Updated copyright notices for most files.
[deliverable/binutils-gdb.git] / gdb / v850-tdep.c
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
3 Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
4 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "trad-frame.h"
25 #include "frame-unwind.h"
26 #include "dwarf2-frame.h"
27 #include "gdbtypes.h"
28 #include "inferior.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "gdbcore.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "dis-asm.h"
35 #include "osabi.h"
36
37 enum
38 {
39 E_R0_REGNUM,
40 E_R1_REGNUM,
41 E_R2_REGNUM,
42 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM,
44 E_R5_REGNUM,
45 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
46 E_R7_REGNUM,
47 E_R8_REGNUM,
48 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
49 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
50 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
51 E_R12_REGNUM,
52 E_R13_REGNUM,
53 E_R14_REGNUM,
54 E_R15_REGNUM,
55 E_R16_REGNUM,
56 E_R17_REGNUM,
57 E_R18_REGNUM,
58 E_R19_REGNUM,
59 E_R20_REGNUM,
60 E_R21_REGNUM,
61 E_R22_REGNUM,
62 E_R23_REGNUM,
63 E_R24_REGNUM,
64 E_R25_REGNUM,
65 E_R26_REGNUM,
66 E_R27_REGNUM,
67 E_R28_REGNUM,
68 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
69 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
70 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
71 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
72 E_R33_REGNUM,
73 E_R34_REGNUM,
74 E_R35_REGNUM,
75 E_R36_REGNUM,
76 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
77 E_R38_REGNUM,
78 E_R39_REGNUM,
79 E_R40_REGNUM,
80 E_R41_REGNUM,
81 E_R42_REGNUM,
82 E_R43_REGNUM,
83 E_R44_REGNUM,
84 E_R45_REGNUM,
85 E_R46_REGNUM,
86 E_R47_REGNUM,
87 E_R48_REGNUM,
88 E_R49_REGNUM,
89 E_R50_REGNUM,
90 E_R51_REGNUM,
91 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
92 E_R53_REGNUM,
93 E_R54_REGNUM,
94 E_R55_REGNUM,
95 E_R56_REGNUM,
96 E_R57_REGNUM,
97 E_R58_REGNUM,
98 E_R59_REGNUM,
99 E_R60_REGNUM,
100 E_R61_REGNUM,
101 E_R62_REGNUM,
102 E_R63_REGNUM,
103 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
104 E_R65_REGNUM,
105 E_NUM_REGS
106 };
107
108 enum
109 {
110 v850_reg_size = 4
111 };
112
113 /* Size of return datatype which fits into all return registers. */
114 enum
115 {
116 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
117 };
118
119 struct v850_frame_cache
120 {
121 /* Base address. */
122 CORE_ADDR base;
123 LONGEST sp_offset;
124 CORE_ADDR pc;
125
126 /* Flag showing that a frame has been created in the prologue code. */
127 int uses_fp;
128
129 /* Saved registers. */
130 struct trad_frame_saved_reg *saved_regs;
131 };
132
133 /* Info gleaned from scanning a function's prologue. */
134 struct pifsr /* Info about one saved register. */
135 {
136 int offset; /* Offset from sp or fp. */
137 int cur_frameoffset; /* Current frameoffset. */
138 int reg; /* Saved register number. */
139 };
140
141 static const char *
142 v850_register_name (struct gdbarch *gdbarch, int regnum)
143 {
144 static const char *v850_reg_names[] =
145 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
146 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
147 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
148 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
149 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
150 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
151 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
152 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
153 "pc", "fp"
154 };
155 if (regnum < 0 || regnum >= E_NUM_REGS)
156 return NULL;
157 return v850_reg_names[regnum];
158 }
159
160 static const char *
161 v850e_register_name (struct gdbarch *gdbarch, int regnum)
162 {
163 static const char *v850e_reg_names[] =
164 {
165 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
166 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
