack Alignment. */
945 sp = align_down (sp, 8);
946 stack_offset = 4;
947
948 /* Now load as many as possible of the first arguments into
949 registers, and push the rest onto the stack. Loop through args
950 from first to last. */
951 for (argnum = 0; argnum < nargs; argnum++)
952 {
953 const gdb_byte *val;
954 struct value *arg = args[argnum];
955 struct type *arg_type = check_typedef (value_type (arg));
956 int len = TYPE_LENGTH (arg_type);
957 enum type_code typecode = TYPE_CODE (arg_type);
958
959 val = value_contents (arg);
960
961 /* Copy the argument to general registers or the stack in
962 register-sized pieces. */
963 if (argreg < first_arg_on_stack)
964 {
965 if (len <= 4)
966 {
967 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
968 {
969 /* In big-endian,
970 - one-byte structure or union occupies the LSB of single
971 even register.
972 - for two-byte structure or union, the first byte
973 occupies byte 1 of register and the second byte occupies
974 byte 0.
975 so, we write the contents in VAL to the lsp of
976 register. */
977 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
978 regcache_cooked_write_part (regcache, arg_regs[argreg],
979 4 - len, len, val);
980 else
981 regcache_cooked_write (regcache, arg_regs[argreg], val);
982 }
983 else
984 {
985 /* The argument is being passed by value in a single
986 register. */
987 CORE_ADDR regval = extract_unsigned_integer (val, len,
988 byte_order);
989
990 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
991 regval);
992 }
993 }
994 else
995 {
996 if (len <= 8)
997 {
998 if (typecode == TYPE_CODE_STRUCT
999 || typecode == TYPE_CODE_UNION)
1000 {
1001 /* For a 5-8 byte structure or union in big-endian, the
1002 first byte occupies byte 3 (the MSB) of the upper (odd)
1003 register and the remaining bytes fill the decreasingly
1004 significant bytes. 5-7 byte structures or unions have
1005 padding in the LSBs of the lower (even) register. */
1006 if (byte_order == BFD_ENDIAN_BIG)
1007 {
1008 regcache_cooked_write (regcache,
1009 arg_regs[argreg] + 1, val);
1010 regcache_cooked_write_part (regcache,
1011 arg_regs[argreg], 0,
1012 len - 4, val + 4);
1013 }
1014 else
1015 {
1016 regcache_cooked_write (regcache, arg_regs[argreg],
1017 val);
1018 regcache_cooked_write_part (regcache,
1019 arg_regs[argreg] + 1, 0,
1020 len - 4, val + 4);
1021 }
1022 }
1023 else
1024 {
1025 /* The argument is being passed by value in a pair of
1026 registers. */
1027 ULONGEST regval = extract_unsigned_integer (val, len,
1028 byte_order);
1029
1030 regcache_cooked_write_unsigned (regcache,
1031 arg_regs[argreg],
1032 regval);
1033 regcache_cooked_write_unsigned (regcache,
1034 arg_regs[argreg] + 1,
1035 regval >> 32);
1036 }
1037 }
1038 else
1039 {
1040 /* The argument is being passed by reference in a single
1041 register. */
1042 CORE_ADDR addr;
1043
1044 /* It is not necessary to adjust REFERENCES_OFFSET to
1045 8-byte aligned in some cases, in which 4-byte alignment
1046 is sufficient. For simplicity, we adjust
1047 REFERENCES_OFFSET to 8-byte aligned. */
1048 references_offset = align_up (references_offset, 8);
1049
1050 addr = sp + references_offset;
1051 write_memory (addr, val, len);
1052 references_offset += align_up (len, 4);
1053 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1054 addr);
1055 }
1056 }
1057 argreg++;
1058 }
1059 else
1060 {
1061 /* The argument is being passed on the stack. */
1062 CORE_ADDR addr;
1063
1064 /* There are six different cases of alignment, and these rules can
1065 be found in tic6x_arg_type_alignment:
1066
1067 1) 4-byte aligned if size is less than or equal to 4 byte, such
1068 as short, int, struct, union etc.
