remove gdb_string.h
[deliverable/binutils-gdb.git] / gdb / v850-tdep.c
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "trad-frame.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
26 #include "gdbtypes.h"
27 #include "inferior.h"
28 #include <string.h>
29 #include "gdb_assert.h"
30 #include "gdbcore.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "dis-asm.h"
34 #include "osabi.h"
35 #include "elf-bfd.h"
36 #include "elf/v850.h"
37
38 enum
39 {
40 /* General purpose registers. */
41 E_R0_REGNUM,
42 E_R1_REGNUM,
43 E_R2_REGNUM,
44 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM,
46 E_R5_REGNUM,
47 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
48 E_R7_REGNUM,
49 E_R8_REGNUM,
50 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
51 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
52 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
53 E_R12_REGNUM,
54 E_R13_REGNUM,
55 E_R14_REGNUM,
56 E_R15_REGNUM,
57 E_R16_REGNUM,
58 E_R17_REGNUM,
59 E_R18_REGNUM,
60 E_R19_REGNUM,
61 E_R20_REGNUM,
62 E_R21_REGNUM,
63 E_R22_REGNUM,
64 E_R23_REGNUM,
65 E_R24_REGNUM,
66 E_R25_REGNUM,
67 E_R26_REGNUM,
68 E_R27_REGNUM,
69 E_R28_REGNUM,
70 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
71 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
72 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
73
74 /* System registers - main banks. */
75 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
76 E_R33_REGNUM,
77 E_R34_REGNUM,
78 E_R35_REGNUM,
79 E_R36_REGNUM,
80 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
81 E_R38_REGNUM,
82 E_R39_REGNUM,
83 E_R40_REGNUM,
84 E_R41_REGNUM,
85 E_R42_REGNUM,
86 E_R43_REGNUM,
87 E_R44_REGNUM,
88 E_R45_REGNUM,
89 E_R46_REGNUM,
90 E_R47_REGNUM,
91 E_R48_REGNUM,
92 E_R49_REGNUM,
93 E_R50_REGNUM,
94 E_R51_REGNUM,
95 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
96 E_R53_REGNUM,
97 E_R54_REGNUM,
98 E_R55_REGNUM,
99 E_R56_REGNUM,
100 E_R57_REGNUM,
101 E_R58_REGNUM,
102 E_R59_REGNUM,
103 E_R60_REGNUM,
104 E_R61_REGNUM,
105 E_R62_REGNUM,
106 E_R63_REGNUM,
107
108 /* PC. */
109 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
110 E_R65_REGNUM,
111 E_NUM_OF_V850_REGS,
112 E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,
113
114 /* System registers - MPV (PROT00) bank. */
115 E_R66_REGNUM = E_NUM_OF_V850_REGS,
116 E_R67_REGNUM,
117 E_R68_REGNUM,
118 E_R69_REGNUM,
119 E_R70_REGNUM,
120 E_R71_REGNUM,
121 E_R72_REGNUM,
122 E_R73_REGNUM,
123 E_R74_REGNUM,
124 E_R75_REGNUM,
125 E_R76_REGNUM,
126 E_R77_REGNUM,
127 E_R78_REGNUM,
128 E_R79_REGNUM,
129 E_R80_REGNUM,
130 E_R81_REGNUM,
131 E_R82_REGNUM,
132 E_R83_REGNUM,
133 E_R84_REGNUM,
134 E_R85_REGNUM,
135 E_R86_REGNUM,
136 E_R87_REGNUM,
137 E_R88_REGNUM,
138 E_R89_REGNUM,
139 E_R90_REGNUM,
140 E_R91_REGNUM,
141 E_R92_REGNUM,
142 E_R93_REGNUM,
143
144 /* System registers - MPU (PROT01) bank. */
145 E_R94_REGNUM,
146 E_R95_REGNUM,
147 E_R96_REGNUM,
148 E_R97_REGNUM,
149 E_R98_REGNUM,
150 E_R99_REGNUM,
151 E_R100_REGNUM,
152 E_R101_REGNUM,
153 E_R102_REGNUM,
154 E_R103_REGNUM,
155 E_R104_REGNUM,
156 E_R105_REGNUM,
157 E_R106_REGNUM,
158 E_R107_REGNUM,
159 E_R108_REGNUM,
160 E_R109_REGNUM,
161 E_R110_REGNUM,
162 E_R111_REGNUM,
163 E_R112_REGNUM,
164 E_R113_REGNUM,
165 E_R114_REGNUM,
166 E_R115_REGNUM,
167 E_R116_REGNUM,
168 E_R117_REGNUM,
169 E_R118_REGNUM,
170 E_R119_REGNUM,
171 E_R120_REGNUM,
172 E_R121_REGNUM,
173
174 /* FPU system registers. */
175 E_R122_REGNUM,
176 E_R123_REGNUM,
177 E_R124_REGNUM,
178 E_R125_REGNUM,
179 E_R126_REGNUM,
180 E_R127_REGNUM,
181 E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
182 E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
183 E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
184 E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
185 E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
186 E_R133_REGNUM,
187 E_R134_REGNUM,
188 E_R135_REGNUM,
189 E_R136_REGNUM,
190 E_R137_REGNUM,
191 E_R138_REGNUM,
192 E_R139_REGNUM,
193 E_R140_REGNUM,
194 E_R141_REGNUM,
195 E_R142_REGNUM,
196 E_R143_REGNUM,
197 E_R144_REGNUM,
198 E_R145_REGNUM,
199 E_R146_REGNUM,
200 E_R147_REGNUM,
201 E_R148_REGNUM,
202 E_R149_REGNUM,
203 E_NUM_OF_V850E2_REGS,
204
205 /* v850e3v5 system registers, selID 1 thru 7. */
206 E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
207 E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,
208
209 E_SELID_2_R0_REGNUM,
210 E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,
211
212 E_SELID_3_R0_REGNUM,
213 E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,
214
215 E_SELID_4_R0_REGNUM,
216 E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,
217
218 E_SELID_5_R0_REGNUM,
219 E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,
220
221 E_SELID_6_R0_REGNUM,
222 E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,
223
224 E_SELID_7_R0_REGNUM,
225 E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,
226
227 /* v850e3v5 vector registers. */
228 E_VR0_REGNUM,
229 E_VR31_REGNUM = E_VR0_REGNUM + 31,
230
231 E_NUM_OF_V850E3V5_REGS,
232
233 /* Total number of possible registers. */
234 E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
235 };
236
237 enum
238 {
239 v850_reg_size = 4
240 };
241
242 /* Size of return datatype which fits into all return registers. */
243 enum
244 {
245 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
246 };
247
