Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "gdbsupport/byte-vector.h"
30 #include "gdbarch.h"
31
32 /* Define whether or not the C operator '/' truncates towards zero for
33 differently signed operands (truncation direction is undefined in C). */
34
35 #ifndef TRUNCATION_TOWARDS_ZERO
36 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
37 #endif
38
39 /* Given a pointer, return the size of its target.
40 If the pointer type is void *, then return 1.
41 If the target type is incomplete, then error out.
42 This isn't a general purpose function, but just a
43 helper for value_ptradd. */
44
45 static LONGEST
46 find_size_for_pointer_math (struct type *ptr_type)
47 {
48 LONGEST sz = -1;
49 struct type *ptr_target;
50
51 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
52 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
53
54 sz = type_length_units (ptr_target);
55 if (sz == 0)
56 {
57 if (ptr_type->code () == TYPE_CODE_VOID)
58 sz = 1;
59 else
60 {
61 const char *name;
62
63 name = ptr_target->name ();
64 if (name == NULL)
65 error (_("Cannot perform pointer math on incomplete types, "
66 "try casting to a known type, or void *."));
67 else
68 error (_("Cannot perform pointer math on incomplete type \"%s\", "
69 "try casting to a known type, or void *."), name);
70 }
71 }
72 return sz;
73 }
74
75 /* Given a pointer ARG1 and an integral value ARG2, return the
76 result of C-style pointer arithmetic ARG1 + ARG2. */
77
78 struct value *
79 value_ptradd (struct value *arg1, LONGEST arg2)
80 {
81 struct type *valptrtype;
82 LONGEST sz;
83 struct value *result;
84
85 arg1 = coerce_array (arg1);
86 valptrtype = check_typedef (value_type (arg1));
87 sz = find_size_for_pointer_math (valptrtype);
88
89 result = value_from_pointer (valptrtype,
90 value_as_address (arg1) + sz * arg2);
91 if (VALUE_LVAL (result) != lval_internalvar)
92 set_value_component_location (result, arg1);
93 return result;
94 }
95
96 /* Given two compatible pointer values ARG1 and ARG2, return the
97 result of C-style pointer arithmetic ARG1 - ARG2. */
98
99 LONGEST
100 value_ptrdiff (struct value *arg1, struct value *arg2)
101 {
102 struct type *type1, *type2;
103 LONGEST sz;
104
105 arg1 = coerce_array (arg1);
106 arg2 = coerce_array (arg2);
107 type1 = check_typedef (value_type (arg1));
108 type2 = check_typedef (value_type (arg2));
109
110 gdb_assert (type1->code () == TYPE_CODE_PTR);
111 gdb_assert (type2->code () == TYPE_CODE_PTR);
112
113 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
114 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
115 error (_("First argument of `-' is a pointer and "
116 "second argument is neither\n"
117 "an integer nor a pointer of the same type."));
118
119 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
120 if (sz == 0)
121 {
122 warning (_("Type size unknown, assuming 1. "
123 "Try casting to a known type, or void *."));
124 sz = 1;
125 }
126
127 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
128 }
129
130 /* Return the value of ARRAY[IDX].
131
132 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
133 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
134
135 See comments in value_coerce_array() for rationale for reason for
136 doing lower bounds adjustment here rather than there.
137 FIXME: Perhaps we should validate that the index is valid and if
138 verbosity is set, warn about invalid indices (but still use them). */
139
140 struct value *
141 value_subscript (struct value *array, LONGEST index)
142 {
143 bool c_style = current_language->c_style_arrays_p ();
144 struct type *tarray;
145
146 array = coerce_ref (array);
147 tarray = check_typedef (value_type (array));
148
149 if (tarray->code () == TYPE_CODE_ARRAY
150 || tarray->code () == TYPE_CODE_STRING)
151 {
152 struct type *range_type = tarray->index_type ();
153 gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
154 if (!lowerbound.has_value ())
155 lowerbound = 0;
156
157 if (VALUE_LVAL (array) != lval_memory)
158 return value_subscripted_rvalue (array, index, *lowerbound);
159
160 if (!c_style)
161 {
162 gdb::optional<LONGEST> upperbound
163 = get_discrete_high_bound (range_type);
164
165 if (!upperbound.has_value ())
166 upperbound = 0;
167
168 if (index >= *lowerbound && index <= *upperbound)
169 return value_subscripted_rvalue (array, index, *lowerbound);
170
171 /* Emit warning unless we have an array of unknown size.
172 An array of unknown size has lowerbound 0 and upperbound -1. */
173 if (*upperbound > -1)
174 warning (_("array or string index out of range"));
175 /* fall doing C stuff */
176 c_style = true;
177 }
178
179 index -= *lowerbound;
180 array = value_coerce_array (array);
181 }
182
183 if (c_style)
184 return value_ind (value_ptradd (array, index));
185 else
186 error (_("not an array or string"));
187 }
188
189 /* Return the value of EXPR[IDX], expr an aggregate rvalue
190 (eg, a vector register). This routine used to promote floats
191 to doubles, but no longer does. */
192
193 struct value *
194 value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound)
195 {
196 struct type *array_type = check_typedef (value_type (array));
197 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
198 LONGEST elt_size = type_length_units (elt_type);
199
200 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
201 in a byte. */
202 LONGEST stride = array_type->bit_stride ();
203 if (stride != 0)
204 {
205 struct gdbarch *arch = elt_type->arch ();
206 int unit_size = gdbarch_addressable_memory_unit_size (arch);
207 elt_size = stride / (unit_size * 8);
208 }
209
210 LONGEST elt_offs = elt_size * (index - lowerbound);
211 bool array_upper_bound_undefined
212 = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
213
214 if (index < lowerbound
215 || (!array_upper_bound_undefined
216 && elt_offs >= type_length_units (array_type))
217 || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
218 {
219 if (type_not_associated (array_type))
220 error (_("no such vector element (vector not associated)"));
221 else if (type_not_allocated (array_type))
222 error (_("no such vector element (vector not allocated)"));
223 else
224 error (_("no such vector element"));
225 }
226
227 if (is_dynamic_type (elt_type))
228 {
229 CORE_ADDR address;
230
231 address = value_address (array) + elt_offs;
232 elt_type = resolve_dynamic_type (elt_type, {}, address);
233 }
234
235 return value_from_component (array, elt_type, elt_offs);
236 }
237
238 \f
239 /* Check to see if either argument is a structure, or a reference to
240 one. This is called so we know whether to go ahead with the normal
241 binop or look for a user defined function instead.
242
243 For now, we do not overload the `=' operator. */
244
245 int
246 binop_types_user_defined_p (enum exp_opcode op,
247 struct type *type1, struct type *type2)
248 {
249 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
250 return 0;
251
252 type1 = check_typedef (type1);
253 if (TYPE_IS_REFERENCE (type1))
254 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
255
256 type2 = check_typedef (type2);
257 if (TYPE_IS_REFERENCE (type2))
258 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
259
260 return (type1->code () == TYPE_CODE_STRUCT
261 || type2->code () == TYPE_CODE_STRUCT);
262 }
263
264 /* Check to see if either argument is a structure, or a reference to
265 one. This is called so we know whether to go ahead with the normal
266 binop or look for a user defined function instead.