167 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
168 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
169 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
170 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
171 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
172 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
173 "pc", "fp"
174 };
175 if (regnum < 0 || regnum >= E_NUM_REGS)
176 return NULL;
177 return v850e_reg_names[regnum];
178 }
179
180 /* Returns the default type for register N. */
181
182 static struct type *
183 v850_register_type (struct gdbarch *gdbarch, int regnum)
184 {
185 if (regnum == E_PC_REGNUM)
186 return builtin_type (gdbarch)->builtin_func_ptr;
187 return builtin_type_int32;
188 }
189
190 static int
191 v850_type_is_scalar (struct type *t)
192 {
193 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
194 && TYPE_CODE (t) != TYPE_CODE_UNION
195 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
196 }
197
198 /* Should call_function allocate stack space for a struct return? */
199 static int
200 v850_use_struct_convention (struct type *type)
201 {
202 int i;
203 struct type *fld_type, *tgt_type;
204
205 /* 1. The value is greater than 8 bytes -> returned by copying. */
206 if (TYPE_LENGTH (type) > 8)
207 return 1;
208
209 /* 2. The value is a single basic type -> returned in register. */
210 if (v850_type_is_scalar (type))
211 return 0;
212
213 /* The value is a structure or union with a single element and that
214 element is either a single basic type or an array of a single basic
215 type whose size is greater than or equal to 4 -> returned in register. */
216 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
217 || TYPE_CODE (type) == TYPE_CODE_UNION)
218 && TYPE_NFIELDS (type) == 1)
219 {
220 fld_type = TYPE_FIELD_TYPE (type, 0);
221 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
222 return 0;
223
224 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
225 {
226 tgt_type = TYPE_TARGET_TYPE (fld_type);
227 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
228 return 0;
229 }
230 }
231
232 /* The value is a structure whose first element is an integer or a float,
233 and which contains no arrays of more than two elements -> returned in
234 register. */
235 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
236 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
237 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
238 {
239 for (i = 1; i < TYPE_NFIELDS (type); ++i)
240 {
241 fld_type = TYPE_FIELD_TYPE (type, 0);
242 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
243 {
244 tgt_type = TYPE_TARGET_TYPE (fld_type);
245 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
246 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
247 return 1;
248 }
249 }
250 return 0;
251 }
252
253 /* The value is a union which contains at least one field which would be
254 returned in registers according to these rules -> returned in register. */
255 if (TYPE_CODE (type) == TYPE_CODE_UNION)
256 {
257 for (i = 0; i < TYPE_NFIELDS (type); ++i)
258 {
259 fld_type = TYPE_FIELD_TYPE (type, 0);
260 if (!v850_use_struct_convention (fld_type))
261 return 0;
262 }
263 }
264
265 return 1;
266 }
267
268 /* Structure for mapping bits in register lists to register numbers. */
269 struct reg_list
270 {
271 long mask;
272 int regno;
273 };
274
275 /* Helper function for v850_scan_prologue to handle prepare instruction. */
276
277 static void
278 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
279 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
280 {
281 CORE_ADDR current_pc = *current_pc_ptr;
282 struct pifsr *pifsr = *pifsr_ptr;
283 long next = insn2 & 0xffff;
284 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
285 long offset = (insn & 0x3e) << 1;
286 static struct reg_list reg_table[] =
287 {
288 {0x00800, 20}, /* r20 */
289 {0x00400, 21}, /* r21 */
290 {0x00200, 22}, /* r22 */
291 {0x00100, 23}, /* r23 */