248 /* When v850 support was added to GCC in the late nineties, the intention
249 was to follow the Green Hills ABI for v850. In fact, the authors of
250 that support at the time thought that they were doing so. As far as
251 I can tell, the calling conventions are correct, but the return value
252 conventions were not quite right. Over time, the return value code
253 in this file was modified to mostly reflect what GCC was actually
254 doing instead of to actually follow the Green Hills ABI as it did
255 when the code was first written.
256
257 Renesas defined the RH850 ABI which they use in their compiler. It
258 is similar to the original Green Hills ABI with some minor
259 differences. */
260
261 enum v850_abi
262 {
263 V850_ABI_GCC,
264 V850_ABI_RH850
265 };
266
267 /* Architecture specific data. */
268
269 struct gdbarch_tdep
270 {
271 /* Fields from the ELF header. */
272 int e_flags;
273 int e_machine;
274
275 /* Which ABI are we using? */
276 enum v850_abi abi;
277 int eight_byte_align;
278 };
279
280 struct v850_frame_cache
281 {
282 /* Base address. */
283 CORE_ADDR base;
284 LONGEST sp_offset;
285 CORE_ADDR pc;
286
287 /* Flag showing that a frame has been created in the prologue code. */
288 int uses_fp;
289
290 /* Saved registers. */
291 struct trad_frame_saved_reg *saved_regs;
292 };
293
294 /* Info gleaned from scanning a function's prologue. */
295 struct pifsr /* Info about one saved register. */
296 {
297 int offset; /* Offset from sp or fp. */
298 int cur_frameoffset; /* Current frameoffset. */
299 int reg; /* Saved register number. */
300 };
301
302 static const char *
303 v850_register_name (struct gdbarch *gdbarch, int regnum)
304 {
305 static const char *v850_reg_names[] =
306 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
309 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
310 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
311 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
312 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
313 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
314 "pc", "fp"
315 };
316 if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
317 return NULL;
318 return v850_reg_names[regnum];
319 }
320
321 static const char *
322 v850e_register_name (struct gdbarch *gdbarch, int regnum)
323 {
324 static const char *v850e_reg_names[] =
325 {
326 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
327 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
328 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
329 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
330 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
331 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
332 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
333 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
334 "pc", "fp"
335 };
336 if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
337 return NULL;
338 return v850e_reg_names[regnum];
339 }
340
341 static const char *
342 v850e2_register_name (struct gdbarch *gdbarch, int regnum)
343 {
344 static const char *v850e2_reg_names[] =
345 {
346 /* General purpose registers. */
347 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
348 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
349 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
350 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
351
352 /* System registers - main banks. */
353 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
354 "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
355 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
356 "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
357
358
359 /* PC. */
360 "pc", "",
361
362 /* System registers - MPV (PROT00) bank. */
363 "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
364 "vpecr", "vptid", "vpadr", "", "", "", "", "",
365 "", "", "", "", "", "", "", "",
366 "mca", "mcs", "mcc", "mcr",
367
368 /* System registers - MPU (PROT01) bank. */
369 "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
370 "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
371 "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
372 "dpa4l", "dpa4u", "dpa5l", "dpa5u",
373
374 /* FPU system registers. */
375 "", "", "", "", "", "", "fpsr", "fpepc",
376 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
377 "", "", "", "", "", "", "", "",
378 "", "", "", "fpspc"
379 };
380 if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
381 return NULL;
382 return v850e2_reg_names[regnum];
383 }
384
385 /* Implement the "register_name" gdbarch method for v850e3v5. */
386
387 static const char *
388 v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
389 {
390 static const char *v850e3v5_reg_names[] =
391 {
392 /* General purpose registers. */
393 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
394 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
395 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
396 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
397
398 /* selID 0, not including FPU registers. The FPU registers are
399 listed later on. */
400 "eipc", "eipsw", "fepc", "fepsw",
401 "", "psw", "" /* fpsr */, "" /* fpepc */,
402 "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
403 "sesr", "eiic", "feic", "",
404 "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
405 "", "", "", "", "eiwr", "fewr", "", "bsel",
