Change return type of gdbarch_software_single_step to vector<CORE_ADDR>
[deliverable/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2017 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "osabi.h"
48 #include "tic6x-tdep.h"
49 #include "language.h"
50 #include "target-descriptions.h"
51 #include <algorithm>
52
53 #include "features/tic6x-c64xp.c"
54 #include "features/tic6x-c64x.c"
55 #include "features/tic6x-c62x.c"
56
57 #define TIC6X_OPCODE_SIZE 4
58 #define TIC6X_FETCH_PACKET_SIZE 32
59
60 #define INST_S_BIT(INST) ((INST >> 1) & 1)
61 #define INST_X_BIT(INST) ((INST >> 12) & 1)
62
63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
65
66 struct tic6x_unwind_cache
67 {
68 /* The frame's base, optionally used by the high-level debug info. */
69 CORE_ADDR base;
70
71 /* The previous frame's inner most stack address. Used as this
72 frame ID's stack_addr. */
73 CORE_ADDR cfa;
74
75 /* The address of the first instruction in this function */
76 CORE_ADDR pc;
77
78 /* Which register holds the return address for the frame. */
79 int return_regnum;
80
81 /* The offset of register saved on stack. If register is not saved, the
82 corresponding element is -1. */
83 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
84 };
85
86
87 /* Name of TI C6x core registers. */
88 static const char *const tic6x_register_names[] =
89 {
90 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
91 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
92 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
93 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
94 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
95 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
96 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
97 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
98 "CSR", "PC", /* 32 33 */
99 };
100
101 /* This array maps the arguments to the register number which passes argument
102 in function call according to C6000 ELF ABI. */
103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
104
105 /* This is the implementation of gdbarch method register_name. */
106
107 static const char *
108 tic6x_register_name (struct gdbarch *gdbarch, int regno)
109 {
110 if (regno < 0)
111 return NULL;
112
113 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
114 return tdesc_register_name (gdbarch, regno);
115 else if (regno >= ARRAY_SIZE (tic6x_register_names))
116 return "";
117 else
118 return tic6x_register_names[regno];
119 }
120
121 /* This is the implementation of gdbarch method register_type. */
122
123 static struct type *
124 tic6x_register_type (struct gdbarch *gdbarch, int regno)
125 {
126
127 if (regno == TIC6X_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129 else
130 return builtin_type (gdbarch)->builtin_uint32;
131 }
132
133 static void
134 tic6x_setup_default (struct tic6x_unwind_cache *cache)
135 {
136 int i;
137
138 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
139 cache->reg_saved[i] = -1;
140 }
141
142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
143 static int tic6x_register_number (int reg, int side, int crosspath);
144
145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
146 Bail out early if CURRENT_PC is reached. Returns the address of the first
147 instruction after the prologue. */
148
149 static CORE_ADDR
150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
151 const CORE_ADDR current_pc,
152 struct tic6x_unwind_cache *cache,
153 struct frame_info *this_frame)
154 {
155 unsigned long inst;
156 unsigned int src_reg, base_reg, dst_reg;
157 int i;
158 CORE_ADDR pc = start_pc;
159 CORE_ADDR return_pc = start_pc;
160 int frame_base_offset_to_sp = 0;
161 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
162 int non_stw_insn_counter = 0;
163
164 if (start_pc >= current_pc)
165 return_pc = current_pc;
166
167 cache->base = 0;
168
169 /* The landmarks in prologue is one or two SUB instructions to SP.
