Remove regcache_cooked_write_part
[deliverable/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2018 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "glibc-tdep.h"
40 #include "infcall.h"
41 #include "regset.h"
42 #include "tramp-frame.h"
43 #include "linux-tdep.h"
44 #include "solib.h"
45 #include "objfiles.h"
46 #include "osabi.h"
47 #include "tic6x-tdep.h"
48 #include "language.h"
49 #include "target-descriptions.h"
50 #include <algorithm>
51
52 #define TIC6X_OPCODE_SIZE 4
53 #define TIC6X_FETCH_PACKET_SIZE 32
54
55 #define INST_S_BIT(INST) ((INST >> 1) & 1)
56 #define INST_X_BIT(INST) ((INST >> 12) & 1)
57
58 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
59 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
60
61 struct tic6x_unwind_cache
62 {
63 /* The frame's base, optionally used by the high-level debug info. */
64 CORE_ADDR base;
65
66 /* The previous frame's inner most stack address. Used as this
67 frame ID's stack_addr. */
68 CORE_ADDR cfa;
69
70 /* The address of the first instruction in this function */
71 CORE_ADDR pc;
72
73 /* Which register holds the return address for the frame. */
74 int return_regnum;
75
76 /* The offset of register saved on stack. If register is not saved, the
77 corresponding element is -1. */
78 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
79 };
80
81
82 /* Name of TI C6x core registers. */
83 static const char *const tic6x_register_names[] =
84 {
85 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
86 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
87 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
88 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
89 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
90 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
91 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
92 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
93 "CSR", "PC", /* 32 33 */
94 };
95
96 /* This array maps the arguments to the register number which passes argument
97 in function call according to C6000 ELF ABI. */
98 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
99
100 /* This is the implementation of gdbarch method register_name. */
101
102 static const char *
103 tic6x_register_name (struct gdbarch *gdbarch, int regno)
104 {
105 if (regno < 0)
106 return NULL;
107
108 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
109 return tdesc_register_name (gdbarch, regno);
110 else if (regno >= ARRAY_SIZE (tic6x_register_names))
111 return "";
112 else
113 return tic6x_register_names[regno];
114 }
115
116 /* This is the implementation of gdbarch method register_type. */
117
118 static struct type *
119 tic6x_register_type (struct gdbarch *gdbarch, int regno)
120 {
121
122 if (regno == TIC6X_PC_REGNUM)
123 return builtin_type (gdbarch)->builtin_func_ptr;
124 else
125 return builtin_type (gdbarch)->builtin_uint32;
126 }
127
128 static void
129 tic6x_setup_default (struct tic6x_unwind_cache *cache)
130 {
131 int i;
132
133 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
134 cache->reg_saved[i] = -1;
135 }
136
137 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
138 static int tic6x_register_number (int reg, int side, int crosspath);
139
140 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
141 Bail out early if CURRENT_PC is reached. Returns the address of the first
142 instruction after the prologue. */
143
144 static CORE_ADDR
145 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
146 const CORE_ADDR current_pc,
147 struct tic6x_unwind_cache *cache,
148 struct frame_info *this_frame)
149 {
150 unsigned long inst;
151 unsigned int src_reg, base_reg, dst_reg;
152 int i;
153 CORE_ADDR pc = start_pc;
154 CORE_ADDR return_pc = start_pc;
155 int frame_base_offset_to_sp = 0;
156 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
157 int non_stw_insn_counter = 0;
158
159 if (start_pc >= current_pc)
160 return_pc = current_pc;
161
162 cache->base = 0;
163
164 /* The landmarks in prologue is one or two SUB instructions to SP.