1069 2) 8-byte aligned if size is less than or equal to 8-byte, such
1070 as double, long long,
1071 3) 4-byte aligned if it is of type _Complex float, even its size
1072 is 8-byte.
1073 4) 8-byte aligned if it is of type _Complex double or _Complex
1074 long double, even its size is 16-byte. Because, the address of
1075 variable is passed as reference.
1076 5) struct and union larger than 8-byte are passed by reference, so
1077 it is 4-byte aligned.
1078 6) struct and union of size between 4 byte and 8 byte varies.
1079 alignment of struct variable is the alignment of its first field,
1080 while alignment of union variable is the max of all its fields'
1081 alignment. */
1082
1083 if (len <= 4)
1084 ; /* Default is 4-byte aligned. Nothing to be done. */
1085 else if (len <= 8)
1086 stack_offset = align_up (stack_offset,
1087 tic6x_arg_type_alignment (arg_type));
1088 else if (len == 16)
1089 {
1090 /* _Complex double or _Complex long double */
1091 if (typecode == TYPE_CODE_COMPLEX)
1092 {
1093 /* The argument is being passed by reference on stack. */
1094 CORE_ADDR addr;
1095 references_offset = align_up (references_offset, 8);
1096
1097 addr = sp + references_offset;
1098 /* Store variable on stack. */
1099 write_memory (addr, val, len);
1100
1101 references_offset += align_up (len, 4);
1102
1103 /* Pass the address of variable on stack as reference. */
1104 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1105 addr);
1106 len = 4;
1107
1108 }
1109 else
1110 internal_error (__FILE__, __LINE__,
1111 _("unexpected type %d of arg %d"),
1112 typecode, argnum);
1113 }
1114 else
1115 internal_error (__FILE__, __LINE__,
1116 _("unexpected length %d of arg %d"), len, argnum);
1117
1118 addr = sp + stack_offset;
1119 write_memory (addr, val, len);
1120 stack_offset += align_up (len, 4);
1121 }
1122 }
1123
1124 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1125
1126 /* Return adjusted stack pointer. */
1127 return sp;
1128 }
1129
1130 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
1131
1132 static int
1133 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1134 {
1135 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1136 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1137 if ((inst & 0x0f83effc) == 0x360)
1138 {
1139 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1140 INST_S_BIT (inst),
1141 INST_X_BIT (inst));
1142 if (src2 == TIC6X_RA_REGNUM)
1143 return 1;
1144 }
1145
1146 return 0;
1147 }
1148
1149 /* This is the implementation of gdbarch method get_longjmp_target. */
1150
1151 static int
1152 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1153 {
1154 struct gdbarch *gdbarch = get_frame_arch (frame);
1155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1156 CORE_ADDR jb_addr;
1157 gdb_byte buf[4];
1158
1159 /* JMP_BUF is passed by reference in A4. */
1160 jb_addr = get_frame_register_unsigned (frame, 4);
1161
1162 /* JMP_BUF contains 13 elements of type int, and return address is stored
1163 in the last slot. */
1164 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1165 return 0;
1166
1167 *pc = extract_unsigned_integer (buf, 4, byte_order);
1168
1169 return 1;
1170 }
1171
1172 /* This is the implementation of gdbarch method
1173 return_in_first_hidden_param_p. */
1174
1175 static int
1176 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1177 struct type *type)
1178 {
1179 return 0;
1180 }
1181
1182 static struct gdbarch *
1183 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1184 {
1185 struct gdbarch *gdbarch;
1186 struct gdbarch_tdep *tdep;
1187 struct tdesc_arch_data *tdesc_data = NULL;
1188 const struct target_desc *tdesc = info.target_desc;
1189 int has_gp = 0;
1190
1191 /* Check any target description for validity. */
1192 if (tdesc_has_registers (tdesc))
1193 {
1194 const struct tdesc_feature *feature;
1195 int valid_p, i;
1196
1197 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1198
1199 if (feature == NULL)
1200 return NULL;
1201
1202 tdesc_data = tdesc_data_alloc ();
1203
1204 valid_p = 1;
1205 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1206 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1207 tic6x_register_names[i]);
1208
1209 /* CSR */
1210 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1211 tic6x_register_names[TIC6X_CSR_REGNUM]);
1212 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1213 tic6x_register_names[TIC6X_PC_REGNUM]);
1214
1215 if (!valid_p)
1216 {
1217 tdesc_data_cleanup (tdesc_data);