170 Instructions on setting up dsbt are in the last part of prologue, if
171 needed. In maxim, prologue can be divided to three parts by two
172 `sub sp, xx, sp' insns. */
173
174 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
175 2nd one is optional. */
176 while (pc < current_pc)
177 {
178 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
179
180 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
181 || (inst & 0x0ffc) == 0x9c0)
182 {
183 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
184 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
185 INST_S_BIT (inst), 0);
186 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
187 INST_S_BIT (inst), 0);
188
189 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
190 {
191 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
192 offset. The constant offset is decoded in bit 13-17 in all
193 these three kinds of instructions. */
194 unsigned int ucst5 = (inst >> 13) & 0x1f;
195
196 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
197 frame_base_offset_to_sp += ucst5 << 2;
198 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
199 frame_base_offset_to_sp += ucst5 << 1;
200 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
201 frame_base_offset_to_sp += ucst5;
202 else
203 gdb_assert_not_reached ("unexpected instruction");
204
205 return_pc = pc + 4;
206 }
207 }
208 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
209 {
210 /* The y bit determines which file base is read from. */
211 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
212 (inst >> 7) & 1, 0);
213
214 if (base_reg == TIC6X_SP_REGNUM)
215 {
216 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
217 INST_S_BIT (inst), 0);
218
219 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
220
221 return_pc = pc + 4;
222 }
223 non_stw_insn_counter = 0;
224 }
225 else
226 {
227 non_stw_insn_counter++;
228 /* Following instruction sequence may be emitted in prologue:
229
230 <+0>: subah .D2 b15,28,b15
231 <+4>: or .L2X 0,a4,b0
232 <+8>: || stw .D2T2 b14,*+b15(56)
233 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
234 <+16>:|| stw .D2T1 a10,*+b15(48)
235 <+20>:stw .D2T2 b3,*+b15(52)
236 <+24>:stw .D2T1 a4,*+b15(40)
237
238 we should look forward for next instruction instead of breaking loop
239 here. So far, we allow almost two sequential non-stw instructions
240 in prologue. */
241 if (non_stw_insn_counter >= 2)
242 break;
243 }
244
245
246 pc += 4;
247 }
248 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
249 ldw .D2T2 *+b14(0),b14 */
250 inst = tic6x_fetch_instruction (gdbarch, pc);
251 /* The s bit determines which file dst will be loaded into, same effect as
252 other places. */
253 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
254 /* The y bit (bit 7), instead of s bit, determines which file base be
255 used. */
256 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
257
258 if ((inst & 0x164) == 0x64 /* ldw */
259 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
260 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
261 {
262 return_pc = pc + 4;
263 }
264
265 if (this_frame)
266 {
267 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
268
269 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
270 {
271 /* If the FP now holds an offset from the CFA then this is a frame
272 which uses the frame pointer. */
273
274 cache->cfa = get_frame_register_unsigned (this_frame,
275 TIC6X_FP_REGNUM);
276 }
277 else
278 {
279 /* FP doesn't hold an offset from the CFA. If SP still holds an
280 offset from the CFA then we might be in a function which omits
281 the frame pointer. */
282
283 cache->cfa = cache->base + frame_base_offset_to_sp;
284 }
285 }
286
287 /* Adjust all the saved registers such that they contain addresses
288 instead of offsets. */
289 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
290 if (cache->reg_saved[i] != -1)
291 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
292
293 return return_pc;
294 }
295
296 /* This is the implementation of gdbarch method skip_prologue. */
297
298 static CORE_ADDR
299 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
300 {
301 CORE_ADDR func_addr;
302 struct tic6x_unwind_cache cache;
303
304 /* See if we can determine the end of the prologue via the symbol table.
305 If so, then return either PC, or the PC after the prologue, whichever is
306 greater. */
307 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
308 {
309 CORE_ADDR post_prologue_pc
310 = skip_prologue_using_sal (gdbarch, func_addr);
311 if (post_prologue_pc != 0)
312 return std::max (start_pc, post_prologue_pc);
313 }
314
315 /* Can't determine prologue from the symbol table, need to examine
316 instructions. */
317 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
318 NULL);
319 }
320
321 /* Implement the breakpoint_kind_from_pc gdbarch method. */
322
323 static int
324 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
325 {
326 return 4;
327 }
328
329 /* Implement the sw_breakpoint_from_kind gdbarch method. */
330
331 static const gdb_byte *
332 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
333 {
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335
336 *size = kind;
337
338 if (tdep == NULL || tdep->breakpoint == NULL)
339 {
340 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
341 return tic6x_bkpt_illegal_opcode_be;
342 else