165 Instructions on setting up dsbt are in the last part of prologue, if
166 needed. In maxim, prologue can be divided to three parts by two
167 `sub sp, xx, sp' insns. */
168
169 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
170 2nd one is optional. */
171 while (pc < current_pc)
172 {
173 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
174
175 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
176 || (inst & 0x0ffc) == 0x9c0)
177 {
178 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
179 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
180 INST_S_BIT (inst), 0);
181 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
182 INST_S_BIT (inst), 0);
183
184 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
185 {
186 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
187 offset. The constant offset is decoded in bit 13-17 in all
188 these three kinds of instructions. */
189 unsigned int ucst5 = (inst >> 13) & 0x1f;
190
191 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
192 frame_base_offset_to_sp += ucst5 << 2;
193 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
194 frame_base_offset_to_sp += ucst5 << 1;
195 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
196 frame_base_offset_to_sp += ucst5;
197 else
198 gdb_assert_not_reached ("unexpected instruction");
199
200 return_pc = pc + 4;
201 }
202 }
203 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
204 {
205 /* The y bit determines which file base is read from. */
206 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
207 (inst >> 7) & 1, 0);
208
209 if (base_reg == TIC6X_SP_REGNUM)
210 {
211 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
212 INST_S_BIT (inst), 0);
213
214 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
215
216 return_pc = pc + 4;
217 }
218 non_stw_insn_counter = 0;
219 }
220 else
221 {
222 non_stw_insn_counter++;
223 /* Following instruction sequence may be emitted in prologue:
224
225 <+0>: subah .D2 b15,28,b15
226 <+4>: or .L2X 0,a4,b0
227 <+8>: || stw .D2T2 b14,*+b15(56)
228 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
229 <+16>:|| stw .D2T1 a10,*+b15(48)
230 <+20>:stw .D2T2 b3,*+b15(52)
231 <+24>:stw .D2T1 a4,*+b15(40)
232
233 we should look forward for next instruction instead of breaking loop
234 here. So far, we allow almost two sequential non-stw instructions
235 in prologue. */
236 if (non_stw_insn_counter >= 2)
237 break;
238 }
239
240
241 pc += 4;
242 }
243 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
244 ldw .D2T2 *+b14(0),b14 */
245 inst = tic6x_fetch_instruction (gdbarch, pc);
246 /* The s bit determines which file dst will be loaded into, same effect as
247 other places. */
248 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
249 /* The y bit (bit 7), instead of s bit, determines which file base be
250 used. */
251 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
252
253 if ((inst & 0x164) == 0x64 /* ldw */
254 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
255 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
256 {
257 return_pc = pc + 4;
258 }
259
260 if (this_frame)
261 {
262 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
263
264 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
265 {
266 /* If the FP now holds an offset from the CFA then this is a frame
267 which uses the frame pointer. */
268
269 cache->cfa = get_frame_register_unsigned (this_frame,
270 TIC6X_FP_REGNUM);
271 }
272 else
273 {
274 /* FP doesn't hold an offset from the CFA. If SP still holds an
275 offset from the CFA then we might be in a function which omits
276 the frame pointer. */
277
278 cache->cfa = cache->base + frame_base_offset_to_sp;
279 }
280 }
281
282 /* Adjust all the saved registers such that they contain addresses
283 instead of offsets. */
284 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
285 if (cache->reg_saved[i] != -1)
286 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
287
288 return return_pc;
289 }
290
291 /* This is the implementation of gdbarch method skip_prologue. */
292
293 static CORE_ADDR
294 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
295 {
296 CORE_ADDR func_addr;
297 struct tic6x_unwind_cache cache;
298
299 /* See if we can determine the end of the prologue via the symbol table.
300 If so, then return either PC, or the PC after the prologue, whichever is
301 greater. */
302 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
303 {
304 CORE_ADDR post_prologue_pc
305 = skip_prologue_using_sal (gdbarch, func_addr);
306 if (post_prologue_pc != 0)
307 return std::max (start_pc, post_prologue_pc);
308 }
309
310 /* Can't determine prologue from the symbol table, need to examine
311 instructions. */
312 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
313 NULL);
314 }
315
316 /* Implement the breakpoint_kind_from_pc gdbarch method. */
317
318 static int
319 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
320 {
321 return 4;
322 }
323
324 /* Implement the sw_breakpoint_from_kind gdbarch method. */
325
326 static const gdb_byte *
327 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330
331 *size = kind;
332
333 if (tdep == NULL || tdep->breakpoint == NULL)
334 {
335 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