292 {0x08000, 24}, /* r24 */
293 {0x04000, 25}, /* r25 */
294 {0x02000, 26}, /* r26 */
295 {0x01000, 27}, /* r27 */
296 {0x00080, 28}, /* r28 */
297 {0x00040, 29}, /* r29 */
298 {0x10000, 30}, /* ep */
299 {0x00020, 31}, /* lp */
300 {0, 0} /* end of table */
301 };
302 int i;
303
304 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
305 current_pc += 2;
306 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
307 current_pc += 2;
308 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
309 current_pc += 4;
310
311 /* Calculate the total size of the saved registers, and add it to the
312 immediate value used to adjust SP. */
313 for (i = 0; reg_table[i].mask != 0; i++)
314 if (list12 & reg_table[i].mask)
315 offset += v850_reg_size;
316 pi->sp_offset -= offset;
317
318 /* Calculate the offsets of the registers relative to the value the SP
319 will have after the registers have been pushed and the imm5 value has
320 been subtracted from it. */
321 if (pifsr)
322 {
323 for (i = 0; reg_table[i].mask != 0; i++)
324 {
325 if (list12 & reg_table[i].mask)
326 {
327 int reg = reg_table[i].regno;
328 offset -= v850_reg_size;
329 pifsr->reg = reg;
330 pifsr->offset = offset;
331 pifsr->cur_frameoffset = pi->sp_offset;
332 pifsr++;
333 }
334 }
335 }
336
337 /* Set result parameters. */
338 *current_pc_ptr = current_pc;
339 *pifsr_ptr = pifsr;
340 }
341
342
343 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
344 The SR bit of the register list is not supported. gcc does not generate
345 this bit. */
346
347 static void
348 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
349 struct pifsr **pifsr_ptr)
350 {
351 struct pifsr *pifsr = *pifsr_ptr;
352 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
353 long offset = 0;
354 static struct reg_list pushml_reg_table[] =
355 {
356 {0x80000, E_PS_REGNUM}, /* PSW */
357 {0x40000, 1}, /* r1 */
358 {0x20000, 2}, /* r2 */
359 {0x10000, 3}, /* r3 */
360 {0x00800, 4}, /* r4 */
361 {0x00400, 5}, /* r5 */
362 {0x00200, 6}, /* r6 */
363 {0x00100, 7}, /* r7 */
364 {0x08000, 8}, /* r8 */
365 {0x04000, 9}, /* r9 */
366 {0x02000, 10}, /* r10 */
367 {0x01000, 11}, /* r11 */
368 {0x00080, 12}, /* r12 */
369 {0x00040, 13}, /* r13 */
370 {0x00020, 14}, /* r14 */
371 {0x00010, 15}, /* r15 */
372 {0, 0} /* end of table */
373 };
374 static struct reg_list pushmh_reg_table[] =
375 {
376 {0x80000, 16}, /* r16 */
377 {0x40000, 17}, /* r17 */
378 {0x20000, 18}, /* r18 */
379 {0x10000, 19}, /* r19 */
380 {0x00800, 20}, /* r20 */
381 {0x00400, 21}, /* r21 */
382 {0x00200, 22}, /* r22 */
383 {0x00100, 23}, /* r23 */
384 {0x08000, 24}, /* r24 */
385 {0x04000, 25}, /* r25 */
386 {0x02000, 26}, /* r26 */
387 {0x01000, 27}, /* r27 */
388 {0x00080, 28}, /* r28 */
389 {0x00040, 29}, /* r29 */
390 {0x00010, 30}, /* r30 */
391 {0x00020, 31}, /* r31 */
392 {0, 0} /* end of table */
393 };
394 struct reg_list *reg_table;
395 int i;
396
397 /* Is this a pushml or a pushmh? */
398 if ((insn2 & 7) == 1)
399 reg_table = pushml_reg_table;
400 else
401 reg_table = pushmh_reg_table;
402
403 /* Calculate the total size of the saved registers, and add it it to the
404 immediate value used to adjust SP. */
405 for (i = 0; reg_table[i].mask != 0; i++)
406 if (list12 & reg_table[i].mask)
407 offset += v850_reg_size;
408 pi->sp_offset -= offset;
409
410 /* Calculate the offsets of the registers relative to the value the SP
411 will have after the registers have been pushed and the imm5 value is
412 subtracted from it. */
413 if (pifsr)
414 {
415 for (i = 0; reg_table[i].mask != 0; i++)
416 {
417 if (list12 & reg_table[i].mask)
418 {
419 int reg = reg_table[i].regno;
420 offset -= v850_reg_size;
421 pifsr->reg = reg;
422 pifsr->offset = offset;
423 pifsr->cur_frameoffset = pi->sp_offset;
424 pifsr++;
425 }
426 }
427 }
428
429 /* Set result parameters. */
430 *pifsr_ptr = pifsr;
431 }
432
433 /* Helper function to evaluate if register is one of the "save" registers.