267
268 For now, we do not overload the `=' operator. */
269
270 int
271 binop_user_defined_p (enum exp_opcode op,
272 struct value *arg1, struct value *arg2)
273 {
274 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
275 }
276
277 /* Check to see if argument is a structure. This is called so
278 we know whether to go ahead with the normal unop or look for a
279 user defined function instead.
280
281 For now, we do not overload the `&' operator. */
282
283 int
284 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
285 {
286 struct type *type1;
287
288 if (op == UNOP_ADDR)
289 return 0;
290 type1 = check_typedef (value_type (arg1));
291 if (TYPE_IS_REFERENCE (type1))
292 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
293 return type1->code () == TYPE_CODE_STRUCT;
294 }
295
296 /* Try to find an operator named OPERATOR which takes NARGS arguments
297 specified in ARGS. If the operator found is a static member operator
298 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
299 The search if performed through find_overload_match which will handle
300 member operators, non member operators, operators imported implicitly or
301 explicitly, and perform correct overload resolution in all of the above
302 situations or combinations thereof. */
303
304 static struct value *
305 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
306 int *static_memfuncp, enum noside noside)
307 {
308
309 struct symbol *symp = NULL;
310 struct value *valp = NULL;
311
312 find_overload_match (args, oper, BOTH /* could be method */,
313 &args[0] /* objp */,
314 NULL /* pass NULL symbol since symbol is unknown */,
315 &valp, &symp, static_memfuncp, 0, noside);
316
317 if (valp)
318 return valp;
319
320 if (symp)
321 {
322 /* This is a non member function and does not
323 expect a reference as its first argument
324 rather the explicit structure. */
325 args[0] = value_ind (args[0]);
326 return value_of_variable (symp, 0);
327 }
328
329 error (_("Could not find %s."), oper);
330 }
331
332 /* Lookup user defined operator NAME. Return a value representing the
333 function, otherwise return NULL. */
334
335 static struct value *
336 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
337 char *name, int *static_memfuncp, enum noside noside)
338 {
339 struct value *result = NULL;
340
341 if (current_language->la_language == language_cplus)
342 {
343 result = value_user_defined_cpp_op (args, name, static_memfuncp,
344 noside);
345 }
346 else
347 result = value_struct_elt (argp, args, name, static_memfuncp,
348 "structure");
349
350 return result;
351 }
352
353 /* We know either arg1 or arg2 is a structure, so try to find the right
354 user defined function. Create an argument vector that calls
355 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
356 binary operator which is legal for GNU C++).
357
358 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
359 is the opcode saying how to modify it. Otherwise, OTHEROP is
360 unused. */
361
362 struct value *
363 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
364 enum exp_opcode otherop, enum noside noside)
365 {
366 char *ptr;
367 char tstr[13];
368 int static_memfuncp;
369
370 arg1 = coerce_ref (arg1);
371 arg2 = coerce_ref (arg2);
372
373 /* now we know that what we have to do is construct our
374 arg vector and find the right function to call it with. */
375
376 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
377 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
378
379 value *argvec_storage[3];
380 gdb::array_view<value *> argvec = argvec_storage;
381
382 argvec[1] = value_addr (arg1);
383 argvec[2] = arg2;
384
385 /* Make the right function name up. */
386 strcpy (tstr, "operator__");
387 ptr = tstr + 8;
388 switch (op)
389 {
390 case BINOP_ADD:
391 strcpy (ptr, "+");
392 break;
393 case BINOP_SUB:
394 strcpy (ptr, "-");
395 break;
396 case BINOP_MUL:
397 strcpy (ptr, "*");
398 break;
399 case BINOP_DIV:
400 strcpy (ptr, "/");
401 break;
402 case BINOP_REM:
403 strcpy (ptr, "%");
404 break;
405 case BINOP_LSH:
406 strcpy (ptr, "<<");
407 break;
408 case BINOP_RSH:
409 strcpy (ptr, ">>");
410 break;
411 case BINOP_BITWISE_AND:
412 strcpy (ptr, "&");
413 break;
414 case BINOP_BITWISE_IOR:
415 strcpy (ptr, "|");
416 break;
417 case BINOP_BITWISE_XOR:
418 strcpy (ptr, "^");
419 break;
420 case BINOP_LOGICAL_AND:
421 strcpy (ptr, "&&");
422 break;
423 case BINOP_LOGICAL_OR:
424 strcpy (ptr, "||");
425 break;
426 case BINOP_MIN:
427 strcpy (ptr, "<?");
428 break;
429 case BINOP_MAX:
430 strcpy (ptr, ">?");
431 break;
432 case BINOP_ASSIGN:
433 strcpy (ptr, "=");
434 break;
435 case BINOP_ASSIGN_MODIFY:
436 switch (otherop)
437 {
438 case BINOP_ADD:
439 strcpy (ptr, "+=");
440 break;
441 case BINOP_SUB:
442 strcpy (ptr, "-=");
443 break;
444 case BINOP_MUL:
445 strcpy (ptr, "*=");
446 break;
447 case BINOP_DIV:
448 strcpy (ptr, "/=");
449 break;
450 case BINOP_REM:
451 strcpy (ptr, "%=");
452 break;
453 case BINOP_BITWISE_AND:
454 strcpy (ptr, "&=");
455 break;
456 case BINOP_BITWISE_IOR:
457 strcpy (ptr, "|=");
458 break;
459 case BINOP_BITWISE_XOR:
460 strcpy (ptr, "^=");
461 break;
462 case BINOP_MOD: /* invalid */
463 default:
464 error (_("Invalid binary operation specified."));
465 }
466 break;
467 case BINOP_SUBSCRIPT:
468 strcpy (ptr, "[]");
469 break;
470 case BINOP_EQUAL:
471 strcpy (ptr, "==");
472 break;
473 case BINOP_NOTEQUAL:
474 strcpy (ptr, "!=");
475 break;
476 case BINOP_LESS:
477 strcpy (ptr, "<");
478 break;
479 case BINOP_GTR:
480 strcpy (ptr, ">");
481 break;
482 case BINOP_GEQ:
483 strcpy (ptr, ">=");
484 break;
485 case BINOP_LEQ:
486 strcpy (ptr, "<=");
487 break;
488 case BINOP_MOD: /* invalid */
489 default:
490 error (_("Invalid binary operation specified."));
491 }
492
493 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
494 &static_memfuncp, noside);
495
496 if (argvec[0])
497 {
498 if (static_memfuncp)
499 {
500 argvec[1] = argvec[0];
501 argvec = argvec.slice (1);
502 }
503 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
504 {
505 /* Static xmethods are not supported yet. */
506 gdb_assert (static_memfuncp == 0);
507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
508 {
509 struct type *return_type
510 = result_type_of_xmethod (argvec[0], argvec.slice (1));
511
512 if (return_type == NULL)
513 error (_("Xmethod is missing return type."));
514 return value_zero (return_type, VALUE_LVAL (arg1));
515 }
516 return call_xmethod (argvec[0], argvec.slice (1));
517 }
518 if (noside == EVAL_AVOID_SIDE_EFFECTS)
519 {
520 struct type *return_type;
521
522 return_type
523 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
524 return value_zero (return_type, VALUE_LVAL (arg1));
525 }
526 return call_function_by_hand (argvec[0], NULL,
527 argvec.slice (1, 2 - static_memfuncp));
528 }
529 throw_error (NOT_FOUND_ERROR,
530 _("member function %s not found"), tstr);
531 }
532
533 /* We know that arg1 is a structure, so try to find a unary user
534 defined operator that matches the operator in question.