1218 return NULL;
1219 }
1220
1221 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1222 if (feature)
1223 {
1224 int j = 0;
1225 static const char *const gp[] =
1226 {
1227 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1228 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1229 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1230 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1231 };
1232
1233 has_gp = 1;
1234 valid_p = 1;
1235 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1236 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1237 gp[j]);
1238
1239 if (!valid_p)
1240 {
1241 tdesc_data_cleanup (tdesc_data);
1242 return NULL;
1243 }
1244 }
1245
1246 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1247 if (feature)
1248 {
1249 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1250 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1251 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1252
1253 if (!valid_p)
1254 {
1255 tdesc_data_cleanup (tdesc_data);
1256 return NULL;
1257 }
1258 }
1259
1260 }
1261
1262 /* Find a candidate among extant architectures. */
1263 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1264 arches != NULL;
1265 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1266 {
1267 tdep = gdbarch_tdep (arches->gdbarch);
1268
1269 if (has_gp != tdep->has_gp)
1270 continue;
1271
1272 if (tdep && tdep->breakpoint)
1273 return arches->gdbarch;
1274 }
1275
1276 tdep = XCNEW (struct gdbarch_tdep);
1277
1278 tdep->has_gp = has_gp;
1279 gdbarch = gdbarch_alloc (&info, tdep);
1280
1281 /* Data type sizes. */
1282 set_gdbarch_ptr_bit (gdbarch, 32);
1283 set_gdbarch_addr_bit (gdbarch, 32);
1284 set_gdbarch_short_bit (gdbarch, 16);
1285 set_gdbarch_int_bit (gdbarch, 32);
1286 set_gdbarch_long_bit (gdbarch, 32);
1287 set_gdbarch_long_long_bit (gdbarch, 64);
1288 set_gdbarch_float_bit (gdbarch, 32);
1289 set_gdbarch_double_bit (gdbarch, 64);
1290
1291 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1292 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1293
1294 /* The register set. */
1295 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1296 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1297 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1298
1299 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1300 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1301
1302 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1303
1304 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1305 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1306 tic6x_breakpoint_kind_from_pc);
1307 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1308 tic6x_sw_breakpoint_from_kind);
1309
1310 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1311 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1312
1313 /* Unwinding. */
1314 dwarf2_append_unwinders (gdbarch);
1315
1316 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1317 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1318 frame_base_set_default (gdbarch, &tic6x_frame_base);
1319
1320 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1321
1322 /* Single stepping. */
1323 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1324
1325 set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1326
1327 /* Call dummy code. */
1328 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1329
1330 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1331
1332 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1333
1334 /* Enable inferior call support. */
1335 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1336
1337 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1338
1339 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1340
1341 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1342 tic6x_return_in_first_hidden_param_p);
1343
1344 /* Hook in ABI-specific overrides, if they have been registered. */
1345 gdbarch_init_osabi (info, gdbarch);
1346
1347 if (tdesc_data)
1348 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1349
1350 return gdbarch;
1351 }
1352
1353 /* -Wmissing-prototypes */
1354 extern initialize_file_ftype _initialize_tic6x_tdep;
1355
1356 void
1357 _initialize_tic6x_tdep (void)
1358 {
1359 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1360
1361 initialize_tdesc_tic6x_c64xp ();
1362 initialize_tdesc_tic6x_c64x ();
1363 initialize_tdesc_tic6x_c62x ();
1364 }
This page took 0.056195 seconds and 5 git commands to generate.