434 This allows to simplify conditionals in v850_analyze_prologue a lot. */
435
436 static int
437 v850_is_save_register (int reg)
438 {
439 /* The caller-save registers are R2, R20 - R29 and R31. All other
440 registers are either special purpose (PC, SP), argument registers,
441 or just considered free for use in the caller. */
442 return reg == E_R2_REGNUM
443 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
444 || reg == E_R31_REGNUM;
445 }
446
447 /* Scan the prologue of the function that contains PC, and record what
448 we find in PI. Returns the pc after the prologue. Note that the
449 addresses saved in frame->saved_regs are just frame relative (negative
450 offsets from the frame pointer). This is because we don't know the
451 actual value of the frame pointer yet. In some circumstances, the
452 frame pointer can't be determined till after we have scanned the
453 prologue. */
454
455 static CORE_ADDR
456 v850_analyze_prologue (CORE_ADDR func_addr, CORE_ADDR pc,
457 struct v850_frame_cache *pi, ULONGEST ctbp)
458 {
459 CORE_ADDR prologue_end, current_pc;
460 struct pifsr pifsrs[E_NUM_REGS + 1];
461 struct pifsr *pifsr, *pifsr_tmp;
462 int fp_used;
463 int ep_used;
464 int reg;
465 CORE_ADDR save_pc, save_end;
466 int regsave_func_p;
467 int r12_tmp;
468
469 memset (&pifsrs, 0, sizeof pifsrs);
470 pifsr = &pifsrs[0];
471
472 prologue_end = pc;
473
474 /* Now, search the prologue looking for instructions that setup fp, save
475 rp, adjust sp and such. We also record the frame offset of any saved
476 registers. */
477
478 pi->sp_offset = 0;
479 pi->uses_fp = 0;
480 ep_used = 0;
481 regsave_func_p = 0;
482 save_pc = 0;
483 save_end = 0;
484 r12_tmp = 0;
485
486 for (current_pc = func_addr; current_pc < prologue_end;)
487 {
488 int insn;
489 int insn2 = -1; /* dummy value */
490
491 insn = read_memory_integer (current_pc, 2);
492 current_pc += 2;
493 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
494 {
495 insn2 = read_memory_integer (current_pc, 2);
496 current_pc += 2;
497 }
498
499 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
500 { /* jarl <func>,10 */
501 long low_disp = insn2 & ~(long) 1;
502 long disp = (((((insn & 0x3f) << 16) + low_disp)
503 & ~(long) 1) ^ 0x00200000) - 0x00200000;
504
505 save_pc = current_pc;
506 save_end = prologue_end;
507 regsave_func_p = 1;
508 current_pc += disp - 4;
509 prologue_end = (current_pc
510 + (2 * 3) /* moves to/from ep */
511 + 4 /* addi <const>,sp,sp */
512 + 2 /* jmp [r10] */
513 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
514 + 20); /* slop area */
515 }
516 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
517 { /* callt <imm6> */
518 long adr = ctbp + ((insn & 0x3f) << 1);
519
520 save_pc = current_pc;
521 save_end = prologue_end;
522 regsave_func_p = 1;
523 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
524 prologue_end = (current_pc
525 + (2 * 3) /* prepare list2,imm5,sp/imm */
526 + 4 /* ctret */
527 + 20); /* slop area */
528 continue;
529 }
530 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
531 {
532 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
533 continue;
534 }
535 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
536 { /* ctret after processing register save. */
537 current_pc = save_pc;
538 prologue_end = save_end;
539 regsave_func_p = 0;
540 continue;
541 }
542 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
543 { /* pushml, pushmh */
544 v850_handle_pushm (insn, insn2, pi, &pifsr);
545 continue;
546 }
547 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
548 { /* jmp after processing register save. */
549 current_pc = save_pc;
550 prologue_end = save_end;
551 regsave_func_p = 0;
552 continue;
553 }
554 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
555 || (insn & 0xffe0) == 0x0060 /* jmp */
556 || (insn & 0x0780) == 0x0580) /* branch */
557 {
558 break; /* Ran into end of prologue */
559 }
560
561 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
562 /* add <imm>,sp */
563 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
564 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
565 /* addi <imm>,sp,sp */
566 pi->sp_offset += insn2;
567 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
568 /* mov sp,fp */
569 pi->uses_fp = 1;
570 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
571 /* movhi hi(const),r0,r12 */
572 r12_tmp = insn2 << 16;
573 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
574 /* movea lo(const),r12,r12 */
575 r12_tmp += insn2;
576 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
577 /* add r12,sp */
578 pi->sp_offset += r12_tmp;
579 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