535 Create an argument vector that calls arg1.operator @ (arg1)
536 and return that value (where '@' is (almost) any unary operator which
537 is legal for GNU C++). */
538
539 struct value *
540 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
541 {
542 struct gdbarch *gdbarch = value_type (arg1)->arch ();
543 char *ptr;
544 char tstr[13], mangle_tstr[13];
545 int static_memfuncp, nargs;
546
547 arg1 = coerce_ref (arg1);
548
549 /* now we know that what we have to do is construct our
550 arg vector and find the right function to call it with. */
551
552 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
553 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
554
555 value *argvec_storage[3];
556 gdb::array_view<value *> argvec = argvec_storage;
557
558 argvec[1] = value_addr (arg1);
559 argvec[2] = 0;
560
561 nargs = 1;
562
563 /* Make the right function name up. */
564 strcpy (tstr, "operator__");
565 ptr = tstr + 8;
566 strcpy (mangle_tstr, "__");
567 switch (op)
568 {
569 case UNOP_PREINCREMENT:
570 strcpy (ptr, "++");
571 break;
572 case UNOP_PREDECREMENT:
573 strcpy (ptr, "--");
574 break;
575 case UNOP_POSTINCREMENT:
576 strcpy (ptr, "++");
577 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
578 nargs ++;
579 break;
580 case UNOP_POSTDECREMENT:
581 strcpy (ptr, "--");
582 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
583 nargs ++;
584 break;
585 case UNOP_LOGICAL_NOT:
586 strcpy (ptr, "!");
587 break;
588 case UNOP_COMPLEMENT:
589 strcpy (ptr, "~");
590 break;
591 case UNOP_NEG:
592 strcpy (ptr, "-");
593 break;
594 case UNOP_PLUS:
595 strcpy (ptr, "+");
596 break;
597 case UNOP_IND:
598 strcpy (ptr, "*");
599 break;
600 case STRUCTOP_PTR:
601 strcpy (ptr, "->");
602 break;
603 default:
604 error (_("Invalid unary operation specified."));
605 }
606
607 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
608 &static_memfuncp, noside);
609
610 if (argvec[0])
611 {
612 if (static_memfuncp)
613 {
614 argvec[1] = argvec[0];
615 argvec = argvec.slice (1);
616 }
617 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
618 {
619 /* Static xmethods are not supported yet. */
620 gdb_assert (static_memfuncp == 0);
621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
622 {
623 struct type *return_type
624 = result_type_of_xmethod (argvec[0], argvec[1]);
625
626 if (return_type == NULL)
627 error (_("Xmethod is missing return type."));
628 return value_zero (return_type, VALUE_LVAL (arg1));
629 }
630 return call_xmethod (argvec[0], argvec[1]);
631 }
632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
633 {
634 struct type *return_type;
635
636 return_type
637 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
638 return value_zero (return_type, VALUE_LVAL (arg1));
639 }
640 return call_function_by_hand (argvec[0], NULL,
641 argvec.slice (1, nargs));
642 }
643 throw_error (NOT_FOUND_ERROR,
644 _("member function %s not found"), tstr);
645 }
646 \f
647
648 /* Concatenate two values with the following conditions:
649
650 (1) Both values must be either bitstring values or character string
651 values and the resulting value consists of the concatenation of
652 ARG1 followed by ARG2.
653
654 or
655
656 One value must be an integer value and the other value must be
657 either a bitstring value or character string value, which is
658 to be repeated by the number of times specified by the integer
659 value.
660
661
662 (2) Boolean values are also allowed and are treated as bit string
663 values of length 1.
664
665 (3) Character values are also allowed and are treated as character
666 string values of length 1. */
667
668 struct value *
669 value_concat (struct value *arg1, struct value *arg2)
670 {
671 struct value *inval1;
672 struct value *inval2;
673 struct value *outval = NULL;
674 int inval1len, inval2len;
675 int count, idx;
676 char inchar;
677 struct type *type1 = check_typedef (value_type (arg1));
678 struct type *type2 = check_typedef (value_type (arg2));
679 struct type *char_type;
680
681 /* First figure out if we are dealing with two values to be concatenated
682 or a repeat count and a value to be repeated. INVAL1 is set to the
683 first of two concatenated values, or the repeat count. INVAL2 is set
684 to the second of the two concatenated values or the value to be
685 repeated. */
686
687 if (type2->code () == TYPE_CODE_INT)
688 {
689 struct type *tmp = type1;
690
691 type1 = tmp;
692 tmp = type2;
693 inval1 = arg2;
694 inval2 = arg1;
695 }
696 else
697 {
698 inval1 = arg1;
699 inval2 = arg2;
700 }
701
702 /* Now process the input values. */
703
704 if (type1->code () == TYPE_CODE_INT)
705 {
706 /* We have a repeat count. Validate the second value and then
707 construct a value repeated that many times. */
708 if (type2->code () == TYPE_CODE_STRING
709 || type2->code () == TYPE_CODE_CHAR)
710 {
711 count = longest_to_int (value_as_long (inval1));
712 inval2len = TYPE_LENGTH (type2);
713 std::vector<char> ptr (count * inval2len);
714 if (type2->code () == TYPE_CODE_CHAR)
715 {
716 char_type = type2;
717
718 inchar = (char) unpack_long (type2,
719 value_contents (inval2));
720 for (idx = 0; idx < count; idx++)
721 {
722 ptr[idx] = inchar;
723 }
724 }
725 else
726 {
727 char_type = TYPE_TARGET_TYPE (type2);
728
729 for (idx = 0; idx < count; idx++)
730 {
731 memcpy (&ptr[idx * inval2len], value_contents (inval2),
732 inval2len);
733 }
734 }
735 outval = value_string (ptr.data (), count * inval2len, char_type);
736 }
737 else if (type2->code () == TYPE_CODE_BOOL)
738 {
739 error (_("unimplemented support for boolean repeats"));
740 }
741 else
742 {
743 error (_("can't repeat values of that type"));
744 }
745 }
746 else if (type1->code () == TYPE_CODE_STRING
747 || type1->code () == TYPE_CODE_CHAR)
748 {
749 /* We have two character strings to concatenate. */
750 if (type2->code () != TYPE_CODE_STRING
751 && type2->code () != TYPE_CODE_CHAR)
752 {
753 error (_("Strings can only be concatenated with other strings."));
754 }
755 inval1len = TYPE_LENGTH (type1);
756 inval2len = TYPE_LENGTH (type2);
757 std::vector<char> ptr (inval1len + inval2len);
758 if (type1->code () == TYPE_CODE_CHAR)
759 {
760 char_type = type1;
761
762 ptr[0] = (char) unpack_long (type1, value_contents (inval1));
763 }
764 else
765 {
766 char_type = TYPE_TARGET_TYPE (type1);
767
768 memcpy (ptr.data (), value_contents (inval1), inval1len);
769 }
770 if (type2->code () == TYPE_CODE_CHAR)
771 {
772 ptr[inval1len] =
773 (char) unpack_long (type2, value_contents (inval2));
774 }
775 else
776 {
777 memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