343 return tic6x_bkpt_illegal_opcode_le;
344 }
345 else
346 return tdep->breakpoint;
347 }
348
349 /* This is the implementation of gdbarch method print_insn. */
350
351 static int
352 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
353 {
354 return print_insn_tic6x (memaddr, info);
355 }
356
357 static void
358 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
359 struct dwarf2_frame_state_reg *reg,
360 struct frame_info *this_frame)
361 {
362 /* Mark the PC as the destination for the return address. */
363 if (regnum == gdbarch_pc_regnum (gdbarch))
364 reg->how = DWARF2_FRAME_REG_RA;
365
366 /* Mark the stack pointer as the call frame address. */
367 else if (regnum == gdbarch_sp_regnum (gdbarch))
368 reg->how = DWARF2_FRAME_REG_CFA;
369
370 /* The above was taken from the default init_reg in dwarf2-frame.c
371 while the below is c6x specific. */
372
373 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
374 callee-save. */
375 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
376 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
377 else
378 /* All other registers are caller-save. */
379 reg->how = DWARF2_FRAME_REG_UNDEFINED;
380 }
381
382 /* This is the implementation of gdbarch method unwind_pc. */
383
384 static CORE_ADDR
385 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
386 {
387 gdb_byte buf[8];
388
389 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
390 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
391 }
392
393 /* This is the implementation of gdbarch method unwind_sp. */
394
395 static CORE_ADDR
396 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
397 {
398 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
399 }
400
401
402 /* Frame base handling. */
403
404 static struct tic6x_unwind_cache*
405 tic6x_frame_unwind_cache (struct frame_info *this_frame,
406 void **this_prologue_cache)
407 {
408 struct gdbarch *gdbarch = get_frame_arch (this_frame);
409 CORE_ADDR current_pc;
410 struct tic6x_unwind_cache *cache;
411
412 if (*this_prologue_cache)
413 return (struct tic6x_unwind_cache *) *this_prologue_cache;
414
415 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
416 (*this_prologue_cache) = cache;
417
418 cache->return_regnum = TIC6X_RA_REGNUM;
419
420 tic6x_setup_default (cache);
421
422 cache->pc = get_frame_func (this_frame);
423 current_pc = get_frame_pc (this_frame);
424
425 /* Prologue analysis does the rest... */
426 if (cache->pc != 0)
427 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
428
429 return cache;
430 }
431
432 static void
433 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
434 struct frame_id *this_id)
435 {
436 struct tic6x_unwind_cache *cache =
437 tic6x_frame_unwind_cache (this_frame, this_cache);
438
439 /* This marks the outermost frame. */
440 if (cache->base == 0)
441 return;
442
443 (*this_id) = frame_id_build (cache->cfa, cache->pc);
444 }
445
446 static struct value *
447 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
448 int regnum)
449 {
450 struct tic6x_unwind_cache *cache =
451 tic6x_frame_unwind_cache (this_frame, this_cache);
452
453 gdb_assert (regnum >= 0);
454
455 /* The PC of the previous frame is stored in the RA register of
456 the current frame. Frob regnum so that we pull the value from
457 the correct place. */
458 if (regnum == TIC6X_PC_REGNUM)
459 regnum = cache->return_regnum;
460
461 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
462 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
463
464 /* If we've worked out where a register is stored then load it from
465 there. */
466 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
467 return frame_unwind_got_memory (this_frame, regnum,
468 cache->reg_saved[regnum]);
469
470 return frame_unwind_got_register (this_frame, regnum, regnum);
471 }
472
473 static CORE_ADDR
474 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
475 {
476 struct tic6x_unwind_cache *info
477 = tic6x_frame_unwind_cache (this_frame, this_cache);
478 return info->base;
479 }
480
481 static const struct frame_unwind tic6x_frame_unwind =
482 {
483 NORMAL_FRAME,
484 default_frame_unwind_stop_reason,
485 tic6x_frame_this_id,
486 tic6x_frame_prev_register,
487 NULL,
488 default_frame_sniffer
489 };
490
491 static const struct frame_base tic6x_frame_base =
492 {
493 &tic6x_frame_unwind,
494 tic6x_frame_base_address,
495 tic6x_frame_base_address,
496 tic6x_frame_base_address
497 };
498
499
500 static struct tic6x_unwind_cache *
501 tic6x_make_stub_cache (struct frame_info *this_frame)
502 {
503 struct tic6x_unwind_cache *cache;
504
505 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
506
507 cache->return_regnum = TIC6X_RA_REGNUM;
508
509 tic6x_setup_default (cache);
510
511 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
512
513 return cache;
514 }
515
516 static void
517 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
518 struct frame_id *this_id)
519 {
520 struct tic6x_unwind_cache *cache;
521
522 if (*this_cache == NULL)
523 *this_cache = tic6x_make_stub_cache (this_frame);
524 cache = (struct tic6x_unwind_cache *) *this_cache;
525
526 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
527 }
528
529 static int
530 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
531 struct frame_info *this_frame,
532 void **this_prologue_cache)
533 {
534 CORE_ADDR addr_in_block;
535