406
407
408 /* PC. */
409 "pc", "",
410
411 /* v850e2 MPV bank. */
412 "", "", "", "", "", "", "", "",
413 "", "", "", "", "", "", "", "",
414 "", "", "", "", "", "", "", "",
415 "", "", "", "",
416
417 /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
418 32 entries for this bank. */
419 "", "", "", "", "", "", "", "",
420 "", "", "", "", "", "", "", "",
421 "", "", "", "", "", "", "", "",
422 "", "", "", "",
423
424 /* FPU system registers. These are actually in selID 0, but
425 are placed here to preserve register numbering compatibility
426 with previous architectures. */
427 "", "", "", "", "", "", "fpsr", "fpepc",
428 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
429 "", "", "", "", "", "", "", "",
430 "", "", "", "",
431
432 /* selID 1. */
433 "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
434 "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
435 "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
436 "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
437
438 /* selID 2. */
439 "htcfg0", "", "", "", "", "htctl", "mea", "asid",
440 "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
441 "tlbsch", "", "", "", "", "", "", "htscctl",
442 "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
443 "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
444
445 /* selID 3. */
446 "", "", "", "", "", "", "", "",
447 "", "", "", "", "", "", "", "",
448 "", "", "", "", "", "", "", "",
449 "", "", "", "", "", "", "", "",
450
451 /* selID 4. */
452 "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
453 "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
454 "ictagl", "ictagh", "icdatl", "icdath",
455 "dctagl", "dctagh", "dcdatl", "dcdath",
456 "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
457
458 /* selID 5. */
459 "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
460 "mca", "mcs", "mcc", "mcr", "", "", "", "",
461 "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
462 "", "", "", "", "", "", "", "",
463
464 /* selID 6. */
465 "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
466 "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
467 "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
468 "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
469
470 /* selID 7. */
471 "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
472 "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
473 "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
474 "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
475
476 /* Vector Registers */
477 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
478 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
479 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
480 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
481 };
482
483 if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
484 return NULL;
485 return v850e3v5_reg_names[regnum];
486 }
487
488 /* Returns the default type for register N. */
489
490 static struct type *
491 v850_register_type (struct gdbarch *gdbarch, int regnum)
492 {
493 if (regnum == E_PC_REGNUM)
494 return builtin_type (gdbarch)->builtin_func_ptr;
495 else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
496 return builtin_type (gdbarch)->builtin_uint64;
497 return builtin_type (gdbarch)->builtin_int32;
498 }
499
500 static int
501 v850_type_is_scalar (struct type *t)
502 {
503 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
504 && TYPE_CODE (t) != TYPE_CODE_UNION
505 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
506 }
507
508 /* Should call_function allocate stack space for a struct return? */
509
510 static int
511 v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
512 {
513 int i;
514 struct type *fld_type, *tgt_type;
515
516 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
517 {
518 if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
519 return 0;
520
521 /* Structs are never returned in registers for this ABI. */
522 return 1;
523 }
524 /* 1. The value is greater than 8 bytes -> returned by copying. */
525 if (TYPE_LENGTH (type) > 8)
526 return 1;
527
528 /* 2. The value is a single basic type -> returned in register. */
529 if (v850_type_is_scalar (type))
530 return 0;
531
532 /* The value is a structure or union with a single element and that
533 element is either a single basic type or an array of a single basic
534 type whose size is greater than or equal to 4 -> returned in register. */
535 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
536 || TYPE_CODE (type) == TYPE_CODE_UNION)
537 && TYPE_NFIELDS (type) == 1)
538 {
539 fld_type = TYPE_FIELD_TYPE (type, 0);
540 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
541 return 0;
542
543 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
544 {
545 tgt_type = TYPE_TARGET_TYPE (fld_type);
546 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
547 return 0;
548 }
549 }
550
551 /* The value is a structure whose first element is an integer or a float,
552 and which contains no arrays of more than two elements -> returned in
553 register. */
554 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
555 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
556 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
557 {
558 for (i = 1; i < TYPE_NFIELDS (type); ++i)
559 {
560 fld_type = TYPE_FIELD_TYPE (type, 0);