778 }
779 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
780 }
781 else if (type1->code () == TYPE_CODE_BOOL)
782 {
783 /* We have two bitstrings to concatenate. */
784 if (type2->code () != TYPE_CODE_BOOL)
785 {
786 error (_("Booleans can only be concatenated "
787 "with other bitstrings or booleans."));
788 }
789 error (_("unimplemented support for boolean concatenation."));
790 }
791 else
792 {
793 /* We don't know how to concatenate these operands. */
794 error (_("illegal operands for concatenation."));
795 }
796 return (outval);
797 }
798 \f
799 /* Integer exponentiation: V1**V2, where both arguments are
800 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
801
802 static LONGEST
803 integer_pow (LONGEST v1, LONGEST v2)
804 {
805 if (v2 < 0)
806 {
807 if (v1 == 0)
808 error (_("Attempt to raise 0 to negative power."));
809 else
810 return 0;
811 }
812 else
813 {
814 /* The Russian Peasant's Algorithm. */
815 LONGEST v;
816
817 v = 1;
818 for (;;)
819 {
820 if (v2 & 1L)
821 v *= v1;
822 v2 >>= 1;
823 if (v2 == 0)
824 return v;
825 v1 *= v1;
826 }
827 }
828 }
829
830 /* Obtain argument values for binary operation, converting from
831 other types if one of them is not floating point. */
832 static void
833 value_args_as_target_float (struct value *arg1, struct value *arg2,
834 gdb_byte *x, struct type **eff_type_x,
835 gdb_byte *y, struct type **eff_type_y)
836 {
837 struct type *type1, *type2;
838
839 type1 = check_typedef (value_type (arg1));
840 type2 = check_typedef (value_type (arg2));
841
842 /* At least one of the arguments must be of floating-point type. */
843 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
844
845 if (is_floating_type (type1) && is_floating_type (type2)
846 && type1->code () != type2->code ())
847 /* The DFP extension to the C language does not allow mixing of
848 * decimal float types with other float types in expressions
849 * (see WDTR 24732, page 12). */
850 error (_("Mixing decimal floating types with "
851 "other floating types is not allowed."));
852
853 /* Obtain value of arg1, converting from other types if necessary. */
854
855 if (is_floating_type (type1))
856 {
857 *eff_type_x = type1;
858 memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
859 }
860 else if (is_integral_type (type1))
861 {
862 *eff_type_x = type2;
863 if (type1->is_unsigned ())
864 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
865 else
866 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
867 }
868 else
869 error (_("Don't know how to convert from %s to %s."), type1->name (),
870 type2->name ());
871
872 /* Obtain value of arg2, converting from other types if necessary. */
873
874 if (is_floating_type (type2))
875 {
876 *eff_type_y = type2;
877 memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
878 }
879 else if (is_integral_type (type2))
880 {
881 *eff_type_y = type1;
882 if (type2->is_unsigned ())
883 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
884 else
885 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
886 }
887 else
888 error (_("Don't know how to convert from %s to %s."), type1->name (),
889 type2->name ());
890 }
891
892 /* Assuming at last one of ARG1 or ARG2 is a fixed point value,
893 perform the binary operation OP on these two operands, and return
894 the resulting value (also as a fixed point). */
895
896 static struct value *
897 fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
898 {
899 struct type *type1 = check_typedef (value_type (arg1));
900 struct type *type2 = check_typedef (value_type (arg2));
901 const struct language_defn *language = current_language;
902
903 struct gdbarch *gdbarch = type1->arch ();
904 struct value *val;
905
906 gdb_mpq v1, v2, res;
907
908 gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
909 if (op == BINOP_MUL || op == BINOP_DIV)
910 {
911 v1 = value_to_gdb_mpq (arg1);
912 v2 = value_to_gdb_mpq (arg2);
913
914 /* The code below uses TYPE1 for the result type, so make sure
915 it is set properly. */
916 if (!is_fixed_point_type (type1))
917 type1 = type2;
918 }
919 else
920 {
921 if (!is_fixed_point_type (type1))
922 {
923 arg1 = value_cast (type2, arg1);
924 type1 = type2;
925 }
926 if (!is_fixed_point_type (type2))
927 {
928 arg2 = value_cast (type1, arg2);
929 type2 = type1;
930 }
931
932 v1.read_fixed_point (gdb::make_array_view (value_contents (arg1),
933 TYPE_LENGTH (type1)),
934 type_byte_order (type1), type1->is_unsigned (),
935 type1->fixed_point_scaling_factor ());
936 v2.read_fixed_point (gdb::make_array_view (value_contents (arg2),
937 TYPE_LENGTH (type2)),
938 type_byte_order (type2), type2->is_unsigned (),
939 type2->fixed_point_scaling_factor ());
940 }
941
942 auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
943 {
944 value *fp_val = allocate_value (type1);
945
946 fp.write_fixed_point
947 (gdb::make_array_view (value_contents_raw (fp_val),
948 TYPE_LENGTH (type1)),
949 type_byte_order (type1),
950 type1->is_unsigned (),
951 type1->fixed_point_scaling_factor ());
952
953 return fp_val;
954 };
955
956 switch (op)
957 {
958 case BINOP_ADD:
959 mpq_add (res.val, v1.val, v2.val);
960 val = fixed_point_to_value (res);
961 break;
962
963 case BINOP_SUB:
964 mpq_sub (res.val, v1.val, v2.val);
965 val = fixed_point_to_value (res);
966 break;
967
968 case BINOP_MIN:
969 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
970 break;
971
972 case BINOP_MAX:
973 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
974 break;
975
976 case BINOP_MUL:
977 mpq_mul (res.val, v1.val, v2.val);
978 val = fixed_point_to_value (res);
979 break;
980
981 case BINOP_DIV:
982 if (mpq_sgn (v2.val) == 0)
983 error (_("Division by zero"));
984 mpq_div (res.val, v1.val, v2.val);
985 val = fixed_point_to_value (res);
986 break;
987
988 case BINOP_EQUAL:
989 val = value_from_ulongest (language_bool_type (language, gdbarch),
990 mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
991 break;
992
993 case BINOP_LESS:
994 val = value_from_ulongest (language_bool_type (language, gdbarch),
995 mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
996 break;
997
998 default:
999 error (_("Integer-only operation on fixed point number."));
1000 }
1001
1002 return val;
1003 }
1004
1005 /* A helper function that finds the type to use for a binary operation
1006 involving TYPE1 and TYPE2. */
1007
1008 static struct type *
1009 promotion_type (struct type *type1, struct type *type2)
1010 {
1011 struct type *result_type;
1012
1013 if (is_floating_type (type1) || is_floating_type (type2))
1014 {
1015 /* If only one type is floating-point, use its type.