536 addr_in_block = get_frame_address_in_block (this_frame);
537 if (in_plt_section (addr_in_block))
538 return 1;
539
540 return 0;
541 }
542
543 static const struct frame_unwind tic6x_stub_unwind =
544 {
545 NORMAL_FRAME,
546 default_frame_unwind_stop_reason,
547 tic6x_stub_this_id,
548 tic6x_frame_prev_register,
549 NULL,
550 tic6x_stub_unwind_sniffer
551 };
552
553 /* Return the instruction on address PC. */
554
555 static unsigned long
556 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
557 {
558 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
559 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
560 }
561
562 /* Compute the condition of INST if it is a conditional instruction. Always
563 return 1 if INST is not a conditional instruction. */
564
565 static int
566 tic6x_condition_true (struct regcache *regcache, unsigned long inst)
567 {
568 int register_number;
569 int register_value;
570 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
571
572 register_number = register_numbers[(inst >> 29) & 7];
573 if (register_number == -1)
574 return 1;
575
576 register_value = regcache_raw_get_signed (regcache, register_number);
577 if ((inst & 0x10000000) != 0)
578 return register_value == 0;
579 return register_value != 0;
580 }
581
582 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
583 instruction. */
584
585 static int
586 tic6x_register_number (int reg, int side, int crosspath)
587 {
588 int r = (reg & 15) | ((crosspath ^ side) << 4);
589 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
590 r += 37;
591 return r;
592 }
593
594 static int
595 tic6x_extract_signed_field (int value, int low_bit, int bits)
596 {
597 int mask = (1 << bits) - 1;
598 int r = (value >> low_bit) & mask;
599 if ((r & (1 << (bits - 1))) != 0)
600 r -= mask + 1;
601 return r;
602 }
603
604 /* Determine where to set a single step breakpoint. */
605
606 static CORE_ADDR
607 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
608 {
609 struct gdbarch *gdbarch = get_regcache_arch (regcache);
610 unsigned long inst;
611 int register_number;
612 int last = 0;
613
614 do
615 {
616 inst = tic6x_fetch_instruction (gdbarch, pc);
617
618 last = !(inst & 1);
619
620 if (inst == TIC6X_INST_SWE)
621 {
622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
623
624 if (tdep->syscall_next_pc != NULL)
625 return tdep->syscall_next_pc (get_current_frame ());
626 }
627
628 if (tic6x_condition_true (regcache, inst))
629 {
630 if ((inst & 0x0000007c) == 0x00000010)
631 {
632 /* B with displacement */
633 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
634 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
635 break;
636 }
637 if ((inst & 0x0f83effc) == 0x00000360)
638 {
639 /* B with register */
640
641 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
642 INST_S_BIT (inst),
643 INST_X_BIT (inst));
644 pc = regcache_raw_get_unsigned (regcache, register_number);
645 break;
646 }
647 if ((inst & 0x00001ffc) == 0x00001020)
648 {
649 /* BDEC */
650 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
651 INST_S_BIT (inst), 0);
652 if (regcache_raw_get_signed (regcache, register_number) >= 0)
653 {
654 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
655 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
656 }
657 break;
658 }
659 if ((inst & 0x00001ffc) == 0x00000120)
660 {
661 /* BNOP with displacement */
662 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
663 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
664 break;
665 }
666 if ((inst & 0x0f830ffe) == 0x00800362)
667 {
668 /* BNOP with register */
669 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
670 1, INST_X_BIT (inst));
671 pc = regcache_raw_get_unsigned (regcache, register_number);
672 break;
673 }
674 if ((inst & 0x00001ffc) == 0x00000020)
675 {
676 /* BPOS */
677 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
678 INST_S_BIT (inst), 0);
679 if (regcache_raw_get_signed (regcache, register_number) >= 0)
680 {
681 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
682 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
683 }
684 break;
685 }
686 if ((inst & 0xf000007c) == 0x10000010)
687 {
688 /* CALLP */
689 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
690 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
691 break;
692 }
693 }
694 pc += TIC6X_OPCODE_SIZE;
695 }
696 while (!last);
697 return pc;
698 }
699
700 /* This is the implementation of gdbarch method software_single_step. */
701
702 static std::vector<CORE_ADDR>
703 tic6x_software_single_step (struct regcache *regcache)
704 {
705 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
706
707 return {next_pc};
708 }
709
710 /* This is the implementation of gdbarch method frame_align. */
711
712 static CORE_ADDR
713 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
714 {
715 return align_down (addr, 8);
716 }
717
718 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
719 value into VALBUF. */
720
721 static void
722 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
723 enum bfd_endian byte_order, gdb_byte *valbuf)
724 {
725 int len = TYPE_LENGTH (valtype);
726
727 /* pointer types are returned in register A4,
728 up to 32-bit types in A4
729 up to 64-bit types in A5:A4 */
730 if (len <= 4)
731 {
732 /* In big-endian,
733 - one-byte structure or union occupies the LSB of single even register.