561 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
562 {
563 tgt_type = TYPE_TARGET_TYPE (fld_type);
564 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
565 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
566 return 1;
567 }
568 }
569 return 0;
570 }
571
572 /* The value is a union which contains at least one field which
573 would be returned in registers according to these rules ->
574 returned in register. */
575 if (TYPE_CODE (type) == TYPE_CODE_UNION)
576 {
577 for (i = 0; i < TYPE_NFIELDS (type); ++i)
578 {
579 fld_type = TYPE_FIELD_TYPE (type, 0);
580 if (!v850_use_struct_convention (gdbarch, fld_type))
581 return 0;
582 }
583 }
584
585 return 1;
586 }
587
588 /* Structure for mapping bits in register lists to register numbers. */
589
590 struct reg_list
591 {
592 long mask;
593 int regno;
594 };
595
596 /* Helper function for v850_scan_prologue to handle prepare instruction. */
597
598 static void
599 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
600 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
601 {
602 CORE_ADDR current_pc = *current_pc_ptr;
603 struct pifsr *pifsr = *pifsr_ptr;
604 long next = insn2 & 0xffff;
605 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
606 long offset = (insn & 0x3e) << 1;
607 static struct reg_list reg_table[] =
608 {
609 {0x00800, 20}, /* r20 */
610 {0x00400, 21}, /* r21 */
611 {0x00200, 22}, /* r22 */
612 {0x00100, 23}, /* r23 */
613 {0x08000, 24}, /* r24 */
614 {0x04000, 25}, /* r25 */
615 {0x02000, 26}, /* r26 */
616 {0x01000, 27}, /* r27 */
617 {0x00080, 28}, /* r28 */
618 {0x00040, 29}, /* r29 */
619 {0x10000, 30}, /* ep */
620 {0x00020, 31}, /* lp */
621 {0, 0} /* end of table */
622 };
623 int i;
624
625 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
626 current_pc += 2;
627 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
628 current_pc += 2;
629 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
630 current_pc += 4;
631
632 /* Calculate the total size of the saved registers, and add it to the
633 immediate value used to adjust SP. */
634 for (i = 0; reg_table[i].mask != 0; i++)
635 if (list12 & reg_table[i].mask)
636 offset += v850_reg_size;
637 pi->sp_offset -= offset;
638
639 /* Calculate the offsets of the registers relative to the value the SP
640 will have after the registers have been pushed and the imm5 value has
641 been subtracted from it. */
642 if (pifsr)
643 {
644 for (i = 0; reg_table[i].mask != 0; i++)
645 {
646 if (list12 & reg_table[i].mask)
647 {
648 int reg = reg_table[i].regno;
649 offset -= v850_reg_size;
650 pifsr->reg = reg;
651 pifsr->offset = offset;
652 pifsr->cur_frameoffset = pi->sp_offset;
653 pifsr++;
654 }
655 }
656 }
657
658 /* Set result parameters. */
659 *current_pc_ptr = current_pc;
660 *pifsr_ptr = pifsr;
661 }
662
663
664 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
665 The SR bit of the register list is not supported. gcc does not generate
666 this bit. */
667
668 static void
669 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
670 struct pifsr **pifsr_ptr)
671 {
672 struct pifsr *pifsr = *pifsr_ptr;
673 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
674 long offset = 0;
675 static struct reg_list pushml_reg_table[] =
676 {
677 {0x80000, E_PS_REGNUM}, /* PSW */
678 {0x40000, 1}, /* r1 */
679 {0x20000, 2}, /* r2 */
680 {0x10000, 3}, /* r3 */
681 {0x00800, 4}, /* r4 */
682 {0x00400, 5}, /* r5 */
683 {0x00200, 6}, /* r6 */
684 {0x00100, 7}, /* r7 */
685 {0x08000, 8}, /* r8 */
686 {0x04000, 9}, /* r9 */
687 {0x02000, 10}, /* r10 */
688 {0x01000, 11}, /* r11 */
689 {0x00080, 12}, /* r12 */
690 {0x00040, 13}, /* r13 */
691 {0x00020, 14}, /* r14 */
692 {0x00010, 15}, /* r15 */
693 {0, 0} /* end of table */
694 };
695 static struct reg_list pushmh_reg_table[] =
696 {
697 {0x80000, 16}, /* r16 */
698 {0x40000, 17}, /* r17 */
699 {0x20000, 18}, /* r18 */
700 {0x10000, 19}, /* r19 */
701 {0x00800, 20}, /* r20 */
702 {0x00400, 21}, /* r21 */
703 {0x00200, 22}, /* r22 */
704 {0x00100, 23}, /* r23 */
705 {0x08000, 24}, /* r24 */
706 {0x04000, 25}, /* r25 */
707 {0x02000, 26}, /* r26 */
708 {0x01000, 27}, /* r27 */
709 {0x00080, 28}, /* r28 */
710 {0x00040, 29}, /* r29 */
711 {0x00010, 30}, /* r30 */
712 {0x00020, 31}, /* r31 */
713 {0, 0} /* end of table */
714 };
715 struct reg_list *reg_table;
716 int i;
717
718 /* Is this a pushml or a pushmh? */
719 if ((insn2 & 7) == 1)
720 reg_table = pushml_reg_table;
721 else
722 reg_table = pushmh_reg_table;
723
724 /* Calculate the total size of the saved registers, and add it to the
725 immediate value used to adjust SP. */
726 for (i = 0; reg_table[i].mask != 0; i++)
727 if (list12 & reg_table[i].mask)
728 offset += v850_reg_size;
729 pi->sp_offset -= offset;
730
731 /* Calculate the offsets of the registers relative to the value the SP
732 will have after the registers have been pushed and the imm5 value is
733 subtracted from it. */
734 if (pifsr)
735 {
736 for (i = 0; reg_table[i].mask != 0; i++)
737 {
738 if (list12 & reg_table[i].mask)
739 {
740 int reg = reg_table[i].regno;
741 offset -= v850_reg_size;
742 pifsr->reg = reg;
743 pifsr->offset = offset;
744 pifsr->cur_frameoffset = pi->sp_offset;
745 pifsr++;
746 }
747 }
748 }
749
750 /* Set result parameters. */
751 *pifsr_ptr = pifsr;
752 }
753
754 /* Helper function to evaluate if register is one of the "save" registers.