1016 Otherwise use the bigger type. */
1017 if (!is_floating_type (type1))
1018 result_type = type2;
1019 else if (!is_floating_type (type2))
1020 result_type = type1;
1021 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1022 result_type = type2;
1023 else
1024 result_type = type1;
1025 }
1026 else
1027 {
1028 /* Integer types. */
1029 if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1030 result_type = type1;
1031 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1032 result_type = type2;
1033 else if (type1->is_unsigned ())
1034 result_type = type1;
1035 else if (type2->is_unsigned ())
1036 result_type = type2;
1037 else
1038 result_type = type1;
1039 }
1040
1041 return result_type;
1042 }
1043
1044 static struct value *scalar_binop (struct value *arg1, struct value *arg2,
1045 enum exp_opcode op);
1046
1047 /* Perform a binary operation on complex operands. */
1048
1049 static struct value *
1050 complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1051 {
1052 struct type *arg1_type = check_typedef (value_type (arg1));
1053 struct type *arg2_type = check_typedef (value_type (arg2));
1054
1055 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
1056 if (arg1_type->code () == TYPE_CODE_COMPLEX)
1057 {
1058 arg1_real = value_real_part (arg1);
1059 arg1_imag = value_imaginary_part (arg1);
1060 }
1061 else
1062 {
1063 arg1_real = arg1;
1064 arg1_imag = value_zero (arg1_type, not_lval);
1065 }
1066 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1067 {
1068 arg2_real = value_real_part (arg2);
1069 arg2_imag = value_imaginary_part (arg2);
1070 }
1071 else
1072 {
1073 arg2_real = arg2;
1074 arg2_imag = value_zero (arg2_type, not_lval);
1075 }
1076
1077 struct type *comp_type = promotion_type (value_type (arg1_real),
1078 value_type (arg2_real));
1079 if (!can_create_complex_type (comp_type))
1080 error (_("Argument to complex arithmetic operation not supported."));
1081
1082 arg1_real = value_cast (comp_type, arg1_real);
1083 arg1_imag = value_cast (comp_type, arg1_imag);
1084 arg2_real = value_cast (comp_type, arg2_real);
1085 arg2_imag = value_cast (comp_type, arg2_imag);
1086
1087 struct type *result_type = init_complex_type (nullptr, comp_type);
1088
1089 struct value *result_real, *result_imag;
1090 switch (op)
1091 {
1092 case BINOP_ADD:
1093 case BINOP_SUB:
1094 result_real = scalar_binop (arg1_real, arg2_real, op);
1095 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1096 break;
1097
1098 case BINOP_MUL:
1099 {
1100 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1101 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1102 result_real = scalar_binop (x1, x2, BINOP_SUB);
1103
1104 x1 = scalar_binop (arg1_real, arg2_imag, op);
1105 x2 = scalar_binop (arg1_imag, arg2_real, op);
1106 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1107 }
1108 break;
1109
1110 case BINOP_DIV:
1111 {
1112 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1113 {
1114 struct value *conjugate = value_complement (arg2);
1115 /* We have to reconstruct ARG1, in case the type was
1116 promoted. */
1117 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1118
1119 struct value *numerator = scalar_binop (arg1, conjugate,
1120 BINOP_MUL);
1121 arg1_real = value_real_part (numerator);
1122 arg1_imag = value_imaginary_part (numerator);
1123
1124 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1125 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1126 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1127 }
1128
1129 result_real = scalar_binop (arg1_real, arg2_real, op);
1130 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1131 }
1132 break;
1133
1134 case BINOP_EQUAL:
1135 case BINOP_NOTEQUAL:
1136 {
1137 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1138 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1139
1140 LONGEST v1 = value_as_long (x1);
1141 LONGEST v2 = value_as_long (x2);
1142
1143 if (op == BINOP_EQUAL)
1144 v1 = v1 && v2;
1145 else
1146 v1 = v1 || v2;
1147
1148 return value_from_longest (value_type (x1), v1);
1149 }
1150 break;
1151
1152 default:
1153 error (_("Invalid binary operation on numbers."));
1154 }
1155
1156 return value_literal_complex (result_real, result_imag, result_type);
1157 }
1158
1159 /* Perform a binary operation on two operands which have reasonable
1160 representations as integers or floats. This includes booleans,
1161 characters, integers, or floats.
1162 Does not support addition and subtraction on pointers;
1163 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1164
1165 static struct value *
1166 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1167 {
1168 struct value *val;
1169 struct type *type1, *type2, *result_type;
1170
1171 arg1 = coerce_ref (arg1);
1172 arg2 = coerce_ref (arg2);
1173
1174 type1 = check_typedef (value_type (arg1));
1175 type2 = check_typedef (value_type (arg2));
1176
1177 if (type1->code () == TYPE_CODE_COMPLEX
1178 || type2->code () == TYPE_CODE_COMPLEX)
1179 return complex_binop (arg1, arg2, op);
1180
1181 if ((!is_floating_value (arg1)
1182 && !is_integral_type (type1)
1183 && !is_fixed_point_type (type1))
1184 || (!is_floating_value (arg2)
1185 && !is_integral_type (type2)
1186 && !is_fixed_point_type (type2)))
1187 error (_("Argument to arithmetic operation not a number or boolean."));
1188
1189 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
1190 return fixed_point_binop (arg1, arg2, op);
1191
1192 if (is_floating_type (type1) || is_floating_type (type2))
1193 {
1194 result_type = promotion_type (type1, type2);
1195 val = allocate_value (result_type);
1196
1197 struct type *eff_type_v1, *eff_type_v2;
1198 gdb::byte_vector v1, v2;
1199 v1.resize (TYPE_LENGTH (result_type));
1200 v2.resize (TYPE_LENGTH (result_type));
1201
1202 value_args_as_target_float (arg1, arg2,
1203 v1.data (), &eff_type_v1,
1204 v2.data (), &eff_type_v2);
1205 target_float_binop (op, v1.data (), eff_type_v1,
1206 v2.data (), eff_type_v2,
1207 value_contents_raw (val), result_type);
1208 }
1209 else if (type1->code () == TYPE_CODE_BOOL
1210 || type2->code () == TYPE_CODE_BOOL)
1211 {
1212 LONGEST v1, v2, v = 0;
1213
1214 v1 = value_as_long (arg1);
1215 v2 = value_as_long (arg2);
1216
1217 switch (op)
1218 {
1219 case BINOP_BITWISE_AND:
1220 v = v1 & v2;
1221 break;
1222
1223 case BINOP_BITWISE_IOR:
1224 v = v1 | v2;
1225 break;
1226
1227 case BINOP_BITWISE_XOR:
1228 v = v1 ^ v2;
1229 break;
1230
1231 case BINOP_EQUAL:
1232 v = v1 == v2;
1233 break;
1234
1235 case BINOP_NOTEQUAL:
1236 v = v1 != v2;
1237 break;
1238
1239 default:
1240 error (_("Invalid operation on booleans."));
1241 }
1242
1243 result_type = type1;
1244
1245 val = allocate_value (result_type);
1246 store_signed_integer (value_contents_raw (val),
1247 TYPE_LENGTH (result_type),
1248 type_byte_order (result_type),
1249 v);
1250 }
1251 else
1252 /* Integral operations here. */
1253 {
1254 /* Determine type length of the result, and if the operation should
1255 be done unsigned. For exponentiation and shift operators,
1256 use the length and type of the left operand. Otherwise,
1257 use the signedness of the operand with the greater length.