734 - for two-byte structure or union, the first byte occupies byte 1 of
735 register and the second byte occupies byte 0.
736 so, we read the contents in VAL from the LSBs of register. */
737 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
738 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
739 valbuf);
740 else
741 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
742 }
743 else if (len <= 8)
744 {
745 /* For a 5-8 byte structure or union in big-endian, the first byte
746 occupies byte 3 (the MSB) of the upper (odd) register and the
747 remaining bytes fill the decreasingly significant bytes. 5-7
748 byte structures or unions have padding in the LSBs of the
749 lower (even) register. */
750 if (byte_order == BFD_ENDIAN_BIG)
751 {
752 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
753 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
754 }
755 else
756 {
757 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
758 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
759 }
760 }
761 }
762
763 /* Write into appropriate registers a function return value
764 of type TYPE, given in virtual format. */
765
766 static void
767 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
768 enum bfd_endian byte_order, const gdb_byte *valbuf)
769 {
770 int len = TYPE_LENGTH (valtype);
771
772 /* return values of up to 8 bytes are returned in A5:A4 */
773
774 if (len <= 4)
775 {
776 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
777 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
778 valbuf);
779 else
780 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
781 }
782 else if (len <= 8)
783 {
784 if (byte_order == BFD_ENDIAN_BIG)
785 {
786 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
787 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
788 }
789 else
790 {
791 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
792 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
793 }
794 }
795 }
796
797 /* This is the implementation of gdbarch method return_value. */
798
799 static enum return_value_convention
800 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
801 struct type *type, struct regcache *regcache,
802 gdb_byte *readbuf, const gdb_byte *writebuf)
803 {
804 /* In C++, when function returns an object, even its size is small
805 enough, it stii has to be passed via reference, pointed by register
806 A3. */
807 if (current_language->la_language == language_cplus)
808 {
809 if (type != NULL)
810 {
811 type = check_typedef (type);
812 if (language_pass_by_reference (type))
813 return RETURN_VALUE_STRUCT_CONVENTION;
814 }
815 }
816
817 if (TYPE_LENGTH (type) > 8)
818 return RETURN_VALUE_STRUCT_CONVENTION;
819
820 if (readbuf)
821 tic6x_extract_return_value (type, regcache,
822 gdbarch_byte_order (gdbarch), readbuf);
823 if (writebuf)
824 tic6x_store_return_value (type, regcache,
825 gdbarch_byte_order (gdbarch), writebuf);
826
827 return RETURN_VALUE_REGISTER_CONVENTION;
828 }
829
830 /* This is the implementation of gdbarch method dummy_id. */
831
832 static struct frame_id
833 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
834 {
835 return frame_id_build
836 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
837 get_frame_pc (this_frame));
838 }
839
840 /* Get the alignment requirement of TYPE. */
841
842 static int
843 tic6x_arg_type_alignment (struct type *type)
844 {
845 int len = TYPE_LENGTH (check_typedef (type));
846 enum type_code typecode = TYPE_CODE (check_typedef (type));
847
848 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
849 {
850 /* The stack alignment of a structure (and union) passed by value is the
851 smallest power of two greater than or equal to its size.