580 /* mov sp,ep */
581 ep_used = 1;
582 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
583 /* mov r1,ep */
584 ep_used = 0;
585 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
586 || (pi->uses_fp
587 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
588 && pifsr
589 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
590 {
591 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
592 pifsr->reg = reg;
593 pifsr->offset = insn2 & ~1;
594 pifsr->cur_frameoffset = pi->sp_offset;
595 pifsr++;
596 }
597 else if (ep_used
598 && ((insn & 0x0781) == 0x0501)
599 && pifsr
600 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
601 {
602 /* sst.w <reg>,<offset>[ep] */
603 pifsr->reg = reg;
604 pifsr->offset = (insn & 0x007e) << 1;
605 pifsr->cur_frameoffset = pi->sp_offset;
606 pifsr++;
607 }
608 }
609
610 /* Fix up any offsets to the final offset. If a frame pointer was created,
611 use it instead of the stack pointer. */
612 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
613 {
614 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
615 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
616 }
617
618 return current_pc;
619 }
620
621 /* Return the address of the first code past the prologue of the function. */
622
623 static CORE_ADDR
624 v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
625 {
626 CORE_ADDR func_addr, func_end;
627
628 /* See what the symbol table says */
629
630 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
631 {
632 struct symtab_and_line sal;
633
634 sal = find_pc_line (func_addr, 0);
635 if (sal.line != 0 && sal.end < func_end)
636 return sal.end;
637
638 /* Either there's no line info, or the line after the prologue is after
639 the end of the function. In this case, there probably isn't a
640 prologue. */
641 return pc;
642 }
643
644 /* We can't find the start of this function, so there's nothing we can do. */
645 return pc;
646 }
647
648 static CORE_ADDR
649 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
650 {
651 return sp & ~3;
652 }
653
654 /* Setup arguments and LP for a call to the target. First four args
655 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
656 are passed by reference. 64 bit quantities (doubles and long longs)
657 may be split between the regs and the stack. When calling a function
658 that returns a struct, a pointer to the struct is passed in as a secret
659 first argument (always in R6).
660
661 Stack space for the args has NOT been allocated: that job is up to us. */
662
663 static CORE_ADDR
664 v850_push_dummy_call (struct gdbarch *gdbarch,
665 struct value *function,
666 struct regcache *regcache,
667 CORE_ADDR bp_addr,
668 int nargs,
669 struct value **args,
670 CORE_ADDR sp,
671 int struct_return,
672 CORE_ADDR struct_addr)
673 {
674 int argreg;
675 int argnum;
676 int len = 0;
677 int stack_offset;
678
679 /* The offset onto the stack at which we will start copying parameters
680 (after the registers are used up) begins at 16 rather than at zero.
681 That's how the ABI is defined, though there's no indication that these
682 16 bytes are used for anything, not even for saving incoming
683 argument registers. */
684 stack_offset = 16;
685
686 /* Now make space on the stack for the args. */
687 for (argnum = 0; argnum < nargs; argnum++)
688 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
689 sp -= len + stack_offset;
690
691 argreg = E_ARG0_REGNUM;
692 /* The struct_return pointer occupies the first parameter register. */
693 if (struct_return)
694 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
695
696 /* Now load as many as possible of the first arguments into
697 registers, and push the rest onto the stack. There are 16 bytes
698 in four registers available. Loop thru args from first to last. */
699 for (argnum = 0; argnum < nargs; argnum++)
700 {
701 int len;
702 gdb_byte *val;
703 gdb_byte valbuf[v850_reg_size];
704
705 if (!v850_type_is_scalar (value_type (*args))
706 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
707 {
708 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (*args));
709 len = 4;
710 val = valbuf;
711 }
712 else
713 {
714 len = TYPE_LENGTH (value_type (*args));
715 val = (gdb_byte *) value_contents (*args);
716 }
717
718 while (len > 0)
719 if (argreg <= E_ARGLAST_REGNUM)
720 {
721 CORE_ADDR regval;
722
723 regval = extract_unsigned_integer (val, v850_reg_size);
724 regcache_cooked_write_unsigned (regcache, argreg, regval);
725
726 len -= v850_reg_size;
727 val += v850_reg_size;
728 argreg++;
729 }
730 else
731 {
732 write_memory (sp + stack_offset, val, 4);
733
734 len -= 4;
735 val += 4;