336 return tic6x_bkpt_illegal_opcode_be;
337 else
338 return tic6x_bkpt_illegal_opcode_le;
339 }
340 else
341 return tdep->breakpoint;
342 }
343
344 static void
345 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
346 struct dwarf2_frame_state_reg *reg,
347 struct frame_info *this_frame)
348 {
349 /* Mark the PC as the destination for the return address. */
350 if (regnum == gdbarch_pc_regnum (gdbarch))
351 reg->how = DWARF2_FRAME_REG_RA;
352
353 /* Mark the stack pointer as the call frame address. */
354 else if (regnum == gdbarch_sp_regnum (gdbarch))
355 reg->how = DWARF2_FRAME_REG_CFA;
356
357 /* The above was taken from the default init_reg in dwarf2-frame.c
358 while the below is c6x specific. */
359
360 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
361 callee-save. */
362 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
363 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
364 else
365 /* All other registers are caller-save. */
366 reg->how = DWARF2_FRAME_REG_UNDEFINED;
367 }
368
369 /* This is the implementation of gdbarch method unwind_pc. */
370
371 static CORE_ADDR
372 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
373 {
374 gdb_byte buf[8];
375
376 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
377 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
378 }
379
380 /* This is the implementation of gdbarch method unwind_sp. */
381
382 static CORE_ADDR
383 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
384 {
385 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
386 }
387
388
389 /* Frame base handling. */
390
391 static struct tic6x_unwind_cache*
392 tic6x_frame_unwind_cache (struct frame_info *this_frame,
393 void **this_prologue_cache)
394 {
395 struct gdbarch *gdbarch = get_frame_arch (this_frame);
396 CORE_ADDR current_pc;
397 struct tic6x_unwind_cache *cache;
398
399 if (*this_prologue_cache)
400 return (struct tic6x_unwind_cache *) *this_prologue_cache;
401
402 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
403 (*this_prologue_cache) = cache;
404
405 cache->return_regnum = TIC6X_RA_REGNUM;
406
407 tic6x_setup_default (cache);
408
409 cache->pc = get_frame_func (this_frame);
410 current_pc = get_frame_pc (this_frame);
411
412 /* Prologue analysis does the rest... */
413 if (cache->pc != 0)
414 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
415
416 return cache;
417 }
418
419 static void
420 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
421 struct frame_id *this_id)
422 {
423 struct tic6x_unwind_cache *cache =
424 tic6x_frame_unwind_cache (this_frame, this_cache);
425
426 /* This marks the outermost frame. */
427 if (cache->base == 0)
428 return;
429
430 (*this_id) = frame_id_build (cache->cfa, cache->pc);
431 }
432
433 static struct value *
434 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
435 int regnum)
436 {
437 struct tic6x_unwind_cache *cache =
438 tic6x_frame_unwind_cache (this_frame, this_cache);
439
440 gdb_assert (regnum >= 0);
441
442 /* The PC of the previous frame is stored in the RA register of
443 the current frame. Frob regnum so that we pull the value from
444 the correct place. */
445 if (regnum == TIC6X_PC_REGNUM)
446 regnum = cache->return_regnum;
447
448 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
449 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
450
451 /* If we've worked out where a register is stored then load it from
452 there. */
453 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
454 return frame_unwind_got_memory (this_frame, regnum,
455 cache->reg_saved[regnum]);
456
457 return frame_unwind_got_register (this_frame, regnum, regnum);
458 }
459
460 static CORE_ADDR
461 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
462 {
463 struct tic6x_unwind_cache *info
464 = tic6x_frame_unwind_cache (this_frame, this_cache);
465 return info->base;
466 }
467
468 static const struct frame_unwind tic6x_frame_unwind =
469 {
470 NORMAL_FRAME,
471 default_frame_unwind_stop_reason,
472 tic6x_frame_this_id,
473 tic6x_frame_prev_register,
474 NULL,
475 default_frame_sniffer
476 };
477
478 static const struct frame_base tic6x_frame_base =
479 {
480 &tic6x_frame_unwind,
481 tic6x_frame_base_address,
482 tic6x_frame_base_address,
483 tic6x_frame_base_address
484 };
485
486
487 static struct tic6x_unwind_cache *
488 tic6x_make_stub_cache (struct frame_info *this_frame)
489 {
490 struct tic6x_unwind_cache *cache;
491
492 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
493
494 cache->return_regnum = TIC6X_RA_REGNUM;
495
496 tic6x_setup_default (cache);
497
498 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
499
500 return cache;
501 }
502
503 static void
504 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
505 struct frame_id *this_id)
506 {
507 struct tic6x_unwind_cache *cache;
508
509 if (*this_cache == NULL)
510 *this_cache = tic6x_make_stub_cache (this_frame);
511 cache = (struct tic6x_unwind_cache *) *this_cache;
512
513 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
514 }
515
516 static int
517 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
518 struct frame_info *this_frame,
519 void **this_prologue_cache)
520 {
521 CORE_ADDR addr_in_block;
522
523 addr_in_block = get_frame_address_in_block (this_frame);
524 if (in_plt_section (addr_in_block))