1258 If both operands are of equal length, use unsigned operation
1259 if one of the operands is unsigned. */
1260 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1261 result_type = type1;
1262 else
1263 result_type = promotion_type (type1, type2);
1264
1265 if (result_type->is_unsigned ())
1266 {
1267 LONGEST v2_signed = value_as_long (arg2);
1268 ULONGEST v1, v2, v = 0;
1269
1270 v1 = (ULONGEST) value_as_long (arg1);
1271 v2 = (ULONGEST) v2_signed;
1272
1273 switch (op)
1274 {
1275 case BINOP_ADD:
1276 v = v1 + v2;
1277 break;
1278
1279 case BINOP_SUB:
1280 v = v1 - v2;
1281 break;
1282
1283 case BINOP_MUL:
1284 v = v1 * v2;
1285 break;
1286
1287 case BINOP_DIV:
1288 case BINOP_INTDIV:
1289 if (v2 != 0)
1290 v = v1 / v2;
1291 else
1292 error (_("Division by zero"));
1293 break;
1294
1295 case BINOP_EXP:
1296 v = uinteger_pow (v1, v2_signed);
1297 break;
1298
1299 case BINOP_REM:
1300 if (v2 != 0)
1301 v = v1 % v2;
1302 else
1303 error (_("Division by zero"));
1304 break;
1305
1306 case BINOP_MOD:
1307 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1308 v1 mod 0 has a defined value, v1. */
1309 if (v2 == 0)
1310 {
1311 v = v1;
1312 }
1313 else
1314 {
1315 v = v1 / v2;
1316 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1317 v = v1 - (v2 * v);
1318 }
1319 break;
1320
1321 case BINOP_LSH:
1322 v = v1 << v2;
1323 break;
1324
1325 case BINOP_RSH:
1326 v = v1 >> v2;
1327 break;
1328
1329 case BINOP_BITWISE_AND:
1330 v = v1 & v2;
1331 break;
1332
1333 case BINOP_BITWISE_IOR:
1334 v = v1 | v2;
1335 break;
1336
1337 case BINOP_BITWISE_XOR:
1338 v = v1 ^ v2;
1339 break;
1340
1341 case BINOP_LOGICAL_AND:
1342 v = v1 && v2;
1343 break;
1344
1345 case BINOP_LOGICAL_OR:
1346 v = v1 || v2;
1347 break;
1348
1349 case BINOP_MIN:
1350 v = v1 < v2 ? v1 : v2;
1351 break;
1352
1353 case BINOP_MAX:
1354 v = v1 > v2 ? v1 : v2;
1355 break;
1356
1357 case BINOP_EQUAL:
1358 v = v1 == v2;
1359 break;
1360
1361 case BINOP_NOTEQUAL:
1362 v = v1 != v2;
1363 break;
1364
1365 case BINOP_LESS:
1366 v = v1 < v2;
1367 break;
1368
1369 case BINOP_GTR:
1370 v = v1 > v2;
1371 break;
1372
1373 case BINOP_LEQ:
1374 v = v1 <= v2;
1375 break;
1376
1377 case BINOP_GEQ:
1378 v = v1 >= v2;
1379 break;
1380
1381 default:
1382 error (_("Invalid binary operation on numbers."));
1383 }
1384
1385 val = allocate_value (result_type);
1386 store_unsigned_integer (value_contents_raw (val),
1387 TYPE_LENGTH (value_type (val)),
1388 type_byte_order (result_type),
1389 v);
1390 }
1391 else
1392 {
1393 LONGEST v1, v2, v = 0;
1394
1395 v1 = value_as_long (arg1);
1396 v2 = value_as_long (arg2);
1397
1398 switch (op)
1399 {
1400 case BINOP_ADD:
1401 v = v1 + v2;
1402 break;
1403
1404 case BINOP_SUB:
1405 v = v1 - v2;
1406 break;
1407
1408 case BINOP_MUL:
1409 v = v1 * v2;
1410 break;
1411
1412 case BINOP_DIV:
1413 case BINOP_INTDIV:
1414 if (v2 != 0)
1415 v = v1 / v2;
1416 else
1417 error (_("Division by zero"));
1418 break;
1419
1420 case BINOP_EXP:
1421 v = integer_pow (v1, v2);
1422 break;
1423
1424 case BINOP_REM:
1425 if (v2 != 0)
1426 v = v1 % v2;
1427 else
1428 error (_("Division by zero"));
1429 break;
1430
1431 case BINOP_MOD:
1432 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1433 X mod 0 has a defined value, X. */
1434 if (v2 == 0)
1435 {
1436 v = v1;
1437 }
1438 else
1439 {
1440 v = v1 / v2;
1441 /* Compute floor. */
1442 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1443 {
1444 v--;
1445 }
1446 v = v1 - (v2 * v);
1447 }
1448 break;
1449
1450 case BINOP_LSH:
1451 v = v1 << v2;
1452 break;
1453
1454 case BINOP_RSH:
1455 v = v1 >> v2;
1456 break;
1457
1458 case BINOP_BITWISE_AND:
1459 v = v1 & v2;
1460 break;
1461
1462 case BINOP_BITWISE_IOR:
1463 v = v1 | v2;
1464 break;
1465
1466 case BINOP_BITWISE_XOR:
1467 v = v1 ^ v2;
1468 break;
1469
1470 case BINOP_LOGICAL_AND:
1471 v = v1 && v2;
1472 break;
1473
1474 case BINOP_LOGICAL_OR:
1475 v = v1 || v2;
1476 break;
1477
1478 case BINOP_MIN:
1479 v = v1 < v2 ? v1 : v2;
1480 break;
1481
1482 case BINOP_MAX:
1483 v = v1 > v2 ? v1 : v2;
1484 break;
1485
1486 case BINOP_EQUAL:
1487 v = v1 == v2;
1488 break;
1489
1490 case BINOP_NOTEQUAL:
1491 v = v1 != v2;
1492 break;
1493
1494 case BINOP_LESS:
1495 v = v1 < v2;
1496 break;
1497
1498 case BINOP_GTR:
1499 v = v1 > v2;
1500 break;
1501
1502 case BINOP_LEQ:
1503 v = v1 <= v2;
1504 break;
1505
1506 case BINOP_GEQ:
1507 v = v1 >= v2;
1508 break;
1509
1510 default:
1511 error (_("Invalid binary operation on numbers."));
1512 }
1513
1514 val = allocate_value (result_type);
1515 store_signed_integer (value_contents_raw (val),
1516 TYPE_LENGTH (value_type (val)),
1517 type_byte_order (result_type),
1518 v);
1519 }
1520 }
1521
1522 return val;
1523 }
1524
1525 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1526 replicating SCALAR_VALUE for each element of the vector. Only scalar
1527 types that can be cast to the type of one element of the vector are
1528 acceptable. The newly created vector value is returned upon success,
1529 otherwise an error is thrown. */
1530
1531 struct value *
1532 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1533 {
1534 /* Widen the scalar to a vector. */
1535 struct type *eltype, *scalar_type;
1536 struct value *val, *elval;
1537 LONGEST low_bound, high_bound;
1538 int i;
1539
1540 vector_type = check_typedef (vector_type);
1541
1542 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1543 && vector_type->is_vector ());
1544
1545 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1546 error (_("Could not determine the vector bounds"));
1547
1548 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1549 elval = value_cast (eltype, scalar_value);
1550
1551 scalar_type = check_typedef (value_type (scalar_value));
1552
1553 /* If we reduced the length of the scalar then check we didn't loose any
1554 important bits. */
1555 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1556 && !value_equal (elval, scalar_value))
1557 error (_("conversion of scalar to vector involves truncation"));
1558
1559 val = allocate_value (vector_type);
1560 for (i = 0; i < high_bound - low_bound + 1; i++)
1561 /* Duplicate the contents of elval into the destination vector. */
1562 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1563 value_contents_all (elval), TYPE_LENGTH (eltype));
1564
1565 return val;
1566 }
1567
1568 /* Performs a binary operation on two vector operands by calling scalar_binop
1569 for each pair of vector components. */
1570
1571 static struct value *
1572 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1573 {
1574 struct value *val, *tmp, *mark;
1575 struct type *type1, *type2, *eltype1, *eltype2;
1576 int t1_is_vec, t2_is_vec, elsize, i;
1577 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1578
1579 type1 = check_typedef (value_type (val1));