852 This cannot exceed 8 bytes, which is the largest allowable size for
853 a structure passed by value. */
854
855 if (len <= 2)
856 return len;
857 else if (len <= 4)
858 return 4;
859 else if (len <= 8)
860 return 8;
861 else
862 gdb_assert_not_reached ("unexpected length of data");
863 }
864 else
865 {
866 if (len <= 4)
867 return 4;
868 else if (len == 8)
869 {
870 if (typecode == TYPE_CODE_COMPLEX)
871 return 4;
872 else
873 return 8;
874 }
875 else if (len == 16)
876 {
877 if (typecode == TYPE_CODE_COMPLEX)
878 return 8;
879 else
880 return 16;
881 }
882 else
883 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
884 len);
885 }
886 }
887
888 /* This is the implementation of gdbarch method push_dummy_call. */
889
890 static CORE_ADDR
891 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
892 struct regcache *regcache, CORE_ADDR bp_addr,
893 int nargs, struct value **args, CORE_ADDR sp,
894 int struct_return, CORE_ADDR struct_addr)
895 {
896 int argreg = 0;
897 int argnum;
898 int stack_offset = 4;
899 int references_offset = 4;
900 CORE_ADDR func_addr = find_function_addr (function, NULL);
901 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
902 struct type *func_type = value_type (function);
903 /* The first arg passed on stack. Mostly the first 10 args are passed by
904 registers. */
905 int first_arg_on_stack = 10;
906
907 /* Set the return address register to point to the entry point of
908 the program, where a breakpoint lies in wait. */
909 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
910
911 /* The caller must pass an argument in A3 containing a destination address
912 for the returned value. The callee returns the object by copying it to
913 the address in A3. */
914 if (struct_return)
915 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
916
917 /* Determine the type of this function. */
918 func_type = check_typedef (func_type);
919 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
920 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
921
922 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
923 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
924
925 /* For a variadic C function, the last explicitly declared argument and all
926 remaining arguments are passed on the stack. */
927 if (TYPE_VARARGS (func_type))
928 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
929
930 /* Now make space on the stack for the args. */
931 for (argnum = 0; argnum < nargs; argnum++)
932 {
933 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
934 if (argnum >= 10 - argreg)
935 references_offset += len;
936 stack_offset += len;
937 }
938 sp -= stack_offset;
939 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
940 Stack Alignment. */
941 sp = align_down (sp, 8);
942 stack_offset = 4;
943
944 /* Now load as many as possible of the first arguments into
945 registers, and push the rest onto the stack. Loop through args
946 from first to last. */
947 for (argnum = 0; argnum < nargs; argnum++)
948 {
949 const gdb_byte *val;
950 struct value *arg = args[argnum];
951 struct type *arg_type = check_typedef (value_type (arg));
952 int len = TYPE_LENGTH (arg_type);
953 enum type_code typecode = TYPE_CODE (arg_type);
954
955 val = value_contents (arg);
956
957 /* Copy the argument to general registers or the stack in
958 register-sized pieces. */
959 if (argreg < first_arg_on_stack)
960 {
961 if (len <= 4)
962 {
963 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
964 {
965 /* In big-endian,
966 - one-byte structure or union occupies the LSB of single
967 even register.
968 - for two-byte structure or union, the first byte
969 occupies byte 1 of register and the second byte occupies
970 byte 0.
971 so, we write the contents in VAL to the lsp of
972 register. */
973 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
974 regcache_cooked_write_part (regcache, arg_regs[argreg],
975 4 - len, len, val);
976 else
977 regcache_cooked_write (regcache, arg_regs[argreg], val);
978 }
979 else
980 {
981 /* The argument is being passed by value in a single
982 register. */
983 CORE_ADDR regval = extract_unsigned_integer (val, len,
984 byte_order);
985
986 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
987 regval);
988 }
989 }
990 else
991 {
992 if (len <= 8)
993 {
994 if (typecode == TYPE_CODE_STRUCT
995 || typecode == TYPE_CODE_UNION)
996 {
997 /* For a 5-8 byte structure or union in big-endian, the
998 first byte occupies byte 3 (the MSB) of the upper (odd)
999 register and the remaining bytes fill the decreasingly
1000 significant bytes. 5-7 byte structures or unions have
1001 padding in the LSBs of the lower (even) register. */
1002 if (byte_order == BFD_ENDIAN_BIG)
1003 {
1004 regcache_cooked_write (regcache,
1005 arg_regs[argreg] + 1, val);
1006 regcache_cooked_write_part (regcache,
1007 arg_regs[argreg], 0,
1008 len - 4, val + 4);
1009 }
1010 else
1011 {
1012 regcache_cooked_write (regcache, arg_regs[argreg],
1013 val);
1014 regcache_cooked_write_part (regcache,
1015 arg_regs[argreg] + 1, 0,
1016 len - 4, val + 4);
1017 }
1018 }
1019 else
1020 {
1021 /* The argument is being passed by value in a pair of
1022 registers. */
1023 ULONGEST regval = extract_unsigned_integer (val, len,
1024 byte_order);
1025
1026 regcache_cooked_write_unsigned (regcache,
1027 arg_regs[argreg],
1028 regval);
1029 regcache_cooked_write_unsigned (regcache,
1030 arg_regs[argreg] + 1,
1031 regval >> 32);
1032 }
1033 }
1034 else
1035 {
1036 /* The argument is being passed by reference in a single
1037 register. */
1038 CORE_ADDR addr;
1039
1040 /* It is not necessary to adjust REFERENCES_OFFSET to
1041 8-byte aligned in some cases, in which 4-byte alignment
1042 is sufficient. For simplicity, we adjust
1043 REFERENCES_OFFSET to 8-byte aligned. */
1044 references_offset = align_up (references_offset, 8);
1045
1046 addr = sp + references_offset;
1047 write_memory (addr, val, len);
1048 references_offset += align_up (len, 4);
1049 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1050 addr);
1051 }
1052 }
1053 argreg++;
1054 }
1055 else
1056 {
1057 /* The argument is being passed on the stack. */
1058 CORE_ADDR addr;
1059
1060 /* There are six different cases of alignment, and these rules can
1061 be found in tic6x_arg_type_alignment:
1062
1063 1) 4-byte aligned if size is less than or equal to 4 byte, such
1064 as short, int, struct, union etc.