525 return 1;
526
527 return 0;
528 }
529
530 static const struct frame_unwind tic6x_stub_unwind =
531 {
532 NORMAL_FRAME,
533 default_frame_unwind_stop_reason,
534 tic6x_stub_this_id,
535 tic6x_frame_prev_register,
536 NULL,
537 tic6x_stub_unwind_sniffer
538 };
539
540 /* Return the instruction on address PC. */
541
542 static unsigned long
543 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
544 {
545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
546 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
547 }
548
549 /* Compute the condition of INST if it is a conditional instruction. Always
550 return 1 if INST is not a conditional instruction. */
551
552 static int
553 tic6x_condition_true (struct regcache *regcache, unsigned long inst)
554 {
555 int register_number;
556 int register_value;
557 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
558
559 register_number = register_numbers[(inst >> 29) & 7];
560 if (register_number == -1)
561 return 1;
562
563 register_value = regcache_raw_get_signed (regcache, register_number);
564 if ((inst & 0x10000000) != 0)
565 return register_value == 0;
566 return register_value != 0;
567 }
568
569 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
570 instruction. */
571
572 static int
573 tic6x_register_number (int reg, int side, int crosspath)
574 {
575 int r = (reg & 15) | ((crosspath ^ side) << 4);
576 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
577 r += 37;
578 return r;
579 }
580
581 static int
582 tic6x_extract_signed_field (int value, int low_bit, int bits)
583 {
584 int mask = (1 << bits) - 1;
585 int r = (value >> low_bit) & mask;
586 if ((r & (1 << (bits - 1))) != 0)
587 r -= mask + 1;
588 return r;
589 }
590
591 /* Determine where to set a single step breakpoint. */
592
593 static CORE_ADDR
594 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
595 {
596 struct gdbarch *gdbarch = regcache->arch ();
597 unsigned long inst;
598 int register_number;
599 int last = 0;
600
601 do
602 {
603 inst = tic6x_fetch_instruction (gdbarch, pc);
604
605 last = !(inst & 1);
606
607 if (inst == TIC6X_INST_SWE)
608 {
609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
610
611 if (tdep->syscall_next_pc != NULL)
612 return tdep->syscall_next_pc (get_current_frame ());
613 }
614
615 if (tic6x_condition_true (regcache, inst))
616 {
617 if ((inst & 0x0000007c) == 0x00000010)
618 {
619 /* B with displacement */
620 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
621 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
622 break;
623 }
624 if ((inst & 0x0f83effc) == 0x00000360)
625 {
626 /* B with register */
627
628 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
629 INST_S_BIT (inst),
630 INST_X_BIT (inst));
631 pc = regcache_raw_get_unsigned (regcache, register_number);
632 break;
633 }
634 if ((inst & 0x00001ffc) == 0x00001020)
635 {
636 /* BDEC */
637 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
638 INST_S_BIT (inst), 0);
639 if (regcache_raw_get_signed (regcache, register_number) >= 0)
640 {
641 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
642 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
643 }
644 break;
645 }
646 if ((inst & 0x00001ffc) == 0x00000120)
647 {
648 /* BNOP with displacement */
649 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
650 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
651 break;
652 }
653 if ((inst & 0x0f830ffe) == 0x00800362)
654 {
655 /* BNOP with register */
656 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
657 1, INST_X_BIT (inst));
658 pc = regcache_raw_get_unsigned (regcache, register_number);
659 break;
660 }
661 if ((inst & 0x00001ffc) == 0x00000020)
662 {
663 /* BPOS */
664 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
665 INST_S_BIT (inst), 0);
666 if (regcache_raw_get_signed (regcache, register_number) >= 0)
667 {
668 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
669 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
670 }
671 break;
672 }
673 if ((inst & 0xf000007c) == 0x10000010)
674 {
675 /* CALLP */
676 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
677 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
678 break;
679 }
680 }
681 pc += TIC6X_OPCODE_SIZE;
682 }
683 while (!last);
684 return pc;
685 }
686
687 /* This is the implementation of gdbarch method software_single_step. */
688
689 static std::vector<CORE_ADDR>
690 tic6x_software_single_step (struct regcache *regcache)
691 {
692 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
693
694 return {next_pc};
695 }
696
697 /* This is the implementation of gdbarch method frame_align. */
698
699 static CORE_ADDR
700 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
701 {
702 return align_down (addr, 8);
703 }
704
705 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
706 value into VALBUF. */
707
708 static void
709 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
710 enum bfd_endian byte_order, gdb_byte *valbuf)
711 {
712 int len = TYPE_LENGTH (valtype);
713
714 /* pointer types are returned in register A4,
715 up to 32-bit types in A4
716 up to 64-bit types in A5:A4 */
717 if (len <= 4)
718 {
719 /* In big-endian,
720 - one-byte structure or union occupies the LSB of single even register.