755 This allows to simplify conditionals in v850_analyze_prologue a lot. */
756
757 static int
758 v850_is_save_register (int reg)
759 {
760 /* The caller-save registers are R2, R20 - R29 and R31. All other
761 registers are either special purpose (PC, SP), argument registers,
762 or just considered free for use in the caller. */
763 return reg == E_R2_REGNUM
764 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
765 || reg == E_R31_REGNUM;
766 }
767
768 /* Scan the prologue of the function that contains PC, and record what
769 we find in PI. Returns the pc after the prologue. Note that the
770 addresses saved in frame->saved_regs are just frame relative (negative
771 offsets from the frame pointer). This is because we don't know the
772 actual value of the frame pointer yet. In some circumstances, the
773 frame pointer can't be determined till after we have scanned the
774 prologue. */
775
776 static CORE_ADDR
777 v850_analyze_prologue (struct gdbarch *gdbarch,
778 CORE_ADDR func_addr, CORE_ADDR pc,
779 struct v850_frame_cache *pi, ULONGEST ctbp)
780 {
781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
782 CORE_ADDR prologue_end, current_pc;
783 struct pifsr pifsrs[E_NUM_REGS + 1];
784 struct pifsr *pifsr, *pifsr_tmp;
785 int ep_used;
786 int reg;
787 CORE_ADDR save_pc, save_end;
788 int regsave_func_p;
789 int r12_tmp;
790
791 memset (&pifsrs, 0, sizeof pifsrs);
792 pifsr = &pifsrs[0];
793
794 prologue_end = pc;
795
796 /* Now, search the prologue looking for instructions that setup fp, save
797 rp, adjust sp and such. We also record the frame offset of any saved
798 registers. */
799
800 pi->sp_offset = 0;
801 pi->uses_fp = 0;
802 ep_used = 0;
803 regsave_func_p = 0;
804 save_pc = 0;
805 save_end = 0;
806 r12_tmp = 0;
807
808 for (current_pc = func_addr; current_pc < prologue_end;)
809 {
810 int insn;
811 int insn2 = -1; /* dummy value */
812
813 insn = read_memory_integer (current_pc, 2, byte_order);
814 current_pc += 2;
815 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
816 {
817 insn2 = read_memory_integer (current_pc, 2, byte_order);
818 current_pc += 2;
819 }
820
821 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
822 { /* jarl <func>,10 */
823 long low_disp = insn2 & ~(long) 1;
824 long disp = (((((insn & 0x3f) << 16) + low_disp)
825 & ~(long) 1) ^ 0x00200000) - 0x00200000;
826
827 save_pc = current_pc;
828 save_end = prologue_end;
829 regsave_func_p = 1;
830 current_pc += disp - 4;
831 prologue_end = (current_pc
832 + (2 * 3) /* moves to/from ep */
833 + 4 /* addi <const>,sp,sp */
834 + 2 /* jmp [r10] */
835 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
836 + 20); /* slop area */
837 }
838 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
839 { /* callt <imm6> */
840 long adr = ctbp + ((insn & 0x3f) << 1);
841
842 save_pc = current_pc;
843 save_end = prologue_end;
844 regsave_func_p = 1;
845 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
846 & 0xffff);
847 prologue_end = (current_pc
848 + (2 * 3) /* prepare list2,imm5,sp/imm */
849 + 4 /* ctret */
850 + 20); /* slop area */
851 continue;
852 }
853 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
854 {
855 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
856 continue;
857 }
858 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
859 { /* ctret after processing register save. */
860 current_pc = save_pc;
861 prologue_end = save_end;
862 regsave_func_p = 0;
863 continue;
864 }
865 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
866 { /* pushml, pushmh */
867 v850_handle_pushm (insn, insn2, pi, &pifsr);
868 continue;
869 }
870 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
871 { /* jmp after processing register save. */
872 current_pc = save_pc;
873 prologue_end = save_end;
874 regsave_func_p = 0;
875 continue;
876 }
877 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
878 || (insn & 0xffe0) == 0x0060 /* jmp */
879 || (insn & 0x0780) == 0x0580) /* branch */
880 {
881 break; /* Ran into end of prologue. */
882 }
883
884 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
885 /* add <imm>,sp */
886 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
887 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
888 /* addi <imm>,sp,sp */
889 pi->sp_offset += insn2;
890 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
891 /* mov sp,fp */
892 pi->uses_fp = 1;
893 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
894 /* movhi hi(const),r0,r12 */
895 r12_tmp = insn2 << 16;
896 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
897 /* movea lo(const),r12,r12 */
898 r12_tmp += insn2;
899 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
900 /* add r12,sp */
901 pi->sp_offset += r12_tmp;
902 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
903 /* mov sp,ep */
904 ep_used = 1;
905 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
906 /* mov r1,ep */
907 ep_used = 0;
908 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
909 || (pi->uses_fp
910 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
911 && pifsr
912 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
913 {
914 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
915 pifsr->reg = reg;
916 pifsr->offset = insn2 & ~1;
917 pifsr->cur_frameoffset = pi->sp_offset;
918 pifsr++;
919 }
920 else if (ep_used