1065 2) 8-byte aligned if size is less than or equal to 8-byte, such
1066 as double, long long,
1067 3) 4-byte aligned if it is of type _Complex float, even its size
1068 is 8-byte.
1069 4) 8-byte aligned if it is of type _Complex double or _Complex
1070 long double, even its size is 16-byte. Because, the address of
1071 variable is passed as reference.
1072 5) struct and union larger than 8-byte are passed by reference, so
1073 it is 4-byte aligned.
1074 6) struct and union of size between 4 byte and 8 byte varies.
1075 alignment of struct variable is the alignment of its first field,
1076 while alignment of union variable is the max of all its fields'
1077 alignment. */
1078
1079 if (len <= 4)
1080 ; /* Default is 4-byte aligned. Nothing to be done. */
1081 else if (len <= 8)
1082 stack_offset = align_up (stack_offset,
1083 tic6x_arg_type_alignment (arg_type));
1084 else if (len == 16)
1085 {
1086 /* _Complex double or _Complex long double */
1087 if (typecode == TYPE_CODE_COMPLEX)
1088 {
1089 /* The argument is being passed by reference on stack. */
1090 CORE_ADDR addr;
1091 references_offset = align_up (references_offset, 8);
1092
1093 addr = sp + references_offset;
1094 /* Store variable on stack. */
1095 write_memory (addr, val, len);
1096
1097 references_offset += align_up (len, 4);
1098
1099 /* Pass the address of variable on stack as reference. */
1100 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1101 addr);
1102 len = 4;
1103
1104 }
1105 else
1106 internal_error (__FILE__, __LINE__,
1107 _("unexpected type %d of arg %d"),
1108 typecode, argnum);
1109 }
1110 else
1111 internal_error (__FILE__, __LINE__,
1112 _("unexpected length %d of arg %d"), len, argnum);
1113
1114 addr = sp + stack_offset;
1115 write_memory (addr, val, len);
1116 stack_offset += align_up (len, 4);
1117 }
1118 }
1119
1120 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1121
1122 /* Return adjusted stack pointer. */
1123 return sp;
1124 }
1125
1126 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
1127
1128 static int
1129 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1130 {
1131 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1132 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1133 if ((inst & 0x0f83effc) == 0x360)
1134 {
1135 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1136 INST_S_BIT (inst),
1137 INST_X_BIT (inst));
1138 if (src2 == TIC6X_RA_REGNUM)
1139 return 1;
1140 }
1141
1142 return 0;
1143 }
1144
1145 /* This is the implementation of gdbarch method get_longjmp_target. */
1146
1147 static int
1148 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1149 {
1150 struct gdbarch *gdbarch = get_frame_arch (frame);
1151 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1152 CORE_ADDR jb_addr;
1153 gdb_byte buf[4];
1154
1155 /* JMP_BUF is passed by reference in A4. */
1156 jb_addr = get_frame_register_unsigned (frame, 4);
1157
1158 /* JMP_BUF contains 13 elements of type int, and return address is stored
1159 in the last slot. */
1160 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1161 return 0;
1162
1163 *pc = extract_unsigned_integer (buf, 4, byte_order);
1164
1165 return 1;
1166 }
1167
1168 /* This is the implementation of gdbarch method
1169 return_in_first_hidden_param_p. */
1170
1171 static int
1172 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1173 struct type *type)
1174 {
1175 return 0;
1176 }
1177
1178 static struct gdbarch *
1179 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1180 {
1181 struct gdbarch *gdbarch;
1182 struct gdbarch_tdep *tdep;
1183 struct tdesc_arch_data *tdesc_data = NULL;
1184 const struct target_desc *tdesc = info.target_desc;
1185 int has_gp = 0;
1186
1187 /* Check any target description for validity. */
1188 if (tdesc_has_registers (tdesc))
1189 {
1190 const struct tdesc_feature *feature;
1191 int valid_p, i;
1192
1193 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1194
1195 if (feature == NULL)
1196 return NULL;
1197
1198 tdesc_data = tdesc_data_alloc ();
1199
1200 valid_p = 1;
1201 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1202 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1203 tic6x_register_names[i]);
1204
1205 /* CSR */
1206 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1207 tic6x_register_names[TIC6X_CSR_REGNUM]);
1208 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1209 tic6x_register_names[TIC6X_PC_REGNUM]);
1210
1211 if (!valid_p)
1212 {
1213 tdesc_data_cleanup (tdesc_data);