721 - for two-byte structure or union, the first byte occupies byte 1 of
722 register and the second byte occupies byte 0.
723 so, we read the contents in VAL from the LSBs of register. */
724 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
725 regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
726 else
727 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
728 }
729 else if (len <= 8)
730 {
731 /* For a 5-8 byte structure or union in big-endian, the first byte
732 occupies byte 3 (the MSB) of the upper (odd) register and the
733 remaining bytes fill the decreasingly significant bytes. 5-7
734 byte structures or unions have padding in the LSBs of the
735 lower (even) register. */
736 if (byte_order == BFD_ENDIAN_BIG)
737 {
738 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4);
739 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf);
740 }
741 else
742 {
743 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
744 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4);
745 }
746 }
747 }
748
749 /* Write into appropriate registers a function return value
750 of type TYPE, given in virtual format. */
751
752 static void
753 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
754 enum bfd_endian byte_order, const gdb_byte *valbuf)
755 {
756 int len = TYPE_LENGTH (valtype);
757
758 /* return values of up to 8 bytes are returned in A5:A4 */
759
760 if (len <= 4)
761 {
762 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
763 regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
764 else
765 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
766 }
767 else if (len <= 8)
768 {
769 if (byte_order == BFD_ENDIAN_BIG)
770 {
771 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4);
772 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf);
773 }
774 else
775 {
776 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
777 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4);
778 }
779 }
780 }
781
782 /* This is the implementation of gdbarch method return_value. */
783
784 static enum return_value_convention
785 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
786 struct type *type, struct regcache *regcache,
787 gdb_byte *readbuf, const gdb_byte *writebuf)
788 {
789 /* In C++, when function returns an object, even its size is small
790 enough, it stii has to be passed via reference, pointed by register
791 A3. */
792 if (current_language->la_language == language_cplus)
793 {
794 if (type != NULL)
795 {
796 type = check_typedef (type);
797 if (language_pass_by_reference (type))
798 return RETURN_VALUE_STRUCT_CONVENTION;
799 }
800 }
801
802 if (TYPE_LENGTH (type) > 8)
803 return RETURN_VALUE_STRUCT_CONVENTION;
804
805 if (readbuf)
806 tic6x_extract_return_value (type, regcache,
807 gdbarch_byte_order (gdbarch), readbuf);
808 if (writebuf)
809 tic6x_store_return_value (type, regcache,
810 gdbarch_byte_order (gdbarch), writebuf);
811
812 return RETURN_VALUE_REGISTER_CONVENTION;
813 }
814
815 /* This is the implementation of gdbarch method dummy_id. */
816
817 static struct frame_id
818 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
819 {
820 return frame_id_build
821 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
822 get_frame_pc (this_frame));
823 }
824
825 /* Get the alignment requirement of TYPE. */
826
827 static int
828 tic6x_arg_type_alignment (struct type *type)
829 {
830 int len = TYPE_LENGTH (check_typedef (type));
831 enum type_code typecode = TYPE_CODE (check_typedef (type));
832
833 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
834 {
835 /* The stack alignment of a structure (and union) passed by value is the
836 smallest power of two greater than or equal to its size.