921 && ((insn & 0x0781) == 0x0501)
922 && pifsr
923 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
924 {
925 /* sst.w <reg>,<offset>[ep] */
926 pifsr->reg = reg;
927 pifsr->offset = (insn & 0x007e) << 1;
928 pifsr->cur_frameoffset = pi->sp_offset;
929 pifsr++;
930 }
931 }
932
933 /* Fix up any offsets to the final offset. If a frame pointer was created,
934 use it instead of the stack pointer. */
935 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
936 {
937 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
938 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
939 }
940
941 return current_pc;
942 }
943
944 /* Return the address of the first code past the prologue of the function. */
945
946 static CORE_ADDR
947 v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
948 {
949 CORE_ADDR func_addr, func_end;
950
951 /* See what the symbol table says. */
952
953 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
954 {
955 struct symtab_and_line sal;
956
957 sal = find_pc_line (func_addr, 0);
958 if (sal.line != 0 && sal.end < func_end)
959 return sal.end;
960
961 /* Either there's no line info, or the line after the prologue is after
962 the end of the function. In this case, there probably isn't a
963 prologue. */
964 return pc;
965 }
966
967 /* We can't find the start of this function, so there's nothing we
968 can do. */
969 return pc;
970 }
971
972 /* Return 1 if the data structure has any 8-byte fields that'll require
973 the entire data structure to be aligned. Otherwise, return 0. */
974
975 static int
976 v850_eight_byte_align_p (struct type *type)
977 {
978 type = check_typedef (type);
979
980 if (v850_type_is_scalar (type))
981 return (TYPE_LENGTH (type) == 8);
982 else
983 {
984 int i;
985
986 for (i = 0; i < TYPE_NFIELDS (type); i++)
987 {
988 if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type, i)))
989 return 1;
990 }
991 }
992 return 0;
993 }
994
995 static CORE_ADDR
996 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
997 {
998 return sp & ~3;
999 }
1000
1001 /* Setup arguments and LP for a call to the target. First four args
1002 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
1003 are passed by reference. 64 bit quantities (doubles and long longs)
1004 may be split between the regs and the stack. When calling a function
1005 that returns a struct, a pointer to the struct is passed in as a secret
1006 first argument (always in R6).
1007
1008 Stack space for the args has NOT been allocated: that job is up to us. */
1009
1010 static CORE_ADDR
1011 v850_push_dummy_call (struct gdbarch *gdbarch,
1012 struct value *function,
1013 struct regcache *regcache,
1014 CORE_ADDR bp_addr,
1015 int nargs,
1016 struct value **args,
1017 CORE_ADDR sp,
1018 int struct_return,
1019 CORE_ADDR struct_addr)
1020 {
1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1022 int argreg;
1023 int argnum;
1024 int len = 0;
1025 int stack_offset;
1026
1027 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
1028 stack_offset = 0;
1029 else
1030 /* The offset onto the stack at which we will start copying parameters
1031 (after the registers are used up) begins at 16 rather than at zero.
1032 That's how the ABI is defined, though there's no indication that these
1033 16 bytes are used for anything, not even for saving incoming
1034 argument registers. */
1035 stack_offset = 16;
1036
1037 /* Now make space on the stack for the args. */
1038 for (argnum = 0; argnum < nargs; argnum++)
1039 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
1040 sp -= len + stack_offset;
1041
1042 argreg = E_ARG0_REGNUM;
1043 /* The struct_return pointer occupies the first parameter register. */
1044 if (struct_return)
1045 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1046
1047 /* Now load as many as possible of the first arguments into
1048 registers, and push the rest onto the stack. There are 16 bytes
1049 in four registers available. Loop thru args from first to last. */
1050 for (argnum = 0; argnum < nargs; argnum++)
1051 {
1052 int len;
1053 gdb_byte *val;
1054 gdb_byte valbuf[v850_reg_size];
1055
1056 if (!v850_type_is_scalar (value_type (*args))
1057 && gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC
1058 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
1059 {
1060 store_unsigned_integer (valbuf, 4, byte_order,
1061 value_address (*args));
1062 len = 4;
1063 val = valbuf;
1064 }
1065 else
1066 {
1067 len = TYPE_LENGTH (value_type (*args));
1068 val = (gdb_byte *) value_contents (*args);
1069 }
1070
1071 if (gdbarch_tdep (gdbarch)->eight_byte_align
1072 && v850_eight_byte_align_p (value_type (*args)))
1073 {
1074 if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
1075 argreg++;
1076 else if (stack_offset & 0x4)
1077 stack_offset += 4;
1078 }
1079
1080 while (len > 0)
1081 if (argreg <= E_ARGLAST_REGNUM)
1082 {
1083 CORE_ADDR regval;
1084
1085 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
1086 regcache_cooked_write_unsigned (regcache, argreg, regval);
1087
1088 len -= v850_reg_size;
1089 val += v850_reg_size;
1090 argreg++;
1091 }
1092 else
1093 {
1094 write_memory (sp + stack_offset, val, 4);
1095
1096 len -= 4;
1097 val += 4;
1098 stack_offset += 4;
1099 }
1100 args++;
1101 }
1102
1103 /* Store return address. */
1104 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
1105