1580 type2 = check_typedef (value_type (val2));
1581
1582 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1583 && type1->is_vector ()) ? 1 : 0;
1584 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1585 && type2->is_vector ()) ? 1 : 0;
1586
1587 if (!t1_is_vec || !t2_is_vec)
1588 error (_("Vector operations are only supported among vectors"));
1589
1590 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1591 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1592 error (_("Could not determine the vector bounds"));
1593
1594 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1595 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1596 elsize = TYPE_LENGTH (eltype1);
1597
1598 if (eltype1->code () != eltype2->code ()
1599 || elsize != TYPE_LENGTH (eltype2)
1600 || eltype1->is_unsigned () != eltype2->is_unsigned ()
1601 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1602 error (_("Cannot perform operation on vectors with different types"));
1603
1604 val = allocate_value (type1);
1605 mark = value_mark ();
1606 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1607 {
1608 tmp = value_binop (value_subscript (val1, i),
1609 value_subscript (val2, i), op);
1610 memcpy (value_contents_writeable (val) + i * elsize,
1611 value_contents_all (tmp),
1612 elsize);
1613 }
1614 value_free_to_mark (mark);
1615
1616 return val;
1617 }
1618
1619 /* Perform a binary operation on two operands. */
1620
1621 struct value *
1622 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1623 {
1624 struct value *val;
1625 struct type *type1 = check_typedef (value_type (arg1));
1626 struct type *type2 = check_typedef (value_type (arg2));
1627 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1628 && type1->is_vector ());
1629 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1630 && type2->is_vector ());
1631
1632 if (!t1_is_vec && !t2_is_vec)
1633 val = scalar_binop (arg1, arg2, op);
1634 else if (t1_is_vec && t2_is_vec)
1635 val = vector_binop (arg1, arg2, op);
1636 else
1637 {
1638 /* Widen the scalar operand to a vector. */
1639 struct value **v = t1_is_vec ? &arg2 : &arg1;
1640 struct type *t = t1_is_vec ? type2 : type1;
1641
1642 if (t->code () != TYPE_CODE_FLT
1643 && t->code () != TYPE_CODE_DECFLOAT
1644 && !is_integral_type (t))
1645 error (_("Argument to operation not a number or boolean."));
1646
1647 /* Replicate the scalar value to make a vector value. */
1648 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1649
1650 val = vector_binop (arg1, arg2, op);
1651 }
1652
1653 return val;
1654 }
1655 \f
1656 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1657
1658 int
1659 value_logical_not (struct value *arg1)
1660 {
1661 int len;
1662 const gdb_byte *p;
1663 struct type *type1;
1664
1665 arg1 = coerce_array (arg1);
1666 type1 = check_typedef (value_type (arg1));
1667
1668 if (is_floating_value (arg1))
1669 return target_float_is_zero (value_contents (arg1), type1);
1670
1671 len = TYPE_LENGTH (type1);
1672 p = value_contents (arg1);
1673
1674 while (--len >= 0)
1675 {
1676 if (*p++)
1677 break;
1678 }
1679
1680 return len < 0;
1681 }
1682
1683 /* Perform a comparison on two string values (whose content are not
1684 necessarily null terminated) based on their length. */
1685
1686 static int
1687 value_strcmp (struct value *arg1, struct value *arg2)
1688 {
1689 int len1 = TYPE_LENGTH (value_type (arg1));
1690 int len2 = TYPE_LENGTH (value_type (arg2));
1691 const gdb_byte *s1 = value_contents (arg1);
1692 const gdb_byte *s2 = value_contents (arg2);
1693 int i, len = len1 < len2 ? len1 : len2;
1694
1695 for (i = 0; i < len; i++)
1696 {
1697 if (s1[i] < s2[i])
1698 return -1;
1699 else if (s1[i] > s2[i])
1700 return 1;
1701 else
1702 continue;
1703 }
1704
1705 if (len1 < len2)
1706 return -1;
1707 else if (len1 > len2)
1708 return 1;
1709 else
1710 return 0;
1711 }
1712
1713 /* Simulate the C operator == by returning a 1
1714 iff ARG1 and ARG2 have equal contents. */
1715
1716 int
1717 value_equal (struct value *arg1, struct value *arg2)
1718 {
1719 int len;
1720 const gdb_byte *p1;
1721 const gdb_byte *p2;
1722 struct type *type1, *type2;
1723 enum type_code code1;
1724 enum type_code code2;
1725 int is_int1, is_int2;
1726
1727 arg1 = coerce_array (arg1);
1728 arg2 = coerce_array (arg2);
1729
1730 type1 = check_typedef (value_type (arg1));
1731 type2 = check_typedef (value_type (arg2));
1732 code1 = type1->code ();
1733 code2 = type2->code ();
1734 is_int1 = is_integral_type (type1);
1735 is_int2 = is_integral_type (type2);
1736
1737 if (is_int1 && is_int2)
1738 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1739 BINOP_EQUAL)));
1740 else if ((is_floating_value (arg1) || is_int1)
1741 && (is_floating_value (arg2) || is_int2))
1742 {
1743 struct type *eff_type_v1, *eff_type_v2;
1744 gdb::byte_vector v1, v2;
1745 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1746 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1747
1748 value_args_as_target_float (arg1, arg2,
1749 v1.data (), &eff_type_v1,
1750 v2.data (), &eff_type_v2);
1751
1752 return target_float_compare (v1.data (), eff_type_v1,
1753 v2.data (), eff_type_v2) == 0;
1754 }
1755
1756 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1757 is bigger. */
1758 else if (code1 == TYPE_CODE_PTR && is_int2)
1759 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1760 else if (code2 == TYPE_CODE_PTR && is_int1)
1761 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1762
1763 else if (code1 == code2
1764 && ((len = (int) TYPE_LENGTH (type1))
1765 == (int) TYPE_LENGTH (type2)))
1766 {
1767 p1 = value_contents (arg1);
1768 p2 = value_contents (arg2);
1769 while (--len >= 0)
1770 {
1771 if (*p1++ != *p2++)
1772 break;
1773 }
1774 return len < 0;
1775 }
1776 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1777 {
1778 return value_strcmp (arg1, arg2) == 0;
1779 }
1780 else
1781 error (_("Invalid type combination in equality test."));
1782 }
1783
1784 /* Compare values based on their raw contents. Useful for arrays since
1785 value_equal coerces them to pointers, thus comparing just the address
1786 of the array instead of its contents. */
1787
1788 int
1789 value_equal_contents (struct value *arg1, struct value *arg2)
1790 {
1791 struct type *type1, *type2;
1792
1793 type1 = check_typedef (value_type (arg1));
1794 type2 = check_typedef (value_type (arg2));
1795
1796 return (type1->code () == type2->code ()
1797 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1798 && memcmp (value_contents (arg1), value_contents (arg2),
1799 TYPE_LENGTH (type1)) == 0);
1800 }
1801
1802 /* Simulate the C operator < by returning 1
1803 iff ARG1's contents are less than ARG2's. */
1804
1805 int
1806 value_less (struct value *arg1, struct value *arg2)
1807 {
1808 enum type_code code1;
1809 enum type_code code2;