837 This cannot exceed 8 bytes, which is the largest allowable size for
838 a structure passed by value. */
839
840 if (len <= 2)
841 return len;
842 else if (len <= 4)
843 return 4;
844 else if (len <= 8)
845 return 8;
846 else
847 gdb_assert_not_reached ("unexpected length of data");
848 }
849 else
850 {
851 if (len <= 4)
852 return 4;
853 else if (len == 8)
854 {
855 if (typecode == TYPE_CODE_COMPLEX)
856 return 4;
857 else
858 return 8;
859 }
860 else if (len == 16)
861 {
862 if (typecode == TYPE_CODE_COMPLEX)
863 return 8;
864 else
865 return 16;
866 }
867 else
868 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
869 len);
870 }
871 }
872
873 /* This is the implementation of gdbarch method push_dummy_call. */
874
875 static CORE_ADDR
876 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
877 struct regcache *regcache, CORE_ADDR bp_addr,
878 int nargs, struct value **args, CORE_ADDR sp,
879 int struct_return, CORE_ADDR struct_addr)
880 {
881 int argreg = 0;
882 int argnum;
883 int stack_offset = 4;
884 int references_offset = 4;
885 CORE_ADDR func_addr = find_function_addr (function, NULL);
886 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
887 struct type *func_type = value_type (function);
888 /* The first arg passed on stack. Mostly the first 10 args are passed by
889 registers. */
890 int first_arg_on_stack = 10;
891
892 /* Set the return address register to point to the entry point of
893 the program, where a breakpoint lies in wait. */
894 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
895
896 /* The caller must pass an argument in A3 containing a destination address
897 for the returned value. The callee returns the object by copying it to
898 the address in A3. */
899 if (struct_return)
900 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
901
902 /* Determine the type of this function. */
903 func_type = check_typedef (func_type);
904 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
905 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
906
907 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
908 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
909
910 /* For a variadic C function, the last explicitly declared argument and all
911 remaining arguments are passed on the stack. */
912 if (TYPE_VARARGS (func_type))
913 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
914
915 /* Now make space on the stack for the args. */
916 for (argnum = 0; argnum < nargs; argnum++)
917 {
918 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
919 if (argnum >= 10 - argreg)
920 references_offset += len;
921 stack_offset += len;
922 }
923 sp -= stack_offset;
924 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
925 Stack Alignment. */
926 sp = align_down (sp, 8);
927 stack_offset = 4;
928
929 /* Now load as many as possible of the first arguments into
930 registers, and push the rest onto the stack. Loop through args
931 from first to last. */
932 for (argnum = 0; argnum < nargs; argnum++)
933 {
934 const gdb_byte *val;
935 struct value *arg = args[argnum];
936 struct type *arg_type = check_typedef (value_type (arg));
937 int len = TYPE_LENGTH (arg_type);
938 enum type_code typecode = TYPE_CODE (arg_type);
939
940 val = value_contents (arg);
941
942 /* Copy the argument to general registers or the stack in
943 register-sized pieces. */
944 if (argreg < first_arg_on_stack)
945 {
946 if (len <= 4)
947 {
948 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
949 {
950 /* In big-endian,
951 - one-byte structure or union occupies the LSB of single
952 even register.
953 - for two-byte structure or union, the first byte
954 occupies byte 1 of register and the second byte occupies
955 byte 0.
956 so, we write the contents in VAL to the lsp of
957 register. */
958 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
959 regcache->cooked_write_part (arg_regs[argreg], 4 - len, len,
960 val);
961 else
962 regcache->cooked_write (arg_regs[argreg], val);
963 }
964 else
965 {
966 /* The argument is being passed by value in a single
967 register. */
968 CORE_ADDR regval = extract_unsigned_integer (val, len,
969 byte_order);
970
971 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
972 regval);
973 }
974 }
975 else
976 {
977 if (len <= 8)
978 {
979 if (typecode == TYPE_CODE_STRUCT
980 || typecode == TYPE_CODE_UNION)
981 {
982 /* For a 5-8 byte structure or union in big-endian, the
983 first byte occupies byte 3 (the MSB) of the upper (odd)
984 register and the remaining bytes fill the decreasingly
985 significant bytes. 5-7 byte structures or unions have
986 padding in the LSBs of the lower (even) register. */
987 if (byte_order == BFD_ENDIAN_BIG)
988 {
989 regcache->cooked_write (arg_regs[argreg] + 1, val);
990 regcache->cooked_write_part (arg_regs[argreg], 0,
991 len - 4, val + 4);
992 }
993 else
994 {
995 regcache->cooked_write (arg_regs[argreg], val);
996 regcache->cooked_write_part (arg_regs[argreg] + 1, 0,
997 len - 4, val + 4);
998 }
999 }
1000 else
1001 {
1002 /* The argument is being passed by value in a pair of
1003 registers. */
1004 ULONGEST regval = extract_unsigned_integer (val, len,
1005 byte_order);
1006
1007 regcache_cooked_write_unsigned (regcache,
1008 arg_regs[argreg],
1009 regval);
1010 regcache_cooked_write_unsigned (regcache,
1011 arg_regs[argreg] + 1,
1012 regval >> 32);
1013 }
1014 }
1015 else
1016 {
1017 /* The argument is being passed by reference in a single
1018 register. */
1019 CORE_ADDR addr;
1020
1021 /* It is not necessary to adjust REFERENCES_OFFSET to
1022 8-byte aligned in some cases, in which 4-byte alignment
1023 is sufficient. For simplicity, we adjust
1024 REFERENCES_OFFSET to 8-byte aligned. */
1025 references_offset = align_up (references_offset, 8);
1026
1027 addr = sp + references_offset;
1028 write_memory (addr, val, len);
1029 references_offset += align_up (len, 4);
1030 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1031 addr);
1032 }
1033 }
1034 argreg++;
1035 }
1036 else
1037 {
1038 /* The argument is being passed on the stack. */
1039 CORE_ADDR addr;
1040
1041 /* There are six different cases of alignment, and these rules can
1042 be found in tic6x_arg_type_alignment:
1043
1044 1) 4-byte aligned if size is less than or equal to 4 byte, such
1045 as short, int, struct, union etc.