736 stack_offset += 4;
737 }
738 args++;
739 }
740
741 /* Store return address. */
742 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
743
744 /* Update stack pointer. */
745 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
746
747 return sp;
748 }
749
750 static void
751 v850_extract_return_value (struct type *type, struct regcache *regcache,
752 gdb_byte *valbuf)
753 {
754 int len = TYPE_LENGTH (type);
755
756 if (len <= v850_reg_size)
757 {
758 ULONGEST val;
759
760 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
761 store_unsigned_integer (valbuf, len, val);
762 }
763 else if (len <= 2 * v850_reg_size)
764 {
765 int i, regnum = E_V0_REGNUM;
766 gdb_byte buf[v850_reg_size];
767 for (i = 0; len > 0; i += 4, len -= 4)
768 {
769 regcache_raw_read (regcache, regnum++, buf);
770 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
771 }
772 }
773 }
774
775 static void
776 v850_store_return_value (struct type *type, struct regcache *regcache,
777 const gdb_byte *valbuf)
778 {
779 int len = TYPE_LENGTH (type);
780
781 if (len <= v850_reg_size)
782 regcache_cooked_write_unsigned (regcache, E_V0_REGNUM,
783 extract_unsigned_integer (valbuf, len));
784 else if (len <= 2 * v850_reg_size)
785 {
786 int i, regnum = E_V0_REGNUM;
787 for (i = 0; i < len; i += 4)
788 regcache_raw_write (regcache, regnum++, valbuf + i);
789 }
790 }
791
792 static enum return_value_convention
793 v850_return_value (struct gdbarch *gdbarch, struct type *func_type,
794 struct type *type, struct regcache *regcache,
795 gdb_byte *readbuf, const gdb_byte *writebuf)
796 {
797 if (v850_use_struct_convention (type))
798 return RETURN_VALUE_STRUCT_CONVENTION;
799 if (writebuf)
800 v850_store_return_value (type, regcache, writebuf);
801 else if (readbuf)
802 v850_extract_return_value (type, regcache, readbuf);
803 return RETURN_VALUE_REGISTER_CONVENTION;
804 }
805
806 const static unsigned char *
807 v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
808 {
809 static unsigned char breakpoint[] = { 0x85, 0x05 };
810 *lenptr = sizeof (breakpoint);
811 return breakpoint;
812 }
813
814 static struct v850_frame_cache *
815 v850_alloc_frame_cache (struct frame_info *this_frame)
816 {
817 struct v850_frame_cache *cache;
818 int i;
819
820 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
821 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
822
823 /* Base address. */
824 cache->base = 0;
825 cache->sp_offset = 0;
826 cache->pc = 0;
827
828 /* Frameless until proven otherwise. */
829 cache->uses_fp = 0;
830
831 return cache;
832 }
833
834 static struct v850_frame_cache *
835 v850_frame_cache (struct frame_info *this_frame, void **this_cache)
836 {
837 struct v850_frame_cache *cache;
838 CORE_ADDR current_pc;
839 int i;
840
841 if (*this_cache)
842 return *this_cache;
843
844 cache = v850_alloc_frame_cache (this_frame);
845 *this_cache = cache;
846
847 /* In principle, for normal frames, fp holds the frame pointer,
848 which holds the base address for the current stack frame.
849 However, for functions that don't need it, the frame pointer is
850 optional. For these "frameless" functions the frame pointer is
851 actually the frame pointer of the calling frame. */
852 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
853 if (cache->base == 0)
854 return cache;
855
856 cache->pc = get_frame_func (this_frame);
857 current_pc = get_frame_pc (this_frame);
858 if (cache->pc != 0)
859 {
860 ULONGEST ctbp;
861 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
862 v850_analyze_prologue (cache->pc, current_pc, cache, ctbp);
863 }
864
865 if (!cache->uses_fp)
866 {
867 /* We didn't find a valid frame, which means that CACHE->base
868 currently holds the frame pointer for our calling frame. If
869 we're at the start of a function, or somewhere half-way its
870 prologue, the function's frame probably hasn't been fully
871 setup yet. Try to reconstruct the base address for the stack
872 frame by looking at the stack pointer. For truly "frameless"
873 functions this might work too. */
874 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
875 }
876
877 /* Now that we have the base address for the stack frame we can
878 calculate the value of sp in the calling frame. */
879 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
880 cache->base - cache->sp_offset);
881
882 /* Adjust all the saved registers such that they contain addresses
883 instead of offsets. */
884 for (i = 0; i < E_NUM_REGS; i++)
885 if (trad_frame_addr_p (cache->saved_regs, i))
886 cache->saved_regs[i].addr += cache->base;
887
888 /* The call instruction moves the caller's PC in the callee's LP.