1106 /* Update stack pointer. */
1107 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1108
1109 return sp;
1110 }
1111
1112 static void
1113 v850_extract_return_value (struct type *type, struct regcache *regcache,
1114 gdb_byte *valbuf)
1115 {
1116 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1118 int len = TYPE_LENGTH (type);
1119
1120 if (len <= v850_reg_size)
1121 {
1122 ULONGEST val;
1123
1124 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
1125 store_unsigned_integer (valbuf, len, byte_order, val);
1126 }
1127 else if (len <= 2 * v850_reg_size)
1128 {
1129 int i, regnum = E_V0_REGNUM;
1130 gdb_byte buf[v850_reg_size];
1131 for (i = 0; len > 0; i += 4, len -= 4)
1132 {
1133 regcache_raw_read (regcache, regnum++, buf);
1134 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
1135 }
1136 }
1137 }
1138
1139 static void
1140 v850_store_return_value (struct type *type, struct regcache *regcache,
1141 const gdb_byte *valbuf)
1142 {
1143 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1145 int len = TYPE_LENGTH (type);
1146
1147 if (len <= v850_reg_size)
1148 regcache_cooked_write_unsigned
1149 (regcache, E_V0_REGNUM,
1150 extract_unsigned_integer (valbuf, len, byte_order));
1151 else if (len <= 2 * v850_reg_size)
1152 {
1153 int i, regnum = E_V0_REGNUM;
1154 for (i = 0; i < len; i += 4)
1155 regcache_raw_write (regcache, regnum++, valbuf + i);
1156 }
1157 }
1158
1159 static enum return_value_convention
1160 v850_return_value (struct gdbarch *gdbarch, struct value *function,
1161 struct type *type, struct regcache *regcache,
1162 gdb_byte *readbuf, const gdb_byte *writebuf)
1163 {
1164 if (v850_use_struct_convention (gdbarch, type))
1165 return RETURN_VALUE_STRUCT_CONVENTION;
1166 if (writebuf)
1167 v850_store_return_value (type, regcache, writebuf);
1168 else if (readbuf)
1169 v850_extract_return_value (type, regcache, readbuf);
1170 return RETURN_VALUE_REGISTER_CONVENTION;
1171 }
1172
1173 static const unsigned char *
1174 v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1175 int *lenptr)
1176 {
1177 static unsigned char breakpoint[] = { 0x85, 0x05 };
1178
1179 *lenptr = sizeof (breakpoint);
1180 return breakpoint;
1181 }
1182
1183 /* Implement software breakpoints by using the dbtrap instruction.
1184 Older architectures had no such instruction. For those, an
1185 unconditional branch to self instruction is used. */
1186
1187 static const unsigned char *
1188 v850_dbtrap_breakpoint_from_pc (struct gdbarch *gdbarch,
1189 CORE_ADDR *pcptr, int *lenptr)
1190 {
1191 static unsigned char breakpoint[] = { 0x40, 0xf8 };
1192
1193 *lenptr = sizeof (breakpoint);
1194 return breakpoint;
1195 }
1196
1197 static struct v850_frame_cache *
1198 v850_alloc_frame_cache (struct frame_info *this_frame)
1199 {
1200 struct v850_frame_cache *cache;
1201
1202 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
1203 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1204
1205 /* Base address. */
1206 cache->base = 0;
1207 cache->sp_offset = 0;
1208 cache->pc = 0;
1209
1210 /* Frameless until proven otherwise. */
1211 cache->uses_fp = 0;
1212
1213 return cache;
1214 }
1215
1216 static struct v850_frame_cache *
1217 v850_frame_cache (struct frame_info *this_frame, void **this_cache)
1218 {
1219 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1220 struct v850_frame_cache *cache;
1221 CORE_ADDR current_pc;
1222 int i;
1223
1224 if (*this_cache)
1225 return *this_cache;
1226
1227 cache = v850_alloc_frame_cache (this_frame);
1228 *this_cache = cache;
1229
1230 /* In principle, for normal frames, fp holds the frame pointer,
1231 which holds the base address for the current stack frame.
1232 However, for functions that don't need it, the frame pointer is
1233 optional. For these "frameless" functions the frame pointer is
1234 actually the frame pointer of the calling frame. */
1235 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
1236 if (cache->base == 0)
1237 return cache;
1238
1239 cache->pc = get_frame_func (this_frame);
1240 current_pc = get_frame_pc (this_frame);
1241 if (cache->pc != 0)
1242 {
1243 ULONGEST ctbp;
1244 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
1245 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
1246 }
1247
1248 if (!cache->uses_fp)
1249 {
1250 /* We didn't find a valid frame, which means that CACHE->base
1251 currently holds the frame pointer for our calling frame. If
1252 we're at the start of a function, or somewhere half-way its
1253 prologue, the function's frame probably hasn't been fully
1254 setup yet. Try to reconstruct the base address for the stack
1255 frame by looking at the stack pointer. For truly "frameless"
1256 functions this might work too. */
1257 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1258 }
1259
1260 /* Now that we have the base address for the stack frame we can
1261 calculate the value of sp in the calling frame. */
1262 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
1263 cache->base - cache->sp_offset);
1264
1265 /* Adjust all the saved registers such that they contain addresses
1266 instead of offsets. */
1267 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1268 if (trad_frame_addr_p (cache->saved_regs, i))
1269 cache->saved_regs[i].addr += cache->base;
1270
1271 /* The call instruction moves the caller's PC in the callee's LP.