1046 2) 8-byte aligned if size is less than or equal to 8-byte, such
1047 as double, long long,
1048 3) 4-byte aligned if it is of type _Complex float, even its size
1049 is 8-byte.
1050 4) 8-byte aligned if it is of type _Complex double or _Complex
1051 long double, even its size is 16-byte. Because, the address of
1052 variable is passed as reference.
1053 5) struct and union larger than 8-byte are passed by reference, so
1054 it is 4-byte aligned.
1055 6) struct and union of size between 4 byte and 8 byte varies.
1056 alignment of struct variable is the alignment of its first field,
1057 while alignment of union variable is the max of all its fields'
1058 alignment. */
1059
1060 if (len <= 4)
1061 ; /* Default is 4-byte aligned. Nothing to be done. */
1062 else if (len <= 8)
1063 stack_offset = align_up (stack_offset,
1064 tic6x_arg_type_alignment (arg_type));
1065 else if (len == 16)
1066 {
1067 /* _Complex double or _Complex long double */
1068 if (typecode == TYPE_CODE_COMPLEX)
1069 {
1070 /* The argument is being passed by reference on stack. */
1071 CORE_ADDR addr;
1072 references_offset = align_up (references_offset, 8);
1073
1074 addr = sp + references_offset;
1075 /* Store variable on stack. */
1076 write_memory (addr, val, len);
1077
1078 references_offset += align_up (len, 4);
1079
1080 /* Pass the address of variable on stack as reference. */
1081 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1082 addr);
1083 len = 4;
1084
1085 }
1086 else
1087 internal_error (__FILE__, __LINE__,
1088 _("unexpected type %d of arg %d"),
1089 typecode, argnum);
1090 }
1091 else
1092 internal_error (__FILE__, __LINE__,
1093 _("unexpected length %d of arg %d"), len, argnum);
1094
1095 addr = sp + stack_offset;
1096 write_memory (addr, val, len);
1097 stack_offset += align_up (len, 4);
1098 }
1099 }
1100
1101 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1102
1103 /* Return adjusted stack pointer. */
1104 return sp;
1105 }
1106
1107 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
1108
1109 static int
1110 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1111 {
1112 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1113 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1114 if ((inst & 0x0f83effc) == 0x360)
1115 {
1116 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1117 INST_S_BIT (inst),
1118 INST_X_BIT (inst));
1119 if (src2 == TIC6X_RA_REGNUM)
1120 return 1;
1121 }
1122
1123 return 0;
1124 }
1125
1126 /* This is the implementation of gdbarch method get_longjmp_target. */
1127
1128 static int
1129 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1130 {
1131 struct gdbarch *gdbarch = get_frame_arch (frame);
1132 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1133 CORE_ADDR jb_addr;
1134 gdb_byte buf[4];
1135
1136 /* JMP_BUF is passed by reference in A4. */
1137 jb_addr = get_frame_register_unsigned (frame, 4);
1138
1139 /* JMP_BUF contains 13 elements of type int, and return address is stored
1140 in the last slot. */
1141 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1142 return 0;
1143
1144 *pc = extract_unsigned_integer (buf, 4, byte_order);
1145
1146 return 1;
1147 }
1148
1149 /* This is the implementation of gdbarch method
1150 return_in_first_hidden_param_p. */
1151
1152 static int
1153 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1154 struct type *type)
1155 {
1156 return 0;
1157 }
1158
1159 static struct gdbarch *
1160 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1161 {
1162 struct gdbarch *gdbarch;
1163 struct gdbarch_tdep *tdep;
1164 struct tdesc_arch_data *tdesc_data = NULL;
1165 const struct target_desc *tdesc = info.target_desc;
1166 int has_gp = 0;
1167
1168 /* Check any target description for validity. */
1169 if (tdesc_has_registers (tdesc))
1170 {
1171 const struct tdesc_feature *feature;
1172 int valid_p, i;
1173
1174 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1175
1176 if (feature == NULL)
1177 return NULL;
1178
1179 tdesc_data = tdesc_data_alloc ();
1180
1181 valid_p = 1;
1182 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1183 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1184 tic6x_register_names[i]);
1185
1186 /* CSR */
1187 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1188 tic6x_register_names[TIC6X_CSR_REGNUM]);