1810 struct type *type1, *type2;
1811 int is_int1, is_int2;
1812
1813 arg1 = coerce_array (arg1);
1814 arg2 = coerce_array (arg2);
1815
1816 type1 = check_typedef (value_type (arg1));
1817 type2 = check_typedef (value_type (arg2));
1818 code1 = type1->code ();
1819 code2 = type2->code ();
1820 is_int1 = is_integral_type (type1);
1821 is_int2 = is_integral_type (type2);
1822
1823 if ((is_int1 && is_int2)
1824 || (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
1825 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1826 BINOP_LESS)));
1827 else if ((is_floating_value (arg1) || is_int1)
1828 && (is_floating_value (arg2) || is_int2))
1829 {
1830 struct type *eff_type_v1, *eff_type_v2;
1831 gdb::byte_vector v1, v2;
1832 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1833 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1834
1835 value_args_as_target_float (arg1, arg2,
1836 v1.data (), &eff_type_v1,
1837 v2.data (), &eff_type_v2);
1838
1839 return target_float_compare (v1.data (), eff_type_v1,
1840 v2.data (), eff_type_v2) == -1;
1841 }
1842 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1843 return value_as_address (arg1) < value_as_address (arg2);
1844
1845 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1846 is bigger. */
1847 else if (code1 == TYPE_CODE_PTR && is_int2)
1848 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1849 else if (code2 == TYPE_CODE_PTR && is_int1)
1850 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1851 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1852 return value_strcmp (arg1, arg2) < 0;
1853 else
1854 {
1855 error (_("Invalid type combination in ordering comparison."));
1856 return 0;
1857 }
1858 }
1859 \f
1860 /* The unary operators +, - and ~. They free the argument ARG1. */
1861
1862 struct value *
1863 value_pos (struct value *arg1)
1864 {
1865 struct type *type;
1866
1867 arg1 = coerce_ref (arg1);
1868 type = check_typedef (value_type (arg1));
1869
1870 if (is_integral_type (type) || is_floating_value (arg1)
1871 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1872 || type->code () == TYPE_CODE_COMPLEX)
1873 return value_from_contents (type, value_contents (arg1));
1874 else
1875 error (_("Argument to positive operation not a number."));
1876 }
1877
1878 struct value *
1879 value_neg (struct value *arg1)
1880 {
1881 struct type *type;
1882
1883 arg1 = coerce_ref (arg1);
1884 type = check_typedef (value_type (arg1));
1885
1886 if (is_integral_type (type) || is_floating_type (type))
1887 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1888 else if (is_fixed_point_type (type))
1889 return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
1890 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1891 {
1892 struct value *tmp, *val = allocate_value (type);
1893 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1894 int i;
1895 LONGEST low_bound, high_bound;
1896
1897 if (!get_array_bounds (type, &low_bound, &high_bound))
1898 error (_("Could not determine the vector bounds"));
1899
1900 for (i = 0; i < high_bound - low_bound + 1; i++)
1901 {
1902 tmp = value_neg (value_subscript (arg1, i));
1903 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1904 value_contents_all (tmp), TYPE_LENGTH (eltype));
1905 }
1906 return val;
1907 }
1908 else if (type->code () == TYPE_CODE_COMPLEX)
1909 {
1910 struct value *real = value_real_part (arg1);
1911 struct value *imag = value_imaginary_part (arg1);
1912
1913 real = value_neg (real);
1914 imag = value_neg (imag);
1915 return value_literal_complex (real, imag, type);
1916 }
1917 else
1918 error (_("Argument to negate operation not a number."));
1919 }
1920
1921 struct value *
1922 value_complement (struct value *arg1)
1923 {
1924 struct type *type;
1925 struct value *val;
1926
1927 arg1 = coerce_ref (arg1);
1928 type = check_typedef (value_type (arg1));
1929
1930 if (is_integral_type (type))
1931 val = value_from_longest (type, ~value_as_long (arg1));
1932 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1933 {
1934 struct value *tmp;
1935 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1936 int i;
1937 LONGEST low_bound, high_bound;
1938
1939 if (!get_array_bounds (type, &low_bound, &high_bound))
1940 error (_("Could not determine the vector bounds"));
1941
1942 val = allocate_value (type);
1943 for (i = 0; i < high_bound - low_bound + 1; i++)
1944 {
1945 tmp = value_complement (value_subscript (arg1, i));
1946 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1947 value_contents_all (tmp), TYPE_LENGTH (eltype));
1948 }
1949 }
1950 else if (type->code () == TYPE_CODE_COMPLEX)
1951 {
1952 /* GCC has an extension that treats ~complex as the complex
1953 conjugate. */
1954 struct value *real = value_real_part (arg1);
1955 struct value *imag = value_imaginary_part (arg1);
1956
1957 imag = value_neg (imag);
1958 return value_literal_complex (real, imag, type);
1959 }
1960 else
1961 error (_("Argument to complement operation not an integer, boolean."));
1962
1963 return val;
1964 }
1965 \f
1966 /* The INDEX'th bit of SET value whose value_type is TYPE,
1967 and whose value_contents is valaddr.
1968 Return -1 if out of range, -2 other error. */
1969
1970 int
1971 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1972 {
1973 struct gdbarch *gdbarch = type->arch ();
1974 LONGEST low_bound, high_bound;
1975 LONGEST word;
1976 unsigned rel_index;
1977 struct type *range = type->index_type ();
1978
1979 if (!get_discrete_bounds (range, &low_bound, &high_bound))
1980 return -2;
1981 if (index < low_bound || index > high_bound)
1982 return -1;
1983 rel_index = index - low_bound;
1984 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1985 type_byte_order (type));
1986 rel_index %= TARGET_CHAR_BIT;
1987 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1988 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1989 return (word >> rel_index) & 1;
1990 }
1991
1992 int
1993 value_in (struct value *element, struct value *set)
1994 {
1995 int member;
1996 struct type *settype = check_typedef (value_type (set));
1997 struct type *eltype = check_typedef (value_type (element));
1998
1999 if (eltype->code () == TYPE_CODE_RANGE)
2000 eltype = TYPE_TARGET_TYPE (eltype);
2001 if (settype->code () != TYPE_CODE_SET)
2002 error (_("Second argument of 'IN' has wrong type"));
2003 if (eltype->code () != TYPE_CODE_INT
2004 && eltype->code () != TYPE_CODE_CHAR
2005 && eltype->code () != TYPE_CODE_ENUM
2006 && eltype->code () != TYPE_CODE_BOOL)
2007 error (_("First argument of 'IN' has wrong type"));
2008 member = value_bit_index (settype, value_contents (set),
2009 value_as_long (element));
2010 if (member < 0)
2011 error (_("First argument of 'IN' not in range"));
2012 return member;
2013 }
This page took 0.107705 seconds and 4 git commands to generate.