1272 Since this is an unwind, do the reverse. Copy the location of LP
1273 into PC (the address / regnum) so that a request for PC will be
1274 converted into a request for the LP. */
1275
1276 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
1277
1278 return cache;
1279 }
1280
1281
1282 static struct value *
1283 v850_frame_prev_register (struct frame_info *this_frame,
1284 void **this_cache, int regnum)
1285 {
1286 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1287
1288 gdb_assert (regnum >= 0);
1289
1290 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1291 }
1292
1293 static void
1294 v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
1295 struct frame_id *this_id)
1296 {
1297 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1298
1299 /* This marks the outermost frame. */
1300 if (cache->base == 0)
1301 return;
1302
1303 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
1304 }
1305
1306 static const struct frame_unwind v850_frame_unwind = {
1307 NORMAL_FRAME,
1308 default_frame_unwind_stop_reason,
1309 v850_frame_this_id,
1310 v850_frame_prev_register,
1311 NULL,
1312 default_frame_sniffer
1313 };
1314
1315 static CORE_ADDR
1316 v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1317 {
1318 return frame_unwind_register_unsigned (next_frame,
1319 gdbarch_sp_regnum (gdbarch));
1320 }
1321
1322 static CORE_ADDR
1323 v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1324 {
1325 return frame_unwind_register_unsigned (next_frame,
1326 gdbarch_pc_regnum (gdbarch));
1327 }
1328
1329 static struct frame_id
1330 v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1331 {
1332 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1333 gdbarch_sp_regnum (gdbarch));
1334 return frame_id_build (sp, get_frame_pc (this_frame));
1335 }
1336
1337 static CORE_ADDR
1338 v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
1339 {
1340 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1341
1342 return cache->base;
1343 }
1344
1345 static const struct frame_base v850_frame_base = {
1346 &v850_frame_unwind,
1347 v850_frame_base_address,
1348 v850_frame_base_address,
1349 v850_frame_base_address
1350 };
1351
1352 static struct gdbarch *
1353 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1354 {
1355 struct gdbarch *gdbarch;
1356 struct gdbarch_tdep *tdep;
1357 int e_flags, e_machine;
1358
1359 /* Extract the elf_flags if available. */
1360 if (info.abfd != NULL
1361 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1362 {
1363 e_flags = elf_elfheader (info.abfd)->e_flags;
1364 e_machine = elf_elfheader (info.abfd)->e_machine;
1365 }
1366 else
1367 {
1368 e_flags = 0;
1369 e_machine = 0;
1370 }
1371
1372
1373 /* Try to find the architecture in the list of already defined
1374 architectures. */
1375 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1376 arches != NULL;
1377 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1378 {
1379 if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags
1380 || gdbarch_tdep (arches->gdbarch)->e_machine != e_machine)
1381 continue;
1382
1383 return arches->gdbarch;
1384 }
1385 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1386 tdep->e_flags = e_flags;
1387 tdep->e_machine = e_machine;
1388
1389 switch (tdep->e_machine)
1390 {
1391 case EM_V800:
1392 tdep->abi = V850_ABI_RH850;
1393 break;
1394 default:
1395 tdep->abi = V850_ABI_GCC;
1396 break;
1397 }
1398
1399 tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
1400 gdbarch = gdbarch_alloc (&info, tdep);
1401
1402 switch (info.bfd_arch_info->mach)
1403 {
1404 case bfd_mach_v850:
1405 set_gdbarch_register_name (gdbarch, v850_register_name);
1406 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
1407 break;
1408 case bfd_mach_v850e:
1409 case bfd_mach_v850e1:
1410 set_gdbarch_register_name (gdbarch, v850e_register_name);
1411 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
1412 break;
1413 case bfd_mach_v850e2:
1414 case bfd_mach_v850e2v3:
1415 set_gdbarch_register_name (gdbarch, v850e2_register_name);
1416 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1417 break;
1418 case bfd_mach_v850e3v5:
1419 set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
1420 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
1421 break;
1422 }
1423
1424 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1425 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1426 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1427 set_gdbarch_fp0_regnum (gdbarch, -1);
1428
1429 set_gdbarch_register_type (gdbarch, v850_register_type);
1430
1431 set_gdbarch_char_signed (gdbarch, 1);
1432 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1433 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1434 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1435 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1436
1437 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1438 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1439 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1440
1441 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1442 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1443
1444 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1445 switch (info.bfd_arch_info->mach)
1446 {
1447 case bfd_mach_v850e2:
1448 case bfd_mach_v850e2v3:
1449 case bfd_mach_v850e3v5:
1450 set_gdbarch_breakpoint_from_pc (gdbarch, v850_dbtrap_breakpoint_from_pc);
1451 break;
1452 default:
1453 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1454 break;
1455 }
1456
1457 set_gdbarch_return_value (gdbarch, v850_return_value);
1458 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1459 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1460
1461 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1462
1463 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1464 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1465 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1466 set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
1467 frame_base_set_default (gdbarch, &v850_frame_base);
1468
1469 /* Hook in ABI-specific overrides, if they have been registered. */
1470 gdbarch_init_osabi (info, gdbarch);
1471
1472 dwarf2_append_unwinders (gdbarch);
1473 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
1474
1475 return gdbarch;
1476 }
1477
1478 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1479
1480 void
1481 _initialize_v850_tdep (void)
1482 {
1483 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1484 register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);
1485 }
This page took 0.087474 seconds and 5 git commands to generate.