1189 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1190 tic6x_register_names[TIC6X_PC_REGNUM]);
1191
1192 if (!valid_p)
1193 {
1194 tdesc_data_cleanup (tdesc_data);
1195 return NULL;
1196 }
1197
1198 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1199 if (feature)
1200 {
1201 int j = 0;
1202 static const char *const gp[] =
1203 {
1204 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1205 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1206 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1207 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1208 };
1209
1210 has_gp = 1;
1211 valid_p = 1;
1212 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1213 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1214 gp[j]);
1215
1216 if (!valid_p)
1217 {
1218 tdesc_data_cleanup (tdesc_data);
1219 return NULL;
1220 }
1221 }
1222
1223 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1224 if (feature)
1225 {
1226 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1227 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1228 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1229
1230 if (!valid_p)
1231 {
1232 tdesc_data_cleanup (tdesc_data);
1233 return NULL;
1234 }
1235 }
1236
1237 }
1238
1239 /* Find a candidate among extant architectures. */
1240 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1241 arches != NULL;
1242 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1243 {
1244 tdep = gdbarch_tdep (arches->gdbarch);
1245
1246 if (has_gp != tdep->has_gp)
1247 continue;
1248
1249 if (tdep && tdep->breakpoint)
1250 return arches->gdbarch;
1251 }
1252
1253 tdep = XCNEW (struct gdbarch_tdep);
1254
1255 tdep->has_gp = has_gp;
1256 gdbarch = gdbarch_alloc (&info, tdep);
1257
1258 /* Data type sizes. */
1259 set_gdbarch_ptr_bit (gdbarch, 32);
1260 set_gdbarch_addr_bit (gdbarch, 32);
1261 set_gdbarch_short_bit (gdbarch, 16);
1262 set_gdbarch_int_bit (gdbarch, 32);
1263 set_gdbarch_long_bit (gdbarch, 32);
1264 set_gdbarch_long_long_bit (gdbarch, 64);
1265 set_gdbarch_float_bit (gdbarch, 32);
1266 set_gdbarch_double_bit (gdbarch, 64);
1267
1268 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1269 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1270
1271 /* The register set. */
1272 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1273 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1274 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1275
1276 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1277 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1278
1279 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1280
1281 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1282 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1283 tic6x_breakpoint_kind_from_pc);
1284 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1285 tic6x_sw_breakpoint_from_kind);
1286
1287 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1288 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1289
1290 /* Unwinding. */
1291 dwarf2_append_unwinders (gdbarch);
1292
1293 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1294 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1295 frame_base_set_default (gdbarch, &tic6x_frame_base);
1296
1297 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1298
1299 /* Single stepping. */
1300 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1301
1302 /* Call dummy code. */
1303 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1304
1305 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1306
1307 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1308
1309 /* Enable inferior call support. */
1310 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1311
1312 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1313
1314 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1315
1316 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1317 tic6x_return_in_first_hidden_param_p);
1318
1319 /* Hook in ABI-specific overrides, if they have been registered. */
1320 gdbarch_init_osabi (info, gdbarch);
1321
1322 if (tdesc_data)
1323 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1324
1325 return gdbarch;
1326 }
1327
1328 void
1329 _initialize_tic6x_tdep (void)
1330 {
1331 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1332 }
This page took 0.10805 seconds and 5 git commands to generate.