889 Since this is an unwind, do the reverse. Copy the location of LP
890 into PC (the address / regnum) so that a request for PC will be
891 converted into a request for the LP. */
892
893 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
894
895 return cache;
896 }
897
898
899 static struct value *
900 v850_frame_prev_register (struct frame_info *this_frame,
901 void **this_cache, int regnum)
902 {
903 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
904
905 gdb_assert (regnum >= 0);
906
907 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
908 }
909
910 static void
911 v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
912 struct frame_id *this_id)
913 {
914 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
915
916 /* This marks the outermost frame. */
917 if (cache->base == 0)
918 return;
919
920 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
921 }
922
923 static const struct frame_unwind v850_frame_unwind = {
924 NORMAL_FRAME,
925 v850_frame_this_id,
926 v850_frame_prev_register,
927 NULL,
928 default_frame_sniffer
929 };
930
931 static CORE_ADDR
932 v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
933 {
934 return frame_unwind_register_unsigned (next_frame,
935 gdbarch_sp_regnum (gdbarch));
936 }
937
938 static CORE_ADDR
939 v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
940 {
941 return frame_unwind_register_unsigned (next_frame,
942 gdbarch_pc_regnum (gdbarch));
943 }
944
945 static struct frame_id
946 v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
947 {
948 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
949 gdbarch_sp_regnum (gdbarch));
950 return frame_id_build (sp, get_frame_pc (this_frame));
951 }
952
953 static CORE_ADDR
954 v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
955 {
956 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
957
958 return cache->base;
959 }
960
961 static const struct frame_base v850_frame_base = {
962 &v850_frame_unwind,
963 v850_frame_base_address,
964 v850_frame_base_address,
965 v850_frame_base_address
966 };
967
968 static struct gdbarch *
969 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
970 {
971 struct gdbarch *gdbarch;
972
973 /* Change the register names based on the current machine type. */
974 if (info.bfd_arch_info->arch != bfd_arch_v850)
975 return NULL;
976
977 gdbarch = gdbarch_alloc (&info, NULL);
978
979 switch (info.bfd_arch_info->mach)
980 {
981 case bfd_mach_v850:
982 set_gdbarch_register_name (gdbarch, v850_register_name);
983 break;
984 case bfd_mach_v850e:
985 case bfd_mach_v850e1:
986 set_gdbarch_register_name (gdbarch, v850e_register_name);
987 break;
988 }
989
990 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
991 set_gdbarch_num_pseudo_regs (gdbarch, 0);
992 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
993 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
994 set_gdbarch_fp0_regnum (gdbarch, -1);
995
996 set_gdbarch_register_type (gdbarch, v850_register_type);
997
998 set_gdbarch_char_signed (gdbarch, 0);
999 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1000 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1001 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1002 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1003
1004 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1005 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1006 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1007
1008 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1009 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1010
1011 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1012 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1013
1014 set_gdbarch_return_value (gdbarch, v850_return_value);
1015 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1016 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1017
1018 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1019
1020 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1021 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1022 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1023 set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
1024 frame_base_set_default (gdbarch, &v850_frame_base);
1025
1026 /* Hook in ABI-specific overrides, if they have been registered. */
1027 gdbarch_init_osabi (info, gdbarch);
1028
1029 dwarf2_append_unwinders (gdbarch);
1030 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
1031
1032 return gdbarch;
1033 }
1034
1035 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1036
1037 void
1038 _initialize_v850_tdep (void)
1039 {
1040 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1041 }
This page took 0.050538 seconds and 5 git commands to generate.