1214 return NULL;
1215 }
1216
1217 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1218 if (feature)
1219 {
1220 int j = 0;
1221 static const char *const gp[] =
1222 {
1223 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1224 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1225 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1226 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1227 };
1228
1229 has_gp = 1;
1230 valid_p = 1;
1231 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1232 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1233 gp[j]);
1234
1235 if (!valid_p)
1236 {
1237 tdesc_data_cleanup (tdesc_data);
1238 return NULL;
1239 }
1240 }
1241
1242 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1243 if (feature)
1244 {
1245 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1246 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1247 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1248
1249 if (!valid_p)
1250 {
1251 tdesc_data_cleanup (tdesc_data);
1252 return NULL;
1253 }
1254 }
1255
1256 }
1257
1258 /* Find a candidate among extant architectures. */
1259 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1260 arches != NULL;
1261 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1262 {
1263 tdep = gdbarch_tdep (arches->gdbarch);
1264
1265 if (has_gp != tdep->has_gp)
1266 continue;
1267
1268 if (tdep && tdep->breakpoint)
1269 return arches->gdbarch;
1270 }
1271
1272 tdep = XCNEW (struct gdbarch_tdep);
1273
1274 tdep->has_gp = has_gp;
1275 gdbarch = gdbarch_alloc (&info, tdep);
1276
1277 /* Data type sizes. */
1278 set_gdbarch_ptr_bit (gdbarch, 32);
1279 set_gdbarch_addr_bit (gdbarch, 32);
1280 set_gdbarch_short_bit (gdbarch, 16);
1281 set_gdbarch_int_bit (gdbarch, 32);
1282 set_gdbarch_long_bit (gdbarch, 32);
1283 set_gdbarch_long_long_bit (gdbarch, 64);
1284 set_gdbarch_float_bit (gdbarch, 32);
1285 set_gdbarch_double_bit (gdbarch, 64);
1286
1287 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1288 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1289
1290 /* The register set. */
1291 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1292 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1293 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1294
1295 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1296 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1297
1298 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1299
1300 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1301 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1302 tic6x_breakpoint_kind_from_pc);
1303 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1304 tic6x_sw_breakpoint_from_kind);
1305
1306 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1307 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1308
1309 /* Unwinding. */
1310 dwarf2_append_unwinders (gdbarch);
1311
1312 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1313 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1314 frame_base_set_default (gdbarch, &tic6x_frame_base);
1315
1316 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1317
1318 /* Single stepping. */
1319 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1320
1321 set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1322
1323 /* Call dummy code. */
1324 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1325
1326 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1327
1328 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1329
1330 /* Enable inferior call support. */
1331 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1332
1333 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1334
1335 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1336
1337 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1338 tic6x_return_in_first_hidden_param_p);
1339
1340 /* Hook in ABI-specific overrides, if they have been registered. */
1341 gdbarch_init_osabi (info, gdbarch);
1342
1343 if (tdesc_data)
1344 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1345
1346 return gdbarch;
1347 }
1348
1349 /* -Wmissing-prototypes */
1350 extern initialize_file_ftype _initialize_tic6x_tdep;
1351
1352 void
1353 _initialize_tic6x_tdep (void)
1354 {
1355 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1356
1357 initialize_tdesc_tic6x_c64xp ();
1358 initialize_tdesc_tic6x_c64x ();
1359 initialize_tdesc_tic6x_c62x ();
1360 }
This page took 0.115146 seconds and 5 git commands to generate.